
Mathematics Education in the Digital Era

Patricia S. Moyer-Packenham    Editor

International 
Perspectives on 
Teaching and Learning 
Mathematics with 
Virtual Manipulatives



International Perspectives on Teaching
and Learning Mathematics with Virtual
Manipulatives



MATHEMATICS EDUCATION IN THE DIGITAL ERA
Volume 7

Series Editors:
Dragana Martinovic, University of Windsor, ON, Canada
Viktor Freiman, Université de Moncton, NB, Canada

Editorial Board:
Marcelo Borba, State University of São Paulo, São Paulo, Brazil
Rosa Maria Bottino, CNR – Istituto Tecnologie Didattiche, Genova, Italy
Paul Drijvers, Utrecht University, Utrecht, The Netherlands
Celia Hoyles, University of London, London, UK
Zekeriya Karadag, Giresun Üniversitesi, Giresun, Turkey
Stephen Lerman, London South Bank University, London, UK
Richard Lesh, Indiana University, Bloomington, USA
Allen Leung, Hong Kong Baptist University, Hong Kong
John Mason, Open University, UK
Sergey Pozdnyakov, Saint-Petersburg State Electro Technical University,
Saint-Petersburg, Russia
Ornella Robutti, Università di Torino, Turin, Italy
Anna Sfard, Michigan State University, USA & University of Haifa, Haifa, Israel
Bharath Sriraman, University of Montana, Missoula, USA
Anne Watson, University of Oxford, Oxford, UK

More information about this series at http://www.springer.com/series/10170

http://www.springer.com/series/10170


Patricia S. Moyer-Packenham
Editor

International Perspectives
on Teaching and Learning
Mathematics with Virtual
Manipulatives

123



Editor
Patricia S. Moyer-Packenham
Utah State University
Logan, UT
USA

ISSN 2211-8136 ISSN 2211-8144 (electronic)
Mathematics Education in the Digital Era
ISBN 978-3-319-32716-7 ISBN 978-3-319-32718-1 (eBook)
DOI 10.1007/978-3-319-32718-1

Library of Congress Control Number: 2016937520

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Foreword by Douglas McDougall

As an elementary school teacher, my students played with cubes, pattern blocks,
and other concrete materials. The link between the objects and the learning was
made by students making drawings of the manipulatives on paper and then dis-
cussing the drawings. In order to tap into student’s current understanding and
lifestyle, we need to find ways to help them take those experiences and make sense
of the physical world through experiences in the virtual world. The experiences of
young children provide a context for learning mathematics. Children as young as
two years old are playing with virtual manipulatives on iPads and other portable
devices, to communicate and manipulate their world.

In 1995, I was working on my doctoral dissertation in geometry. I chose to
replace the compass and protractor in middle school mathematics with Geometer’s
Sketchpad. As an early adopter of dynamic geometric technology, I learned much
about the role virtual manipulatives play on the role of the teacher. The examples in
this book will help the reader to better understand the role of virtual manipulatives
and how they relate to student learning and the wider field of teacher knowledge.
This book helps to trace possible trajectories of teachers and students learning in the
use of virtual manipulatives.

For many years, when mathematics teachers were using manipulatives, they
were using physical materials that might represent or model mathematical ideas and
concepts. In 2002, Moyer, Bolyard and Spikell defined a virtual manipulative.
There has been much written and explored about virtual manipulatives before and
after 2002 in this area. This book helps researchers to distinguish and then use
virtual manipulatives in their work. It also helps the educational and research
communities to have a common understanding of the language around
manipulatives.

As you will read in this book, the representation of a dynamic mathematical
object provides learning opportunities for constructing mathematical knowledge.
As with physical manipulatives, we need to manipulate the object. However, an
important question to pose is “what do we need to do to something to capture the
mathematical ideas?” I suggest that the reader first answer this question and then
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reflect on their own understanding of the role of virtual manipulatives as they
navigate the key messages in each chapter.

There are many conflicting views about what the research has shown us about
virtual manipulatives. This book helps us to frame the research possibilities as well
as provide a framework to guide the data collection and analysis. It also provides a
foundation for enhancing the development of additional frameworks.

I am impressed with the interplay between dynamic interactions with the com-
puter and the way that Dewey described the use of manipulatives. The story
throughout the book about virtual manipulatives and the natural need of humans to
visualize and touch their world is powerful. These authors bring alive the physical
world and the virtual world and the human interactions that will help readers to
make sense of this important work.

I think this is a very important and timely book. Patricia Moyer-Packenham has
selected key researchers in the area and the names are recognized around the world
as being experts in the field. I also think that beginning with a frameworks and
definitions section sets up the book as a serious collection of research and practical
contexts that will help the reader fully capture the characteristics of virtual
manipulatives and the growing common understanding of the field. Many authors
describe various frameworks that are in use in the study of virtual manipulatives. It
is particularly interesting that every chapter contains a theoretical perspective.
Many authors extend their work to suggest practical suggestions for how to use
virtual manipulatives.

I was intrigued by the various educational contexts presented in this book. I have
had experience teaching in elementary and secondary schools as well as with
pre-service teachers and graduate students. In this book, we learn about the use of
virtual manipulatives in many different classrooms: early childhood education,
primary, Grade 5, and secondary school. In addition, we learn about how
pre-service teachers can learn to teach using virtual manipulatives as well as
increasing their own understanding of geometry and algebra. This broad spectrum
of contexts provides a valuable resource for researchers, emerging scholars,
pre-service teachers, in-service teachers, school leaders, and university professors.

Douglas McDougall
University of Toronto
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Part I
Frameworks and Definitions



Chapter 1
Revisiting the Definition of a Virtual
Manipulative

Patricia S. Moyer-Packenham and Johnna J. Bolyard

Abstract In 2002, Moyer, Bolyard and Spikell defined a virtual manipulative as an
“an interactive, Web-based visual representation of a dynamic object that presents
opportunities for constructing mathematical knowledge” (p. 373). The purpose of
this chapter is to revisit, clarify and update the definition of a virtual manipulative.
After clarifying what a virtual manipulative is and what it is not, we propose an
updated definition for virtual manipulative: an interactive, technology-enabled
visual representation of a dynamic mathematical object, including all of the pro-
grammable features that allow it to be manipulated, that presents opportunities for
constructing mathematical knowledge. The chapter describes the characteristics of
five of the most common virtual manipulative environments in use in education:
single-representation, multi-representation, tutorial, gaming and simulation.

Fifteen years ago, colleagues Moyer et al. (2002) proposed a definition for a virtual
manipulative. They defined a virtual manipulative as an “an interactive, Web-based
visual representation of a dynamic object that presents opportunities for con-
structing mathematical knowledge” (p. 373). The term “interactive” was used in the
definition to distinguish tools that users could interact with from those that were
simply static images viewed on the screen. The term “Web-based” was used in the
definition to distinguish easily accessible tools on the Internet from those that were
being commercially produced as computer programs. The term “visual represen-
tation” was used in the definition to highlight that a pictorial image had the potential
to accurately represent some mathematical idea. The term “dynamic” was used in
the definition to focus on the manipulability of the image representation that could
be moved by the user. The term “object” was used to refer to the idealized
mathematical object, beyond its physical inscription, that the two-dimensional
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image was used to represent (Kirby 2013). The terms “presents opportunities for
constructing mathematical knowledge” were used in the definition to distinguish
that virtual manipulatives are designed for the purpose of facilitating the opportu-
nity for mathematical learning.

Since this definition was published in 2002 in Teaching Children Mathematics,
it has been referenced and cited over 280 times (source: Google Scholar),
demonstrating its usefulness to the educational and research communities. Because
of the widespread use of the term virtual manipulative and its definition, a number
of questions have arisen as new technologies have been developed that include
technology tools with virtual manipulatives. What is and what is not a virtual
manipulative? Are all virtual manipulatives “web-based” as described in the 2002
definition? Is a virtual manipulative simply the representation, alone, or does the
virtual manipulative include some or all of the features that are designed in the
environment around it? What is the relationship between games and virtual
manipulatives? What is the difference between virtual manipulatives designed as
Java-based apps and the newer touch-screen apps?

At the time of the release of the original definition, Moyer et al. (2002) described
virtual manipulatives as “a new class of manipulatives” (p. 372). In the 2002 pub-
lication, the authors described virtual manipulatives being manipulated by a com-
puter mouse. Today, virtual manipulatives are presented on computer screens, on
touch screens of all sizes (e.g., tablets, phones, white boards), as holographs, and via
a variety of different viewing and manipulation devices. The virtual manipulatives
on these devices will likely be manipulated by a mouse, stylus, fingers, lasers, and a
variety of other manipulation modalities in the years to come. Several collections of
virtual manipulatives have been developed over the years including the National
Library of Virtual Manipulatives (NLVM) (http://nlvm.usu.edu), National Council
of Teachers of Mathematics (NCTM) Illuminations (http://illuminations.nctm.org),
and Shodor Interactivate Curriculum Materials (http://shodor.com/curriculum/).
There are also new libraries of virtual manipulatives being developed for the
touch-screen environment, although to date, there are none as extensive as those
developed for the computer.

As new technologies have developed and questions arose in the field, we
believed it was time to revisit the definition of a virtual manipulative and to discuss
some of the most common environments for the educational setting in which virtual
manipulatives appear. The purpose of this chapter is to address questions that have
arisen in the field since the publication of the original definition; revisit, clarify and
update the definition of a virtual manipulative; and to describe the characteristics of
five of the most common virtual manipulative environments in use in education.
Describing examples of different environments in which users may find a virtual
manipulative allows educators and researchers to have a common language and
understanding of these important technology tools for teaching and learning
mathematics.

4 P.S. Moyer-Packenham and J.J. Bolyard
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1.1 What Is and What Is Not a Virtual Manipulative?

Moyer et al. (2002) clarified the difference between technology tools that are and
are not virtual manipulatives. One of the most important distinctions made in the
2002 publication was that the virtual manipulative user needs to be able to interact
with a dynamic object in such a way that these interactions provide opportunities
for constructing mathematical knowledge. Therefore, as described in the 2002
article, filling in worksheets on the screen or simply answering questions in the
presence of a pictorial object does not fit the definition of a virtual manipulative.

A key defining feature of a virtual manipulative is the difference between static
images of the representation and dynamic images of the representation on the
screen. The user needs to be able to interact with, move, or manipulate the dynamic
mathematical representation in some way that accurately represents a mathematical
concept, relationship, procedure, and/or students’ thinking about mathematical
concepts, relationships, and procedures. This movement could take place using a
mouse, stylus, fingers, lasers, and a variety of other manipulation devices yet to be
developed (see Fig. 1.1). This interactive feature of the visual representation of the
dynamic mathematical object distinguishes a virtual manipulative from other
mathematics technology tools.

Child using a mouse to move a virtual 
manipulative on a computer screen

Child using fingers to move a virtual 
manipulative on a touch-screen

Fig. 1.1 Users can interact with, move, or manipulate the virtual manipulative using a mouse,
fingers, or other interaction modalities

1 Revisiting the Definition of a Virtual Manipulative 5



1.2 What Is the History of the Term “Virtual
Manipulative”?

In the late 1990s different developers proposed the creation of a new class of
manipulatives, which they referred to as digital manipulatives and virtual manip-
ulatives. For example, Resnick et al. (1998) proposed the creation of digital
manipulatives. The goal of these digital manipulatives, as described by Resnick and
colleagues, was to:

…embed computational and communications capabilities in traditional children’s toys. By
using traditional toys as a starting point, we hope to take advantage of children’s deep
familiarity with (and deep passion for) these objects. At the same time, by endowing these
toys with computational and communications capabilities, we hope to highlight a new set of
ideas for children to think about. (Resnick et al. 1998, p. 282)

Also, in the late 1990s, colleagues Jim Dorward, Bob Heal, Larry Cannon and
Joel Duffin at Utah State University proposed the creation of a library of virtual
manipulatives (Dorward and Heal 1999; Heal et al. 2002). They were funded by the
National Science Foundation and, in 1999, created the National Library of Virtual
Manipulatives (NLVM) (http://nlvm.usu.edu/), a collection of Java-based applets
for K-12 mathematics teaching and learning. The NLVM is still in use today and is
available in four different languages (Chinese, English, French, and Spanish).
Throughout the years, the terms digital manipulatives (Manches and O’Malley
2012; Resnick et al. 1998), computer manipulatives (Sarama and Clements 2009),
and virtual manipulatives (Dorward and Heal 1999; Heal et al. 2002) have been
used most commonly as synonyms.

1.3 Are All Virtual Manipulatives Web-Based?

Technologic innovations have exploded over the past decade. This innovation has
caused virtual manipulatives to appear in a variety of forms beyond the World Wide
Web. So perhaps now is the time to amend the original definition, which defined
virtual manipulatives as “web-based”, and revise the definition to say
“technology-enabled”. Currently, virtual manipulatives are available through mul-
tiple technological means; thus, the term “web-based” no longer encompasses all of
the forms of virtual manipulatives that are available. It is also important to rec-
ognize the shift from “based” to “enabled”. In the future it is very likely that virtual
manipulatives will no longer be based in any technology (e.g., they may be pro-
jected 3D objects or holographic images). Describing virtual manipulatives as
technology-enabled allows for changes in future iterations of these tools.

6 P.S. Moyer-Packenham and J.J. Bolyard
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1.4 Is a Virtual Manipulative Simply the Representation,
Alone, or Does the Virtual Manipulative Include
Some or All of the Features that Are Designed
in the Environment Around It?

Some researchers make a subtle distinction between the visual representation (i.e.,
the image, the inscription) of a virtual manipulative and the features of the repre-
sentation, which enable it to be acted upon as a dynamic mathematical object.
Because the original definition of a virtual manipulative says “an interactive …
visual representation of a dynamic object” some have interpreted this to mean that
the virtual manipulative is the inscription of the representation only, while others
have interpreted this to mean that the virtual manipulative is the representation
including its dynamic and programmable features. In the original definition by
Moyer et al. (2002), the intention of the authors was that a virtual manipulative
includes the representation and its dynamic and programmable features that allow
the user to come to understand it as a representation of the idealized mathematical
object (Kirby 2013). The representation portion of the virtual manipulative is only
“interactive” and “dynamic” when its programmable features enable capabilities for
knowledge construction.

As Kirby (2013) explains, “the properties of the object derive from the relevant
definition, not the inscription itself…” (p. 1). For example, in Fig. 1.2, we can see
an inscription or representation of an icosahedron. From the idealized mathematical
object for an icosahedron, developers created this technology representation. The
representation that appears on the computer screen only represents the icosahedron.
Yet the representation, because of its limitations and constraints, can never be the
idealized mathematical object with all of its properties and relationships. Through
an individual’s mathematical development, learners begin to understand the prop-
erties and relationships of the icosahedron as an idealized mathematical object
beyond the representation. This goes beyond the simple images and limited
inscriptions that appear in two dimensions on the screen. Most importantly, it is the
interactive and dynamic programmable features that allow the user to explore with
the representation and develop the concept of the icosahedron beyond its
two-dimensional screen inscription. Therefore, in a virtual manipulative, the rep-
resentation cannot be separated from its interactive and dynamic programmable
features.

Further, the potential of the virtual manipulative to provide opportunities for
constructing mathematical knowledge is dependent upon the representation’s
potential to accurately provide an interaction with the mathematics and for the user
to be able to perceive the mathematics through this interactivity (Simon 2013).
Goldin (2003) describes representation as process and product. Representational
systems are both internal (within the individual) and external (outside the indi-
vidual) and it is the interaction between these two systems that is the key to learning
(Goldin and Shteingold 2001).

1 Revisiting the Definition of a Virtual Manipulative 7



Research has shown that the dynamic and interactive features of a virtual
manipulative facilitate interactions between representational systems
(Moyer-Packenham and Westenskow 2013). The dynamic movements of the visual
representations and observation of the resulting outcomes support the structuring of
the user’s internal representation of the mathematics under study; likewise, the
same movements and outcome observations can represent the user’s current
mathematical thinking, allowing the user to test and refine ideas.

Opportunities for constructing mathematical knowledge consist of more than the
visual representation. The use of a virtual manipulative has maximum potential to
support learning by behaving in a way that represents the idealized mathematical
object when manipulated by the user and by accurately representing the user’s
mathematical thinking. Consequently, the manipulative representation alone, is not
the virtual manipulative. It is the interactive and dynamic capabilities of the
manipulative representation that makes it a virtual manipulative. Therefore, the
programmable features of the application that support its interactivity are part of the
virtual manipulative. The features that allow the representation to be manipulated,

Fig. 1.2 Icosahedron virtual manipulative with marked faces, edges and vertices

8 P.S. Moyer-Packenham and J.J. Bolyard



to be interactive, and to be dynamic are an inherent part of the virtual manipulative.
Without these features, it is simply a static inscription.

To clarify the original definition, it could be amended to say a “representation of
a dynamic object, including all of the programmable features that allow it to be
manipulated; or that allow it to be dynamic; or that allow it to be interactive”. For
example, in Fig. 1.2 which shows the three-dimensional representation of an
icosahedron, the features of the app that allow the user to change the color of the
faces, mark the vertices with black dots, mark the edges with white lines, move the
slider to change the object’s size and change the solid to a transparent view are all
part of the interactivity and manipulability of the virtual manipulative that can be
acted upon by the user to draw attention to or highlight the relevant properties of the
solid. In addition, using a mouse to click on and drag the icosahedron or using
fingers to swipe the icosahedron allows the user to move and rotate it.

All of these actions take the user beyond the simple representation of the object
to a greater understanding of the properties and relationships imposed by the def-
initions and theorems of the idealized icosahedron. Therefore, the virtual manipu-
lative is not simply the visual representation of the icosahedron, the virtual
manipulative is the visual representation of the icosahedron and all of the pro-
grammable features surrounding it that allow it to be dynamic, interactive and
manipulated by the user to explore and observe its properties. These programmable
features allow it to be manipulated and are an inherent part of it being classified as a
virtual manipulative. Without these programmable features, the icosahedron is
simply a visual/pictorial representation on a computer screen. With these pro-
grammable features, it is a virtual manipulative because it is an interactive and
dynamic representation that can be manipulated.

1.5 What Is the Relationship Between Games
and Virtual Manipulatives?

There are some virtual manipulatives that are embedded within gaming environ-
ments. When virtual manipulatives are embedded within a gaming environment, the
environment is designed to host the virtual manipulative with its dynamic features.
Some gaming environments are very basic, while other gaming environments can
be highly developed and multi-layered. The game may have increasing levels,
points, goals, timers, and other elements of game design (Deterding et al. 2011).
Therefore, the entire gaming environment and everything in it is not a virtual
manipulative, but there are often virtual manipulatives embedded in gaming envi-
ronments. This could be the result of a designer taking a virtual manipulative and
gamifying it to make it more appealing to learners.

Deterding et al. (2011) define gamification as “the use of game design elements
in non-game contexts” (p. 10). For example, in the Motion Math Zoom app, a
virtual manipulative is housed in a gaming environment (see Fig. 1.3, Zoom app).

1 Revisiting the Definition of a Virtual Manipulative 9



The virtual manipulative is the dynamic number line that can be expanded, con-
tracted and swiped by the user. This dynamic number line is placed inside a gaming
environment where there are levels for the user to achieve using the virtual
manipulative number line.

The gaming environment in which the virtual manipulative number line is
housed could be changed; however, the dynamic number line remains the virtual
manipulative for the learner to manipulate. For example, the virtual manipulative
number line that is used in the Motion Math Zoom app could be placed in a
different environment where the user is not playing a game. The environment could
have number line tasks for the user to complete. Therefore, the relationship between
games and virtual manipulatives is that virtual manipulatives are sometimes
embedded in gaming environments.

1.6 What Is the Difference Between Virtual Manipulatives
Designed as Java-Based Apps and the Newer
Touch-Screen Apps?

Virtual manipulatives have been developed over the years in a variety of different
formats from Java- and Flash-based applications, largely for Windows computers
and Android devices to Swift-based applications for Apple iOS products (e.g.,
iPads). Whether these dynamic objects are Java-based, Swift-based, or developed
using a host of available programming languages and tools, they are still virtual
manipulatives. The programming language or tool used to develop the virtual
manipulative or the platform through which it is delivered does not change the
essence of the virtual manipulative. As long as the product that is created is a
dynamic representation of a mathematical object, having the characteristics of in-
teractivity and manipulability that presents opportunities for constructing mathe-
matical knowledge, it is a virtual manipulative. New programming languages may

Fig. 1.3 Motion math zoom
game app
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allow new and different capabilities, but these capabilities simply allow the virtual
manipulative to have different kinds of interactivity and manipulability.

1.7 How Is the Term “Virtual Manipulative” Confused
with Other Technology Terminology?

Over the years, there have been subtle, yet important, distinctions made in the
literature among the terminology used to describe technologies for mathematics
teaching and learning. Some of the terminology related to virtual manipulatives
includes: cognitive technology tools (Pea 1985), learning objects (Kay 2012),
virtual math objects (Bos 2009b), and computer-based mathematical cognitive
tools (Sedig and Liang 2006). This similar terminology has led to confusion about
virtual manipulatives. Some publications have used terminology other than the term
virtual manipulative to refer to technologies that actually fit the definition of a
virtual manipulative; conversely, the term virtual manipulative has been used to
refer to technologies that do not fit the definition of a virtual manipulative.

Using a term other than virtual manipulative to refer to a virtual manipulative in
a research study makes it challenging for researchers to determine what mathe-
matics technologies were actually used in the study, to identify if the tools inves-
tigated meet the definition of a virtual manipulative, and to conduct rigorous
evaluations and meta-analyses (Moyer-Packenham and Westenskow 2013) that
summarize the effects of virtual manipulatives on student achievement and learning.
When a term other than virtual manipulative is used in a research publication, it is
unclear if the authors are simply using another term when they actually mean virtual
manipulative, or if the authors are actually referring to something different than a
virtual manipulative. These distinctions among terminology warrant some
clarification.

Pea (1985) defined cognitive technology tools as “any medium that helps tran-
scend the limitations of the mind, such as memory, in activities of thinking, learning,
and problem solving” (p. 168). Because cognitive technology tools include the broad
class of “any medium,” we consider virtual manipulatives as a sub-category of the
term cognitive technology tools because there are also many other types of medium
that can be considered cognitive technology tools. Therefore, cognitive technology
tools and virtual manipulatives are not synonymous.

Kay (2012) defines learning objects as “interactive Web-based tools that support
the learning of specific concepts by enhancing, amplifying, and/or guiding cognitive
processes of learners” (p. 351). Kay (2012) gives two examples of learning objects in
his study: “adding integers with virtual colored tiles” and “three-dimensional objects
transform to two-dimensional nets in order to examine surface area” (p. 351). Based
on Kay’s definition of a learning object, virtual manipulatives would be considered
learning objects because the examples of the learning objects he describes in his
study fit the definition of a virtual manipulative. However, if learning objects include
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other tools, beyond those described in the study that do not fit the definition of a
virtual manipulative, then learning objects and virtual manipulatives are not
synonymous.

Bos (2009b) writes about virtual math objects: “A math object enhanced with
technology offers manipulations, multiple representations, multiple entry points,
and provides opportunity to test, revisit, revise, and apply mathematical patterns”
(p. 522). “The math object uses multiple representations that are interactive and
change with the given input” (Bos 2009a, p. 110). Given this description, virtual
manipulatives may be the same as virtual math objects or one type of math object
because virtual manipulatives contain “multiple representations that are interactive
and change with the given input.” Although Bos (2009b) wrote, “Virtual manip-
ulatives…are often mistaken as math objects…” (p. 522), the description of virtual
math objects in these publications implies that virtual math objects and virtual
manipulatives may be synonymous.

Sedig and Liang (2006) describe computer-based mathematical cognitive tools
(MCTs) as “a category of external aids intended to support and enhance learning
and cognitive processes of learners. MCTs often contain interactive visual mathe-
matical representations…” (p. 179). Sedig and Liang (2006) go on to describe these
visual mathematical representations as “graphical representations that encode cau-
sal, functional, structural, logical, and semantic properties and relationships of
mathematical structures, objects, concepts, problems, patterns, and ideas” (p. 180).
Based on these definitions, virtual manipulatives are a subcategory of
computer-based mathematical cognitive tools because there are some tools that
would be considered computer-based mathematical cognitive tools but that would
not fit the definition of a virtual manipulative.

An additional source of confusion comes from the science literature in which
virtual science materials are sometimes referred to as virtual manipulatives. In some
studies, the research uses the terms physical and virtual manipulatives and physical
and virtual material interchangeably. For example, Triona and Klahr (2003)
compared the effectiveness of two instructional conditions, which they called the
“physical, manipulable materials” condition and the “virtual, computer-based
materials” condition (p. 152). Olympiou and Zacharia (2012) compared the effec-
tiveness of three instructional conditions which they called experimenting with
physical manipulatives (PM), with virtual manipulatives (VM), and with a blended
combination of PM and VM, to determine students’ understanding of concepts in
the domain of Light and Color. Zacharia and deJong (2014) compared the effec-
tiveness of five instructional conditions that included “virtual material” and a
“Virtual Labs Electricity environment” in which students manipulated “virtual
objects and virtual instruments” to develop an understanding of electric circuits
(p. 112). In another comparison study, Lazonder and Ehrenhard (2013) compared
the effectiveness of physical and virtual manipulatives in an inquiry task about
falling objects. Just like the mathematics literature, it is unclear how closely aligned
the “virtual manipulatives” being used in these science studies are with the 2002
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definition of virtual manipulatives for mathematics. It may be important for the
science education community to define virtual manipulatives and virtual materials
in the context of science.

1.8 An Updated Definition for Virtual Manipulatives

As these questions posed over the past decade show, there is a need for greater
clarification of the definition of a virtual manipulative. Based on the discussion in
the preceding sections, which included proposed revisions, here we suggest an
updated definition of a virtual manipulative: an interactive, technology-enabled
visual representation of a dynamic mathematical object, including all of the pro-
grammable features that allow it to be manipulated, that presents opportunities for
constructing mathematical knowledge. This updated definition preserves the term
“interactive” in the definition because this is a defining characteristic of a virtual
manipulative. The updated definition takes into account that all virtual manipula-
tives do not have to be “web-based”, and replaces this terminology with the term
“technology-enabled”. The updated definition also preserves the terms “visual
representation of a dynamic object” and adds the term “mathematical” to clarify that
we are referring to a representation of a mathematical object.

The updated definition clarifies that the visual representation of a dynamic object
is accompanied by all of its programmable features, because without these features
it would not be interactive and dynamic. Implied in this updated definition is that a
virtual manipulative may: (a) appear in many different technology-enabled envi-
ronments; (b) be created in any programming language; and (c) be delivered via any
technology-enabled device.

1.9 Common Virtual Manipulative Environments

One source of confusion about what is and what is not a virtual manipulative has
been that virtual manipulatives have been designed to be housed in various tech-
nological environments. Other authors have outlined categories of computer-based
learning technologies for mathematics education. For example, Handal and
Herrington (2003) reported that there are six categories of computer-based learning
in mathematics and these include: drills, tutorials, games, simulations, hypermedia,
and tools. Kurz et al. (2005) reported that there are five categories of tool-based
mathematics software and these include: review and practice, general, specific,
environment, and communication. Although there are some commonalities between
these categories and virtual manipulative environments, the categories are not
specific to virtual manipulatives. In an NCTM conference presentation, Bolyard and
Moyer (2007) discussed four virtual manipulative environments. However, there
has been no publication that has described these environments.
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This section of the chapter seeks to put that discussion into print by describing
the common environments in which virtual manipulatives frequently appear.
Currently, there are five common virtual manipulative environments that have been
used by developers. These environments include: single-representation,
multi-representation, tutorial, gaming and simulation. While other environments
may exist and new environments may be developed, these five environments have
stood the test of time and can be found most commonly among the virtual
manipulatives currently available to users.

The single-representation virtual manipulative environment. The single-
representation virtual manipulative environment contains an interactive pictorial/
visual representation (i.e., image) of the dynamic mathematical object and is not
accompanied by any numerical or text information. Bolyard and Moyer (2007)
referred to this as “pictorial-only” in their NCTM presentation. The single-
representation environment typically relies on only one type of representation of the
mathematics and, most commonly, that single representation is a pictorial image. In
some cases, the pictorial image is based on a physical manipulative, and in some
cases the virtual manipulative image has no physical counterpart. Some publica-
tions mistake this notion, which implies that all virtual manipulatives are patterned
after physical manipulatives: “Virtual manipulatives are screen-based instantiations
of physical manipulatives…” (Manches and O’Malley 2012, p. 406).

Three examples of the single-representation environment are the Pattern Blocks,
the Tangrams, and the Fraction Pieces found at the National Library of Virtual
Manipulatives (NLVM; nlvm.usu.edu) website (see Fig. 1.4). The virtual manip-
ulative pattern blocks contain six different geometric shapes that users can move
and alter (e.g., change color, change location, and change the orientation). The
tangrams also contain several different geometric shapes that users can move and
alter (e.g., change color, change location, and change the orientation). The fraction
pieces contain different fractional portions of a circle region that users can move
and compare with the whole. In the single-representation environment, the pictorial
image is the predominant representation, with limited information provided in
numerical or text form. As can be seen in Fig. 1.4, this environment simply
includes the pictorial representation of the objects for the user to manipulate along
with all of the accompanying programmable features.

Pattern Blocks Tangrams Fraction Pieces

Fig. 1.4 Examples of the single-representation virtual manipulatives environment found at the
nlvm.usu.edu
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The single-representation environment requires the teacher to design specific
tasks for learners that will help draw their attention to the mathematical ideas under
study. However, this environment also allows the teacher more flexibility with the
tools to design specific tasks that meet the needs and goals of the curriculum.
Because of its open-ended nature, the single-representation environment can easily
be used as the basis for independent practice activities (Wight and Kitchenham
2015). Anderson-Pence (2014) reported that, because the single-representation
environment relies only on pictorial images, this environment is more versatile for
use in teaching because the pictorial images can be used for many different types of
mathematical explorations.

The single-representation environment also places responsibility on the student
for attending to and making sense of connections between the pictorial representa-
tions and numeric representations of the mathematics, because the numeric repre-
sentations do not appear simultaneously with the pictorial images, as is the case in
other virtual manipulative environments. Anderson-Pence (2014) reported that,
when student pairs worked with the single-representation environment (which she
called “pictorial”), they had the largest amount of discussion and the highest use of
gestures (both physical gestures and computer-based gestures). However, these
discussions were not at a high level that would lead to mathematical generalizations.

Other reports on the single-representation environment have noted that this
environment leads to more creative variation during problem solving
(Moyer-Packenham and Westenskow 2013). For example, Moyer et al. (2005)
reported that children using the virtual manipulative pattern blocks (a
single-representation environment) exhibited more creative behaviors with the
blocks. Because this environment contains only visual images, students working in
pairs must put forth more effort in communicating how to manipulate the objects,
how to solve problems, and what mathematics these activities represent.

The multi-representation virtual manipulative environment. The multi-
representation virtual manipulative environment contains the interactive visual
representation (i.e., image) of the dynamic mathematical object and is accompanied
by numerical and, sometimes, text information. Therefore, the multi-representation
environment typically relies on two or more forms of representations, and these are
often pictorial and numeric representations. Bolyard and Moyer (2007) referred to
this as “combined pictorial and numeric” in their NCTM presentation. Three
examples of the multi-representation environment are the Rectangle Multiplication
of Fractions and Base Blocks Addition found at the NLVM and Equivalent
Fractions found at the NCTM Illuminations website (nctm.org; see Fig. 1.5). The
Rectangle Multiplication of Fractions app shows a pictorial image of a grid with
numerical information to accompany the visual changes in the amounts in the grid.
The Base Blocks Addition app shows a pictorial image of base-10 blocks with
numerical information that represents the changing amounts displayed by the
blocks. The Equivalent Fractions app shows a pictorial image of three rectangular
regions that can be divided and shaded to show fraction amounts that are displayed
on a number line and recorded in a table for the user.
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In each of these applications, the environment contains multiple representations
and the pictorial images are commonly linked simultaneously with the numeric
information. As the user interacts with the pictorial images, the numeric information
provides an abstract model that accompanies the images. The presentation of two or
more different representations (e.g., pictorial, numeric, text) simultaneously enables
the user to link images with abstractions in numeric mathematical form. As can be
seen in Fig. 1.5, the multi-representation environment often contains primarily
pictorial representations and numerical representations in a linked form along with
all of the accompanying programmable features.

For many years, researchers have recognized the importance of linking features
in computational media to promote representational fluency and learners’ ability to
see relationships among representations (Kaput 1986). Sarama and Clements (2009)
describe this as “linking the concrete and the symbolic with feedback” (p. 147).
A meta-analysis of the research on virtual manipulatives shows that simultaneous
linking of representations has positive impacts on students’ mathematics achieve-
ment (Moyer-Packenham and Westenskow 2013). For example, Suh and Moyer
(2007) reported that their students observed the links between the algebra symbols
and the movement of a balance scale. Haistings (2009) reported that her students
preferred the linked pictorial/symbolic apps because the mathematical information
appeared for them on the screen and they did not have to remember or recount the
blocks during problem solving. Additionally, the numbers changed as they per-
formed actions with the blocks allowing them to see the result of their actions.

Viewing numeric and pictorial information that changes simultaneously allows
the user to adapt and reinterpret the representations (Martin and Schwartz 2005).
Anderson-Pence (2014) reported that, when students worked in pairs using the
multi-representation environment (which she referred to as “combined”), students’
discussions reflected higher levels of mathematical generalization, justification, and
collaboration. The multiple representations encouraged students to make connec-
tions, make comparisons among the representations, and see patterns more easily.
A similar finding was also reported by Ares et al. (2008), who noted that interacting
with multiple representations promoted mathematical discourse among students.

Rectangle Multiplication of 
Fractions

Base Blocks Addition Equivalent Fractions

Fig. 1.5 Examples of the multi-representation virtual manipulatives environment found at the
nlvm.usu.edu and nctm.org
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The tutorial virtual manipulative environment. The tutorial virtual manipu-
lative environment contains the interactive visual representation (i.e., image) of the
dynamic mathematical object and is accompanied by numerical and text informa-
tion in a format that guides the user through a tutorial of the mathematical proce-
dures and processes being presented. Therefore, the tutorial environment provides a
guiding and tutoring support structure for the user and relies on multiple forms of
representation—pictorial, numeric, and text. The guiding and tutoring features are
what make the tutorial environment different from the multi-representation
environment.

Two examples of the tutorial environment are Fractions Adding and Color Chips
Addition found at the National Library of Virtual Manipulatives (see Fig. 1.6). The
Fractions Adding app presents the user with two fractions that have unlike
denominators. The prompt in the tutorial guides the user to rename the two fractions
so that they have a denominator that is common to both fractions. As students use
the arrow button to change the number of pieces of each fraction, they can see how
the total number of pieces changes on each fraction region until they find divisions
of the regions that are common. Once the common denominator is found, students
are prompted to rename the two fractions and check to see if their answer is correct.

Fractions Adding – screen 1 Color Chips Addition – screen 1

Fractions Adding – screen 2 Color Chips Addition – screen 2

Fig. 1.6 Examples of the tutorial virtual manipulatives environment found at the nlvm.usu.edu
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When they have created correct common denominators, they continue to the next
screen and are guided to add the renamed fractions by dragging the fraction pieces
into a sum region. When students type the answer in symbolic form that represents
the pictorial image they have created, they receive feedback that tells them if their
response is correct or that guides them to make an adjustment to their answer if it is
incorrect.

The Color Chips Addition app presents the user with a numeric expression and
prompts the user to use the positive and negative chips to build the expression.
Students continue to the next screen where they are prompted to simplify the expres-
sion and type in a solution. The tutorial environment generally follows this format of
guiding and tutoring students to understand a process in a step-by-stepmanner. As can
be seen in Fig. 1.6, this environment can include multiple steps that guide students
through a process or procedure using a variety of representations.

Anderson-Pence (2014) reported that the tutorial environment is better suited to
students working individually because the tutorial essentially serves as an indi-
vidual tutor that walks students through the steps of solving a problem or learning a
mathematical procedure. This environment discourages communication among
student pairs because of the step-by-step format that allows little exploration or
deviation from the tutoring process.

While this environment is not as useful for students working in pairs, the tutorial
environment has been shown to have significant positive effects in classroom
studies where students were working individually at their own computers (Reimer
and Moyer 2005; Steen et al. 2006; Suh and Moyer 2007). For example, in one
study with low, average and high achievement groups, researchers reported that the
low achievers benefited from the treatment because of the step-by-step presentation
format in the tutorial environment. Researchers stated: “The low achieving group
used a step-by-step methodical process to find multiples and common denomina-
tors…” (Moyer-Packenham and Suh 2012, p. 53). The step-by-step tutorial envi-
ronment led the low achieving group through this process to successfully complete
the mathematical procedures.

The gaming virtual manipulative environment. The gaming virtual manipu-
lative environment contains the interactive visual representation (i.e., image) of the
dynamic mathematical object that is embedded in a format that allows the user to
play a game with the objective to reach goals that are reflected in the game play.
Therefore, the gaming environment relies on multiple forms of representation
embedded in an environment with a variety of gaming features that might include
levels, badges, time constraints, clear goals, challenge and play-centric design
(Deterding et al. 2011).

Three examples of the gaming environment are Motion Math Zoom, Dragon
Box Algebra, and Hungry Guppy found on the Apple iTunes store (see Fig. 1.7).
The Motion Math Zoom app is an interactive number line that users can swipe left
and right to view higher numbers and lower numbers on the number line, respec-
tively. To quickly move from ones to tens to hundreds to thousands, users employ a
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two-finger pinching and stretching motion to “zoom in and out” on the number line.
In the game, numbers appear in bubbles above the number line. The user must
move the number line to the correct location so that it is below the number in the
bubble and then pop the bubble so that the number lands at the correct placement on
the number line. The game has 24 levels, with multiple tasks in each level, that
increase in difficulty. There is a needle that can be turned on or off that acts as a
timer to encourage the user to become increasingly more efficient at identifying
where the numbers go on the interactive number line.

The Dragon Box Algebra app engages the user with operations, additive and
multiplicative thinking, solving expressions and equations, and fractions. The game
has ten 20-level chapters where the user moves game pieces to solve expressions or
equations to complete the game levels. The Hungry Guppy app requires the user to
combine bubbles of different numbered dots to create a target number and feed the
hungry fish. When the correct number of dots is fed to the fish, the fish gets larger
and the user completes the level. As can be seen in Fig. 1.7, the gaming envi-
ronment typically has multiple representations and a more developed background
design and visual images that enhance the appearance of the app when compared
with the other virtual manipulative environments.

Tucker (2015) reported that a user’s mathematical and technological distance
(with distance defined as the “degree of difficulty in understanding how to act upon
[something] and interpret its responses” (Sedig and Liang 2006, p. 184)) changed as
they interacted with the Zoom app. Other studies have reported that virtual
manipulatives in gaming environments can have positive effects on the develop-
ment of mathematics learning (Carr 2012). For example, Barendregt et al. (2012)
reported that, when five- and six-year-old children played the Fingu game during a
three-week period, it supported the development of their subitizing and arithmetic
skills. Riconscente’s (2013) research using the Motion Math Fractions game for the
iPad with 122 fourth-grade students showed that when the students played the game
for 20 min daily for a 5-day period, there was a 15 % improvement in students’
fraction test scores.

The simulation virtual manipulative environment. The simulation virtual
manipulative environment contains the interactive visual representation (i.e., image)
of the dynamic mathematical object along with other representations (e.g., numeric,

Motion Math Zoom Dragon Box Algebra Hungry Guppy

Fig. 1.7 Examples of the gaming virtual manipulatives environment
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text) that are embedded in a format that allows the user to run a simulation intended
to represent or draw attention to embedded mathematics concepts. Therefore, the
simulation environment may rely on one or multiple forms of representation that
can be used to run the simulation. Three examples of the simulation environment
are the Sieve of Eratosthenes, Lady Bug Maze, and the Box Model found at the
National Library of Virtual Manipulatives (see Fig. 1.8).

The Sieve of Eratosthenes app allows users to run a simulation showing the
multiples of the numbers on a number board. Running the simulation of each
successive number on the board (e.g., the multiples of 2, 3, 4, 5, etc.) reveals
patterns in the multiples and helps users to identify the prime numbers on the
number board. The Lady Bug Maze allows the user to create a program for the path
of a lady bug in order to help the lady bug reach a point within the maze. Each time
the user creates and modifies the program, there is a “play” button that allows the
user to run the simulation to see if the programing commands that they have created
allow the lady bug to successfully navigate the maze. By repeatedly running the
simulation, the user can make adjustments to their programing commands until the
lady bug is successful.

The Box Model app simulates multiple random draws of numbers from a box
and plots the numbers on a chart comparing actual probability to theoretical
probability. The simulation environment allows the user to efficiently perform and
model multiple trials over and over again. Clements et al. (2001) research with a
virtual manipulative in the simulation environment used Logo Geometry (which has
a similar design to the Lady Bug Maze pictured in Fig. 1.8) to simulate geometric
shapes, paths and motions. In a study of 1624 Kindergarten through 6th grade
students, those who used the Logo Geometry curriculum made significant gains,
which were almost double the gains of those students who participated in traditional
geometry instruction. This study of the simulation virtual manipulative environment
showed that Logo Geometry helped students link symbolic and visual representa-
tions, demanded greater precision in geometric thinking from students, and
encouraged students to make and test geometric conjectures.

Sieve of Eratosthenes Lady Bug Maze Box Model

Fig. 1.8 Examples of the simulation virtual manipulatives environment
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1.10 Concluding Remarks

This chapter provided an update to the definition of a virtual manipulative. This
new definition reflects attention to technology developments and clarification about
what is and is not included in the technology for it to be defined as a virtual
manipulative. The chapter also described five different environments in which
virtual manipulatives are commonly embedded and provided examples of each to
show the structure of the most common designs of virtual manipulative environ-
ments. As these examples demonstrate, there are a variety of virtual manipulative
environments currently in use today. This updated definition and the descriptions of
the five environments provide guidance for educators and researchers on a common
language and understanding of the meaning of a virtual manipulative for teaching
and learning mathematics.

The potential of virtual manipulatives to support students’ developing mathe-
matical ideas relies on judicious, appropriate, and effective use. Learners must
experience the virtual manipulative and interact with its characteristics and features
in ways that represent the relevant mathematics. Virtual manipulatives are tech-
nologies, and like any technology, virtual manipulatives do not create learning;
rather, it is the quality of the engagement with the technology that presents
opportunities for learning mathematics.
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Chapter 2
Artifact-Centric Activity Theory—A
Framework for the Analysis of the Design
and Use of Virtual Manipulatives

Silke Ladel and Ulrich Kortenkamp

Abstract It is a challenge to analyze the design and the use of Virtual
Manipulatives due to their high complexity. As it is possible to create entirely new
virtual worlds that can host objects that behave differently than any real objects,
allowing for new and unprecedented actions in learning processes, we are in need of
tools that enable us to focus on those aspects that are important for our analyses. In
this chapter we show how ACAT, Artifact-Centric Activity Theory, can be used to
analyze the design and use of a virtual manipulative place value chart.

2.1 Introduction

Manipulatives play a very important role in learning mathematics. Operations with
manipulatives are the basis for further mathematical learning processes. Operations
are purposeful and understood in their internal structure (Aebli 1983, p. 182) and it
is essential that the student is aware of the relations of the objects. In this regard,
manipulatives do not necessarily have to be of a physical nature but can be virtual
as well (Clements 1999, p. 47; Ladel 2013, p. 59). This fact creates a lot of potential
for the technological support of mathematical learning processes. However, the use
and benefit of virtual manipulatives1 is very complex as there are many influencing
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factors: the student with prior knowledge; the teacher with mathematical, didactical,
educational and media competence; the class; the environment; etc.

Furthermore, mathematical, didactical and design principles have to be consid-
ered when designing, analyzing or even selecting a virtual manipulative for use in
the classroom. The complexity of the situation and the number of influencing
factors require instruments that help analyze the beneficial design and use of virtual
manipulatives. In recent years, Human-Computer-Interaction (HCI) research and
practice has identified Activity Theory as a helpful theoretical framework, since it is
crucial to understand human activity for the design and analysis of technology:
“Understanding and designing technology in the context of purposeful, meaningful
activities is now a central concern of HCI research and practice” (Kaptelinin 2014,
foreword). With regard to our requirements in the overlapping context of school, we
adapted Activity Theory and developed it further to the Artifact-Centric Activity
Theory (ACAT). In this chapter, we will present the theoretical framework of
ACAT as an instrument for the design and analysis of virtual manipulatives.
Furthermore we will illustrate its application with a virtual manipulative place value
chart (Kortenkamp 2015).

2.2 Theoretical Framework

In the following sections, we recall several theories and notions that have influenced
ACAT.

2.2.1 Activity Theory

Activity as the purposeful, transformative and developing interaction between
subject and object is the key concept of Activity Theory. It originates from the
socio-cultural tradition in Russian psychology and was developed by Leontiev
(1978).

In today’s knowledge society, learning is a defining feature of our society. It is
not only the acquisition of knowledge and skills but also the responsibility of the
individual to learn and to strengthen the autonomy of each person (Giest and
Lompscher 2004). A learning culture must enable people to shape their own edu-
cational biography and to take responsibility for their educational processes. Thus,
high learning motivation, as well as a positive attitude towards lifelong learning, is
very important. Therefore it is an essential condition that learners are the subjects of
their learning and educational processes.

The world around us is structured and comprised of objects—objectively
existing matter. Objects exist independent of the observing human and have ‘ob-
jective meanings’. However, there is a second aspect of each object, the image of
the object as a product of psychological reflection realized as an activity of the
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subject. This psychological reflection does not have to be consistent with the
objective meaning. There is, for example, an objective meaning of ‘addition’ that is
socially and culturally defined and can be described as n + m = (n + m). But there
are different basic concepts (“Grundvorstellungen” as described by Vom Hofe
1995) of addition (e.g., addition as the union of two amounts or as adding an
amount to an existing one). The child may also have a concept of addition as
‘counting on’. Thus the meaning attributed to an object can differ depending on the
perception of the individual.

Subjects in activity theory have needs. In order to meet those needs and to
interact with objects, the subjects have to carry out activities. An activity is the
process of relating the subject to the object (Fig. 2.1). The attributes of the subject
and the object influence these activities. Prior knowledge, for example the student’s
abilities and skills, influences the student’s actions and the way the student solves a
mathematical task. The student’s experience while solving a mathematical problem,
on the other hand, influences the student’s abilities.

2.2.2 Instrumental Act

Vygotsky (1997, p. 87) focused on the use of tools as the key characteristic of
human mental activity. He characterized the process that combines subject, tool and
object as ‘the instrumental act’ (Van Oers et al. 2008). Even though his theoretical
focus was primarily on mental tools such as language, his theory can also be
adapted to technical devices and, in our case, especially to virtual manipulatives.
The tool or the artifact mediates between the subject and the object (Fig. 2.2).

Vygotsky’s cultural-historical psychology influenced Leontiev’s framework
fundamentally, in particular, the mediation of the tool between subject and object.

Fig. 2.1 Subject—Object—
Activity

Fig. 2.2 Instrumental act
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People encode their experience in the structural properties of tools, as well as their
knowledge of how the tool should be used. In that way tools always reflect the
previous experience of other people. In other words, virtual manipulatives always
contain and reflect the experience and the knowledge of the programmer or
designer. Therefore, we have to design virtual manipulatives very carefully and pay
attention to the knowledge that we encode in the design of the virtual manipula-
tives. Similarly, we must also carefully select virtual manipulatives for instruction
in mathematics and consider the knowledge we want students to construct.

Through the use of tools, processes of externalization and internalization emerge
both for the subject and object. The internal and external components of an activity
are mutually transformative: during the process of internalization, external com-
ponents become internal; during the process of externalization, internal components
of an activity become external. Higher physical functions, in the sense of Vygotsky,
always arise in social interaction and communication in common activity.
Phenomena that were previously interpsychological, become intrapsychological.
This means, for example, that conventions used to communicate about mathematics
can be learned by individuals and create an internal representation that can be used
for further reflection and the creation of new knowledge.

2.2.3 Instrumental Genesis

Instrumentation theory (Rabardel 2002) distinguishes between artifact and instru-
ment. An instrument is “more” than an artifact. While an artifact is the object that is
used as a tool, it only becomes an instrument if the relationship that exists between
the artifact and the user is meaningful for a specific type of task (Verillion and
Rabardel 1995). The process of an artifact becoming an instrument is called in-
strumental genesis. The instrument also includes the techniques and mental
schemes that the user develops and applies when using the artifact. While the
artifact is just the material, the instrument involves artifact-type components as well
as schematic components, the utilization schemes. In that way, an instrument is
strictly related to the context.

We will illustrate this with a place value chart as an instrument. In the context of
checking if a number can be divided by 9, we can just add all digits of the number,
not considering their place and check whether the sum is divisible by 9. This is
correct because we know that the value of a number changes by multiples of nine
when digits change the place (e.g., when we move one counter in the place value
chart from the hundreds to the tens, the value of the number changes by −90).
However, in another context, for example the context of written algorithms, the
change of place should not change the value but demands for (re-) bundling and
unbundling (e.g., when there are 15 ones, we bundle them to 1 ten and 5 ones).
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Both operations are carried out with the same (physical) artifact, but only the
utilization scheme that is a component of the instrument tells us how to work with
it. In both cases, the artifact is used as an instrument, but with different utilization
schemes.

The so-called instrumental orchestration, introduced by Trouche (2004),
describes the management of the individual instruments in the collective learning
process by the teacher and it has been applied to digital media successfully. “An
instrumental orchestration is defined as the teacher’s intentional and systematic
organisation and use of the various artefacts available in a—in this case comput-
erised—learning environment in a given mathematical task situation, in order to
guide students’ instrumental genesis (Trouche 2004)” (Drijvers et al. 2011, p. 1350).
According to Giest and Lompscher (2004), the subject is, however, not only a single
student, but a number of students as individuals embedded into social structures. The
activity of the individual is subject to conditions on interaction, communication and
cooperation, and these conditions also hold for the relations between teachers and
learners as well as further participants. Giest and Lompscher refer to a pedagogical
collective subject that is acting during instruction.

Children have to elaborate instruments in the process of instrumental genesis to
use an artifact to accomplish a particular task. However, besides this semiotic link
between the artifact and a task, there is another semiotic link between the artifact
and its mathematical meanings that emerges from the epistemological analysis
made by teachers and experts. Rabardel (2002) speaks in this context of a two-fold
entity—artifactual and psychological. In that way, “the artifact is not a mediator of
mathematical meanings per se […]. It becomes a mediator when used in a
teaching-learning situation” (Bartolini 2011, p. 97).

2.2.4 Task-Artifact Cycle

The inclusion of an artifact changes the activity between the subject and the
object. First of all, it sets to work a number of new functions that are connected
to the use and control of the given tool. As the artifact undertakes some tasks, it
also abolishes a number of previously necessary processes. Thirdly, the artifact
modifies various aspects (e.g., intensity, duration, etc.) of all mental processes as
it replaces some functions with others (Van Oers et al. 2008). Considering these
modifications of the activity we also have to focus on the development of tasks.
The task-artifact cycle (Carroll et al. 1991) captures the idea that tasks and
artifacts coevolve (see Fig. 2.3).

To perform a given task, an artifact needs to meet certain requirements. The
artifact that has been designed for the task, in turn, creates new or unexpected
possibilities. It poses new constraints on the performance of the tasks that may
suggest a revision of the original task for which the artifact was made. This creates
an iterative process of continuous development between the task and the artifact.

2 Artifact-Centric Activity Theory … 29



2.2.5 Artifact-Centric Activity Theory

Considering this background, the design and the analysis of manipulatives are
necessarily very complex. This applies even more to the design and analysis of
virtual manipulatives because they allow for many more affordances (in the HCI
sense, that is action possibilities) than their physical counterparts. In a way, virtual
manipulatives even allow for miraculous mathematical transformations, that is,
they can make things happen that would not be possible in the physical world. That
is why there is a need for an instrument that helps when analyzing and designing
virtual manipulatives. This is the purpose of the development of ACAT (Fig. 2.4).

Fig. 2.3 Task-artifact cycle

Fig. 2.4 The Artifact-Centric Activity Theory

30 S. Ladel and U. Kortenkamp



As the artifact is being developed into an instrument through instrumental
genesis, some may argue that we could use the terminology of Instrument-Centric
Activity Theory. However, the framework also captures the process of designing,
and in that stage the artifact could not yet develop into an instrument. As such, we
deem the name ACAT better suited.

ACAT takes into account the student (here: subject) in the classroom with peers
and the teacher (lower left triangle), as well as the mathematics (here: object) and
the rules that arise from different disciplines (mathematics, mathematic didactics,
design principles, multimedia learning, etc.) (upper right triangle). Whereas the
design question “How can we design the artifact?” has to be asked in advance, the
analysis question “How could we have designed it?” is asked afterwards. We try to
tackle the complexity of this balance by breaking the overall design and analysis
down into numerous individual decisions and tests.

ACAT can be divided into three components: the main axis, the upper right
triangle and the lower left triangle. Whereas the main axis focuses on the subject—
artifact—object relations, with the artifact as its main component, the lower left
triangle focuses on the use and benefit of the artifact in classroom situations and the
upper right triangle takes into account the rules and principles that help to design
the artifact according to the object.

Being based on Activity Theory, the fundamental concept of ACAT (Ladel and
Kortenkamp 2013) is the activity between subject and object. We moved the artifact
into the center of this relationship and into the center of the activity, as we want to
analyze the impact of the artifact as the mediator between subject and object. The
children’s use of an artifact, in our case a virtual manipulative, influences their
activity and the processes of internalization and externalization. The subject
externalizes mental representation through the artifact and in turn internalizes
specific knowledge that is represented by the artifact as feedback to the subject’s
actions. The artifact (i.e., the virtual manipulative) itself externalizes the object (i.e.,
the mathematics) as a psychological reflection of the programmer’s (or designer’s)
knowledge. The programmer in turn designs the artifact according to the pro-
grammer’s knowledge about the object.

Neither the mental representation nor the visual representation(s) of the object
are predefined through ACAT. The only requirement is that there is some kind of
internal/mental representation of the object in question and that there is at least one
way to visualize the object.

The lower left triangle focuses on classroom situations. The integration of
technological tools into mathematics education is a non-trivial issue. The use of
tools involves the process of instrumental genesis during which the artifact turns
into an instrument. However, it is also important to observe the instrumental genesis
by the teacher through the teacher’s orchestration of mathematical situations.

The upper right triangle takes into account the “objective” object, the rules and
the artifact. Before designing, analyzing or using the artifact, we have to analyze the
object, its properties and its structures. What is it that we want the children to learn?
What knowledge do we “put into the artifact”? There are rules resulting from the
object and there are also rules on how to design the artifact that are the result of
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instructional principles and research (e.g., mathematics education or Gestalt psy-
chology). When designing or analyzing an artifact, we have to keep those rules in
mind. Also, concentrating on the upper right triangle emphasizes the fact that
artifacts are usually not designed for each subject on an individual basis, but for a
number of subjects.

2.3 ACAT by Example: The Virtual Place Value Chart

In the following section, we will elaborate the Artifact-Centric Activity Theory and
emphasize its importance by using the example of a virtual place value chart
(Kortenkamp and Ladel 2013). This virtual manipulative was created as an app for
iPads and iPhones (Kortenkamp 2015).

The virtual place value chart uses the full screen for up to four columns that can
be filled with counters by touching the screen. These counters can be moved around
with the finger after being created. Every column has a header showing the number
of counters in that column and the word describing the value of those counters (e.g.,
ones, tens, hundreds…). Counters can be removed from the chart by moving them
to the top, and they can be moved from one column to the other. In the latter case,
either the counter is automatically unbundled into the correct number of
lower-valued counters, or, if possible, the missing number of same-value counters is
also moved to create a new higher-valued bundle.2

2.3.1 The Main Axis: Subject—Artifact—Object

Numbers can be represented in many different ways (e.g., with base ten blocks or
with counters in a place value chart). It is, however, only important to consider the
principle of place value, if the numbers are represented as digits such as “734” (see
Ladel and Kortenkamp 2015a, b). If a child solves the equation 7 + 8 = __ by
counting “eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen” the special role
of “ten” is not apparent. “Ten” is just another word and does not play a special role.
In that way language is an artifact that does not promote place value—on the
contrary: language can even prevent place value understanding, in cases where
there are irregularities in the word formation of numbers (Sarama and Clements
2009). The number 24 in German is spoken as “four-and-twenty”. This inversion of
numbers leads to the problem that a lot of children write 42 instead of 24.
Therefore, it is important to use a good artifact to teach and learn about place value.
The place value chart could be such an artifact. In the place value chart, the column
in which a certain number or amount of counters are placed indicates its value.

2At http://kortenkamps.net/placevalue we provide a screen recording showing the app in action.
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If we consider place value only with regard to change among the different modes
of representation (intermodal transfer)—representing numbers in a place value
chart or reading numbers from a place value chart—it is unambiguous. However,
when we start working with the place value chart and operating in it to explore its
properties, there are different possibilities. There are two facets of the object ‘place
value’: the objective, mathematically defined view of place value as it exists in the
world per se and the subjective view of place value of the student.

In the objective view, our numeration system is based on five properties: the
positional property, the base-ten property, the multiplicative property, the additive
property and the principle of continued bundling (Ladel and Kortenkamp 2014,
2015a, b; Ross 1989). According to the positional property, the place where a digit
is positioned gives us information about its value. For example, the 3 in the number
734 has the value of 3 tens, and the 3 in the number 473 has the value of 3 ones.
One way to teach children place value is to visualize numbers as similar (undis-
tinguishable) counters in a place value chart. The children can represent numbers
with the counters in the place value chart and have to pay attention to the place or
column they lay the counter, or they can ‘read’ the number and write it down in
digits.

Another action is to move tokens in the place value chart and to discover that the
value of a counter changes depending on the column in which it is placed. Thus the
value of a number (e.g., 243) changes if we move one token from the tens to the ones
(243 becomes 234) as in the example on the left side of Fig. 2.5. To enrich the
concept of place value it is important to establish the relationships to the other
principles. The principle of continued bundling is about creating new bundles until it
is no longer possible. For example, 243 ones = 24 tens and 3 ones = 2 hundreds, 4
tens and 3 ones. In this context, moving a counter from the tens to the ones has the
meaning of unbundling 1 “ten” to 10 “ones,” as in the example on the right side of
Fig. 2.5. In that way, there are two different meanings for moving a counter from the
tens to the ones, and a designer of a virtual place value chart has to decide how the
counters in the application should behave to reflect that meaning (Fig. 2.5).

The subject (the student) has certain concepts of numbers. Depending on the
artifacts the teacher has used for place value instruction, the student may have
internalized the meaning of the counters as a change of value or the student may
have internalized the meaning of the counters as bundling and unbundling. In this

Fig. 2.5 Two different behaviors of one action. On the left The action of moving one counter from
the tens to the ones changes the total value. On the right The action of moving one counter from
the tens to the ones emphasizes the necessary unbundling of one ten to ten ones, which preserves
the value
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case, the design of a particular virtual manipulative application may lead a child to a
cognitive conflict because the reaction of the current virtual manipulative appli-
cation does not match the child’s mental schema (Ladel and Kortenkamp 2014).

2.3.2 The Upper Right Triangle

The upper right triangle provides rules and principles that determine the design of
the artifact. We have already mentioned the impact of the object on the artifact.
There are, however, also principles for the artifact’s design that are guided by
mathematics education and psychology. Concerning principles from mathematics
education, we would like to focus on two aspects: the intermodal transfer and the
spiral curriculum.

According to Bruner et al. (1971), we distinguish threemodes of representation—
enactive, iconic and symbolic—whereas the latter has to be distinguished into verbal-
and nonverbal-symbolic representations. The comprehension of operations is only
fully developed when the child is able to change among the different modes of
representation. This is called intermodal transfer. Although children have to perform
the intermodal transfer by themselves, it is important to support them during the
learning process so that they understand the meaning of the symbols and the oper-
ations. In this regard, multiple representations with automatic linking features can be
very helpful (Ladel 2009).

The virtual place value chart provides all three modes of representation. The
counters that can be moved create the enactive representation; the counters drawn in
various places create the iconic representation; and the number written in digits and
words is the symbolic representation. Children are able to interact with the app, to
create counters, and to delete them, as well as move counters from one column to
another. At the same time, they see the iconic representation of the counters. The
nonverbal-symbolic mode is automatically given in the way that the amount of
counters in each column is written in the title row and, optionally, the whole
number is written in words above the columns. In that way 2 hundreds, 4 tens and 3
ones are represented as well as the number 243 along with representation of the
counters. It is even possible to show the numeral (i.e., the verbal-symbolic repre-
sentation) (Fig. 2.6).

With Bruner’s principle of a spiral curriculum in mind, the designers valued the
(vertical) compatibility of the virtual manipulative within the curriculum and
beyond. In this particular app there are several possibilities of modification the user
can apply within the settings (see Fig. 2.7). For example, in Montessori-mode, one
can chose between homogeneous or multicolored counters. Thus it is possible to go
back to a lower level of abstraction and to work with multicolored counters in
accordance with the place value. Also the number of places before and after the
decimal point can be configured. So the virtual manipulative can be used from first
grade, starting with ones and tens only, through the upper grades. The app allows
features that expand the chart to the left (for hundreds, thousands…) and to the right
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(for tenths, hundredths…) to make visible the decimal principle of our number
system.

Working with decimal numbers, designers’ paid attention to the decimal point.
The separator between the ones and the tenths is shown as an asymmetrical pair of a
thick and a thin line, in order to work against the illusion of symmetry at the
decimal point. For more advanced work with place value (e.g., with university
students), it is also possible to change the base (that is, the size of the bundles) and
the used base for counting. In that way, this virtual manipulative is suitable for first
graders up to students at the university level (Fig. 2.7).

Another design question was whether the counters should be laid in a structured
order or not. The aim of this virtual manipulative is not to support the children in
their quasi-simultaneous subitizing. Actually, there is no need for quasi-
simultaneous subitizing as the numbers of counters are written in the title row.
Furthermore, an additional design feature is that if there are more than nine counters
in a column, the written number is colored red. The reason that designers decided to
write numbers more than nine in red was for students to be subtly warned that the
representation is non-standard, while not being stopped from creating such
non-standard representations.

As these examples from just one app demonstrate, there are numerous design
decisions to be considered when creating a virtual manipulative and these are highly
influenced by the upper right triangle of ACAT—the interplay of the artifact, the
mathematical object and the findings from mathematics education, psychology and
other relevant fields.

2.3.3 The Lower Left Triangle

Any teaching and learning must consider the context—the individuals, the group,
the tools, the conditions, the social structures, etc. The lower left triangle of ACAT
is related to the use of the artifact in the classroom. A virtual manipulative does not

Fig. 2.6 Multiple external linked representation linked in the virtual place value chart
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Fig. 2.7 Possible modifications of the virtual place value chart in the settings
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just work, but its effects are determined by the way it is employed in the classroom.
Of importance are the individual and socio-cultural factors and the orchestration of
the virtual manipulative in the class. The theoretical analysis of the full situation is
beyond the scope of the ACAT framework. The lower left triangle in the diagram is
a reminder that it is necessary to analyze the circumstances and conditions in the
classroom (or other learning situation), in the same way as the artifact itself is being
analyzed, for effective use of virtual manipulatives in teaching and learning situa-
tions. One suitable theory for that analysis is instrumental genesis (Artigue 2002),
and in particular it is necessary to find a suitable instrumental orchestration
(Trouche 2004; Drijvers et al. 2011) that is an intentional and systematic organi-
zation and use of the artifact in the learning situation.

One way to use virtual manipulatives in the classroom is to use them for
demonstration and visualization. In our example, the teacher could use the virtual
place value chart to show students how a counter in the tens place can be unbundled
into ten counters in the one’s place. Observing this miraculous mathematical
transformation could help students to better understand that the same counters have
different values depending on their location.3 Using a virtual manipulative in that
manner, though, misses the opportunity for the students to experience the major
affordances that the virtual manipulative has to offer. Students can use the artifact
themselves and experience the built-in mathematics.

By designing suitable tasks, we can steer the activities of the students such that
they will be exposed to the externalization of the mathematical objects and interact
with them. Some examples for good and productive tasks are:

• Find as many ways to represent the number 132 in the virtual place value chart
as you can! Explain what you did to find them!

• Which numbers have only 2 (3, 4, …) ways of representation? Justify!
• Divide 1505 by 7. Start by representing 1505 in the standard way and change

the representation until the division becomes easy!

By working on tasks of these types, the students themselves can experience the
miraculous mathematical transformation that is provided by the virtual manipula-
tive. For example, here is what a student might do to divide 1505 by 7: Place
counters for 1Th 5H 5O (standard representation—1 Thousands 5 Hundreds 5
Ones). Move the thousands counter to the hundred’s place, as it cannot be divided
easily by 7, so you now have 15H 5O. Observe that you can divide 14H of the 15H
by 7 easily, so move the extra H one place to the right, to the Tens (T), and you get
14H 10T 5O. Move 3T of the 10T to the right to get 14H 7T 35O. The student ends
up with a representation of 1505 that is easy to divide, and the solution is 2H 1T
5O = 215. This is just one example of an exploration that could be conducted by a
student to investigate this question. At each step the exchange of counters from

3There is no research so far that could prove or disprove this assumption—this expected help for
learning is just hypothetical and based on the theoretic considerations behind the design of the
artifact.
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higher values to lower values is visualized and experienced by the student
(Fig. 2.8).

Again, suitable research has to be carried out to gather data that justifies our
claim that these and similar tasks are indeed good and productive tasks. But the
ACAT framework helps us to identify these research questions and to design virtual
manipulatives that are integrated into learning environments. We invite the reader
to try ACAT with their favorite virtual manipulative for analysis, but highlight the
fact that ACAT can also be used to design new virtual manipulatives, as shown in
Ladel and Kortenkamp (2013).

2.4 Conclusion

Virtual manipulatives have the potential to support students’ mathematics learning,
but in order to turn this into affordances and learning opportunities, it is necessary
to have a theoretical tool that can guide both the design and the analysis of these
artifacts. In this chapter we presented ACAT, a theoretical framework that helps to
structure the complexity of this design task. As ACAT is based on Activity Theory,
it focuses on the interaction of subjects (students) with objects (mathematical
concepts) mediated through artifacts (the virtual manipulatives). The design of an
artifact is usually not for an individual student but for a larger audience. The
mathematical concepts are also independent of the students. Therefore, the upper
right triangle in our model can be used for designing (or analyzing) the virtual
manipulative. The lower left triangle adds the necessary context for teaching and
learning and helps to focus on the specific tasks or usage scenarios of the virtual
manipulative by educators in teaching and learning environments.

Fig. 2.8 Solving 1505 divided by 7 by flexible use of place value
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While ACAT has been created with digital artifacts and virtual manipulatives in
mind, it is not restricted to these tools alone. The framework can be applied to any
artifact used in teaching. Still, we suggest that ACAT is most suitable for charac-
terizing the miraculous mathematics transformations that can be created through
virtual manipulatives, and that can be experienced by the students indirectly in
demonstrations, and also directly by doing miraculous mathematical transforma-
tions themselves.
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Chapter 3
The Modification of Attributes,
Affordances, Abilities, and Distance
for Learning Framework and Its
Applications to Interactions with
Mathematics Virtual Manipulatives

Stephen I. Tucker

Abstract While extensive research has examined the outcomes of interacting with
virtual manipulatives, less research has focused on constructs and relationships
among constructs involved in user-tool interactions. This chapter presents the
Modification of Attributes, Affordances, Abilities, and Distance (MAAAD) for
Learning framework, which conceptualizes the relationships among these con-
structs to describe user-tool interactions, including those involving virtual manip-
ulatives. The framework is primarily grounded in theories of representation and
embodied cognition, as user-tool interactions in mathematics involve internalizing
and externalizing representations through physically embodied mathematical
practices. In the framework, attributes, affordance-ability relationships, and distance
are interrelated, and modification of one construct contributes to modification of the
other constructs. Each attribute can contribute to many affordance-ability rela-
tionships and to distance. Attribute modification can change the approach or degree
of affordance access and alter the degree of distance present, which can, in turn,
lead to attribute modification. This chapter illustrates the constructs and relation-
ships among constructs that form the framework in the context of user-tool inter-
actions in mathematics. The chapter then applies the framework to examples of
children’s interactions with mathematics virtual manipulative touchscreen tablet
apps. The MAAAD for Learning framework has implications and applications
relevant to theory, development, implementation, and research concerning tech-
nology tools, including virtual manipulatives.
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A menagerie of digital tools exist for learning mathematics and other content,
including virtual manipulatives (Moyer et al. 2002), learning objects (Kay and
Knaack 2007), mathematical cognitive tools (Sedig 2004), visual mathematical
representations (Sedig and Liang 2006), and many others. Definitions of these tools
often overlap, but a virtual manipulative is “an interactive, Web-based visual rep-
resentation of a dynamic object that presents opportunities for constructing math-
ematical knowledge” (Moyer et al. 2002, p. 373). One interacts with content
presented by a virtual manipulative via the interface (e.g., iPad touchscreen plat-
form) that presents the virtual manipulative as part of a digital environment (e.g.,
app). Thus, characteristics contributing to interactions with a virtual manipulative,
the digital environment, and the interface are interrelated.

Continued development and implementation has seen virtual manipulatives
become important tools for learning. Recent research suggests that virtual manip-
ulatives need not be web-based (Tucker et al. 2014) and can be used to construct
knowledge in other content areas (e.g., Zacharia and de Jong 2014; Zacharia et al.
2008). Although a substantial body of research has indicated that virtual manipu-
latives can be effective tools for learning (e.g., Moyer-Packenham et al. 2015;
Olympiou and Zacharia 2012; Satsangi and Bouck 2014), less research has
examined why these tools are effective (e.g., Durmuş and Karakırık 2006;
Moyer-Packenham and Westenskow 2013). In particular, little research has iden-
tified constructs and relationships among constructs that contribute to interactions
with virtual manipulatives. Thus, the purpose of this chapter is threefold: (a) to
introduce the Modification of Attributes, Affordances, Abilities, and Distance
(MAAAD) for Learning Framework, which models constructs and relationships
involved in user-tool interactions, (b) to apply the framework to describe interac-
tions with virtual manipulatives, and c) to discuss potential implications and further
applications of the framework.

3.1 Theoretical Grounding

The MAAAD for Learning framework is grounded in theories of representation and
embodied cognition set in the context of interaction with technology tools,
including virtual manipulatives. These tools offer varying levels of embodiment and
fidelity, which also influence user-tool interactions.

3.1.1 Representing Mathematics

Learning mathematics involves interactions among and development of internal and
external representations. Internal representations are individuals’ mental configu-
rations of mathematics and cannot be directly observed (Goldin and Kaput 1996).
External representations are observable, physically embodied configurations of
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mathematics (i.e., pictures, words, equations, digital environments) which one can
access with sufficient understanding of the representations. Interplay among rep-
resentations includes internalizing external representations (e.g., interpreting
graphs, symbols, and pictures) and externalizing internal representations (e.g.,
writing, speaking, manipulating concrete objects). Importantly, interactions with
appropriate combinations of multiple external representations can enhance learning
(Ainsworth 2006). Understanding of representations and connections among mul-
tiple representations is representational fluency (Zbiek et al. 2007) which influences
interactions among and development of internal and external representations.
Representational fluency can both facilitate and result from mathematical learning
(Heinze et al. 2009; Nathan and Kim 2007) and thus both contributes to, and results
from, learning mathematics.

3.1.2 Embodied Cognition: Physical Interactions with
Representations

Mathematical practices that include physically interacting with external represen-
tations involve embodied cognition, as cognitive processes are part of bodily
interactions with the environment. From an embodied cognition lens, human cog-
nition is rooted in sensorimotor processing (Wilson 2002), which integrates per-
ception of the environment with actions upon the environment. Thus, human
cognition is based in action and perception, and is grounded in the physical envi-
ronment (Alibali and Nathan 2012). Nemirovsky et al. (2013) suggested that “the
intertwining of perceptual and motor aspects of tool use [is] perceptuomotor inte-
gration,” allowing one to perceive and interact with representations in such a way
that integrates action and thought (p. 373, emphasis in original).

Applied to mathematics, mathematical thinking is equivalent to physical
engagement in mathematical practices, and mathematical learning involves changes
in these physically embodied practices (cf. Lakoff and Núñez 2000). Therefore,
perceptuomotor integration is the way in which one uses bodily activity to facilitate
interplay between internal and external representations and develop representational
fluency. Thus, bodily engagement (external) in mathematical practices, such as
interactions with mathematics virtual manipulatives, can provide evidence of (in-
ternal) representations of mathematics, and changes in these practices provide
evidence of learning.

3.1.3 Technology for Interactions with Representations

Technology tools offer varying degrees of embodiment. Bodily engagement
includes representational gestures, which bodily actions use in interplay among

3 The Modification of Attributes, Affordances, Abilities … 43



internal and external representations (Hostetter and Alibali 2008; Segal 2011).
Gestures can help children retain and apply knowledge within similar contexts
(Cook et al. 2008) when developmentally appropriate (Ginsburg et al. 2013; Shuler
2009) and mapped to the content (Segal 2011; Segal et al. 2014). Many technology
tools feature multi-touch interfaces (e.g., iPads), which can support a wide variety
of input gestures (e.g., Hamon et al. 2013) for user-tool interactions.

Although relatively few apps effectively incorporate multi-touch capabilities
(Byers and Hadley 2013), apps that do use multi-touch capabilities may uniquely
influence children’s mathematical understandings and strategy development
(Baccaglini-Frank and Maracci 2015). Multi-touch technology can thus afford users
greater embodiment, relatively direct control over the manipulation of representa-
tions, and a wider range of mathematically meaningful gestures than mouse-based
interaction, when tasks and the tools are appropriately designed.

3.1.4 Faithfulness of Technology Tools for Interacting with
Representations

Researchers have theorized ways to design educational tools that facilitate mathe-
matics learning (e.g., Ginsburg et al. 2013; Pelton and Francis Pelton 2011). Many
guidelines originate with Dick (2008), who recommended that technology tool
designers insure high levels of cognitive, pedagogical, and mathematical fidelity.
Cognitive fidelity is the degree of alignment of the mathematical representations of
the tool with the cognitive processes of the student. Pedagogical fidelity is the
degree of alignment of the tool with design principles. Mathematical fidelity is the
degree of mathematical appropriateness of the representations of the content.

Tools and tasks, such as those that involve virtual manipulatives, vary in fidelity
(Moyer-Packenham et al. 2008). Some researchers consider the greatest challenge
in designing digital tools for learning mathematics to be insuring cognitive fidelity
by allowing effective externalization of a child’s mathematical thinking (Olive
2013). For many concepts, digital tools can offer “idealized” representations that are
more mathematically faithful than concrete representations (de Kirby 2013),
allowing users embodied interactions with visual models of concepts that formerly
were only accessible in mental models (Carpenter 2013). Discussions of peda-
gogical fidelity often include pedagogical approaches of digital tools (e.g.,
instructive, manipulable, and constructive: Highfield and Goodwin 2013;
self-leveling, collaborative, and sandbox: Zanchi et al. 2013). Each type of fidelity
influences the design of the tool and the users’ perception of and interactions with
the tool, thereby influencing the internalization and externalization of representa-
tions via perceptuomotor integration.
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3.1.5 Summary of the Theoretical Framework

Embodied cognition and representation, in the form of perceptuomotor integration
and representational fluency, influence the transformation of internal representa-
tions, while gestures assist the externalization and internalization of representations.
Technology affords embodiment in human-computer interaction, and cognitive,
pedagogical, and mathematical fidelity influence how users interact with technology
tools. These theories provide theoretical grounding for the MAAAD for Learning
framework.

3.2 Building Toward the Conceptual Framework

The MAAAD for Learning framework integrates attributes, affordances-ability
relationships, and distance to model user-tool interactions. Thus, the conceptual
framework emerges from a synthesis of empirical and theoretical research involving
these constructs and relationships among these constructs (Tucker 2015).

3.2.1 Roles of the Constructs

Attributes, affordance-ability relationships, and distance each play roles in chil-
dren’s interactions with technology tools, including virtual manipulatives.

Attributes. Attributes are characteristics of people or things (Attribute [Def. 5]
2014). Relevant attributes of tools (e.g., virtual manipulatives) and users are
involved in user-tool interactions. Using an embodied cognition perspective of
learning mathematics, attributes contribute to physical engagement in mathematical
practices (i.e., mathematical thinking) and changes in the physically embodied
practices (i.e., mathematical learning). Users and tools both have attributes related
to content (e.g., mathematics), technology (i.e., physical interactions with the tool),
and other aspects of user-tool interactions (e.g., user: personal characteristics; tool:
structural characteristics).

In a study examining children’s interactions with mathematics virtual manipu-
lative iPad apps, Tucker (2015) categorized app attributes and user attributes
involved in physical interactions with mathematical representations. Both apps and
users had mathematical attributes (i.e., content attributes), which were character-
istics involved in representing mathematical content. Apps and users had subcat-
egories of mathematical attributes related to content (e.g., decimals) and
representation (e.g., number line). Users also had a subcategory of mathematical
attributes related to flexibility (e.g., transfer from shaded rectangles to shaded cir-
cles). Other literature also implies evidence of content attributes of technology tools
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(e.g., fraction models: Rick 2012) and content attributes of users (e.g., under-
standings of fraction models: Moyer-Packenham et al. 2014b).

Research has identified empirical evidence of technological attributes pertaining
to physical interactions between user and tool in user-app interactions (Tucker
2015). For apps, technological attribute subcategories included input range (i.e.,
scope of gestures accepted by the [tool] for a given function) and input complexity
(i.e., intricacy of the required gestures). For users, technological attribute subcat-
egories included motor skills (i.e., facility with which a user performed the relevant
physical actions) and input familiarity (i.e., how conversant a user was in a given
input). Other literature also implies the presence of technological attributes of
technology tools (e.g., touch input types: Lao et al. 2009) and technological attri-
butes of users (e.g., motor skills: Dejonckheere et al. 2014). Users and tools each
have an additional, unique category of attributes: personal and structural, respec-
tively (Tucker 2015). Personal attributes are characteristics of one’s personality that
influence how one interacts with a tool, including affect, persistence, and goals
(e.g., goal of accuracy or speed). Structural attributes are non-content presentation
features, including feedback, context, and scaffolding (e.g., hint scaffold reveals
worked example). Other literature also implies evidence of personal attributes of
users (e.g., affect: Goldin et al. 2011) and structural attributes of technology tools
(e.g., scaffolding: Belland and Drake 2013).

Attributes are not static, and attribute alignment influences attribute modification
(Tucker 2015). Alignment of content (e.g., mathematical) or technological attri-
butes varies. Finding a missing addend by adding on objects is developmentally
appropriate for many 4–5 year-old children (i.e., relatively aligned mathematical
attributes), but is likely to be developmentally inappropriate for 2–3 year-old
children (i.e., misaligned mathematical attributes) (Sarama and Clements 2009).
When interacting with the mathematics virtual manipulative iPad app Motion Math:
Zoom, some children efficiently performed a pinching input gesture (i.e., aligned
technological attributes), while other children struggled to do so (i.e., misaligned
technological attributes) (Tucker et al. 2016a). Users and tools influence attribute
alignment through attribute modification, which can be proactive or reactive
(Tucker 2015). Reactive modification occurs when tools modify tool attributes and
in response, users apply and modify user attributes.

When attributes align and the user successfully completes the task, the tool may
in turn modify tool attributes. The user responds by applying and modifying user
attributes, continuing the cycle. Proactive modification occurs when tools modify
tool attributes, users apply and modify user attributes, and users modify tool
attributes. For example, some users repeatedly attempted the same level of math-
ematics virtual manipulative iPad apps despite consistently poor performance (i.e.,
reactively modified attributes), whereas other users returned to a previous level with
related content to build back toward the more challenging content (i.e., proactively
modified attributes). From an embodied cognition perspective of learning mathe-
matics, attribute modification can contribute to and result from changes in physi-
cally embodied mathematical practices (i.e., learning).
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Affordance-ability relationships. Research suggests that affordance-ability
relationships play a complex but key role in how children learn while interacting
with technology (e.g., Tucker 2015; Tucker et al. 2016b). Greeno (1994), drawing
on Gibson (e.g., 1986), posited that an affordance related attributes of an object in
the environment (e.g., tool) to an interactive activity undertaken by an agent (e.g.,
user). The agent applied an ability based on its attributes as part of this interactive
activity. Thus, an interactive activity links an affordance of a tool with the ability of
a user. Each affordance exists only in relation to an ability, and vice versa (Greeno
1994), and the two are coupled in a continuous system (Chemero 2003).

Some authors discuss the idea of constraints, which one can consider part of
what the app affords. However, widely varying conceptions of affordances led
Burlamaqui and Dong (2014) to state that “the only uncontroversial claim about
affordances is that they are about action possibilities relative to the agent” (p. 13).
From an embodied cognition perspective of learning mathematics, affordance-
ability relationships are interactive links between user and tool as part of physically
embodied mathematical practices.

Authors have applied the concept of affordances to technology (e.g., Gaver 1991;
Sedig and Liang 2006), such as virtual manipulatives for various content areas (e.g.,
fractions: Moyer-Packenham et al. 2014a) and as part of multiple technology tools
(e.g., mouse-controlled computer applets: Moyer-Packenham et al. 2013; touch-
screen tablet apps: Tucker et al. 2016b). Although meta-analyses of affordances of
virtual manipulatives show that instruction using virtual manipulatives has positive
effects on learning (Moyer-Packenham and Westenskow 2013, 2016), accession of
the same affordance can vary greatly by user ability and by context
(Moyer-Packenham et al. 2016; Tucker and Moyer-Packenham 2014).

Furthermore, applying the same approach to affordance access may still result in
different outcomes (e.g., Tucker et al. 2016b) For example, DragonBox Algebra 12+
affords efficient precision by guiding completion of the additive equality and addi-
tive identity properties (Tucker 2015). Some children used the same approach,
efficiently combining these properties for the first part of a task when possible
without combining these properties for later stages of the same task. However,
outcomes varied, as some of these children correctly completed both properties,
while others only completed the additive equality property.

Research also indicates that affordance-ability relationships are not static and can
interact with one another. For example, children can access simultaneous linking of
pictorial representations, symbolic representations, and actions in different ways,
and some children use different approaches as their relevant ability changes (Tucker
et al. 2016b). From an embodied cognition perspective of learning mathematics,
changes in physically embodied mathematical practices (i.e., learning) can both
contribute to and result from changes in affordance-ability relationships.

Furthermore, multiple affordance-ability relationships can influence one another,
such as efficient precision, creative variation, and focused constraint (Tucker 2015).
For example, while interacting with a mathematics virtual manipulative iPad app, a
child attempted efficient, mathematically correct input that the app disallowed,
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constraining focus on another mathematical concept. During a more advanced level,
the app permitted the mathematical input it had previously disallowed, emphasizing
efficiency. The child then creatively applied this input by combining it with other
mathematical input. Thus, affordance-ability relationships play a role in user-tool
interactions.

Distance. Sedig and Liang (2006) define distance as the “degree of difficulty in
understanding how to act upon [something] and interpret its responses” (p. 184).
From an embodied cognition perspective of learning mathematics, distance char-
acterizes the degree of difficulty in engaging in mathematical practices through
user-tool interactions. Cognitive, pedagogical, and mathematical fidelity (Dick
2008) may contribute to distance, as they influence tool design and user perception
of the tool. Distance can be reduced if one designs the tool to fit the learner’s
understandings or if the learner determines how to use the tool, and maintaining
appropriate distance through purposeful, stepwise distance modification by a tool
can facilitate learning (Sedig et al. 2001). Maintaining appropriate distance relates
to Vygotsky’s (1978) Zone of Proximal Development (ZPD), applied to technology
as when tasks remain developmentally appropriate while users progressively master
instructional objectives (Murray and Arroyo 2002). Progressive mastery implies
that users also change to maintain an appropriate degree of distance. Thus, both
users and technology tools change during interactions to maintain distance, which
facilitates the learning process.

There are multiple types of distance, including mathematical (i.e., content) and
technological (c.f., Sedig and Liang 2006). Mathematical distance is “the degree of
difficulty of the mathematical aspects of interactions between the user and the tool
(e.g., a mathematics virtual manipulative iPad app)” (Tucker 2015, p. 82). A high
degree of mathematical distance is evident when one struggles to complete the
mathematical aspects of a task, whereas a low degree of mathematical distance is
evident when one has less difficulty completing the mathematical aspects of a task.
For example, when navigating a number line displaying intervals of one tenth to
find the range in which 0.05 is located (i.e., 0.0–0.1), choosing 0.5–0.6 shows
evidence of a higher degree of distance than choosing the range of 0.0–0.1.
Technological distance is “the degree of difficulty of the technological aspects of
interactions between the user and the tool” (Tucker 2015, p. 83). A high degree of
technological distance is evident when one struggles to complete the technological
aspects of a task, whereas a low degree of technological distance is evident when
one has less difficulty completing the technological aspects of a task. For example,
some children had difficulty controlling mouse input when interacting with
computer-based virtual manipulatives (i.e., higher degree of mathematical distance),
whereas other children found these interactions less difficult (i.e., lower degree of
mathematical distance) (Highfield and Mulligan 2007).

Distance is not static and distance types can influence each other (Tucker 2015).
Research implies that distance differs by context. Distance can decrease, as when
children initially struggled to accurately complete a task involving the splitting
model of fractions, yet successfully completed the task after additional experience
with the content (i.e., decreasing mathematical distance) (Martin et al. 2013).
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Distance can also increase, as when children initially appropriately used input
gestures but later chose inappropriate gestures that hindered task completion (i.e.,
increasing technological distance) (Tucker 2015). Using an embodied cognition
perspective of learning mathematics, changes in distance can both lead to and result
from changes in physically embodied mathematical practices (i.e., learning).

Research also implies that these distance types can interact. Difficulty per-
forming required input such as controlled mouse movements (technological dis-
tance) while interacting with virtual Pattern Blocks can lead to unintended
mathematical outcomes such as unintentionally rotating shapes instead of sliding
them (mathematical distance) (Highfield and Mulligan 2007). A high degree of
technological distance in the form of difficulty using appropriate input can also lead
to a user focusing attention on performing the gestures (i.e., decreasing techno-
logical distance) rather than attending to the mathematical content (i.e., high degree
of mathematical distance) (Rick 2012). Thus, distance plays a role in user-tool
interactions.

3.2.2 Relationships Among the Constructs

Relationships among attributes, affordance-ability relationships, and distance also
play roles in children’s interactions with technology tools, including virtual
manipulatives.

Attributes and affordance-ability relationships. In this context, (a) tools have
attributes that combine to provide affordances, (b) users have attributes that com-
bine to create abilities, and (c) an affordance-ability relationship exists between user
and tool (see Fig. 3.1).

Modification of attributes can lead to modification of affordance-ability rela-
tionships and vice versa (Tucker 2015). Modifying user attributes can lead to
modification of ability as part of affordance-ability relationships. For example,
research indicates that children may be less likely to access audio feedback as part
of efficient precision as they become more proficient at completing tasks while

Fig. 3.1 Relationship between attributes and affordance-ability relationships set within user-tool
interactions (adapted from Tucker 2015, p. 19)
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interacting with mathematics iPad apps (Bartoschek et al. 2013; Paek 2012).
Modification to affordance-ability relationships can lead to modification of app
attributes, such as when children access efficient precision by placing the appro-
priate number of fingers on the screen to indicate an answer while interacting with
the mathematics virtual manipulative app Fingu, contributing to advancement to a
level featuring different content (Barendregt et al. 2012).

Modifying app attributes can modify an affordance as part of the affordance-
ability relationship, which can lead to modification of user attributes (Tucker 2015).
For example, during interactions with the mathematics virtual manipulative iPad
app DragonBox Algebra 12+, the app initially prohibits children from combining
the additive inverse property and the additive equality property to efficiently move a
variable from one side of an equation to the other, focusing their attention on
separately applying these properties. In a more advanced level, the app removed
this constraint, permitting the “drag across” move. After this, some children cre-
atively and efficiently combined the properties when possible, providing evidence
of a change in user mathematical attributes and abilities as part of the corresponding
affordance-ability relationships. Each attribute can contribute to multiple
affordance-ability relationships, such as coordination (user technological: motor
skills) contributing to accession of both planning (efficient precision) and naviga-
tion restrictions (focused constraint). Improving the coordination attribute could
lead to a different approach to planning and fewer encounters with navigation
restrictions. Thus, there are relationships between attributes and affordance-ability
relationships during user-app interactions.

Attributes and distance. Attributes also relate to distance, and attribute modi-
fication can lead to modification of distance, while modification of distance can
contribute to modification of attributes (Tucker 2015). Distance is the degree of
alignment (i.e., difference) between clusters of relevant user attributes and app
attributes (see Fig. 3.2).

Evidence of relationships between attributes and distance is present in research
literature. Specifically, distance can be conceived of as the degree of alignment
between clusters of relevant attributes of the tool and user (Tucker 2015). For
example, during the Pop the Bubble activity in the MathemAntics app suite, chil-
dren compare schools of fish by counting each set and popping the bubble that

Fig. 3.2 Relationship between attributes and distance set within user-tool interactions
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contains more fish (Ginsburg et al. 2013). The app represents quantity and com-
parison using sets of objects (fish grouped in bubbles) and the user must have
sufficient knowledge of this representation of quantity, as well as counting and
quantity comparison skills to decide which set has more objects in it. The degree of
alignment of these attributes is the mathematical distance. The app requires the user
to click on the bubble to indicate a response, so the user must have sufficient
familiarity with this input method and sufficient motor skills to perform this gesture.
The degree of alignment of these attributes is the technological distance.

Patterns related to attributes and distance are also evident in user-app interac-
tions. For example, when children advanced to a new level while interacting with an
app, mathematical distance often increased (Tucker 2015). Children applied and
modified user mathematical attributes in an attempt to decrease mathematical dis-
tance. Some children decreased mathematical distance by proactively modifying
app attributes to select different mathematical content. This provided an environ-
ment in which they could strengthen relevant user attributes, leading to decreased
distance when returning to levels with content that was initially too difficult. Users
can also modify user technological attributes to align with requirements for inter-
acting with apps, such as by using gestures that the tool can recognize after initial
attempts are unsuccessful (Ladel and Kortenkamp 2012).

Modification of structural attributes and personal attributes can also influence
distance. For example, upon first encountering the needle timer (structural) during
interactions with Motion Math: Zoom, children struggled to accurately complete
mathematical tasks (increased mathematical distance) or efficiently perform
appropriate gestures (increased technological distance) (Tucker 2015). One child
proactively chose when to activate and deactivate the needle timer while as a way to
increase or decrease the degree of difficulty (i.e., goal led to changing distance by
modifying app attributes). Thus, there are relationships between attributes and
distance during user-app interactions.

Distance and affordance-ability relationships. Distance also relates to
affordance-ability relationships, as accession of affordances can influence distance,
and distance can influence accession of affordances (Tucker 2015) (see Fig. 3.3).

Fig. 3.3 Relationship between distance and affordance-ability relationships set within user-tool
interactions
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Research also provides evidence of relationships between distance and
affordance-ability relationships, as seen in Fig. 3.3. Affordance-ability relationships
can influence distance, such as when a child stated that each group of levels in a
mathematics virtual manipulative iPad app “starts off easy and then gets harder and
it tells you what [math] to do at first and then you do that on your own on the next
one” (Tucker 2015, p. 116). The group of levels began with a level that focused
attention on one mathematical property, before modifying constraints by providing
a level that required the user to apply the newest property with others to complete
the task, often resulting in increased mathematical distance. Distance also influ-
ences affordance-ability relationships, such as when high achieving students (i.e.,
implied lower degree of distance) ignored pictorial models as part of simultaneous
linking, whereas lower achieving students (i.e., implied higher degree of distance)
relied on the linked pictorial models (Moyer-Packenham and Suh 2012).

Interactions between mathematical distance and technological distance can also
influence accession of motivation. For example, a child described interactions with
a mathematics virtual manipulative iPad app as, “easy, but it wouldn’t give me
enough time to do stuff because it was super-hard to get to areas you wanted to go
to” (Tucker 2015, p. 116). This implied the perception that the mathematical dis-
tance was not worth overcoming due to the degree of technological distance, which
led to a high degree of access to negative motivation and the decision to stop
interacting with the app.

However, other research indicated that children who struggled to overcome
technological difficulties that interfered with mathematical accuracy were still
motivated to persist with mathematical activities (Paek and Hoffman 2014). Thus,
there are relationships between distance and affordance-ability relationships during
user-app interactions. Research provided evidence of attributes, affordance-ability
relationships, distance, and relationships among these constructs in user-tool
interactions. Integration of these constructs and relationships among these con-
structs led to the development of a conceptual framework to model the roles they
play during user-tool interactions.

3.3 The Modification of Attributes, Affordances, Abilities,
and Distance for Learning Framework

Syntheses of theoretical and empirical research on user-tool interactions, such as
those involving virtual manipulatives, provides evidence of the interconnected
relationships among attributes, affordance-ability relationships, and distance that
form the Modification of Attributes, Affordances, Abilities, and Distance (MAAAD)
for Learning framework (see Fig. 3.4).

As seen in Fig. 3.4, the MAAAD for Learning framework for user-tool inter-
actions begins with attributes (Tucker 2015). The difference between clusters of
relevant tool and user attributes forms distance. Modification of attributes may
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bring attributes into alignment (e.g., the user masters the content the tool presents)
leading to decreased distance, or it may misalign attributes (e.g., the tool presents
relatively challenging content after a user successfully completes tasks) leading to
increased distance. Abilities, stemming from clusters of related user attributes,
relate to specific affordances, which are based on related clusters of app attributes.
A variety of approaches or degrees of affordance access may emerge from varia-
tions in user attributes. A particular attribute can contribute to a multitude of
affordance-ability relationships and to distance. Distance influences affordance-
ability relationships; for example, a high degree of distance due to misaligned
attributes may induce different affordance access than when a low degree of dis-
tance is present because attributes are aligned. Figure 3.5 presents a version of the
MAAAD for Learning framework applied to learning mathematics through
user-app interactions.

As illustrated in Fig. 3.5, the MAAAD for Learning framework can be applied to
user interactions with mathematics virtual manipulative apps, and includes distance
types and attribute categories and subcategories identified in prior research (Tucker
2015). In this application of the framework, mathematical distance is the difference
between clusters of app mathematical attributes and the corresponding clusters of
user mathematical attributes, while technological distance is the difference between
clusters of app technological attributes and the corresponding clusters of user
technological attributes. Clusters of user attributes (mathematical, technological,
and personal) form abilities to access app affordances, which stem from clusters of
app attributes (mathematical, technological, and structural). Each attribute can
contribute to multiple affordance-ability relationships (e.g., user: mathematical:
content: comparison contributes to accessing efficient precision of range contents
and focused constraint of navigation restrictions); therefore, an affordance-ability
relationship can influence another affordance-ability relationship if they share
contributing attributes. Distance types (mathematical and technological) can inter-
act, as well as influence affordance-ability relationships, which contribute to vari-
ations in accession of affordances.

Fig. 3.4 Modification of Attributes, Affordances, Abilities, and Distance (MAAAD) for Learning
framework (Tucker 2015, p. 117)
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3.4 Applying the MAAAD for Learning Framework

Researchers have applied the MAAAD for Learning framework to describe
user-tool interactions. The following examples are drawn from a study in which
Tucker (2015) examined fifth-grade children’s interactions with two mathematics
virtual manipulative iPad apps during one-to-one semi-structured interviews.

Applying the framework to interactions with Motion Math: Zoom.
Children’s interactions with the mathematics virtual manipulative tablet app Motion
Math: Zoom provides evidence of the MAAAD for Learning framework. Motion
Math: Zoom includes content related to number comparisons, magnitude, and
estimation on an idealized number line that is navigable and scalable. This repre-
sentation is more mathematically faithful to the infinite number line than a static
physical representation. The user employs single-touch and multi-touch input to
change scales and navigate the number line and place target numbers (see Fig. 3.6).
Figures 3.7, 3.8, 3.9 and 3.10 illustrate the MAAAD for Learning framework as
applied to an excerpt from a sequence of a child’s interactions with Motion Math:
Zoom.

Fig. 3.5 Expanded version of the Modification of Attributes, Affordances, Abilities, and Distance
for Learning framework applied to learning mathematics through user-app interactions (Tucker
2015, p. 119)
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As Figs. 3.7, 3.8, 3.9 and 3.10 demonstrate, relationships within the MAAAD
for Learning framework can be found throughout the child’s interactions with
Motion Math: Zoom. Throughout these interactions, technological attributes
remained aligned and there was a low degree of technological distance. For much of
the time, the child consistently attempted planning when possible. Initial

Fig. 3.6 Screenshot of
Motion Math: Zoom (Tucker
2015, p. 33)

Fig. 3.7 The child experimented with planning as part of completing the level but there was a
high degree of mathematical distance as the child lost track of hundredths on the idealized number
line. The needle popped the bubble as time for task completion expired. The child made efficient
input gestures that the app recognized, so there was a low degree of technological distance. The
child restarted the level (adapted from Tucker 2015, pp. 125–127)
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experimentation with a creative approach to planning contributed to failure to
complete the level in a timely manner (Fig. 3.7). The child then modified the
approach to planning to focus on efficiency, which in tandem with modification of
mathematical attributes led to decreased mathematical distance and successful
completion of the level (Fig. 3.8).

On the following level, which presented similar but slightly more advanced
tasks, the degree of mathematical distance was so great that the child did not
successfully complete even the first task and thus did not have the opportunity to
plan (Fig. 3.9). During this attempt, the child struggled to access the affordance of
efficient precision in the form of consistent range contents (i.e., 0–10 contains 0, 1,
2–10). In the final attempt in the excerpt, the child proactively changed app attri-
butes by choosing to attempt a different level with related but easier content,
decreasing mathematical distance (Fig. 3.10). The child could again access the
planning affordance, but discontinued planning after realizing it was not more
efficient to do so in that context.

Applying the framework to interactions with DragonBox Algebra 12+.
Children’s interactions with the mathematics virtual manipulative tablet app
DragonBox Algebra 12+ also provide evidence of the MAAAD for Learning

Fig. 3.8 The child modified user mathematical attributes, effectively navigating hundredths on the
number line, thus decreasing mathematical distance. The child changed approach to accessing
planning, emphasizing efficiency and precision instead of creatively experimenting. Technological
distance remained minimal (adapted from Tucker 2015, pp. 125–127)
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framework. DragonBox Algebra 12+ includes content related to solving expres-
sions and equations, operations, negative and positive values, additive and multi-
plicative thinking, and fractions, presented using pictorial and symbolic tiles (see
Fig. 3.11). The user employs single-touch input to drag or tap tiles to complete each
expression or equation. Figures 3.12, 3.13, 3.14 and 3.15 illustrate the MAAAD for
Learning framework as applied to an excerpt from a sequence of a child’s inter-
actions with DragonBox Algebra 12+.

As Figs. 3.12, 3.13, 3.14 and 3.15 demonstrate, relationships within the
MAAAD for Learning framework can be found throughout children’s interactions
with DragonBox Algebra 12+. While accessing a high degree of negative moti-
vation during struggles to complete level 2:13, the child proactively used the
solution scaffold to model the steps to complete the level (Fig. 3.12). However, the
child rushed to replicate the solution, blurring gestures and increasing technological
distance (Fig. 3.13). During this failure to replicate the solution, the child showed
signs of frustration and a high degree of access to negative motivation.

During the next attempt, the child’s goal changed to accurate completion
(Fig. 3.14). The use of relatively precise gestures decreased technological distance,

Fig. 3.9 The app presented different tasks based on similar content, showing a change in
mathematical attributes. The child did not effectively transfer understanding of ranges to the new
tasks, and mathematical distance increased. The child struggled to access efficient precision in the
form of consistent range contents. Technological distance remained minimal (adapted from Tucker
2015, pp. 125–127)
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and the child recognized the need to apply the reverse order of operations. After
restarting the level, the child correctly applied the reverse order of operations,
demonstrating changes in mathematical attributes contributing to a decrease in

Fig. 3.10 The child proactively modified app attributes, reducing the level and changing to less
advanced mathematical content, decreasing mathematical distance. Technological distance
remained minimal. During this attempt, the child stopped planning after recognizing it did not
contribute to efficiency in this level (adapted from Tucker 2015, pp. 125–127)

Fig. 3.11 Screenshot of
DragonBox Algebra 12+
(Tucker 2015, p. 35)
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mathematical distance. The child also honed input gestures, contributing to both a
decrease in technological distance and a change in ability to access the affordance of
simultaneously linking mathematical representations with actions. These examples
show that the MAAAD for Learning framework models relationships among
attributes, affordance-ability relationships, and distance in user-tool interactions,
such as children’s interactions with mathematics virtual manipulative iPad apps.

3.5 Implications and Applications

The MAAAD for Learning framework has implications and applications relevant to
theory, development, implementation, and research concerning interactions with
technology tools, including virtual manipulatives. These implications and appli-
cations build on the descriptive power of the framework (e.g., analyzing user-tool
interactions), which has not been applied for prescriptive purposes (e.g., hypothe-
sizing specific user-tool interactions).

Fig. 3.12 The child attempted to decrease mathematical distance due to unaligned mathematical
attributes through proactive modification of app structural attributes (solution scaffolding). The
child showed a high degree of access to negative motivation (adapted from Tucker 2015, pp. 121–
123)
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3.5.1 Theory

One can view the MAAAD for Learning framework through a variety of theoretical
lenses, but embodied cognition and representation provided a context for the
developmental phases (Tucker 2015). The framework models specific constructs
and relationships among constructs that contribute to bodily engagement in math-
ematical practices (i.e., physically embodied interactions with representations) that
constitute mathematical thinking and learning. However, researchers could consider
MAAAD for Learning using other theoretical lenses and conceptual frameworks.
Potential approaches include: (a) different theories of affordances (see Burlamaqui
and Dong 2014), (b) multimedia learning (e.g., Interactive Multimedia Model for
Cognitive Learning: Daghestani 2013), (c) complex cognitive activities (e.g.,
EDIFICE-AP: Sedig and Parsons 2013), and (d) activity theory (e.g., Artifact-
centric activity theory: Ladel and Kortenkamp 2013). These and other theoretical
discussions could continue development of the framework, such as by locating the
teacher, interviewer, or peer. Along with embodied cognition and representation,

Fig. 3.13 The child failed to correctly replicate solution while attempting to quickly complete the
level. A high degree of mathematical distance remained and technological distance increased as the
child struggled to make the app recognize some input gestures. The child continued to have a high
degree of access to negative motivation and reset the level (adapted from Tucker 2015, pp. 121–
123)
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various theories could inform further development and application of the
framework.

3.5.2 Design

The MAAAD for Learning framework has implications and applications for those
who design virtual manipulatives and other technology tools. During research and
development, designers could use MAAAD for Learning to examine and organize
the attributes that contribute to affordance-ability relationships involved in the
user-tool interactions, as well as the myriad of potential manifestations of these
relationships. Within the framework, designers could also consider purposeful
modification of the constructs, including when and how the tool could modify
attributes that in turn modify distance and affordance-ability relationships, as well as
possible outcomes of these modifications. Additionally, by clarifying for users which
tool attributes are modifiable, designers could encourage proactive modification. The

Fig. 3.14 The child attempted to increase accuracy, but failed to correctly replicate solution.
However, the child noticed the missed use of the reverse order of operations for solving. The
degree of mathematical distance remained high but technological distance decreased as the child
produced recognizable input gestures. The child reduced the degree of access to negative
motivation and reset the level (adapted from Tucker 2015, pp. 121–123)
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framework may be of use to technology research and development groups when
examined in relation to human-computer interaction research in the technology
design field, including decision making, information visualization, and adaptive
systems (e.g., Jacko 2012).

3.5.3 Implementation

The MAAAD for Learning framework also has implications and applications for
implementers of virtual manipulatives and other technology tools and for those who
train others to implement these tools. Teacher educators could consider the
framework in relation to literature about teachers’ use of technology tools, such as
teacher beliefs about technology integration (e.g., Ertmer 2005) and Technological
Pedagogical Content Knowledge (Mishra and Koehler 2006). Teacher educators

Fig. 3.15 The child slowed interactions and accurately completed the level, having changed
mathematical attributes and reduced mathematical distance by correctly applying the properties in
the correct (reverse) order. The child also reduced technological distance, completing the level
without struggling to perform recognizable input gestures. The child showed a low degree of
access to positive motivation (adapted from Tucker 2015, pp. 121–123)
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could also develop a practitioner presentation of the framework that would permit
teachers to use MAAAD for Learning to evaluate the appropriateness of a given
tool for a particular child, including the alignment of user attributes and tool
attributes. This may help teachers decide when to provide targeted external scaf-
folding to encourage appropriate proactive attribute modification, such as by
helping users recognize opportunities to modify tool attributes. Although mathe-
matical thinking and learning can occur throughout these interactions, children may
not be aware they are engaged in mathematical practices. Thus, teachers could also
use the framework to examine user-tool interactions for evidence of mathematical
thinking and learning as part of informal assessment, supporting facilitation of
intentional discussions of these mathematical interactions that could aid recognition
of the mathematical thinking and learning.

3.5.4 Research

The MAAAD for Learning framework has potential implications and applications
for those who research learning and technology tools, including virtual manipula-
tives. Fine-grained applications of the framework, such as using it to analyze
user-tool interactions during specific mathematical learning trajectories (e.g.,
Sarama and Clements 2009) could aid research into the potential influences of
multi-touch technology on the ways that children learn mathematics (e.g.,
Baccaglini-Frank and Maracci 2015). Researchers could also investigate manifes-
tations of specific attributes (e.g., representing Base 10) or attribute categories (e.g.,
personal, structural). Lateral applications of MAAAD for Learning include apply-
ing it to other user-tool interactions. These studies could involve different subject
matter (e.g., science) to develop subject-specific variants (e.g., science attributes
and scientific distance). Additional investigations could apply the framework to
interactions with other technology tools (e.g., video games) in a variety of settings
(e.g., classroom) involving various users (e.g., diverse learners). These applications
would inform research on user-tool interactions in multiple contexts, such as using
virtual manipulatives to teach children with learning disabilities in mathematics in
general education classes (e.g., Satsangi and Bouck 2014).

Broader applications of the framework are also possible. Researchers could
investigate MAAAD for Learning in relation to specific outcomes, such as
achievement on learning assessments, particularly when conducting longitudinal
examinations of user-tool interactions. This could build on research that indicates
use of virtual manipulative touchscreen apps can positively influence performance
on mathematical tasks (e.g., Riconscente 2013; Zhang et al. 2015). Extensions of
this research could identify long-term patterns in user-tool interactions that correlate
with learning outcomes.
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3.6 Conclusion

The MAAAD for Learning framework models relationships among attributes,
affordance-ability relationships, and distance in the context of user-tool interactions,
and primarily emerges from studies focusing on interactions with mathematics
virtual manipulatives. The framework can be a useful tool for developers, educa-
tors, and researchers whose work involves technology tools. Developers of tech-
nology tools can use the framework to model relationships among constructs that
play a role in user-tool interactions and the resulting experiences. Educators who
implement technology tools to support learning can use the framework to evaluate
learning that occurs during children’s classroom-based interactions with technology
tools. Researchers can apply the framework to investigate constructs contributing to
children’s learning during interactions with technology, in addition to potential
outcomes of these interactions.

Importantly, consistent use of the MAAAD for Learning framework across these
applications could provide a common language for modeling and discussing
user-tool interactions. These applications may also lead to further development of
the framework, such as through clarification of constructs, relationships, and
emergent themes, or creation of versions for different content areas. To aid both
aims, it may be beneficial to clarify potential differences between a tool and an
object embedded within the tool (e.g., attributes of the touchscreen device, the app,
and each mathematics virtual manipulative), or if the entire tool should be con-
sidered as one when interacting with the embedded object (i.e., attributes of a
mathematics virtual manipulative touchscreen app). Future research involving
connections to learning outcomes, diverse populations, various contexts, different
content areas, and additional technology tools will advance the literature concerning
user-tool interactions and contribute to the development and application of the
MAAAD for Learning framework.
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Chapter 4
Physical and Virtual Manipulatives:
What Is “Concrete”?

Julie Sarama and Douglas H. Clements

Abstract We discuss research on both physical manipulatives and virtual
manipulatives to provide a framework for understanding, creating, implementing,
and evaluating efficacious manipulatives—physical, virtual, and a combination of
these two. We provide a theoretical framework and a discussion of empirical evi-
dence supporting that framework, for the use of manipulatives in learning and
teaching mathematics, from early childhood through the elementary years. From
this reformulation, we re-consider the role virtual manipulatives may play in
helping students learn mathematics. We conclude that manipulatives are mean-
ingful for learning only with respect to learners’ activities and thinking and that
both physical and virtual manipulatives can be useful. When used in comprehen-
sive, well planned, instructional settings, both physical and virtual manipulatives
can encourage students to make their knowledge explicit, which helps them build
Integrated-Concrete knowledge.

4.1 Physical and Virtual Manipulatives:
What Is “Concrete”?

“Young students need to learn concretely.” “Concrete manipulatives should be used
in early and elementary education to teach mathematics.” “Teaching and learning
should proceed from the concrete to the abstract.” These are commonly accepted
generalizations in most educational circles. Although they capture a good deal of
wisdom, unreflective application of them can lead not only to missing important
nuances, but even to ineffective educational practices. This is not a new concern.
Consider the caution from John Dewey, written nearly a century ago.
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The maxim enjoined upon teachers, “proceed from the concrete to the abstract,” is familiar
rather than wholly intelligible. Few who read and hear it gain a clear conception of the
starting point, the concrete; of the nature of the goal, the abstract; and of the exact nature of
the path to be traversed in going from one to the other. At times the injunction is positively
misunderstood, being taken to mean that education should advance from things to thought
—as if any dealing with things in which thinking is not involved could possibly be
educative. So understood, the maxim encourages mechanical routine or sensuous excitation
at one end of the educational scale—the lower—and academic and unapplied learning at the
upper end. (Dewey 1933, p. 220)

In this chapter, we discuss research on both physical manipulatives and virtual
manipulatives to provide a framework for understanding, creating, implementing,
and evaluating efficacious manipulatives—physical, virtual, and a combination of
these two. We provide a theoretical framework and a discussion of empirical evi-
dence supporting that framework, for the use of manipulatives in learning and
teaching mathematics, from early childhood through the elementary years. From
this reformulation, we reconsider the role virtual manipulatives may play in helping
students learn mathematics.

4.2 Research on Manipulatives in Mathematics Education

Research on using manipulatives in learning and teaching mathematics generally
indicates that students who use manipulatives in their mathematics classes learn
more than those who do not (Butler et al. 2003; Driscoll 1983; Greabell 1978;
Guarino et al. 2013; Johnson 2000; Lamon and Huber 1971; Lane 2010; Lesh and
Johnson 1976; Raphael and Wahlstrom 1989; Sowell 1989; Suydam 1986;
Thompson 2012). Some studies showed an increase on assessments of retention and
problem solving.

Even some early studies, however, found that students not using Cuisenaire rods
to learn multiplication as repeated addition scored higher than students using
manipulatives on a transfer test (Fennema 1972). Second graders were taught
multiplication as repeated addition with manipulatives or symbolically (e.g.,
2 + 2 + 2). Both groups learned multiplication but the symbolic group scored higher
on a transfer test. All teachers in this study emphasized learning with understanding
whether using manipulatives, mental math, or paper and pencil. A study on ge-
ometry similarly showed lower achievement for those using manipulatives (Palardy
and Rumberger 2008).

One possibility is that instruction does not adequately promote connection
between children’s representations based on manipulatives and those based on
paper and pencil (e.g., Carnine et al. 1997; Sherman and Bisanz 2009). For
example, in one study, students who performed subtraction well with manipulatives
performed the worst with paper and pencil, and vice versa (Resnick and Omanson
1987). So, the researchers tried “mapping instruction,” designed to help children to
connect their “concrete” knowledge shown by their use of manipulatives to
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symbolic work with numerals. Unfortunately, this did not work particularly well.
The only children who benefited were those who received extensive instruction and
used that time to make more correct verbalizations of the quantities involved in
renaming. Thus, it was not simple “concrete” experience that helped but rather
attention to quantities. Concrete objects may play an important role but they need to
be used carefully to create a strong understanding and justification for each step of a
procedure (Resnick and Omanson 1987; see also Thompson and Thompson 1990).

In a similar vein, it is not just symbols that are too often learned by rote. Students
often learn to use manipulatives by rote (Miura and Okamoto 2003). They perform
the correct steps but have learned little more about the manipulation of quantities.
One student used beans and beansticks to model place value, but used the
(one) bean as ten and the beanstick (with ten beans on it) as one (Hiebert and
Wearne 1992). In a similar study, kindergarten students could not use simple cubes
to help them solve simple addition and subtraction problems. They did not have a
strategy to use the cubes to solve the problems. Using a number line was even more
difficult (Skoumpourdi 2010). These and other studies support an essential point:
Although they provide support and mediation, manipulatives do not “carry”
mathematical ideas directly to the learner. “Although kinesthetic experience can
enhance perception and thinking, understanding does not travel through the fin-
gertips and up the arm” (Ball 1992, p. 47).

Given these cautions and nuances, a final concern is that teachers frequently use
manipulatives as a main way of reforming their teaching. However, they often do
not reflect on their use of representations of ideas or on the other aspects of their
instruction that must be changed (Grant et al. 1996)—manipulatives are an end in
themselves. Both teachers and parents often believe that reform in mathematics
education indicates that “concrete” is good and “abstract” is bad. Infrequently
discussed in early childhood are the opposite view of some mathematicians and
mathematics teachers of older students, who argue that “abstract” mathematics is
worthwhile, and instruction with concrete (or “real-world”) representations is a
waste of time.1

A similar debate emerges when we consider virtual manipulatives—those on
screens. If they are not concrete in the physical sense, how can they serve the
expected role? Surprisingly, contrary to our intuition, technology might provide
representations that are just as personally meaningful to students as physical
manipulatives (Yerushalmy 2005). Research indicates that technology-based rep-
resentations may even be more manageable, “clean,” flexible, and extensible than
their physical counterparts.2 For example, a computer base ten environment offered

1This view was expressed by several members of the National Mathematics Advisory Panel
(2008), of which Clements was a member.
2This is why we prefer the term “technological” instead of “virtual” manipulatives. Although we
use the latter to be consistent with this book, “virtual” means “not physically existing.” Although
of course they are not physical in the same way, technological screens do physically exist. More
important, children’s phenomenological experience with and actions on them are what matters,
and we find few differences to call one physically more “real.”
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greater control and flexibility to students than base ten materials (Char 1989).
Similarly, students who used physical and software manipulatives demonstrated a
greater sophistication in classification and logical thinking than did a control group
that used physical manipulatives (Olson 1988). A single-group pre-post design
revealed that third graders working with virtual manipulatives made statistically
significant gains learning fractional concepts (Reimer and Moyer 2004). Qualitative
evidence indicated that the virtual manipulatives helped students because they were
easier and faster to use and because they provided immediate and specific feedback.
A case study revealed that third graders using either virtual manipulatives or
concrete manipulative had greater increase in test results than those who did not
(Lane 2010).

Most convincing, a meta-analysis of 66 research studies reported a moderate
effect of virtual manipulatives on mathematics learning (Moyer-Packenham and
Westenskow 2013). Effects varied by counterfactual, mathematical topic, grade
level, and study duration. The largest effects were those that compared virtual
manipulatives alone or in combination with physical manipulatives with textbook
use. Even in comparison with physical manipulatives alone, virtual manipulatives
alone or in combination yielded at least small effects, suggesting that they have
unique advantages (Moyer-Packenham and Westenskow 2013).

Thus, research suggests that instruction should start off with “concrete” repre-
sentations, but also that manipulatives do not guarantee meaningful learning (e.g.,
Gagatsis 2003; Johnson 2000; MacDonald et al. 2012; Martin et al. 2007; Sherman
and Bisanz 2009; Skoumpourdi 2010) and may not need to be physical. To
understand the role of so-called concrete manipulatives and any concrete-to-abstract
pedagogical sequence (cf. Martin 2009) we need to discuss what we mean by
“concrete.”

4.3 The Meaning of “Concrete” in Education

When they discuss “concrete manipulatives,” many teachers mean physical objects
that students can hold (Rao et al. 2009). This sensory nature is assumed to make
manipulatives “real,” connected with one’s experience in the physical world, and
therefore foundational to learning. There are, however, problems with these
assumptions (Metz 1995).

One problem is assuming that concepts can be “read off” manipulatives. That is,
students may hold, move, and arrange physical objects without thinking about the
concepts. Consider the experiences of the sensitive and insightful teacher-author
John Holt. Working with Cuisenaire rods, Holt and his fellow teacher “were excited
about the rods because we could see strong connections between the world of rods
and the world of numbers. We therefore assumed that children, looking at the rods
and doing things with them, could see how the world of numbers and numerical
operations worked. The trouble with this theory is that [my colleague] and I already
knew how the numbers worked. We could say, ‘Oh, the rods behaved just the way
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numbers do.’ But if we hadn’t known how numbers behaved, would looking at the
rods enable us to find out? Maybe so, maybe not” (Holt 1982, p. 138). To return to
John Dewey:

Instruction in number is not concrete merely because…beans or dots are employed…. If the
physical things used in teaching number … do not leave the mind illuminated with
recognition of a meaning beyond themselves, the instruction that uses them is as abstruse as
that which doles out ready-made definitions and rules, for it distracts attention from ideas to
mere physical excitations. (cf. Bana and Nelson 1978; Dewey 1933, p. 224, emphasis in
original)

Another problem with this perspective is that, even if children begin to link
between manipulatives and nascent ideas, physical actions with certain manipula-
tives may suggest different mental actions than students are to learn. For example,
when students use number lines to add 5 + 2, students may locate 5, count “one,
two” and read the answer, “7.” However, this does not help them solve the problem
mentally, because they would have to count “six, seven” and at the same time count
the counts—6 is one, 7 is two (Gravemeijer 1991; see also Sarama and Clements
2009b). Similarly, students’ external actions on an abacus are not consistent with
the mental activity we want to develop. Indeed, some authors believe that the
number line model does not help young children learn addition and subtraction, and
that, certainly, using the number line model to assess children’s knowledge of
arithmetic makes several important assumptions about what else they know (Ernest
1985). In any case, the number line cannot be viewed as a “transparent” model
(Núãez et al. 2012); if used, it must be taught. Similarly, second graders did not
learn more sophisticated strategies (e.g., adding 63 and 26 by counting by tens:
“63, …, 73, 83, 84, 85, …, up to 89”) using a hundreds board, because it did not
correspond to students’ activity or help them to build useful figural imagery that
supported creation of abstract composite units of ten (Cobb 1995).

Although manipulatives may often play an important role in learning, their
physicality does not carry the meaning of the mathematical idea. Students may
benefit from physically concrete materials—or even their virtual counterparts—to
build meaning initially, but they must reflect on and talk about their actions with
manipulatives to do so. “Concrete” may not equal “physical.” Consider that we
eventually appreciate students having a kind of “concrete” understanding that goes
beyond physicality. For example, good students often mentally manipulate quan-
tities as if they were concrete. A child who is mentally subtracting 72 − 37 might
operate on mental representations that sound physical—“I counted to find out how
much to add to 37 to make 72. So I put 3 ones on the 37 to make 40, 2 more to
make 42, that’s umm, 5 ones I have. Then, I stuck on 3 tens to make 72, so I put on
35 in all.” A child with a different “concrete” understanding of the quantities may
“break apart” the number itself, as in “I took the tens and ones apart. Then I
separated the 3 tens away from the 7 tens and that left 4 tens. Then I took 2 off the
42, and I got 40, but I had to take 5 more off, so 35” (Cobb et al. 1996; Sarama and
Clements 2009b). Such “concrete” understanding results from complex networks of
knowledge that connect numbers and number relations to meaningful experiences
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with sensory, active, and social contexts. The connections in networks like these
support arithmetic and algebraic thinking (Schliemann et al. 2007).

This is why we say that there are different types of concrete knowledge. Students
with Sensory-Concrete knowledge need sensory material to make sense of a con-
cept or procedure (Clements 1999; Clements and McMillen 1996; Sarama and
Clements 2009a). For example, most children do not solve larger-number problems
without the support of concrete objects until 5.5 years of age (Levine et al. 1992).
Young children can solve complex equivalence problems with manipulatives when
presented in a non-symbolic context (Sherman and Bisanz 2009), and may not be
able to solve even the simplest of problems without such sensorial, concrete support
(Baroody et al. 2007). Manipulating the sensory material (physical or virtual)
supports students’ thinking (Correa et al. 1998). But these action schemes are
themselves abstractions (cf. Dewey 1933).

Integrated-Concrete knowledge is knowledge that is connected in specific ways
(Clements and McMillen 1996). Consider the root of the term. Concrete sidewalks
are strong due to the combination of separate particles in an interconnected mass
(“concrete” means to grow together). What gives Integrated-Concrete thinking its
strength is the combination of separate ideas in an interconnected knowledge net-
work. For students with this type of interconnected knowledge, knowledge of
physical objects, actions performed on them, and symbolic representations are all
interrelated in a strong mental structure (cf. Martin 2009).

An idea is not either concrete or not concrete. Rather, depending on how you
think about it, on what kind of relationship you have with it (Wilensky 1991), it
might be Sensory-Concrete, abstract-only, or Integrated-Concrete (Clements 1999).
What ultimately makes mathematical ideas Integrated-Concrete is not their physical
characteristics, but how “meaningful”—connected to other ideas and situations—
they are. Good manipulatives and good education with manipulatives provides
students with meaningful material from which students can build, strengthen, and
connect powerful representations of mathematical ideas.

Comparing the two levels of concrete knowledge, we see a transformation in
what “concrete” describes. In Sensory-Concrete, it refers to the support of sensory
(physical or virtual) objects and their manipulation to cognitive actions. In
Integrated-Concrete, it refers to knowledge that is “concrete” at a higher level
because they are connected to other knowledge, both physical/sensory knowledge
that has been abstracted and thus distanced from sensory objects and abstract
knowledge. Such knowledge consists of units that “are primarily concrete,
embodied, incorporated, lived” (Varela 1999, p. 7). Ultimately, these are descrip-
tions of changes in the configuration of knowledge as children develop. Consistent
with other theoreticians (Anderson 1993), we do not believe there are fundamen-
tally different types of knowledge, such as “concrete” versus “abstract” or “con-
crete” versus “symbolic” (Sarama and Clements 2009b). However, one tenet of the
theory of hierarchic interactionalism is “cyclic concretization”—that the devel-
opmental progressions of learning trajectories proceed from Sensory-Concrete and
implicit levels at which perceptual Sensory-Concrete supports are necessary and
reasoning is restricted to limited cases (such as small numbers) to more explicit,
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verbally-based (or enhanced) generalizations and abstractions that are tenuous to
Integrated-Concrete understandings relying on internalized mental representations
that serve as mental models for operations and abstractions that are increasingly
sophisticated and powerful. Such progressions can cycle within domains and
contexts (Sarama and Clements 2009b).

Perhaps most surprisingly, then, manipulatives do not have to be physical
objects. Teachers of later grades expect students to have a “concrete understanding”
that goes beyond manipulatives. For example, we like to see that numbers—as
mental objects (“I can think of 43 + 26”)—are “concrete” for older students.

Whenever the use and bearing of number relations are clearly perceived, a number idea is
concrete even if figures alone are used. Just what sort of symbol it is best to use at a given
time—whether blocks, or lines, or figures—is entirely a matter of adjustment to the given
case. (Dewey 1933, p. 224)

Thus, people have Sensory-Concrete knowledge when they need to use sensory
material to make sense of an idea. For example, at early stages, children cannot
count, add, or subtract meaningfully unless they have actual things (usually, these
are young children, but also older students with mathematical difficulties or dis-
abilities). Consider Brenda, a primary grade student in a teaching experiment (Steffe
and Cobb 1988). The interviewer had covered four of seven squares with a cloth,
told Brenda that four were covered, and asked how many in all. Brenda tried to
raise the cloth but was thwarted by the interviewer. She then counted the three
visible squares.

B 1, 2, 3 (touches each visible item in turn)
I There’s four here (taps the cloth)
B (Lifts the cloth, revealing two squares) 4, 5. (touches each and puts cloth back)
I OK, I’ll show you two of them (shows two). There’s four here, you count them
B 1, 2 (then counts each visible): 3, 4, 5
I There’s two more here (taps the cloth)
B (Attempts to lift the cloth.)
I (Pulls back the cloth.)
B 6, 7 (touches the last two squares) (Steffe and Cobb 1988).

Brenda’s attempt to lift the cloth indicates that she was aware of the hidden
squares and wanted to count the collection. This did not lead to counting because
she could not yet coordinate saying the number word sequence with items that she
only imagined. She needed physically present items to count. Note that this does
not mean that manipulatives were the original root of the idea. Research tends to
indicate that is not the case. However, there appears to be a level of thinking when
children can solve tasks with physical objects that they cannot solve without such
objects. For example, consider asking a girl who just turned 4 years of age to add
small numbers with and without blocks (“bricks”) (Hughes 1981).
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Examiner Let’s just put one more in (does so). Ten and one more, how many’s
that?

Child Err … (thinks) … eleven!
E Yes, very good. Let’s just put one more in (does so). Eleven and one

more, how many’s that?
C Twelve!

Five minutes later, with the bricks put away:

E I’m just going to ask you some questions, OK? How many is two and one
more?

C (No response.)
E Two and one more, how many’s that?
C Err … makes
E Makes … how many?
C Err … fifteen (in couldn’t-care-less tone of voice) (Hughes 1981, p. 216).

The following involved a slightly older boy.

E What’s three and one more? How many is three and one more?
C Three and what? One what? Letter—I mean number?

(We had earlier been playing a game with magnetic numbers, and he is
presumably referring to them here.)

E How many is three and one more?
C One more what?
E Just one more, you know?
C I don’t know (disgruntled) (Hughes 1981, p. 218).

This is consistent with research showing that most children do not solve
larger-number problems without the support of concrete objects until 5.5 years of
age (Levine et al. 1992), but have also developed the ability to convert verbal
number words to quantitative meaning (Fuson 1992a, b). Preschoolers are more
successful solving arithmetic problems when they have blocks available (Carpenter
and Moser 1982) and may not be able to solve even the simplest of problems
without such sensory, concrete support (Baroody et al. 2007). At an even younger
age, researchers argue that children have a relatively concrete understanding of
number until they learn number words. At that point, they gain a more abstract
understanding (Spelke 2003). In summary, those with Sensory-Concrete knowledge
need to use or at least refer directly to sensory material to make sense of a concept
or procedure (Jordan et al. 1994). Such material often facilitates children’s devel-
opment of mathematical operations by serving as material support for children’s
action schemes (Correa et al. 1998). This does not mean that their understanding is
only concrete; even infants make and use abstractions in thinking (Gelman 1994).
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As another example, preschoolers understand—at least as “theories-in-action”—
principles of geometric distance and do not need to depend on concrete, perceptual
experience to judge distances (Bartsch and Wellman 1988).

Concrete “versus” abstract? Then what of abstraction? Some decry limited
abstract knowledge. This can occur: “Direct teaching of concepts is impossible and
fruitless. A teacher who tries to do this usually accomplishes nothing but empty
verbalism, a parrot-like repetition of words by the child, simulating a knowledge of
the corresponding concepts but actually covering up a vacuum” (Vygotsky 1934/
1986, p. 150). This is abstract-only knowledge.

However, abstraction is not to be avoided at any age (Dewey 1933).
Mathematics is about abstraction and generalization. “Two”—as a concept—is an
abstraction. Further, even infants use conceptual categories that are abstract as they
classify things (Lehtinen and Hannula 2006; Mandler 2004), including by quantity.
These are enabled by innately specified knowledge-rich predispositions that give
children a head start in constructing knowledge. These are “abstractions-in-action,”
not represented explicitly by the child but used to build knowledge (Karmiloff-
Smith 1992). When an infant says “two doggies,” she is using abstraction structures
of numerosity to label a concrete situation. Thus, the situation is analogical to
Vygotsky’s (1934/1986) formulation of spontaneous versus scientific (“abstract”)
concepts in that abstractions-in-action guide the development of concrete knowl-
edge and eventually, depending largely on social mediation, become explicated as
linguistic abstractions. The result is Integrated-Concrete knowledge. Ideas such as
“4,” “3/7,” and “rhombus” become as real, tangible, and as strong as a concrete
sidewalk. Each idea is as concrete as a pliers is to a carpenter—an accessible and
useful tool. An idea is not simply concrete or not concrete. We as educators cannot
engineer mathematics into Sensory-Concrete materials because ideas such as
number are not “out there.” As Piaget has shown us, they are constructions—
reinventions—of each human mind. “Fourness” is no more “in” four blocks than it
is “in” a picture of four blocks. The child creates “four” by building a representation
of number and connecting it with either physical or pictured blocks (Clements
1989; Clements and Battista 1989; Kamii 1986).

As Piaget’s collaborator Hermine Sinclair says, “… numbers are made by
children, not found (as they may find some pretty rocks, for example) or accepted
from adults (as they may accept and use a toy)” (Sinclair, Forward, in Steffe and
Cobb 1988, p. v). How does one help children build such representations? We often
assume that more able or older students’ greater facility with mathematics stems
from their greater knowledge of mathematical procedures or strategies. However, it
is more often true that younger children possess the relevant knowledge but cannot
effectively create a mental representation of the necessary information (Greeno and
Riley 1987). This is where good manipulatives can play a role.

Are abstract (“only”) ideas ever worthwhile? Yes, there is a level of abstraction
above Integrated-Concrete that intentionally strips concrete connections away,
moving close to a level of “pure thought”—thinking as a means to generate more
thinking—developing conceptual generalities that can serve critical analytic and
theoretical purposes. Such levels are common in the work of mathematicians and
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are recognized in educational writings (Dewey 1933; van Hiele 1986). Students can
engage in interesting work with mathematical systems with symbols and rules that
lack palpable connections with real-world situations. However, such successful
examples are usually built upon a foundation of Integrated-Concrete knowledge (cf.
De Lange 1987).

4.4 Research-Based Guidelines for Teaching with Physical
and Virtual Manipulatives

What role should manipulatives play in supporting the development of such
knowledge? Research offers some guidelines.

• Model with manipulatives. We noted that young children can solve problems
and, at the earliest ages, appear to need concrete manipulatives—or, more
precisely, Sensory-Concrete support—to do so. One study showed higher
achievement in children who used manipulatives for counting tasks (Guarino
et al. 2013). However, the key is that they are successful because they can model
the situation (Carpenter et al. 1993; Outhred and Sardelich 1997). Nevertheless,
early number recognition, counting, and arithmetic may require (recall Brenda),
or benefit from, the use of Sensory-Concrete support, if they help children
investigate and understand the mathematical structures and processes. For
example, children benefitted more from using chenille sticks than pictures to
make non-triangles into triangles (Martin et al. 2007). They merely drew on top
of the pictures but they transformed the non-triangles made with chenille sticks,
which is more likely to expand the actions and their thinking. Again, though, the
key is not necessarily that the sticks were physical and the pictures were not, but
instead that the sticks were “manipulable.” Recall that manipulative base 10
representations on computer screens were just as or more supportive of chil-
dren’s learning (Char 1989). One sequence of studies showed that 3-year-olds
who used more “interesting” manipulatives (fruit instead of plain blocks) were
more likely to accurately identify numbers in a recall task and answer sub-
traction questions correctly. There was no difference in children’s attentiveness
to the lesson. The authors provide no additional interpretations, but connections
to children’s existing experiences, perhaps building more elaborated mental
models, may have accounted for the difference (Nishida and Lillard 2007a, b).

• Use manipulatives to represent mathematical ideas. Too often, manipulatives
are used to “make math fun,” where “manipulative math” and “real math” are
seen as different enterprises (Moyer 2000). Manipulatives are used as a diver-
sion, frequently because teachers and software designers may sometimes not
understand their role as representations of mathematical ideas. Justification for
their instructional role is often that they are “concrete” and thus “understand-
able.” We have seen, however, that—like beauty—“concrete” is, quite literally,
in the mind of the beholder.
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• Ensure manipulatives serve as symbols. This is closely linked to the previous
point. Multiple studies (Munn 1998; Uttal et al. 1997) support this guideline:
Physical “concreteness” is not necessarily an instructional advantage. It can
make it difficult for children to use a manipulative as a symbol. To be useful,
children must interpret the manipulative as representing a mathematical idea.
A second example comes from early introduction of algebraic thinking. When
the goal is abstraction, concrete materials may not be particularly helpful. For
example, working with differences in children’s heights (e.g., Mary is 4 in. taller
than Tom), agreeing that Tom’s height would be T, children resisted repre-
senting Mary’s height as “T + 4,” preferring “M” (Schliemann et al. 2007).
Others solved some problems but still said “T” stood for “tall” or “ten.” Also,
students tended to think of the differences in height as the (absolute) heights.
Part of their difficulty was thinking of any letter as a variable amount when the
concrete situations used in the instruction implied that there was a particular
quantity—unknown, perhaps, but not one that varies. That is, children could
think of the value of a height, or the amount of money in a wallet as unknown,
or a “surprise,” but had difficulty thinking of it as a range of values. In contrast,
they learned more from playing activities such as “guess my rule,” in which the
context was simply mathematics, not with physical manipulatives, objects, or
settings. The pure number activities were meaningful and had advantages in
helping children from a low-performing school to think about numerical rela-
tionships and to use algebraic notations. In summary, the relationship of
manipulatives to the concepts they are to represent is not transparent to children
(Uttal et al. 1997). Children must be able to see the manipulative as a symbol for
a mathematical idea. This may be why using “bland,” compared to realistic,
manipulatives are more likely to serve as symbols, even for children as young as
preschoolers (Carbonneau 2015; Nishida and Lillard 2007a, b). In addition, in
some contexts the physicality of a manipulative may interfere with students’
mathematical development, and other representations, including virtual manip-
ulatives, may be more effective for learning. Further, active teaching must guide
children to make, maintain, and use manipulatives as symbols or tools for doing
mathematics (Carbonneau and Marley 2015). Connecting manipulative work
(e.g., place value blocks) with verbalizations and representations can build both
concepts and skills successfully (Brownell and Moser 1949; Fuson and Briars
1990; Fyfe et al. 2014; Hiebert and Wearne 1993; Murata 2008; Vitale et al.
2014). Thus, children must construct, understand, and use the structural simi-
larities between any representation and the problem situation to use objects as
tools for thinking. When children do not see those similarities, manipulatives
may fail to help, and many even hinder, problem solving and learning (Outhred
and Sardelich 1997). As we saw in the previous section, if they do not mirror the
mental actions we wish children to develop, their use could be a waste of time or
even counterproductive. Manipulatives, drawings, and other representations
should as much as possible, be used instructionally in ways consistent with the
mental actions on objects that students are to develop.
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• Encourage appropriate play with manipulatives. Is it good to let children play
with manipulatives? Usually yes, sometimes no. Most teachers recognize that if
young children have not explored a manipulative on their own (say, toy dino-
saurs), getting them to address the teachers agenda (say, counting) can be at best
inefficient, and at worst, a serious struggle. Further, children can and do learn
pre-mathematical foundations through their self-directed play, especially with
structured manipulatives, such as pattern blocks or building blocks (Seo and
Ginsburg 2004). However, these experiences are rarely mathematical without
teacher guidance. Children, as young as preschoolers, learn less without guid-
ance (Carbonneau and Marley 2015). Further, counter intuitively, play can
sometimes be counterproductive. When a sensory object is intended to serve as a
symbol, playing with the object can interfere with understanding. For example,
having children play with a model of a room decreased young children’s success
in using it as a symbol in a map search task, and eliminating such play increased
their success (DeLoache et al. 1997). Thus, the purpose and intended learning
with the manipulatives must be considered carefully within each context.

• Use few manipulatives well. Some research indicates the more manipulatives, the
better. However, U.S. teachers tend to use different manipulatives to increase
“motivation” and “make math more fun” (Moyer 2000; Uttal 1997). Further,
Diénès’ (1971) “multiple embodiment” theory suggests that to truly abstract a
mathematical concept, students need to experience it in more than one context.
However, there are opposing practices and evidence. Successful teachers in Japan
tend to reuse the same manipulatives repeatedly (Uttal 1997). Research indicates
that, indeed, deeper experience with one manipulative is more productive than
equivalent experiences using various manipulatives (Hiebert and Wearne 1996).
The former is what successful Chinese teachers do (Ng and Rao 2010).
A synthesis may be that multiple representations are useful (e.g., a physical
manipulative and corresponding virtual manipulative, drawings, verbalizations,
symbols), but many different manipulatives may be less useful. These few
manipulatives should be used for multiple tasks, so children do not view them as
objects to play with but tools for thinking (Sowell 1989). Do not neglect fingers as
manipulatives, as they play a fundamental role (Crollen and Noël 2015).

• Use caution in beginning with “prestructured” manipulatives. We must be wary
of using “prestructured” manipulatives—ones where the mathematics is built in
by the manufacturer, such as base-ten blocks (as opposed to interlocking cubes).
They can be as colored rods for John Holt’s students—“another kind of numeral,
symbols made of colored wood rather than marks on paper” (Holt 1982).
Sometimes the simpler the better. For example, educators from the Netherlands
found students did not learn well using base-ten blocks and other structured
base-ten materials. There may have been a mismatch between trading one
base-ten block for another and the actions of mentally separating a ten into ten
ones or thinking of the same quantity simultaneously as “one ten” and “ten ones.”
The Netherlands’ students were more successful hearing a story of a sultan who
often wants to count his gold. The setting of the story gave students a reason for
counting and grouping: The gold had to be counted, packed, and sometimes
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unwrapped—and an inventory constantly maintained (Gravemeijer 1991). So,
students might best start using manipulatives with which they create and break up
groups of tens into ones (e.g., interlocking cubes) rather than base-ten blocks
(Baroody 1990). Settings that provide reasons for grouping are ideal.

• Use drawings and symbols—move away from manipulatives (Fyfe et al. 2014).
Children using manipulatives in second grade to do arithmetic tend to do so
even in fourth grade (Carr and Alexeev 2011). That is a failure to move along
the learning trajectory. Although modeling necessitates manipulatives at some
early levels of thinking, even preschoolers and kindergartners can use other
representations, such as drawings and symbols, with, or instead of, manipula-
tives (Carpenter et al. 1993; Outhred and Sardelich 1997; van Oers 1994). Even
for children as young as 5 years of age, physical manipulatives may play a
surprisingly small role. For example, in one study there was no significant
difference between kindergartners accuracy in the discovery of arithmetic
strategies when they were given and not given manipulatives (Grupe and Bray
1999). The similarities go on: Children without manipulatives used their fingers
on 30 % of all trials, while children with manipulatives used the bears on 9 % of
the trials but used their fingers on 19 % of trials for a combined total of 28 %.
Finally, children stopped using external aids approximately halfway through the
12-week study. Physical objects can make an important contribution, but are not
guaranteed to help (Baroody 1989; Brown et al. 2009; Clements 1999;
Skoumpourdi 2010). Drawings can include models, such as the “empty number
line” approach (Beishuizen 1993). Another consideration here is children’s use
of images. High-achieving children build images that have a spectrum of quality
and a more conceptual and relational core. They are able to link different
experiences and abstract similarities. Low-achieving children’s images tended to
be dominated by surface features. Instruction might help them develop more
sophisticated images (Gray and Pitta 1999). We should choose meaningful
representations in which the objects and actions available to the student parallel
the mathematical objects (ideas) and actions (processes or algorithms) we wish
the students to learn. We then need to guide students to make connections
between these representations (Fuson and Briars 1990; Lesh 1990). Virtual
manipulatives may make a special contribution to these connections and to the
move towards more Integrated-Concrete representations, as we see in the fol-
lowing section.

4.5 The Unique Affordances of Virtual Manipulatives

As previously discussed, even if we agree that “concrete” does not equal
“physical,” we might have difficulty accepting objects on a tablet or computer
screen as valid manipulatives. How can we explain the success of virtual
manipulatives (Moyer-Packenham and Westenskow 2013), which can be just as
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(Moyer-Packenham et al. 2013; Yerushalmy 2005) or more (Char 1989; Johnson-
Gentile et al. 1994) effective than physical manipulatives? We believe that an
overarching but underemphasized reason for the positive effects of virtual
manipulatives in such studies is that virtual manipulatives provide unique affor-
dances for the development of Integrated-Concrete knowledge. The following is
an update of our theoretical framework (see Clements 1999; Clements and
McMillen 1996; Moyer-Packenham and Westenskow 2013; Sarama and Clements
2006, 2009a; Sarama et al. 1996). Moyer-Packenham and Westenskow (2013)
similarly found that specific researcher-reported affordances promoted learning
and their results will be related to our framework in the discussion below. Perhaps
the most powerful is embodying the processes we want children to develop and
internalize as mental actions. Seven hypothesized, interrelated affordances follow
(summarized from Sarama and Clements 2009a).

Bringing mathematical ideas and processes to conscious awareness. Most stu-
dents can use physical manipulatives to perform motions such as slides, flips and
turns; however, they make intuitive movements and corrections without being
aware of these geometric motions. Even young children can move puzzle pieces
into place without any attention to the geometric motions that can describe these
physical movements. Using virtual tools to manipulate shapes can bring those
geometric motions to an explicit level of awareness (Clements and Sarama 2007a).
For example, preschool children were unable to explain the motions needed to
make the pieces fit in a physical puzzle. These children were able to adapt to using
computer tools within one session and were able to explain their actions to peers.
The children in this study did not use the same tools to manipulate shapes in an
exploratory environment. Therefore, without a specific task or guidance, this
potential benefit was not realized (cf. Moyer-Packenham and Westenskow 2013,
“focused constraint”). This brings us to an important issue: Using a mouse to
perform specific geometric motions vs. a touch screen, or even holographic images,
are all different ways of interacting with virtual manipulatives. In some instances,
the direct manipulation of the latter two may be helpful, such as direct touching of
screens with fingers to enact numbers in different ways (Barendregt et al. 2012).
However, in this case, manipulation of an icon representing the mathematical
process was more beneficial. As direct manipulation environments increasingly
approach physical manipulation, this advantage, if not considered in the design,
could be lost.

Encouraging and facilitating complete, precise, explanations. Compared to
students using paper and pencil, students using computers work with more preci-
sion and exactness (Clements et al. 2001; Gallou-Dumiel 1989; Johnson-Gentile
et al. 1994). One study included two treatments to teach geometric transformations,
symmetry, and congruence. One of the treatments used specially-designed Logo
computer environments to provide computer actions (geometric motions) on virtual
manipulatives (geometric figures). The other treatment group used physical
manipulatives and paper and pencil. Otherwise, the curriculum and tasks were
identical. Pre- and post-treatment interviews revealed that both treatment groups,
especially the Logo group, performed at a higher level of geometric thinking than
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did a non-treatment control group. Although the two treatment groups did not
significantly differ on the immediate posttest, the Logo group outperformed the
nonLogo group on the delayed posttest. The Logo-based version enhanced the
construction of higher-level conceptualizations of motion geometry, aiding reten-
tion (Johnson-Gentile et al. 1994; cf. Moyer-Packenham and Westenskow 2013,
“efficient precision”). Such higher-level concepts are at the core of Integrated-
Concrete knowledge.

Supporting mental “actions on objects.” The flexibility of virtual manipulatives
allows them to mirror mental “actions on objects” better than physical manipula-
tives. For example, physical base-ten blocks can be so clumsy and the manipula-
tions so disconnected one from the other, that students tended to act on physical
pieces but not the place value ideas. In virtual manipulatives, students can break
computer base-ten blocks into ones, or glue ones together to form tens. Such actions
are more in line with the mental actions that we want students to learn (cf.
Thompson 1992) and are at the heart of what we mean by Integrated-Concrete
knowledge.

Geometric tools can encourage mental composition and decomposition of
shapes (Clements and Sarama 2007b; Sarama et al. 1996). In an observational study
of young children’s use of physical and virtual manipulatives, kindergartner
Mitchell started making a hexagon out of triangles on the computer (Sarama et al.
1996). After placing two, he counted with his finger on the screen around the center
of the incomplete hexagon, imaging the other triangles. Whereas off-computer,
Mitchell had to check each placement with a physical hexagon, the intentional and
deliberate actions on the computer lead him to form mental images (decomposing
the hexagon mentally) and predict each succeeding placement.

Actions on virtual manipulatives can include precise decompositions that cannot
easily be duplicated with manipulatives; for example, cutting a shape (e.g., a regular
hexagon) into other shapes (e.g., not only into two trapezoids but also two pen-
tagons and variety of other combinations). Virtual manipulatives have supported
dramatic gains in this competency (Clements and Sarama 2007b; cf. Moyer-
Packenham and Westenskow 2013, “focused constraint” and “creative variation”;
Sarama et al. 1996; Spitler et al. 2003)

Changing the nature of the manipulative. In a similar vein, virtual manipula-
tives’ flexibility allows children to explore geometric figures in ways not available
with physical shape sets. For example, children can change the size of the computer
shapes, altering all shapes or only some. One study compared how a linguistically
and economically diverse population of kindergarten and second grade students
worked and learned with physical, compared to virtual, manipulatives. Researchers
stated that the virtual manipulative’s flexibility had several positive effects on
kindergartners’ patterning (Moyer et al. 2005). They made a greater number of
patterns and used more elements in their patterns when using virtual manipulatives
than when using physical manipulatives or drawing. Finally, only when working on
the computer did they create new shapes (e.g., by partial occluding one shape with
another). Thus, this develops, potentially more than physical manipulatives, a richer
network of Integrated-Concrete knowledge.

4 Physical and Virtual Manipulatives: What Is “Concrete”? 85



Symbolizing and making connections. Virtual manipulatives can also serve as
symbols for mathematical ideas, often better than physical manipulatives. For
example, the manipulative can have just the mathematical features that we wish it to
have, and just the actions on it that we wish to promote, and not additional prop-
erties that may be distracting. An example is a computer game to teach motion
geometry. Three modes were compared (Sedighian and Klawe 1996; Sedighian and
Sedighian 1996): Direct Manipulation (DM), in which a student might drag a shape
to turn it; Direct Concept Manipulation (DCM), in which the student manipulated a
representation of turning and angle measure, not the shape direction; and, Reflective
DCM (RDCM), which included faded scaffolding (teaching help that is gradually
withdrawn). Students using RDCM were significantly and substantially better than
students using DCM versions, which were again significantly better than students
using versions with conventional direct manipulation. This indicates the primary
importance of careful design in the development of virtual manipulatives.

Linking the concrete and the symbolic with feedback. Closely related, the
computer can link manipulatives to symbols—the notion of multiple linked rep-
resentations. For example, the number represented by the base-ten blocks is
dynamically linked to the students’ actions on the blocks, so that when the student
changes the blocks the number displayed is automatically changed as well. This
helps students make sense of their activity and the numbers.

Virtual manipulatives can also connect objects that you make, move, and change
to other representations. For example, students can draw rectangles by hand, but
never go further thinking about them in a mathematical way. In Logo, however,
students direct the movements of an on-screen object (often a “turtle”) with geo-
metric commands such as “FORWARD 100” and “RIGHT 90” (degrees). In so
doing, students must analyze the figure to construct a sequence of commands to
draw a rectangle. So, they have to apply numbers to the measures of the sides and
angles (turns). This helps them become explicitly aware of such characteristics as
“opposite sides equal in length.” The link between the symbols, the actions of the
turtle object, and the figure are direct and immediate (Clements and Battista 1989,
1992; Clements and Meredith 1993; cf. Moyer-Packenham and Westenskow 2013,
“simultaneous linking”).

Is it too restrictive or too hard to have to operate on symbols rather than directly
on the manipulatives? Ironically, less “freedom” might be more helpful. In a study
of place value, one group of students worked with a computer base-ten manipu-
lative. The students could not move the computer blocks directly. Instead, they had
to operate on symbols (Thompson 1992; Thompson and Thompson 1990). Another
group of students used physical base-ten blocks. Although teachers frequently
guided students to see the connection between what they did with the blocks and
what they wrote on paper, the physical blocks group did not feel constrained to
write something that represented what they did with blocks. Instead, they appeared
to look at the two as separate activities. In comparison, the computer group used
symbols more meaningfully, tending to connect them to the base-ten blocks.
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In technology environments such as computer base-tens blocks or computer
programming, students may not be able to overlook the consequences of their
actions because the computer offers immediate direct feedback, whereas such
feedback is absent from most work with physical manipulatives. So, virtual
manipulatives can help students build on their physical experiences, tying them
tightly to symbolic representations. In this way, computers help students link
Sensory-Concrete and abstract knowledge so they can build Integrated-Concrete
knowledge.

Recording and replaying students’ actions. Computers allow us to store more
than static configurations. Once we finish a series of actions, it is often difficult to
reflect on them. But computers have the power to record and replay sequences of
our actions on manipulatives. We can record our actions and later replay, change,
and view them.

As previously mentioned, tablets have opened a new way of interacting with and
using virtual manipulatives. Children of different ages interact with and benefit
from them in different ways (Moyer-Packenham et al. 2015). Research and
development in this area should be supported.

4.6 Final Words: Manipulatives and Integrated-Concrete
Ideas

Manipulatives are meaningful for learning only with respect to learners’ activities
and thinking. Physical and virtual manipulatives can be useful, but will be more so
when used in comprehensive, well planned, instructional settings. Their physicality
is not important—their manipulability and meaningfulness make them education-
ally effective. In addition, some studies suggest that virtual manipulatives can
encourage students to make their knowledge explicit, which helps them build
Integrated-Concrete knowledge. Such knowledge includes both “concrete” and
“abstract” thinking. “A person who has at command both types of thinking is of a
higher order than he who possesses only one” (Dewey 1933). Moreover,
Integrated-Concrete knowledge is the synergistic combination of these types and
should be a main goal of the use of manipulatives.
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Chapter 5
Manipulatives, Diagrams,
and Mathematics: A Framework
for Future Research on Virtual
Manipulatives

Helena P. Osana and Nathalie Duponsel

Abstract Our objective in this chapter is to present a framework that can be used
as a guide for designers of virtual manipulatives and for researchers who study their
effects on student learning in mathematics. Because a significant amount of research
has been devoted to the effects of concrete manipulatives on student learning, the
crux of the framework is based on the existing literature in this area. Specifically,
the framework consists of three interrelated components that align with the research
on students’ learning with external representations: the surface features of the
representations themselves, the pedagogical contexts that support students’ mean-
ing making, and the students’ perceptions and interpretations of the representations.
Where applicable, we integrate the research on virtual manipulatives to support the
validity of the framework itself and its applicability for researchers of virtual
mathematics tools.

Many teachers in elementary grades use concrete objects, or “manipulatives,” in
their classroom to reify concepts that are often difficult for children to grasp. The
goal of using manipulatives is for students to appropriate the mathematical ideas
and actions that are the referents for the objects and their manipulations (Beishuizen
1993; Chao et al. 2000; Clements 1999; Thompson 1994). Some have argued that
when children become proficient in their interactions with objects, they create
mental images of the concepts that the objects are intended to signify (Stigler 1984).
Others, such as Dienes (1963), and more recently English (2004), suggested that by
working with a variety of manipulatives, students abstract their common underlying
conceptual structure. This idea was echoed by Richland et al. (2012), who referred
to analogical reasoning across a number of different mathematical systems.
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A number of different types of concrete manipulatives have been used in
mathematics classrooms for many years for several purposes, and researchers have
examined their effects with students at both elementary and secondary levels (e.g.,
Carbonneau et al. 2013; Fujimura 2001; Gürbüz 2010; McNeil et al. 2009). Often
used in the early grades, for example, are Base ten blocks (Dienes 1963), which are
objects designed to concretely represent groups of ones, tens, hundreds, and
thousands with “units” (individual blocks), “longs” (sticks of 10 units stuck toge-
ther in a rod), “flats” (flat blocks made up of ten longs stuck together), and “blocks”
(10 flats stacked one on top of the other). Other manipulatives, such as colored
chips and Digi-Blocks™ (Corbiere 2003; www.Digi-Block.com), can also be used
to help students gain a conceptual understanding of the mathematical structure of
number and place value. Manipulatives also exist for teaching and learning math-
ematical concepts other than place value. Cuisinaire™ rods, for example, can be
used to highlight concepts behind mathematical properties, such as commutativity
and distributivity. Pattern blocks have been used to explore fractions concepts, and
tangrams to gain conceptual proficiency in transformational geometry.

In recent years, a variety of computer programs and mobile-device applications
have been developed that contain digital objects and tools aimed at improving
children’s mathematics and science learning (e.g., Burns and Hamm 2011;
Moyer-Packenham and Westenskow 2013; Moyer-Packenham et al. 2013, 2015).
Known as “virtual manipulatives,” such digital objects have been described by
Moyer-Packenham and Westenskow (2013) as “movable pictorial representations
in the form of applets…or apps” (p. 35). Many environments that contain virtual
manipulatives allow the user to interact with them in the context of a target
mathematical activity, including representing, estimating, reasoning, problem
solving, and experimenting (see Moyer-Packenham and Westenskow 2013, for a
review). The ultimate goal is to provide the user opportunities for learning math-
ematics, which is an element retained from earlier definitions of virtual manipu-
latives (e.g., Moyer et al. 2002).

Although “many theories have yet to clarify what aspects of manipulative
materials enhance learning” (Namukasa et al. 2009, p. 285), what has emerged from
the research on concrete manipulatives is that children do not spontaneously
appropriate the abstract concepts they are intended to represent, and that simply
interacting with manipulatives will not guarantee learning (Ambrose 2002; Ball
1992; Osana et al. 2013; Uttal et al. 2006). Several accounts of children’s failure to
construct useful meanings of manipulatives exist, and our contention in this chapter
is that these explanations have implications for the design and use of virtual ma-
nipulatives. In some cases, virtual manipulatives are digital replicas of existing
concrete objects (Moyer-Packenham and Westenskow 2013), such as counters and
Base ten blocks; in other cases, no real-world counterparts exist for the virtual
manipulatives because they are designed to capitalize on the affordances unique to
the specific technology (Carpenter 2013; Namukasa et al. 2009). In either case, the
object on the screen is meant to be interpreted in some way or another by the learner,
and we contend that what is known about the conditions that affect students’
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interpretations of concrete objects has useful implications for the design and research
on virtual manipulatives.

Our objective in this chapter is to present a framework that can be used as a
guide for designers of virtual manipulatives and for researchers who study their
effects on student learning in mathematics. Because a significant amount of research
has been devoted to the effects of concrete manipulatives on student learning, the
crux of the framework is based on the existing literature in this area. Where
applicable, we integrate the research on virtual manipulatives to support the validity
of the framework itself and its applicability for researchers of virtual mathematics
tools.

5.1 Manipulatives as Symbols in Mathematics Teaching
and Learning

Concrete manipulatives vary on a number of dimensions, including their physical
features, the concepts they are intended to represent, and the extent to which they
“resemble” the concepts they target (Reys et al. 2014; Richland 2011). Despite the
number of materials available for teachers of mathematics and the variety in their
features, it is becoming increasingly clear that the use of manipulatives is beneficial
to the extent that students make clear associations between the objects themselves
and the mathematical concepts they are intended to represent (English 2004;
Hiebert and Wearne 1992; Sarama and Clements 2009). More specifically, students
must acquire what DeLoache et al. (1997) and Uttal et al. (2006) called dual
representation, namely the understanding that manipulatives are more than objects
with their own physical and perceptual features—they also represent something
more abstract, such as quantities and the relationships among them. In this sense,
therefore, manipulatives can be considered symbols in that they are concrete
instantiations of targeted abstractions in mathematics (Goldin 1998; Nührenbörger
and Steinbring 2008; Pimm 1995; Uttal et al. 2006). English (2004) maintained that
at the heart of mathematical reasoning is the ability to perceive the structural
relationships in the attributes of external representations and to make “mappings” to
the abstract concepts they signify.

One way to conceptualize the representational role of manipulatives, and dual
representation in particular, is through the lens of children’s symbolic development.
In their now seminal work on the development of symbolization, DeLoache and
colleagues (DeLoache 1987, 1989, 1995; DeLoache and Sharon 2005; Marzolf and
DeLoache 1994) demonstrated that children’s ability to view objects as symbols
undergoes a shift between the ages of two and a half and three years old. In a
well-known study, DeLoache (1987) introduced 2½- and 3-year-old children to a
room, complete with items and pieces of furniture, and a scale model of the room
that was identical in every way except size. She found that compared to the younger
children, the 3-year-olds were able to use the scale model as a symbol that referred
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to where a toy was hidden in the actual room. The children’s dual representation
assisted them to view the scale model as more than an object in its own right, but
also one that represented something else (in this case, the actual room; DeLoache
et al. 1997).

The notion of dual representation, although not typically referred to as such, has
been cited as a central explanation for children’s disconnected understanding of
school mathematics as well (e.g., Richland 2011; Richland et al. 2012; Uttal et al.
2006). Resnick and Omanson (1987), for example, observed that children could
operate with Base ten blocks quite independently of the quantitative concepts they
targeted, using them procedurally without attaching meaning to the objects or
understanding what their actions meant (observed more recently by Kamii et al.
2001; Puchner et al. 2008). In his theory of symbolic competence in mathematics,
Hiebert (1992) proposed that children must construct meaningful and appropriate
connections between symbols and their referents and come to understand how the
referents support the actions performed on the symbols (e.g., algorithms). If the
student fails to make a meaningful association between the symbol (e.g., “2/3”) and
its referent (e.g., a conceptual understanding of two-thirds as a quantity), the learning
that occurs in the symbolic world stays detached from any concepts or experience
that would give it meaning (see also Osana and Pitsolantis 2013). Thus, the
appropriate use of manipulatives entails a shift from the object itself to seeing
beyond the symbol to its referent (Uttal et al. 2006).

The framework for the design and study of virtual manipulatives we present in
this chapter is based on three factors currently known to impact children’s ability to
view concrete objects as entities in their own right and as objects that “stand for”
intended conceptual referents. More specifically, the components of the framework
are (a) the perceptual features of manipulatives, (b) different types of pedagogical
support, and (c) students’ own interpretations of the manipulatives themselves.
Despite the observation that teachers often seek out “fun” and attractive manipu-
latives on the assumption that these will keep students motivated (Moyer 2001;
Uttal et al. 1997), we will show that perceptually rich manipulatives can, in fact,
detract from the intended target concepts. Furthermore, there is evidence that
teachers often do not pay enough instructional attention to the conceptual corre-
spondences between manipulatives and their referents because the relations are
obvious to them (Goswami 2004), although they are often not obvious to children.
The relationship between a manipulative and its intended quantitative referent often
does not occur to children automatically and is likely to remain obscure without
appropriate intervention. Finally, we will review evidence that shows that children’s
own interpretations of manipulatives are predictive of the ways they are used and
the mathematics that is learned.

The research presented in the chapter, while not exhaustive, will focus on critical
aspects of knowledge representation (e.g., Markman 1999) as opposed to compo-
nents of the information processing system, such as selection, attention, working
memory, and long-term memory (e.g., Mayer 2011; Sweller et al. 1998). To
varying degrees, we focus our analysis on the following elements of knowledge
representation: (a) the “represented world” (Palmer 1978), which in the context of
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mathematics learning is often conceptualized as the target learning objective; (b) the
“representing world” (Palmer 1978), such as manipulatives and images; (c) corre-
spondences between the two systems (Gentner and Colhoun 2010), or “representing
rules” (Markman 1999); and (d) the individual (in our case, the child or student),
who engages in the process of creating a representation, by, for example, making
mappings between the represented and the representing worlds (Gentner and
Colhoun 2010). While Mayer’s (2011) cognitive theory of multimedia learning can
explain learning with the use of manipulatives, and is not incompatible with the
representational lens we use here, our attention is focused on the individual’s
representation as the inputs to a cognitive system rather than the manipulatives and
images per se (Ainsworth 2006).

In sum, there is a general consensus in both the educational psychology and
mathematics education communities that concrete manipulatives are intended to be
symbolic representations of abstract ideas or principles, and that certain conditions
must be in place for students to appropriate the concepts that are targeted. Because
mathematical proficiency, including conceptual understanding and mathematical
reasoning, is ultimately the end goal for students who work with any type of tool—
concrete and virtual manipulatives alike (e.g., Carbonneau et al. 2013; Ginsburg
et al. 2013; Ladel and Kortenkamp 2013; Moyer et al. 2002; Martin and Schwartz
2005; Moyer-Packenham and Westenskow 2013; Segal et al. 2014; Tucker et al.
2014)—we argue that there is ample rationale for connecting the research on
concrete manipulatives to the study of virtual ones. Given that many virtual
manipulatives often appear to the student as two-dimensional images on the screen,
we will also review some of the research on students’ representations of diagrams in
mathematics and science in support of the framework.

5.2 A Framework for Future Research on Virtual
Manipulatives

The framework is depicted in Fig. 5.1. Its three primary components align with
factors predictive of students’ acquisition of dual representation and learning in
mathematics: (a) characteristics of the representation itself; (b) the nature of the
pedagogical support on the connection between the representation and its referent;
and (c) students’ knowledge and cognitions, including students’ perceptions about
objects and diagrams. The three components influence each other: External factors
related to the representation itself and the types of pedagogical supports present in
the learning environment exist in a bidirectional relationship with students’ inter-
pretations of the manipulatives, all of which together influences student learning.
Each component is discussed in turn, with parallel discussions to integrate existing
findings on virtual manipulatives and other digital environments.
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5.2.1 Surface Features of Representations

Recently, researchers have focused on the ways perceptual features of representa-
tions impact students’ ability to “see through” (Callanan et al. 2002; DeLoache
2000) to their associated referents. Evidence suggests that representations with
salient superficial features, such as those designed to resemble real-world objects
(e.g., pizza manipulatives when teaching fractions), can actually distract the student
from seeing the abstract referent the object is intended to signify (Gravemeijer
2002; Uttal et al. 1997). Uttal et al. (2009) explained that children have more
difficulty creating dual representation for such realistic objects: They are attracted to
the color or shape of, say, pizza slices, which then reduces the likelihood that the
objects are seen as symbols representing concepts related to fractions.

The negative effects of salience (defined as an object’s “transparency” as a
representation; Callanan et al. 2002) on the ability to use objects as symbols appear
early in life. When DeLoache (2000) allowed 3-year-old children to play with the
scale model, they were less likely to use it as a symbol to find a hidden object in the
actual room. She concluded that when the children played with the scale model,
they interacted with it in such a way that its perceptual features were highlighted,
which decreased their attention to what the object represented. When the model was
placed behind a transparent barrier, however, preventing a group of 2.5-year-old
children from physically interacting with it, their ability to use the model as a
symbol for the actual room increased. Consistent with Uttal et al. (2009), DeLoache
interpreted these findings to mean that increasing an object’s salience reduces its
representational status.

Along the same lines, Gelman et al. (2005) examined the types of conversations
mothers had with their 2- to 3-year-old children about photographs and concrete
objects (e.g., toys in the shape of fruits, miniature toy animals). The authors found
that both children and mothers talked more often about the photographs as general

Fig. 5.1 Framework for
research on virtual
manipulatives
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kinds (e.g., they spoke about the objects as general categories, such as elephants in
general) and more often about the concrete objects as individual things in a category
(e.g., this particular elephant looks like Babar). In a second study, the authors
placed the objects behind a glass case, thereby reducing their salience. With the
objects behind the case, the participants made more “kind” type utterances (though
still less so than when talking about the photographs) than they did with the same
objects that could be manipulated in the first study. The authors explained their
findings using the dual representation hypothesis: When the objects were encased,
the participants were not drawn to their perceptual features and could more easily
treat them as kinds and not as individuals of a kind.

The effects of the perceptual features of representations have been seen, albeit
less consistently, in the mathematics context as well. For example, McNeil et al.
(2009) found that fourth- and sixth-graders who used perceptually rich money
manipulatives were less accurate in their problem solutions than those who used
bland money manipulatives, but at the same time, produced fewer conceptual
errors. Thus, it appears that perceptually rich manipulatives can, on one level,
reduce students’ ability to acquire dual representation—that is, their ability to see
beyond the manipulative to the concepts they symbolize. On another level, how-
ever, there appear to be factors that moderate the effects of salience. In this par-
ticular study, the participants may have benefited from the activation of prior
knowledge from the perceptually rich manipulatives to the extent that they could
apply more conceptually sound strategies than those students who used the bland
manipulatives.

Indeed, in a subsequent study, Petersen and McNeil (2013) found that the effects
of the manipulatives’ perceptual richness interacted with established prior knowl-
edge. More specifically, preschoolers’ performance on counting tasks using con-
crete counters that were colorful and attractive (i.e., rich in salience) was higher
than the performance of children who used bland manipulatives, but only when the
objects were unfamiliar to them (e.g., miniature pinwheels, colored plastic chips).
In contrast, when the manipulatives were attractive and when they aligned with the
children’s prior knowledge (e.g., colorful toy strawberries or giraffes), they were
less likely to think about their quantitative referents and were distracted by the
objects’ known purpose. Thus, it is clear that the perceptual richness of manipu-
latives has an effect on children’s ability to see them as symbols of mathematical
ideas, but there are moderating factors, such as prior knowledge, that are not yet
well understood. Additionally, several questions remain about the types of math-
ematical thinking that are impacted by the physical characteristics of the manipu-
latives, which open up several avenues for future research.

In the world of virtual manipulatives, colorful and perceptually attractive rep-
resentations are commonplace (see Carpenter 2013; Ginsburg et al. 2013). We
conducted an informal review of educational iPad apps that incorporated the
number line to teach some aspect of elementary mathematics. In the first 40 apps
that appeared in our initial search, we found that 31 (77.5%) incorporated attractive
perceptual features, often on the number line itself. The studies we reviewed above
on children’s responses to perceptually attractive manipulatives suggest, however,
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that it is important for developers of virtual manipulatives to attend to the digital
representations themselves, but this design principle is often ignored. An object’s
superficial features, such as its color and other physical attributes, can draw stu-
dents’ attention away from the underlying idea that it is intended to target.
Mirroring the research in children’s cognitive development, Ladel and Kortenkamp
(2013) presented a theoretical analysis of multi-touch tools in the context of early
mathematics learning and argued that the features of the representation itself will
govern how children interpret and use it (see also Hiebert et al. 1997).

Some empirical evidence on the perceptual features of computerized objects has
recently emerged to support Ladel and Kortenkamp’s (2013) analysis. Kaminski
et al. (2009), for example, demonstrated that attractive, perceptually rich objects
that appear in a computerized environment could also distract the learner from
inducing target concepts. More specifically, the authors found that concrete rep-
resentations on a computer screen (e.g., perceptually rich instantiations of elements
in a mathematical system, such as pitchers of water and pizzas) hindered
the learning of a mathematical rule when compared to isomorphic generic instan-
tiations of the same rule. They concluded that perceptually rich features of repre-
sentations interfere with students’ internalization of the target mathematical
structure.

Also in a computerized environment, Goldstone and Sakamoto (2003) again
demonstrated that a representation’s perceptual features can have an effect on
learning and transfer, and moreover, that this effect is moderated by learners’ prior
knowledge. The researchers tested the effects of varying the level of similarity (i.e.,
the degree to which a representation resembles its referent; Gentner and Markman
1997; Richland et al. 2006) of the visual displays used in computer simulations.
One group of participants explored the basic governing rules of a scientific principle
known as competitive specialization by interacting with a computer simulation of
ants (i.e., moving drawings of ants) seeking out food (i.e., drawings of fruit).
Another group of participants explored an identical simulation, but with abstract
representations of the ants and food (e.g., dots and blobs, respectively).

The authors found a relationship between level of similarity and participants’
performance on a learning task that assessed their knowledge of the underlying
scientific principles that governed the simulation. An overall analysis revealed that,
relative to those who had interacted with the abstract representations, those who had
explored the “similar” representations—those that looked like ants and food—were
at an advantage on the learning task. In contrast, those same participants were
hindered on a subsequent transfer task. A different picture emerged, however, when
the participants were separated into groups according to their performance on the
learning task: The authors found that similarity hindered transfer for the poor
performers, but not for the high performers. In sum, these studies reveal that the
deleterious effects of superficial features of virtual representations appear to be
similar to those found in concrete environments, and that such effects are likely
moderated by factors related to the learner herself, such as initial knowledge.
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5.2.2 Pedagogical Support

The role of the social context and the nature of external support as factors in
children’s learning and development has been well documented (e.g., Callanan
et al. 2002; DeLoache 1995; Gelman et al. 2005; Hiebert and Grouws 2007; Osana
and Pitsolantis 2013; Osana et al. 2013; Rogoff 1990; Sarama and Clements 2002).
With respect to the development of children’s symbolization specifically, similar
patterns emerge. For example, young children are better able to use symbols when
they are given explicit explanations about the relations between the objects and
their referents (e.g., DeLoache 1989). Children as young as 3 years can use con-
crete objects as symbols, but their performance is enhanced after having received
explanations on how they relate to their referents (DeLoache et al. 1999). The
research in analogical reasoning has established that explicit instruction on the
relationships between source and target analogs greatly augments the likelihood that
the common underlying conceptual structure will be abstracted and transferred
(Gentner and Colhoun 2010; Gentner et al. 2003; Gick and Holyoak 1983;
Goldstone and Day 2012; Perkins and Salomon 2012; Richland et al. 2012).

In mathematics, the level of instructional guidance that is needed for students to
use manipulatives and other representations in meaningful ways is considerably less
clear. One perspective on the role of pedagogical support is that explicit instruction
on the relations between concrete objects and their referents is effective, even
required (Goswami 2004; Sarama and Clements 2009; Uttal et al. 2006). In our own
work with first-graders, we came to a similar conclusion (Osana et al. 2013;
Przednowek et al. 2013). We introduced first-graders to colored plastic chips in
three different ways: One group of students were explicitly told that a blue chip
represented the quantity “1” and a red chip “10” (quantitative condition); a second
group encoded the chips in non-quantitative ways by using them as game pieces in
a board game (non-quantitative condition); and a third group encoded the chips in
any way they wished in a free play setting (play condition). A control group was not
introduced to the chips at all. We found that those who were explicitly told the
quantitative representations of the chips were better able to use them as symbols for
the intended quantities than the students in the other three conditions.

More importantly, even after a quantitative activity using the blue chips as one
and the red chips as ten, the students who received explanations on the chips’
quantitative meanings were at an advantage compared to the other groups on
various dual representation tasks. Those who played with the chips initially were no
better at appropriating their quantitative meaning than the control group, who were
not exposed at all to the chips before the quantitative activity. In fact, when asked to
show how to represent certain quantities with the chips, students in the play con-
dition used the chips to physically draw out the numerals involved in the task rather
than represent the quantity (see Fig. 5.2). These data illustrate how children can
operate with manipulatives in ways that are seemingly entirely divorced from their
quantitative meaning (see Hughes 1986), but they also underscore the importance
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of at least some level of instructional guidance on the conceptual referents targeted
by the concrete objects.

In another study from our lab (Adrien et al. 2015), we presented two different
representations of quantities to second-graders: Base ten blocks and written nota-
tion. Children were asked to solve a number of multi-digit addition problems using
the two representations in small groups in their classrooms. We varied the
sequencing of the representations: In the manipulatives first condition, the students
solved ten problems with manipulatives and then ten isomorphic problems
with written symbols. In the symbols condition, the sets of problems were reversed.

What would 17 look like?

Quantitative Condition Play Condition

What would 8 look like?

Quantitative Condition Play Condition

Fig. 5.2 Data from Przednowek et al. (2013) illustrating children’s uses of concrete manipulatives
in quantitative and non-quantitative ways
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In the iterative condition, the students solved problems using the representations in
alternating order. We also manipulated the presence of explicit explanations on the
relationships between the two representations: Half of the students in each of the
sequence conditions received explanations and the other half did not.

The data revealed that, regardless of representation sequence, those students who
received direct instruction on the relationship between the concrete and written
representations were better able to show their conceptual knowledge on measures
assessing regrouping knowledge. In the case of place value knowledge, however,
sequence had an effect (both manipulatives-first and symbols-first conditions
improved significantly from pretest to posttest, whereas the iterative sequence did
not), but explanation was a moderating variable on sequencing. Explicit explana-
tions resulted in improved place value knowledge, but only for students in the
symbols-first condition; students in the manipulatives-first condition improved
without explicit explanations, and those in the iterative group did not improve
regardless of whether explanations were provided (see Fyfe et al. 2014, for a
theoretical account of this finding). Together, these results reveal the benefits of
explicit instruction on the meaning of the concrete materials, but also that other
aspects of the learning environment, such as representation sequencing, have a role
to play in students’ learning with different mathematical representations.

In many environments that contain virtual manipulatives, a number of different
representations, such as static and moving pictures of real-world objects,
micro-world simulations, and interactive tools, are presented simultaneously on the
screen (Namukasa et al. 2009). Several researchers have argued that one of the
benefits of the virtual environment is that more than one representation can be placed
on the same screen at the same time, and that the technology allows for students to
see in real time the results of interacting with one on the other (Clements 1999;
Namukasa et al. 2009; Sedig and Liang 2006; Suh and Moyer 2007). The
assumption underlying this argument is that such affordances would allow students
to make the connections between representations on their own, resulting in the
abstraction of the underlying conceptual structure. In one study, Suh and Moyer
(2007) allowed third-grade students to work with either virtual manipulatives or
concrete manipulatives to promote relational thinking. In both virtual and physical
environments, the children used several different representations, such as pictures,
virtual manipulatives, and symbolic notation, in the context of solving simple linear
equations. Students in both environments demonstrated large gains in performance
on algebra problems after working with the manipulatives, both concrete and virtual.
Suh and Moyer concluded that the exposure to multiple representations in each
environment promoted students’ representational fluency, which then contributed to
the development of their relational thinking.

Our own research with concrete manipulatives, as well as a number of studies in
analogical reasoning (Gentner and Colhoun 2010; Goswami 2004; Richland et al.
2012), would indicate, however, that children will not necessarily make the required
connections spontaneously. Indeed, Quintana et al. (2004) argued that specific
forms of scaffolding are needed to support students’ scientific reasoning and pro-
posed a number of “scaffolding guidelines” for the design of science inquiry
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software tools. Their guidelines are prompted by extensive research in educational
and cognitive psychology on the benefits of scaffolded learning (e.g.,
Bransford et al. 2000) as well as previous work on the types of software supports
that can be offered to the learner (Bell and Davis 2000; Toth et al. 2002). Yet, little
is understood about the types of scaffolds required for learning with virtual
manipulatives (Carpenter 2013), and as such, we argue for greater research attention
on the types of pedagogical supports needed for students to make sense of the
virtual worlds in which they operate.

A contrasting perspective on the role of pedagogical supports on children’s
learning with manipulatives emanates from those who caution against too much
prescription in instruction. Gravemeijer (2002) maintained that children need to
actively construct their own meaning of manipulatives through exploration and
physical interaction (see also Martin 2009). He cautioned that when students are
given prescriptions for how to use manipulatives, their use of the objects can be-
come highly mechanical, which is not conducive to mathematical understanding.
Martin and Schwartz (2005) provided evidence to show that children make sense of
mathematical concepts by physically interacting with manipulatives in the context
of problem solving, but acting on objects is not sufficient for learning. The authors
found that students’ physical actions with manipulatives “co-evolve” with their
ideas about what the objects represent and what the actions mean. In particular,
acting on objects constrains the ideas that are generated from those actions; in turn,
the resulting ideas constrain subsequent actions, influencing learning in a
“hand-over-hand” fashion (see also Rittle-Johnson and Alibali 1999; Rittle-Johnson
and Koedinger 2009). By solving multiple problems, children eventually construct
“action-interpretation sequences,” which allow for the abstraction of key mathe-
matical concepts and ultimately transfer.

A parallel line of research highlighting the relationship between action and
thought is emerging in the context of virtual environments as well (see Chap. 3, this
volume). For instance, the important role of embodied cognition—ways in which
bodily perceptions and actions can affect thought (Glenberg et al. 2007; Wilson
2002)—has been demonstrated in virtual environments as well. For example, Segal
et al. (2014) compared the effects of congruent and incongruent actions with
computerized objects, either through a mouse or a touch screen device, on first- and
second-grade students’ estimation and addition performance. Children made fewer
errors on the addition and estimation tasks when the actions built into the tool’s
design were congruent with adding (i.e., discrete counting actions) and estimating
(i.e., smooth sweeps) than when they were incongruent with them. Segal et al.
concluded that interfaces that require the learner to use actions that are congruent
with thought are desirable, and can even take the place of explicit instruction.

Visual cues in concrete learning environments may also act as pedagogical
supports for students making connections to appropriate mathematical concepts. In
a pilot study, we presented undergraduates with “bar diagrams,” models that have
been used as visual tools to help students perceive the structure of mathematical
word problems (Englard 2010; Ng and Lee 2009; Parker and Baldridge 2008). We
presented undergraduates with a series of mock textbook pages (see Fig. 5.3) that
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had three components to them: a visual cue (an image at the top-left corner of the
page), textual cues (e.g., “as many as” or “fewer”), and a set of unlabeled bar
diagrams. The visual cues were, in one condition, geometric shapes, some of which
were similar to the bar diagrams themselves; in a second condition, a brick wall,
intended to act as a real-world referent for the diagrams; and in a third condition, a
sack of marbles, intended as a quantitative referent. An arrow pointed to the bar

Fig. 5.3 Mock textbook pages with visual cues: Geometric shapes (top-left); bricks (top-right);
marbles (bottom)
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diagrams on the page, and the participants were asked to write responses to the
questions, “What are these?” and “Why do you think they are here?” The design of
the materials allowed us to observe the effects of the visual and textual cues on the
participants’ ability to perceive the bar diagrams as representations of quantity.

Preliminary analyses indicate that the visual cues (shapes, bricks, marbles) had
an effect on the acquisition of dual representation. The majority of students who
were presented with a mock textbook page with the shapes (60 %) or the bricks
(67 %) perceived the bar diagrams as representations (e.g., “bricks” or “quantities
in a ratio”). In contrast, three quarters of the students who were presented with the
marbles did not perceive the bar diagrams as symbols at any point (e.g., “boxes to
put the answer in” or “further instructions for the exercise”). We speculate that for
the students in both the shapes and the bricks condition, the perceptual similarity of
the visual cues and the bar diagrams triggered the students’ interpretations of the
diagrams as representational. The bricks may have cued real-world knowledge, and
the shapes may have cued “this is about math,” both of which triggered the par-
ticipants’ representational insight (i.e., “the realization of the existence of a
symbol-referent relation,” DeLoache 1995, p. 110). The marbles, on the other hand,
had no superficial features in common with the bar diagrams, and as such, par-
ticipants were less likely to see the diagrams’ representational role. We find the
differences between conditions particularly striking given that all participants were
exposed to textual cues related to mathematics on the textbook page. In sum,
although our data are limited because of the small number of participants in each
condition, visual cues in the learning environment appear to impact students’
perceptions of symbols in important ways.

To summarize, while the research is as yet inconclusive on the appropriate levels
of instructional support for the development of students’ dual representation of
concrete manipulatives, most researchers, even those who study the effects of
virtual manipulatives, would agree that students need to make the cognitive con-
nection between a representation and its conceptual referent (Clements 1999;
Moyer-Packenham et al. 2013; Namukasa et al. 2009; Suh and Moyer 2007). To
our knowledge, however, little is known about supporting students’ efforts to make
such connections in virtual environments. Several discussions exist in the literature
on the nature and effects of feedback in computerized environments, but they often
focus on assisting the user to complete a given task successfully (Carpenter 2013;
Rick 2012; Sedig and Liang 2006) rather than on ways to support students’ con-
structions of the object’s meaning. With respect to virtual manipulatives, then,
effective ways to support students’ interpretations of the representations themselves
remain untested.

Likewise, little research has examined the effects of visual cues in virtual
environments on students’ learning and cognition. In fact, as described above,
Namukasa et al. argued that one of the advantages of virtual manipulatives over
concrete ones is that multiple representations can be presented simultaneously on
one screen, which is assumed to make the link between them explicit. Based on our
research, we argue, however, that there are conditions that would make simulta-
neous representations more effective than others and that more research is needed
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on ways to design virtual environments so that the visual cues constrain and direct
the learner’s interpretations in targeted ways.

5.2.3 Students’ Perceptions and Interpretations

To this point, we have seen that students’ prior knowledge impacts the learning that
arises from interactions with external representations (e.g., Goldstone and
Sakamoto 2003; Osana et al. 2013; Petersen and McNeil 2013). It seems therefore
reasonable to hypothesize that the effects of manipulative use is not only dependent
on external factors, such as the characteristics of the object itself or the pedagogical
support offered, but are also contingent on students’ cognitions, including the
interpretations they themselves create of the representations in question. Sarama
and Clements (2009) further argued that the appropriate use of manipulatives and
subsequent learning are contingent on the nature of the meanings students construct
of the objects: Whether they are concrete or virtual, “manipulatives are meaningful
for learning only with respect to learners’ activities and thinking” (italics in orig-
inal, p. 148).

A detailed depiction of the role of meaning making as students work with new
mathematical ideas and representations is presented by Carraher and Schliemann
(2002). In their study, two fifth-grade students worked with visual representations
on a computer screen to explore ideas related to integer arithmetic. The authors
concluded that students do not take a “monolithic” piece of knowledge learned in
one previous experience and bring it over intact to solve a new problem (i.e., in
their view, an antiquated conception of transfer; see Singley and Anderson 1989);
instead, the students in their study engaged actively in accommodating their
knowledge to the demands of a new situation, which involved continually revising
their interpretations of the representations used. Indeed, as suggested by
Dufour-Janvier et al. (1987), “representations will be useful to the child to the
extent that they have been ‘grasped’ by him” (p. 116).

Simply put, ways in which children invoke their previous knowledge and
experiences to make sense of unfamiliar representations are important factors to
consider when investigating the meanings that children construct (Martin and
Schwartz 2005). Uttal and O’Doherty (2008) argued that regardless of the type of
representation—concrete, pictorial, or virtual—the relationship between students’
initial and developing interpretations and the acquisition of dual representation is
not well understood. With respect to concrete manipulatives in particular, important
questions also remain, including the nature of students’ initial interpretations of
manipulatives; the ways in which their interpretations develop through interaction,
reflection, and instruction; and how prior interpretations may affect the development
of dual representation, learning, and transfer over time.

Some of our own data provide a window on the initial perceptions of concrete
objects held by young children and adults. In one of our studies led by Nicole
Pitsolantis (Osana and Pitsolantis 2015), a doctoral student in our research
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laboratory, we examined the effects of different levels of scaffolding on
Kindergarteners’ dual representation of Base ten blocks. As the students’ teacher,
Nicole purposely designed her teaching for the year so that students had no prior
exposure to the Base ten blocks at the beginning of the study. She delivered six
lessons to 25 students in two classrooms on various aspects of the blocks, including
their quantitative referents, how to count with them, and how to use the blocks to
display given quantities. After each lesson, we individually interviewed 12 students
on their dual representation of the blocks using tasks we developed in previous
studies (Osana et al. 2014). The goal of the study was to examine the point at which
the students acquired dual representation as a function of the scaffolds provided in
each lesson and their incoming number knowledge.

Before the lessons began, we individually interviewed 23 of the 25 students in
both classrooms about their initial perceptions of the blocks. Specifically, we
asked the students “What are these?” and “What do you think they are used for?”
A majority of the students (19 students or 83 %) indicated that the blocks were
objects with which to build things, such as castles, graveyards, and televisions.
A considerably smaller proportion (5 students or 22 %) indicated that the blocks
could be used to perform some sort of mathematical activity, such as counting or
measuring, but none of these students saw them exclusively as mathematical
tools—in other words, all five students also invoked non-quantitative aspects of
the manipulatives in their responses. Three of the five students who invoked
mathematical uses for the blocks referred to them as measurement tools, which
likely stemmed from previous experiences in their classroom measuring objects
with arbitrary units.

Two important conclusions can be drawn from these preliminary data. First, all
but two students ascribed some meaning to the blocks, which were all based on
their previous experiences—either play-based or mathematical. This underscores
their efforts to make sense of unfamiliar objects using their prior knowledge, and is
important because their understandings are likely to evolve as a function of such
initial perceptions (Carraher and Schliemann 2002). In the study with first graders
described above (Osana et al. 2013), we demonstrated that students’ initial per-
ceptions of the manipulatives impacted the subsequent development of their dual
representation. Not surprisingly, the students who were encouraged to play with the
chips perceived them as toys “to make stuff with.” More importantly, however,
compared to students in the quantitative group, who were explicitly told the
intended quantitative referents of the chips, the students who interpreted the chips
as toys did not develop dual representation, even after engaging in a quantitative
task that used the manipulatives as ones and tens. Their perceptions of the objects as
toys appeared to have prevented their ability to subsequently see them as repre-
senting quantities, which points to the importance of children’s initial and evolving
interpretations of manipulatives.

Another important conclusion that we draw from the Osana and Pitsolantis
(2015) data is that although a small number of children indicated that the blocks
could be used as tools in a mathematical activity, none of them alluded to their role
as symbols of quantity or even symbols at all. This suggests that, at least with
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respect to manipulatives in mathematics, children tend to see them as objects to play
with, and their representational role is not invoked spontaneously. Seeing mathe-
matical manipulatives as “standing for” quantities (in this case) appears to be
contingent on some type of instructional support, whether in the form of explicit
instruction, scaffolding from a more knowledgeable peer, or task design. Indeed,
our preliminary analyses of the development of the Kindergarteners’ dual repre-
sentation appear to bear this out. This conclusion is summarized well by Carraher
and Schliemann (2002) when they stated, “…there is no reason to expect that …
students will understand the concepts [represented by external representations]
merely by inspecting the diagrams and notation” (p. 6). As noted above, however,
the appropriate type and amount of support remains an open question.

In another study from our research laboratory, this time with preservice teachers
in an elementary mathematics methods course, we obtained similar results. In a
project led by Danielle Houstoun, we showed undergraduates how to solve prob-
lems with bar diagrams in three instructional sessions and then gave them practice
problems after each session. We were interested in students’ interpretations of the
bar diagrams, their ability to use them, and their problem solving performance as a
function of whether or not explicit explanations on the bar diagrams’ quantitative
meaning were provided (links condition vs. no links condition).

Before the instruction, fewer than 20 % of all participants indicated that the
diagrams represented quantities or amounts. In much the same way as the
Kindergarteners’ in Pitsolantis’ classroom, the bar diagrams were rarely associated
with mathematics, and this despite the fact that the participants were enrolled in a
mathematics methods course and that they had solved word problems on a pretest
immediately before their perceptions were elicited. How the data are distinct from
the Kindergarten study, however, is that the preservice teachers were clearly aware
of the representational role of the diagrams: Three-quarters of them attached
real-world referents to the bar diagrams that matched their perceptual features (e.g.,
patches of grass, train cars). Having acquired a certain amount of
“meta-representational competence” (diSessa 2004; diSessa and Sherin 2000) or
“symbolic sensitivity” (DeLoache 1995), adults are typically more aware of the
representational purposes of diagrams than children. Furthermore, the presence of
explicit links between the bar diagrams and their conceptual referents during
instruction resulted in a considerable shift in the preservice teachers’ perceptions.
After instruction, almost 80 % of the participants in the links condition ascribed
quantitative referents to the bar diagrams and only 14 % in the no links condition
did so, even though the same bar diagrams and problem solving tasks were used in
both conditions.

What Houstoun’s study suggests is that a potential factor in the construction of
meaningful interpretations is the degree of symbolic awareness that the student
brings to bear on the task. There may be a developmental shift in such metarep-
resentational skill (diSessa 2004), but more research is needed to support such a
contention. More specifically related to mathematics learning, however, the studies
from our lab also show that even for adults, quantitative interpretations for symbols
are not generated spontaneously; in fact, the undergraduates benefited from explicit
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instruction on the associations between the diagrams and their conceptual referents
to construct interpretations that aligned with the target mathematical activity. We
conclude by highlighting the importance of taking students’ interpretations of
manipulatives into account in the context of mathematics learning.

It should be evident from our discussion in this section that we conceive of
students’ perceptions of manipulatives as a cognitive construct, one that is akin to
the mental representations they construct of the objects. From this perspective, we
know of no research that examines the various types of representations students
construct of virtual manipulatives. Numerous investigations exist that document the
affective component of students’ perceptions, such as their acceptance of the
technology (Ozel et al. 2014) and their perceptions of the usefulness of the ma-
nipulatives (Lee and Yuan 2010). Thus, because of the paucity of work on students’
cognitions about virtual manipulatives themselves, it features prominently in our
recommendations for future research in this area.

5.3 A Research Agenda for Virtual Manipulatives

The use of concrete manipulatives in mathematics has a long history (Kim and
Albert 2014). Early research on their effects focused on examining outcomes of use
relative to no use (e.g., Raphael and Wahlstrom 1989; Suydam 1986), but such
comparisons have not provided definitive answers on whether or not manipulatives
should be used in mathematics classrooms (Carbonneau et al. 2013). Because the
research is inconclusive, recent attention has turned instead to the conditions under
which they are effective in students’ learning. What has emerged from this shift in
focus is widespread agreement that the mere presence of concrete objects does not
guarantee learning (Ball 1992; Uttal 2003), and the same is apparent for other
symbolic representations in mathematics, such as diagrams and formal symbols,
such as “>” and “=” (Carraher and Schliemann 2002; Dufour-Janvier et al. 1987;
Sherman and Bisanz 2009). The use of manipulatives in the mathematics classroom
can have clear benefits for student learning, and the research points to the condi-
tions that are necessary for such success.

In this chapter, we reviewed what is currently known about how concrete
manipulatives and two-dimensional visualizations can support students’ internal-
izations of intended mathematical concepts. A review of existing research brought
several themes to the fore, which we used in constructing a framework for future
research on students’ learning of mathematics with virtual manipulatives. The
framework consists of three components: (a) the characteristics of the representation
itself, (b) the amount and type of pedagogical support that is present in the learning
environment, and (c) the types of interpretations and conceptions students hold of
the manipulatives and diagrams.

One way the research on concrete and two-dimensional representations is rele-
vant to virtual manipulatives is for the design of the computer images themselves.
To the extent that the computer environment is designed to augment learning in
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mathematics, the image on the screen is meant to stand for a concept in the “rep-
resented world.” Circles on a place value chart app, rectangular bars in a problem
solving app, and computerized length models to represent quantities on a real
number line are all entities in the “representing world” that are intended to signify
target concepts in mathematics. As such, the research suggests that such virtual
objects be stripped of as many extraneous superficial features as possible so that
students’ attention is focused on the mathematics the objects are designed to sig-
nify. Indeed, some research on computerized images can attest to the soundness of
this recommendation (e.g., Goldstone and Sakamoto 2003; Kaminski et al. 2009),
but more investigations are needed, particularly because the vast majority of virtual
manipulatives are designed specifically to be visually appealing to the user
(Ginsburg et al. 2013).

Further, the nature of the pedagogical support provided to the student, whether in
the form of explicit explanations, visual cues, or other scaffolds, is an overarching
theme in the research on concrete manipulatives. In virtual environments, parallels
have been found. Supports in the form of representational sequence (Goldstone and
Son 2005) and “concrete” scaffolds (Sedig et al. 2001) have been shown to have
positive influences on students’ ability to make sense of the objects and actions on
the screen. Aside from research on how to embed virtual manipulatives in intelli-
gent tutoring systems, more research is needed on how the design of a virtual
environment can take the place of a human being, such as a teacher, who can
provide useful scaffolds to the student who is learning about the correspondences
between the manipulative and its referent.

Little work has been conducted on students’ initial and developing perceptions
of concrete manipulatives, and even less so of virtual manipulatives, which leaves
considerable room for future research. For any representation, virtual or not, there is
nothing inherent in the manipulative or image that makes it a symbol for a math-
ematical concept; there are any number of aspects belonging to the manipulative
(e.g., color, shininess, weight) that could signify something entirely different, such
as the temperature of the coffee in a mug. In fact, the features of the manipulative
are likely to govern how students construct their initial representations of the object,
which in turn impacts how such representations are processed during mathematics
learning. Some open-ended interview data from Goldstone and Sakamoto (2003)
appear to support this contention in a computerized environment. When asked to
explain the ants’ behavior after they had explored the simulation, the participants
who had explored the concrete instantiations placed anthropocentric interpretations
on the ants that did not correspond to the rules of the system (e.g., “scaring other
ants away,” “getting tired,” p. 453). The authors used the participants’ perceptions
of the ants to account, in part, for their inability to transfer the rules to another
context.

What also lies ahead in terms of research are ways in which the three compo-
nents of the framework interact to produce student learning in mathematics, both in
virtual environments and in “real” ones. Virtual environments are not identical to
concrete ones, however, and aspects related to the system’s design and rules that
govern them must be taken into account. For instance, investigations should address
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how the characteristics of a virtual manipulative interact with types and levels of
scaffolds in a system’s design (e.g., Quintana et al. 2004); how the superficial
features of a virtual manipulative influence the interpretations made by learners,
how those interpretations develop over time, and how they impact subsequent
learning in mathematics; and the ways students can be supported to see beyond the
superficial aspects of the manipulative to their intended referents.

Aside from guiding future research on virtual manipulatives, the framework can
also assist teachers in their evaluation of digital tools for learning mathematics.
Moyer et al. (2002) presented a number of questions to consider when determining
the likelihood that a specific set of virtual manipulatives will be useful in the
classroom. One of these questions is, “Are the images dynamic and interesting?”
(p. 375). The framework allows us to ask additional questions that we think would
provide a more focused evaluation of the manipulatives, such as “to whom are the
images dynamic and interesting?”, “what types of previous experience and
knowledge are my students bringing into the classroom that might impact how the
manipulatives are perceived?,” and “will the perceptual features that make the
images interesting detract from the learning that is targeted?” Another question
suggested by Moyer et al. is, “Do [the images] represent the target mathematics?”
(p. 375). Again, the framework can assist a teacher in asking further questions that
would aid in the evaluation. To a teacher, virtual Base ten blocks clearly represent
the concepts of numeration and place value, but to a child, they may not. Thus,
asking the questions, “will my students see the appropriate mathematical referent
when using these manipulatives?” and “how can I ensure that my students make the
appropriate connection between the manipulatives and the abstract referents they
are designed to symbolize?” are critical to students’ developing learning and
understanding.

Although the questions offered by Moyer et al. (2002) appeared almost 15 years
ago, our framework allows us to argue that they are still relevant today, particularly
because the issues they raise have not yet been adequately addressed in the
research. Indeed, more recently Ginsburg et al. (2013) reiterated many of the same
concerns about the potential of mathematics software to enhance the mathematical
development of young children. In much the same way as we suggest here, they
proposed a decidedly cognitive focus in the analysis of mathematical software tools
and called for the design of software that best supports children’s representations of
abstract ideas. We propose that the concerns raised by Moyer et al. and Ginsburg
et al. can be answered through research that focuses more squarely on the virtual
representations themselves and the types of scaffolds that will have a direct impact
on students’ interpretations.

We caution, however, that the framework presented in this chapter is useful only
to the extent that there are sufficient parallels between the representations reviewed
in the chapter (i.e., concrete objects and two-dimensional representations) and
virtual manipulatives. One obvious parallel between the two environments is the
fact that many virtual manipulatives appear as two-dimensional images on a
computer screen. As such, clear correspondences exist between diagrams in the
concrete world and in the virtual world, even if the user often has greater control of
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the images in the latter. Second, according to Moyer et al. (2002), virtual manip-
ulatives are only “true” virtual manipulatives if the user can engage and control
physical actions with them for the purposes of constructing mathematical knowl-
edge (see also Chap. 1, this volume). To the extent that virtual manipulatives are
similar to concrete ones on this level, all three components of the framework are
arguably relevant for future research.

Finally, from a cognitive perspective, the research suggests that manipulatives
are useful to the extent that children make them personally meaningful for the task
at hand (Sarama and Clements 2009). Students’ “efforts after meaning” (Bartlett
1932) are based on their initial and developing interpretations of the representations
as well as their prior knowledge and experience about the target domain. The same
processes may be occurring in a virtual environment as well: We provided pre-
liminary evidence that students attempt to construct meaning of images on the
screen just as they attempt to make meaning of concrete objects and
two-dimensional representations off screen (Goldstone and Sakamoto 2003). As
with concrete objects, however, students require appropriate supports to interpret
virtual manipulatives, acquire dual representation, and ultimately transfer their
knowledge to other mathematical contexts.

References

Adrien, E., Duponsel, N., & Osana, H. P. (2015). Effects of explanations and presentation order of
manipulatives and written symbols in second-grade addition instruction. Presentation at the
annual meeting of the American Educational Research Association, Chicago, IL.

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple
representations. Learning and Instruction, 16, 183–198.

Ambrose, R. C. (2002). Are we overemphasizing manipulatives in the primary grades to the
detriment of girls? Teaching Children Mathematics, 9(1), 16–21. Retrieved from www.nctm.
org/resources/nea/TCM2002-09-16a.pdf

Ball, D. L. (1992). Magical hopes: Manipulatives and the reform of math education. American
Educator, 16(14–18), 46–47.

Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University Press.
Beishuizen, M. (1993). Mental strategies and materials or models for addition and subtraction up

to 100 in Dutch second grades. Journal for Research in Mathematics Education, 24(4),
294–323. doi:10.2307/749464.

Bell, P., & Davis, E. A. (2000). Designing Mildred: Scaffolding students’ reflection and
argumentation using a cognitive software guide. In B. Fishman, & S. O’Connor-Divelbiss
(Eds.), Fourth International Conference of the Learning Sciences (pp. 142–149). Mahwah, NJ:
Erlbaum.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn. Washington, DC:
National Research Council.

Burns, B. A., & Hamm, E. M. (2011). A comparison of concrete and virtual manipulative use in
third- and fourth-grade mathematics. School Science and Mathematics, 111(6), 256.

Callanan, M. A., Jipson, J. L., & Soennichsen, M. S. (2002). Maps, globes, and videos:
Parent-child conversations about representational objects. In S. G. Paris (Ed.), Perspectives on
children’s object-centered learning in museums (pp. 261–283). Mahwah, NJ: Erlbaum.

5 Manipulatives, Diagrams, and Mathematics … 115

http://dx.doi.org/10.1007/978-3-319-32718-1_1
http://www.nctm.org/resources/nea/TCM2002-09-16a.pdf
http://www.nctm.org/resources/nea/TCM2002-09-16a.pdf
http://dx.doi.org/10.2307/749464


Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching
mathematics with concrete manipulatives. Journal of Educational Psychology, 105, 380–400.
doi:10.1037/a0031084.

Carpenter, K. K. (2013). Strategy instruction in early childhood math software: Detecting and
teaching single-digit addition strategies (Doctoral Dissertation, Columbia University).
Retrieved from http://academiccommons.columbia.edu/catalog/ac:160522

Carraher, D. W., & Schliemann, A. D. (2002). Early algebra and algebraic reasoning. In F. Lester
(Ed.), Second handbook of research on mathematics teaching and learning: A project of the
National Council of Teachers of Mathematics (Vol. II, pp. 669–705). Charlotte, NC:
Information Age Publishing.

Chao, S.-J., Stigler, J. W., & Woodward, J. A. (2000). The effects of physical materials on
Kindergartners’ learning of number concepts. Cognition and Instruction, 18(3), 285–316.
doi:10.1207/S1532690XCI1803_1.

Clements, D. H. (1999). “Concrete” manipulatives, concrete ideas. Contemporary Issues in Early
Childhood, 1(1), 45–60.

Corbiere, D. (2003). Digi-block companion to everyday mathematics: Grade 1. Digi-Block, Inc.
DeLoache, J. S. (1987). Rapid change in the symbolic functioning of very young children. Science,

238, 1556–1557. doi:10.1126/science.2446392.
DeLoache, J. S. (1989). Young children’s understanding of the correspondence between a scale

model and a larger space. Cognitive Development, 4, 121–129. doi:10.1016/0885-2014(89)
90012-9.

DeLoache, J. S. (1995). Early understanding and use of symbols: The model model. Current
Directions in Psychological Science, 4(4), 109–113. doi:10.1111/1467-8721.ep10772408.

DeLoache, J. S. (2000). Dual representation and young children’s use of scale models. Child
Development, 71, 329–338. doi:10.1111/1467-8624.00148.

DeLoache, J. S., & Sharon, T. (2005). Symbols and similarity: You can get too much of a good
thing. Journal of Cognition and Development, 6(1), 33–49. doi:10.1207/s15327647jcd0601_3.

DeLoache, J. S., Miller, K. F., & Rosengren, K. S. (1997). The credible shrinking room: Very
young children’s performance with symbolic and nonsymbolic relations. Psychological
Science, 8(4), 308–313.

DeLoache, J. S., Peralta de Mendoza, O. A., & Anderson, K. N. (1999). Multiple factors in early
symbol use instructions, similarity, and age in understanding a symbol-referent relation.
Cognitive Development, 14(2), 299–312. doi:10.1016/S0885-2014(99)00006-4.

Dienes, Z. P. (1963). An experimental study of mathematics learning. London, England:
Hutchinson of London.

diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction.
Cognition and Instruction, 22, 293–331.

diSessa, A. A., & Sherin, B. L. (2000). Meta-representation: An introduction. Mathematical
Behavior, 19, 385–398.

Dufour-Janvier, B., Bednarz, N., & Belanger, M. (1987). Pedagogical considerations concerning
the problem of representation. In C. Janvier (Ed.), Problems of representation in the teaching
and learning of mathematics (pp. 109–122). Mahwah, NJ: Erlbaum.

Englard, L. (2010). Raise the bar on problem solving. Teaching Children Mathematics, 17(3),
156–163.

English, L. D. (2004). Mathematical and analogical reasoning. In L. English (Ed.), Mathematical
and analogical reasoning of young learners (pp. 1–22). Mahwah, NJ: Erlbaum.

Fujimura, N. (2001). Facilitating children’s proportional reasoning: A model of reasoning
processes and effects of intervention on strategy change. Journal of Educational Psychology,
93, 589–603. doi:10.1037/0022-0663.93.3.589.

Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in
mathematics and science instruction: A systematic review. Educational Psychology Review,
26, 9–25.

116 H.P. Osana and N. Duponsel

http://dx.doi.org/10.1037/a0031084
http://academiccommons.columbia.edu/catalog/ac:160522
http://dx.doi.org/10.1207/S1532690XCI1803_1
http://dx.doi.org/10.1126/science.2446392
http://dx.doi.org/10.1016/0885-2014(89)90012-9
http://dx.doi.org/10.1016/0885-2014(89)90012-9
http://dx.doi.org/10.1111/1467-8721.ep10772408
http://dx.doi.org/10.1111/1467-8624.00148
http://dx.doi.org/10.1207/s15327647jcd0601_3
http://dx.doi.org/10.1016/S0885-2014(99)00006-4
http://dx.doi.org/10.1037/0022-0663.93.3.589


Gelman, S. A., Chesnick, R. J., & Waxman, S. R. (2005). Mother-child conversations about
pictures and objects: Referring to categories and individuals. Child Development, 76(6),
1129–1143.

Gentner, D., & Colhoun, J. (2010). Analogical processes in human thinking and learning. In B.
M. Glatzeder, V. Goel, & A. von Müller (Eds.), Toward a theory of thinking: Building blocks
for a conceptual framework (pp. 35–48). Berlin, Germany: Springer.

Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American
Psychologist, 52, 45–56.

Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for
analogical encoding. Journal of Educational Psychology, 95, 393–408.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive
Psychology, 15, 1–38.

Ginsburg, H. P., Jamalian, A., & Creighan, S. (2013). Cognitive guidelines for the design and
evaluation of early mathematics software: The example of MathemAntics. In L. D. English, &
J. T. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 83–120). Springer,
Netherlands. Retrieved from http://link.springer.com/chapter/10.1007/978-94-007-6440-8_6

Glenberg, A. M., Jaworski, B., Rischal, M., & Levin, J. R. (2007). What brains are for: Action,
meaning, and reading comprehension. In D. McNamara (Ed.), Reading comprehension
strategies: Theories, interventions, and technologies (pp. 221–240). Mahwah, NJ: Lawrence
Erlbaum Publishers.

Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics.
The Journal of Mathematical Behavior, 17, 137–165. doi:10.1016/S0364-0213(99)80056-1.

Goldstone, R. L., & Day, S. B. (2012). Introduction to “New Conceptualizations of Transfer of
Learning”. Educational Psychologist, 47(3), 149–152.

Goldstone, R. L., & Sakamoto, Y. (2003). The transfer of abstract principles governing complex
adaptive systems. Cognitive Psychology, 46, 414–466. doi:10.1016/S0010-0285(02)00519-4.

Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and
idealized simulations. Journal of the Learning Sciences, 14, 69–110.

Goswami, U. (2004). Commentary: Analogical reasoning and mathematical development. In L.
English (Ed.), Mathematical and analogical reasoning of young learners (pp. 169–186).
Mahwah, NJ: Erlbaum.

Gravemeijer, K. (2002). Preamble: From models to modeling. In K. Gravemeijer, R. Lehrer, B.
van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics
education (pp. 7–22). The Netherlands: Kluwer Academic Publishers.

Gürbüz, R. (2010). The effect of activity-based instruction on conceptual development of seventh
grade students in probability. International Journal of Mathematical Education in Science and
Technology, 41, 743–767. doi:10.1080/00207391003675158.

Hiebert, J. (1992). Mathematical, cognitive, and instructional analyses of decimal fractions. In G.
Leinhardt, R. Putnam, & R. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching
(pp. 283–322). Hillsdale, NJ: Erlbaum.

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’
learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and
learning (pp. 371–404). Reston, VA: National Council of Teachers of Mathematics.

Hiebert, J., & Wearne, D. (1992). Links between teaching and learning place value with
understanding in first grade. Journal for Research in Mathematics Education, 23, 98–122.
doi:10.2307/749496.

Hiebert, J., Carpenter, T. R., Fennema, E., Fuson, K. C., Wearne, D., Murray, H., et al. (1997).
Making sense: Teaching and learning mathematics with understanding. Portsmouth, NH:
Heinemann.

Hughes, M. (1986). Children and number: Difficulties in learning mathematics. Oxford, England:
Basil Blackwell.

Kamii, C., Lewis, B. A., & Kirkland, L. (2001). Manipulatives: when are they useful? Journal of
Mathematical Behavior, 20, 21–31. doi:10.1016/S0732-3123(01)00059-1.

5 Manipulatives, Diagrams, and Mathematics … 117

http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-94-007-6440-8_6
http://dx.doi.org/10.1016/S0364-0213(99)80056-1
http://dx.doi.org/10.1016/S0010-0285(02)00519-4
http://dx.doi.org/10.1080/00207391003675158
http://dx.doi.org/10.2307/749496
http://dx.doi.org/10.1016/S0732-3123(01)00059-1


Kaminski, J. A., Sloutsky, V. M., & Heckler, A. (2009). Transfer of mathematical knowledge: The
portability of generic instantiations. Child Development Perspectives, 3(3), 151–155. doi:10.
1111/j.1750-8606.2009.00096.x.

Kim, R., & Albert, L. R. (2014). The history of base-ten-blocks: Why and who made
base-ten-blocks? Mediterranean Journal of Social Sciences, 5, 356–365.

Ladel, S., & Kortenkamp, U. (2013). An activity-theoretic approach to multi-touch tools in early
maths learning. The International Journal for Technology in Mathematics Education, 20(1).
Retrieved from http://www.tech.plym.ac.uk/research/mathematics_education/field%20of%
20work/ijtme/volume_20/number_one.html⋕one

Lee, C.-Y., & Yuan, Y. (2010). Gender differences in the relationship between Taiwanese
adolescents’ mathematics attitudes and their perceptions toward virtual manipulatives.
International Journal of Science and Mathematics Education, 8, 937–950.

Markman, A. B. (1999). Knowledge representation. Mahwah, NJ: Erlbaum.
Martin, T. (2009). A theory of physically distributed learning: How external environments and

internal states interact in mathematics learning. Child Development Perspectives, 3(3), 140–144.
Martin, T., & Schwartz, D. L. (2005). Physically distributed learning: Adapting and reinterpreting

physical environments in the development of fraction concepts. Cognitive Science, 29, 587–
625.

Marzolf, D. P., & DeLoache, J. S. (1994). Transfer in young children’s understanding of spatial
representations. Child Development, 65(1), 1–15. doi:10.2307/1131361.

Mayer, R. E. (2011). Instruction based on visualizations. In R. E. Mayer & P. A. Alexander (Eds.),
Handbook of research on learning and instruction (pp. 427–445). New York, NY: Routledge.

McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the
money? Concrete objects both hurt and help performance on mathematics problems. Learning
and Instruction, 19(2), 171–184.

Moyer, P. S. (2001). Are we having fun yet? How teachers use manipulatives to teach
mathematics. Educational Studies in Mathematics, 47, 175–197.

Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching
Children Mathematics, 8, 372–377.

Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student
achievement and mathematics learning. International Journal of Virtual and Personal
Learning Environments, 4(3).

Moyer-Packenham, P., Baker, J., Westenskow, A., Anderson, K., Shumway, J., Rodzon, K., et al.
(2013). A study comparing virtual manipulatives with other instructional treatments in third-
and fourth-grade classrooms. Journal of Education, 193(2), 25–39.

Moyer-Packenham, P. S., Shumway, J. F., Bullock, E., Tucker, S. I., Anderson-Pence, K. L., &
Westenskow, A. (2015). Young children’s learning performance and efficiency when using
virtual manipulative mathematics iPad apps. Journal of Computers in Mathematics and
Science Teaching, 34(1), 41–69.

Namukasa, I. K., Stanley, D., & Tuchtie, M. (2009). Virtual manipulative materials in secondary
mathematics: A theoretical discussion. The Journal of Computers in Mathematics and Science
Teaching, 28(3), 277.

Ng, S. F., & Lee, K. (2009). Model method: A visual tool to support algebra word problem solving
at the primary level. In K. Y. Wong, P. Y. Lee, B. Kaur, P. Y. Foong, & S. F. Ng (Eds.),
Mathematics education: The Singapore journey (pp. 169–203). Singapore: World Scientific.

Nührenbörger, M., & Steinbring, H. (2008). Manipulatives as tools in mathematics teacher
education. In D. Tirosh & T. Wood (Eds.), International handbook of mathematics teacher
education: Vol. 2: Tools and processes in mathematics teacher education (pp. 157–181).
Rotterdam: Sense.

Osana, H. P., & Pitsolantis, N. (2013). Addressing the struggle to link form and understanding in
fractions instruction. British Journal of Educational Psychology, 83, 29–56.

Osana, H. P., & Pitsolantis, N. (2015). Supporting Kindergarten children’s dual representation:
Meaningful use of mathematics manipulatives. Paper presented at the American Educational
Research Association (AERA), Washington, DC.

118 H.P. Osana and N. Duponsel

http://dx.doi.org/10.1111/j.1750-8606.2009.00096.x
http://dx.doi.org/10.1111/j.1750-8606.2009.00096.x
http://www.tech.plym.ac.uk/research/mathematics_education/field%2520of%2520work/ijtme/volume_20/number_one.html%e2%8b%95one
http://www.tech.plym.ac.uk/research/mathematics_education/field%2520of%2520work/ijtme/volume_20/number_one.html%e2%8b%95one
http://dx.doi.org/10.2307/1131361


Osana, H. P., Przednowek, K., Cooperman, A., & Adrien, E. (2013). Making the most of math
manipulatives: Play is not the answer. Presented at the annual meeting of the American
Educational Research Association, San Francisco, CA.

Osana, H. P., Przednowek, K., Adrien, E., & Cooperman, A. (2014, May). Assessing dual
representation in mathematics. In C. Sowinski (Chair), Math development: Measures and
methodologies. Symposium Conducted at the Development 2014: A Canadian Conference on
Developmental Psychology, Ottawa, Canada.

Ozel, S., Ozel, Z. E. Y., & Cifuentes, L. D. (2014). Effectiveness of an online manipulative tool
and students’ technology acceptances. International Journal of Educational Studies in
Mathematics, 1(1), 1–15.

Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. B. Lloyd
(Eds.), Cognition and categorization (pp. 259–302). Erlbaum.

Parker, T. H., & Baldridge, S. J. (2008). Elementary mathematics for teachers. Okemos, USA:
Sefton-Ash Publishing.

Perkins, D. N., & Salomon, G. (2012). Knowledge to go: A motivational and dispositional view of
transfer. Educational Psychologist, 47(3), 248–258.

Petersen, L. A., & McNeil, N. M. (2013). Effects of perceptually rich manipulatives on
preschoolers’ counting performance: Established knowledge counts. Child Development, 84,
1020–1033.

Pimm, D. (1995). Symbols and meanings in school mathematics. New York, NY: Routledge.
Przednowek, K., Osana, H. P., Cooperman, A., & Adrien, E. (2013). Introducing manipulatives:

To play or not to play. In M. V. Martinez & A. C. Superfine (Eds.), Proceedings of the
Thirty-Fifth Annual Meeting of the North American Chapter of the International Group for the
Psychology of Mathematics Education (p. 329). Chicago, IL: University of Illinois at Chicago.

Puchner, L., Taylor, A., O’Donnell, B., & Fick, K. (2008). Teacher learning and mathematics
manipulatives: A collective case study about teacher use of manipulatives in elementary and
middle school mathematics lessons. School Science and Mathematics, 108(7), 313–325.

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., & Duncan, R. G. (2004).
A scaffolding design framework for software to support science inquiry. Journal of the
Learning Sciences, 13, 337–386.

Raphael, D., & Wahlstrom, M. (1989). The influence of instructional aids on mathematics
achievement. Journal for Research in Mathematics Education, 20(2), 173–190.

Resnick, L. B., & Omanson, S. F. (1987). Learning to understand arithmetic. In R. Glaser (Ed.),
Advances in instructional psychology (Vol. 3, pp. 41–95). Hillsdale, NJ: Erlbaum.

Reys, R. E., Lindquist, M. M., Lambdin, D. V., & Smith, N. L. (2014). Helping children learn
mathematics (11th ed.). New York: Wiley.

Richland, L. E. (2011). Analogy and classroom mathematics learning. In N. L. Stein &
S. R. Raudenbush (Eds.), Developmental cognitive science goes to school (pp. 203–218). New
York, NY: Routledge.

Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children’s development of analogical
reasoning: Insights from scene analogy problems. Journal of Experimental Child Psychology,
94, 249–273.

Richland, L. E., Stigler, J. W., & Holyoak, K. J. (2012). Teaching the conceptual structure of
mathematics. Educational Psychologist, 47(3), 189–203.

Rick, J. (2012). Proportion: a tablet app for collaborative learning. In Proceedings of the 11th
International Conference on Interaction Design and Children (pp. 316–319). New York, NY,
USA: ACM. doi:10.1145/2307096.2307155

Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of
mathematics: Does one lead to the other? Journal of Educational Psychology, 91, 175–189.

Rittle-Johnson, B., & Koedinger, K. (2009). Iterating between lessons on concepts and procedures
can improve mathematics knowledge. British Journal of Educational Psychology, 79, 1–21.

Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New
York, NY: Oxford University Press.

5 Manipulatives, Diagrams, and Mathematics … 119

http://dx.doi.org/10.1145/2307096.2307155


Sarama, J., & Clements, D. H. (2002). Building Blocks for young children’s mathematical
development. Journal of Educational Computing Research, 27, 93–110.

Sarama, J., & Clements, D. H. (2009). Building blocks and cognitive building blocks: Playing to
know the world mathematically. American Journal of Play, 1, 313–337.

Sedig, K., & Liang, H.-N. (2006). Interactivity of visual mathematical representations: Factors
affecting learning and cognitive processes. Journal of Interactive Learning Research, 17(2),
179–212.

Sedig, K., Klawe, M., & Westrom, M. (2001). Role of interface manipulation style and scaffolding
on cognition and concept learning in Learnware. ACM Transactions on Computer-Human
Interaction, 8, 34–59.

Segal, A., Tversky, B., & Black, J. (2014). Conceptually congruent actions can promote thought.
Journal of Applied Research in Memory and Cognition. doi:10.1016/j.jarmac.2014.06.004

Sherman, J., & Bisanz, J. (2009). Equivalence in symbolic and non-symbolic contexts: Benefits of
solving problems with manipulatives. Journal of Educational Psychology, 101, 88–100.
doi:10.1037/a0013156

Singley, K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard
University Press.

Stigler, J. W. (1984). “Mental abacus”: The effects of abacus training on Chinese children’s mental
calculation. Cognitive Psychology, 16, 145–176.

Suh, J., & Moyer, P. S. (2007). Developing students’ representational fluency using virtual and
physical algebra balances. The Journal of Computers in Mathematics and Science Teaching, 26
(2), 155–173.

Suydam, M. N. (1986). Manipulative materials and achievement. Arithmetic Teacher, 33(6), 10–
32.

Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and
instructional design. Educational Psychology Review, 10, 251–296.

Thompson, P. W. (1994). Concrete materials and teaching for mathematical understanding.
Arithmetic Teacher, 41(9), 556–558.

Toth, E. E., Suthers, D. D., & Lesgold, A. M. (2002). “Mapping to know”: The effects of
representational guidance and reflective assessment on scientific inquiry. Science Education,
86, 264–286.

Tucker, S. I., Moyer-Packenham, P. S., Boyer-Thurgood, J. M., Anderson, K. L., Shumway, J. F.,
Westenskow, A., et al. (2014). Literature supporting an investigation of the nexus of
mathematics, strategy, and technology in second-graders’ interactions with iPad-based virtual
manipulatives. In Proceedings of the 12th Annual Hawaii International Conference on
Education (HICE) (pp. 2338–2346). Honolulu, Hawaii. doi:10.13140/2.1.3392.4169

Uttal, D. H. (2003). On the relation between play and symbolic thought: The case of mathematics
manipulatives. In O. Saracho & B. Spodek (Eds.), Contemporary perspectives in early
childhood (pp. 97–114). Charlotte, NC: Information Age Press.

Uttal, D. H., & O’Doherty, K. (2008). Comprehending and learning from visual representations: A
developmental approach. In J. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory
and practice in science education (pp. 53–72). New York, NY: Springer.

Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: A new
perspective on the use of concrete objects to teach mathematics. Journal of Applied
Developmental Psychology, 18, 37–54.

Uttal, D. H., Liu, L. L., & DeLoache, J. S. (2006). Concreteness and symbolic development. In L.
Balter & C. S. Tamis-LeMonda (Eds.), Child psychology: A handbook of contemporary issues
(2nd ed., pp. 167–184). Philadelphia, PA: Psychology Press.

Uttal, D. H., O’Doherty, K., Newland, R., Hand, L. L., & DeLoache, J. (2009). Dual
representation and the linking of concrete and symbolic representations. Child Development
Perspectives, 3(3), 156–159. doi:10.1111/j.1750-8606.2009.00097.x

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9, 625–
636.

120 H.P. Osana and N. Duponsel

http://dx.doi.org/10.1016/j.jarmac.2014.06.004
http://dx.doi.org/10.1037/a0013156
http://dx.doi.org/10.13140/2.1.3392.4169
http://dx.doi.org/10.1111/j.1750-8606.2009.00097.x


Part II
Research and Design



Chapter 6
Fingu—A Game to Support Children’s
Development of Arithmetic Competence:
Theory, Design and Empirical Research

Ingemar Holgersson, Wolmet Barendregt, Jonas Emanuelsson,
Torgny Ottosson, Elisabeth Rietz and Berner Lindström

Abstract This chapter aims at describing research on Fingu, a virtual manipulative
housed in a game environment, which is designed to support young children’s
learning and development of number concepts and flexible arithmetic competence.
More specifically Fingu targets the understanding and mastering of the basic num-
bers 1–10 as part-whole relations, which according to the literature on early math-
ematics learning is critical for this development. In the chapter, we provide an
overview of the theoretical grounding of the design, development and research of
Fingu as well as the theoretical and practical design rationale and principles. We
point out the potential of Fingu as a research platform and present examples of some
of the empirical research conducted to demonstrate the learning potential of Fingu.
Methodologically, the research adopts a design-based research approach. This
approach combines theory-driven design of learning environments with empirical
research in educational settings, in a series of iterations. In a first series of iterations,
a computer game—the Number Practice Game—was designed and researched,
based on phenomenographic theory and empirical studies. In a second series of
iterations, Fingu was designed and researched, based on ecological psychology in a
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socio-cultural framing. The design trajectory of NPG/Fingu thus involves both
theoretical development and (re)design and development of specific educational
technologies.

6.1 Introduction

This chapter describes research on Fingu, a virtual manipulative housed in a game
environment, which is designed to support young children’s learning and devel-
opment of number concepts and flexible arithmetic competence. More specifically,
Fingu targets the understanding and mastering of the basic numbers 1–10 as
part-whole relations. Our primary aim is to give an overview of the theoretical
grounding of the design, development and research of Fingu as well as the theo-
retical and practical design rationale and principles. The potential of Fingu as a
research platform is pointed out. We also present examples of some of the empirical
research conducted, with the aim of demonstrating the learning potential of Fingu.

6.2 The Fingu Game

In the Fingu game, the player is exposed to two moving sets of objects on the touch
screen (in the case shown in Fig. 6.1, four apples on the left and three apples on the
right), and is supposed to tell how many objects there are in total (seven) by
touching the screen with the corresponding number of fingers. Fingers can be
placed anywhere on the screen and there are no restrictions concerning which
fingers are used, but they must be pressed down roughly at the same time, as a
representation of the total number.

Fig. 6.1 A screen view of a
child playing Fingu
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The objective is to progress through different levels of the game, making as few
wrong answers as possible. Each level comprises a set of tasks and the levels are
progressively more demanding. In order to advance to the next level, the player is
not allowed to give more than a certain number of wrong answers (represented by
hearts in the upper right of the screen in Fig. 6.1).

6.3 Young Children’s Learning of Mathematics

One of the key goals for mathematics education around the world is to ensure all
children’s proficiency with numbers. This means to have a flexible and adaptive
understanding and knowledge of arithmetic that can be used with confidence and
fluency in a variety of situations occurring in everyday life and at work (Kilpatrick
et al. 2001). Learning to become proficient with numbers is a process that starts
early on and then becomes a part of the growing child for several years (Baroody
et al. 2013; Sarama and Clements 2009). One of the foundations in this process is to
develop flexible arithmetic competence, that includes mastering number concepts
for the basic numbers 1–10, and to this end, the use of reasoning strategies, based
on using known sums and relations between them to deduce unknown sums
(Baroody et al. 2013). For many children, this is a straightforward process, but
some children seem to have trouble learning and using such reasoning strategies, as
observed by Gray and Tall (1994), who found that children aged 7–12 with below
average mathematical performance dominantly relied on counting strategies while
performing basic sums. Neuman (1987, 2013) also found that counting one by one,
as a dominant strategy for managing single-digit sums, is common among children
with mathematical difficulties.

There are different views on the role of counting for the development of con-
ceptual knowledge about numbers. A dominant idea is that basic sums are learned
in a process, where children begin by using counting one by one to determine the
sums of single-digit additions. They then are supposed to memorize these facts. But
in order to develop fluency with basic sums (and not just basic facts), which
includes the ability of using them both appropriately and in adaptable ways, chil-
dren “typically progress through three overlapping phases in the meaningful
learning of a particular basic sum or family of sums: (a) Phase 1 (counting
strategies), (b) Phase 2 (conscious or deliberate reasoning strategies), and (c) Phase
3 (fluent retrieval)” (Baroody et al. 2013, p. 536). Here, the counting strategies of
Phase 1 can be seen as the first steps in determining and exploring different sums,
which in Phase 2 can turn into knowledge of the part-whole relations that constitute
the sums. Continuing in Phase 2 to explore these relations further, may then lay the
ground for a network of relations, which in Phase 3 will constitute itself in a more
or less fluent performance. So Phase 2 will act as a mediator between the less
efficient counting strategies in Phase 1 and the more efficient retrieval strategies in
Phase 3. Note that these phases must be understood as overlapping, and that there is
no absolute succession from one phase to another.
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This network of relationswithin thefirst ten natural numbers is built upon anetwork
of quantitative part-whole relations, which, in the terminology of Resnick (1989), is
grounded in the principle of additive composition—that numbers are composed of
other numbers, and any number can be decomposed into parts—combined with more
qualitative knowledge of part-whole relations. Thus the ability to make use of
part-whole number relations is foundational for developing the kind of number net-
works that are necessary for becomingfluentwithmental computations (Baroody et al.
2009; SaramaandClements 2009).Later, in the development of arithmeticfluency, the
ability to use these part-whole relations in a flexible and adaptive way is also funda-
mental in understanding fractions (McMullen et al. 2014, 2015).

One of the basic arithmetic competences that support the development of good
number sense is the ability to quickly and reliably determine the numerosity of a
collection of objects. This can be done by counting all the objects, but can also be
speeded up either by different forms of skip counting or by using some kind of
subitizing. Humans are born with an innate ability to subitize, that is “the direct and
rapid perceptual apprehension of the numerosity of a group” (Sarama and Clements
2009, p. 29). Kaufman et al. (1949) invented the term subitizing to distinguish it
from estimating, which is also a rapid but only approximate way of quantifying.
They emphasized that subitizing goes together with a high degree of accuracy and
confidence. Thus subitizing appears to be a distinct way of quantifying, different
from counting and estimating. From the neuroscientific literature the conclusion is
that “true” subitizing only occurs in adults for the numerosities 1, 2, and 3 (Dehaene
2011). For some young children, the number 3 may, according to Sarama and
Clements (2009), be questionable. This fact does however not exclude the possi-
bility of rapid recognition of higher numerosities, but this is limited to identifying
certain familiar configurations such as those used on dice or dominoes.

Noting that “subitizing develops considerably as children grow and combines
with other mental processes”, Sarama and Clements (2009, p. 44) distinguish
between perceptual and conceptual subitizing. They define perceptual subitizing as
“recognizing a number without consciously using other mental or mathematical
processes and then naming it” (p. 44). This ability, limited to the quantities 1, 2, and
3, includes the decomposing of 2 items as 1 and 1, and 3 items as 2 and 1 without
having to count. This ability then provides a foundation for conceptually experi-
encing somewhat larger numbers as composed of smaller parts (e.g., 4 as 2 + 2 or
3 + 1, 5 as 2 + 3, or 2 + 2+1, and 6 as 3 + 3 or 2 + 2 + 2). This process of
expanding perceptual subitizing into immediate recognition of combinations of
smaller units they call conceptual subitizing (Sarama and Clements 2009).
Conceptual subitizing thus presupposes a network of part-whole relations for small
numbers, and the richer it is the more effectively, flexibly and adaptively, it can be
used for performing different computations more rapidly.

Today there is a growing awareness that the concept of embodiment is an
important dimension of learning mathematics. As stated by Edwards and Robutti
(2014), “although mathematics may be socially constructed, this construction is not
arbitrary or unconstrained but rather is rooted in and shaped by the body” (p. 2). The
body then becomes “an important resource in the construction and communication
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of meaning”. Therefore, in addition to the traditional view of learning modalities
such as visual and auditory, an expanded view will include motor modalities such as
gesture and touch. A growing neuroscientific literature connecting fingers to
numerical cognition (Fischer et al. 2012) is an example of this embodiment. From a
mathematics education perspective, it is well-known that fingers play a central role
in learning arithmetic. Children can use them in two ways, either by making a finger
pattern displaying a certain number, for instance showing the index, middle, ring and
pinkie fingers on one hand to denote the number four, or as a tool, while performing
a calculation, keeping track of their counting, giving attention to one finger at a time.
Historically, fingers as a means of representing numbers have also played important
roles in the early development of computational methods found in commerce and
administration (Ifrah 2000). So, from an embodied perspective, using fingers to form
different number representations is a way to enrich the learning of basic numbers.

6.4 Theoretical Framework

Methodologically, the research on Fingu adopts a design-based research (DBR)
approach (Brown 1992; Cobb et al. 2003). This approach combines theory-driven
design of learning environments with empirical research in educational settings, in a
series of iterations. In a first series of iterations a computer game—the Number
Practice Game—was designed and researched, based on phenomenographic theory
and empirical studies (Lindström et al. 2011; Marton and Booth 1997; Neuman
1987). In a second series of iterations Fingu was designed and researched, based on
ecological psychology (Gibson 1986, 2000) in a socio-cultural framing. The design
trajectory of NPG/Fingu thus involves both theoretical development and (re)design
and development of specific educational technologies.

The design-based research methodology is grounded in cultural-historical
activity theory (CHAT). There are different versions of CHAT. The work by
Engeström (Engeström and Sannino 2010) emphasizes structural and systemic
aspects, while the foundational work of Vygotsky and Leontiev (cf. Hodkinson
et al. 2008) focuses more on human agency. As a foundation for the design of
environments and tools for learning, recent developments of CHAT come closer to
the originators (cf. Kaptelinin and Nardi 2006).

In CHAT, human activity is the core unit of analysis. Activities should be
understood as socially and historically situated. For one thing, this means that they
are multi-layered. For example, the activity of playing a mathematics computer
game is inevitably a part of a larger activity system or practice, of institutional
schooling or day-care/preschool or play or family upbringing. At the same time, an
activity is realized by the actions performed by the participating individuals.
Actions in turn are composed of operations, which in the knowledgeable individual
(expert) are unconscious.

An activity unfolds over time, realized by human actions and operation. Humans
change (i.e., learn) by participating in the activity. Learning can then be understood
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as a by-product of participation, appropriating whatever patterns of actions and
operations are (deemed) functional given the activity. Human abilities, knowledge
and skill, in general, have this dynamic and relational character. They are not to be
regarded as something static “in the head” or, for that matter, “in the body”, but
only realized when acted out “in situ”.

An activity is understood as historically situated on different levels. In our case,
not only the individuals have a specific history with respect to playing computer
games, mathematics learning activities, money counting, etc. This is clearly
demonstrated in our empirical studies of Fingu in pre-school and school. The game
playing activity became a part of a larger process of teaching and learning arith-
metic. Despite our attempts to offer the game as a mathematics activity not
belonging to the regular practice, the Fingu activities were organized and fitted into
the everyday classroom scheme. Thus, how children frame the activity (Goffman
1974), for example as gaming or as mathematics learning or both, is to be under-
stood in a historical perspective, both on the collective sociogenetic level and on an
individual ontogenetic level.

Thus, a specific activity, such as playing a mathematics game, does not neces-
sarily belong only to one larger activity system. Sometimes it belongs to several and
even larger activity systems. As pointed out, playing a mathematics game can be
both a gaming activity and/or a school mathematics activity. The activity then
becomes a boundary activity and the game can be considered a boundary object (cf.
Akkerman and Bakker 2011). This boundary character of game playing is important
to consider when evaluating the general argument that game playing offers a
learning potential that breaks away from institutional schooling (Gee 2003).

A basic tenet in CHAT is that teaching and learning are intrinsically related, that
is, two aspects of an unfolding activity. Teaching should then be understood in a
generic sense. It might be an active involvement by a teacher, but a game playing
activity involving a single player and a mathematics learning game also involves a
teaching or instructional component. Vygotsky had a specific term for this
learning/teaching process, obuchenie (Cole 2009). Learning/teaching is thus a
two-sided process and understanding learning is thus a matter of understanding a
teaching/learning activity in relational terms, as a relation between the individual
and the social and material environment.

CHAT, or more generally socio-cultural theory, is often used as a foundation for
designing learning environments with collaborative activities. Whereas not incor-
rect, an epistemology that premises human learning and development as culturally
and socially situated does not necessarily imply this kind of educational or
instructional model. Any activity, collaborative or not, is socially and culturally
situated. Reading a book or playing a computer game in private is also a socially
and culturally situated activity.

In summary, CHAT provides a framework for both design and analysis.
Designing a mathematics computer game is a design for certain teaching/learning
activities to take place, just like designing a set of tasks in a mathematics workbook.
However, the actual use of the game—the teaching/learning activity—is also highly
dependent upon the overall system of activities it is part of. This means that the
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context of use is always an issue to be considered. This is also an analytic con-
sideration in doing research on game use. How do the game playing activities relate
to other mathematical activities in which children are involved? How do children
perceive the game playing activities?

Given this general framework, the theoretical underpinnings for designing and
studying Fingu as a virtual manipulative are given by Gibsonian ecological psy-
chology (Gibson, 1986), and in particular the theory of perceptual learning (cf.
Gibson and Pick 2000). Acknowledging the contributions of both James and
Eleanor Gibson, Gibsonian theory is intrinsically relational and non-dualistic. As
pointed out above, this is something that is shared with cultural-historical activity
theory. It is also non-representational; it rejects the idea that cognition and learning
are about constructing inner representations of the world “outside” the individual.

Ecological psychology is grounded in a “realist” ontology, which like CHAT,
acknowledge that human activity is grounded in the material world. Perception, for
example, is the selection and “picking up” of (invariant) information in the course
of acting in a concrete physical environment. It should be noted that, when it comes
to social and intellectual activities, for example, teaching/learning, these are con-
stituted in interactions unfolding over time.

The Gibsons (Gibson and Gibson 1955; Gibson and Pick 2000) argue against
“enrichment theories”, where perception or “sensory reception is enriched and
supplemented by the addition of something” (Gibson and Pick 2000, p. 7). Instead
“perception begins as unrefined, vague impressions and is progressively differen-
tiated into more specific percepts” (p. 7). In development, through perceptual
learning, the individual becomes more and more apt to learn the specific affordances
of the environment.

The concept of affordance, which takes on a number of different definitions in
contemporary social and behavioral sciences, is pivotal to Gibsonian theory and
was developed to account for the relational nature between the individual and the
environment. It “refers to the ‘fit’ between an individual’s capabilities and the
scaffolds/support and opportunities that makes a certain activity possible” (Gibson
and Pick 2000, p. 15). An affordance can be thought of as an offering for meaning
in a given situation, or put in more general terms, an offering for action.

That differentiation is fundamental to learning and development has a number of
consequences. In the present context, it means that the development of flexible and
adaptive competence in dealingwith part-whole-relations in the range from1 to 10 is a
matter of successive refinement of the understanding of numbers, from a more
undifferentiated whole (for example the number 7) to grasping a differentiated net-
work of relations between parts that can make up the whole (i.e., 6|1; 5|2; 4|3; 3|3|1
etc.). The whole can take on different forms, for example number words of a more
symbolic nature; sets or constellations of concrete objects; visually presented patterns
(of objects); or even procedures (of which the counting sequence is an example).

Gibsonian theory also emphasizes that perception is not static but dynamic; thus,
building on our actions in the environment, in which individuals engage in activities
that are extended in time (e.g., moving around). The construct “perception-action
cycles” captures this dynamic, emphasizing that perception is not a prerequisite for
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action. Rather, action is foundational for perception and perception is foundational
for action, making up a perceptual system. Thus, perceptual learning is

the means of discovering distinctive features and invariant properties of things and events
..... Learning to distinguish faces from one another or to distinguish letters of the alphabet
are such cases. Discovering a repeated theme in a symphony and the variations on it is
another. Discovering distinctiveness and invariance is another kind of meaning, also a
product of perceptual learning. (Gibson 2000, p. 295)

The idea of discovering and retaining information as invariant features of the
environment is central in James Gibson’s seminal work (Gibson 1986). That per-
ceiving invariance(s) (which presumes variation) is fundamental to perception,
action and learning, is similar to what variation theory proposes (Marton and Pang
2006). This is particularly important since pre-cursors of the Fingu game were
designed from variations of theoretical ideas (cf. Lindström et al. 2011).

An important aspect of perceptual (and cognitive) systems is that they are typ-
ically not uni-modal, but multi-modal, building on the use of several sensory
modalities (Neisser 1976). This is important in the present context, where children
are exploring a game environment that explicitly draws on both visual and kines-
thetic modalities. Embodiment, then, is in this view building on multi-modal
agency.

Going further, perceptual learning builds on two complementary processes:
exploratory activity and performatory activity. Gibson (2000) states that exploratory
activity

is itself an event, a perception–action sequence that has consequences. It brings about new
information of two kinds: information about changes in the world that the action produces
and information about what the active perceiver is doing. (p. 296)

This kind of learning tends toward flexibility and is geared to maintain an
adaptive relation with the environment. But learning is also geared towards econ-
omy and efficiency, and this results in a tendency for specificity, resulting in actions
that from the beginning of an encounter can be more varied and exploratory. This
then develops into more specifically limited actions that effectively fulfill the goals
of a task. This is what the theory of perceptual learning conceptualizes as perfor-
matory activity: “Activity that starts as exploratory can become performatory as an
affordance is discovered. This shift is marked by making contact with the envi-
ronment and ensuing control of it” (Gibson 2000, p. 297). This idea resonates with
CHAT in that operations that build up actions (for example “seeing” or counting
number patterns) can become unconscious in the course of learning.

Building on the theory of perceptual learning, Kellman and Garrigan (2009)
formulated design principles for interventions aimed at developing expertise with
some key areas in mathematics learning. These principles include many and varied
short tasks, where the child has the opportunity to develop rapid selection of
task-relevant information, and the pick-up of higher-order relations and invariances
in different modalities such as visual, auditory and kinesthetic. The latter principle
corresponds with the core idea in variation theory and phenomenography (Marton
and Booth 1997; Marton 2015).
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6.5 Design Principles for Fingu

In this section, we describe the design principles of Fingu and how these principles
are realized/materialized in the game. As previously discussed, these design prin-
ciples are grounded in empirical research on mathematics learning and instruction
and in more general theories of learning and instruction (Neuman 1987; Lindström
et al. 2011).

Design of a computer game for learning is not a straightforward derivation from
theory. The design is influenced further by contemporary and historical mathematics
education practice and by more general game design. Furthermore, Fingu is a
second-generation implementation of design ideas for a new technological platform
(i.e., tablets). This platform offers possibilities to implement new design elements
(e.g., using finger patterns and thus multiple fingers to manipulate the game) that
were not available in earlier generations of the technology (such as laptops).

Since the design of Fingu is encapsulated in a design-based research process, the
design principles and design elements outlined in this section can, to some extent,
also be regarded as results.

6.5.1 Overall Design

When designing a mathematics game for children, there are a number of alterna-
tives for framing the mathematics tasks. A common practice is to embody the
mathematics in a cover story or activity, for example using a route metaphor. When
advancing from START to END, the player meets a number of obstacles that have
to be handled with specific tools (for example collecting a number of keys to open a
door). This type of design was rejected for Fingu. Recent research shows children
might be focusing on completing the gaming elements rather than engaging in the
desired content (cf. Linderoth 2012). Since the goal was to design a learning
environment that maximized children’s attention to part-whole relations, we chose a
design that resembles a microworld (cf. Papert 1980). In this case, it is a world of all
possible part-whole relations in the number range from 1 to 10.

As argued above, mastering part-whole relations in the number range from 1 to
10 is pivotal to the development of flexible and adaptive arithmetic competence.
From an arithmetic point of view being able to decompose every number in the
range into two parts in all the possible ways (2 = 1|1; 3 = 2|1; 4 = 3|1 = 2|2; 5 = 4|
1 = 3|2; …) and, conversely, to construct larger numbers by combining these parts
into new numbers, is an important developmental milestone.

In accordance with the theory of perceptual learning and variation theory,
children are presented with a set of tasks covering all the possible part-whole
relations in the number range from 1 to 10. Each task targets a specific part-whole
relation (for example 5 = 3|2). Playing Fingu makes it possible to discern invari-
ances (for example that 5 is 5 regardless of if the parts are 2|3 or 4|1 and regardless
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of modality) and extract information about higher order relations (a network of
part-whole relations).

Fingu is designed as a game in order to encourage extensive experience with
many and varied tasks, as the theory of perceptual learning prescribes (Kellman and
Garrigan 2009). A basic game design element is a progression of mastery from an
introductory level comprised of tasks with small numbers (1–5 and canonical visual
patterns) to an end level with tasks with large numbers (6–10) and non-canonical
visual patterns. Mastery is represented by the number of lives preserved while going
through the tasks on a level. With mastery of one level, it is then possible to
advance to the next higher level. Another game design element is immediate and
simple feedback on correctness. This feedback is presented both auditory and
visually, to be clearly recognized by the child before taking on the next task. Fingu
is also packaged as a computer game, in terms of graphical layout and in terms of
vocabulary. For example, the child has to pick an icon for player and name the
player.

As pointed out above, a problem in developing arithmetic competence might be
that children develop non-productive or even counter-productive counting proce-
dures that are not used in a flexible and adaptive way. Fingu is designed to afford
conceptual learning (with a focus on part-whole relations) and to minimize or even
prevent counting. The main design element is to put time-constraints on the indi-
vidual tasks. Even if the task design affords both counting and perception of
part-whole relations using subitizing, the latter is a more efficient approach to solve
the task. In the next section we elaborate more on how time-constraints are used in
the design of tasks.

A distinctive feature is that the design draws on the embodied nature of arith-
metic. As discussed above, there are two distinct aspects of this. One is making
subitizing (both perceptual and conceptual) a basic design element in the devel-
opment of the understanding of part-whole relations. The other is making children
use fingers as tools in dealing with the tasks. More specifically, Fingu affords the
use of finger patterns. Essentially, it is the latter characteristic that makes Fingu a
virtual manipulative. Fingu is thus fundamentally a multi-modal learning envi-
ronment. First, it allows children to find out invariances across modalities, as
pointed out by variation theory and perceptual learning theory. Second, it affords
transformations across modalities, for example making a visually presented
part-whole relation (for example 6 = 4|2) into another relation (6 = 5|1) using the
fingers and preserving the whole.

Of note, Fingu was not designed as a symbolic activity (i.e., invoking the use of
number symbols). There is however not any principled reason for this. On the
contrary, from a CHAT perspective, language is a critically important tool in human
activity. Thus, the game, as currently envisioned, does not capitalize on children’s
communication through number vocabulary. Furthermore, Fingu is used in edu-
cational contexts where language and number symbols play a decisive role. In our
empirical research the educational use of the game was embedded in language.
However, the present version of Fingu aims primarily at developing non-symbolic
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aspects of arithmetic competence, partly for the reason of avoiding the bias on using
simple counting procedures and rote learning that might come with language.

From a methodological point of view, however, the fact that Fingu is a
non-symbolic game, meaning that children learn part-whole relations not explicitly
coupled to number symbols, might pose a problem. It might be difficult to capture
the embodied form of knowledge and understanding that Fingu affords with the
common practice of testing children’s understanding of arithmetic by using inter-
views, which heavily rely on language.

6.5.2 Design of Tasks

The basic structure of a single task in Fingu resembles an IRE-sequence (Initiation
—Response—Evaluation, Mehan 1979), with a problem presentation in visual
mode (I); an answer given by the fingers (R); and feedback about the correctness of
the answer (E). However, it is critically important to appreciate that the task activity
comprises all phases in the sequence. The affordances for learning are tied to the
whole activity sequence.

6.5.2.1 Visually Presented Collections of Objects

In the problem presentation phase, collections or sets of objects (e.g., pieces of fruit)
are presented visually. Either one collection is presented, which is assumed per-
ceivable as an undifferentiated whole (e.g., 5), or two collections of objects are
presented that together make up a differentiated whole (e.g., 5 = 3|2). Fingu then
essentially affords building up differentiated wholes, drawing on the ability to
subitize the parts, and develop a conceptual subitizing of the whole.

The spatial arrangements of these collections of objects are regular and sym-
metric and often have the same configuration as a dice pattern, although there are
many less familiar configurations (see Table 6.1). We call the familiar dice con-
figurations canonical and the rest of the configurations non-canonical, since only
the dice patterns (which is supported by our empirical results), are familiar to

Table 6.1 Visual number configurations used in Fingu

N 1 2 3 4 5 6 7 8 9 10

Variant 
a

Variant 
b 
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Swedish 5–7-year-old children. All configurations were chosen to be possible to
subitize either perceptually or conceptually.

As can be seen in Table 6.1, using our definition strictly, there are 6 canonical
configurations and 11 non-canonical. There are two configurations for each of the
numbers 3–9 (allowing for invariance across visual patterns), but only one con-
figuration for the numbers 1, 2 and 10. We use the nomenclature of 3a and 3b etc.,
to refer to the different representations of a given number.

In total, there are 60 tasks with different combinations of configurations and
sums ranging from 1 to 10. As an example, 5a + 5b stands for the task where the
canonical die-5 configuration (5a) is combined with the non-canonical configura-
tion (5b).

A progression, or trajectory of learning, is built into the game design with seven
levels of difficulty involving increasing sums and more unfamiliar visual patterns of
objects. On all levels tasks are presented in random order and each task is presented
twice.

As mentioned previously, time-constraints are important to the game design. The
visual part-whole patterns are therefore displayed for a limited period of time. This
design can be seen as a modernized version of Kühnel’s (1916) flash card activities.
In order to afford perception of part-whole relations, rather than counting the whole
or the parts, the second presentation of a task is of shorter duration than the first
presentation, given that the child has arrived at the correct number. This affords
counting in examining the numerosity of a part, something that typically is done
when new and complex patterns are met. However, the shorter duration of the
second presentation should encourage more use of subitizing.

6.5.2.2 Answering with Coordinated Finger Patterns

A key part of the design is that children are forced to use a coordinated finger
pattern to complete each task. The child/player cannot sequentially touch the screen
with one finger at a time, but has to touch it with all the fingers that constitute the
patterned response at the same time. A limited touch input latency (default 0.25 s,
adjustable) is used to assure this. Thus, the player is stimulated to focus on the parts
of the presented problem and the total sum instead of resorting to counting one by
one in presenting the total sum.

This limited touch input latency can make it inconvenient in the initiation phase
due to the risk of the game interpreting a multi-touch response as a single finger
response. The task, which on the surface level may appear a simple skill-focused
activity, in this way becomes more of a problem solving activity focusing on
part-whole relations.

This is amplified by the player’s freedom of choosing which fingers and which
partition to use in the completion of the task. Learning to manage the fingers to
express sums is in this way (as structured finger patterns) an essential part of what
Fingu affords, coupled with the time constraint to reduce the likelihood that the
fingers are used as tools for counting.
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6.6 Fingu as a Research Platform

Fingu is designed for use in different contexts and for different purposes. The
default version is a mathematical computer game to be used by children as is,
preferably introduced by a more knowledgeable person (teacher/parent/sibling/
peer), but not necessarily so. This is also the basic or default mode of usage.

Fingu is also designed as a research platform, essentially allowing the researcher
to tailor the game for different research purposes. Part of this functionality is made
available in the Settings menu of the game where game parameters can be changed.
Examples of game parameters are exposure time for individual tasks
(ExposureTime), time allowed to give an answer (AnswerTime), number of errors
allowed on each level (Lives) and how long the player has to hold down a stable
number of fingers before the answer is registered (TouchInputLatency). The default
values of these parameters are based on earlier research of the forerunner of Fingu,
NPG (Lindström et al. 2011) and pilot studies of Fingu (Barendregt et al. 2012).

Another level of flexibility is the ability to change the game by re-designing the
content, structure and sequence of tasks in the game. This can be done by defining
new individual tasks and collections of tasks for the different levels. Even the
number of levels can be altered. In this way, it is possible to change the task
trajectory of the game, and potentially different learning trajectories. It is, for
example, possible to make different versions of the game for different age groups or
to adapt the game to children’s individual needs. In our empirical research we have
developed re-designs in order to make the game less challenging for weak children.
These re-designs are implemented in xml-code and have been locally entered into
the game as customized game behavior files.

In addition, Fingu provides tools for logging and real-time playback of chil-
dren’s game playing behavior including answering latency and finger placement for
further analysis through a visualization function built into the program. Log-files
can be saved in the system (as xml-files) and can be exported for further analyses.
However, logging is optional, with no logging as the default.

The functionalities that make Fingu a flexible research platform are also
accessible for a teacher or a parent. The settings are easy to alter and experiment
with. However, re-designing the game by developing new xml-files is more
demanding. It presupposes knowledge about the architecture of the game and basic
XML-coding.

Furthermore, in order to analyze progress in the game, there is a simple statistics
function available that presents the success rates summed for each quantity in the
range from 1 to 10. There are records for the current session and the accumulated
results over all sessions. It is also possible for a researcher, teacher or parent to use
the replay function as an audit trail in a debriefing session with a child.
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6.7 Software

Fingu was developed in collaboration with a company developing game software
and built on an open source platform. The research group, in discussion with the
software company, made the design and the company did the technical imple-
mentation. Revisions to the design and development of new versions were driven
by empirical research (Barendregt et al. 2012).

Fingu is available for free on the App Store. One reason for this open access was
to have a stable method for distribution of the program in our naturalistic research
settings. Another reason was to make Fingu available for teachers, parents, children
and other researchers, as an output of our research. The app comes in different
languages (presently Swedish and English).

6.8 Empirical Research

In this section, we will give examples of the empirical research we have conducted
based on a larger study involving children aged 5–7 years. First, we describe the
design of the study and empirical data generated. The first example is a quantitative
analysis of game playing. The second example is an analysis of effects of playing
on children’s arithmetic abilities based on group data. The third example is an
analysis of different ways of playing the game, based on group data. The fourth
example is an analysis of individual development in playing the game, based on a
single case.

6.8.1 Study Design and Empirical Data

In order to investigate if and how Fingu is a productive learning tool, we carried out
a larger study in pre-schools and in schools, educational settings with high eco-
logical validity, where children were given opportunities to play Fingu extensively.
The study was designed with pre-, post-, and delayed tests. We gathered data from
112 children (approximately equally as many children in each age group; see
Table 6.2), and with equal numbers of girls and boys. Before playing Fingu chil-
dren were tested with a set of arithmetic tests. Then they played the game for
8 weeks as a part of their ordinary practice. Immediately after the playing period,
children completed post-tests and 8 weeks later they completed delayed tests. The
same set of test instruments were used as pre-, post-, and delayed tests. Children
were not allowed to play Fingu between post- and delayed testing.

The tests were administered through individual interviews, and focused on
general or more specific mathematical abilities, to measure changes in the arith-
metic knowledge of the children. We used: The Test of Early Mathematics Ability,
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version 3 (TEMA-3) (Ginsburg and Baroody 2003); A test of part-whole knowl-
edge, PWK, using tasks focusing on part-whole relations (some with finger pat-
terns, some with other patterns), most of them inspired from the Early Numeracy
Research Project, ENRP, in Australia (ENRP 2015); A problem solving test, PS,
consisting of arithmetic problems of change or combine type with sums less than or
equal to 10, and similar to the problems used by Neuman (1987); and a pattern
recognition test, PR, where single configurations from the Fingu design were
exposed in random order for half a second each, and children responded verbally
(Holgersson et al. 2016).

During the study, the Fingu log function was used to gather log data, including
data on tasks, answering times, and childrens’ responses (including how many
fingers were registered and their coordinates). To complement these data, we also
video-recorded the children three times when they played the game: first when
introduced to the game, secondly after a few weeks, and thirdly towards the end of
the intervention period. For the study of a child’s success in playing the game and
how it develops, analyses of answering times and correctness of different trials are
important, and in our third and fourth examples of analysis, we use individual and
task specific median answering times (MATs) of the correctly answered trials, and
mean proportions of correct answers (PCAs) to reach our conclusions. In our fourth
example of analysis, we also complement this information with regression analyses
(linear and binary for answering times and correctness respectively), and a study of
the finger patterns used in responding to different tasks.

6.8.2 Example 1—Playing Fingu

Here we present overall data on Fingu playing time and children’s success.
Although the teachers were instructed to give the children opportunities to play at
least three times a week, the variation in children’s playing was substantial (see
Table 6.2). The 5-year-olds have a median number of trials equal to around 1100
and an IQR equal to about 1200 trials, which is much bigger than the IQRs for the
6- and 7-year-olds who have medians equal to about 900 trials with IQRs equal to
around 600 and 950 respectively.

Table 6.2 Number of trials
made during the intervention
period, disaggregated by age

Age N Median Q1 Q3 IQR Min Max

5 35 1114 683 1896 1213 186 4572

6 38 905 630 1214 584 279 3189

7 39 916 654 1599 945 320 2445

All 112 953 654 1620 966 186 4572

Note Q1 Lower quartile, Q3 Upper quartile, and IQR Interquartile
range
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There is also a large variation in how many of the children played on different
levels, where level 5 and 6 were the hardest to pass (see Fig. 6.2). Only 54 % (60
out of 112) of the children played on all the levels.

6.8.3 Example 2—Learning by Playing Fingu

To study the effects on children’s arithmetic abilities, we performed paired-samples
t-tests on the mean results on the separate arithmetic tests. The results (see
Table 6.3) were that between the pre- and post-tests, there is a small effect on the
TEMA-3, small to moderate effects on the PWK and the PS tests, and a large effect
on the PR test.

Between the post- and the delayed post-tests (see Table 6.4) the only significant
effects were found on the TEMA-3 and the PWK test. Thus, playing Fingu did have
an immediate and delayed effect on children’s mathematics knowledge. The effects
we observed varied with age group and were largest for the 7-year-olds while the
effects for the 5- and 6-year-olds were similar and comparable to the overall effects.

0%
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40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7

Fig. 6.2 The percentage of
children playing on different
levels

Table 6.3 Results from a paired-samples T-test of the mean values of the different pre- and
post-tests complemented by effect sizes

Test N Pre-test Post-test Difference Effect size t p-value

Tema3 81 28.15 31.40 3.25 0.34 7.54 < 0.001

PWK 82 15.88 18.65 2.77 0.42 6.33 < 0.001

PS 74 4.08 5.28 1.20 0.46 5.17 < 0.001

PR 75 11.64 14.44 2.80 0.79 8.54 < 0.001

138 I. Holgersson et al.



6.8.4 Example 3—Two Different Ways of Playing Fingu

Our third example focuses on how two different groups of children, identified by
their tendency to take shorter or longer amounts of time to answer the different
tasks, differ in their ability to make use of the structural affordances that become
available when playing the game.

A core idea in the design of Fingu was that children would develop subitizing
strategies rather than relying on only counting strategies. Signs that such strategies
were used should be evident as shorter MATs and/or greater PCAs. When we
analyzed the answering times for different tasks in the game, there were some tasks
(e.g., 2 + 0, 5a + 0, and 5a + 5a), where almost 100 % of the answering times were
shorter than 3.0 s. In other tasks (e.g. 7a + 1 and 7a + 2), the majority of the
answering times were longer than 4.0 s. However, there were a few tasks (e.g.,
9a + 1 and 10 + 0), where the distribution of answering times displayed a clear
bimodal form, with one bump between 1 and 3 s, and the other between 4 and 6 s
(see Fig. 6.3). An interpretation of these bumps in the data is that the first bump is
the result of strategies using retrieval or subitizing, whereas the second bump is the
result of counting all the objects using a one-by-one method. Of course the
answering time is the result of the joint time it takes to determine the sum and to
form the finger response pattern.

Since the tasks 10 + 0 and 9a + 1 only appear on level 7, we restricted our
analysis of this question to those 60 children, that is 54 % of all children, (see
Fig. 6.2), who played all the levels of Fingu. Using the individual MATs from only
three special tasks, 10 + 0, 9a + 1 and 5a + 5b, we identified three different groups
(with roughly equally numbers of subjects in each): F (Fast) individuals (with
MATs shorter than 3.0 s on all three tasks); S (Slow) individuals (with MATs
longer than 4.0 s on all three tasks); and M (Medium) individuals (individuals with
mixed answering time patterns).

To compare the performance of these three groups, we performed independent
samples t-tests between the F and S groups’ mean MATs on each of the 60 tasks.
What we found is that the F and S groups had significantly different mean MATs on
52 of the 60 tasks (with p < 0.001 for 26 of the tasks and p-values between 0.001
and 0.05 for the remaining 26 tasks). The tasks that, divided the F and S groups
most significantly were tasks where the configuration 5b was one of the elements.

Table 6.4 Results from a paired-samples T-test of the mean values of the different post- and
delayed-post-tests complemented by effect sizes

Test N Post-test Delayed test Difference Effect size t p-value

Tema3 82 31.43 33.16 1.73 0.18 4.64 < 0.001

PWK 80 18.65 19.68 1.03 0.16 2.38 0.020

PS 81 5.12 5.09 −0.04 −0.01 −0.22 0.829

PR 78 14.46 13.97 −0.49 −0.15 −1.76 0.082
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The ability to perceive configuration 5b as the quantity five, in the same way as 5a
is perceived by almost all of the players, thus seems to be a crucial difference
between the F and the S groups.

Other tasks that showed strong significant differences between the F and S
groups included tasks with one large (>5) single element, or tasks of the N + 1 type,
where N was larger than 3. These tasks represented at least two different types of
increases in complexity. The first was to learn the affordance to subitize a
non-canonical configuration as 6b, 7b, or 9b. The other type of complexity was to
be able to quickly add +1, an ability that presupposes the ability to conceptually
subitize the larger part.

In summary, we identified two types of strategies that children developed as they
played Fingu. The first was to use counting to find out how many fingers to use and
then respond accordingly. The other was to pick up some of the affordances that the
game offers to use some kind of subitizing (either perceptual or conceptual), to
directly recognize either (a) the single configuration of a task, (b) the two config-
urations separately, or (c) the totality of these tasks, all resulting in shorter
answering times. These strategies were used by all of the different groups, but in
very different proportions. There were tasks such as 1 + 0, 5a + 0 and 5a + 5a,
which both the F and the S groups solved by subitizing and there were tasks such as

Fig. 6.3 Distribution of answer time for correct and non-correct answers from 60 players that
answered the task 10 + 0
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6b + 3a and 7b + 2, which the majority in both groups solved by enumeration
(although the F group was faster on these tasks). The biggest observed difference
between the groups was in how they managed to utilize the affordances of Fingu.
As a sign of an individual’s ability to take advantage of these affordances, his or her
relation to configuration 5b seems to be indicative.

6.8.5 Example 4—An Individual Developmental Trajectory

Our last example is an analysis of individual development while playing the game
based on a single case.

Adam is a five-year old boy attending pre-school, who made large improvements
between pre- and post-testing on all four tests, with delayed test results about the
same as the post-test results. Among the participants he completed the most trials,
with a total of 4572 (IRE-sequences). These trials fell into two periods. In the first
5 weeks of the intervention, he completed 2140 trials during 195 attempts in levels
1–6. In the last three weeks of the intervention, he completed 2432 trials during 141
attempts in levels 6 and 7 while also replaying other levels (see Table 6.5).

In Period 1, Adam was busy trying to advance in the game. What is striking in
Table 6.5 is the display of endurance and persistence even with low proportions of
correct answers. He completed Levels 1 and 2 quickly but, on Levels 3–5, he made
a number of attempts before he succeeded. On Level 6, he made 17 unsuccessful
attempts. In Period 2, Adam started by successfully replaying all the levels that he
had completed before, and then he continued with his attempts to succeed on Levels
6 and 7. This took another 12 attempts on Level 6 and 28 attempts on Level 7. After
that, there was a long period where he repeatedly (mostly successfully) replayed
Levels 1–5. Levels 6 and 7 remained difficult with only 2 successes on Level 6 and
4 successes on Level 7. Altogether, what emerged was Adam’s perseverance in the
game and his willingness to replay it, becoming a more confident Fingu player.

What kind of mathematics has Adam learned? Looking at the PCAs and MATs
of the different tasks on different levels reveals several patterns. Since the MATs for
correct answers were only greater than 4.0 s for 5 of the tasks and less than 3.0 s for
53 of the tasks, we concluded that Adam had a clear tendency of answering quickly
and avoiding counting methods. Regression analyses showed that Adam signifi-
cantly improved the PCA on 30 of the 60 tasks, and became significantly faster in
giving correct answers on 25 of the tasks.

Table 6.5 Adam’s number of attempts on different levels and success rates

Level 1 2 3 4 5 6 7 Sum

Period 1 Attempts 5 7 32 46 88 17 0 195

Successful (%) 0.60 0.29 0.03 0.02 0.01 0.00 0.04

Period 2 Attempts 21 9 10 9 8 34 50 141

Successful (%) 0.95 0.78 0.80 0.78 0.88 0.06 0.08 0.39
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Using the playback system (see Fig. 6.4 for an illustration), we analyzed the
finger patterns that Adam used. During the first period, there were often flashes of
dots flickering by and many of the patterns that emerged were interpreted as
missing one finger. The first two videos of Adam’s play, which showed that he was
very impulsive and kinesthetically imprecise, confirmed this observation. An
illustrative example is Adam’s trajectory for the task 7b + 0. In the first period, he
usually answered with the pattern 3 + 5 (3 fingers on the left hand +5 fingers on the
right) together with occasional correct answers with the pattern 3 + 4. The most
reasonable interpretation of this observation is that he used the pattern 3 + 5 all the
time, but occasionally the pinky of his right hand was placed on the
touch-insensitive frame of the iPad, which resulted in a correct answer. In this
example, the feedback must have been confusing to him, most often being negative,
but occasionally positive, for what may have appeared to Adam as the same
response. However, as he continued playing, he resolved this dilemma during
period 2 by changing his response to 2 + 5.

Another observation made from Adam’s response patterns is his tendency to rely
on subitizing in solving the tasks. From the beginning, Adam quickly responded
with the pattern 0 + 5 on the task 5a + 0 and it did not take long before he used the
same pattern on the task 5b + 0. On the tasks 6a + 0 and 6b + 0, however, he
quickly developed the response pattern 3 + 3. In the configuration 6a, it was easy
for Adam to recognize a 3 + 3 pattern, but in the configuration 6b, this was not as
easy. However, it is possible that Adam recognized the 3b triangular configuration
on the top of a linear 3-dot pattern. To explain why the task 8b + 0 was harder for
Adam to learn than the task 8a + 0, there is the possibility he saw the configuration
8a as composed of the configurations 5b and the same linear 3-dot pattern.

The 3 + 3 response pattern for 6a + 0 and 6b + 0 from the later part of Period 1
into the whole of Period 2 becomes the dominating response pattern for all tasks
with 6 as the total sum, with the exception of the task 5a + 1, where the response
pattern 1 + 5 persists. In the first part of Period 1 he uses the semi-decimal response
pattern 1 + 5 also for tasks 4a + 2, 4b + 2, and 3a + 3a. Our interpretation of these
observations is that in the beginning of his playing Adam uses the response pattern
1 + 5 to represent the number 6, while he later establishes the response pattern
3 + 3 as a form of mapping, and as his favorite representation of the number 6. The
exception is the task 5a + 1 where he uses the pattern 1 + 5, because it is a direct
mapping of the task.

6.8.6 Additional Empirical Observations

In summing up, our analyses have shown that individuals exhibited large variations,
not only in the amount of time they played, but also in the strategies they developed
to manage the game. Our experience was that on tasks where there was a config-
uration that children did not immediately recognize, they either explicitly or tacitly
counted in order to determine the number of objects that were presented on the
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screen. However, they were much less inclined to count their fingers to determine
the number of fingers to put down in responding to the task. Instead, they seemed to
develop a kind of personal canonical finger pattern for each of the ten basic
numbers. For total quantities of 1–5 these patterns were most often formed by one
hand with 1–5 adjacent fingers. For total quantities of 6–10, these patterns could be
semi-decimal (i.e., consisting of all the fingers on one hand complemented by
fingers on the other hand), or they could be a symmetrical pattern (e.g., 4 fingers on
each hand representing 8, or 3 fingers on each hand representing 6). Another way
children determined the number of fingers to use, as part of their response was to
map each set of the presented objects separately. When this strategy was used, most
of the children did not count the number of objects in either of the sets. Instead, they
seemed to subitize these numbers. In this way, their strategy was more efficient than
counting. In Fig. 6.4, both mapping patterns and a semi-decimal pattern is illus-
trated. All these analyses of different finger patterns have made use of the built-in
replay function of Fingu. As the figure shows, due to the pattern of the red spots, it
is very often possible to be almost certain if one or two hands have been used, or
even which fingers are used. This interpretation becomes much stronger when
compared to the information from the corresponding videos.

6.9 Concluding Remarks

In this chapter, we have described the Fingu game as a virtual manipulative, out-
lined the design principles, and discussed the underlying theoretical rationale. We
have also illustrated some of the affordances of Fingu and the potential effects of
playing the game. Our conclusion is that Fingu is a game that offers valuable
experience for teaching and learning early numeracy, whether in school or in home
settings.

As pointed out above, design, development, use and research of Fingu are part of
a research program adopting a DBR-approach. Fingu has gone through several
iterations of revision of a number of its design elements, including layout changes
and enhancements of the game packaging. We also aim to develop other versions of
Fingu, with designs for other affordances than the present version.

Fig. 6.4 Adam’s different ways of answering using six fingers
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Chapter 7
Developing Virtual Mathematics
Manipulatives: The SAMAP Project

Erol Karakırık

Abstract Online educational activities providing interactive environments where
users can investigate the properties of abstract concepts and reflect on them are in
great demand for all subjects in primary and secondary schools. However, the
ubiquitous nature of these activities does not always guarantee students’ conceptual
development if enough consideration was not given to the design and implemen-
tation of the system and an appropriate role was not defined for the technology
used. A computer system could play a wide range of roles changing from a ‘tutor’
acting as “a decision-making” subject to a ‘tool’ acting as an “auxiliary” object.
One can also interpret this classification of roles as a system having total control of
flow or a system allowing free explorations. A computer system is regarded as
suitable to be used in education when it provides facilities that promote the stu-
dent’s conceptual development through engaging him/her in meaningful and
authentic tasks. The new Turkish mathematics curriculum is based on constructivist
educational approaches and advocates the wide usage of educational activities that
help to make mathematical concepts and relations meaningful. The purpose of this
chapter is to report the findings of a research project, SAMAP, funded by the
Turkish National Science Foundation (TUBITAK), which aimed to develop virtual
mathematics manipulatives in Turkish for the primary and secondary school
curriculum.

7.1 Introduction

Recent developments in Information Communication Technologies (ICT) offer
many new possibilities to enhance students’ comprehension during the
learning-teaching process. Hence, online educational activities providing interactive
environments where users can investigate the properties of concepts and reflect on
them are in great demand for all subjects in primary and secondary schools.
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However, the ubiquitous nature of these activities does not always guarantee stu-
dents’ conceptual development if enough consideration was not given to the design
and implementation of the system and an appropriate role was not defined for the
technology used (Durmuş and Karakırık 2006). A computer system could play a
wide range of roles changing from a ‘tutor’ acting as “a decision-making” subject
to a ‘tool’ acting as an “auxiliary” object (O’Shea and Self 1983; Crook 1994). One
can also interpret this classification as a system having total control of flow or a
system allowing free explorations. In Jonassen’s (1996) cognitive tool metaphor, an
appropriate role for computers in line with the constructivist approaches is defined.
A computer system is regarded as suitable to be used in education when it provides
facilities that promote a student’s conceptual development through engaging
him/her in meaningful and authentic tasks.

Mathematics is rightly regarded as one of the most important subjects for the
primary school primary school curriculum. Students at the concrete operational
stage are introduced to fundamental abstract mathematical concepts and relations
for the first time at this stage. Hence, it is vital to make abstract mathematical
concepts and relations concrete with different models in order for students to be able
to grasp them. Lack of such models leads students to focus on arithmetic and
procedural skills rather than mathematical concepts and relations. Hence, there are
many projects in this regard, such as National Library of Virtual Manipulatives
(NLVM) (http://nlvm.usu.edu), WisWeb (http://www.fi.uu.nl/wisweb/en/) and the
National Council of Teachers of Mathematics (NCTM) Illuminations (http://
illuminations.nctm.org), to provide comprehensive sets of mathematics manipula-
tives to be used from kindergartens to the graduate studies to promote students’
mathematical skills and understandings. The new Turkish mathematics curriculum,
updated in 2005 (MEB 2005), is based on constructivist educational approaches
and advocates the wide usage of educational activities that help to make mathe-
matical concepts and relations meaningful. It also aims to promote the use of ICT
and the Internet and to remove the digital gap among primary and secondary school
students through the FATİH project (fatihprojesi.meb.gov.tr), which employs
physical and virtual manipulatives.

Manipulatives are physical objects or concrete models that can make abstract
ideas and symbols more meaningful and understandable to students (e.g., base-ten
blocks and algebra tiles). A virtual manipulative is “an interactive, Web-based,
visual representation visual representation of a dynamic object that provides
opportunities for constructing mathematical knowledge” (Moyer et al. 2002).
Virtual manipulatives are distinguished from other digital resources used for
learning in their dynamic nature and provision of interactive experiences. The
importance of using play and manipulation to grasp abstract mathematical concepts
or using tools or concrete objects to mediate learning is emphasized by many
educators for constructivist learning environments (Bruner 2003; Dienes 1971;
Duffy and Cunningham 1996; Piaget 1952; Pea 1985; Vygotsky 1978). Many
studies also confirm virtual and physical manipulatives physical manipulatives as
effective tools of instruction (Butler et al. 2003; Sowell 1989; Suh and Moyer
2007). However, the provision of tools alone is not sufficient without adequately
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clarifying their place and their usage in the teaching-learning process. Hence, it is
necessary to develop virtual manipulative sets that specifically highlight certain
mathematical concepts and relations in the mathematics curriculum.

7.2 The SAMAP Project and Manipulatives
Development Process

SAMAP is a Turkish acronym composed by the initial letters of the Turkish phrase
“virtual mathematics manipulative project”. The SAMAP project was launched to
develop an interactive, comprehensive and multi-lingual mathematical manipulative
set, primarily focusing on the Turkish audience, for the primary and secondary
school curriculum (Grades 1–8) in five strands of mathematics (numbers, geometry,
measurement, data analysis and algebra). It was implemented by the author at
Abant İzzet Baysal University, Bolu, and sponsored by the Turkish National
Science Foundation, TUBITAK (Karakırık 2008, 2010). The SAMAP project
included a graphic designer who was responsible for designing graphical elements
(e.g., icons and images) displayed on the manipulatives and the website. The design
and coding of the manipulatives and instructions and explanations provided in the
manipulatives and on website were all managed by the author. SAMAP could be
regarded as the first attempt to produce the Turkish version of the National Library
of Virtual Manipulatives (NLVM) (NLVM) (Nlvm.usu.edu 1999). The general
outline of the NLVM was adopted for SAMAP’s implementation. Many novel
manipulatives as well as modified versions of available manipulatives were
implemented in SAMAP. Most SAMAP manipulatives were designed with a direct
reference to a mathematical objective from the Turkish mathematics curriculum.

SAMAP manipulatives were coded by the author in an object-oriented manner
using JAVA programming language. All SAMAP manipulatives were derived from
the same JAVA code, which allowed for the creation of both an applet version,
running on a webpage, and a stand-alone application version which could be
downloaded. The SAMAP project initially employed the applet versions of the
manipulatives on a website and later a SAMAP CD was produced with the
application versions of the manipulatives. Figure 7.1 shows the outline of a typical
SAMAP manipulative. Each SAMAP manipulative screen was divided into certain
areas to provide a consistent and user-friendly environment: the main working area
holds the actual implementation of the manipulative, title bar displays the manip-
ulative’s title, information panel gives specific information about the manipulative
or shows the latest feedback based on a user action and the command panel pro-
vides an interactive area where all graphical items providing user interaction (such
as buttons, textboxes etc.) are placed. Since communication among panels is
achieved through a special messaging service, many components seen on the screen
are independent of each other and can be reused in the design of different
manipulatives.
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All panels are optimized to 800 � 600 screen resolution and are adjusted
automatically for lower resolutions and provide scrollbars if necessary. The com-
mand panel and the information panel are automatically placed at the bottom of the
screen whenever a manipulative requires a larger horizontal working area.
SAMAP’s default language is Turkish but can detect and adapt itself to the user’s
local language. However, a property file holding language specific data needs to be
updated to use SAMAP in another language. Manipulatives could interact with the
website through JavaScript and display instructions and help pages specific to a
manipulative.

The information panel also includes the SAMAP mascot, which provides instant
graphical and audio feedback about the latest user action as portrayed in Fig. 7.2.
The SAMAP mascot smiles for a correct action and it blushes for a wrong one. It is
interesting to note that this mascot is known as SAMAP especially among young
users.

Educational technologists need to determine the educational and technical
specifications of a manipulative before implementation. Objectives from the Turkish

Fig. 7.1 An example SAMAP manipulative layout

Fig. 7.2 States of a SAMAP
mascot
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primary mathematical curriculum were thoroughly investigated and activities that
could be adapted to the computer were selected by the author and educational aims
and specifications were determined. Technical specifications of the manipulatives
were determined with both the requirements of the task at hand and the restrictions of
the programming environment or the expertise of the programmers.

Virtual manipulatives, in essence, provide novel virtual artifacts (objects or
tools) to be used to reflect or play with certain mathematics concepts and relations.
The design of any artifact is determined by the specifications of its affordances. An
affordance defines the relationship between the properties of an object and the
capabilities of the agent that determine just how the object could possibly be used
(Norman 2013). Hence, unique affordances for virtual manipulatives need to be
identified to help students to learn specific mathematics concepts and relations.
Moyer-Packenham and Westenskow’s (2013) meta-analysis of virtual manipula-
tives suggest 5 affordance categories of virtual manipulatives, namely focused
constraint, creative variation, simultaneous linking, efficient precision and moti-
vation. The SAMAP manipulatives were designed in a way to support these ped-
agogical affordances to impact student learning.

The SAMAP manipulatives were designed to be very flexible but constrain
student actions and restrict input when necessary and have focused constraints. For
instance, drop down boxes and radio-buttons were widely employed to limit the
user inputs to correct values. If a textbox was used to prompt user input, validity of
the input was confirmed by necessary checks before the input was accepted.
Students were allowed free explorations and solved specific problems with
restricted actions depending on the running mode of the manipulatives.

The SAMAP manipulatives were designed to support simultaneous linking by
using multiple representations of mathematics concepts in symbolic, graphical,
textual or other forms. For instance, the set manipulations dynamically supports
textual, pictorial, and symbolic forms for set operations.

The SAMAP manipulatives were designed to be attractive and entertaining and
afford motivation. A specific icon was designed for each manipulative and a special
title was chosen for each activity to attract students’ attention. The SAMAP mascot
was very motivating for younger students. Each manipulative was designed to have
a specific meaningful task. The tasks were also designed to be challenging enough
to increase motivation.

The SAMAP manipulatives were designed in a way to support efficient preci-
sion, by employing precise representations and simulating real behaviors. For
instance, the hit the target manipulative uses an aircraft and cannon to demonstrate
the concept of angle. The finding symmetry manipulative allows users to split an
image flexibly and test whether they are comparable by dragging one piece to
another and rotating them. However, efficient precision is sometimes disregarded on
purpose to make students focus on the concept at hand. For instance, the right angle
symbol is not used when the angle is 90° to emphasize their interchangeable usage
in the hit the target manipulative. However, most students regarded this as an error
and requested the regular right angle graphical symbol be used to denote that an
angle having a value of 90° is a right angle.
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The SAMAP manipulatives were designed to have open-ended tasks that
encourage creativity and enable students’ multiple solutions. For instance, the logo
manipulative allows users to produce their own drawings (e.g., cars and houses).
Many manipulatives require subject-specific problem-solving knowledge to solve
the presented problem in a task and allow multiple solutions for the problem. For
instance, the set manipulative could interpret any set operations and allow different
symbolic representations for any area on the Venn diagram beside symbolic
expressions provided in the drop down boxes.

The SAMAP project included different types of manipulatives such as manip-
ulatives for solving certain mathematics problems, exemplifying or simulating
certain mathematical concepts or relations, doing certain mathematical calculations
and procedures, and innovative applications of mathematical concepts and activities
that could provoke discussions in the class. Manipulatives that could be employed
for both individualized instruction and collaborative work were implemented. Each
manipulative is automatically adapted to different class levels through certain
parameters. For instance, base ten blocks were adapted to employ numbers up to 20,
99, 999 and 9999 for first, second, third and fourth grade students respectively,
thereby employing the focused constraint affordance. Furthermore, setting the base
to a number other than 10 is also permitted for grades 5–8.

Around 75 distinct (100 with variations) mathematical manipulativewere
implemented by the author at Abant İzzet Baysal University during the three years
of the project between the years of 2005 and 2008. The number of manipulatives
can be roughly categorized with respect to the five strands of mathematics as
follows:

• numbers (28),
• geometry (20),
• data analysis and probability (14),
• measurement (8),
• algebra (5).

These numbers roughly correspond to the weights each mathematical strand
occupies in the primary level. These numbers are regarded as in line with the project
aims since numerical activities focusing on only arithmetic and numerical opera-
tions without any problem solving tasks were generally avoided. For instance,
activities requiring arithmetic operations but not attaching any specific meaning to
the numbers used were avoided. In fact, activities of this type were designed only
after specific requests by in service teachers (e.g., one such example is the number
pyramid manipulative in number strand). The relevant files for each manipulative
were brought together in a JAR file. Then deployment, instruction and web pages
for the manipulatives were designed. Figure 7.3 shows the sequence of web pages
to reach specific manipulatives in a strand.
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7.3 Examples of SAMAP Manipulatives

Here are two examples of SAMAP manipulatives exemplifying individualized and
collaborative usage in the class to demonstrate the functionality and nature of the
manipulatives.

Figure 7.4 shows a SAMAP manipulative for operations on sets and shows its
results dynamically in multiple representations namely symbolic, verbal, and
graphical forms. The manipulative has many options in the form of radio-buttons on
the bottom-left of the screen to change the appearance and the functionality of the
set operations such as:

• number of sets available (one, two, or three),
• types of the sets (intersected sets, disjoint sets and subsets), and

Fig. 7.3 Web pages to reach specific manipulatives in a strand
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• running mode (free investigation, finding the shaded region, and shading a
specified region).

Furthermore, the manipulative has the following components to provide further
display options:

• interactive graphical display of the results of the set operations on the top right
of the screen,

• a drop down box showing all of the available results of set operations in
symbolic form ðA \ ðB [CÞÞ on the bottom-right of the screen,

• a textbox to enter any set operations in symbolic form,
• a button to change the text examples resembling the current set operations (there

are 7 different text examples for three intersected sets such as children eating
apples, pears, and quinces to show the sets A, B, and C respectively for the
current selection), and

• a text area where the results of the current set operations are displayed with
respect to the selected text example.

As Fig. 7.4 shows, this manipulative requires subject-specific problem-solving
knowledge for solving all relevant problems for the sets. Some of the capabilities of
the system, such as finding all different symbolic representations for the current

selection, such as A \ B0 \C0ð Þð Þ0 or A0 [ B
0 \C

0� �� �0
which could be found by

applying De Morgan’s Laws for the current selection, were hidden to reduce the

Fig. 7.4 The set manipulation of SAMAP
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complexity of the manipulative. In fact, one could argue that this manipulative has
the potential to be turned into more distinct manipulatives by just focusing on one
of the representations, on one of the set operations, or on one of the running modes.
Hence, in an individualized or collaborative teaching scenario, this manipulative
has the functionality to display the results of set operations dynamically in different
forms.

Although this manipulative resembles the Venn Diagrams manipulative avail-
able at the NLVM, it has novel and flexible features to distinguish it as a completely
different manipulative. For instance, one could use various real life situations such
as reading (newspapers, magazines, and books), attending lectures (math, physics,
and chemistry) and learning languages (English, French, and German) as well as
eating various foods to concretize the meaning of the set operations in the example
while the NLVM Venn Diagrams does not have this capability.

Figure 7.5 shows another SAMAP manipulative, which focuses on the concept
of arithmetic mean that dynamically computes and displays the arithmetic mean of a
set of random or user-defined data between 0 and 100. Unlike the previous
example, this manipulative has neither a comprehensive problem-solving capability
nor range of options for user-interaction. It only accepts random or user-defined
data and displays the data points and their arithmetic mean on the screen. In other
words, it enables users to see how the arithmetic mean changes when data set

Fig. 7.5 The arithmetic mean manipulative of SAMAP
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changes. Many users, including teachers, who seem to be inclined to press buttons
randomly or change some parameters in a manipulative to see what it leads to had
difficulty seeing or predicting the rationale for this manipulative since it has neither
a specific problem-solving tool nor a didactic style to teach something.

This does not make this manipulative less effective since it is purportedly
designed to be used with the guidance of an instructor in a teaching setting to
provoke discussions about the arithmetic mean. The manipulative enables users to
enter new data or remove or change existing data to resolve some of their
hypotheses about the arithmetic mean. However, the instructor needs to ask leading
questions to help users to grasp the subtleties of the concept of arithmetic mean. For
instance, one could ask the following leading questions that could be answered with
the help of this manipulative to demonstrate different aspects of arithmetic mean:

• state an observation about how arithmetic mean changes when new random data
are inserted;

• enter new data in order to increase/decrease the current arithmetic mean;
• remove any data on the screen in order to increase/decrease the current arith-

metic mean; and,
• change any data on the screen in order to increase/decrease the current arith-

metic mean.

All of the above questions point to some aspect of the concept of the arithmetic
mean. In fact, this manipulative never requires users to compute the arithmetic
mean by hand. Rather it forces users to think and comment on the influence of data
on the arithmetic mean.

7.4 Evaluation of SAMAP Manipulatives

The main aim of the SAMAP project was to be able to develop a comprehensive
virtual manipulative set for mathematics. The technical side of the project was
overwhelming and the project was understaffed for the evaluation part since one of
the team members responsible for evaluating the manipulatives had to leave at the
beginning of the project. Hence, the effectiveness of the manipulatives was mainly
evaluated through online questionnaires (e.g., the SAMAP assessment scale sur-
veys) and users’ comments on the technical and educational aspects of the
manipulatives. Suggestions for improvements were collected through the website
during the project. There were no quantitative or qualitative studies conducted to
make comparisons of SAMAP manipulatives with concrete manipulatives or other
instructional treatments because of the author’s belief that virtual manipulatives
need to be developed to promote students’ conceptual understanding rather than to
improve students’ performance on tasks and tests. However, SAMAP manipula-
tives were widely used in primary schools and were introduced to pre-service
teachers in educational technology courses in several Turkish Universities. The next
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section includes findings from implementation efforts, online evaluation, and
reports from pre-service teachers.

7.4.1 Online Evaluation of SAMAP Manipulatives

A project website was launched at the beginning of the project and all SAMAP
manipulatives were gradually integrated to the website. Users were required to
register to be able to use the site and participate in the study on voluntarily basis.
Hence, all numbers reported in the study refer to unique users. The study was
conducted between years 2006 and 2009. The online users of the SAMAP website
were classified into 9 different categories with respect to different class levels and
experience as shown in Table 7.1. Users that did not fall into one of these cate-
gories, such as parents and non-students, were classified as other and not included.

Nearly ten thousand unique users accessed the website during the project.
A special web page was prepared for each manipulative containing the instructions
on how to use the manipulative and online questionnaires depending on a particular
user’s classification. Various bits of statistical information about the users, such as
their locations and their computer screen resolutions, were collected using the
Google analytics tool. The number of users and completed questionnaires for dif-
ferent numbers of manipulatives in each strand are shown in Table 7.2. Five strands
of mathematics, namely numbers, geometry, measurement, data analysis and al-
gebra, are decoded using the abbreviation ST1 to ST5, respectively, in all the results
that follow.

Online questionnaires using Likert scale responses were administered to every
group for each manipulative. Different questionnaires having different numbers of
items were prepared with a measurement expert. Questions about technical and
educational aspects of the manipulatives, as well as users’ attitudes, were asked in
the questionnaires. Table 7.3 shows the number of questionnaire items and the
aspects of questions for each group. Participants were asked to complete the

Table 7.1 Classification of online users of SAMAP website

Group No Group members

Group 1 1st grade, 2nd grade and 3rd grade primary school students

Group 2 4th grade and 5th grade primary school students

Group 3 6th grade, 7th grade and 8th grade secondary school students

Group 4 First and second year pre-service teachers

Group 5 Third year pre-service teachers

Group 6 Fourth year pre-service teachers

Group 7 Graduate students

Group 8 Teachers

Group 9 Academicians

7 Developing Virtual Mathematics Manipulatives: The SAMAP Project 157



questionnaires for any manipulative they preferred. User comments were also
collected through a text area. The full analysis of the questionnaires (Karakırık and
Cakmak 2009) is beyond the scope of this chapter. We will just summarize the
results of each group and focus on primary school students in Group 1 and Group 2.

7.4.2 Group 1

Group 1 included 1st to 3rd grade students. A simple questionnaire consisting of
five three-level Likert items was prepared and pilot-tested with 10 children of this
level to ensure comprehensibility of questionnaire items. Students were required to
choose one of the three emoticons, , and to answer an item to denote
“agree” (A), “no opinion” (N) and “do not agree” (D). The results of questionnaires
for Group 1 are displayed in Table 7.4.

Table 7.2 The number of questionnaires completed for each strand of mathematics

Size (N) Number of manipulatives ST1 ST2 ST3 ST4 ST5 Total

Group 1 43 34 32 23 14 4 – 73

Group 2 20 23 10 5 8 3 – 26

Group 3 16 23 5 10 2 1 2 20

Group 4 44 43 63 23 9 9 2 106

Group 5 51 62 116 74 54 42 1 287

Group 6 33 36 22 16 4 4 12 58

Group 7 16 64 57 44 31 38 34 204

Group 8 45 55 57 22 16 4 3 102

Group 9 12 30 14 8 7 5 8 42

Total 280 370 376 225 145 110 62 918

Table 7.3 The number of questionnaire items for each Group

Attitude Educational Technical Total

# % # % # % Total

Group 1 3 60 1 20 1 20 5

Group 2 3 27 2 18 6 55 11

Group 3 4 27 4 27 7 47 15

Group 4 4 20 5 25 11 55 20

Group 5 4 15 8 31 14 54 26

Group 6–7 4 10 20 49 17 41 41

Group 8–9 4 8 28 55 19 37 51
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Forty-three students completed 73 questionnaires for 34 different manipulatives
in Group 1. Students in this group stated that they loved the manipulatives (85 %),
wanted to play again (77 %), found them easy (81 %), were able to play the games
themselves (88 %), and learned something new (73 %). Students’ comments also
confirmed that they liked SAMAP manipulatives and found them easy to use.

7.4.3 Group 2

Group 2 included 4th and 5th grade students. A pilot study was performed on
5th-grade students to determine the comprehensibility of 29 questionnaire items.
Based on the pilot study, a final questionnaire, consisting of eleven three-level
Likert items, was prepared like Group 1 but written expressions were used instead
of emoticons. The questionnaire administered to Group 2 and the results are dis-
played in Tables 7.5 and 7.6 respectively.

Twenty students completed 26 questionnaires for 23 different manipulatives in
Group 2. Students in Group 2 loved the manipulatives (88 %), found them easy
(96 %), thought the descriptions were clear (92 %), liked the screen layouts (77 %),
wanted to play again (85 %), thought they drew attention to the mathematics
(73 %), and reported that they learned something new (69 %). Many students stated

Table 7.4 The results of questionnaires from Group 1

Items Opinion ST1 ST2 ST3 ST4 Total %

1. I liked this game A 29 20 11 2 62 0.85

N 2 2 1 0 5 0.07

D 1 1 2 2 6 0.08

2. I like to play
this game again

A 26 17 10 3 56 0.77

N 5 4 2 1 12 0.16

D 1 2 2 0 5 0.07

3. It is easy to play this game A 28 18 12 1 59 0.81

N 4 4 1 3 12 0.16

D 0 1 1 0 2 0.03

4. I can play this game on my own A 28 20 13 3 64 0.88

N 3 1 0 1 5 0.07

D 1 2 1 0 4 0.05

5. I learned something new in this game A 23 18 10 2 53 0.73

N 6 4 0 2 12 0.16

D 3 1 4 0 8 0.11

Note A agree; N no opinion; D do not agree
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that they found SAMAP manipulatives useful and entertaining. Some wanted more
challenging activities with time restrictions. Furthermore, manipulatives related to
numbers and geometry areas were used more frequently by students in Group 1 and
Group 2 than measurement and data analysis since they are more likely to include
arithmetic operations. Students preferred to employ manipulatives involving certain
procedural skills and mathematical calculations such as the number pyramid
manipulative in Fig. 7.6.

Table 7.5 The questionnaire administered to Group 2

Q1. I like this activity

Q2. I want to use this activity again

Q3. It is easy to use this activity

Q4. I can use this activity on my own

Q5. This activity has increased my interest in mathematics

Q6. The screen layout of this activity is nice

Q7. This activity has the opportunity to correct my mistakes

Q8. This activity gives adequate warning and information

Q9. This activity has the opportunity to test myself

Q10. I learned new topics in this activity

Q11. The description of this activity is clear

Table 7.6 The results of questionnaires from Group 2

ST1 ST2 ST3 ST4 Total %

A N D A N D A N D A N D A N D A N D

Q1 10 0 0 4 0 1 6 0 2 3 0 0 23 0 3 0.9 0 0.1

Q2 10 0 0 4 1 0 6 1 1 2 1 0 22 3 1 0.9 0.1 0

Q3 10 0 0 5 0 0 7 0 1 3 0 0 25 0 1 1 0 0

Q4 9 1 0 5 0 0 8 0 0 3 0 0 25 1 0 1 0 0

Q5 9 1 0 3 2 0 5 3 0 2 1 0 19 7 0 0.7 0.3 0

Q6 8 1 1 4 0 1 5 2 1 3 0 0 20 3 3 0.8 0.1 0.1

Q7 9 1 0 3 1 1 6 0 2 3 0 0 21 2 3 0.8 0.1 0.1

Q8 8 1 1 4 1 0 4 1 3 2 1 0 18 4 4 0.7 0.2 0.2

Q9 9 1 0 4 0 1 5 3 0 3 0 0 21 4 1 0.8 0.2 0

Q10 5 5 0 4 1 0 6 1 1 3 0 0 18 7 1 0.7 0.3 0

Q11 9 1 0 5 0 0 7 0 1 3 0 0 24 1 1 0.9 0 0
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7.4.4 Group 3

Group 3 included secondary school students. Sixteen students completed 20
questionnaires for 23 manipulatives. There were positive and negative opinions in
this group about the manipulatives. Some stated that manipulatives were not
interesting enough for them to use since they found the activities simple. Others
stated that activities were nice and useful. The analysis of the questionnaire items
revealed that students wanted to use the activities individually but did not have
much desire to re-use the activities.

7.4.5 Groups 4–7

Groups 4–7 included undergraduate and graduate students. The highest numbers of
questionnaires were completed by these groups. One-hundred forty-four students
completed 655 questionnaires for 205 manipulatives. These groups completed
similar questionnaires, except first and second year undergraduate students were
asked fewer questions on educational aspects. Participants in these groups com-
plained about the number of questions in the questionnaires and were careless about

Fig. 7.6 The number pyramid manipulative of SAMAP
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completing test items since it was mainly introduced in a course. However, many
useful comments were gathered from these groups especially about errors found in
the manipulatives and suggestions for modifications for better interactivity.
Furthermore, most of the participants stated that they liked the manipulatives and
were optimistic about their possible usage in classes to improve mathematics
education.

7.4.6 Group 8

Group 8 included primary school teachers. A comprehensive questionnaire, con-
sisting of 51 five-level Likert items, was used with the range of options from
“strongly agree” to “strongly disagree.” Teachers were asked detailed questions
about the technical and educational aspects of the manipulatives. Forty-five teachers
completed 102 questionnaires for 55 manipulatives. Analysis of the questionnaires
revealed that most teachers thought that students would like the manipulatives but
they would be unable to use them on their own. Teachers found the manipulatives
in-line with the curriculum with specific learning objectives but they were generally
pessimistic about their possible contributions to students’mathematics achievement.

Teachers described manipulatives working as desired, but found some manip-
ulatives were inflexible and did not enable them to construct their own problems,
objects or movements. For instance, they wanted to change the analog clock by
dragging the minute hand using the mouse rather than using the keyboard or the
digital clock. One teacher commented that she used the manipulatives in the class
and students liked the manipulatives. In fact, many teachers sent emails to the
author to express their positive feelings about the manipulatives during the eval-
uation process. Some teachers demanded more explanations and instructions to be
provided to direct students and teachers on how to use the manipulatives.

7.4.7 Group 9

Group 9 included academicians working actively in universities. Twelve aca-
demicians completed 42 questionnaires for 30 manipulatives. Academicians also
found the manipulatives promising and useful. Some stated that manipulatives
could be used as complementary materials in the class and may help students to
reflect on mathematics concepts. Some demanded more feedback be provided and
suggested improvements in manipulative design.
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7.4.8 Overall

In summary, the results of the online study reveal that participants liked and
enjoyed SAMAP manipulatives. Manipulatives were generally regarded as having
potential to be useful for teaching mathematics concepts. The level of interactivity
provided in SAMAP manipulatives was generally found satisfactory, despite the
many suggestions for modifications that were put forward. Furthermore, many
schools utilized SAMAP manipulatives in classroom settings for teaching mathe-
matics all over Turkey.

7.5 Analysis of Pre-service Teachers’ Reports
of SAMAP Manipulatives

It is not easy to evaluate the effectiveness of manipulatives through only question-
naires or statistical means since ICT applications may not always lead to significant
changes as measured by classical evaluation methods. Hence, SAMAP manipula-
tives were incorporated into educational technology courses in several Turkish
Universities between 2009 and 2014, including Abant İzzet Baysal and Selcuk
Universities. Pre-service primary school and mathematics teachers and graduate
students were required to submit detailed reports on the technical and educational
aspects of SAMAP manipulatives.

SAMAP manipulatives were introduced to the senior pre-service primary school
mathematics teachers and classroom teachers within a mathematics methods course
that met three hours per week. Some of the manipulatives were implemented in a
classroom setting and pre-service teachers were required to use and investigate the
manipulatives for two weeks and prepare a report on their effectiveness and state
their opinions for improvement. More than a thousand pre-service teachers’ reports
were collected in five years in two universities containing pre-service teachers’ own
words and reflections about many SAMAP manipulatives. Many encouraging
comments and feedback were received from these reports. These comments were
taken into account to revise some of the manipulatives. Most of the participants had
optimistic opinions about the effectiveness of the manipulatives. Major issues
highlighted in the reports about virtual manipulatives could be summarized as
follows:

SAMAP manipulatives were seen as entertaining, easy to learn and useful
activities by most of the pre-service teachers. Many reports talk about the moti-
vational aspect of many manipulatives by referring their entertaining nature. The
manipulatives were thought to be attractive for children and they were thought to be
appropriate to be implemented in class. Mathematics was said to be more enjoyable
through these manipulatives. They were also generally found to be appropriate for
the Turkish curriculum and class levels. Furthermore, manipulatives were said to
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have the potential to change students’ perception of mathematics after seeing
mathematical models of some real life problems.

SAMAP manipulatives are successful in modeling mathematical concepts for
primary school, which may contribute to the persistence of learning mathematics.
For instance, the function machine manipulative in which users were required to
guess a function definition is said to make the function concept very concrete. The
input and output areas of the manipulative that models a function were thought to
be very explanatory.

Likewise, the counting scales manipulative is said to be useful in making
addition and subtraction operations concrete. It was found very helpful to teach the
properties of positive and negative numbers by showing different colored scales and
requiring users to hide scales until they have scales of just one color. A scale was
hidden by dragging a different colored scale over it. Users quickly get the idea that
one cannot hide a positive or a negative scale by another positive or negative scale
respectively.

Virtual manipulatives have been viewed as helping to develop students’ thinking
skills, making connections among mathematical concepts and improving their
estimation skills. For instance, it was stated that the fill and pour manipulative
helped students to make connections between different numbers and improved their
estimation skills in an entertaining way.

Virtual manipulatives may contribute students’ problem-solving skills. For
instance, several measurement activities involving real-life situations were found
useful to teach practical problem solving skills and helpful for students to realize
how to apply mathematical concepts to real life.

SAMAP manipulatives were generally found to be very useful. For instance, the
“tossing coins” manipulative was seen as useful in exemplifying the probability
concept despite its simple design and functionality. It was especially regarded
helpful for showing the difference between theoretical and empirical probability. It
helps users to discover that this difference gets smaller when the number of tossed
coins increases.

SAMAP manipulatives reinforce what was learned in class. For instance, the
number decipher manipulative was found very useful in consolidating arithmetic
operations on natural numbers. Students need to make use of higher-order thinking
skills in this activity and take into consideration the next operation to apply. This
kind of manipulative involving a puzzle may encourage students to enjoy solving
novel problems.

The manipulatives have a pedagogically appropriate design. For instance, the
“set manipulations” manipulative covers all set operations in a manner from simple
to difficult.

The manipulatives were seen as appropriate for individualized learning since the
design takes student differences into account. One can set several parameters in the
manipulatives in accordance with his/her speed of learning. This encourages stu-
dents’ active participation and use of technology in the class. For instance, the
taking symmetry manipulative exemplifies the symmetries of figures or lines and
provides a good pretext for using technology in mathematics classes.
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The manipulatives provide valuable feedback and have potential to remove
students’ misconceptions. For instance, it was reported that some students make
mistakes in multiplication procedures even at the secondary school level. Virtual
manipulatives are useful in correcting students’ misconceptions.

The dynamic nature and interactivity of SAMAP manipulatives were appreciated
by most pre-service teachers. For instance, the hit the target and finding symmetries
manipulatives were found very interactive and visually demonstrated the angle and
symmetry concepts respectively.

Some SAMAP manipulatives were found very ordinary and not interesting
enough to motivate students (e.g., factor tree). It was criticized for employing big
numbers in the activity for 6th grade and for the provision of all factors when one is
entered by the user. Similarly, the finding balance manipulative was found simple
and inflexible since it contains a limited number of weights.

It was concluded from the reports that manipulatives, including animations and
multiple representations to illustrate the properties of certain mathematical con-
cepts, were more popular and seen as educationally effective by the participants. It
was interesting to note that many preferred manipulatives to be used on an indi-
vidual basis rather than collaboratively. This reflects the perception of the partici-
pants about the place of technology in classes. Many aim to employ manipulatives
to concretize some mathematical concepts, which may be difficult to achieve by
physical manipulatives or other means. Manipulatives requiring teachers’ guidance
and whose aims and functionalities are not so apparent though operational
instructions were given, such as the Arithmetic mean manipulative in Fig. 7.5, are
found to be troublesome by most participants. This may reflect teachers’ expecta-
tions to find ready-made activities and their unwillingness to invest time and energy
to prepare their own activities through flexible manipulatives and problem-solving
tools.

7.6 Discussion

A recent meta-analysis on virtual manipulatives reported that virtual manipulatives
have produced overall moderate effects in favor of the virtual manipulatives when
compared with other instructional treatments (Moyer-Packenham et al. 2014).
Moyer-Packenham and Suh (2012) reported that virtual manipulatives have sig-
nificantly different effects on different achievement groups because of students’
different types of experiences with the virtual manipulative. All virtual manipula-
tives cannot provide similar learning performance and efficiency and children in
different age groups might respond in different ways to virtual manipulatives
(Moyer-Packenham et al. 2015). Virtual manipulatives in different mathematical
strands also produce varying results. The quality of interactions provided or the
number of different representations employed in these manipulatives greatly affect
these results. For instance, virtual manipulatives prepared for the geometry strand
are thought to produce the biggest effect for conceptual understanding since the
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enigmatic nature of geometry allows easy investigation of the concepts through
more representations.

It is also well-documented that adequately designed virtual manipulatives could
be used interchangeably with physical ones (Burns and Hamm 2011; Ozgün-Koca
and Edwards 2011) as in our earlier prediction (Durmuş and Karakırık 2006) and
even support further affordances. These affordances might include bringing out
emotional connections to learning and self-regulatory behaviors (McLeod et al.
2012) and highlighting the visual and kinesthetic senses (Namukasa et al. 2009) and
mathematical discourse (Anderson-Pence and Moyer-Packenham 2015).
Özgün-Koca et al. (2013) advocates implementing activities that make use of both
physical and virtual manipulatives. Using virtual manipulatives has also been
reported to minimize the impact of extraneous demographic variables on learning
(Moyer-Packenham et al. 2013). The focus of the recent studies that compare the
effectiveness of physical and virtual manipulatives seems to shift from comparing
students’ performances to evaluating manipulatives from the perspective of the
students (McLeod et al. 2012) by taking into account the quality of interaction
provided to improve conceptual knowledge. Virtual manipulatives are far more
effective in demonstrating and teaching conceptual knowledge (Suh and Moyer
2007), which is difficult to measure by classical standardized tests that compare
students’ performances. They are also used as an effective practice to teach math-
ematical concepts to students with learning disabilities (Satsangi and Bouck, 2015).

The aim of the SAMAP manipulatives was to promote higher order thinking
skills by providing an environment for investigating mathematical concepts and
relations rather than focusing on simple calculations and mathematical operations.
However, many teachers and students were uncertain how to make use of the
manipulatives since they were used to repetitive calculations instead of investi-
gating mathematical concepts. Furthermore, many teachers only make use of the
SAMAP manipulatives as extracurricular activities since they lack the experience to
structure a mathematics lesson with virtual manipulatives (Reimer and Moyer
2005). The author argues that SAMAP manipulatives could be used to promote
discussions, to increase students’ participation and enhance their conceptual
understanding in mathematics classrooms (Karakırık 2011). It was reported that
linked virtual manipulatives enhance students’ collaboration and mathematical
discourse (Anderson-Pence and Moyer-Packenham 2015). As Wegerif and Dawes
(2004) rightly points out a dialogical approach is required rather than dialectic one
and dialogue among students and between students and the teacher is important in
creating learning environments that promote thinking and productive learning.

SAMAP manipulatives were designed both for individual use and collaborative
use in the classroom with the guidance of teachers. Most of the SAMAP manip-
ulatives are related to the embodiment or concretization of some mathematical
concepts and the creation of meaningful problem-solving scenarios, and avoid
activities focused solely on procedural skills (Kaput 1992). A flexible design that
enabled the most user interaction through expert systems was preferred. SAMAP
manipulatives attach great importance to student interaction and the active partic-
ipation of students are taken into account in designing manipulatives by adopting a
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constructivist approach. Repetitive tasks or animations are mostly avoided and
open-ended tasks are preferred. A virtual manipulative may provide direct or
indirect feedback either in structurally didactic manner or without providing
guidance for any solution path (Anderson-Pence and Moyer-Packenham 2015).
Implementing classroom activities highlighting the mathematical concepts is argued
to be the most outstanding characteristics of a constructivist classroom. In this
respect, manipulatives could be regarded as effective and successful to the extent
they foster reflective and deep thought among students and teachers and introduce
them new mathematical knowledge. This could be regarded as guided discovery
activities that both involve discovery and guidance as suggested by Kuhn (2007).

Two main types of manipulatives emerged in this project for the purpose of
demonstrating mathematical concepts of an abstract nature which implements both
‘learning with models’ and ‘learning to model’ approaches (Durmuş and Karakırık
2006). The first type illustrates different aspects of a mathematical concept through
multiple representations. These manipulatives include more exploration activities
and help students to see and investigate the mathematical relations and concepts.
The second type provides problem-solving or modeling tools by which students
were able to express themselves and devise their own models or problem solutions.
These manipulatives included meaningful problem situations where students can
internalize the mathematical concepts and problem solving strategies. Each
SAMAP manipulative is designed by taking both types into consideration and
having both demonstration and interaction modes where applicable.

Different representations of a concept have different inferential powers (Cox and
Brna 1995) and may highlight different computational properties of a concept
(Larkin and Simon 1987). The design parameters, unique functions supporting
learning and the cognitive tasks to interact with multiple representations, needs to
be taken into consideration to improve the effectiveness of multiple representations
(Ainsworth 2006). The SAMAP manipulatives extensively use multiple represen-
tations of mathematics concepts such as graphical, algebraic, and written repre-
sentations and allow users to change the representations dynamically. It is argued
that virtual manipulatives are far more flexible and helpful for conceptual learning
since they help students to visualize different interpretations and properties of a
concept through dynamic representations.

7.7 Conclusion

SAMAP manipulatives covering objectives in the Turkish mathematics curriculum
have been widely used by Turkish primary school teachers and students. In light of
feedback from SAMAP users, it could be argued that many students are satisfied
with the resources provided by the manipulatives. Therefore, the author argues that
SAMAPmanipulatives offer a favorable environment for discussion of mathematical
concepts. Students accustomed to procedural operations in mathematics classes do
not seem to fully understand the purpose of the manipulative at first, but can benefit

7 Developing Virtual Mathematics Manipulatives: The SAMAP Project 167



from them over time with proper guidance of teachers. This emphasizes the leading
roles of teachers in conceptual activities where it is not easy to see how to apply
certain mathematical concepts in a problem situation. Considering the failure of
early optimistic artificial intelligence studies that aimed to create a virtual teacher, no
manipulative is expected to be smart enough to create a discussion platform for
students. It is believed that manipulatives having special problem-solving expertise
in well-defined scenarios should be developed to encourage students to investigate
certain mathematical concepts: SAMAP activities aim to serve this purpose.
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Chapter 8
Enhancing Mathematical Skills Through
Interventions with Virtual Manipulatives

Annemie Desoete, Magda Praet, Claire Van de Velde,
Brigitte De Craene and Edwin Hantson

Abstract In this chapter, we report the findings from a randomized controlled trial
investigating the effect of using virtual manipulatives to improve preschool students’
early mathematics skills. One hundred thirty-two preschool children were randomly
assigned to nine sessions of adaptive computerized counting or comparison with
virtual manipulatives, or to a typical instruction control group. Children in both
experimental intervention groups, including children with poor calculation skills at
the start of the intervention, performed better than controls not using virtual
manipulatives on early mathematics tasks at the posttest. In addition, the effects of
the training held six months later with the counting intervention improving number
knowledge and mental arithmetic performance, and the comparison intervention
only enhancing the number knowledge proficiency in Grade 1. The effect of virtual
manipulatives was present in empathic children, thinkers, persisters, dreamers,
rebels and promoters according to the Kahler Process Communication Model. In
addition children in both experimental groups became more adventurous after the
training. We discuss the value of these short interventions with virtual manipulatives
in preschool as a forward-looking approach to enhance arithmetic proficiency.
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8.1 Introduction

Children begin formal education with a very positive view of mathematics and with
good feelings about their own abilities. However both interest and motivation
decline as children grow older and the positive affect and ‘good feelings’ fade away
(Moore et al. 2015). Given the high social and individual cost associated with
poorly developed mathematical skills, it is essential to tackle this underperformance
by gaining insight into the processes of decline leading to a suboptimal mathe-
matical development and by trying to enhance motivation and young children’s
numeracy.

Early numerical foundations have been receiving ongoing attention, because
researchers hope that by pinpointing the core deficits at an early age, the problems
might be reduced or even solved (Aunio et al. 2005; Dowker 2005, 2015; Van Luit
and Schopman 2000; Wilson and Räsänen 2008). Interventions could prevent
children from falling further behind or close the achievement gap between
low-performing children and their age-related peers. Longitudinal studies have
shown that early numeracy skills are accurate predictors of later mathematics
achievement (Jordan et al. 2012; Stock et al. 2010).

There are arguments for the claim that number comparison and counting skills
can be considered as cognitive foundations or early numeracy skills associated with
later proficient mathematics skills (Desoete 2014, 2015; Gallistel and Gellman
1992; Geary 2011a, b; LeFevre et al. 2006).

Moreover, a transactional analysis and closer look at the communication
(Bradley and Pauley 2001; Kahler 2004) between teachers and children seems
indicated to broaden the picture and include the motivational foundations of young
children learning mathematics. Kahler (2008) described a differentiation among six
types of children with different ‘drivers’ or habits to deal with challenges. All of
these children seem to have different underlying motivations. The Kahler-model
can be visualized on three axes (see Fig. 8.1).

‘Empathic children’ have a strong ‘please’-driver, with pleasantness, compliance
to others’ wishes and generosity as assets. These children (30 % of the population)
are attentive to others and sensitive. They are motivated by a well-willing man-
agement style, work in groups with a lot of sensory stimulation and appreciate
getting recognized and acknowledged as a person.

‘Thinkers’ and ‘persisters’ have a ‘be perfect’-driver with wisdom, purposeful-
ness and high standards as assets. Thinkers (25 % of the population) are children
that are responsible, logical and organized, performing best in a democratic man-
agement style where they can work alone. They are motivated by recognition of
their work and time structure. Persisters (10 % of the population) are devoted, good
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observers and conscientious children. These children are motivated by a democratic
management style where they can work alone with recognition of work done and
respect for opinions.

‘Dreamers’ and ‘promoters’ have a ‘be strong’-driver with self-sufficiency,
consideration of others’ needs, reliability and resilience as assets. Dreamers (10 %
of the population) are imaginative, reflective and calm. These children are moti-
vated within an autocratic management style respecting their need of solitude and
inviting them to act after a period of reflection. Promoters (5 % of the population)
are convincing, adaptive and capable to realize things. These children need strong
sensations and actions and an autocratic management style to be motivated.

‘Rebels’ have a ‘try hard’-driver and passionate commitment, sympathy for the
underdog and persistence as assets. These children (20 % of the population) are
spontaneous, creative and playful and enjoy the here and now. They are motivated
by playful ‘contact’ with teachers with a ‘laissez faire’ management style inviting
them to work in a group-to-group environment.

Finally the model has a ‘hurry-up’-driver with as assets adventurousness,
responsiveness and sensitivity to others’ feelings. According to the Process
Communication Model (PCM) model (Hantson et al. 2015), this driver can be
present in all types of children (empathic children, thinkers, persisters, dreamers,
promoters and rebels).

Several (non-computerized) types of instruction have been developed to enhance
early numeracy or cognitive skills in young children (e.g. Bloete et al. 2006;
Kroesbergen and Van Luit 2003; Wilson et al. 2006). These studies reveal that
active instruction is effective in the enhancement of early numeracy in young

Fig. 8.1 A visualization of the axes in the Kahler model (inspired by Heasman 2000)
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children. In addition, Computer Assisted Interventions (CAI) have received
growing interest and proved to be effective as arithmetic support (Butterworth and
Laurillard 2010; Räsänen et al. 2009). However, most of these interventions focus
on primary school children (Codding et al. 2009; Kroesbergen and Van Luit 2003;
Räsänen et al. 2009; Slavin et al. 2009; Templeton et al. 2008; Wilson et al. 2006).
Moreover, it remains unclear whether one should target children’s counting or
comparison skills as specific cognitive components of early numeracy. Moreover,
although low performing children were found to benefit especially from long and
intensive, supplemental instruction (Aunio et al. 2009; Dyson et al. 2011; Haseler
2008; Jordan et al. 2009, 2012), it remains unclear if they benefit from less intensive
computerized interventions using virtual manipulatives. Finally, the role of moti-
vation in the understanding of mathematical variation remains unclear.

In the present chapter, we report the findings of a randomized controlled trial
with two groups using CAI with virtual manipulatives to improve preschool stu-
dents’ counting and quantity comparison skills and one control group. A pretest,
posttest and delayed posttest design was used to investigate the growth of early
numerical cognitive foundations. Dependent variables included an assessment of
early calculations in preschool (posttest) and mental arithmetic and number
knowledge as conventional measures of mathematics achievement in Grade 1
(delayed posttest). In addition we investigated if virtual manipulatives worked for
all types of children, namely for low and average performers and for all types of
children (empathic, thinkers, persisters, rebels, promoters and dreamers), thus
taking cognitive and motivational variables of mathematical variation into account.

The general aim of the present study was fourfold. First, we investigated the
impact of the three different teaching approaches (namely virtual manipulatives
with counting content, virtual manipulatives with number comparison and a control
group) on numeracy in young children. We expected positive outcomes, since early
numeracy skills have been found to be trainable in other studies (e.g. Baker et al.
2002; Codding et al. 2009). However, we were interested if counting and number
comparison strategy approaches with virutal manipulatives were capable of
modifying preschoolers’ early numeracy skills in all children (empathic children,-
thinkers, persisters, dreamers, rebels and promoters.

Second, we used two groups—a counting and number comparison group—to
explore to what extent those approaches differed and if one was more effective than
the other with both groups using virtual manipulatives. The control group played on
the computer without doing mathematics. We expected that both interventions
would contribute to improving the children’s arithmetic level in Grade 1, but we
were especially interested in the differential effects of both CAIs and on whether
comparison or counting was the most efficient to support children’s learning of
arithmetic . Both groups were hypothesized to be capable of improving the early
numeracy (posttest in preschool) and the performance on conventional measures of
mathematical achievement (delayed posttest in Grade 1) in young children.

Third, we investigated the potential of the interventions on high-risk kinder-
gartners with below average performance on early numeracy measures. Especially
the effect of a preschool intervention on children at risk to develop mathematical
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problems was studied and compared to the effect of peers with higher preparatory or
early numerical skills in preschool. We expected the interventions to be effective on
posttests and were interested in the delayed posttest results.

Fourth, we investigated if all children (empathic children, thinkers, persisters,
dreamers, rebels and promoters) benefitted from virtual manipulatives in preschool.
It might be that only some types of children benefitted from the experimental
interventions in preschool using virtual manipulatives.

8.2 Method

8.2.1 Participants

Participants were 132 (53 % male) full-day kindergartners with a mean age of
68 months (SD = 4.01) from five schools in Belgium. Forty-six of these partici-
pants were low mathematical performers (<pc25), assessed on early numeracy with
the TEDI-MATH (Grégoire et al. 2004).

The children had an average intelligence TIQ = 101.39 (SD = 12.73),
VIQ = 102.9 (SD = 11.97), PIQ = 99.30 (SD = 11.68) on the WPPSI. Most par-
ents had working and middle-class-socio-economic backgrounds. Dutch was the
only language spoken at home.

8.2.2 Interventions

The interventions took place in nine individual computerized instruction sessions
using virtual manipulatives in a separate classroom during five weeks, 25 min each
session. Each session consisted of solving problems in accordance with the
instructions given in the computer program. The number comparison and counting
experimental groups using virtual manipulatives were compared with a control
group just playing on the computer.

Four paraprofessionals were trained to teach in the two experimental groups
(number comparison and counting intervention with virtual manipulatives) and to
administer the pretest, posttest and delayed post-test measures. All paraprofes-
sionals were skilled therapists with experience with children with mathematical
learning problems. During the training, there was one teacher per classroom as well
as a paraprofessional present. Initial paraprofessional training took place one month
prior to the start of the interventions. Systematic ongoing supervision and training
was provided during the interventions.

Number comparison. Each of the number comparison sessions involved a
non-intensive, but individualized and adaptive computer assisted number compar-
ison task. Children learned through virtual manipulatives to focus on quantity,
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rather than size of objects. They learned to compare the number of animals, by
pointing the mouse to the group of animals that had the greater number, making
abstraction of the number of animals. In addition children had to compare two
different kinds of stimuli (animals/dots—see Fig. 8.2 where the cat had the most
squares).

There were exercises with organized and non-organized objects. Moreover,
children learned to compare visual and auditory quantities and to compare quan-
tities (squares) with number words or Arabic numerals and number words. The
adaptive nature of the CAI program provided children with additional exercises on
the questions and quantities that proved difficult for them.

Counting training. In the experimental computer assistant counting training,
children worked on exercises based on procedural and conceptual counting
knowledge using virtual manipulatives. They learned to count synchronously and
learned to count without mistakes experiencing the cardinality principle. By
clicking on a symbol, a quantity of that symbol with an upper bound of 6 was
generated. The child was asked to count and register the amount by tapping the
number on the keyboard. Auditory feedback was given. Children were shown an
image of various objects and asked: “How many animals are there?” while on the
screen there were objects, plants and animals (see Fig. 8.3). A second question
followed: “How many of these animals can bark?” The instruction was read aloud
and an answer was expected from the child by tapping the number of stars at the
bottom of the screen.

Visual feedback was given by a happy-face or a sad-face icon. Auditory feed-
back was given by a sob when they made a mistake or an applause when they
succeeded. There were exercises with the emphasis on adding, subtracting, leaving
only a certain quantity. All children started basically at the same level. As CAI has

Fig. 8.2 Screenshot comparison of quantity groups
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an adaptive structure additional exercises were provided for children who experi-
enced difficulties.

Children in the control group received the same amount of instructional time, as
did the children in the two experimental groups. However, instead of counting or
comparison instruction, the control group received nine sessions in regular pre-
school activities (intervention as usual and had the opportunity to do some ordinary
language games on the computer ). An example of a non-math game would be that
children had to sort sounds.

8.2.3 Procedures

Parents received a letter with the explanation of the research and submitted
informed consent in order to allow their children to participate. All children were
assessed individually , outside the classroom setting. Within each school and pre-
school class, children were randomly assigned to participate in the study in the
virtual manipulatives counting group, the virtual manipulatives number compar-
ison group, or a business-as-usual control group. Preliminary comparisons revealed
that the children in the three groups did not differ significantly on pretest measures.
In addition, teachers were blinded to the research questions of this study.

Fig. 8.3 Screenshot of a counting group
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8.2.4 Measures

The study involved three waves of data collection: pretest, posttest and delayed
posttest. The pretest took place while the children were in preschool before the
children were randomly assigned to one of the three groups. The posttest took place
just after the training. The delayed posttest took place in November when the
children were enrolled in Grade 1. Children enter first grade at the age of seven in
Belgium.

Pretest and posttest mathematics measures (assessed in preschool).
Children’s early numeracy achievement was measured (age 5–6) using the counting
task, comparison task, Piagetian logical thinking task and the calculation task of the
TEDI-MATH (Grégoire et al. 2004). In addition their intelligence was assessed.
Children met one-on-one with the experimenter for six sessions of about three hours
in total for these measures.

Procedural knowledge of counting was assessed with the TEDI-MATH using
accuracy in counting numbers, counting forward to an upper bound (e.g., ‘count up
to 6’), counting forward from a lower bound (e.g., ‘count from 3’), counting for-
ward with an upper and lower bound (e.g., ‘count from 5 up to 9’). One point was
given for a correct answer. The internal consistency of this task was strong
(Cronbach’s alpha = 0.73).

Conceptual knowledge of counting was assessed with the TEDI-MATH using
judgments about the validity of counting procedures. Children had to judge the
counting of linear and random patterns of drawings and counters. To assess the
abstraction principle, children had to count different kinds of objects that were
presented in a heap. Furthermore, a child who counted a set of objects was asked,
‘How many objects are there in total?’ or ‘How many objects are there if you start
counting with the leftmost object in the array?’ When children have to count again
to answer, this is considered to represent good procedural knowledge, but this
shows a lack of understanding of counting principles so they earn no points. One
point was given for a correct answer (e.g., ‘You did not add objects so the number
of objects has not changed’). The internal consistency of this task was strong
(Cronbach’s Alpha = 0.85).

In addition, the early arithmetic abilities subtest of the TEDI-MATH was used as
a pretest and posttest measure. This subtest consisted of a series of simple arith-
metic operations. The child was presented with six arithmetic operations on pictures
(e.g., “Here you see two red balloons and three blue balloons. How many balloons
are there together?”). The internal consistency of this subtest was strong
(Cronbach’s alpha = 0.84).

The TEDI-MATH has been used and tested for conceptual accuracy and clinical
relevance in previous studies (e.g., Stock et al. 2010). The psychometric value has
been demonstrated on a sample of 550 Dutch speaking Belgian children from the
second year of preschool to the third grade of primary school.

Delayed posttest mathematics measures in Grade 1 (assessed in January). In
order to have a comprehensive assessment of the mathematical abilities of children,
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all children completed the Kortrijk Arithmetic Test Revised (Kortrijkse Rekentest
Revision, KRT-R, Baudonck et al. 2006). The Kortrijk Arithmetic Test Revision
(Kortrijkse Rekentest Revision, KRT-R; Baudonck et al. 2006) is a standardized
test on arithmetical achievement which requires that children solve 30 mental
arithmetic (e.g., ‘16–12 = _’) and 30 number knowledge tasks (e.g., ‘1 more than 3
is _’). The KRT-R is frequently used in Flemish education as a measure of arith-
metic achievement (e.g., Desoete et al. 2004; Desoete and Grégoire 2007). The test
results in a score for mental computation, number system knowledge and a total
score. The row item scores were converted to percentile scores. The psychometric
value of the KRT-R has been demonstrated on a sample of 3246 children.
A validity coefficient (correlation with school results) and reliability coefficient
(Cronbach’s alpha) of 0.50 and 0.92 respectively were found for first grade.

Intelligence. Intelligence was assessed (as pretest) in preschool with the
WIPPSI-NL (Hendriksen and Hurks 2009; Wechsler et al. 2002). Children com-
pleted the three core verbal tests (information, vocabulary and word reasoning) and
the three performance tests (block patterns, matrix reasoning and concept drawing).
We also took into account the item substitution as being a core-subtest.

Motivation. Motivation and personality type was assessed after the intervention
(when all children were seen again for another study) with the ‘driver’ construct of
Kahler. In his Process Communication Model (PCM), drivers are defined as scripts
being repeated over and over under stress, having positive and negative aspects.
With a cluster analysis, Kahler described five drivers typical for six types of persons
(see Fig. 8.1). Empathic children were found to have a tense for a ‘please me’-
driver. The ‘be strong’-driver could be identified in dreamers and promoters. The
‘be perfect’-driver was especially present in persisters and thinkers. The ‘try hard’-
driver was observed in the behavior of rebels. The ‘hurry up’ (or racing) driver
appeared to be present in all types of children.

In this study, we identified the motivation of children indirectly, based on the
Kahler drivers of the PCM-model. A 25-item questionnaire with a Likert scale was
adapted from the Kreyenberg (2003) study. Children had to answer questions like (I
like to work with others; In stress I remain calm and think logically; I want to work
precisely without making mistakes; I like to work on new tasks; I like to work fast)
on a 1–5 Likert scale (1 = totally not agree, 5 = totally agree). The questionnaire
was tested in previous studies in order to determine the usefulness for this age group
and for the sensitivity in measuring individual differences. Analyses showed that
children and observers/coders could handle the instrument well. In addition,
children were asked why they answered that way and what they thought while
performing the task. The given answers all referred to the driver-constructs in
question. The validity and reliability of the PCM-model and the driver construct
was demonstrated in several studies (Ampaw et al. 2013; Gilbert 1996, 1999;
Journal of Process Communication 2013; McGuire et al. 1990). In addition, the
psychometric value of the model has been demonstrated in Flanders and Belgium
(Hantson et al. 2015), where this study took place.
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8.3 Results

8.3.1 Preliminary Comparisons in Preschool

The three groups of children were matched on pretest skills in preschool. No signif-
icant differences were found (F(2128) = 0.05; p = 0.949) for preschool calculation
skills assessed with the TEDI-MATH (Grégoire et al. 2004) before the intervention in
preschool. Moreover the groups did not differ on the WPPSI-III (F(2128) = 0.73;
p = 0.484). See Table 8.1 for a summary of the descriptive statistics.

8.4 Treatment Effects

In order to investigate the research hypotheses on the modifiability of early
numeracy as well as on the value of counting versus number comparison instruction
on the learning of mathematical skills, a posttest and a delayed posttest were
included. Dependent measures were analyzed by a univariate analysis of variance
(ANOVA) or multivariate analysis of variance (MANOVA) with experimental
group (counting experimental group, number comparison experimental group,
control group) as group. Each (M)ANOVA determined whether significance existed
among the three groups, when compared on the dependent measure at pretesting,
posttesting and delayed posttesting. In addition, posthoc tests were performed on
the posttest and delayed posttest scores, using an appropriate posthoc procedure
(Tukey if equal variance could be assumed from the Levene test and Tamhane if
equal variance could not be assumed from the Levene test). In addition, the
observed power and the effect sizes (ή2) were calculated.

Table 8.1 Means and standard deviations of the pretest skills in preschool

Control group
N = 49

Counting
N = 44

Number comparison
N = 39

F(2, 129)=

Mean age 67.67 (4.05) 68.50 (3.83) 68.28 (3.96) 0.08

VIQ 102.21 (11.11) 102.50 (12.68) 103.67 (12.42) 0.45

PIQ 97.21 (12.73) 99.41 (10.10) 101.72 (11.79) 0.79

Procedural counting 6.31 (1.58) 6.30 (1.74) 6.49 (1.71) 0.21

Conceptual counting 9.98 (3.07) 9.75 (3.38) 10.41 (2.31) 2.42

Arithmetic 7.57 (5.07) 7.72 (5.49) 7.64 (4.94) 0.05
*p ≤ 0.05
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8.4.1 Posttest in Preschool

Significant differences between both experimental groups using virtual manipula-
tives were found (F(2128) = 21.86; p = 0.001, ή2 = 26) on the calculation skills
assessed with the TEDI-MATH after the intervention took place. Children in the
counting group using virtual manipulatives did better than children in the number
comparison intervention group using virtual manipulatives. Children in both
experimental intervention groups had significantly higher calculation scores than
the children in the control group who did not use virtual manipulatives in preschool.

8.4.2 Delayed Posttest in Grade 1

The MANOVA, with group (counting, comparison, control group) as the inde-
pendent variable, and number knowledge and mental arithmetic assessed, with the
KRT-R in Grade 1 as the dependent variable, was significant at the multivariate
level (F(4, 246) = 3.95; p = 0.004; η2 = 0.06). Significant differences were found
among the groups for number knowledge (F(2, 124) = 6.29; p = 0.003, η2 = 0.09)
and mental arithmetic (F(2, 124) = 6.04; p = 0.003; η2 = 0.09).

The Tukey posthoc analysis revealed that both experimental groups using virtual
manipulatives had a better number knowledge compared to the control group. For
mental arithmetic there was a significant difference between the experimental
counting group using virtual manipulatives and the control group.

8.4.3 Motivation

Although there was no difference at the multivariate level (F(10, 204) = 1.36;
p = 0.203, ή2 = 68), on the univariate level children in the groups that used
manipulatives differed from the control children (F(2, 109) = 3.87; p = 0.024, ή2 =
07) on the ‘hurry up’ or racing-driver. The control group (M = 14.00; SD = 2.39)
had significantly lower hurry-up scores compared to the children that used counting
related virtual manipulatives (M = 15.50; SD = 3.62) or the group that used
comparison-related virtual manipulatives (M = 15.97; SD = 3.62), meaning means
that children that used virtual manipulatives in preschool became more adven-
turous and responsive to challenges.

On the other drivers, the groups did not differ. Thus, there were no significant
differences for the ‘please me’-driver (F(2, 109) = 0.47; p = 0.626, ή2 = 00), the
‘be strong’-driver (F(2, 109) = 0.87; p = 0.424, ή2 = 0.02), the ‘be perfect’-driver
(F(2, 109) = 0.60; p = 0.548, ή2 = 0.01), and the ‘try hard’-driver (F(2, 109) =
2.13; p = 0.124, ή2 = 0.04). These results mean that there was no significant
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difference among the groups on purposefulness (be perfect driver), resilience (be
strong driver), pleasantness (please driver) or persistence (try hard driver).

8.4.4 Effect on Low Versus Average Performing Children

A 2 × 3 MANOVA was conducted to investigate if there was a difference among
low and average mathematics achievers in the three experimental groups.
The MANOVA had performance group (low achievers, average achievers) and
experimental group (control, counting, number comparison) as independent vari-
ables and posttest as the dependent variable. There was a significant main effect for
experimental group (F(2, 121) = 24.41; p < 0.001; η2 = 0.29) and performance
group (F(2, 121) = 26.45; p < 0.001; η2 = 0.18) but no significant experimental
group x performance group interaction effect (F(2, 121) = 0.71; p = 0.493),
meaning that both groups (low achievers and average achievers) benefitted from the
intervention using virtual manipulatives.

The MANOVA on the delayed posttest, revealed a significant main effect for the
experimental group (F(4, 238) = 4.42; p = 0.002; η2 = 0.07) and for the perfor-
mance group (F(2, 119) = 11.69; p < 0.001; η2 = 0.16), and again, no significant
experimental group x performance group interaction effect (F(4, 238) = 1.23;
p = 0.297). See Table 8.2 for a summary of the descriptive statistics (M and SD)
and posthoc analyses (abc) among the groups.

Table 8.2 reveals that early numeracy can be enhanced, even in low performers,
by a short computerized (number comparison or counting) intervention using vir-
tual manipulatives in preschool, with a sustained effect on arithmetic in Grade 1.

Table 8.2 Posttest and delayed posttest of low and average achievers

Control
Low
M
(SD)

Control
AA
M
(SD)

Counting
Low
M
(SD)

Counting
AA
M
(SD)

Comparison
Low
M
(SD)

Comparison
AA
M
(SD)

Arithmetic 7.18(c)
(2.81)

10.64
(3.30)

12.16(a)
(2.63)

14.23
(2.32)

9.94(b)
(2.74)

12.34
(3.21)

Number
knowledge

17.00
(b)
(5.91)

22.10
(4.70)

22.08(a)
(4.20)

23.41
(4.50)

20.74(a)
(4.19)

24.80
(3.59)

Mental
arithmetic

15.23
(b)
(5.95)

21.85
(5.53)

21.76(a)
(4.88)

23.53
(4.90)

18.65
(4.71)

23.73
(5.05)

*p ≤ 0.05; abc posthoc indexes at p ≤ 0.005; AA average achievers
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8.5 Discussion

Early arithmetic abilities have been found to be strong predictors for later school
achievement (Jordan et al. 2009). In addition, studies have reported large individual
differences among children even before the onset of formal education (e.g., Aunio
et al. 2009). If signs for mathematics difficulties can be identified and if effective
early intervention and adaptations can be set up for children having additional
educational needs based on their achievement status, it might be possible to
diminish later learning difficulties and prevent some children from falling further
behind.

The central question behind this study was whether or not an intervention using
virtual manipulatives in preschool could modify children’s numeracy skills and
facilitate instruction of arithmetic in Grade 1, as already found in older children
(Räsänen et al. 2009; Wilson et al. 2006). Therefore, children in this study were
randomly assigned to the experimental virtual manipulative number comparison,
virtual manipulative experimental counting or control group. The intervention on
number comparison (using images, number words and Arabic numbers) or counting
(using number words and Arabic Numbers to count) took place at the end of
preschool.

Both interventions using virtual manipulatives had a sustained effect on chil-
dren’s arithmetic in Grade 1 as indicated on the delayed posttest, six months after
the training took place. Children in both experimental groups performed better than
the control group (taking into account that the groups were matched on their pretest
scores) for number knowledge. Moreover, the counting group had better mental
arithmetic skills than the comparison and control group.

The use of virtual manipulatives seemed to work for all types of children,
independent of their type of motivation needed. The experimental training had
positive effects on students’ learning regardless their type identified by the Kahler
Model. All children (empathic, thinkers, persisters, dreamers, rebels and promotors)
improved in mathematics learning using virtual manipulatives. Moreover the
groups that used virtual manipulatives in preschool seemed to have a higher ‘hurry
up’ driver, meaning that they set up higher standards on the speed and involvement
in mathematics tasks compared to children in the control group. They were more
adventurous than their peers that did not participate in the intervention with virtual
manipulatives in preschool.

Especially interesting is that early numeracy could be enhanced in preschool
children with additional educational needs based on their achievement status. The
present data indicated that even a short (at the most 9 sessions of 25 min) period of
playing adaptive educational computer games with virtual manipulatives in pre-
school enhanced mathematics learning in Grade 1, even in vulnerable children
at-risk for mathematics difficulties. In line with Aunio et al. (2009) this is good
news for siblings of children with learning disabilities having an enhanced risk to
develop a disability themselves (Desoete et al. 2013; Shalev et al. 2001). Perhaps
didactic methods, including educational counting games with virtual manipulatives
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as Universal Design for Learning (UDL), can prevent children at risk from falling
behind, avoiding mathematics or even developing mathematics anxieties. In addi-
tion, virtual manipulatives seemed to identify strengths and weaknesses in all low
performing children in preschool. Such educational computer games as supports in
regular preschool classes can contribute to the realization of inclusive education in
elementary schools.

These results should be interpreted with care, since there are some limitations to
the present study. We only assessed a small group of low performing children in
preschool. Research with larger groups of children at-risk for mathematics diffi-
culties and disabilities is necessary. Moreover, context variables such as home and
school environment should be included in order to obtain a complete overview of
the development of these children.

Nevertheless, this study highlights that early intervention with virtual manipu-
latives can enhance students mathematics skills. In addition mathematics learning
can be enhanced in children at-risk for mathematics difficulties by playing adaptive
computer games supporting the counting skills in preschool. Finally all types of
children benefitted from the training with this training making them set higher
standards on the speed and involvement than peers who did not participate in this
intervention. Thus, the findings demonstrate that even non-intensive and comput-
erized adaptive interventions using virtual manipulatives in preschool can enhance
children’s early numeracy in young children with a delayed effect on arithmetic
performances in Grade 1.

8.6 Conclusion

In this chapter, we described the results of a study conducted with 132
Dutch-speaking children from five preschools that served children from families
with working and middle-class socio-economic backgrounds. Children were ran-
domly assigned to adaptive computerized counting or comparison interventions
using virtual manipulatives , or to a control group in preschool.

Children in both experimental groups using virtual manipulatives performed
better than children in the control groups on the posttest. The effects of training held
in Grade 1.Playing adaptive serious counting games improving number knowledge
and mental arithmetic performances, and playing adaptive serious comparison
games, enhanced children’s number knowledge proficiency in Grade 1. Similar to
the results of Ramani and Siegler (2008, 2011), the results of this research revealed
that early numeracy can be stimulated by using virtual manipulatives in preschool,
even in low-performers, with a sustained effect on arithmetic in Grade 1. Moreover
motivation was taken into account revealing that virtual manipulatives enhanced the
adventurousness, speed and involvement of the children to work on mathematical
tasks.

This is good news for children at risk of developing mathematical learning
difficulties. Playing educational counting games using virtual manipulatives (see
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Wilson et al. 2006; Räsänen et al. 2009) might create a buffer against poor math-
ematical outcomes. An important finding from this study is that it is possible to use
computer software and virtual manipulatives in an entertaining game-like format for
providing learning experiences with an effect on later arithmetic proficiency.

The discovery of the key role of counting reminds us that, in particular, exposure
to counting games seems applicable in preschool. There is value in these short
periods of e-gaming using virtual manipulatives in preschool as a way to improve
young children’s numeracy, to enhance the speed and motivation or involvement in
learning, and to promote the success in arithmetic proficiency in first grade and
beyond.
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Chapter 9
Influence of Prior Knowledge and Teaching
Approaches Integrating Non-routine
Worked Examples and Virtual
Manipulatives on the Performance and
Attitude of Fifth-Graders in Learning
Equivalent Fractions

Chun-Yi Lee and Ming-Jang Chen

Abstract The objective of this study was to investigate the influence of prior
knowledge and non-routine worked examples, integrated with manipulatives, on the
performance and attitude of fifth-graders learning of equivalent fractions. The
participants were divided into three groups based on the teaching method to which
they were exposed: continuous examples paired with physical manipulatives
(continuous-physical group), continuous examples paired with virtual manipula-
tives (continuous-virtual group), and integrated examples paired with virtual
manipulatives (integrated-virtual group). The results indicate the following: (1) The
integrated-virtual group displayed better performance than the continuous-physical
and continuous-virtual groups in basic and advanced flexible thinking, whereas the
continuous-physical and continuous-virtual groups showed no significant differ-
ences; (2) The students with high prior knowledge in the continuous-virtual group
presented higher scores in learning enjoyment and mathematics anxiety than those
in the integrated-virtual and continuous-physical groups, and those in the
continuous-virtual group also displayed greater learning motivation than those in
the integrated-virtual group; and, (3) The students with low prior knowledge in the
continuous-virtual and integrated-virtual groups presented higher scores in learning
enjoyment than those in the continuous-physical group. However, the students with
low prior knowledge in the three groups displayed no significant differences in
learning motivation and mathematics anxiety.
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9.1 Research Background and Objectives

The concept of equivalent fractions plays a significant role in learning mathematics.
Students must possess a basic knowledge of fractions in order to understand
equivalent fractions, and they must master equivalent fractions before they can
understand rational numbers. Equivalent fractions imply comparison of fractions
and are fundamental for arithmetic involving fractions with different denominators.
It is also one of the most difficult sub-concepts in fractions because it requires
students to think flexibly and progress from concrete operations to formal opera-
tions to solve problems. Inadequate understanding of equivalent fractions is com-
mon among students (Kamii and Clark 1995; Yu and Leu 2002). This is an
important issue because if students’ understanding of fractions is flawed or their
approach to them is too rigid, they will be unable to solve equivalent fraction
problems correctly.

The majority of elementary school students are in the stage of concrete opera-
tions; that is, they require implementation to establish physical and pictorial rep-
resentations. Physical manipulatives are often used in mathematics education to
make abstract concepts and symbols more meaningful and understandable to stu-
dents (Durmuş and Karakırık 2006). Developing the concept of equivalent fractions
requires an object to be divided into multiple equal parts for interpretation.
However, it is difficult to divide or combine concrete manipulatives freely. In recent
years, Moyer et al. (2002) introduced the concept of virtual manipulatives, which
are defined as dynamic object representations that assist students in formulating
mathematical concepts. Such representations must be operable and accessible on
the Internet. Virtual manipulatives allow students to divide objects to help them
understand the concept of equivalent fractions. This enables students to visualize
the concept with which they are engaged (Chang et al. 2013). Virtual manipulatives
therefore have the potential to become an important tool for teaching equivalent
fraction concepts. A worked example is a step-by-step demonstration of how to
perform a task or how to solve a problem (Clark et al. 2006). Worked examples are
another teaching aid with high potential. They have been successfully used to teach
computer programming, algebra, and geometry (Carroll 1994; Paas and van
Merrienboer 1994). Students that have access to worked examples exhibit better
performance in problem-solving than those without this access (Chandler and
Sweller 1991).

Two types of worked examples, continuous examples and integrated examples,
are used in our experiment. In the continuous quantity scenario, continuous
examples refer to colored blocks that are continuous and non-scattered, such that
the learners can refer to the same fraction using different names through visual-
ization and by ignoring dividing lines. In the discrete quantity scenario, continuous
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examples refer to the equivalent fraction problem in group mode, in which
re-splitting or re-combination is conducted using a group of identical objects to
demonstrate that two fractions are equal. In addition to providing learners with
examples of continuous equivalent fractions, integrated examples can also provide
non-routine examples that cannot be seen in traditional teaching materials. In the
continuous quantity scenario, non-routine examples refer to colored blocks that are
not continuous, in which the learner must first arrange discontinuous blocks into
continuous blocks and refer to the same fraction using different names through
visualization and by ignoring dividing lines. In the discrete quantity scenarios,
non-routine examples refer to situations in which there are more than two kinds of
objects in the equivalent fraction problem in group mode. The learner must first
re-arrange the objects to determine an appropriate splitting approach in order to
realize that the two fractions are equal.

Although both virtual manipulatives and worked examples have been shown to
possess promise as teaching aids, there exists a notable lack of research on the
effectiveness of these strategies, particularly on methods combining the two.
Understanding the characteristics of this combination and how they are associated
with learning is crucial, as it can help teachers select the most effective manipu-
latives and provide inspiration for the design of new manipulatives.

Prior knowledge has been shown to have considerable influence on how teachers
and students interact with manipulatives (Lin and Huang 2013). For instance,
Rittle-Johnson et al. (2009) found that students require sufficient prior knowledge
for solving equations to be able to weigh the benefits of different solution methods.
The issue of whether prior knowledge influences the effect of worked examples
with virtual manipulatives when learning equivalent fractions has rarely been
studied. The purpose of this study was, therefore, to investigate whether prior
knowledge and different teaching methods, combining examples and manipulatives,
interact with the learning performance and attitude of fifth-graders with regard to
equivalent fractions.

9.2 Literature Review

9.2.1 Prior Knowledge

Prior knowledge is considered a vital element of learning effectiveness. Previous
research has shown that prior knowledge impacts how teachers and students interact
with the manipulatives that they use (Lin and Huang 2013; Rittle-Johnson et al.
2009). Kim and Rehder (2011) examined the influence of prior knowledge on
selective attention during category learning. Using an eye tracker, they discovered
that prior knowledge affects the features, which are seen and the features associated
with prior knowledge are more frequently fixated. This outcome is not because of
an initial bias in attention towards certain features, but rather a gradual result of
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category observation. After the explanation of learning criterion, this effect was
even more prominent.

Van Loon et al. (2013) found that incorrect prior knowledge causes elementary
school students to formulate erroneous concepts during learning and even be
overconfident about them. Their results indicated that incorrect prior knowledge
affects learning and calibration of younger students. Once their incorrect prior
knowledge was activated, they expressed extremely inaccurate judgment in their
retained learning responses. Moreover, they were overconfident in their judgment
of quality in posttest retained responses. This overconfidence often discourages
students from studying the target concepts further. Rittle-Johnson et al. (2009)
discovered that prior knowledge is crucial in the use of comparison in learning.
They had 236 seventh- and eighth-graders compare different solutions to the same
problem, compare different types of problems that use the same method of solution,
or sequentially examine examples. The results revealed that students with less prior
knowledge displayed greater learning effectiveness in the comparison of different
types of problems that used the same method of solution and in the sequential
examination of examples. In contrast, students with greater prior knowledge ben-
efited more from comparing different solutions to the same problem.

Prior knowledge has also been found to interact with the form of teaching, the
form of manipulative representation, and the method of practice (Kalyuga 2007;
Rittle-Johnson and Kmicikewycz 2008). Teaching procedures that are more
effective on first-time learners may become ineffective on learners with more related
knowledge. For example, beginners learn more effectively from worked examples
than from proceeding directly to problem solving themselves. However, as they
gain knowledge, direct self-organized problem solving becomes a more effective
learning activity (Renkl and Atkinson 2003).

Cognitive load theory can be used to explain why more detailed instruction and
guidance and bounded tasks generally effectively facilitate learning for beginners
but not for more experienced learners (Sweller et al. 2011). For beginners, a task
that requires the processing of numerous new elements of information at once can
easily overload their working memory. In contrast, learners with some experience in
the field can use the knowledge structures that they already possess to explain and
complete the task, so their working memory is not overloaded. Nevertheless, few
studies have examined the minute interactions between prior knowledge and
manipulatives with worked examples with regard to learning performance and
student attitudes.

Students with greater prior knowledge should be more capable of organizing and
integrating unfamiliar virtual resources and more efficient in processing non-routine
examples. Therefore, it seems reasonable that prior knowledge should play a crucial
role in learning involving manipulatives with worked examples. This study there-
fore investigated the influence of prior knowledge and manipulatives with worked
examples on the mathematics learning of elementary students.
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9.2.2 Factors Influencing Students Learning Equivalent
Fractions

A number of factors influence students in learning equivalent fractions: (1) their
ability to think flexibly, (2) their combination ability, (3) their operative thinking
ability, and (4) their unitization ability. Ineffective learning of equivalent fractions is
caused by inflexible thinking in students (Peng and Leu 1998). We introduce these
separately below.

In terms of graphical representations with continuous amounts, the ability to
think flexibly means that the learner can refer to the same fraction in different ways
and imagine or ignore dividing lines. The number of dividing lines and whether the
divided blocks are connected often influence the learning outcome as well. Some
students may insist that the denominator be the same as the number of divided
blocks and that all of the blocks be connected before accepting that another fraction
is of equivalent value (Behr et al. 1984; Behr and Post 1992). Booth (1987)
interviewed eleven-year-old students on equivalent fractions and found that 95 %
of the interviewees deemed that Picture A in Fig. 9.1 was 1

3, whereas only 73 % of
the interviewees deemed that Picture B was 1

3. The 22 % point difference was a
result of students believing that the 2

6 depicted in Picture B was not equivalent to 1
3.

This shows that if learners can imagine or ignore dividing lines in graphical rep-
resentations, they will be able to generate multiple labels for equivalent fractions. In
graphical representations with discrete amounts, the ability to think flexibly means
that the learner is able to re-divide or recombine discrete blocks to solve problems
(Behr et al. 1984). Suppose that a student uses small circles to solve the problem
?
3 ¼ 4

6; the learner first needs to convert the representation, regarding two circles as a
portion, as shown in Fig. 9.2. The six circles are thus grouped into three portions,
and filled in black as necessary. This kind of representation allows the student to
infer that 4

6 ¼ 2
3.

Combination ability indicates that a student can use a certain problem-solving
strategy when solving an equivalent fraction problem or dividing the remainder of a
problem. This strategy involves dividing unit amounts into several portions and
recombining correctly processed portions into designated fractions with the unit
amounts (Peng and Leu 1998; Yu and Leu 2002). Operative thinking refers to the

Fig. 9.1 Flexible thinking
with equivalent fractions
using continuous objects
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ability to apply different methods of division to the same figure, which falls under
the concept of area conservation (Kamii and Clark 1995). Knowledge contains a
figurative aspect and an operative aspect. The figurative aspect is based on shapes,
which are observable, while the operative aspect is based on association, which is
not observable. For instance, there are a number of ways to divide a rectangle into
two halves; the results may be rectangles or triangles. From the figurative aspect,
the rectangles are different from the triangles in shape and thus do not look the same
in area. However, from the operative aspect, knowing how the triangles and rect-
angles are associated with the original rectangle means that the learner can infer that
the triangles and rectangles are the same in area, that is, half of the original rect-
angle, without being affected by the visual indications.

Another ability that is crucial to successful learning of equivalent fractions is the
ability to find a suitable unit by which to divide a designated portion without
remainder. This ability, which involves first identifying an appropriate unit by which
to divide the whole and then using the unit to recombine the parts into the whole or a
set, is called unitization ability (Saenz-Ludlow 1994, 1995). For example,
Saenz-Ludlow (1994, 1995) showed the picture in Fig. 9.3 to third-graders. Of the
three blocks in the picture, the students were first asked to compare block b1 with the
whole (Picture A), and then compare blocks b2 and b3 with the whole. The three
blocks can completely divide the whole; block b2, for example, equals one-third of
Picture A. The students were also asked to compare blocks b1 and b2. At first, they
could not determine the relationship between the two, but once block b3 was given as
a hint, they quickly realized that block b2 equaled two thirds of block b1. The results
showed that the students could adjust the smallest unit to meet the needs of the
problem.

6

(4)

3
(2)

Fig. 9.2 Flexible thinking
with equivalent fractions
using discrete objects

Fig. 9.3 Unitization ability
for equivalent fractions
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9.2.3 Current Manipulatives for Equivalent Fractions

The Principles and Standards for School Mathematics in the United States (NCTM
2000) suggest that students should develop rich number concepts from kindergarten
to twelfth grade. In terms of fractions, students begin to learn concepts related to
fractions in second grade. From third grade to fifth grade, they learn how to (1) use
models, reference points, and equivalent forms to determine the magnitudes of
fractions, (2) recognize and find equivalent forms of decimals and percentages, and
(3) use visual models, reference points, and equivalent forms to add and subtract
fractions and decimals. The curriculum from sixth grade to eighth grade emphasizes
the flexible use of fractions to solve problems in addition to calculation abilities
(NCTM 2000). The mathematics course principles in the Grade 1–9 Curriculum
Guidelines of Taiwan stipulates that basic fraction concepts must be introduced
between first and third grade, while equivalent fractions and the reduction,
expansion, and four operations of fractions are introduced in fourth and fifth grade
(Ministry of Education 2004).

The textbooks from various publishers in Taiwan do not mention the terms
reduction and expansion directly with regard to equivalent fractions and do not
explain that multiplying or dividing the numerator and denominator by the same
number does not change the value of the fraction. Rather, the textbooks present
examples where parts of the whole are re-grouped into smaller or larger units, and
these newly-formed units are then compared to show that they are equivalent (Tsai
2003). In examples involving continuous objects, the textbooks often resort to
strategies alluding to intuitive experience or divided shares. The former generally
divides shapes such as blocks or circles into various portions, and then compares
them in terms of length or area. Strategies that resort to divided shares directly
indicate the number of divided shares and then use number lines to compare
whether the two fractions are equivalent. In examples involving discrete objects, it
is easier to directly count the contents of the group or groups. The former involves
comparing the number of objects in the contents to determine whether the fractions
are equivalent, and the latter involves viewing multiple objects as one entity to
determine whether the numbers of objects are the same and then finding other
names for the fractions (Tsai 2003).

Analysis of the textbook materials on equivalent fractions from the Kang Hsuan
Educational Publishing Group revealed that the examples given required the ability
to think flexibly about both continuous and discrete objects. Continuous objects are
presented as closed shapes marked with dividing lines and discrete objects are
presented as groups of identical objects. In mathematics learning, worked examples
can help learners develop appropriate mental models to achieve their learning
objectives and are a beneficial way of learning basic cognitive skills. Worked
examples are a preferable learning model for beginners and an effective learning
model for experienced learners (Atkinson et al. 2000). Provision of relevant worked
examples is therefore a significant aspect of teaching for conceptual learning.
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9.2.4 Virtual Manipulatives

The objective of incorporating information technology into teaching is to create a
quality teaching environment that enhances teaching and learning effectiveness. It
should be diverse and highly interactive while prompting students to actively
explore problems, thereby contributing to the creation of a problem-solving envi-
ronment (Lee and Chen 2008). Mathematics can sometimes be abstract and
therefore difficult to understand or require actual operations to experience the
concepts involved, and as a result, students can lose their motivation to learn. To
increase motivation and enhance learning effectiveness, visualizing is necessary to
give abstract content a concrete form. With conventional teaching methods, a
substantial amount of time and manpower is often needed to achieve this, but
information technology today can do so easily. Multimedia offers rich visual and
sound effects, gives students more opportunities to do and learn, and enables them
to make connections with prior learning experiences, thereby increasing student
interest and motivation and contributing to better learning effectiveness (Lee and
Chen 2009, 2014). Understanding equivalent fractions requires objects to be divi-
ded into equal parts. However, physical manipulatives cannot be divided into any
given number of parts, and they cannot fully explain fractional number sense and
unit concepts. Multimedia interactions on computers provide semi-physical
manipulatives and visual access to concepts that are difficult to experience.
Abstract concepts thus become concrete and visible and students have ample
opportunity to use manipulatives and experience the mathematical concepts within.
Such manipulatives effectively present learning content and help students to
understand the target material (Lee and Chen 2014, 2015).

Virtual manipulatives are similar to physical manipulatives but possess dynamic
interactive features and can be made widely accessible through placement on
websites. The virtual representation of these dynamic objects provides students with
unique opportunities to acquire mathematical knowledge (Moyer et al. 2002, 2005).
Yuan and Lee (2012) listed the following as advantages of virtual manipulatives:
(1) variability—learners can color portions of an object and increase or decrease the
number of objects; (2) unlimited supply—the problems of insufficient physical
manipulatives in classrooms as well as time-consuming distribution and organiza-
tion are resolved; (3) conceptual connections—figures and symbols can be simul-
taneously displayed on the screen to enhance the connection among different
representations.

A comprehensive review of empirical research focused on virtual manipulatives
in mathematics classrooms (Moyer-Packenham and Westenskow 2013; Reimer and
Moyer 2005; Steen et al. 2006; Suh et al. 2005) revealed the following features of
virtual manipulatives: (1) they provide learners with the opportunity to achieve
self-discovery as virtual manipulatives can improve learners’ visual and conceptual
abilities, (2) they encourage students to explore mathematical relationships as the
dynamic opportunities for interaction enable students to focus on the task at hand,
(3) they link figures to symbols as these can be displayed simultaneously, (4) they
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prevent students from making typical mistakes when they learn addition with
fractions, (5) they give students immediate feedback, (6) they offer easier and
quicker methods of manipulation than do pen and paper, and (7) they are accessible
to learners over wide geographical areas and socioeconomic divides.

Moyer-Packenham and Westenskow (2013) conducted a meta-analysis that
synthesizes the findings from 66 research reports examining the effects of virtual
manipulatives. The results of the averaged effect size scores yielded a moderate
effect for virtual manipulatives compared with other instructional treatments. The
results of the conceptual analysis revealed empirical evidence that five specific
interrelated affordances of virtual manipulatives promoted mathematics learning.
These five specific affordances included: (1) virtual manipulatives focus and con-
strain student attention on mathematical objects and processes; (2) virtual manip-
ulatives encourage creativity and increase the variety of students’ actions;
(3) virtual manipulatives simultaneously link representations with each other and
with students’ actions; (4) virtual manipulatives contain precise representations
allowing accurate and efficient use; and (5) virtual manipulatives motivate students
to persist at mathematical tasks.

9.3 Methodology

This study adopted a quasi-experimental approach. The independent variables
included prior knowledge and teaching approaches combining examples and
manipulatives. When we use the term prior knowledge, we mean the basic
knowledge associated with fractions that the students possessed before learning
equivalent fractions. We first administered a prior knowledge test and ranked the
students based on their scores. The top and bottom 50 % of the students were
designated as the high and low prior knowledge groups. Based on the worked
examples and manipulatives used, the teaching approaches were divided into three
types: continuous examples paired with physical manipulatives (continuous-
physical group), continuous examples paired with virtual manipulatives
(continuous-virtual group), and integrated examples paired with virtual manipula-
tives (integrated-virtual group). The dependent variables were test scores and
mathematics learning attitude. The test scores assessed the learning performance of
the students with regard to equivalent fractions after the teaching experiment,
including (1) basic flexible thinking, which encompasses basic drawing and seg-
mentation abilities, and (2) advanced flexible thinking, which comprises advanced
drawing, combination, operative thinking, and unitization abilities. Mathematics
learning attitude refers to the opinions of the learners toward learning mathematics
after the teaching experiment, including learning enjoyment, learning motivation,
and mathematics anxiety.

The participants of this study were fifth-graders at an elementary school in
Taipei City. Before the teaching experiment, the participants were taught the basic
concepts of equipartitioning, simple fractions, and unit amounts, which constitute
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the prior knowledge of equivalent fractions, but had not yet been taught. In coor-
dination with their original class schedules, we randomly selected six classes out of
the 13 fifth-grade classes at the school. Containing roughly 180 students, the six
classes were randomly designated as the continuous-physical group, continuous-
virtual group, and integrated-virtual group. All of the students took the prior
knowledge test and were then categorized into the high and low prior knowledge
groups based on their scores.

The research instruments of this study included the prior knowledge test, the
equivalent fraction manipulatives, the equivalent fraction achievement test, and the
mathematics learning attitude questionnaire, the details of which are as follows.

9.3.1 Prior Knowledge Test

The contents of the prior knowledge test included the concepts of equipartition,
simple fractions, unit amounts, and equivalent fractions, which are all vital aspects
of the equivalent fraction curriculum. We used the scores of this test to group the
participants. The contents of the prior knowledge test were prepared by two pro-
fessors and three experienced elementary school mathematics teachers, so the test
has expert validity. In terms of reliability, the internal consistency of the question
items was measured using Cronbach’s α. This measure returned the following
values: 0.75 for equipartition, 0.78 for simple fractions, 0.75 for unit amounts, 0.83
for equivalent fractions, and 0.93 overall. Thus, the reliability is acceptable. The
difficulty values of the problems ranged from 0.53 to 0.84, the degree of item
discrimination ranged from 0.32 to 0.85, and the item discrimination coefficients all
reached the level of significance. Thus, the prior knowledge test displays appro-
priate levels of difficulty and item discrimination.

9.3.2 Equivalent Fraction Manipulatives

One primary objective of this study was to determine the influence of different
teaching approaches on fifth-graders learning of equivalent fraction concepts. Based
on the teaching approach, we divided the participants into a continuous-physical
group, a continuous-virtual group, and an integrated-virtual group. The difference
between the continuous-physical and continuous-virtual groups was the type of
manipulative used; the continuous-physical group learned with physical manipu-
latives, whereas the continuous-virtual group used virtual manipulatives. The
worked examples and concept explanations for the two groups were the same. The
worked examples were divided into continuous examples and integrated examples.
The former presents problems with continuous equivalent fractions, whereas inte-
grated examples included problems with non-continuous equivalent fractions in
addition to problems with continuous equivalent fractions. Based on the type of
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manipulatives used, the teaching approaches were divided into physical teaching
and virtual teaching. In the former, the teacher used physical manipulatives when
teaching equivalent fractions and gave students opportunities to use the manipu-
latives to verify their understanding of relevant mathematical concepts. In contrast,
the teacher used virtual manipulatives in virtual teaching, also giving students
opportunities to use the virtual manipulatives. The virtual manipulative used in this
study was the Magic Board developed by Professor Yuan of Chung Yuan Christian
University (Yuan and Lee 2012). The Magic Board retains the functions of physical
manipulatives while surpassing the limits of physical manipulatives (Chang et al.
2013). At present, this tool has been set up on the Internet and offers free access
(http://magicboard.cycu.edu.tw/). Below, we explain the difference between the
continuous-virtual group and the integrated-virtual group.

9.3.2.1 Continuous-Virtual Group

In continuous examples, the colored blocks are connected. The learners must be
able to recognize a fraction by different names and be able to imagine or ignore
division lines. The continuous objects in these equivalent fraction problems
included length models and area models. Figure 9.4 displays an example of con-
tinuous equivalent fractions using the length model, showing the fractions equiv-
alent to one half. Learners can use the fraction bar to find appropriate ways of
dividing the blocks and identifying the portions that are equal to one half. Coloring
can only be achieved by dragging, emphasizing the continuous nature of the

Learners can add 

and remove 

division lines.

Learners can color the 

segments by dragging . 

An alignment line helps 

learners determine that the 

fractions are of the same 

Fig. 9.4 Example of continuous equivalent fractions (using length)
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objects. Learners can determine whether the colored portions are the same length
using an alignment line.

Examples featuring discrete objects use the group model. For these learners must
re-divide or recombine a group of the same objects to understand that the two
fractions are equal. The problem in Fig. 9.5 asks learners to determine which
scenario indicates more apples: two fifths of a box of apples or six fifteenths of a
box of apples. The virtual manipulative allows learners to add and remove division
lines so that they can find the most appropriate segmentation method. A coloring
function is also available to help students further visualize the problem.

9.3.2.2 Integrated-Virtual Group

The integrated examples include not only routine examples but also non-routine
examples. In non-routine examples of continuous objects, the colored blocks are not
continuous; learners must rearrange them into continuous blocks, be able to
imagine or ignore division lines, and refer to the same fraction in different ways.
Both length models and area models are used. Figure 9.6 shows a non-routine
example using the length model, the objective of which is to determine how many
sixths one third is equal to. Learners can use the virtual manipulative to add and
remove division lines to find an appropriate method of segmentation. Any of the
blocks can be colored, and the colored blocks can then be moved to form a

Learners can add and remove division lines. A 

coloring function helps them perceive that the 

two fractions are equal.

Fig. 9.5 Example of discrete equivalent fractions (using groups)
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continuous block. A bar divided into three parts is provided so that learners can
verify that two sixths equals one third.

Non-routine examples of discrete objects use the group model with two or more
types of objects. Learners must rearrange the objects and find an appropriate seg-
mentation method to obtain equivalent fractions. The objective of the example in
Fig. 9.7 is to find a fraction equivalent to sixteen twenty-fourths. The objects in the

Learners can add and remove division 

lines, color any of the blocks, and 

rearrange them.

A bar divided into three parts 

is provided for verification. 

Fig. 9.6 Non-routine example of continuous equivalent fractions (using length)

Learners can use the graffiti 

function to draw circles marking out 

groups.

Objects can be rearranged.

Fig. 9.7 Non-routine example of discrete equivalent fractions (using groups)
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picture are scattered, so learners must rearrange them and gather the same objects
together before using the graffiti function to divide them appropriately. They must
be able to view multiple objects as a group to find the equivalent fraction.

9.3.3 Equivalent Fraction Achievement Test

The purpose of the achievement test was to evaluate the performance of the learners
in flexible thinking with regard to equivalent fractions after the teaching experi-
ment. The test problems were based on the unit content taught in the experiment
and the studies conducted by Lee and Chen (2015). The content was divided into
basic flexible thinking and advanced flexible thinking. The former type assessed the
performance of learners in solving continuous equivalent fraction problems, which
required more fundamental flexible thinking abilities regarding equivalent fractions.
Basic flexible thinking was further divided into two categories: basic drawing
ability and segmentation ability. Advanced flexible thinking involves the more
advanced thinking skills that learners apply when solving discrete equivalent
fraction problems; it is further divided into four categories: advanced drawing
ability, combination ability, operative thinking ability, and unitization ability.

The two categories associated with basic thinking and four associated with
advanced thinking were each allocated four problems, resulting in a total of 24
problems. Each of the problems was worth 1 point, bringing the total score to 24
points. With regard to the internal consistency of the problems, the Cronbach’s α
values were as follows: 0.70 for basic drawing ability, 0.75 for segmentation ability,
0.65 for advanced drawing ability, 0.83 for combination ability, 0.60 for operative
thinking ability, 0.84 for unitization ability, and 0.92 overall. Thus, the achievement
test presented acceptable reliability.

9.3.4 Mathematics Learning Attitude Questionnaire

The purpose of the mathematics learning attitude questionnaire was to understand
the feelings of the participants as they learned the concept of equivalent fractions
using different teaching approaches. The questionnaire was discussed and designed
by two university professors and three experienced elementary school mathematics
teachers, so the test has expert validity. The questionnaire included three portions
regarding learning enjoyment, learning motivation, and mathematics anxiety. The
portion on learning enjoyment measures to what degree the different teaching
approaches were enjoyed by the participants. One example of a question focused on
learning enjoyment is “Learning mathematics is fun”. The portion on learning
motivation measures the degree to which different teaching approaches increased
participants’ motivation to learn. One example of a question focused on learning
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motivation is “I will try my best to learn math well”. The portion on mathematics
anxiety examines whether different teaching approaches alleviate the level of anxiety
that the participants may feel when learning mathematics. One example of a question
focused on mathematics anxiety is “I will worry about my bad math learning”. Each
portion included 5 question items, with 15 question items in total. A five-point Likert
scale was adopted for the question items, the answers scoring from 1 to 5 points
each. The question items in the portions on learning enjoyment and learning moti-
vation were positive items, whereas those in the portion on mathematics anxiety
were negative items. For positive items, strong disagreement scored 1 point and
strong agreement scored 5 points, while the opposite was true for the negative items.
A higher score thus indicated a more positive mathematics learning attitude. The
reliability of this questionnaire was verified using an internal consistency test, the
values of which are as follows: Cronbach’s alpha for learning enjoyment (α = 0.83),
learning motivation (α = 0.85), mathematics anxiety (α = 0.72), and for the entire
questionnaire (α = 0.90), indicating excellent internal consistency.

9.4 Results

9.4.1 Analysis of Equivalent Fraction Achievement Test

Table 9.1 shows that the mean score of the integrated-virtual group (M = 6.60) in
basic flexible thinking was higher than those of the continuous-physical group
(M = 5.67) and the continuous-virtual group (M = 5.77). In addition, the high prior
knowledge group presented a higher mean score (M = 7.28) than the low prior
knowledge group (M = 4.63).

Two-way ANOVA with the teaching approach and prior knowledge as the
independent variables and the basic flexible thinking posttest score as the dependent
variable (Table 9.2) revealed that the interaction effect between the teaching
approach and prior knowledge, with regard to the basic flexible thinking posttest
score, was not significant (F = 0.367, p = 0.694). We therefore looked at the main
effects of teaching approach and prior knowledge and discovered that the main
effect of the teaching approach was significant (F = 3.845, p = 0.023). Scheffe’s
post hoc test showed that the integrated-virtual group displayed better performance
in basic flexible thinking than the continuous-physical and continuous-virtual
groups, while the continuous-physical and continuous-virtual groups presented no
significant differences. The main effect of prior knowledge also reached the level of
significance (F = 99.259, p = 0.000), meaning that the students in the high prior
knowledge group performed better in basic flexible thinking than the students in the
low prior knowledge group.

As shown in Table 9.3, the mean score of the integrated-virtual group in advanced
flexible thinking (M = 12.93) was higher than the mean score of the continuous-
physical group (M = 10.40) and the continuous-virtual group (M = 10.87).
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Table 9.1 Mean scores in different teaching approach and prior knowledge groups on basic
flexible thinking posttest

Teaching approach Continuous-physical Continuous-virtual Integrated-virtual Total

Prior knowledge (60) (60) (60) (180)

High (94) (M) 6.94 7.33 7.56 7.28

(SD) 1.41 1.13 0.77 1.15

(N) 34 24 36 94

Low (86) (M) 4.00 4.72 5.17 4.63

(SD) 1.96 2.46 2.20 2.27

(N) 26 36 24 86

Total (180) (M) 5.67 5.77 6.60

(SD) 2.21 2.40 1.91

(N) 60 60 60

Table 9.2 Two-way ANOVA of prior knowledge and teaching approach with regard to basic
flexible thinking posttest scores

Source of variation SS Df MS F Sig

Prior knowledge 304.999 1 304.999 99.259*** 0.000

Teaching approach 23.628 2 11.814 3.845* 0.023

Teaching approach
*Prior knowledge

2.253 2 1.126 0.367 0.694

Error 534.660 174 3.073

Total 7378.000 180

Note *<0.05, ***<0.001

Table 9.3 Mean scores in different teaching approach and prior knowledge groups on advanced
flexible thinking posttest

Teaching approach Continuous-physical Continuous-virtual Integrated-virtual Total

Prior knowledge (60) (60) (60) (180)

High (94) (M) 12.76 13.50 14.67 13.68

(SD) 4.08 3.72 1.66 3.33

(N) 34 24 36 94

Low (86) (M) 7.31 9.11 10.33 8.91

(SD) 3.08 3.88 3.35 3.66

(N) 26 36 24 86

Total (180) (M) 10.40 10.87 12.93

(SD) 4.56 4.36 3.25

(N) 60 60 60
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Furthermore, the high prior knowledge group presented a higher mean score on
advanced flexible thinking (M = 13.68) than the low prior knowledge group
(M = 8.91).

Two-way ANOVA with the teaching approach and prior knowledge as the
independent variables and the advanced flexible thinking posttest score as the
dependent variable (Table 9.4) revealed that the interaction effect between the
teaching approach and prior knowledge with regard to the advanced flexible thinking
posttest score was not significant (F = 0.514, p = 0.599). We therefore looked at the
main effects of teaching approach and prior knowledge and discovered that the main
effect of the teaching approach was significant (F = 7.748, p = 0.001). Scheffe’s
post hoc test showed that the integrated-virtual group displayed better performance
in advanced flexible thinking than the continuous-physical and continuous-virtual
groups, while the continuous-physical and continuous-virtual groups presented no
significant differences. The main effect of prior knowledge also reached significance
(F = 85.170, p = 0.000), meaning that the students in the high prior knowledge
group performed better in advanced flexible thinking than the students in the low
prior knowledge group.

9.4.2 Analysis of Mathematics Learning Attitude

Table 9.5 shows that the mean scores of the continuous-virtual group in the three
aspects of mathematics learning attitude (enjoyment M = 4.03; motivation
M = 3.87; anxiety M = 3.65) were higher than those of the continuous-physical
group (enjoyment M = 3.43; motivation M = 3.61; anxiety M = 3.34) and the
integrated-virtual group (enjoyment M = 3.59; motivation M = 3.61; anxiety
M = 3.47).

Two-way ANOVA with the teaching approach and prior knowledge as the
independent variables and mathematics learning attitude as the dependent variable
revealed that the interaction effect between the teaching approach and prior
knowledge was significant with regard to learning enjoyment (F = 5.627,

Table 9.4 Two-way ANOVA of prior knowledge and teaching approach with regard to advanced
flexible thinking posttest scores

Source of variation SS Df MS F Sig

Prior knowledge 972.377 1 972.377 85.170*** 0.000

Teaching approach 176.928 2 88.464 7.748** 0.001

Teaching approach
*Prior knowledge

11.728 2 5.864 0.514 0.599

Error 1986.545 174 11.417

Total 26584.000 180

Note *<0.05, **<0.01, ***<0.001;
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p = 0.004), learning motivation (F = 3.473, p = 0.033), and mathematics anxiety
(F = 4.057, p = 0.019). We then analyzed the simple main effects.

As shown in Table 9.6, students with high prior knowledge in the
continuous-virtual group (enjoyment M = 4.52; anxiety M = 4.27) displayed a
higher score on learning enjoyment and a higher score on mathematics anxiety
than those in the integrated-virtual group (enjoyment M = 3.51; anxiety
M = 3.53) and in the continuous-physical group (enjoyment M = 3.69; anxiety
M = 3.58). Those in the continuous-virtual group (M = 4.28) also displayed better
learning motivation than those in the integrated-virtual group (M = 3.59). This
means that the students with high prior knowledge in the continuous-virtual group
possessed more positive views on learning enjoyment, mathematics anxiety, and
learning motivation. In contrast, students with low prior knowledge in the
continuous-virtual group (M = 3.71) and the integrated-virtual group (M = 3.72)
displayed a higher score on learning enjoyment than those in the
continuous-physical group (M = 3.08). This means that students with low prior
knowledge had more enjoyment when the virtual manipulatives were used.
However, the three groups displayed no significant differences in learning moti-
vation and mathematics anxiety. Thus, in terms of the continuous-physical and
continuous-virtual groups, the students with high prior knowledge presented
higher scores in learning enjoyment, learning motivation, and mathematics anx-
iety than the students with low prior knowledge. However, in the
integrated-virtual group, the students with high prior knowledge showed no sig-
nificant differences from those with low prior knowledge in the three aspects of
mathematics learning attitude.

Table 9.5 Mean scores in different teaching approach and prior knowledge groups in
mathematics learning attitude

Teaching approach Continuous-physical Continuous-virtual Integrated-virtual Total

Prior knowledge (60) (60) (60) (180)

High
(94)

Enjoyment 3.69 (0.67) 4.52 (0.52) 3.51 (1.13) 3.83
(0.94)

Motivation 3.81 (0.66) 4.28 (0.66) 3.59 (0.92) 3.85
(0.81)

Anxiety 3.58 (0.86) 4.27 (0.55) 3.53 (0.99) 3.74
(0.90)

Low
(86)

Enjoyment 3.08 (0.66) 3.71 (1.03) 3.72 (0.81) 3.52
(0.91)

Motivation 3.34 (0.44) 3.60 (0.88) 3.65 (0.94) 3.53
(0.80)

Anxiety 3.03 (0.59) 3.23 (0.85) 3.38 (0.96) 3.21
(0.82)

Total
(180)

Enjoyment 3.43 (0.73) 4.03 (0.95) 3.59 (1.01)

Motivation 3.61 (0.62) 3.87 (0.86) 3.61 (0.92)

Anxiety 3.34 (0.80) 3.65 (0.90) 3.47 (0.97)

Note The values in brackets stand for standard deviations
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9.5 Discussion and Suggestions

9.5.1 Learning Performance

This study investigated the influence of prior knowledge and teaching approach on
learning performance and mathematics learning attitude. The students in the
integrated-virtual group displayed better performance than the continuous-physical
and continuous-virtual groups in both basic and advanced flexible thinking. This
supports the results derived by Lee and Chen (2009, 2015), in which integrated
examples can improve students’ learning performance. This is probably because
non-routine examples stimulate students’ thinking and arouse their curiosity, which
prompts them to integrate various strategies, solutions, and representations to
develop more sophisticated understanding and inference processes. Unfortunately,
the current equivalent fraction units in elementary school textbooks in Taiwan only
contain routine examples. Publishers should therefore consider adding non-routine
examples into the curriculum to improve students’ learning performance with
regard to equivalent fractions, and teachers should encourage students to think
about such non-routine examples.

The continuous-physical and continuous-virtual groups displayed no significant
differences in basic or advanced flexible thinking. This is consistent with the
findings of Yuan et al. (2010) in that both virtual and physical manipulatives can
effectively facilitate learning. In other words, if the teaching content and method are
the same, the form of the manipulatives does not significantly impact learning, and
thus, changing physical manipulatives into virtual manipulatives does not change
students’ learning performance. In fact, the results of this study indicate that the use
of non-routine examples was the crucial factor influencing equivalent fraction
learning. Regardless of the type of manipulative, teachers should invest more effort
in the design of effective examples and their appropriate coordination with physical
or virtual manipulatives to maximize learning effectiveness. Inappropriate example
designs can affect the performance of students in solving equivalent fraction
problems.

The high prior knowledge group displayed significantly better performance than
the low prior knowledge in both basic and advanced flexible thinking. This may be
due to the high prior knowledge group recognizing patterns quickly and transi-
tioning to the use of symbols (Moyer-Packenham and Suh 2012). However, stu-
dents with less prior knowledge do not have a large amount of mathematical
knowledge to activate schema or adequate cognitive resources to perform activities
such as self-explanation. Consequently, they cannot integrate their learning expe-
riences when needed. An attempt at doing so may even lead to cognitive overload
and thereby failure to integrate. It is therefore reasonable that they may not perform
as well as students with high prior knowledge.
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9.5.2 Mathematics Attitude

In terms of students with high prior knowledge, those in the continuous-virtual
group displayed more positive views in learning enjoyment and mathematics
anxiety than those in the continuous-physical group. This is consistent with the
findings of past studies on virtual manipulatives (Reimer and Moyer 2005; Lee and
Chen 2014; Yuan et al. 2010), which have been found to increase learning
enjoyment for mathematics and reduce mathematics anxiety. However, the scores
provided by the students with high prior knowledge in the integrated-virtual group
with regard to learning enjoyment and mathematics anxiety showed no significant
differences from those in the continuous-physical group but were better than those
in the continuous-virtual group. It may be that the greater difficulty and complexity
of the non-routine examples required that the students convert the non-routine
examples into routine examples before solving them, and this increase in com-
plexity rendered the activity less enjoyable and more likely to induce anxiety.

With regard to the students with low prior knowledge, those in the
continuous-virtual group and the integrated-virtual group presented higher scores in
learning enjoyment than those in the continuous-physical group. This means that
using virtual manipulatives is fun for students with low prior knowledge no matter
what type of examples are used. In contrast, the type of example and the type of
manipulative did not show significant influence on the learning motivation or
mathematics anxiety of students with low prior knowledge in the three groups. We
suggest that future research consider how extrinsic motivation can be used to
increase the intrinsic motivation of students in the design of manipulatives and
thereby enhance mathematics learning attitudes.

In the continuous-physical and continuous-virtual groups, the students with high
prior knowledge presented higher scores in learning enjoyment, learning motiva-
tion, and mathematics anxiety than the students with low prior knowledge, which
supports the results of previous research (Lee and Chen 2010; Lee and Yuan 2010).
Students with high prior knowledge are generally more confident in mathematics
learning, and therefore, they showed better performance in the three aspects of
mathematics learning attitude than the students with low prior knowledge. In
contrast, the students with high and low prior knowledge in the integrated-virtual
group displayed no significant differences in learning enjoyment, learning moti-
vation, or mathematics anxiety, which is inconsistent with previous findings (Lee
and Chen 2010; Lee and Yuan 2010). We speculate that the students with high prior
knowledge may have felt impatient with the time-consuming nature of the
non-routine examples (which required conversion into routine examples before
solving) and they felt that they had not learned any new mathematical concepts. As
a result, their mathematics learning attitude did not improve. In contrast, the stu-
dents with low prior knowledge were more indifferent towards the non-routine
example conversion process but were happy because they got to use the virtual
manipulatives, and therefore, they presented better mathematics learning attitudes.
For these reasons, the students with high and low prior knowledge in the
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integrated-virtual group displayed no significant differences in learning enjoyment,
learning motivation, or mathematics anxiety. This phenomenon of students with
high prior knowledge in the integrated-virtual group displaying better learning
performance but poorer mathematics learning attitude has been found in our study.
Future research can further investigate the major factors and causes of this
phenomenon.

In short, we found that the effectiveness of learning equivalent fractions can be
enhanced using non-routine examples. However, in terms of mathematics learning
attitude, the students with high prior knowledge in the continuous-virtual group
displayed higher scores in learning enjoyment, learning motivation, and mathe-
matics anxiety than those in the integrated-virtual group. This indicates that
non-routine examples are aggravating to students with high prior knowledge in
manipulative operation, which affects their mathematics learning attitude. In con-
trast, virtual manipulatives have greater impact on the mathematics learning attitude
of students with low prior knowledge; they got higher scores in learning enjoyment
as long as they had virtual manipulatives to use. However, virtual manipulatives
had less influence on learning motivation and mathematics anxiety. In the
integrated-virtual group, prior knowledge did not influence the mathematics
learning attitude of the students. This implies that the more complicated manipu-
lative operations of non-routine examples had a more adverse effect on the math-
ematics learning attitude of students with high prior knowledge, and as a result, the
scores obtained by students with high and low prior knowledge displayed no sig-
nificant differences in mathematics learning attitude.

9.5.3 Limitations

This study is subject to the following limitations. First, the sample size 180 for a
two-way (2 × 3) factorial design was small, so the research results may not be
applicable to students with educational and cultural backgrounds that are different
from those of the students in this study. Furthermore, learning equivalent fractions
is considerably different from that of other fields, such as biology or social science,
so the results of this study may not be applicable to other academic subjects or other
themes in mathematics. Thirdly, the prior experience of the students, such as their
view of mathematics or their self-efficacy with computers, may also influence their
use of virtual or physical manipulatives, which in turn impacts their learning
effectiveness. Therefore, future studies could investigate the role of prior experience
in learning with virtual manipulatives. Finally, the teacher who participated in this
experiment did not have more free time to teach eight classes in his schedule.
Therefore, only six classes joined our experiment. Considering the variable “prior
knowledge”, we only designed three groups (each group contained two classes) so
that each cell could have 30 students. Future studies could add one group using
integrated examples paired with physical manipulatives and examine the effects of
the four groups on different prior knowledge groups.
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Chapter 10
The Role of Virtual Manipulatives in High
School Students’ Understanding
of Geometric Transformations

Hilal Gulkilik

Abstract Although there is widespread research that articulates their importance in
mathematics education, manipulatives are pushed aside in high school learning set-
tings as something inappropriate or frivolous. The purpose of this study was to
identify the role of virtual manipulatives in high school students’ mathematical
understanding about geometric transformations, which included translations, reflec-
tions, rotations, and dilations. The main data sources for this study were
semi-structured task-based interviews that were conducted after each weekly trans-
formation lesson. The mathematical understanding of students was analyzed using
representation theory and the Pirie-Kieren model. This was presented using a
two-dimensional model that shows the students using virtual manipulatives within
different levels of mathematical understanding (Pirie and Kieren in Educ Stud Math
26(2):165–190, 1994). Results of the study revealed that virtual manipulatives helped
students to apply distinct representations of geometric transformations and translate
among them. As interventions in the environment, virtual manipulatives strengthened
students’ mathematical understanding in terms of progressing from inner to outer
levels of the Pirie-Kieren model, folding back movements, and acting-expressing
activities.

Keywords Mathematical understanding � Virtual manipulatives � Representation �
Pirie-Kieren model � High school students

Mathematical manipulatives were recently defined by Bartolini and Martignone
(2014) in the Encyclopedia of Mathematics Education as “artifacts used in math-
ematics education: they are handled by students in order to explore, acquire, or
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investigate mathematical concepts or processes and to perform problem-solving
activities drawing on perceptual (visual, tactile, or, more generally, sensory) evi-
dence” (p. 365). As concrete learning objects, manipulatives have been used to
support children’s mathematical development since the 1800s. They gained a the-
oretical basis through learning theorists such as Jerome Bruner, Zoltan Dienes and
Jean Piaget in the 1900s (McNeil and Jarvin 2007). At the end of the 1900s,
innovations in computer and information technology, the accessibility of Internet
media, and increases in the number of computers led to a new trend in mathematics
education that introduced virtual manipulatives (Moyer et al. 2002).

A virtual manipulative is “an interactive, Web-based, visual representation of a
dynamic object that provides opportunities for constructing mathematical knowl-
edge” (Moyer et al. 2002). Most virtual manipulatives are on the computer screen
and are interacted with using a mouse or keyboard whereas others are on touch
screen devices controlled by finger movements. Unlike the physical versions, vir-
tual manipulatives contain the verbal, graphical and notational representations of a
concept together, which helps students to make connections among different rep-
resentations (Suh and Moyer-Packenham 2007). Moyer-Packenham and
Westenskow (2013) carried out a meta-analysis of 32 research reports using 83
effect size scores that investigated the effects of virtual manipulatives in students’
mathematics achievement. According to this meta-analysis, instruction with virtual
manipulatives produces moderate effects when compared to instruction with all
other instructional treatments (0.37; 0.44, with one outlier). The qualitative results
of the study revealed that there are five key affordance categories that positively
affect students’ learning: (a) focused constraint, (b) creative variation, (c) simulta-
neous linking, (d) efficient precision, and (e) motivation.

Even though there is extensive literature supporting manipulative use for all
grade levels, there is a lack of research on high school learning environments
(Gibbons 2012; Gordon 1996; Jones 2010; Marshall and Paul 2008). The reasons
for this gap in the literature may be high school teachers’ knowledge, experience,
beliefs, and attitudes about manipulatives. Teachers hesitate to use manipulatives in
secondary level classrooms because they believe that students in these grades
should work with symbolic and abstract knowledge (Jones 2010). In view of the
limited research at the high school level, there is a need to examine high school
students’ manipulative use in learning mathematics.

Mathematics education researchers collectively emphasize the importance of
learning mathematics with understanding. There are several researchers, who have
characterized mathematical understanding from different perspectives (see
Dubinsky 1991; Herscovics 1989; Hiebert and Carpenter 1992; Sfard 1991;
Sierpinska 1994; Skemp 1978). Pirie and Kieren (1989) make a classification of
perspectives that describe mathematical understanding as “acquisition” or “process”
(p. 7). They assert that mathematical understanding is more than categories of
knowing and define it as a “whole, dynamic, leveled but non-linear, transcendently
recursive process” (Pirie and Kieren 1994, p. 166). Figure 10.1, consisting of eight
embedded circles, models their theory. These circles show the potential levels that
one goes through during the growth of mathematical understanding. Pirie and
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Kieren (1989) state that “each level of understanding is contained within suc-
ceeding levels. Any particular level is dependent on the forms and processes within
and, further is constrained by those without” (p. 8).

The Primitive Knowing level includes a student’s previously developed
knowledge about the topic. Using her/his primitive knowledge, s/he engages in
mental or physical activities in order to develop an idea about the topic at the Image
Making level. At the Image Having level, the student has an image about the
concept, which may contain verbal, visual, written or any other representations. The
student realizes the different properties of the concepts at the Property Noticing
level by thinking about the differences and similarities of the images s/he has. At the
level of Formalising, with the help of different properties based on various images,
s/he makes general statements or develops common ideas about the concept that are
similar to the mathematical definition of concept. S/he considers the constructed
formal structures to develop theorem-like ideas about the related concept at the
Observing level while s/he is able to verify these ideas logically at the Structuring
level. At the Inventising level, with a structured understanding about the concept,
the student asks questions that lead her/him to invent “a totally new concept” (Pirie
and Kieren 1994, p. 171).

The theory describes one’s understanding of mathematics through four different
features: folding back, the ‘don’t need’ boundaries, complementary aspects, and
interventions. When a student folds back, it means that s/he cannot handle the
mathematical task by working in the present level and needs to go back to an inner
level to elaborate on the understanding. The ‘don’t need’ boundaries are the darker
lines in the model (see Fig. 10.1). These are the boundaries that “convey the idea
that beyond the boundary one does not need the specific inner understanding that

Fig. 10.1 The Pirie-Kieren
model for the growth of
mathematical understanding
(Pirie and Kieren 1994)
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gave rise to the outer knowing” (Pirie and Kieren 1994, p. 173). The third feature of
the theory is related to complementary aspects of acting and expressing. Acting
maintains the continuity of a particular level with inner levels, while expressing
strengthens the understanding at this level. Interventions pertain to another feature
of the theory. Provocative interventions make students move towards the outer
levels whereas invocative interventions result in students folding back to the inner
levels to review the current process. Validating interventions are the stimulants that
influence students to think about their existing understanding. The Pirie-Kieren
model, by means of mathematical understanding levels and these features, serves as
an efficient research tool to observe, understand and model students’ growth of
mathematical understanding (Gibbons 2012; Martin 1999; Nillas 2010; Towers
1998).

Another theory that views mathematical understanding as a process is repre-
sentation theory, which emphasizes the role of dynamically networked mathemat-
ical representations of concepts (see Goldin 2003; Hiebert and Carpenter 1992;
Janvier 1987). Representations in mathematical learning environments come in two
forms, external and internal. External representation is used “to refer to physically
embodied, observable configurations such as words, graphs, pictures, equations, or
computer micro worlds” whereas internal representation is used “to refer to possible
mental configurations of individuals, such as learners or problem solvers” (Goldin
and Kaput 1996, pp. 399–400). The interaction between the two kinds of repre-
sentations is two-way; an internal representation may be transformed to an external
representation by an externalization process while an external representation may
be transformed into an internal representation by an internalization process (Goldin
2003; Zhang 1997).

A consensus on the importance of providing learning environments that allow
students to engage in these processes highlights the key role of multiple repre-
sentations of mathematical concepts (Ainsworth et al. 2002; Duval 2006; Even
1998). Students can develop an appropriate mathematical understanding by using
multiple representations appropriately and making connections among these rep-
resentations (Kaput 1989; Lesh et al. 1987; Renkl et al. 2013). One of the multiple
representations that students may use to develop internal representations of math-
ematical concepts is manipulative models (see Fig. 10.2). Representation theory
gives us the opportunity to examine the role of manipulatives in mathematical
understanding in terms of the relationships with other representations. The
Pirie-Kieren model offers the possibility to analyze the understanding of students in
a dynamic way in conjunction with representation theory. The model highlights
non-linear movements through the understanding levels, as a student reconstructs
and strengthens her/his understanding by using representations of concepts. In this
chapter, the Pirie-Kieren model and representation theory were used together as a
lens to determine the role of virtual manipulatives in 10th-grade students’ mathe-
matical understandings about geometric transformations.
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10.1 Methods

The method used for this study was a teaching experiment (Cobb 2000; Steffe and
Thompson 2000). Ms. Yilmaz (a pseudonym), a teacher with 13 years of experi-
ence, taught a transformational geometry unit to a 10th-grade class in a high school
in Turkey. She conducted eight lessons in one month, two for each of the trans-
formations: translation, rotation, reflection, and dilation. The lessons were enriched
with virtual and physical manipulatives in addition to verbal, graphical, and alge-
braic representations of these transformations. The researcher observed the class
during these lessons and performed task-based interviews (Goldin 2000) with the
participants after lessons conducted about each transformation.

10.1.1 Participants

There were 32 10th-grade students (17 females and 15 males) in Ms. Yilmaz’s
geometry class. The researcher entered the class two months before the main study
began and carried out a pilot study to interact with students to develop a level of
comfort. During the pilot study, Ms. Yilmaz used physical and virtual manipula-
tives to teach the concepts about triangles. Prior to the first week of the study, the
researcher administered a pretest, which covered translation, rotation, reflection,
and dilation, and a spatial ability test, which was used to purposefully select four
participants for in-depth analyses of growth of mathematical understanding. The
pretest had 26 mathematical tasks about translation, rotation, reflection, and dila-
tion. These tasks examined students’ understandings about identifying the trans-
formations in verbal, graphical and algebraic representations. The Spatial Ability
Test (SAT) was adopted from the tasks in the Kit of Factor-Referenced Cognitive

Fig. 10.2 Multiple
representations of a concept
(Lesh et al. 1987, p. 34)
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Tests (Ekstrom et al. 1976) to determine spatial ability, which is an important
component in students’ understanding of geometric concepts (Battista 1990). The
test was translated to Turkish by Delialioğlu (1996). There were test items including
mental rotation of 2-D figures, mental rotation of cubes, imagination of the folding
and unfolding of a paper, and mentally folding given 2-D figures to obtain 3-D
objects. The four participants selected for the study described in this chapter were
two female and two male students who represented different levels of classroom
participation and manipulative engagement in the pilot study, geometry class
scores, and spatial abilities (see Table 10.1). Their pseudonyms are Defne, Elif,
Selim, and Metin.

10.1.2 Instructional Settings and Manipulatives

Ms. Yilmaz conducted lessons in the computer lab of the school during the study.
There were 30 computers and a teacher computer station with a display screen in
the lab (see Fig. 10.3).

Lessons began with an introduction to the current geometric transformation
using pictures, animations, or videos as visual representations and real-life exam-
ples. This was followed by mathematical tasks in which the teacher and students
used virtual or physical manipulatives. The teacher modeled how to use the
manipulatives before students worked with them. For every lesson, students also

Table 10.1 Characteristics of participants

Name Age Spatial ability test score Pretest score Previous geometry class score

Defne 17 67.5 28 71.75

Elif 16 150.25 55 78.50

Metin 17 161.50 40 55.00

Selim 16 48.00 32 87.00

Note The highest score possible was 282 for the Spatial Ability Test, 100 for the pretest, and 100
for the previous geometry class score

Fig. 10.3 The front and back view of the computer lab
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had instructions explaining how to perform the manipulative activities. At the end
of the lessons, the teacher shared the algebraic representations and guided discus-
sions with the students to construct a shared language and to make connections
among multiple representations of the concept. The researcher video-recorded all of
the lessons by positioning herself near the participants and took field notes during
instruction.

The teacher and students in the class used virtual manipulatives from the
National Library of Virtual Manipulatives website (www.nlvm.usu.edu). They
interacted with the dynamic applets to identify and connect the mathematical
properties of transformations in different kinds of representations. The applets
allowed students to manipulate objects on the plane using the four geometric
transformations (see Fig. 10.4).

In addition, students and the teacher used physical manipulatives that were
designed by mathematics educators at a university under the guidance of the
researcher and with the help of preservice secondary mathematics teachers (see
Fig. 10.5).

Fig. 10.4 Samples from virtual manipulatives used during instruction
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10.1.3 Collecting Data

Data collection occurred in two main phases. Before the first lesson of the study
began, two data sources were used, the Spatial Ability Test (SAT) and the pretest.
Prior to the first week of the study, the researcher interviewed each of the partic-
ipants to discuss their responses to pretest tasks. The purpose of this interview was
to determine the participants’ primitive knowledge about geometric transformations
in detail.

After the lessons began, the main data source was participants’ responses during
videotaped task-based interviews that were conducted weekly. The field notes that
were taken during the classroom observations were used to support the interview
data. The researcher conducted four task-based interviews with each of the partic-
ipants about each of the transformations after the lessons. Tasks were designed to
probe students’ understandings of geometric transformations in the context of rep-
resentations. Because high school students were expected to construct a formal level
of understanding and make formal observations in the curriculum, the nature of the
tasks was based on the knowledge that is required to go through to the Observing
level. Several studies on students’ understanding of geometric transformations (e.g.,
Flanagan 2001; Yanik 2006) were used to design the tasks. First, questions asked
participants to provide descriptions for the geometric transformation, give examples
and non-examples of the transformation, and clarify the properties of the transfor-
mation. There were tasks using verbal, visual and algebraic representations of the
transformations. The researcher prompted the collection of information about par-
ticipants’ growth of mathematical understanding by posing questions about identi-
fying, applying, and translating among multiple representations.

She provided paper, pencil, and related physical and virtual manipulatives
during each of the interviews. Participants were told they were free to use any of
these instruments while they were working on the tasks. A video camera was
positioned behind the participants and captured audio and video of participants’
engagement with the tasks and manipulatives. The researcher wanted students to

Fig. 10.5 Samples of physical manipulatives used during instruction
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read the questions and think aloud as much as possible during the interviews. Each
of the four weekly interviews lasted approximately one hour.

10.1.4 Data Analysis

The units of analysis for this case study were the participants (Miles and Huberman
1994). First each case was analyzed separately, and then a cross case analysis was
conducted to compare the cases in terms of the role of virtual manipulatives in
developing mathematical understanding of transformations. The constant compar-
ison method (Strauss and Corbin 1990) was used to analyze the data.

Before starting the data analysis, the researcher prepared a coding protocol,
based on multiple representations of transformations and mathematical under-
standing levels of the Pirie-Kieren model. The protocol included the possible
components of each mathematical understanding level that students developed
about each transformation by using distinct representations. The participants’
mathematical understanding about each geometric transformation was traced
according to this protocol. For example, when a student was using formal under-
standing, but for some reason s/he needed to revise her/his image and began to use
virtual manipulatives at the Image Making level, it was coded as using virtual
manipulatives to fold back.

The whole data set was analyzed twice. First, the line-by-line coding of each
interview was performed using Pirie and Kieren’s understanding levels and char-
acteristics of the theory. Second, the data were coded to determine students’ mul-
tiple representation usage by focusing on the virtual manipulatives. After coding
each interview for mathematical understanding levels and engagement with virtual
manipulatives, codes from the two sets were associated with each other by axial
coding and emergent themes were identified looking at these associations.

10.2 Results

Table 10.2 summarizes participants’ virtual manipulative use during the weekly
interviews. Participants differed in their use of virtual manipulatives as they
developed mathematical understandings about the geometric transformations.

Elif used virtual manipulatives during all four weeks consistently, Defne used
them during two of the four weeks, whereas Selim and Metin used virtual
manipulatives only during one of the four weeks. Elif used virtual manipulatives
while she was working at almost every mathematical understanding level from
Image Having to Observing. Defne used virtual manipulatives mostly to express her
images and to notice some properties about transformations. Selim preferred to use
them during the rotation interview while he was engaging with some activities at
the Property Noticing and Observing levels. Metin used virtual manipulatives only
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during the dilation interview. He worked with these manipulatives at the
Formalising and Observing levels to express the formal ideas and inferences that he
constructed after the lesson. In the following section, each participant’s virtual
manipulative usage will be examined deeply as their mathematical understanding
process is traced within the Pirie and Kieren’s levels.

The mapping of the participants’ mathematical understandings about each
transformation is presented below in a two-dimensional model that maps the rep-
resentations with Pirie and Kieren’s mathematical understanding levels. The hori-
zontal axis shows the levels from the Pirie-Kieren model with acting and expressing
aspects, and the vertical axis shows the three areas of the tasks presented during the
interviews (verbal, graphical, and algebraic) and the five types of representations
used (physical manipulatives, virtual manipulatives, verbal, graphical, and algebraic
representations). To guide the reader to track the mathematical understanding
process of the students, the numbers were added to the model to show how par-
ticipants traversed the levels. The same numbers appear in parentheses in the text to
help the reader to follow participants’ mathematical understanding explicitly.
Participants’ engagement with distinct representations through their use of virtual
manipulatives will be focused on during the interviews to analyze their role in the
mathematical understanding process.

Case 1 (Elif)
Elif was a 16-year-old girl in the second year of her high school education. She was
a successful student in her previous geometry classes and had good spatial ability
(see Table 10.1).

Elif’s mathematical understanding about translation and virtual manipu-
latives. Figure 10.6 shows the development of Elif’s mathematical understanding
about translation as she worked with distinct representations within the different
levels. She used virtual manipulatives two times during this interview, first at the
Image Having level and second at the Formalising level.

The first question of the interview asked Elif to give an example and a
non-example of a translation. She preferred to use virtual manipulatives to express
her image by giving an example of the transformation (1a). She drew two congruent
triangles on the virtual manipulative and said that she drew the translated image of
the triangle by moving the original triangle “three units to right and four units to
down” (see Fig. 10.7).

Table 10.2 The number of times participants used virtual manipulatives during the interviews

Elif Defne Selim Metin

Week 1: Translation 2 (IH, F) 0 0 0

Week 2: Rotation 5 (IH, PN, F) 0 2 (PN, O) 0

Week 3: Reflection 5 (F, O) 2 (IH, PN) 0 0

Week 4: Dilation 6 (PN, F, O) 2 (PN) 0 2 (F, O)

Note IH Image Having; PN Property Noticing; F Formalising; O Observing

222 H. Gulkilik



In the following phase of the interview, the researcher wanted Elif to explain
what she understood about translating an object on the plane by using the idea of a
vector. She answered that question by saying that “it was moving the object through
the length of the vector” while she supported this idea with an example on the
virtual manipulative (2b). This time she preferred to use virtual manipulatives to
express her formal idea about the transformation at the Formalising level.

Elif was able to understand and apply the verbal, graphical and algebraic repre-
sentations of translation at the formal levels and she successfully connected these
representations with each other. At the end of the interview, she explained that she
“could work virtual manipulatives properly and could make faster drawings with
them”. She preferred to use virtual manipulatives to express the images she had from

Fig. 10.6 The mapping of Elif’s mathematical understanding about translation. PM Physical
Manipulative, VM Virtual Manipulative, VR Verbal Representation, GR Graphical Representation,
AR Algebraic Representation
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her previous experiences and the formal ideas she constructed after the lessons
during the interview. Virtual manipulatives were validating tools in the environment
that helped her to verify the level of understanding she was working on at that time.

Elif’s mathematical understanding about rotation and virtual manipula-
tives. Elif preferred to use virtual manipulatives during the rotation interview more
than she did in the translation interview. As seen in Fig. 10.8, she used the virtual
manipulative mostly at the beginning of the interview. She drew a triangle on the
manipulative and rotated it easily90°,180°, and360°while shewasgivingexamplesof
rotation (1). She continued to express her ideas on the virtual manipulative at the
Property Noticing level while the following dialogue took place between her and the
researcher (2):

Elif For example in this rotation, the figure goes on that circle (pointing to
the circle on the virtual manipulative) but in translation it would move
through a given vector.

Researcher I see. What would you add if one of your classmates would ask you
about rotation?

Elif I would say it is spinning a figure around a point that is not on the
figure without changing the distance.

Researcher Distance?
Elif I mean the distance from the figure to the point.
Researcher You mean the point that is not on figure?
Elif Yes, rotation center I mean. It may be on the figure also, sorry. But the

distancebetween the rotation center and the turningpointwill not change.
Researcher Ok. How will you rotate the figure without changing that distance?
Elif Around the point. I mean it will make a circle around the rotation

center.

Elif used formal explanations while she was saying that rotating a figure meant
turning a figure around a point by any angle measure on the plane (3). She made a

Fig. 10.7 The congruent
triangles Elif drew on the
virtual manipulative
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folding back movement to the Property Noticing level and chose a rocket figure on
the virtual manipulative while she was explaining further (4) (see Fig. 10.9).

First I determine the distance between the corner points of this figure (showing the original
figure) and rotation center, then look at the rotation angle. I turn thefigure around the center by
that angle. Like this, I am identifying the distance (showing the length of line segment between
oneof thecornerpoints of thefigureand rotationcenter), then, rotationcenter is theoriginpoint.
I amlookingat thedistancebetween thispoint (showing thesamecornerpoint) andcenter. Iwill
turn thefigurearoundthecenterwithoutchanging thedistance Idetermined. Itwillmakeacircle
around the center and the radius of a circle is equal to this distance everywhere.

Fig. 10.8 The mapping of Elif’s mathematical understanding about rotation. PM Physical
Manipulative, VM Virtual Manipulative, VR Verbal Representation, GR Graphical Representation,
AR Algebraic Representation
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Elif used the virtual manipulative as an invocative intervention that caused her to
work in an inner level to strengthen her formal level of understanding. She con-
tinued to use the virtual manipulative when she was asked to rotate a triangle
around the origin by 90° in the verbal representation task. She quickly drew the
triangle on the virtual manipulative and found the image of the triangle under a
rotation of 90° around the origin by herself, without clicking the rotate button (5a).
To understand if she was able to translate from verbal representations to algebraic
representations of rotation, she was asked to reanswer this question by using a
mathematical formula this time. First she wrote the expression ðxcos a�
ysin a; xsin aþ ycos aÞ without any equality and then looked at the virtual manip-
ulative for a while (5b). The researcher observed that Elif was checking the formula
with the solution that she performed on the virtual manipulative by putting the
corner points of the triangle into the expression. For this situation, the virtual
manipulative was playing the role of a validating intervention for her to confirm the
formal level of mathematical understanding she had.

To analyze Elif’s mathematical understanding of rotation in detail, she was
asked to find R60� Pð Þ without giving any mathematical formula, where P was (1, 0).
Elif was successful in explaining the meaning of the mathematical notation R60� Pð Þ
in the task by stating that it was asking for the image of point P under the rotation
around the origin by 60° (9a). When she was asked to resolve the problem by using
visual representations she opened the virtual manipulative again and turned the
point around the origin by 60° and marked an estimated point on the screen as the
image (9b). She stated that she could find the image on the virtual manipulative
approximately, but to identify the exact location of this point she would need to use
the physical manipulative that was designed to rotate a point around the origin by a
protractor.

As seen on Fig. 10.8, Elif was successful understanding and applying distinct
representations of rotation at the Formalising level and translating among verbal,
graphical and algebraic representations. As interactive and dynamic external visual

Fig. 10.9 The figure Elif
used to express some
properties about rotation
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representations, virtual manipulatives seemed to be helping her to apply these
transformations in mathematical situations and make connections between repre-
sentations. In contrast with the translation interview, Elif preferred to use virtual
manipulatives more than physical manipulatives in the rotation interview. At the
end of the interview, she clarified this situation by stating that “virtual manipula-
tives were ready to use quickly” at that time.

Elif’s mathematical understanding about reflection and virtual manipula-
tives. Elif continued to use the virtual manipulatives during the reflection interview.
As seen in Fig. 10.10, she began the interview by creating an example on the virtual
manipulative at the Formalising level (1).

Fig. 10.10 The mapping of Elif’s mathematical understanding about reflection. PM Physical
Manipulative, VM Virtual Manipulative, VR Verbal Representation, GR Graphical Representation,
AR Algebraic Representation
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She found the image of a triangle that she drew on the virtual manipulative under
the reflection across the line y ¼ x. She said it would be an example of a reflection
because “each point of the original triangle has a corresponding point on the
reflected triangle that is the same distance from the line of reflection as the original
point”. When she was asked to give a non-example of reflection she said that a
translation would not be a reflection because the direction of a figure might be
changed in reflection but not in translation. She marked one of the corresponding
sides of the triangles that she previously drew on the virtual manipulative and said
that the direction of both sides did not stay the same after a reflection (2). As a
provocative intervention, the virtual manipulative helped her to carry her under-
standing to the next level. Elif began to work at the Formalising level again while
she was explaining how to reflect a figure across a line. She expressed that “all of
the corresponding points would be the same distance from the line of reflection” by
looking at the example she drew on the virtual manipulative (3a). Her under-
standing seemed to maintain that level while she was engaging in the verbal rep-
resentation task in which three points as Að1; 1Þ, Bð0; 2Þ and Cð2; 3Þ on the plane
were given and she was asked to reflect the ABC triangle in the origin. She was
successful in finding the image with the virtual manipulative by placing it directly
on an opposite point on the other side of the center for each of the corner points on
the triangle. The point of reflection was the midpoint of the segment joining each
point of the triangle with its image (3b) (see Fig. 10.11).

The next time she used virtual manipulatives was the session that she was
resolving the algebraic representation task by using graphical representations. She
was asked to find SM Pð Þ where P was ð1; 0Þ and M was ð2; 2Þ in the task. She said
that SM Pð Þ was the image of point P under the reflection in point Mð2; 2Þ and found
the image by using SM Pð Þ ¼ 2M � P (7a). She was also able to show the graphical
solution on the virtual manipulative that confirmed that she understood and applied
distinct representations of the transformation (7b). Elif used virtual manipulatives to
clarify her formal understandings during the reflection interview. As seen in her

Fig. 10.11 Elif was finding
the image of a triangle on the
manipulative
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previous explanations, the virtual manipulative played the bridge role in her
understanding to use distinct representations and translate among them.

Elif’s mathematical understanding about dilation and virtual manipula-
tives. The dilation interview was the session that Elif primarily used virtual
manipulatives (see Fig. 10.12). She began the interview by expressing some
properties of dilation in an example on the virtual manipulative (1a) (see
Fig. 10.13). She continued to work at the Property Noticing level while she was
recording some properties of dilation on the same manipulative (1b). Next, Elif was
expected to find the image of a triangle after a dilation with the center at point (0, 2)
and a scale factor of 2. She continued to use the virtual manipulative and found the
image of the triangle easily (2b) (see Fig. 10.14).

Fig. 10.12 The mapping of Elif’s mathematical understanding about dilation. PM Physical
Manipulative, VM Virtual Manipulative, VR Verbal Representation, GR Graphical Representation,
AR Algebraic Representation
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Elif was working at the Formalising level and she was able to connect the verbal
representation and the graphical representation of the concept together using the
virtual manipulative. When she was asked to resolve the problem by using algebraic
representations she could not remember the whole mathematical formula,
H Pð Þ ¼ P0 ¼ Mþ kðP�MÞ, which gives the image of point P under the dilation
with a center at the pointM and a scale factor of k. She used virtual manipulatives to
confirm the P�M part of the formula. She picked some corresponding points from
the original and image triangles and put these points in the formula to see if the
notation was right or not. After trying several points, she stated that P�M was the
distance between the original point and the center and if she multiplied this distance
with k and added the new distance to the center she would find the image of the
point (2c). The virtual manipulative, again as a validating intervention, helped her
to build a connection between the graphical and algebraic representations of the
concept.

Fig. 10.13 The example of a
dilation Elif drew using the
virtual manipulative

Fig. 10.14 The example
of dilation Elif drew on
the virtual manipulative while
she was checking some
properties
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She continued to work on the triangles she drew on the virtual manipulative
while she was saying “because the angles, the direction of angles were the same and
the sides of the image were twice the sides of the original triangle, two triangles
were similar” (3). She was using the manipulative to express her formal observa-
tions about the transformation this time. She made a folding back movement to the
Property Noticing level and continued to use the virtual manipulative while she was
predicting some properties of the dilation in that level (4). She stated “while we
were finding the image, we were thinking about the distance from the center. If the
center changes, because the distance between the original point and the center will
change, then the location of the image changes” while she was working on the
manipulative that helped her to strengthen her mathematical understanding.

After using verbal representations to solve the algebraic representation task, she
began to use the virtual manipulative again to show a graphical solution (7b). Elif was
able to comprehend and apply the distinct representations of dilation and make con-
nectionsamong them.Sheusedvirtualmanipulativesusually toexpressher imagesand
formal ideas and virtual manipulatives were validating interventions in the environ-
ment that helped her to translate among the distinct representations of transformations.

Case 2 (Defne)
Defne was a 17-year-old girl in the second year of her high school education. She
was a successful student in her previous geometry class but did not have good
scores on the spatial ability test or the pretest (see Table 10.1).

Defne’s mathematical understanding about reflection and virtual manipu-
latives. The reflection interview was the session that Defne used virtual manipu-
latives for the first time. She did not use them in the translation or rotation
interviews. According to Fig. 10.15, which shows the mapping of Defne’s math-
ematical understanding about reflection, she used the virtual manipulatives at the
Image Having level after noticing some properties about the transformation.

When she was asked to explain what she understood from reflecting a figure
across a line she made the following explanations using virtual manipulative at the
Property Noticing level (2b) (see Fig. 10.16):

Defne If I reflect a triangle over the line passing through the origin (showing
the y = x line) I will flip it over that line, but the distances have to be
perpendicular distances.

Researcher Perpendicular distance?
Defne I mean it is already the distance when it comes to perpendicular.

She was trying to express that when she was reflecting a point across a line, the
line was the perpendicular bisector of the segment joining the original point and its
image. Her understanding moved to the Image Having level when she used her
hands and made some gestures to clarify the ideas that she was explaining (see
Fig. 10.17). The dialogue between the researcher and her continued (3):

Defne Let’s think about my hands. For example the reflection of this hand is
my other hand, like that. If I move my hands like here (putting her
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hands on the computer screen). We can think as a whole. Reflection
over a line.

Researcher What about the reflection in a point?
Defne Reflection in a point. This point for example (marking a point on the

virtual manipulative), we will find the image around this point. It is
one unit (showing the distance between the point and one corner of the
figure) then it will come to here one unit (showing the point directly
opposite on the other side of the center).

As an invocative intervention, Defne used virtual manipulatives to make a
folding back movement to an inner level and tried to enlarge her images about
reflection. From Fig. 10.15, it can be seen that she was actively working in the

Fig. 10.15 The mapping of Defne’s mathematical understanding about reflection. PM Physical
Manipulative, VM Virtual Manipulative, VR Verbal Representation, GR Graphical Representation,
AR Algebraic Representation
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informal levels and could not move her understanding to the formal levels for a
long time (4a-5). Because she was not able to use multiple representations at the
formal levels she could not develop an appropriate understanding about the concept
in that time. Moreover, she looked uncomfortable using the virtual manipulatives
during the lesson. At the end of the interview, Defne stated that she lost time when
she attempted to work on the virtual manipulatives because she did not like to use
the computer. Her attitude seemed to be affecting her virtual manipulative use.
Virtual manipulatives helped her only to express the images that she had and clarify
the properties that she had already realized about reflection.

Defne’s mathematical understanding about dilation and virtual manipula-
tives. The other interview where Defne used virtual manipulatives was the dilation
interview. Figure 10.18 shows that she used virtual manipulatives two times in the
acting phase of the Property Noticing level to predict some properties of dilation
during the verbal representation task. She expressed the following ideas about
finding the image of a figure after a dilation with a center and a scale factor on the
virtual manipulative (2c):

Fig. 10.16 The example
Defne drew on the virtual
manipulative

Fig. 10.17 Gesture Defne
used during the interview

10 The Role of Virtual Manipulatives in High School Students … 233



I understand that the figure is being stretched or expanded on a center. Like this example
(showing an original triangle and its dilated image on manipulative). When the dilation
center comes closer to the original figure, this one (the image of the triangle) comes closer to
the center, too. When we reduce the scale factor the triangles come closer to the center… So,
we will look at the distance to the center and the scale factor if we want to dilate a figure.

She made a folding back movement to the Property Noticing level and began to
use the virtual manipulative for the second time when she was asked what would
happen to the image if the dilation center was changed (7a). She expressed her ideas
in the following dialogue:

Defne I will do the similar things. If I carry the center point from here to here
(moving the dilation center on the virtual manipulative) but the scale

Fig. 10.18 The mapping of Defne’s mathematical understanding about dilation. PM Physical
Manipulative, VM Virtual Manipulative, VR Verbal Representation, GR Graphical Representation,
AR Algebraic Representation
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factor will be same, the size of the triangle (showing the image of
triangle) will not change. Only the location of it will change.

Researcher What about the scale factor? If I change the scale factor?
Defne When I reduce the scale factor the image comes closer (changing the

scale factor) (see Fig. 10.19).

Defne stopped using virtual manipulatives after working on these properties of the
transformation. She preferred to use them to make some physical activities at the
Property Noticing level. The virtual manipulatives played the role of validating inter-
ventions that helped her to justify the understanding she had at the time. Figure 10.18
shows that she continued to work mostly at informal levels as she did in the reflection
interview. She could not apply the verbal, graphical and algebraic representations and
was not able to connect them in formal levels as in the reflection interview.

Case 3 (Selim)
Selim was a 16-year-old boy in the second year of his high school education. He was
a very successful student in his previous geometry class but had the lowest score on
the spatial ability test and one of the lower scores on the pretest (see Table 10.1).

Selim’s mathematical understanding about rotation and virtual manipula-
tives. Selim was the participant who preferred to use physical manipulatives during
the interviews. The only session he used virtual manipulatives was the rotation
interview. He used them two times during the interview; first he used them to
perform some activities at the Property Noticing level, and second he used them to
express his formal observations at the Observing level (see Fig. 10.20).

When he was asked to explain what he understood from rotating a figure around
a point by an angle measure he began to work on a particular example on the virtual
manipulative to notice some properties (4). The following dialogue took place
between the researcher and Selim while he was using the virtual manipulative:

Selim For example this figure (pointing to the figure on the virtual
manipulative). Let’s rotate it counter clockwise, in positive direction
by 90° (rotating the figure and observing the image).

Fig. 10.19 Defne was
changing the scale factor
to notice some properties
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Researcher It says around a point?
Selim Around the origin, the rotation center is the origin here.

The second time, he chose to work with virtual manipulatives again while he
was showing the differences when the parameters of the transformation were
changed (8b). Selim was able to apply verbal representations of the transformation
more than graphical or algebraic representations. He was able to transition between
these representations but he needed to make folding back movements to inner levels
while he was working especially with algebraic representations.

Virtual manipulatives played the role of a tool for Selim to engage in physical
activities and to confirm his formal observations of the transformation. He remarked
he “would not trust the operations or calculations from a virtual manipulative he

Fig. 10.20 The mapping of Selim’s mathematical understanding about rotation. PM Physical
Manipulative, VM Virtual Manipulative, VR Verbal Representation, GR Graphical Representation,
AR Algebraic Representation
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was using without checking these operations or calculations by mathematical for-
mulas during problem solving”.

Case 4 (Metin)
Metin was a 17-year-old boy in the second year of his high school education. He
was not a successful student in his previous geometry class but had the highest
score on the spatial ability test (see Table 10.1).

Metin’s mathematical understanding about dilation and virtual manipula-
tives. Metin was the other participant who preferred not to use virtual manipulatives
during the interviews. He used them only two times at the Formalising and
Observing levels during the dilation interview (see Fig. 10.21). First he used them

Fig. 10.21 The mapping of Metin’s mathematical understanding about dilation. PM Physical
Manipulative, VM Virtual Manipulative, VR Verbal Representation, GR Graphical Representation,
AR Algebraic Representation
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to express his formal ideas while he was dilating a triangle and second to state his
observations while he was explaining the relationships between the original figure
and its image under a dilation. When Metin was asked to find the image of a
triangle after a dilation with the center at point (0, 2) and a scale factor of 2, he
began to use the virtual manipulative and found the image of the triangle (3b) (see
Fig. 10.22).

He continued to use his formal level understanding during the remaining part of
the verbal representation task and used the virtual manipulative to express his
theorem-like idea about dilation at the Observing level (4b). He said “the figures
and their dilated images were always similar because angles were preserved and
corresponding sizes of the figures had the same ratio” while he was working on the
virtual manipulative.

As seen on Fig. 10.21, Metin was working mostly at the formal levels and he
was able to use distinct representations of the concept. He could translate among the
multiple representations of the transformation without using physical and virtual
manipulatives. It was thought that because he had a proper understanding and was
able to use distinct representations of dilation he did not need to engage in
manipulative activities. The following sentences he used at the end of the interview
supported this finding:

I got used to computer and physical objects. I can use whichever I want. It may be more
enjoyable if you work with them but using them takes your time, you have to do some extra
work. Physical objects are good while you are trying to understand the concept but I would
not use them if I try to solve a problem. I would use only paper and pencil.

10.3 Discussion and Conclusion

Trying to characterize students’ mathematical understanding about a mathematical
concept is a multifaceted process. In this study, Pirie-Kieren theory, with its
understanding levels and features, and representation theory, with multiple

Fig. 10.22 The triangle and
its’ image Metin drew on the
virtual manipulative
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representations, provided a tool/model to observe how and what students under-
stood about a concept. Developing a two dimensional graph to represent students’
developing understanding by combining these two theories helped the researcher to
trace the change in student’s mathematical understanding and interpret the role of
virtual manipulatives in this understanding. According to the analysis, students’
mathematical understanding levels spanned the first six levels of the Pirie-Kieren
model (Primitive Knowing, Image Making, Image Having, Property Noticing,
Formalising, and Observing). Students used virtual manipulatives to support their
understanding in various ways not only in informal levels but also at the
Formalising and Observing levels. Findings by Gibbons (2012) support this result
by stating that high school students worked with physical manipulatives at formal
levels like Observing and Structuring, to construct abstract meaning of mathe-
matical concepts.

In the cross case analysis, Elif and Metin, who developed formal levels of
understanding, used virtual manipulatives to express their formal ideas and
observations. Expressing is a required understanding characteristic that helps stu-
dents to state the structure of mental or physical activities to themselves or other
observers and carry their understandings to the next levels (Borgen 2006; Nillas
2010; Pirie and Kieren 1994). On the other hand, Defne, who developed insufficient
understandings, used virtual manipulatives for physical and mental activities in only
the first four levels. Acting is an important understanding characteristic that helps
students to manage their previous levels of understandings and realize some new
features in any of the understanding levels (Pirie and Kieren 1994). Hence, it can be
said that virtual manipulatives played the role of an acting/expressing medium that
supported the development of students’ mathematical understanding.

There were several interventions that affected students’ mathematical under-
standing in the environment. Verbal, graphical, and algebraic representation tasks,
prompts that the researcher used during the interviews, and manipulatives that were
present on the table and computer screen gave direction to students’ mathematical
understanding processes. In particular, virtual manipulatives played the role of a
provocative intervention that helped students to progress outwards (e.g., Elif’s
movement from the Formalising level to the Observing level in the reflection
interview). These were used as validating interventions that guided students to
justify their level of understanding. Lastly, virtual manipulatives were invocative
interventions that caused a folding back movement to the inner levels (e.g., Selim’s
movement from Formalising to the Property Noticing level in the rotation inter-
view). As invocative interventions, virtual manipulatives were the source of folding
back movements where they were also helping to identify the nature of these
movements. For example, Defne used virtual manipulatives in a folding back
movement to “work in an inner level using existing understanding” during the
rotation interview, whereas Elif used them in a folding back movement to “collect
in an inner level” during the dilation interview (Martin 2008, p. 76). When we
consider that the dynamic feature of folding back is essential for the mathematical
understanding process (Pirie and Kieren 1994), virtual manipulatives helped stu-
dents to strengthen their understanding during these movements.
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Virtual manipulatives played the role of a supportive external representation that
facilitated understanding of the concept. Students preferred to work with virtual
manipulatives to comprehend and apply especially verbal and graphical represen-
tations. Students used them as a connection tool when they were expected to
translate among distinct representations. Because applying multiple representations
and making connections among distinct representations indicates a strong mathe-
matical understanding (Goldin 2003; Hiebert and Carpenter 1992; Lesh et al. 1987;
Zhang 1997) the virtual manipulatives helped students to develop a proper
understanding in terms of multiple representation engagement. From the observer’s
perspective, virtual manipulative usage at the formal levels may be an indicator that
the student can connect multiple representations of the concept. For example, Elif
used virtual manipulatives to express her formal ideas while she was engaging with
verbal or algebraic representations at the Formalising level. Because she could use
distinct representations at the formal levels, she developed a robust understanding
about the transformations.

On the other hand, virtual manipulatives supported the motion understanding of
geometric transformations (Hollebrands 2003; Yanik 2006) especially if they were
used without an understanding of algebraic representations of the concepts. Elif was
the only participant who developed a function understanding about the transforma-
tions, which is complicated even for preservice mathematics teachers (Yanik 2011).

In terms of preferences, Elif and Metin used virtual manipulatives because they
found them easy to produce proper solutions (Haistings 2009; Izydorczak 2003).
Defne and Selim did not prefer to use them for different reasons. Defne was under
the influence of her attitudes towards computers, while Selim did not trust the
operations he did with the manipulatives. Another factor to consider was that spatial
ability plays a role in effective use of virtual manipulatives in geometric transfor-
mations. Students who had good spatial ability (Elif and Metin) used them quickly
and properly whereas students who had insufficient spatial ability (Defne and
Selim) had some difficulties in using them.

This study was an attempt to determine the role of virtual manipulatives in high
school students’ mathematical understanding processes. Although the Pirie-Kieren
model and representation theory give the opportunity to trace the development of
mathematical understanding in detail, there is still a need for new research ana-
lyzing virtual manipulative usage in mathematical understanding processes at the
high school level.
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Chapter 11
Geometry and iPads in Primary Schools:
Does Their Usefulness Extend Beyond
Tracing an Oblong?

Kevin Larkin

Abstract Although research into the use of mathematics apps in classrooms is
becoming more common, robust research into Geometry apps is still in its infancy.
Such research is particularly necessary in the case of Geometry apps where accurate
and dynamic representations are critical in enhancing mathematical learning. This
chapter begins to address the lack of research in this domain and presents findings
from a qualitative and quantitative analysis of 53 Geometry apps initially selected
from a broader range of apps available at the iTunes App Store. These findings
indicate that the majority of the 53 apps were limited in their ability to assist
students in developing Geometrical conceptual understanding. While this is of
concern to educators there are, however, a small number of Geometry apps which
would be most useful in teaching Geometry to primary aged students.

11.1 Introduction

This chapter synthesizes the research literature concerning the use of virtual
manipulatives in mathematics education and then outlines a four-step methodology
for evaluating the appropriateness of Geometry apps. Research such as this is needed
as there has been little to no specific research into their usefulness in developing
Geometry concepts. In addition, where research has been conducted into mathe-
matical apps, with a few exceptions (Larkin 2013, 2014, 2015a, b;Moyer-Packenham
et al. 2015), such research has largely been descriptive in nature. Findings of this
research indicate that, although the majority of the iPad Geometry apps utilized
external representations, most were limited in assisting students in developing
deepened conceptual understanding of primary-level Geometry concepts.

For the purpose of this chapter, Geometry apps are those that include content
applicable to primary schooling (5–12 year olds) including 1D lines, 2D shapes, 3D
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objects, transformations, co-ordinate geometry, angles and symmetry. Determining
the quality of an app is difficult not only due to a lack of current research, but also
because the information that is available at the iTunes App Store is supplied by the
app developer and largely serves as an infomercial. The problem of determining
quality in relation to Geometry is compounded by the fact that Geometry apps are
much more likely to require accurate external representations. Consequently a new
methodology for evaluating the usefulness of Geometry apps was designed.

The focus of this chapter is an explanation of how the constructs of pedagogical,
mathematical and cognitive fidelity (Dick 2008), the Haugland (1999) develop-
mental scale, and a modified version of Bos’ (2009) software game format were
used to evaluate 53 Geometry apps. The goals of this chapter are two-fold. The first
goal is to articulate a methodology for reviewing the apps such that other teachers
or researchers can use the methodology to review Geometry apps as they become
available. The second goal is the creation of a web-based database of Geometry
apps, categorized according to how well they promote conceptual understanding in
Geometry. This research recognizes that the choice and use of Geometry apps needs
to be based on a deep understanding of the pedagogical, mathematical and cognitive
strengths and weaknesses of the apps.

11.2 Literature Review

Research into the use of concrete manipulatives in mathematics is extensive and
only indicative research is included below. Carbonneau et al. (2013) synthesize the
findings of decades of research in suggesting that concrete manipulatives support
the development of abstract reasoning, stimulate the real-world knowledge of
learners, provide opportunities for enactment of concepts, and encourage
learner-driven exploration of such concepts. Burns and Hamm (2011) indicate that
students engaged in extensive use of concrete manipulatives at the early elementary
levels of schooling consistently outperform students with limited to no access to
such materials. Suh and Moyer (2007) argue that

the use of manipulatives allows students to make the important linkages between con-
ceptual and procedural knowledge, to recognize relationships among different areas of
mathematics, to see mathematics as an integrated whole, to explore problems using physical
models, and to relate procedures in an equivalent representation. (p. 22)

A contribution to the literature from this chapter is determining whether or not
this is the case with iPad-based Geometry manipulatives. As Geometry apps rely
heavily on virtual representations, it is informative to examine research related to
computer-based manipulatives as touch-screen devices are likely to replicate many
of the features of computer-based manipulatives in relation to external represen-
tations and physical interactions (Manches and O’Malley 2012).
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11.2.1 Definitions and Findings Concerning Virtual
Manipulatives

Moyer et al. (2002) define a virtual manipulative as “an interactive, Web-based
visual representation of a dynamic object that presents opportunities for con-
structing mathematical knowledge” (p. 373). Given the interactivity of virtual
manipulatives, students can mimic actions applied when manipulating concrete
geometric materials and flip, slide or rotate the visual representations as if they were
actual 3D objects (Rosen and Hoffman 2009). Representations such as these can
also be linked to symbolic notations so that concept development can be enhanced.
Moyer-Packenham and Westenskow (2013) suggest that virtual manipulatives are
designed to “connect pictorial representations, actions performed on them, and
symbolic representations, to highlight mathematical concepts and focus the atten-
tion of the learner on the mathematics to be learned” (p. 37). For instance, they can
link different forms of representation, such as symbolic, pictorial and concrete (e.g.,
a diagram depicting the area of a rectangle along with the formula A = L*W), or
link different representational models to each other (e.g., a set model to a region
model both representing ¼).

Research conducted into the use of computer-based virtual manipulatives con-
firms many of the positive outcomes of using concrete manipulatives. For example,
Clements and Battista (1992) found that student ideas about shapes were more
precise and mathematically robust after using the computer-based Logo software.
Studies where virtual manipulatives were used showed positive gains in students’
conceptual understanding (Reimer and Moyer 2005). Highfield and Mulligan
(2007) confirmed that virtual manipulatives and dynamic interactive software were
powerful mathematical tools in aiding student concept development. Moyer-
Packenham and Westenskow (2013) found that virtual manipulatives have a
moderate effect on student achievement (when compared against other instructional
treatments) and suggest that virtual manipulatives “have unique embodiments that
have positive impacts on student achievement in mathematics” (p. 46). Özel (2012)
reports on some of the affective effects of the use of virtual manipulatives and notes
that immediate feedback enhanced student self-efficacy.

In contrast, a number of researchers have cautioned against considering virtual
manipulatives as a panacea for the much publicized woes of mathematics education.
One set of concerns relates to the technological aspects of virtual manipulatives.
Chang et al. (2013) suggest that the computer skills required to use virtual
manipulatives can be problematic, particularly for younger students who may
require significant teacher scaffolding. In addition, the use of virtual manipulatives
can be distracting to some students as activities not necessarily related to mathe-
matics are only a click away. Perhaps of greater concern is the mathematics
underpinning some of the virtual manipulatives, as it cannot be automatically
assumed that the use of virtual manipulatives will bring about mathematical
understanding. Uribe-Flórez and Wilkins (2010) remind us that the value of virtual
manipulatives lies in their ability to promote the quality of student thinking and in
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the extent to which their external representations assist students to generate
mathematical abstractions.

These may be limited for some students who are deprived of the tactile expe-
rience of concrete manipulatives and who may thus not develop conceptual
understanding as richly as might be possible with concrete materials (Chang et al.
2013). Moyer-Packenham and Westenskow’s (2013) meta-analysis results also
show that while virtual manipulatives have a moderate effect overall in student
achievement, these effects are inconsistent across student age levels and mathe-
matics content being taught. This suggests that a large range of contextual features
need to be considered before using virtual manipulatives—for example, prior
experience with computers, age, and content versus concept development. This
point is supported by Uribe-Flórez and Wilkins (2010) who noted that “how
teachers design their classroom activities involving manipulatives will ultimately
affect the success of their use on student understanding” (p. 364). Regardless of past
findings concerning the use of virtual manipulatives, it is clear that further research
is required, particularly with the increasing availability of the iPad as a tool for
mathematics education. The following section of the literature review concludes
with a discussion on three aspects of fidelity in relation to apps, namely, peda-
gogical, mathematical, and cognitive fidelity (Dick 2008) and outlines how they
were incorporated into a methodology for evaluating apps.

11.2.2 Pedagogical, Mathematical and Cognitive Fidelity

Pedagogical fidelity is defined by Dick (2008) as the degree to which a student can
use a tool to further their learning. Zbiek et al. (2007) suggest that pedagogical
fidelity also refers to “the extent to which teachers (as well as students) believe that
a tool allows students to act mathematically in ways that correspond to the nature of
mathematical learning that underlies a teacher’s practice” (p. 1187). Dick suggests
that a pedagogically faithful tool will likely be described by students in terms of
how it allowed them to interact with mathematics (e.g., “I created this triangle” etc.)
rather than simply as a description of procedures for use (e.g. “I set the preferences
to fast” etc.). Therefore, to be an effective pedagogical tool, an app must support
any action by the student that will lead to conceptual understanding of the under-
pinning mathematical principle.

The second of the three fidelities used to evaluate the apps is mathematical fidelity.
Zbiek et al. (2007) define this as the “faithfulness of the tool in reflecting the
mathematical properties, conventions, and behaviors (as would be understood or
expected by the mathematical community)” (p. 1173). Thus, mathematical fidelity is
present when the activity of a student is “believable, is concrete, and relates to how
mathematics is a functional part of life” (Bos 2011, p. 171) and when they add
strength to an understanding of mathematics as a language of patterns and order. Dick
(2008) cautions, however, that the current drive for user friendliness can sometimes
run contrary to mathematical fidelity. This is particularly worrisome in relation to
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apps as many apps are designed by non-educators for financial profit. Keeping the
notion of mathematical fidelity at the forefront of decisions when selecting apps
reminds teachers to avoid apps that do not deliver accuracy in terms of mathematical
content or constructs, for example, incorrect scaling in transformations.

The third of the elements in evaluating apps is cognitive fidelity, which refers to
“the faithfulness of the tool in reflecting the learner’s thought processes or strategic
choices while engaged in mathematical activity” (Zbiek et al. 2007, p. 1173).
Cognitive fidelity can be viewed largely in terms of the external representations
provided by the tool and Zbiek et al. argue that “if the external representations
afforded by a cognitive tool are meant to provide a glimpse into the mental rep-
resentations of the learner then the cognitive fidelity of the tool reflects the faith-
fulness of the match between the two” (p. 1176). This notion of cognitive fidelity is
obviously very important in Geometry apps, which are likely to utilize many
external representations. The virtual nature of app objects does allow for high
degrees of cognitive fidelity; for example, 3D objects can be pulled apart and put
back together, and in so doing, can reinforce the link between 3D objects and their
2D representations (i.e., nets).

11.2.3 Learnings from the Literature

It is clear from the literature that manipulatives play a special role in mathematical
activity. Although external representations can never exactly represent students’
internal mental representations, they are useful as “visible phenomena that can be
shared and discussed with others (e.g., other learners or the teacher)” (Zbiek et al.
2007, p. 1173). However, despite positive findings, use of manipulatives by
teachers is inconsistent. Reasons offered by some teachers for their lack of use
include lack of time to invest in locating virtual resources, particularly those that
promote mathematical understanding rather than just rote learning (Calder 2015), as
well as a misunderstanding that manipulatives will, in themselves, do the teaching
for them (Puchner et al. 2008). This may be because teachers tend to use manip-
ulatives, including virtual manipulatives, in a procedural or declarative manner
rather than using them to enhance conceptual development.

Although an understanding of the three types of fidelity can assist teachers in
making decisions about whether or not to use apps, it is argued above that one
problem for teachers is the lack of time to evaluate apps using the three fidelities (or
indeed any other evaluative process). In addition, although it might be expected that
some of the findings on the use of virtual manipulatives may reflect the experience
of using mathematics apps, apart from a few exceptions (Larkin 2014, 2015a, b;
Moyer-Packenham et al. 2015), rigorous quantitative research into Geometry apps
is in its infancy and thus further research is required.

11 Geometry and iPads in Primary Schools … 251



Two research questions guided this research:

1. Are the Geometry apps currently available at the iTunes store appropriate for
enhancing the learning of Geometry in primary mathematics?

2. Is the methodology utilized in this research robust in terms of internal consis-
tency and also in its “user friendliness” such that teachers and researchers can be
confident in using it to evaluate new Geometry apps as they become available?

11.3 Methodology

This section will outline the process for initially finding the Geometry apps, explain
how three quantitative measures were used to evaluate the apps, and discuss
measures of internal coherence and inter-reliability that were deployed to maximise
the accuracy of the evaluations. Teachers can also refer to the dataset generated by
this research to assist them in selecting what the author considers as highly
appropriate Geometry apps.

11.3.1 Locating the Apps

The evaluation process for this research commenced with a targeted search for
Geometry apps at the iTunes App Store in October, 2014. The following search
terms were used—Geometry Elementary Education, Geometry Junior Education,
Geometry Primary Education, Symmetry Education and Transformations
Education. Many of the same apps appeared in two or more of the searches. To
generate a workable sample size, apps were excluded from the final review
according to the following criteria.

• If both a free version and a paid version (these present as two different apps)
were available, both versions were reviewed only if this were necessary to
evaluate the app accurately

• Where there were a number of apps in a series, only one app was reviewed as
the apps in a series share similar structural and pedagogical properties

• Whilst the author acknowledges that mathematics learning occurs via games
(see Beavis et al. 2015), apps that were categorized by iTunes as Games,
Entertainment or Lifestyle, rather than categorised as Education, were excluded
from the sample

• Apps where mathematics was part of a bigger package of reading, writing, and
spelling skills were excluded

• Apps that required additional costs for access or further online registration of
students or teachers were excluded
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Although a sample of the apps were also evaluated by other mathematics edu-
cators, the author was primarily responsible for generating the scores. The scores
are based on the author’s experience of primary school mathematics for the past
30 years and also on the findings of his doctoral research exploring the use of
technology in primary school classrooms. The author extensively interacted with
each app until a decision could be made about its quality. It is also acknowledged
that these reviews are subjective and also that the reviews rapidly go out of date.
The author is currently working with primary educators in a range of schools to
correlate the review findings with the experience of classroom teachers who have
used the apps. In addition, teachers have been invited, via communication through
professional mathematics organisations, to contribute to the reviews so that the site
remains current.

Scoring of the apps involved the use of a two-page score sheet (see Appendix).
This scoresheet included a qualitative review of the apps, which was later trans-
ferred to a Google document available to teachers at the link provided later in this
chapter. This qualitative review included year-level appropriateness, Australian
Curriculum content covered, and a general comment regarding the usefulness of the
app. The scoresheet also used a series of measures for scoring the apps: the
Haugland (1999) development scale, Bos’ (2009) six software formats, and Dick’s
(2008) three measures of fidelity. These three measures were used as they respec-
tively evaluate the appropriateness of the apps for student use, their appropriateness
as virtual manipulatives in general, and then more specifically their usefulness in
developing mathematical understanding.

11.3.2 Haugland Scale—Background and Process

The Haugland software developmental scale (adapted for this research in
Table 11.1) is a criterion-based tool used to evaluate the appropriateness of
web-based applications and software for use by children (Haugland 1999; Haugland
and Ruiz 2002).

The Haugland scale was not initially designed to evaluate mathematical apps.
Consequently, two important modifications were made for this research. First, in
order to analyze the data more thoroughly, the original 10 criteria were grouped into
three sub-clusters (child-centered, design features, and learning features). Second,
elaborations were added to the sub-indicators to emphasize the relationship of the
apps to mathematics. In scoring the apps, each of the 10 criteria is worth one point
and each app can thus score between 0 and 10. The scoring sheet includes a number
of sub-indicators for each criterion. For apps to score a 1 for each criterion they
must meet all relevant sub-indicators. If they meet 50 % or more of the indicators a
score of 0.5 is recorded and if less than 50 % are met a score of 0 is recorded. For
example, there are three sub-indicators in the Process Orientation criterion. If an
app demonstrated all three indicators, a score of 1 was allocated; if two of the three
indicators were demonstrated, a score of 0.5 was allocated; if one or none of the
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indicators were demonstrated, a score of 0 was allocated. A nominal rather than
absolute level of scoring was used in this scale as there are differing numbers of
indicators across the ten criteria.

Table 11.1 Adapted Haugland developmental software scale with clusters and elaborations

Cluster Criteria Criteria elaboration with links to mathematics

Child-centred
(4 points
possible)

Age appropriate The mathematics concepts taught by the app reflect
realistic expectations for the age children for which
it was designed

Child control When using the app, children decide the flow and
direction for the experience, not the device. They are
navigators, determining where the experience will
lead and learn the consequences of their choices

Independence While adults may need to assist children in loading
the application, after this initial guidance and
support, children operate the app with minimal adult
supervision

Non-violence Violence in apps is of particular concern because
children often initiate and control the violence. In
addition, the app models appropriate societal values

Design of app
(3 points
possible)

Clear
instructions

Verbal instructions are essential, since even children
who are reading text-based instructions navigate
with greater success if audio instructions are also
provided. Directions are accompanied with visual
prompts and/or a help option

Technical
features

The app is colorful with realistic uncluttered
graphics, which enable children to focus on the
learning objectives. Graphics are animated to help
children attend. Whenever possible children control
the animation, learning mathematics through hands-
on experiences

Real world
model

The app provides children with concrete
representations of objects found in meaningful and
mathematically accurate situations or settings. The
scale and color of the objects are realistic, not
stereotypical

Learning app
(3 points
possible)

Expanding
complexity

The app is an exciting world that is easy for children
to enter and reflects children’s current cognitive,
physical, mathematical and language skills. When
children use the application a logical, mathematical
learning sequence emerges

Process
orientation

Intrinsic motivation; the desire to explore and
experiment and discover mathematics motivates
children as they use the app, not rewards. The joy of
learning is the reward in using the app

Transformations Apps have the unique potential to give children
opportunities to change objects and situations over
and over and discover how different mathematical
components impact their world
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11.3.3 Bos’ Game Format—Modification
for This Research and Scoring Criteria

It is important, in terms of student learning and student engagement, that teachers
can efficiently and accurately make an accurate evaluation of the type (format) of
app they are considering using. The work of Bos (2009) is adapted in this research
to evaluate the format of Geometry apps. Bos categorized computer software into
six formats: static tools, informationals, quizzes/tests, drill and practice games,
virtual manipulatives (VM), and interactive maths objects (IMO). Bos’ research
suggested that the format greatly influences the level of fidelity present in the virtual
resource. For example, static tools that generate results in symbolic or graphic
representations are likely to inhibit deeper abstraction or generalizations, whereas
VM, which engage students in mathematical activity, are likely to make abstract
concepts more concrete and thus can be a stepping stone to a deepened conceptual
understanding (Bos 2009). Table 11.2 presents a brief summary of the six formats
and an indication of their purpose, strengths, and weaknesses in relation to
Geometry apps. In terms of the evaluation in this research, apps which were static
tools scored 1 point, informationals scored 3 points, quizzes/tests scored 4 points,
drill and practice games scored 6 points, VM scored 8 points, and IMO scored 10
points.

11.3.4 Three Fidelities Score Sheet—Creation
and Scoring Criteria

The final measure used in determining the quality of the Geometry apps is an
evaluative tool created for this research (see Table 11.3), based on Dick’s (2008)
three fidelities. The three dimensions of pedagogical (including technological),
mathematical and cognitive fidelity have been used by other researchers to deter-
mine the quality of mathematics manipulatives (e.g. Bos 2009; Zbiek et al. 2007).
Bos (2009) went some way towards using the dimensions as a form of quantitative
assessment by creating a table of the three fidelities and indicating what a low,
medium, or high level of each dimension may look like in relation to computer
software. What has not been done previously is the assigning of a numerical value
to represent the degree, along a continuum, to which these three dimensions are
present in software in general, let alone more specifically in Geometry apps.

In the modified schema an individual app could, for instance, score highly on
mathematical fidelity yet poorly on cognitive and pedagogical fidelity. In order to
make sophisticated quantitative comparisons, the nominal levels of low, medium
and high have been replaced by a continuum ranging from 1 (no fidelity) to 10
(very high fidelity) for each of the three dimensions, resulting in a possible score of
3–30 for overall fidelity. In this manner, the observation that an individual app
could score highly on mathematical fidelity yet poorly on cognitive fidelity can be
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represented numerically to gain a measure of how well or poorly each of the
dimensions is represented. In brief, an app is considered low level (1–3) if it is
generally static, is inaccurate mathematically, has limited directions, or fails to
develop mathematical concepts. It is considered medium level (4–7) if more than
one solution is possible, if conjectures are possible (but not testable), and transitions
between different aspects of the app are possible but lack clarity. Finally, an app is
considered high level (8–10) if it uses accurate representations that are easy to
manipulate, transitions between app elements are logical and consistent, and mul-
tiple conjectures are possible and testable.

Table 11.2 Possible app formats and their strengths/weaknesses (adapted from Bos 2009)

Format of app Purpose Strengths Weaknesses

Static tool
(scientific
calculator app)

Uses calculators or
function machines to
process inputs

Useful for generation
and/or display of data in
form of tables, charts,
graphs etc.

Are discrete pieces of
information and require
conceptual
understanding for sense
making. Primarily
descriptive rather than
interpretive

Informational
(E.G. basic
geometry)

Used to convey
technical and procedural
information. Used for
direct instruction

Can provide useful
information for
students. Clear, logical
format

Provides facts but often
lacks connectivity to
other concepts. Limited
to no conjectures or
problem solving

Quizzes/tests
(E.G. angle
game)

Used to check for
understanding through
multiple-choice, short
fill-in-the-blank, and
true/false questions

Useful for checking
procedural
understanding and
recall. More useful if
error correction occurs

Focus on recall may not
facilitate sense making.
Focus is on correctness
rather than process

Drill and
practice games
(E.G.
Geometry 4
kids)

Used for practicing a
skill and can be highly
motivational for the
competitive student

Motivational—students
like to play games—
useful for declarative
knowledge

Often don’t contribute
to the understanding of
a concept. Winning can
be the aim with
mathematics learning
secondary

Virtual
manipulatives
(symmetry
draw)

Used to demonstrate a
conceptual
understanding of a
mathematical idea.
Require detailed
instructions and teacher
monitoring

Very useful for
encouraging modelling
of mathematics. Can
supplement concrete
manipulative already in
use

Often require a great
deal of teacher
assistance. May not
always be accurate
representations

Interactive
maths objects
(Geometry 2D
Pad)

Uses multiple
representations that are
interactive and change
with the given input. In
this format, patterns can
be observed and
manipulated

Encourages the
investigation of
mathematics patterns
which emerge
intuitively

May not be easy to
create maths objects for
all mathematics
concepts
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Overall, using the three measures above, it is possible for an app to score from 0
to 10 on the Haugland scale; from 1 to 10 according to the game format; and from 1
to 10 on each of the three fidelities: resulting in a total score ranging from 4 to 50
for overall app quality.

11.3.5 Tests for Internal Coherence

In order to determine the reliability of the Haugland and fidelities scales, a
Cronbach alpha—a was generated for each (see Table 11.4). A Cronbach alpha
score is not appropriate for the Bos format scores. It is generally accepted that
Cronbach alpha scores greater than 0.7 indicate a high degree of internal consis-
tency (Muijs 2011).

Table 11.3 Levels of fidelity in apps—adapted from Bos (2009)

Type of fidelity Low level (1–3) Medium level (4–7) High level (8–10)

Pedagogical
(including
technological)
The degree to which
the App can be used
to further student
learning

App is difficult to
work with. Accessing
all aspects of the app
is difficult. App is not
appropriate for the
mathematics concepts
it uses. Transitions are
inconsistent or
illogical

Using App is not
initially intuitive; but
with practice becomes
so. Mathematical
activities presented
are appropriate but
could be developed
without
app. Transitions
evident but only made
via trial and error

Manipulation of App
is intuitive and
encourages user
participation.
Little or no training or
instructions are
required. Transitions
are logical and aid
sense making

Mathematical
The degree to which
the App reflects
mathematical
properties,
conventions and
behaviors

Mathematical
concepts are
underdeveloped or
overly complex. Lack
of patterns. Lack of
connection to real
world mathematics

Application of
mathematics concepts
unclear. Patterning is
evident but lacks
predictability or is
unclear. Some
connection to real
world mathematics

Mathematics concepts
developed are correct
and age appropriate.
Patterns are accurate
and predictable. Clear
connection with real
world mathematics

Cognitive
The degree to which
the App assists the
learner’s thought
processes while
engaged in
mathematical
activity

No opportunities to
explore or test
conjectures. Static or
inaccurate
representations.
Patterns do not
connect with concept
development

Limited opportunities
to explore or test
conjectures. Minor
errors with
representations but
still make sense.
Patterns connect in a
limited way with
concept development

App encourages
exploration and
testing of conjectures.
Representations are
accurate and easily
manipulated. Patterns
clearly aide concept
development
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Cronbach’s alpha is concerned with the homogeneity of the items that make up
the scale (i.e., how well the individual items consistently recognize the same level
of quality). In this research, the alpha scores can be viewed in terms of the app’s
consistency of rating (be that high or low) across the three domains of each of the
Haugland sub-clusters (child-centered, design features, and learning features) and
the three fidelities (pedagogical, mathematical and cognitive). Although the
Haugland scale’s alpha score is slightly less than 0.7, previous research (Larkin
2015a, b) using the Haugland scale reported an alpha score of 0.768. It may be the
case that the alpha score is lower in this research due to a smaller sample of apps
(N = 53 vs. N = 142) and also due to this research clustering the 10 Haugland
criteria, reported in the earlier research, into three sub-clusters. There is thus a high
degree of confidence that the two scales are internally consistent and we can
therefore be confident in their reliability to determine the quality of an app.

Table 11.4 Cronbach alpha reliability scores for the two scales
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11.3.6 So What Does This Research Tell Us About
Geometry Apps?

Initially finding apps, which might be appropriate, is not a simple process. Quality
apps are difficult to locate due to the sheer number of apps (160,000 education apps
at the iTunes store (148AppsBiz 2015) and this difficulty is compounded by naming
mismatches or similar naming, the rapid turnover of apps at the store, and a very
poor search engine. Teachers are extremely time poor and thus are likely to be
guided by the description at the iTunes store. These are at best “infomercials” and
may often provide misleading details about the app. For all these reasons, educa-
tionally robust reviews such as the one available here are critical if teachers are to
be directed to find what amounts to a “needle in a haystack”—that is, an app that is
appropriate for them to use. As the qualitative component of this research is largely
self-explanatory, I include here only one example (see Table 11.5) of the qualitative
information that is available to teachers regarding each of the 53 reviewed apps.
Full reviews are available at http://tinyurl.com/Geometry-Apps.

11.4 Quantitative Analysis and Discussion

For ease of analysis, I have combined the findings and discussion into one overall
section; however, each of the three measures is presented separately in sub-sections
with an overall synthesis of the findings provided at the conclusion of the section.

Table 11.5 Example qualitative geometry app review

App name Content Yr.
level

Generic features of the app

Montessori
geometry

Shapes
and
objects

Years
F-2

Do you remember ever wondering why you were
studying geometry at school? Montessori Geometry
was designed to ensure that your child will never have
these doubts. Not only will this app make him/her
realise that geometrical shapes are everywhere but it
will also make him/her proud to be able to recognise
and name them

Reviewer comments re overall
quality of app: This app includes
notes for parents/teachers explaining
the philosophy and operation of the
app. Glossary includes definitions
beyond the early years at which it is
targeted—e.g. curvelinear shapes.
The app includes dedicated pages on
various 2D shapes and a few 3D
objects, sorting activities feature
heavily. User is in control

Montessori Geometry app
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11.4.1 Process One—Haugland Scale Scores

Table 11.6 indicates the apps scoring 7 or more according to the Haugland scale;
however, to indicate the quality of all 53 apps, overall mean scores have been
included.

Figure 11.1 shows an example of one of the top scoring apps. The data indicate
that the apps were strongest in the child-centred cluster (2.86/4) but weak in the
other two clusters (design features 1.61/3; learning features 0.92/3) with an overall
mean of 5.4/10. These are similar to the findings from earlier research on number
and algebra apps (Larkin 2015a, b) which indicated that the apps were strongest in
the child-centered cluster (2.96/4) but weak in the other two clusters (design fea-
tures 1.35/3; learning features 0.69/3) with an overall mean of 5.01.

Further comparisons between these data and the previous data indicate that
Geometry apps scored lower overall in the child-centered cluster (2.86–2.96) and
higher overall in both the design features cluster (1.61–1.35) and the learning
features cluster (0.92–0.69). This likely reflects the fact that the increasing com-
plexity of the Geometry apps, in terms of external representations and the use of
symbolic language, makes them less child-centered; however, the trade-off is that
more consideration has gone into improving the overall design of the apps with a
subsequent, marked increase in their potential to support learning.

As can be seen in Fig. 11.2, the spread of scores indicates that there is a large
range of quality with roughly half of the apps scoring 5 or less. This is a disap-
pointing result given these are apps advertised in the iTunes store as being
both educational and recommended for children of primary school age. As a

Table 11.6 List of apps scoring 7 or more out of 10 on the Haugland scale

Clusters on Haugland scale Child/4 Design/3 Learning/3 Total/10

Attribute blocks 4 2.5 2.5 9
Shapes (Myblee) 4 2.5 2.5 9
Coordinate geometry (Ventura) 4 2 2 8
Shapes—3D geometry 3.5 2 2.5 8
Shapes and colors 4 2 2 8
Pattern shapes 4 2 2 8
Montessori geometry 4 3 1 8
GeoEng (Patterns) 4 3 1 8
Jungle geometry 4 3 1 8
Sym shuffle 4 2.5 1.5 8
Isometry manipulative 3.5 2 2 7.5
Geoboard (Math Learning Centre) 4 2 1.5 7.5
Numberkiz geo 4 1.5 2 7.5
Geometry 4 kids 3.5 2.5 1 7
Symmetry draw 3 1.5 2.5 7
Overall Mean for 53 apps 2.86 1.61 0.92 5.4
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Fig. 11.1 Hands on attribute blocks—a top scoring app on Haugland scale

Fig. 11.2 Haugland total scores for 53 apps reviewed
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consequence of these Haugland scale results, the research decision was made that
any app scoring less than 50 % on the Haugland Scale is not appropriate to use in
primary classrooms, regardless of whether they scored highly in terms of game
format or the three fidelities. Of the 53 apps reviewed, 20 apps scored less than
50 % on the Haugland scale, and are therefore considered inappropriate for
classroom use. This has implications for the potential use of one of the apps,
Geometry 2D pad, which scored exceptionally well in terms of its game format
(IMO) and in relation to its mathematics fidelity, but is excluded from the overall
list of recommended apps as students are unlikely to be able to engage with the
content it provides. Although a score below 50 % renders the app inappropriate, a
score of over 50 % is a necessary, but not sufficient, condition for it to be auto-
matically regarded as developing mathematical knowledge. Consequently, two
further quantitative measures are required to determine whether or not apps are
appropriate.

11.4.2 Process Two—Modified Bos Format Scores

The results from the second of the qualitative measures, the modified Bos format
scale, also reflected the poor quality of most of the apps overall. Just over half of the
apps (28/53) scored more than 50 % and only 17 of the apps (see Table 11.7)
scored either a 10, indicating that they were IMO (two apps), or an 8, indicating
they were VM (15 apps).

There were a further 11 apps which scored a 6 (drill and practice) with the
resultant diminished value in terms of their usefulness. In addition, only 3 of these
11 (GeoEng, Jungle Geometry and Geometry for Kids—see Fig. 11.3) scored
above 30/50 for the total score overall (see Table 11.11). This is an indication that,
although many of the drill and practice games scored well on both the Haugland
scale and Bos’ game format, they generally scored poorly on the three measures of
pedagogical, mathematical or cognitive fidelity. Consequently, the eight drill and

Table 11.7 Apps evaluated as IMO or VM

Name of app Score Name of app Score

Coordinate geometry 10 Numberkiz geo 8

Geometry 2D pad 10 Symmetry draw 8

Attribute blocks 8 Transformations (investigate) 8

Shapes—3D geometry 8 Geometry—explore math 8

Shapes and colors 8 Simitri 8

Pattern shapes 8 Hands-on maths geoboard 8

Montessori geometry 8 Drawing the math 8

Isometry manipulative 8 Transformation trainer 8

Geoboard (Math Learning) 8 Overall mean for 53 apps 7.31
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practice apps scoring less than 30/50 overall are not recommended for classroom
use, except perhaps for review purposes, once conceptual and procedural knowl-
edge has been well established.

It is the case that the game format categories of VM and IMO are inflating the
overall score of a number of the apps. Many of the apps deemed to be VM as per
Bos’ (2009) definition are only minimally manipulative (i.e., only one component
of the app), or are manipulatives in a way that is not likely to be conducive to
student learning (e.g., rotating a shape by pushing an icon with a circular arrow on
it). For example, the apps Drawing the Math and Transformation Trainer both were
assessed as VM; however, they both scored unfavorably on the Haugland scale
(4/10 and 5/10 respectively) and so are considered inappropriate, or only barely
appropriate, for young students. This is a limitation in both Bos’ categorization
(VM are considered to be of medium-high fidelity) and subsequently a limitation in
this research, as they have been allocated a score of 8 out of 10 in keeping with
Bos’ original schema of medium-high fidelity. What is needed in future research,
using the game format schema, is a mechanism for identifying the degree to which
an app is a VM. In this way, apps with limited opportunities for manipulation (e.g.,
Drawing the Math), or an app where manipulation is possible but not supportive of
conceptual development due to an imprecise link between manipulation and con-
ceptual development (e.g., Transformation Trainer), are not automatically consid-
ered as medium-high fidelity in Bos’ schema or as scoring an 8 in my adaption of
this schema.

11.4.3 Process Three—Three Fidelities Scores

Discussed in the following sections are (a) findings based on the levels of app quality
according to each of the three fidelities, (b) an analysis of the spread of scores across
the three fidelities, and finally, (c) an indication of seven apps which scored above
6/10 for each of the three fidelities indicating a high level of appropriateness.
However, in order to contextualize the use of the three fidelity measures in relation to
Australian content, it is worthwhile to present data on how well the apps correlated

Fig. 11.3 Geometry 2D
pad—a top scoring app on the
Haugland scale
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their content with the expectations of the Australian Curriculum (which largely
reflects similar US and UK mathematics content). Table 11.8 indicates the number
of apps that incorporated elements of the Australian Curriculum: Mathematics
content.

A number of apps (e.g., Simitri) focused solely on one content area; however,
many others covered content from two or more areas (e.g., EZ Geometry or Jungle
Geometry). This is not always an advantage as broad coverage often meant shallow
conceptual development and less classroom usefulness since only one section of the
app was appropriate for any particular level. Shape content was very common as
many of the apps were targeted at foundation and early years students (5–8 years
old). Unfortunately, many of these “shapes apps” were very basic and only included
naming of the shapes or very simple matching exercises. Reflections were the most
common of the four major transformations presented in apps, perhaps because
reflections are more easily represented than either rotational symmetry or transla-
tions. Angles and 1D Geometry apps were common; however, this is a result of a
large number of quiz apps (largely concerning geometric reasoning) rather than the
presence of apps that develop conceptual understanding of angles or 1D Geometry.

Table 11.9 provides a breakdown of the number of apps scoring 6 or more in
each of the three fidelities. Although this looks like a healthy number of apps
(42) scoring at least one 6, this is not the case, as many of the better apps scored a 6
or more in two or three categories and these apps are counted more than once.

Overall, 26 of the 53 apps failed to score a 6 in any category; the average score
of the 53 apps was 12.9/30; and none of the three fidelity categories scored above
50 % overall. As was the case with the Haugland scale scores, these low scores are

Table 11.8 Number of apps providing different types of Australian curriculum content#

Sub-strand/concepts No. of apps Sub-strand | concepts No. of apps

Lines (1D) 16 Slide (translate) 10

Shapes (2D) 31 Flip (reflect) 21

Objects (3D) 17 Turn (rotate) 16

Angles 15 Dilations 6

Note Total app count exceeds 53 as a number of apps include more than one type of content and
are therefore counted more than once. # Pythagoras and trigonometry is only introduced in
Australian secondary schools and so was beyond the scope of this review

Table 11.9 Number of apps scoring 6 or more in respective fidelities

Type of fidelity Number of apps
(n = 53)

Percentage
(to nearest 0.1)

Average score/10

Pedagogical 21 39.6 % 4.9

Mathematical 13 24.5 % 4.3

Cognitive 8 15.1 % 3.7

Overall Average Score for apps on the three measures/30 12.9
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a further indication that there are a large number of Geometry apps, categorized as
educational in the iTunes store, which do not meet even a very low benchmark for
classroom appropriateness. Figure 11.4 provides a visual summary of the scores of
the apps on the fidelity subtotal (i.e., combined pedagogical, mathematical, and
cognitive fidelity scores). As might have been anticipated, given than many apps are
instructional and focus on declarative or procedural knowledge (Larkin 2014), the
apps which were of some use tended to score well on the pedagogical fidelity
dimension, less well in terms of the quality of the mathematics they contain, and
generally poorly in their ability to assist cognitive development. This again mirrors
the generally poor level of conceptual knowledge developed by apps reported in the
earlier research.

The apps scored reasonably well in terms of pedagogical fidelity because this is
the easiest of the categories for app designers (with likely low levels of mathematics
education experience) to mimic. Many of the apps met one of the criteria, namely
they were easy to use without instruction, and many of them partially met the
criteria of appropriateness of activity without necessarily doing anything more than
could be easily replicated with an IWB, physical manipulatives, or even pen and
paper. Many of them incorporated multiple-choice quizzes, which may serve some
use as review exercises. This is particularly the case where they draw from a large
bank of questions, do not allow multiple guesses, or allow results to be emailed
(e.g., Kids Math-Angle Geometry and Symmetry School Learning). Mathematical
fidelity issues generally related to incorrect naming or classification of shapes and
objects (e.g., diamonds instead of rhombuses, cubes not being considered as prisms

Fig. 11.4 Three fidelities subtotal
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etc.); use of prototype orientations and shapes (only three apps focused on
non-prototypical shapes—Cyberchase Quest, Maths Geometry, and Shapes
MyBlee); and a lack of connection to any notion of real-world application of
mathematics (minor exceptions to this include Geometry 4 Kids and Simitri).

Low cognitive fidelity is problematic in terms of classroom use as this relegates
many of the apps to only being useful as review activities or for rote learning. The
majority of apps did not meet the criteria for supporting cognitive development.
Despite being technically capable, most apps only provided static representations
and, where dynamic representations were used, they did not mimic the physical
activity of turning or sliding or flipping but used arrows or numbers to direct the
transformations (noteworthy exceptions were Squares and Colors and Shapes
MyBlee). In addition, very few apps allowed opportunity for students to create
patterns and develop their own conjectures regarding shapes, objects, angles or
transformations. Although the technology present in the device allows for dynamic
representations of shapes, objects and angles (e.g., Cyberquest and Isometry
Manipulatives), by far the majority of the apps did not make use of this technology
and consequently did not replicate the real-world experience of the geometry they
were attempting to represent. This is a serious shortcoming in the ability of these
apps to encourage Geometry conceptual development.

Despite the comments above, it is not all negative as there are some apps that
perform well (see Tables 11.10 and 11.11 and Fig. 11.5).

Of the apps reviewed, seven of them (13 % of the total apps reviewed) scored 6
or more out of 10 for each of the three fidelities. These are clearly the apps that
teachers should be utilizing in their classroom practice. What is interesting here is
that apart from the top three, even the better apps were inconsistent in meeting the
three fidelity standards as four of the seven scored at least one 6 with two of these
four scoring two 6s. This level of inconsistency mirrors the findings of
Moyer-Packenham et al. (2015) and Moyer-Packenham and Suh (2012) in relation
to virtual manipulatives and can be seen in the wide range of scores even among the
top half of the apps (see Table 11.11 and Fig. 11.6). In both of the research studies
cited, the authors noted multiple affordances within each virtual manipulative such
that one or more of these affordances may be more influential and beneficial for
student learning. An example of this is the Isometry manipulative, where one

Table 11.10 Apps that scored 6 or more on each of the three fidelities

App name Pedagogical Mathematical Cognitive Total

Co-ordinate geometry 9 8 9 26

Transformations 9 8 9 26

Attribute blocks 8 8 8 24

Shapes—3D geometry 9 6 8 23

Shapes and colors 7 6 7 20

Pattern shapes 8 6 6 20

Isometry manipulative 7 6 6 19
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component of the app is extremely beneficial while the second component is likely
to undermine student learning. This inconsistency becomes more apparent the
further down the list of scores you proceed. For example, Montessori Geometry (9,
6, 5) scored equal to or higher than three of the apps listed in the top seven but was
relatively poor in terms of cognitive development. Three other apps scored highly
in pedagogical and mathematical fidelity but poorly in terms of cognitive devel-
opment (GeoEng—8, 6, 5; Geometry 4 Kids—8, 6, 3; and Geometry Explore—6,
6, 4). It is worth noting that only one app (Simitri—4, 9, 8) scored very poorly in
pedagogical fidelity, but very highly in mathematics and cognitive fidelity. This
indicates that this app, with correct scaffolding from the teacher, is potentially very
useful for developing high-level mathematical and cognitive fidelity.

Fig. 11.5 Coordinate geometry and transformations—equal top scoring fidelity apps

Fig. 11.6 Histogram of overall scores for 53 apps
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Table 11.11 provides further details to assist classroom teachers with the
selection of appropriate apps. Each of the apps listed in Table 11.11 scored a “pass”
mark of 50 % in terms of overall score and 50 % on each of the three quantitative
measures. Heeding the earlier caution of Moyer-Packenham et al. (2015) and
Moyer-Packenham and Suh (2012), these apps at least meet a benchmark of quality
but need to be used thoughtfully by classroom teachers in their mathematics
classrooms.

11.5 Limitations and Conclusion

A limitation of any research reviewing apps is an inherent consequence of the nature
of the iTunes App Store. Firstly, the sheer number and method of labelling apps
means that there may be useful Geometry apps not reviewed. Secondly, the iTunes
store is a moveable feast as apps are generated, renamed, relocated, or removed on a
daily basis. Therefore, it is not possible to claim that all quality Geometry apps have
been critiqued. Furthermore, it is important for the continued currency of the reviews
that other teachers and researchers add to the database of reviews.

However, within the constraints noted above, it is clearly the case that, other than
the top three apps, teachers need to decide the exact instructional purpose for using
the app and then look at the individual fidelity scores of the app to locate one that
meets that specific purpose. In this manner, Montessori Geometry would be most
appropriate to use for review purposes but not appropriate in terms of developing
conceptual or mathematical fidelity.

This research has indicated that, although many Geometry apps are quite poor in
terms of their fidelity, it is, to return to the question posed in the title, certainly not a
futile exercise to use some of them in mathematics classrooms. Many of the apps do
go beyond the rather cynical “tracing use” hinted at in the title of this chapter. The
use of the Haugland scale provides an initial filter on the appropriateness of the apps
for young students. In its current format, the Bos game format score provides
limited information regarding quality, and is not accurate enough to be of much
assistance. The key measure for teachers to use in gauging the mathematical quality
of an app is the modified three fidelities scoring rubric created for this research, as
apps that scored well in these measures also scored highly in the Haugland scale
and game format and thus demonstrate great potential for enhancing student
learning. It is hoped that this research will be useful for teachers when selecting
apps to support mathematics learning. Future research will investigate the use of a
selected number of quality Geometry apps in Australian and Canadian classrooms.
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Appendix—Scoring Sheet Used to Evaluate the 53 Apps
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Geometry Apps Scoring Sheet
App Name: Date Reviewed:  Nov 14, 014

Mathematics Strand Content: Year Level:

App description from iTunes Store: This app 

Reviewer summary of App: This app 

App format (adapted from Bos, 2009) (Circle most relevant format)

Generates 
calculations    /1

Informational         
/3

Quizzes / tests
/4 /10

Drill & practice 
games /6

Virtual manipulative  
/8

Mathematics objects
/10

Themed Haugland Scale Score 

Learner centered  /4 Design features    /3 Mathematical learning  
/3

/10

Pedagogical Fidelity (Circle appropriate score)

1 2 3 4 5 6 7 8 9 10 11 12
/12

Mathematical Fidelity (Circle appropriate score)

1 2 3 4 5 6 7 8 9 10 11 12
/12

Cognitive Fidelity (Circle appropriate score)

1 2 3 4 5 6 7 8 9 10 11 12
/12

Overall Comment and Score: This app /50
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Chapter 12
Selection of Apps for Teaching Difficult
Mathematics Topics: An Instrument
to Evaluate Touch-Screen Tablet
and Smartphone Mathematics Apps

I.K. Namukasa, G. Gadanidis, V. Sarina, S. Scucuglia and K. Aryee

Abstract Manipulatives—including the more recent touch-screen mobile device
apps—belong to a broader network of learning tools. As teachers continue to search
for learning materials that aid children to think mathematically, they are faced with a
challenge of how to select materials that meet the needs of students. The profusion of
virtual learning tools available via the Internet magnifies this challenge. What criteria
could teachers use when choosing useful manipulatives? In this chapter, we share an
evaluation instrument for teachers to use to evaluate apps. The dimensions of the
instrument include: (a) the nature of the curriculum addressed in the app—emergent,
adaptable or prescriptive, and relevance to current, high quality curricula—high,
medium, low; (b) degree of actions and interactions afforded by the app as a learning
tool—constructive, manipulable, or instructive interface; (c) the level of interactivity
and range of options offered to the user—multiple or mono, or high, moderate or
low; and, (d) the quality of the design features and graphics in the app—rich, high
quality or impoverished, poor quality. Using these dimensions, researchers rated the
apps on a three-level scale: Levels I, II, and III. Few apps were classified as Level III
apps on selected dimensions. This evaluation instrument guides teachers when
selecting apps. As well, the evaluation instrument guides developers in going
beyond apps that are overly prescriptive, that focus on quizzes, that are text based,
and include only surface aspects of using multi-modality in learning, to apps that are
more aligned with emergent curricula, that focus also on conceptual understanding,
and that utilize multiple, interactive representations of mathematics concepts.
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12.1 Apps for Mathematics

Teachers continuously access learning materials that promise to assist children to
think mathematically. On a lesson-to-lesson basis, teachers are faced with the
challenge of how to select materials that best meet their teaching goals. The pro-
fusion of virtual learning tools available via the Internet magnifies the challenge of
searching for materials. Moyer-Packenham et al. (2015) assert, “An important goal
for mathematics education is the design and selection of mathematics ‘apps’” (p. 42).
Few studies provide educationally robust reviews on apps for mathematics (Larkin
2013, 2014, 2015a, b; Moyer-Packenham et al. 2015). Several books (e.g., Dickens
and Churches 2012), web-based resources (e.g., common sense media—common-
sensemedia.org, Children’s technology review—childrenstech.com/), and articles in
magazines offer lists of top apps and some reviews on selected apps. Reviews of
apps on the app store or those Internet sources are largely based on information that
advertises the apps (Larkin 2013). Few reviews are based on evaluation of the apps.
For example, Larkin (2015a) shares a list of the top 20 apps (e.g., transformations),
Larkin (2013) shares the top 40 Number Sense and Numeration apps (e.g., I
see!! Math 1), and Larkin (no date) provides detailed reviews of 142 math apps
at https://docs.google.com/file/d/0Bwd_RKnZbGDqSUtkOHZsTHdsWVE/edit. In
this chapter, we share an instrument for assessing pedagogically useful apps.

Manipulatives—including the more recent touch-screen tablet/smartphone
applications—belong to a broader network of learning tools. In this chapter, we
refer to touch-screen tablets and smartphones as touch-screen mobile devices. The
work of Namukasa et al. (2009) explore the complementary role of physical and
Information Communication Technology (ICT)-based manipulatives, also referred
to as virtual manipulatives. Virtual manipulatives are interactive and dynamic
objects (Moyer et al. 2002). Virtual manipulatives can appear on computer screens,
touch screens, holographic images, and a variety of technological environments.
Apps are computer applications in which virtual manipulatives (and various
end-user software) are delivered on touch-screen mobile devices. Several apps are
touch-screen versions of computer and Internet-based applications. The choice of a
manipulative—whether physical or virtual (i.e., a virtual manipulative on a com-
puter, a digital board, or a touch-screen mobile device); historical or modern—is
complex. It should depend on what is available, what fits the students’ culture and
expectations, as well as what fits the teacher’s system of beliefs (Bartolini and
Martignone 2014). Teachers’ choices “to use virtual manipulatives in combination
with physical manipulatives were influenced by familiarity with similar physical
manipulatives” (Moyer-Packenham et al. 2008, p. 215). In addition, even among
the same type of manipulatives, these “can be useful or useless depending on the
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quality of thinking they stimulate” among learners (Bartolini and Martignone 2014,
p. 31). According to Hitt (2002), manipulatives are also classified by the specific
meaning of a given concept they address (e.g., discrete, linear, or analogical).
Educators and teachers need to pay attention to the specific representation cate-
gories (e.g., graphic, analytic, or symbolic mathematics) of a given concept that any
manipulative—physical or virtual—addresses (Hitt 2002).

In the mathematics education research community, a thread of research focuses
on the influence of virtual manipulatives in learning and teaching, on the design
modes, and on the quality of these materials (Pepin and Gueudet 2014; Trouche
et al. 2013). For a review of literature on the role of mathematics apps, see Calder
(2015), Cayton-Hodges et al. (2015), Larkin (2013, 2015a), Moyer-Packenham
et al. (2015), Moyer-Packenham and Westenskow (2013), Pelton and Pelton
(2012), and Zhang et al. (2015). Some of this work focuses on specific apps: for
example, Larkin (2013) focuses on apps for number sense and numeration, Larkin
(2015a) on geometry apps, Moyer-Packenham et al. on apps for young children,
Zhang et al. on multiplication and division apps.

Several articles (e.g., Peterson 1972; Skip 1990) and online forums (e.g.,
“negative � negative = positive” at MathForum.org) explore the use of physical,
virtual, and visual strategies, among other strategies, for teaching meanings and
operations of negative integers. This work builds on the long history of conver-
sations on teaching more difficult concepts such as subtraction, fractions, and
integers (e.g., Kamii et al. 2001). More recent conversations focus on how
ICT-based technology (e.g., interactive whiteboard, and computer games) could be
used to make difficult topics easier to learn.

12.2 Evaluation of Mathematics Apps

What evaluation criteria could teachers use when choosing the most appropriate
teaching materials? The increase in the range of ICT-based materials for teaching,
coupled with the emergence of a new culture of learning arising with these
resources, is creating a need for quality, design, and diffusion criteria, and policies
on these resources. Several studies (Calder 2015; Highfield and Goodwin 2013;
Larkin 2015a, b; Pepin and Gueudet 2014; Trouche et al. 2013) voice the need for
criteria for evaluating ICT-based resources. Pepin and Gueudet (2014) also main-
tain that the teacher, even in situations where he or she only selects the resources to
use, is “a designer of his/her resources” (p. 133). Trouche et al. (2013) assert that
new research and policy questions are arising: “Who designs and what do the
design processes look like? How to access quality resources?” (p. 771). For Calder
(2015), the question is: “What is the [major] motivation of app designers?” (p. 236).
To others, the question is about the alignment between a mathematics app and
mathematics curriculum for the target group. For example, Larkin (2014) examines
the effectiveness of mathematics apps for the Australian curriculum.
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A few studies focus on the evaluation of mathematics apps. Some studies utilize
qualitative (e.g., Calder 2015; Larkin 2013, 2014, 2015b), and others quantitative,
evaluation measures (Larkin 2014). Larkin (2015b) utilized two qualitative mea-
sures based on: whether the apps focused on conceptual (deep understanding related
to the meaning of mathematics), procedural (following a set of sequential steps to
solve a mathematics problem), or declarative (information retrieved from memory
without hesitation) knowledge; and their relevance to the Australian curriculum. Of
the 142 he fully reviewed, he observed that many of them “were little more than
digital flash cards encouraging rote learning.” Of the 40 worthwhile apps he
evaluated, only 3 apps (Mathemagica, Areas of Rectangles, Maths Galaxy Fun)
were exceptional; a majority of apps emphasized declarative or procedural
knowledge; only 40 of the 142 apps were “worthwhile mathematical apps to
support mathematics learning in primary classrooms” (p. 30); and only 12 apps
involved conceptual knowledge. Several of the apps he reviewed were character-
ized by mismatches: between the mathematics terms in the app name and the
mathematics content explored by the apps, between the description of the nature of
knowledge (e.g., conceptual understanding) addressed in the app and the actual
knowledge explored in the app, between targeted age levels and age levels at which
the content of the app is taught in schools, and between the price of an app and the
quality of an app.

Among the apps he reviewed, the Number Sense and Numeration strands were
dominant. Goodwin and Highfield (2013) found that apps for toddlers, as well as
science and literacy apps, dominated their top 10 apps category. Calder (2015),
Larkin (2014), and Moyer-Packenham et al. (2015) noted that a variety of educa-
tional apps are available for elementary lessons. A majority of the educational apps
available are, nonetheless, standalone apps, focusing on one specific content area,
and many are drill and practice, only useful for rote learning of declarative and
procedural knowledge (Larkin 2013, 2015b). Moyer-Packenham and Westenskow
(2013) note the need for research on manipulatives with students beyond Grade 6.

Larkin (2015b) used three quantitative measures in his app evaluations: The
Haugland developmental software scale (Haugland 1999); productive pedagogies
(Mills et al. 2009); and Learning principles of good games (Gee 2005). The
Haugland developmental software scale is based on criteria for evaluating software
for young children. It consists of three dimensions: a dimension on the child (e.g.,
age appropriate, child control, and non-violence), on design (e.g., clear instructions,
and technical features), and on learning (expanding complexity, and transforma-
tions). Larkin adopted three of the four dimensions of the productive pedagogies
identified by Queensland Education (Mills et al. 2009): intellectual quality (e.g.,
deep understanding, and substantive conversation), supportive classroom environ-
ment (e.g., student direction, and academic engagement), and connectedness (e.g.,
knowledge integration, and background knowledge). The third scale is based on
learning principles (e.g., active, interaction, production, customization, agency,
challenge and consolidation, critical learning, probing, multiple routes, and transfer)
of good video games developed by Gee (2005). Larkin’s evaluation scales range
from three to ten. Fullan and Donnelly (2015) offer a scale with four ratings for
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evaluating digital innovations: good, mixed, problematic, and off track. They
identify three dimensions including pedagogy, system change (e.g., implementation
support, value for money, and potential to diffuse widely), and technology. These
studies show the need for instruments for evaluating apps, especially instruments
that emerge from studying apps.

Bos (2009b) offers an instrument for determining the degree of fidelity on a
three-point scale—low, medium, and high. Bos (2009a), Larkin (2015a), and
Moyer-Packenham et al. (2008) study the fidelity—pedagogical, mathematical, and
cognitive fidelity—of technology-based learning tools. Bos (2009a, b) builds on the
work of Dick (2008) to further elaborate dimensions and degrees of fidelity. To her,
mathematical fidelity of a mathematics tool is the tool’s degree of conformity to
mathematical properties, rules, and conventions of the mathematical content. A tool
“should reflect accurately the mathematical characteristics and behavior that the
idealized object should have” (Dick, p. 335). Mathematical fidelity is about
mathematical accuracy and precision. Cognitive fidelity is about the ability of the
tool to lead to learner actions, interactions, and thoughts that embody mathematics
concepts or processes, and, potentially, to deeper mathematics actions, interactions,
and thoughts. Pedagogical fidelity is about the elements in the tool, such as
target-group appropriateness of the content and type of learning activities, that
enable students to learn. Pedagogical fidelity is “evidenced… in the organization of
the user interface of a technological tool” (p. 334), in features that support valued
learning activities and features helpful for learners (Zbiek et al. 2007).

Larkin (2015a) reviewed 53 Geometry apps, evaluating them against the criteria
on fidelity, classifying the apps as low-, medium-, or high-fidelity apps in each
dimension. He found the apps to score high on pedagogical fidelity and low on
cognitive fidelity. Seven (e.g., Coordinate Geometry, Transformations) of the 53
apps scored high on the three fidelities (cognitive, mathematical, pedagogical), and
only the top three of these scored consistently high on all three fidelities. Calder
(2015) checks to see if a mathematics learning app is appropriate in intended
learning and age of users (an aspect of pedagogical fidelity), is applicable to the
concepts involved, to enhancing mathematical engagement and thinking (aspects of
mathematical fidelity), and whether an app utilizes “visual, sound and movement
elements that learners might also find highly engaging” and appealing (an aspect of
technical design features) (pp. 243–244).

12.3 Design Features of Mathematics Apps

Major design features identified in the literature on design of learning apps fall under
the categories: nature of the app, content, instrumental/interface design, cognitive/
intellectual, sociological, and ergonomic aspects (Gadanidis et al. 2004; Sedig et al.
2014). Human computer interactions (HCI) researchers, for instance, argue that
well-designed digital tools (also referred to as visualizations or interfaces in HCI
literature) are those designed with a deep understanding of cognition. They maintain
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that the levels of interaction afforded by digital tools vary from those involving
minimal cognitive activities to those that involve higher cognitive skills. The levels of
interaction afforded also vary from those evoking only physical (touch, feel, see, etc.)
actions such as dragging, to interactions such as comparing, to tasks such as identi-
fying and categorizing, and, further, to activities such as problem solving and rea-
soning. Several key characteristics offered by the digital tools influence higher-order
cognitive activities: the range and adjustability of options—the flexibility; number
and diversity of interactions; fitness of the interface to the task, to the user, and to the
context; and type of transactions ranging from access only, to annotation, modifica-
tion, construction, and combination of transactions (Sedig et al. 2014).

12.3.1 Digital Learning Objects and Tools

This inquiry on mathematics apps is situated within a larger framework of digital
learning tools (LTs) and objects. Gadanidis and Schindler (2006) point out that the
term digital learning objects (LOs) involves a variety of designs, from simple digital
images or files in pdf format to complex simulations and interactive interfaces. LOs
are small interactive programs that are available online and are focused on specific
content topics (Gadanidis and Schindler, p. 20). Virtual manipulatives can evolve
into mathematical objects (including concepts, procedures, and processes) “when
acted upon,” patterns perceived, and a new mathematics object emerges to deepen
mathematical understanding (Bos 2009b, p. 526). Zbiek et al. (2007) use the term
cognitive tools (CTs) to refer to technologies that extend the learning and thinking
activities. CTs for mathematics allow the user to act on, compute and externally
represent mathematical entities, and involve a variety of designs including simu-
lation, software, micro-world, devices and tool kits. Bos (2011) uses the term
interactive mathematical objects to refer to the digital learning tools. The tools with
a high degree of fidelity enable manipulation in an intuitive way, encourage active
participation of the learner, are appropriate for the age level, are mathematically
correct, “provide opportunity to construct, test, and revise to understand the patterns
and structure the concepts. Manipulating the patterns leads to great depth of
understanding” (p. 526).

Maddux et al. (2001) identify two different types of LOs. In Type I, the
developer determines almost everything that happens on the screen, it affords only
“passive user involvement”, “a limited repertoire of acceptable responses”, “usually
aimed at rote memory” and everything that the software is capable of doing can be
observed in about 10 min or less (Gadanidis and Schindler 2006, p. 23). In Type II,
the user is in charge of what happens on the screen, it affords “active intellectual
involvement,” the user is in charge of what happens, it is usually aimed at “creative
tasks,” and many hours are necessary to exhaust what the program is capable of
(p. 23). Type II affords a high number of user possible inputs and a high level of
interactivity between the user and object. Gadanidis and Schindler recommend LOs
involving a hybrid of Type I and Type II. Godwin and Highfield (2013) refer to
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Type II as constructive interfaces, with Type I as instructive, and with the
manipulable interfaces lying in between. Gadanidis et al. (2004) argue “mathe-
matical investigation, as a pedagogic tool, is not a simple undertaking. Facilitating
investigations [by the learners] adds significantly to the complexity of instructional
design” (p. 294). According to these researchers:

Good design becomes possible when mathematics education and human–computer inter-
action design experts work together, rather than in isolation, taking into account peda-
gogical goals and interface design principles, and, of course, where there is commitment to
test and revise based on feedback from educators in the field. (p. 295)

Bortolossi (2012) observes that factors such as the nature of the mathematical
content (mathematical fidelity), pedagogical design (pedagogical fidelity), graphic
design, and interface design (technical design features) are fundamental aspects in
the production of educational applications. Bortolossi recommends a combination
of the best features of several ICT applications to enable, in a rapid-development
environment, the creation of low-cost (but richly designed) portable, dynamic, and
interactive LTs with a potential for multiple didactic activities. To Fullan and
Donnelly (2015), it is important to also evaluate the “underlying digital product
model design” (p. 40) along the lines of ease to use, intuitive design, how data are
managed, and what experiences it offers the end users.

Commonalities exist among criteria for designing high-quality apps and those for
evaluating apps for learning mathematics. We, nonetheless, agree with Larkin (2013)
that design criteria for apps may not directly translate to criteria for evaluating
high-quality apps for learning mathematics, and with Dick (2008), that design fea-
tures of learning apps should be selected to serve pedagogical, mathematical, and
cognitive principles. Further, Calder (2015) adds that it helps when the motivation of
the mathematics app developer is mathematical engagement, rather than profit
optimization. On the question raised by Trouche et al. (2013) regarding who designs
and what the design processes look like, from our interactions with the app devel-
opers on the project, it appears that some app developers are themselves teachers,
educators, and educational researchers whose major motivation is pedagogic, or
consult, partner with, and seek feedback (or, even, endorsement) on their products
from other teachers, educators, and educational researchers. Many of these apps score
lowest on cognitive and mathematics fidelity (Larkin 2015a) but higher on peda-
gogical fidelity. Selected iTunes apps such as Rekenrek by Mathies, Touch Counts
by N. Sinclair (an app for Number Sense and Numeration for young children), and
MathTappers apps by T. Pelton and Pelton are designed by mathematics educators.
Pelton and Pelton (2012) explore the pedagogical practices in the MathTappers apps,
some of which support concept development and consolidation of understanding,
and others are for fluency building. Larkin (2015a) observes that most educational
apps are designed by non-educators and for market reasons. Various publications
exist on development and marketing of apps. More work is needed on the design
features that influence the usefulness of apps and on how students use the apps.

Trouche et al. (2013) shares a questionnaire with nine different dimensions to
measure the usefulness of any Dynamic Geometry Software (DGS), including

12 Selection of Apps for Teaching Difficult Mathematics Topics … 281



mathematical content, pedagogical implementation, integration in a curriculum
sequence, ergonomic (ease of use) aspects, instrumental content, added value (takes
advantage of new possibilities of DGS), potential for use and further modification
of the resource. Pepin and Gueudet (2014) illustrate how studies on quality of
teaching resources in general have historically focused on mathematical, peda-
gogical, sociological analyses (such as analysis along the lines of patterns of class
of the target audience), or on specific mathematical knowledge, skills and practices.
Studies on ICT resources contribute to the dimension on technical, design features
including ease of use, quality and uncluttered graphics, and interactivity of the
interface (Haugland 1999; Kay and Knaack 2009).

In the early 2000s, when most digital LTs were still designed for use on desktop
and laptop computers, Yerushalmy and Ben-Zaken (2004) advocated for manipu-
latives that could be used on cellphones, since these devices were “an easily
available tool that is already part of the culture and daily life… and that is likely to
become highly useful for both teachers and students” (p. 3). Mathematics apps for
touch-screen mobile devices are now increasingly part of many mathematics
classes. Calder asserts:

The use of mathematics apps, across a range of contexts and age levels, enhanced learning
generally, but this was determined to some extent by the appropriateness and applicability
of the apps to the particular student, their learning trajectory and the suitability of the app to
the particular learning situation. (p. 246)

Basham et al. (2010) voice that “to provide a highly mobile, flexible, efficient,
and scalable technology experience for students that could be taken outside of a
school’s walls… needed to provide students with multiple means for representa-
tion, expression, and engagement” (p. 340).

12.3.2 Constructive, Manipulable, and Instructive Apps

Goodwin and Highfield (2013) classify digital learning tools by their design features
and how the learners’ interact with these features into constructive, manipulable, and
instructive apps. The authors define constructive tools as LTs in which learners
participate in the generation of representations, tools which are used by the learners
as an expressive tool, and tools which offer learners room for higher intellectual
engagement, such as for reflection and thinking processes. These tools utilize sig-
nificant cognitive effort on the part of the learners. Bos (2009a), Larkin (2015b), and
Moyer-Packenham et al. (2015) would refer to these as apps with both high cognitive
and pedagogical fidelity. Goodwin and Highfield maintain that learning objects that
are not primarily constructive may still support learning when they are manipulable.

Manipulable apps may give a predetermined context, use mostly symbolic and
iconic images, but still may allow some alteration of representations through user
input (i.e., they are likely to evoke moderate to high user engagement). Thus,
manipulable apps offer room for experimentation and discovery. Manipulative apps
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usemodifiable graphics. Bos (2009a, b), Larkin (2015b), andMoyer-Packenham et al.
(2015) would refer to these as apps with medium cognitive and pedagogical fidelity.

On the other extreme of the spectrum of apps are learning objects that focus only
on behavioural learning activities, use symbolic presentations, and present learning
in a linear fashion, utilizing repetitive procedural tasks and thus involving very low
cognitive investment on the part of the learner. These learning objects focus on the
“learner’s focus of control over the representations presented on screen” (Goodwin
and Highfield 2013, p. 213). Bos (2009a, b), Larkin (2015b), and
Moyer-Packenham et al. (2015) would refer to apps that only offer drill activities as
apps with low cognitive and low pedagogical fidelity. Zbiek et al. (2007) classified
ICT resources such as online textbooks and courses, which were cognitive in nature
but only presented information and had no capabilities to offer feedback on the
actions of the learner as other resources but not tools.

12.3.3 Emergent, Adaptable, and Prescriptive Apps

Heydon and Wang (2006) assert that curricula paradigms configure the teaching
and learning environments in ways that can limit or expand possibilities. Heydon
and Wang name three paradigms: prescriptive, adaptable, and emergent.
Prescriptive curricula are in line with behavioural psychology views of learning of
scripted knowledge. Adaptable curricula involve active interactions and varied roles
for the learner to include tailoring of learning activities according to the learner’s
interests. With emergent curricula learning is co-constructed with others, and
learners are also inventors. For Heydon and Wang, constructive apps would support
emergent curricula. Manipulable apps would support adaptable curricular.
Instructive apps would only support prescriptive curricula.

Students in Goodwin and Highfield’s (2013) studies substantially benefited from
constructive and manipulative multimedia in terms of depicting multiple represen-
tations of concepts and forming sophisticated concept images (Pirie andKieren 1994).
Calder (2015) agrees that the multi-modal representations provide stimulus and
novelty “but it is the subsequent thinking that is key to the learning process” (p. 238).
The appealing factor is secondary to appropriateness and applicability, to use Calder’s
terms. Goodwin and Highfield (2013) maintain that constructive apps should not be
mistaken to mean “busy” apps, which include extraneous details such as animations,
which place unnecessary demands on low-achieving students, and take away from the
understanding of mathematics content. Bos (2011) and Calder (2015) observe that
distracting animations and colors minimize mathematical engagement.

12.3.3.1 Levels I, II, and III Apps

The app evaluation criteria in this chapter consists of a three-point scale, Level I, II,
and III, with Level III a classification of high-quality apps, and four dimensions. It
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is a qualitative instrument. Each dimension consists of degrees or categories, which
lie on a continuum of increasing complexity. That is to say, apps classified as
Level III, show the highest degree on a dimension and go beyond the complexity of
Level II, and Level II apps go beyond Level I apps. On a given dimension, say the
curricula dimension (emergent, adaptable, and prescriptive), it is possible for an app
to combine some elements of the adaptable category and a few of the prescriptive
category, for example. Gadanidis and Schindler (2006) refer to apps that combine
elements from different categories on a dimension as hybrid LOs. Goodwin and
Highfield (2013) visualize apps that combine the middle category, manipulable
elements, and the top category, constructive elements, as manipulable apps
approaching the constructive category. Larkin (2013) found that, whereas some
apps fit only in one category on a dimension of forms of mathematical knowledge
(conceptual, procedural and declarative), some apps fit in two categories (i.e., they
explored both conceptual and procedural knowledge). Classifying apps by levels is
in line with reviews aimed at sharing lists of top apps (e.g., Larkin 2014). After Bos
(2009b) and Larkin (2015a), we present our evaluation instrument in a chart (see
Table 12.1) form to show the varied degrees (or, categories) on each dimension.
Level III is the highest score, Level II is the medium score and Level I is the lowest
score or most impoverished category, on a dimension. Level I apps are not nec-
essarily off track but apps with characteristics from only the lowest category.

The dimensions of the classification are: (a) the nature of the curriculum addressed
in the app—emergent, adaptable or prescriptive, and relevance to current, high
quality curricula—high, medium, low; (b) degree of actions and interactions afforded
by the app as a learning tool—constructive, manipulable, or instructive interface;
(c) the level of interactivity and range of options offered to the user—multiple or
mono, or high, moderate or low; and, (d) the quality of the design features and
graphics in the app—rich, high quality or impoverished, poor quality. Several of the
dimensions and their categories, such as in (a) and (b), emerged from the literature we
reviewed, and some, such as in (c) and (d), emerged largely from the process of
analyzing the apps. The fifth row is an overall dimension speculating that apps that
score high on several dimensions have the potential for intense levels of intellectual/
cognitive involvement, those that score high or medium on some dimension would
have a limited potential, and those that score consistently low would have the
potential for only low intellectual/cognitive involvement. We present details on the
dimensions with the evaluation of a selection from the 80 apps we reviewed.

12.4 The Inquiry

The evaluation instrument emerged from a broader inquiry that involved teachers,
researchers, and a developer of iOS apps in three contexts. The first was a school
context, in which a teacher (who team-taught a unit on integers), in collaboration
with the researchers, planned, implemented, and offered feedback during a Grade 7
and 8 integer unit centred on using CTs that enhance pedagogical goals of using
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manipulatives in teaching. Finding that the materials she had available did not work
well for her students, the teacher created the physical version and a virtual version
of a manipulative that circumnavigated the errors created by some existing tools.
The second context involved work with an industry partner, who provided the
researchers with access to the apps his company had developed. The app developer

Table 12.1 Classification of middle school apps

Dimension Level III apps Level II Level I

Curriculum dimension

Address The emergent dimension
of curriculum (e.g.,
building understanding,
explaining why, and
reflection; this on top of
the adaptive dimension)

The adaptive dimension
of curriculum (e.g.,
meaning making, on top
of the prescriptive
dimension)

Only the prescriptive
dimension of curriculum
(e.g., fact masterly)

Current and high quality
curriculum

Dated or no curriculum

Degree of interaction afforded by the App’s interface

Offer Modifiable, constructive
interfaces

Manipulable interfaces Non-interactive,
instructive, access only
interfaces

Interactivity and range of options

Involve A high number and
diversity of possible user
inputs or selections

A moderate number and
diversity of possible
user inputs or selections

A very low number and
diversity of possible user
inputs or selections

A high level of
interactivity between the
user and object and with
other users
Multiple interactions

A moderate level of
interactivity between the
user and object
Mono interactions

The lowest level of
interactivity between the
user and object
Mono interactions

Technical design aspects

Utilize Multiple media and
alternative
representations

Two or three media and
alternative
representations

Overly symbolic, linear
interfaces

Colour, sound,
animations, or 3D effects,
graphics to focus learning,
eliminating those that are
superfluous

Colour, sound,
animations, and 3D
effects graphics to focus
learning

Superfluous and
extraneous details, such
as animations, which
instead of focusing
learning, distract students

Overall, intellectual/cognitive involvement

Have the
potential
for

Intense (with several
opportunities for)
intellectual/cognitive
involvement—also a focus
on math connections,
understanding, and math
extensions

Limited (two or three
opportunities for)
intellectual involvement
—also a focus on simple
application of skills

Very low (none or one
opportunity)
intellectual/cognitive
involvement—a focus on
individual skills and rote
learning
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also offered to train team members to design iOS apps for teaching integers. In the
third context, the researchers developed an instrument to evaluate randomly
selected apps for teaching integers. The results we share in this chapter are from this
third context of studying the apps. The initial coding of the apps was based on
content, nature of representations used, interactivity level in the apps, nature of the
design of the task posed by the app, and relation of the app to other mathematics
learning materials. The process was further informed by research literature on the
evaluation of apps, resulting in refined categories and other dimensions.

Larkin (2015a) observes that qualitative evaluation instruments are important
“for teachers in making decisions about whether or not to use an app” (p. 344). The
instrument shared in this chapter could guide teachers when selecting apps that
meet the learning needs of their students. As well, it would guide app developers in
going beyond apps that are overly prescriptive, focus only on quizzing students, are
based on print design, and include only surface aspects of using multi-modality and
play in learning, to apps that are more aligned with emergent, high-quality math-
ematics curricula, apps that focus also on conceptual understanding, and that utilize
multiple modes and interactive representations in ways that are central to learning.

12.5 The Apps: How to Tell When an App Is a Useful App

We searched for apps on the desktop iTunes store because more information,
including categories of apps, is displayed at the iTunes store as compared to the app
store on a phone or tablet. We chose iOS apps because the app developer on the
team created iOS apps. As noted by Larkin (2015a, b), locating relevant apps at the
app store is difficult by the “sheer number of apps” and “the poor structure of the
iTunes app store user interface” (p. 7); the way information on an app is largely
based on the developers of the apps and is often inaccurate (e.g., app names on the
app store-display names—may differ from names of apps when installed on a
device); the way the results are organized and are displayed by icon, only giving the
first 100 relevant results; plus the results continually change as new apps are added
and old ones are removed or renamed.

We searched for both iPhone and iPad apps. We searched by keywords,
including “integer” “negative,” and “minus,” by a combination of these keywords,
such as “negative integer” “negative number”, and by other relevant combinations
of key words, such as “integer multiplication.” The results for iPad apps were, at
many times, more than for iPhone apps. Figures 12.1, 12.2 and 12.3 show
screenshots of sample results. Because we are aware that app developers place apps
in categories and select keywords for their apps based on market analyses, rather
than on accuracy of the keywords, we also browsed the apps by categories. In the
educational collections apps category, we selected the category of apps for ele-
mentary school, as well as apps for middle school and then further selected the
category Math Apps. In the category Math Apps for Elementary School, we further
narrowed our search by selecting the subcategories Number System/Numbers and
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Quantity, Early Operations, and Patterns. We also browsed apps under the cate-
gories Drill & Practice, Beyond Drill—Strategy, and Beyond Drill—Brain Busters.
For middle school apps, we selected the subcategories Pre-algebra & Algebra, and
Drill and Practice. Twenty or fewer apps were returned for each of these categories.
We did not browse apps for subcategories such as High School Apps, nor the
categories such as Geometry and Data, where we did not expect the content of
negative integers to be a primary focus. Goodwin and Highfield (2012) found

Fig. 12.1 iTunes store apps results for the keyword “negative integer”—iPhone apps

Fig. 12.2 iTunes store apps results for the keywords “negative integer”—iPad apps
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relevant mathematics apps in other sections of the app store such as in apps for kids
and edutainment. Because we were searching for apps for older children, we limited
the scope of our search to the education section and to searching by key words.

We browsed all mathematics apps to select those that focused on learning
negative integers as a curriculum area. We used the U.S. regional app store,
although we also browsed the Canadian app store. For each of the apps in the
results, from the keyword search and categories search, we examined the names and
icons, as well as pulled up the iTunes App store pages of the app, to ascertain if the
app fit the criteria of addressing negative integers. If an app showed a focus on
positive integers, we also included it. The reason for this was because for some
apps, the information available at the app store and at the app home page was not
sufficient to show if an app on positive integers would extend to include negative
integers. The home pages of the apps, where applicable, included more screenshots,
detailed description of an app and, at times, video clips and reviews on an app. We
eliminated all apps that did not focus on negative nor positive integers.

Selected searches by a keyword yielded a return of up to 100 results, the
maximum possible, which pointed to the likelihood that more apps tagged with
these keywords were available at the app store. To get a sense of how many more
apps were left out by the app store results of the first 100 featured apps, we browsed
a third-party website that offered analytics of apps at app stores—App Annie. App
Annie returned 2024 iPhone apps and 1978 iPad apps for the search keyword
“mathematics.” It also returned 189 iPhone apps and 166 iPad apps for the keyword
“integer.” No apps were returned at App Annie when keywords were combined.

Fig. 12.3 iTunes store apps results for the keywords “integer multiplication”—iPad apps
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We selected 80 mathematics apps relevant to negative and positive integers (the
Number Sense and Numeration strand) to download, try out, and review. The
screenshots, descriptions, and information provided on an app were not always
adequate for a review. We found that we had to download an app before we could
ascertain its appropriate grade range and learning outcomes. Several app developers
identified school grades, grade bands, or age groups for which the app was
appropriate. Thirty-four of the 80 Number Sense and Numeration apps were found
to be relevant to Grades 7 and 8; however, for many apps, the grades/ages indicated
were not always accurate, at least not for the mathematics curriculum in the
Canadian province where the research was conducted. Of the 34 apps that we found
relevant to Grades 7 and 8 Number Sense and Numeration, only 8 were appro-
priately labelled as Grades 7, 8, or middle school apps. Overall, the grade bands
indicated by the developers were not accurate. This is perhaps an indication that the
developers are from varied countries where it is plausible that this content on
negative numbers is addressed much earlier. Larkin (2013) interprets this as an
indicator that the developers are not familiar with and do not consult a curriculum
policy document when identifying grade fit of their app, or that the grade levels
were selected from a marketing, rather than a curriculum, perspective. He found the
targeted level to be 2–3 years younger than the ages specified by the app developer.

12.6 Dimensions for Selecting Appropriate Integer Apps

It was evident from the review of the 80 apps that several dimensions, including the
nature of the curriculum addressed, were central when evaluating apps.

12.6.1 The Nature of the Curriculum Addressed

Emergent and adaptable activities as contrasted with overly prescriptive activities.
We considered the nature of the learning that the mathematics tasks in the app could
evoke. Only 3 of the apps involved what we refer to as, after Heydon and Wang
(2006), emergent features (e.g., Math Alchemist Lite, and its other two versions).
Math Alchemist is an example of an app that focused on a problem-solving context,
the one of making 24, using any random numbers combined with number opera-
tions. A user’s response becomes part of the inputs available for use in making 24,
and the level of difficulty is increased depending on the user’s success at a level.
Apps with emergent features, ranked Level III apps on the curricula dimension,
presented some rich mathematics problems that were, for instance, closely aligned
with teaching through problem solving.

We labelled, again after Heydon and Wang (2006), adaptable apps as those 13
apps (e.g., Math Blaster Hyper Blast, Math Boosting, Interactive Integers) that
posed questions or problems, which could have involved computing answers, but at
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least offered ways for the user to extend the problem. The Interactive Integer app
posed tasks that involved conceptual understanding (see activities with coloured
tiles) in addition to drill tasks for practicing integer addition and subtraction. This
app was ranked Level II on the curricula dimension.

A majority of the apps, 74 out of 80, mainly offered prescriptive tasks.
Prescriptive apps only posed traditional, prescriptive practice tasks, such as the
question “3 + (−4) = ?” These focused on right/wrong responses from the learner
in a manner similar to physical flash cards. These apps scored low, Level I, on the
curricula dimension.

Only 4 apps (e.g., Interactive Integers, Math 24 Solver, and Math Blaster
HyperBlast game) focused on building understanding of concepts, introducing a
new topic, or explaining how a procedure worked, scoring high—Level III—on this
dimension. A large number of apps, 58 out of 80, were for practicing earlier learned
concepts, as would be the case with flash cards. That a majority of apps mainly
offered prescriptive tasks was also the case in Larkin’s (2014) evaluation in which
they found that procedural apps dominated.

Mathematics content aligned with more recent, higher quality curricula. Each
of the 80 apps, according to their developers, was for learning, practicing, or getting
quizzed on mathematical topics. The mathematics topics were listed differently,
fluctuating from mentioning a single topic to listing a range of up to five topics. The
topics included naming of general mathematics branches, such as arithmetic,
through indicating a specific mathematics topic, such as negative numbers, to, at the
highest ranking, Level III, further specifying mathematics content and learning
outcomes (or, expectations), such as using models with negative integers. We view
the latter focus that goes beyond naming a branch of mathematics or listing topics to
specifying what is learned or practiced by using the app as a use of language
consistent with that used in more contemporary, higher quality curricula of
Canadian provinces and several other countries. In many curriculum documents,
such as the NCTM principles and standards (NCTM 2000), the content specified
goes beyond a mere mention of a topic to specifying learning expectations.

A selection of apps (e.g., Math 1st–6th Grade Digital Workbooks—Space
Board) showed coverage for other strands, such as Geometry, in addition to
Number Sense and Numeration. We took this focus, on connections of number
sense to geometric representations of numbers, to align with the NCTM standards
focus on connections among strands.

12.6.2 Actions and Interactions Afforded by the App

Constructive, Manipulable as Opposed to Largely Instructive Apps. Some
adaptable apps involved interfaces with objects such as a number line that a user
could act upon, or manipulate. In Figs. 12.4, 12.5, 12.6, 12.7, 12.8, 12.9 and 12.10,
we show screenshots of the Interactive Integer app to illustrate how the number line
and integer tiles in this app could be dragged and dropped as the user added or

290 I.K. Namukasa et al.



subtracted integers including negative integers. The colored tiles in the interactive
integer apps could be dragged to demonstrate the identity property (e.g.,
+1 + −1 = 0): When a yellow, positive tile and a red, negative tile were dragged
close to each other they each disappeared. Many representations of mathematics
concepts in instructive apps could not be acted on or modified. Some apps only
included audio or video demonstrations of an instructor explaining a mathematics
process or giving the answer. A good number of apps did not have any objects that
visually represented mathematics concepts. Goodwin and Highfield’s (2013)
evaluation found that a majority apps were instructive.

Fig. 12.4 Interactive Integers app—both iPhone and iPad app. Source www.tictaptech.net/apps/
interactive-integers/

Fig. 12.5 Interactive Integers
app showing user choice on
task
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Fig. 12.6 Interactive Integers
app color tile instructions

Fig. 12.7 Interactive Integers
app hint on using color tiles

Fig. 12.8 Interactive Integers
app adding 5 + −2 using
dynamic counters
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12.6.3 The Level of Interactivity and Range of Options
Offered to the User

Multiple interaction apps as opposed to mono interaction apps. Only a few apps
(e.g., Math Fact Master, Math!!!, and Middle School Math Pro 7th Grade) included
opportunities for multiple users, such as submission of responses or marks, and
asynchronous teacher interaction with the learner. We ranked apps with multiple
interactions as high, Level III, on the dimension of interactivity and range of
options, to be contrasted with apps offering mono interactions. Seventy of the 80
apps, including many of the apps that ranked Level III and Level II on the other
dimensions, were designed with a focus on one user—mono interaction—thus
limiting interaction to one user and the interface. In reference to video games, Gee
(2012) distinguishes between the piece of software together with all the social

Fig. 12.9 Interactive Integers
app showing the number line
model

Fig. 12.10 Interactive
Integers app explaining a rule
on taking away a negative
integer
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activity around it and the piece of software alone. He would refer to the social
activity around an app and the app as a software as the Big A app in contrast to the
small a app because the former is important for participation, production and
pro-active learning.

High- and moderate-engagement and interactivity apps as contrasted with
low-engagement apps. Only 3 apps (e.g., Math 1 On-Track, Math Book Pro, and
Math Blaster HyperBlast) accommodated a variety of inputs and choices, and
offered varied possibilities of inputs and choices so the user may insert and select
options, thus ranking Level III on interactivity. We referred to apps with a range
and adjustability of options as high-interactivity apps. A good number of apps (e.g.,
Mathopolis, Math 2112, Math 24 Solver, Math4Touch), specifically 55 of 80,
involved moderate interactivity with some opportunities for the users to input
values and make choices. With the Interactive Integers app a learner was offered a
choice of representation—tiles or the number line; the operation—addition or
subtraction; number of questions; and level of difficulty. About a quarter, 22 of the
80 apps, involved much lower-interactivity, Level I. Many apps were limited to
already inputted values and allowing only up to two choices (e.g., check answer and
a “next” button) for the user.

12.6.4 The Quality of the Design Interface and Graphics
in the App

Multi-media, high quality apps as opposed to primarily text-based, low quality
apps. Sixty-six of the 80 apps utilized visual representations and graphics in
addition to numeric symbols and text. Only 20 of the apps (e.g., Math Blaster
HyperBlast, Interactive Integers, Integers, and Math!!!) went beyond using
numerical symbols and text to utilize other mathematical representations such as
geometric, graphic, simulations, or 3D graphs. We ranked these apps as Level III
apps on technical design features. Forty-four of the 80 apps utilized sound effects
and music. Many of these apps utilized multiple colors. Some apps used the colors
in ways that were not simple add-ons, but in ways integral to the mathematics
content. For instance, in the Integer Multiplication app, an iPad only app (see
Fig. 12.11), the use of colors offered ways for the learner to identify patterns and
distinguish characteristics of negative and positive integers. Still, a majority of
apps, over 60 out of 80, largely utilized, at the lowest rank—Level I, only numerals
and text to represent mathematics concepts. Haugland (2005) warns against this
“poor use of a powerful learning tool” (p. 330).
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12.6.5 Instrument Content and Value Added
by the Instrument

Virtual-only innovations, virtual developments of, with added value on, existing
instruments as opposed to digitized images of existing materials. Because virtual
and physical materials complement each other (Namukasa et al. 2009), for each of
the apps, we examined the relation, if any, to existing instructional material/
resources. The team assessed if an app replicated already existing mathematics
resources, such as virtual manipulatives, textbooks, or web resources, or whether an
app was a digital version of these materials. This was important in assessing the
app’s pedagogical and cognitive elements (i.e., whether, for instance, it replicated a
material that focused on developing conceptual knowledge, or on test preparation).
Base-Ten Blocks replicated the physical and virtual Base-Ten Blocks manipulative.
According to Bos (2009b), interactive mathematics learning tools, such as virtual
manipulatives that are enhanced with technology, have a higher degree of cognitive
fidelity than technology-based tools that focus on games, instructional information
and quizzes. The representations of colored tiles and number lines, as seen in the
Interactive Integers app, reflect the use of virtual, visual, and physical representa-
tions of integers in ways that are enhanced to represent a mathematics property. We
found that many apps were designed based on mathematics puzzles (e.g., Math 24

Fig. 12.11 Integer Multiplication app showing use of color
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Solver). Some apps added game contexts to paper-and-pencil mathematics puzzles.
Also, many apps were game based (e.g., Mathopolis). Sixty-six apps involved some
recreational features and 4 of these involved role-playing games (e.g., Math Blaster
HyperBlast). Certain apps (e.g., YourTeacher, Motion Math-Zoom), in a manner
similar to a mathematics textbook chapter or a lesson in a course, were part of a
collection of apps focusing on varied mathematics topics for the same age level.
Larkin (2013, 2015a, b) and Calder (2015) observed that many apps were
stand-alone apps focusing on one particular kind of skill, knowledge, or content.
Further, apps in bundles appeared to be aligned with curricula expectations.

12.6.6 The Level of Intellectual/Cognitive Involvement It
Evokes—Intense, Limited or Very Low

Intense as opposed to limited or very low intellectual/cognitive involvement.
Overall, apps with adaptable (or, emergent) characteristics and those with manip-
ulable (or, modifiable) elements appeared to have the potential for intense
intellectual/cognitive involvement whereas apps with instructive and prescriptive
characteristics appeared to have limited to very low potential for intense
intellectual/cognitive involvement. Even among prescriptive and instructive apps,
some apps, because they scored high on other dimensions such as on interactivity
and range of options and technical design aspects, appeared to be more engaging
and thus offered potential for intellectual involvement at the procedural level.

A good number of apps combined elements on one dimension as illustrated in
Goodwin and Highfield (2013) and Gadanidis et al. (2004). We did not find an app
that ranked at level III for all dimensions. The Interactive Integers app combined
both the adaptive and prescriptive elements on the curricular dimension, and it had
a manipulable interface (level II on the actions and interactions dimension). It also
offered choice and provided immediate feedback, as well as written instruction for
both the lessons on understanding and for practice questions, but did not offer an
opportunity for the learner to input values or make annotations by including a
keypad. One of its instructions on how to take away a negative number was not
mathematically accurate. Interactive Integers was limited to integer subtraction and
addition. The Integer Multiplication app, that scored high on the characteristic of
use of color to focus learning, covered only a single operation on integers—
multiplication.

Some apps that scored low, Level I, on one dimension scored higher, Level II or
III, on other dimensions. Even when it focused on right and wrong answers—
Mathopolis, a prescriptive app—also involved a game context that allowed user
choice on the level of difficulty and nature of operations, scoring Level II on
interactivity. One could say that Mathopolis scores high among prescriptive apps
because it is a Level II app on at least one other dimension. One of the apps that
appeared to involve emergent features had a game context that did not appear
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appropriate for middle school students. We pondered the messaging and content in
the apps and its appropriateness for learners. This was also the case in Larkin
(2015a), where he found apps scoring high on one dimension and low on another.
For instance the apps Larkin evaluated scored higher on pedagogical fidelity, fol-
lowed by mathematical fidelity, and lowest on cognitive fidelity. To Haugland
(1999), children’s software should be evaluated on age appropriateness and
non-violence.

Apps with multiple interactions—between several users (e.g., Math Fact Master
which could submit scores to an email address, as well as Math!!! with the pos-
sibility of a teacher embedding messages) have promising added value of inter-
acting with others through the cognitive tool.

12.7 Concluding Remarks

Our evaluation instrument could guide teachers when selecting apps that meet their
teaching goals. As well, the evaluation instrument could guide developers in
designing apps that are more aligned with emergent and adaptive curriculum, that
also focus on conceptual understanding in addition to focusing on procedural and
declarative knowledge, and that utilize multiple and interactive modes in ways that
are central to the representation of mathematics entities.

Some teachers implement and test objects, many use objects recommended by
colleagues, and yet other teachers, especially those comfortable with computer
programming, increasingly approach the use of learning objects from a developer’s
perspective. New friendly coding programs are making it easier for more teachers,
and even students, to engage in designing apps. Thus, our instrument can poten-
tially guide students, teachers, educators, and researchers when they design apps.

When mathematics apps are thoughtfully used in ways that encourage learners to
do the mathematics (i.e., explore, conjecture, test, and apply), rather than only
doing procedural steps, learning apps have the potential to deepen mathematical
understanding and encourage students to work at higher levels of generalization and
abstraction (Bos 2009a, b). Looking to the future, with the increased focus on
students of all ages learning to code, such as the mandate of coding across all grades
in England’s National Curriculum (UK Government News Release, 4 February
2014), we need to also consider: (1) the connection between students as coders and
students as mathematics learners, and (2) the design of apps, not only as education
products to be consumed, but also environments that may be edited and repro-
grammed by users. For example, Gadanidis and Yiu (2014) created HTML5 apps
(available at www.researchideas.ca/mathncode) that attempt to meet these condi-
tions, respectively, by: (a) using app interfaces where users change code parameters
to control a simulation or play a game, and (b) programming apps in MIT’s Scratch
environment, giving students full access to the code, which they can edit to create
variations or new simulations and games. Explicitly incorporating coding in
mathematics apps would help incorporate three pedagogical benefits of coding in
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mathematics learning: making concepts tangible, making relationships dynamic,
and giving students more control over the learning process (Gadanidis 2014, 2015).

References

Bartolini, M. G., & Martignone, F. (2014). Manipulatives in mathematics education. In S. Lerman
(Ed.), Encyclopedia of mathematics education (pp. 365–372). Dordrecht, Netherlands:
Springer.

Basham, J., Meyer, H., & Perry, E. (2010). The design and application of the digital backpack.
Journal of Research on Technology in Education, 42, 339–359.

Bortolossi, H. J. (2012). Criando conteúdos educacionais digitais em matemática e estatística com
o uso integrado de tecnologias GeoGebra, JavaView, HTML, CSS, MathMLe JavaScript.
Revista do Instituto GeoGebra de São Paulo, Journal od the Sao Paulo GeoGebra Institute, 1
(1), 38–39.

Bos, B. (2009a). Technology with cognitive and mathematical fidelity: What it means for the math
classroom. Computers in the Schools, 26(2), 107–114.

Bos, B. (2009b). Virtual math objects with pedagogical, mathematical, and cognitive fidelity.
Computers in Human Behavior, 25, 521–528.

Bos, B. (2011). Professional development for elementary teachers using TPACK. Contemporary
Issues in Technology and Teacher Education, 11(2), 167–183.

Calder, N. (2015, October). Apps: Appropriate, applicable, and appealing? In T. Lowrie &
R. Jorgensen (Eds.), Digital games and mathematics learning (pp. 233–250). Dordrecht,
Netherlands: Springer.

Cayton-Hodges, G., Feng, G., & Pan, X. (2015). Tablet-based math assessment: What can we
learn from math apps? Journal of Educational Technology & Society, 18(2), 3–20.

Dick, T. P. (2008). Keeping the faith: Fidelity in technological tools for mathematics Education.
In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning
of mathematics: Vol. 2. Cases and perspectives. (pp. 333–339). Charlotte, NC: Information
Age.

Dickens, H., & Churches, A. (2012). Apps for learning: 40 best iPad/iPod Touch/iPhone apps for
high school classrooms. Vancouver, BC: 21st Century Fluency Project.

Fullan, M., & Donnelly, K. (2015). Evaluating and assessing tools in the digital swamp.
Bloomington, IN: Solution Tree Press.

Gadanidis, G. (2014). Young children, mathematics and coding: A low floor, high ceiling, wide
walls learning environment. In D. Polly (Ed.), Cases on technology integration in mathematics
education (pp. 312–344). Hersey, PA: IGI Global.

Gadanidis, G. (2015). Coding as a Trojan horse for mathematics education reform. Journal of
Computers in Mathematics and Science Teaching, 34(2), 155–173.

Gadanidis, G., & Schindler, K. (2006). Learning objects and embedded pedagogical models.
Computers in the Schools, 23, 19–32.

Gadanidis, G., Sedig, K., & Liang, H. N. (2004). Designing online mathematical investigation.
Journal of Computers in Mathematics and Science Teaching, 23(3), 273–296.

Gadanidis, G., & Yiu, C. (2014). Math and code. Retrieved from www.researchideas.ca/
mathncode

Gee, J. P. (2005). Good video games and good learning. Phi Kappa Phi Forum, 85(2), 33–37.
Gee, J. P. (2012). Digital games and libraries. Knowledge Quest, 41(1), 61–64.
Goodwin, K., & Highfield, K. (2012). iTouch and iLearn: An examination of “educational” apps.

Paper presented at Early Education and Technology for Children Conference, March 14–16,
2012, Salt Lake City, Utah, USA.

298 I.K. Namukasa et al.

http://www.researchideas.ca/mathncode
http://www.researchideas.ca/mathncode


Goodwin, K., & Highfield, K. (2013). A framework for examining technologies and early
mathematics learning. In L. D. English & J. T. Mulligan (Eds.), Reconceptualizing early
mathematics learning (pp. 205–226). New York, NY: Springer.

Haugland, S. W. (1999). The newest software that meets the developmental needs of young
children. Early Childhood Education Journal, 26(4), 245–254.

Haugland, S. W. (2005). Selecting or upgrading software and websites in the classroom. Early
Childhood Education Journal, 32(5), 329–340.

Heydon, R., & Wang, P. (2006). Curricular ethics in early childhood education programming: A
challenge to the Ontario kindergarten program. McGill Journal of Education, 41(1), 29–46.

Highfield, K., & Goodwin, K. (2013). Apps for mathematics learning: A review of ‘educational’
apps from the iTunes App Store. In V. Steinle, L. Ball, & C. Bardini (Eds.), Mathematics
education: Yesterday, today and tomorrow. Proceedings of the 36th annual conference of the
Mathematics Education Research Group of Australasia. Melbourne, VIC: MERGA.

Hitt, F. (Ed.). (2002). Representations and mathematics visualization. Mexico: PME-NA,
Cinvestav-IPN.

Kamii, C., Lewis, B. A., & Kirkland, L. D. (2001). Fluency in subtraction compared with addition.
Journal of Mathematical Behavior, 20(1), 33–42.

Kay, R. H., & Knaack, L. (2009). Assessing learning, quality and engagement in learning objects:
The learning object evaluation scale for students (LOES-S). Educational Technology Research
and Development, 57(2), 147–168.

Larkin, K. (2013). Mathematics education. Is there an app for that? In V. Steinle, L. Ball, &
C. Bardini (Eds.), Mathematics education: Yesterday, today and tomorrow. Proceedings of the
36th annual conference of the Mathematics Education Research Group of
Australasia (pp. 426–433). Melbourne, VIC: MERGA.

Larkin, K. (2014). iPad apps that promote mathematical knowledge? Yes, they exist! Australian
Primary Mathematics Classroom, 19(2), 28–32.

Larkin, K. (2015a). The search for fidelity in geometry apps: An exercise in futility? In
M. Marshman, V. Geiger, & A. Bennison (Eds.), Mathematics education in the margins.
Proceedings of the 38th annual conference of the Mathematics Education Research Group of
Australasia. Sunshine Coast, QLD: MERGA.

Larkin, K. (2015b). An app! An app! My kingdom for an app: An 18-month quest to determine
whether apps support mathematical knowledge building. In Digital games and mathematics
learning (pp. 251–276). Dordrecht, Netherlands: Springer.

Maddux, C., Johnson, D., & Willis, J. (2001). Educational computing: Learning with tomorrow’s
technologies. Needham Heights, MA: Allyn and Bacon.

Mills, M., Goos, M., Keddie, A., Honan, E., Prendergast, D., Gilbert, R., & Renshaw, P. (2009).
Productive pedagogies: A redefined methodology for analyzing quality teacher practice.
Australian Educational Researcher, 36(3), 67–87.

Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching
Children Mathematics, 8(6), 372–377.

Moyer-Packenham, P. S., Salkind, G., & Bolyard, J. J. (2008). Virtual manipulatives used by K–8
teachers for mathematics instruction: Considering mathematical, cognitive, and pedagogical
fidelity. Contemporary Issues in Technology and Teacher Education, 8(3), 202–218.

Moyer-Packenham, P. S., Shumway, J. F., Bullock, E., Tucker, S. I., Anderson-Pence, K.,
Westenskow, A., et al. (2015). Young children’s learning performance and efficiency when
using virtual manipulative mathematics iPad apps. The Journal of Computers in Mathematics
and Science Teaching, 34(1), 41–69.

Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student
achievement and mathematics learning. International Journal of Virtual and Personal
Learning Environments, 4(3), 35–47.

Namukasa, I. K., Stanley, D., & Tutchie, M. (2009). Virtual manipulative materials in secondary
mathematics: A theoretical discussion. Journal of Computers in Mathematics and Science
Teaching, 28, 277–307.

12 Selection of Apps for Teaching Difficult Mathematics Topics … 299



National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for
school mathematics. Reston, VA: Author.

Pelton, L. F., & Pelton, T. (2012, March). Sharing strategies with teachers: iPods in math class. In
Society for information technology & teacher education international conference (Vol. 2012,
No. 1, pp. 4363–4366).

Pepin, B., & Gueudet, G. (2014). Curriculum resources and textbooks in mathematics. In S.
Lerman (Ed.), Encyclopedia of mathematics education (pp. 132–135). Dordrecht, Netherlands:
Springer.

Peterson, J. C. (1972, May). Fourteen different strategies of multiplication of integers or why (−1)
(−1)=+1. The Arithmetic Teacher, 19(5), 397–403.

Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterize it
and how can we represent it? Educational Studies in Mathematics, 26(2–3), 165–190.

Sedig, K., Parsons, P., Dittmer, M., & Haworth, R. (2014). Human-centred interactivity of
visualization tools: Micro- and macro-level considerations. In W. Huang (Ed.), Handbook on
human centric visualization (pp. 717–743). New York, NY: Springer.

Skip, J. (1990). But everybody accepts this explanation: Operations on signed numbers.
In J. Fauvel (Ed.), History in the mathematics classroom (The IREM papers) (Vol. 1). London,
England: Mathematical Association.

Trouche, L., Drijvers, P., Gueudet, G., & Sacristan, A. I. (2013). Technology-driven development
and policy implications for mathematics education. In A. J. Bishop, M. A. Clements, C. Keitel,
J. Kilpatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education
(pp. 753–790). New York, NY: Springer.

UK Government News Release. (February 4, 2014). Year of code and £500,000 fund to inspire
future tech experts launched. Retrieved from www.gov.uk/government/news/year-of-code-and-
500000-fund-to-inspire-future-tech-experts-launched

Yerushalmy, M., & Ben-Zaken, O. (2004). Mobile phones in education: The case for mathematics,
Haifa. Retrieved from http://construct.haifa.ac.il/*michalyr/celular%20report.pdf

Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in
mathematics education: A perspective of constructs. In F. Lester (Ed.), Second handbook of
research on mathematics teaching and learning (Vol. 2, pp. 1169–1207). Charlotte, NC:
Information Age.

Zhang, M., Trussell, R. P., Gallegos, B., & Asam, R. R. (2015). Using math apps for improving
student learning: An exploratory study in an inclusive fourth grade classroom. TechTrends, 59
(2), 32–39.

300 I.K. Namukasa et al.

http://www.gov.uk/government/news/year-of-code-and-500000-fund-to-inspire-future-tech-experts-launched
http://www.gov.uk/government/news/year-of-code-and-500000-fund-to-inspire-future-tech-experts-launched
http://construct.haifa.ac.il/%7emichalyr/celular%2520report.pdf


Chapter 13
Ambitious Teaching: Designing
Practice-Based Assignments
for Integrating Virtual Manipulatives
into Mathematics Lessons

Jennifer M. Suh

Abstract This chapter details a design-based research study that focused on
developing effective approaches for pre-service teachers to integrate technology in
the mathematics classroom. Using an iterative design cycle, the researcher devel-
oped three practice-based assignments during an elementary mathematics methods
course that were designed to promote pre-service teachers’ technology pedagogical
content knowledge. These practice based assignments allowed the participants to
(a) analyze effective technology tools for mathematics teaching and learning;
(b) evaluate applets that supported a vertical learning progression on a specific
mathematics concept; and (c) design, implement and reflect on a mathematics
lesson where technology amplified the mathematics teaching and learning. By
creating pre-service teachers’ own practical image of practice after implementing
the technology integrated lessons in the field, pre-service teachers gained a better
“picture of practice” of ambitious teaching in the mathematics classroom where
effective integration of technology helped construct students’ mathematical
understanding.

13.1 Introduction

In education, we know that the value of any technology tool depends on how it is
used in instruction. In this digital age, teachers are inundated with educational
technology. It is important for teachers to be able to judiciously evaluate the
instructional worth of a technology tool. Beyond the interactive dynamic nature of
mathematics applets, educators need to ensure that the content taught using the
virtual manipulative in an applet is characterized by ambitious teaching and
learning goals. The term “intellectually ambitious teaching and learning,” has been
defined as instruction that helps students “develop in-depth knowledge of subject
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matter, gain higher-order thinking skills, construct new knowledge and under-
standing, and effectively apply knowledge to real-world situations” (Smylie and
Wenzel 2006, p. 7). Ambitious teaching, according to Lampert et al. (2013),
“challenge(s) teacher educators to prepare new teachers to do a kind of teaching that
most experienced teachers are not yet doing” (p. 226). Furthermore, they suggest
that the challenge of preparing beginning teachers in this way is asking novice
teachers to teach in a way that is more socially and intellectually ambitious than the
current norm. In addition, ambitious teaching using technology adds another layer
of complexity because many pre-service teachers may not have a “picture of
practice” from their own learning experiences.

To help pre-service teachers understand the complexity of ambitious teaching,
educators and researchers have developed a set of key instructional activities that
embody core teaching practices (Lampert et al. 2010). By “chunking” some of these
instructional activities, teacher educators allow pre-service teachers access to
“manageable, structured routines”. These routines allow teachers to practice
enacting a particular instructional purpose while maintaining the associated com-
plexity. For example, in their study, Lampert et al. (2010) focused on the following
four activities to promote ambitious mathematics teaching: choral counting, strategy
sharing, computation strings, and solving word problems. Using this framework for
designing instructional activities to help pre-service teachers manage ambitious
mathematics teaching, this chapter presents three experiences for pre-service
teachers focused on integrating technology in the mathematics classroom. These
experiences were designed to move pre-service teachers along a spectrum from
engaging with technology, because it seems appealing, to knowledgeably selecting
virtual manipulatives for their conceptual development of mathematical content,
higher-order thinking skills, and problem-solving ability. The aim of the chapter is
to share the high level instructional activities that helped pre-service teachers
integrate technology and promote ambitious teaching.

13.2 Understanding Research on Integrating Technology
in the Content Area

According to Niess and Walker (2010):

…many digital technologies have proved useful for students learning mathematics:
graphing calculators, applets or virtual manipulatives, spreadsheets, computer algebra
systems, and dynamic geometry tools. Each of these technologies provides visual repre-
sentations that enable students to explore mathematical ideas in more dynamic ways. (Niess
and Walker 2010, p. 100)

On the other hand, a misuse of technology would be using it as merely an
attention grabber. Engagement is initially high when a lesson is introduced with
dynamic and animated images, but soon that novelty wears off. According to the
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Technology Principle in the Principles and Standards for School Mathematics
(NCTM 2000), “Technology is essential in teaching and learning mathematics; it
influences the mathematics that is taught and enhances student learning” (p. 24).
The phrase “influences the mathematics that is taught” is what determines the
ambitious teaching goals in the mathematics classroom. The word “enhances” is
what characterizes technology as a tool with high leveraging power because
technology has specific affordances that can enrich learning tasks (Suh 2010).

The complexity of teaching with technology stems from the notion that teaching
in itself is a complex endeavor. Shulman (1986, 1987), coined the term Pedagogical
Content Knowledge (PCK) to describe the specific knowledge needed to teach
effectively which includes knowledge of subject matter, knowledge of students’
thinking, and knowledge of pedagogy. In mathematics education, PCK has been
expanded to include Mathematical Knowledge for Teaching (MKT) as the teacher
“knowledge necessary to carry out the work of teaching mathematics” (Ball et al.
2008; Hill et al. 2005) that include specific high-leverage practices such as the use
of mathematical explanations and representations, interpretations of student
responses, and the ability to avoid mathematics errors and imprecision. Teaching
with technology adds another layer of complexity to the PCK framework.
Understanding how to teach with technology, referred to as Technological,
Pedagogical, and Content Knowledge (TPACK) (Mishra and Koehler 2006) inte-
grates a third component into teachers’ specialized knowledge for teaching—
the integration of technology into instruction. TPACK includes understanding how
technology can be used to represent concepts, knowledge of pedagogical techniques
that use technology to effectively teach content, familiarity with ways technology
can help students understand particularly difficult topics, and knowing how tech-
nology can be used to build on existing knowledge. Virtual manipulatives have
been described as an “interactive, web-based visual representation of a dynamic
object that presents opportunities for constructing mathematical knowledge”
(Moyer et al. 2002, p. 373). The questions is how to support pre-service teachers as
they take advantage of technology to elicit sense making while students construct
mathematical meaning.

In working with pre-service teachers (PSTs) using the virtual manipulative
environment, it is important that they situate their learning within the current
thinking around TPACK. Thus, prospective elementary mathematics teachers must
be prepared to teach with and through technology because of the ways in which
technology enhances mathematics learning, supports effective mathematics teach-
ing, and influences mathematical content. Due to the complex nature of teaching
with technology, Mishra and Koehler (2006) recommend that understanding
approaches to successful technology integration requires educators to develop new
ways of comprehending and accommodating this complexity. This is the challenge
I have undertaken for this study.
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13.3 Motivation for the Study

The purpose of this study was to carry out design-based research producing an
improved course experience for teaching PSTs technology integration. It also
allowed me to engage in a faculty self-study (Samaras 2010) as I reflected on
previous courses and considered better ways to help PSTs learn how to integrate
technology in a mathematics classroom effectively. For these reasons, I designed a
series of practice-based activities that would give PSTs opportunities to work with
mathematics applets while planning for a mathematics lesson. In this way, they
would be able to refine their views of effective mathematics teaching, and develop a
critical lens for their own practices, while building their repertoire for teaching
mathematics with technology.

13.4 Method

13.4.1 Participants and Research Questions

The participants were 26 PSTs in a mathematics methods course also enrolled in a
technology integration course. The technology integration course was one credit
and was taught in tandem with the three-credit mathematics methods course. The
methods course included field experiences and took place the semester before their
student teaching internship.

The study explored the following two research questions:

1. What technology pedagogical content knowledge was elicited by PSTs on each
of the practice-based assignments?

2. How do the designed practice-based assignments, situated in the course and field
experiences, better support the development of PSTs technology pedagogical
content knowledge?

13.4.2 Research Design

This study used cycles of design-based research aimed at developing effective
approaches for integrating technology in the mathematics classroom. The
methodology in this chapter was consistent with aspects of design experiments
(Brown 1992). Design-based research (DBR) was chosen because it allows for
practitioner research when implementing interventions and uses an iterative anal-
ysis process in conceptualizing learning, instruction, curricular design and reform.
An iterative cycle of the following steps was used: considering a framework for
integrating technology in the mathematics classroom, developing a curricular
design with practice-based assignments, implementing the course-based activities
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and analyzing feedback for improvement for the next cycle. The DBR
(Design-Based Research Collective 2003) communicates relevant implications to
practitioners and other educational designers. Design was the focus of the study in
an effort to foster learning, create usable knowledge, and advance theories of
learning and teaching using technology in the classroom.

Grounding professional learning in practice can provide teachers with opportu-
nities to investigate authentic problems of practice and to develop knowledge and
skills in the contexts of their use. I designed three related practiced-based assignments
with an initial phase that included asking PSTs to observe current implementation of
technology in a mathematics classroom and reflect on the current practices they
observed before implementing any tasks on an electronic discussion board. The first
Practice-based Assignment (PBA) #1 was called Technology Applet and Website
Evaluation. The task sheet was modified from the Elementary and Middle School
Mathematics Field Experience Guide (Bay-Williams and Van de Walle 2010) to
include two reflective questions on howPSTswould use the applets in their classroom
and how the applets promoted theCommonCore Standards forMathematical Practice
(CCSS-M 2010). The second Practice-based Assignment (PBA) #2: Sequencing
Technology Applets to Reflect on Students Mathematics Learning Progressions was
designed to expose PSTs to the mathematics standards, teaching practices standards,
and the learning progressions of mathematics standards. The third Practice-based
Assignment (PBA) #3 was called Planning and Integrating Technology in a Math
Lesson, which allowed PSTs to pull together what they had learned from the previous
assignments to design a thoughtful mathematics lesson integrating technology. After
these three PBAs, PSTs were asked to reflect on their views of integrating technology
in a mathematics classroom on an electronic discussion board.

13.4.3 Data Sources

Data sources included the collection of assignments described above:
Practice-based Assignment (PBA) #1 Technology Applet and Website Evaluation,
that included two applet reviews that were one page each (see Fig. 13.1);
Practice-based Assignment (PBA) #2 Sequencing Technology Applets to Reflect on
Students Mathematics Learning Progressions, that included a one page response
recording sheet (see Fig. 13.2); Practice-based Assignment (PBA) #3 Lesson
Planning and Integrating Technology in a Math Lesson, that included a formal
lesson plan with a written reflection on how the lesson went and how students
responded to the lesson with screenshots of student work analyzed.

In addition, PSTs submitted an electronic discussion board entry where they
reflected on integrating technology in a mathematics classroom during their field
experience. These data sources were analyzed for emerging themes. I used the
participants’ assignments to further analyze their learning using the TPACK
components for teachers’ specialized knowledge for teaching—to examine how
their assignments elicited specific ways technology can be used to represent
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Title:  NLVM Algebra Balance Scales: Negatives
http://nlvm.usu.edu/en/nav/frames_asid_324_g_3_t_2.html?open=instructions&from=category_g_3_t_2.ht
ml
Type of Tool:  Virtual manipulative
Grade Level:  VA SOL 6.18 (enrichment), 7.13 and 7.14, 8.15(a)
Math Content: algebra

Specific Topic:  evaluating simple linear equations with one negative variable on both sides
Key Instructional Objectives: using virtual manipulatives as representations of positive and negative 
variables and integers to balance equations
Rating: (Rate each aspect of the tool with a 1-5, 1 being lowest and 5 being highest. When appropriate add 
a comment or your reasoning too.)

Criteria Rating Comments
The applet or website 
provides better 
opportunities to learn 
than alternative 
approaches.

5 
This applet constrains the learner’s use of manipulatives so s/he is not 
distracted by the physical objects.

Students will be engaged 
with the math content not 
the frills. 

5 It is a simple layout, with a balance, operation buttons, and colored 
blocks that represent the variable x, coefficient, and constant.  
Students have solved the equation when only an x remains on one 
side of the equation – there is no feedback.  Focus is on balancing the 
scale, with no distractors.

The applet provides 
opportunities for 
problem solving. 

5 The user creates the equation and selects the order of procedures to 
solve the equation.  After each step, a simplified equation is displayed 
below the original equation, which will help the learner develop an 
understanding that all the equations shown are equivalent.  

The tool develops 
conceptual knowledge 
and supports student 
understanding of 
concepts. 

5 Negatives, or opposites, are represented by red balloons that raise the 
side of the scale on which they are placed.  Blue blocks and boxes 
represent positive variables and numbers that push down the scale.  
After creating their own equation, students place the manipulatives 
that represent the equation onto the scale.  This visual allows students 
to better understand that they may perform any operation to solve, as 
long as they do the same thing to both sides of the equation to 
maintain balance.  One drawback of this app is that it lacks the final 
step of substituting the x value back into the equation.  Students 
benefit from closing the loop and proving why that value is a 
solution.

The tool develops 
procedural knowledge 
and supports student 
understanding of skills.

5 The student will refine strategy choice through practice and 
observation of the outcomes of each choice, as displayed in the 
equation box.  This flexible approach to finding the answer supports 
procedural fluency. 

The software or website 
allows the teachers to 
assess student learning 
through records and 
reports. 

1 There is no data capability visible on the free version.

The Program is 
challenging for a wide 
range of skill levels.

5 This app builds upon a previous one that uses positive integers and 
variables.  Challenge is limited to the student’s creation of their own 
problems – there is no built-in feature to increase skill level.

The tool is equitable in 
its consideration of 
gender and culture.

5 This virtual manipulative app is free of any discrimination, and 
provides equitable access to the skills practice of balancing equations.

The tool promotes good 
student interaction and 
discussion.

2 It is a one-user app.  The teacher would have to prompt student users 
to discuss their strategies and discoveries following the user of this 
tool.

The tool has quality 
supplementary materials 
such as blackline 
masters.

1 Blackline masters are not evident on the free version.

Your overall rating 5

Fig. 13.1 Evaluation of an applet by a pre-service teacher
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concepts and the specific knowledge of pedagogical techniques to effectively teach
content. These data sources also provided feedback for ways to improve the
designed experiences for integrating technology in the mathematics classroom.
PSTs’ responses from the discussion board on their beliefs about technology

Equivalent Fractions Finder
http://www.shodor.org/interactivate/activities/E
quivFractionFinder/

I selected this tool because my student struggled with 
fractional parts and because this tool allows the whole 
to be broken into fractional parts in several different 
ways. Students can manipulate the tool to create 
equivalent fractions in several different ways. I would 
encourage the student to create images as I have done 
below in the screenshot. Based upon my assessment, 
it seems the student is used to seeing fractional parts 
as the same size and shape. It’s important that he 
understand the concept of fair shares. By creating 
images that are not what we normally see as 
fractional parts, it will deepen his understanding of 
this fraction concept. The student can save time by 
not having to color blocks repeatedly. Because the 
tool is online, students can divide the units in several 
different ways and they can do it multiple times.

Fraction Bars
http://www.mathplayground.com/Fraction_bars.html

My student seemed to have a great understanding of 
equivalent fractions. I chose this tool to challenge him 
and to move on from fraction concepts to adding and 
subtracting fractions with like and unlike 
denominators. Using this tool, students must add and 
subtract fractions with like and unlike denominators. 
So, it addresses the content well.  Students must think 
critically about making the best choice for their move 
based upon their knowledge of equivalent fractions 
and the ability to move all tracks to one in the least 
amount of moves. I would use this tool to expose the 
students understanding of equivalent fractions by also 
having him keep a journal of why he chose to make 
each move.

Fraction Tracks
http://illuminations.nctm.org/Activity.aspx?id=
4148

My student seemed to have a great understanding of 
equivalent fractions. I chose this tool to challenge him 
and to move on from fraction concepts to adding and 
subtracting fractions with like and unlike 
denominators. Using this tool, students must add and 
subtract fractions with like and unlike denominators. 
So, it addresses the content well.  Students must think 
critically about making the best choice for their move 
based upon their knowledge of equivalent fractions 
and the ability to move all tracks to one in the least 
amount of moves. I would use this tool to expose the 
students understanding of equivalent fractions by also 
having him keep a journal of why he chose to make 
each move. The online fraction tracks game has an 
advantage over the paper version of the game because 
it can correct your move in real time. The program 
will not allow a student to make an incorrect move.  
If playing the two person version, the game also 
keeps track of which player’s turn it will be.

Fig. 13.2 Selected applets to assess students learning progression
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integration in the mathematics classroom were collected prior to and after the series
of practice-based assignments to document how their views evolved after imple-
menting these assignments. The responses to each of the three assignments also
served as a way to analyze how the practice-based assignments were helping PSTs
learn specific TPACK.

13.4.4 Data Analysis

Using Mishra and Koehler’s description of TPACK (2006), I analyzed the learning
that occurred through each assignment based on how the PSTs reflected on the
knowledge of student thinking and learning, knowledge of content and instruction,
and knowledge of technology. For the analysis process, I used a grounded theory
approach to make sense of the data by defining codes, categories and concepts.
Using the constant comparative method (Strauss and Corbin 1990), I began with
open coding to develop names and categories. Then I moved to axial coding to
relate the initial codes to one another. Finally, I applied selective coding to make
choices on the most important codes. Using this method, I was able to analyze
PSTs’ assignments and reflections to display and organize categories in such a way
that I was able to draw some concepts together as the emerging themes (Miles and
Huberman 1994). I revisited the assignments and the reflections with the themes
and categories the second time, to verify that the themes emerged across the
multiple data sources.

13.5 Results

13.5.1 Initial Phase: Ideal Image of Practice
and Observation in the Field

In order to help PSTs reflect on the current research on integrating technology, I
asked them to read articles and the framework around TPACK. The major themes
they drew from their reading were that technology is an essential tool for both
learning and teaching mathematics and that the teacher’s role is to select effective
tools. In class, we discussed NCTM’s (2000) position statement on the role of
technology in teaching, which “regards technology as an essential tool for both
learning and teaching mathematics” (p. 113).

The first reflection prompt posted for PSTs engaged them in a discussion about
what they were able to observe in terms of technology integration in the mathe-
matics classroom at their field sites. The prompt stated, “Now that you are visiting
your classrooms, have you seen some ways ‘real’ teachers are integrating tech-
nology, particularly in the mathematics classroom? If so, share some great exam-
ples. What are some technologies available for your teachers and students? If you
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do not see technology being integrated in the mathematics classroom, in what ways
would you integrate technology in what students are learning in your assigned
classrooms?”

Common themes were the use of technology in the mathematics classroom
including: (a) focusing on visual representations; (b) using dynamic features to
illustrate mathematics concepts; and, (c) incorporating collaborative learning
centers. The following is an excerpt from one of the discussion posts that illustrated
the use of technology as a visual representation.

The classroom teacher would create graphic representations for fractions where the students
could come up and color sections to show their thinking. These were usually whole group
lessons and students were engaged and active in working through the problems and dis-
cussing their solutions.

Another example was how the teacher used a virtual hundreds chart to keep track
of patterns to facilitate a mathematics discussion about number patterns. The
pre-service teacher noted how the teacher engaged students in analyzing the pat-
terns and not just saying the numbers that were highlighted.

The teacher pulled up a virtual 100s chart on the board, where the numbers could change
color once she touched them. She used the chart to give a visual representation of counting
by tens starting at various numbers on the chart. First they counted by tens starting at ten,
and after every correct answer the teacher touched that number on the screen so it changed
color. Once the “red tower”, as the children called it, was completed on the chart, she asked
the students to take a closer look at it and explain what they notice about the “red numbers”
(analyzing the numbers in the ten’s place and the one’s place). Next she asked them to
count by tens from 6. She, again, touched the number on the screen after every correct
answer until another “red tower” appeared. The students really enjoyed comparing the two
“red towers” and analyzing the “red numbers”.

One pre-service teacher admitted to seeing benefits of virtual manipulatives
despite her preference to use physical manipulatives, noticing the value of virtual
base-ten blocks. She observed first graders working on a video game website and
voiced how she would rather have them practice on the virtual manipulatives base
ten website.

While I prefer the hands-on nature of physical manipulatives, I can see the benefit of virtual
ones. The base-10 blocks are the best and most frequent example of the virtual manipu-
lative; these virtual blocks can show the student very effectively how to add, subtract,
multiply and divide, the four key operations on which all other math is built. In the first
grade class where I am currently observing I would use the base-10 blocks as a starting
point rather than having the students practice using the video game website as they do now.

In addition to whole group lessons observed, several PSTs posted responses on
the discussion board about ways technology allowed for collaboration and how
teachers used technology as a center during guided mathematics lessons.

The teacher mainly used the SMART board when conducting her lessons, but the students
loved being able to come up to the board and manipulate the objects on the screen. Many
times the teacher would put problems on the board and the students could come up and
uncover the correct answers. The teacher also conducted guided math, so the students had
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math centers. During the math centers, the students had the option of using to computers to
play math games related to the topics being covered that week.

Some concerns and challenges were also shared in the postings. Some of the
themes ranged from the inequity of resources, anxiety caused by failure of tech-
nology, and apprehension about classroom management when using virtual
manipulatives.

Inequity of resources
In the school that I am placed in it is a Title 1 school, so from what I observed there are

no computers, iPad, SMART boards, or anything in the classroom. The classroom did have
a television that the teacher had hooked up to her own computer and that was the only
technology I saw. From what I observed I did not see any carts that had iPad or computers
on them for the teacher to reserve them. If the teacher can reserve computers the way I
would use them in the classroom is by using various apps to aid students learning.

Anxiety caused by failure of technology
I have to admit that I am feeling some anxiety in using technology in one of our lesson

plans. I think I feel like there is always the possibility of the computer crashing, the Internet
not working, or one of the many other errors that could occur turning our lesson into a total
flop. Perhaps this is the same anxiety that some of our cooperating teachers feel. It’s like
they know that it is important to incorporate technology but they are not comfortable with
its incorporation in the world of math quite yet.

Apprehensive about classroom management
My only concern with the use of virtual manipulatives during morning work and center

work is keeping track of the students proper engagement with the games, since many
students may take advantage of being in front of a tablet or computer to wander off to
different websites, or to fake that they are engaged when they are actually not productively
thinking. I really do not know if there is a way to control that. However, balancing the use
of the games and virtual manipulatives with the traditional games and worksheets would
make the routine more interesting and help students who need a variety of methods to learn.

These responses served as an initial baseline for the ways PSTs were thinking
about technology integration in the mathematics classroom.

13.5.2 Practice-Based Assignment #1: Technology
Evaluation-Selecting a Mathematics
Applet/Technology

In the first assignment, when asked to evaluate applets, PSTs freely chose applets
that were available on the web. They used the evaluation form (see Fig. 13.1)
categorizing the websites as drill and practice, virtual manipulatives, or investiga-
tions. Then they reflected on two reflective questions asking how they would use the
applets in their classroom and how the applets promoted the Common Core State
Standards for Mathematical Practice (CCSS-M 2010). Using Smith and Stein (2011)
Levels of Cognitive Demand, I sorted the tasks as low level and high level cognitive
demand to evaluate the potential that the tasks had for mathematics connections (see
Table 13.1). According to Smith and Stein (2011), low-level tasks are characterized
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by memorization and procedures without connections and high-level tasks are
described as procedures with connections and doing mathematics.

This sorting exercise made me reflect that, in the next iteration of this assign-
ment, I would ask PSTs to categorize the applets further using the levels of cog-
nitive demand as it helped make a distinction between tools that rehearsed
procedures only and tools that help build procedural understanding and problem
solving. An example of a low level applet was a game and review for math facts
that was procedural without connections to conceptual development. In the Math
Sport game, students had to answer multiplication facts accurately to get a chance to
make free throws as a reward. However, the PST rated it high, giving it a 4 out of 5.
Another applet that was rated 4 was a place value game where one would have to
identify the place value by clicking on the numeral. There was no assessment of the
value of the digits just a recognition of the place value name. Although the PSTs
noted that it was just rehearsing facts, they felt like the games added a level of

Table 13.1 Analysis of applets chosen by PSTs

Low-level
cognitive
demand
12/40

Applets for memorization
Examples: rehearsal of math facts-addition,
subtraction, multiplication and division
games that rehearse math facts tied to race
or sports awards
1. Money recognition applets
2. Identifying fractions (matching

exercises)
3. Ghost number sequencing

Procedures without connections
applets
1. Online addition arcade game
2. Multiplication fluency game
3. Rounding estimation game
4. Fraction number line game
5. Garage sale money game
6. Counting Apple game
7. Place value game
8. Add like mad
9. Turtle addition game

High-level
cognitive
demand
28/40

VM applets for procedures with visual
representations and connections

1. Fractions—parts of a whole (NLVM)
2. Money on NLVM
3. Base ten addition on NLVM
4. Fraction multiplication NLVM
5. Fraction feud (calculationnation)
6. Thinking blocks—Ratios
7. Okta’s rescue illuminations
8. Number line bounce NLVM
9. Spin the big wheel! (explorelearning)
10. NLVM algebra balance scales
11. Deep sea duel (illuminations)
12. Adaptedmind-math
13. Factor dazzle (calculationnation)
14. Simple maze game (Shodor)
15. Base blocks addition (NLVM)
16. Equivalent fractions (Shodor)

Doing mathematics/problem
solving/logic games websites

1. Explore learning: cannon ball
2. Thinking blocks: modeling

problems:
3. Game/puzzle-circle 21
4. Kenken
5. Illuminations-bobby bear
6. Mathport
7. Proportionland
8. Math by design
9. Scale city
10. Rock and roll roadtrip
11. Explorelearning: walk the line
12. Coin logic problem: NLVM

Open-ended tools: virtual manipulatives Environment for open exploration 3/3
1. Pattern blocks on NLVM
2. Tessellate on Shodor interactivate
3. Glencoe virtual manipulatives
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engagement with rewards that would encourage the development of fact fluency.
Table 13.1 shows the collection of applets compiled from the PSTs that was sorted
by the levels of cognitive demand.

13.5.2.1 Opportunities to Elicit TPCK and Redesign for PBA #1:
Recognizing the Need to Consider the Cognitive Demand

From the collection of applet evaluations, it was clear that PSTs needed more
tailored instruction on how to select mathematics applets that offered opportunities
to extend students’ mathematics thinking and learning. Although I was surprised
that some drill and practice games were rated as high, most of the applets chosen by
PSTs were high-level mathematics applets. When I used the levels of cognitive
demand to sort the forty applets evaluated by the PSTs, I categorized 12 as
low-level applets and 28 as high-level applets. Three others were put in a separate
category called open-ended tools because the level of the task depended on how
teachers implemented the activity using the virtual tool. By sorting through the
applets and websites the PSTs reviewed, it was apparent that the PSTs were able to
find high cognitive demand applets. However, to increase the rigor of this activity,
the next iteration of this PBA will include the levels of cognitive demand as part of
the criteria when having PSTs evaluate applets. Since the choice of technologies
affords and constrains the types of concepts and processes that can be taught, using
Stein and Smith’s framework, I determined it would help PSTs think about the level
of cognitive demand present in a task and encourage the goal of ambitious teaching.

The following analysis is of the work (Fig. 13.1) of one of the participants,
Kathy, a PST who explored the NLVM Algebra Balance Scale. She was placed in
an upper elementary mathematics classroom teaching advanced mathematics during
her field experience.

Her overall rating was a 5 even though she rated a few criteria with ratings of 1
and 2. It was obvious why she rated it high after reading her reflection. When asked,
“How would you use this tool to bring out the Standards for Mathematical
Practices?” she cited three specific practices: (1) Make sense of problems and
persevere in solving them; (2) Model with mathematics; and, (3) Look for and
express regularity in repeated reasoning. This PST showed evidence cited by
Mishra and Koehler’s description of TPACK (2006), where she reflected on the
knowledge of student thinking and learning, knowledge of subject matter, and
knowledge of technology. Kathy detailed in her reflection how the applet encour-
aged the following mathematical practices.

1. Make sense of problems and persevere in solving them—As students write their
own equations, they will need to persevere in using the tool so that they learn to do
the same thing to both sides and maintain a balanced equation each time. Linking
the number representations to the manipulatives on the balanced scale will help
themorganize andmake sense of equationswith variables aswell as gain a stronger
conception of negatives as opposites that lift or subtract weight from the balance.
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2. Model with mathematics—This app should be used to supplement teaching of
variables and balancing equations. One benefit of the app is that the user cannot
click “continue” until the equation has been correctly represented with blocks
and balloons on the scale. Also, users may evaluate as many equations as they
wish to create, which eliminates the constraints of physical materials. Students
will discover the “idea of a variable as something that varies” (Van de Walle
et al. 2014, p. 118). To enhance this app, I would have students then prove their
solution by substituting the x value back into the equation. This is an important
step in students’ mathematical thinking—reflecting on and justifying their
answers.

3. Look for and express regularity in repeated reasoning—Through the repeated
exploration of this app, students will discover how strategies they choose work
well or not. They will also link the correct manipulation of blocks and balloons
to the values in their initial equation and each simplified equivalent. This will
increase their fluency with variables and enhance their algebraic skills.

In this PBA, it was evident through the many other PSTs’ analyses that they
were thinking deeply about the important role of technology tools in education and
how technology can, as Goldenberg (2000) states, “help students develop new and
powerful ways of looking at problems, help them build mental models, acquire
generalizable and flexible skills” (p. 6). In Kathy’s reflection, she recommended
improvements to the applet that would allow collaborative learning and mathe-
matics communication:

I would have a two-player feature, to encourage more positive social interaction as students
discuss and justify their mathematical thinking and to include a printable report, so this
added feature would enable teachers to collect and analyze data related to their learners’
practice and thinking.

For Practice-Based Assignment #1, the themes revealed that the PSTs were
developing understanding that different technology tools had specific affordances
that can help develop conceptual understanding as well as procedural understanding
and important mathematical practices. The thoughtful responses from the
pre-service teachers demonstrated evidence that they were taking a critical look at
the applets with student learning at the center of their analysis.

13.5.3 Practice-Based Assignment #2: Sequencing
Technology Applets to Reflect on the Mathematics
Learning Progressions

The second Practice-based Assignment was designed so that PSTs could think
deeply about the learning progressions for a specific mathematics concept and
select three related applets that could be used to teach and learn that concept. This
assignment was also related to two of their big field assignments where they had to
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plan and teach a lesson using technology and assess a student’s understanding about
a concept using a variety of representations. The instruction for the PSTs was the
following:

Locate three different virtual manipulatives or applets that support the mathematical content
you will address in the student assessment project for EDCI 552. Using the template below,
analyze the models you have selected and evaluate them on their effectiveness and fidelity
to the mathematical concept.

The following analysis is of the work submitted by one of the participants,
Cindy, who illustrates how she interpreted this assignment and the TPACK learning
that was elicited from the activity (see Fig. 13.2). Cindy chose three fraction virtual
manipulative applets and discussed the affordances of each of the tools and how it
could help the students she assessed as part of her student assessment assignment.

13.5.3.1 Opportunities to Elicit TPCK Through PBA #2: Mapping
Along the Mathematics Learning Progression

Cindy reflected on how the different tools have different affordances. All three
applets selected offer a variety of representations including using a region model,
area model, and a number line model tied to the symbolic representation of the
fraction notation. The concept that she focused on appears in our state’s 4th-grade
standard, “The student will (a) compare and order fractions and mixed numbers;
(b) represent equivalent fractions” and most closely aligns to the CCSS-M (2010)
Numbers Grade 4 Fractions A.1 and A.2:

Extend understanding of fraction equivalence and ordering.

CCSS.MATH.CONTENT.4.NF.A.1
Explain why a fraction a/b is equivalent to a fraction (n � a)/(n � b) by using visual

fraction models, with attention to how the number and size of the parts differ even though
the two fractions themselves are the same size. Use this principle to recognize and generate
equivalent fractions.
CCSS.MATH.CONTENT.4.NF.A.2

Compare two fractions with different numerators and different denominators, e.g., by
creating common denominators or numerators, or by comparing to a benchmark fraction
such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the
same whole. Record the results of comparisons with symbols >, =, or <, and justify the
conclusions, e.g., by using a visual fraction model.

The first applet, the Equivalent Fraction applet, ties the pictorial representation
of a region model with the symbolic notation of the fraction and places the fraction
on the number line. This applet allows users to compare up to three fractions with
different numerators and different denominators (e.g., by creating common
denominators or numerators). The Fraction Bar, the second applet, has a cus-
tomizable feature for changing the numerators and denominators for four different
bars. Cindy used the second applet to help her students think about comparing
fractions using benchmark fractions such as ½. The final applet, Fraction Track,
allowed the student to demonstrate his understanding of the fraction as a number on
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the number line. Not only did Cindy find appropriate applets that aligned to the
mathematical learning goal, but she was able to articulate why she chose the applet
and what specific mathematics the tool would highlight for the learner. By selecting
these three related applets, Cindy demonstrated an understanding of the concept of
representing fraction on a number line, comparing fractions by renaming fractions
with like denominators, and using the benchmark of ½ to compare.

Another important mathematical practice when learning to teach mathematics is
the ability to understand learning progressions to appropriately assess students’
understanding. The final assignment in the mathematics methods course was to
assess students’ understanding. After Cindy administered this individual assess-
ment, she revisited the applets that she had sequenced using learning progressions
to make recommendations for further instruction.

While the student was able to come to a correct answer regarding the placement of 5
8 and

7
12

on the number line, it did take some prodding and additional questioning. One virtual
manipulative that may be helpful to this student is Math Playground’s Fraction Bars found
here: http://www.mathplayground.com/Fraction_bars.html. It was difficult for the student to
verbalize that 1

12 over the one half was different and less than 1
8 over one half. I would use

this tool to first allow my student to visualize the fractions of 7
12 and

5
8. With manipulative

practice to see the relative size of fractional parts combined with practice comparing
closeness to ½, the student would be better equipped to compare 5

8 and
7
12.

Here Cindy clearly demonstrates her TPACK and notes that the tool affords an
opportunity to help students visualize the benchmark ½ and use that to compare and
place 5/8 and 7/12 along the number line connecting 4/8 and 6/12 as ½ and having
the student make sense of the remaining 1/8 versus 1/12.

Another recommendation Cindy makes for her student is to expose him to
multiple images for fractions partitioned in equal parts, which may not always be
congruent regions, by using the area model and knowing equal area (see Fig. 13.3).

When looking to the question where the child must select which images from a group of
seven are correctly partitioned into fourths, we see that the child struggles with under-
standing fractional parts as equal area regardless of shape. Similarly, this child can work on

Fig. 13.3 Applets helped connect finding equivalent fractions with equal parts
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finding fair shares using the “Equivalent Fractions Finder” manipulative found here: http://
www.shodor.org/interactivate/activities/EquivFractionFinder/. He can use this virtual
manipulative to create images that are not normally seen as fractional parts in order to deepen
his understanding of this fraction concept. In the image below, the “Equivalent Fractions
Finder” manipulative was used to represent the same fraction in three different ways.

For Practice-Based Assignment #2, the themes revealed that the PSTs were
developing the pedagogical strategies of using learning progressions of mathe-
matics concepts to scaffold and tier the teaching and learning sequence.

13.5.4 Practice-Based Assignment #3: Integrating
Technology in a Mathematics Lesson

In this final case study, a PST, Linda, planned a whole group lesson where students
created patterns. The focus of the lesson was to recognize, describe, extend, and
create a wide variety of growing and repeating patterns. She differentiated the tasks
with parallel tasks using the Open Virtual Manipulatives site from Glencoe and the
National Library of Virtual Manipulatives site (see Fig. 13.4). She began the lesson
working with her class as a whole group to create ABAB, ABB, AAB, and ABC
patterns. Each student completed and labeled a generated pattern. For an extra
challenge, Linda prompted students to turn and talk with partners asking, “What
will be the 17th (next) color? What will be the 20th color?”

Linda reflected that the important idea that she learned from this lesson was that
conducting a rich and focused mathematics lesson requires one to be fully prepared
with content knowledge and engaging materials that motivate students to learn. She
also remarked that “the objectives, tasks, and assessment must all tie together for a
cohesive, standards-based learning experience.”

One aspect that Linda gave particular attention to was integrating technology to
facilitate the equitable access to learning for all students by differentiating the tasks.
She stated,

Fig. 13.4 Parallel tasks planned for a lesson on patterns
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An important skill that I must continue to work on is challenging students to develop
higher-order thinking skills by posing analysis and synthesis problems. For example, stu-
dents could generalize their learning about patterns through a project that helps them
discover or generate patterns in their environment. Another way to stimulate higher-order
thinking is to ask open-ended questions. I could pose a question such as, “How can
knowing the core help you find out what comes next in the pattern?” This requires students
to analyze and interpret what they know to discover the unknown. I could also include the
patterns found in music, which would greatly enrich the lesson and add creativity. All of the
applets used for guided practice were quicker and easier to use than paper and pencil, which
allowed each student to have a turn with the technology and gave me the opportunity to
probe their thinking.

13.5.5 Creating Their Own Practical Image of Practice
After Performing in the Field: A Summary of PSTs’
Learning

Goldenberg (2000) stated, “We must also provide time and opportunity for teachers
to become fluent with the tools so that they can be flexible, use spur-of-the-moment
good judgment in their classrooms, and not feel constrained by the tools or stilted
by a lack of confidence in their ability to use them” (p. 7). After providing PSTs
time and space to work with technology tools in the mathematics classroom, I was
interested to examine how their own beliefs of teaching through technology may
have evolved. In their final discussion prompt, I asked them: “On the discussion
board, post your ideas for how you plan to incorporate technology into your math
lessons. Cite Van de Walle’s recommendations as you reflect on the implication to
how you plan to integrate technology in your math lessons.”

After their field experience, where PSTs planned and taught a mathematics
lesson integrating technology, the most common theme was recognizing the need
for more TPACK. This was a discussion that was not evident in the initial posting.

Before I am able to effectively use digital tools for math instruction, I will seek out
professional development opportunities to become more fluent in their functions and
applications. Specifically, I need to strengthen my ability to use and teach using the
graphing calculator. Its capabilities are many, like computing large quantities, applying a
mathematical representation to model a real-world situation, testing a solution to check if it
makes sense in context, estimating values to examine relationships, and selecting a strategy
to solve a problem, to name just a few. I want to become more knowledgeable about its
functions and teach it correctly so that students may use it confidently during their
explorations of math concepts.

The finding that TPACK was the most common theme in their reflections was
revealing because PSTs recognized that their knowledge of how to integrate
technology was key.
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Another pre-service teacher shared how she will need more time to familiarize
herself with ways technology can help students understand particularly difficult
topics and knowing how technology can be used to build on existing knowledge.

I agree that there are so many useful tools out there and that it is our responsibility as
educators to become experts in TPACK components. In order for us to assist students with
exploring the latest technology tools we need to be able to navigate them first. I am looking
forward to having a little bit of time this summer to explore more tools and also plan on
taking advantage of any professional development opportunities that become available in
order to build up my fluency in the available technology out there.

The importance of integrating technology in purposeful ways was voiced in this
pre-service teacher’s response as she commented on going beyond her technology
apprehensions.

I want to integrate technology when appropriate in my classroom and ensure that it is
effective, not just incorporated to say it was. It should be beneficial to the objective of the
lesson and not just an add-on to give the students something to do. It should have a well
thought out purpose and be an integral part of the lesson. On the other hand, you also have
to be prepared in the case that something happens and you cannot use the technology tools
as we have all experienced at some point that some things just don’t work out the way we
have planned!

The belief that technology is a tool to bring equity to the classroom came up in
this final response from one PST to another.

I also agree with you that virtual tools help to bridge the achievement and economic gap
when it comes to math content. What I mean by this is that free virtual manipulatives make
math instruction equitable for all students. I did not make that connection in my post, but I
am glad that you did so in yours. The fact that these tools are free, interactive and reinforce
mathematic concepts is great (and truly valuable) for students in low socioeconomic
schools. This is just another way to show that math can be fun and engaging when used in
the right/appropriate way.

For Practice-Based Assignment #3, the themes revealed that the PSTs recog-
nized the importance of understanding ways to use technology to provide more
equity and access for diverse learners while helping students bridge a gap when
they have specific learning difficulties in mathematics. This also related to their
need to learn more about ways to build on students’ existing knowledge.

Through these final responses, it was evident that PSTs were thinking more
deeply about the importance of TPACK in their development and in their practice.
As a result of the sequence of practice-based assignments (see Fig. 13.5), PSTs had
more time and space to explore virtual manipulatives as learners themselves and
then to use them as teachers in the classroom. The sequence of practice-based
assignments allowed scaffolding needed for PSTs to explore, analyze and plan for
virtual manipulatives to become an important tool for teaching and assessing stu-
dent learning.
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13.6 Conclusion and Consideration for Teacher
Educators: Using Feedback from Assignments
to Tailor the Next Cycle

The original purpose for the design of the practice-based assignments was to create
manageable, structured routines that would allow PSTs to learn how to evaluate
applets, select a few applets that aligned to their mathematics learning goals, and
plan, teach, and assess student learning. The initial observation at their field site was
designed so that they could have a “picture of practice” for integrating technology
in the mathematics classroom. After reading and analyzing the first posts on the
discussion board, it was clear that some PSTs observed best practices integrating
technology while others did not. Although what they observed is the reality of
today’s classroom, as an instructor, I want to create an opportunity for PSTs to see
several exemplars of best practices for integrating technology in the mathematics
classroom. In this way, PSTs can have a “picture of practice” of ambitious teaching
in the mathematics classroom that showcases effective integration of technology for
learning. One way to create this opportunity is to plan instructional rounds to a
classroom where the teacher is effectively integrating technology. By asking some
master teachers to model instructional practice, the PSTs and I will have a collective
experience of observing an exemplar lesson. Another way researchers and educa-
tors have offered this exemplary practice is through rehearsals. Lampert et al.
(2013) share a method that they call rehearsal where the teacher educator and
novice teachers conduct “run-throughs” or microteaching in methods courses. Here,
the novice teacher teaches an instructional activity, while the teacher educator and
other novice teachers are in the role of simulated classroom students, who “act
back” in a way that students might in an actual classroom.

In addition to providing rehearsals and tailored observations with masterful
teachers, I learned through PBA #1: Technology Applet and Website Evaluation that
PSTs need to evaluate applets with cognitive demand in mind. The analysis I expe-
rienced when sorting through the PST selected applets allowed me to consider what
level of cognitive demand the applets offered. Was the applet allowing for the user to

Fig. 13.5 Sequence of practice-based assignments
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make sense of a procedure with connections or was the applet offering opportunities
for problem solving and doing mathematics? These are good ways to evaluate
technology tools beyond examining external features and would forward ambitious
teaching and learning goals. Another lesson I learned from PBA #2 Sequencing
Technology Applets to Reflect on the Mathematics Learning Progressions was the
need to sequence the variety of applets that are worthwhile using the mathematics
learning progression more explicitly. PSTs were exceptional at aligning the applets to
a standard, but more instruction could be provided to look across the vertical strands
to map out the learning trajectory. This vertical articulation would be beneficial for
PSTs as a thread for frequent classroom discussions when planning, designing and
conducting diagnostic assessments for the course. Finally, I learned from PBA #3
Integrating Technology in a Math Lesson that PSTs may need more rehearsal with
supportive co-teachers modeling ideal ways to integrate technology in the mathe-
matics classroom. As mentioned in the introduction, using technology in the math-
ematics classroom may be a novel approach for many in-service teachers who may
not be using technology in their mathematics classrooms. There is a need to workwith
both in-service teachers and pre-service teachers to develop their repertoire for
integrating technology effectively in the mathematics classroom. Providing more
“pictures of practice” from master teachers who can serve as exemplary models of
ambitious teaching using technology in the mathematics classrooms may help build
PSTs repertoire as they are enter the teaching profession.
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Chapter 14
Developing an Interactive Instrument
for Evaluating Teachers’ Professionally
Situated Knowledge in Geometry
and Measurement

Agida G. Manizade and Dragana Martinovic

Abstract In this study, we propose a content specific, short, interactive, on-line,
scenario-based instrument that incorporates virtual manipulatives developed in
GeoGebra, as one of the many ways for evaluating and describing teachers’ pro-
fessionally situated knowledge (PSK) in the domains of geometry and measure-
ment. To define PSK of mathematics teachers, we use a combination of Shulman’s
Pedagogical Content Knowledge (PCK) and its corresponding mathematical
knowledge. We describe the methodology used to develop the instrument as well as
the corresponding rubrics. The study design followed a concurrent mixed-methods
approach, in which the quantitative and qualitative phases of data collection were
intermingled to explore the research questions related to identifying components of
the PSK. As a case study, we used PSK of the area of a trapezoid, since (a) this
topic is familiar to most middle school and secondary mathematics teachers; and
(b) a narrow focus was most advantageous when using Delphi methodology to draft
an instrument, which was then fully developed using methods of grounded theory.
This comprehensive approach led to a deep investigation of multiple and diverse
data sources collected from practicing teachers, which we used to create their PSK
profiles in the area of trapezoid.

14.1 Introduction

The purpose of this paper is to propose a content specific, short, interactive, online,
scenario-based instrument that incorporates virtual manipulatives developed in
GeoGebra as one of the many ways for evaluating and describing teachers’
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professionally situated knowledge (PSK) in the domains of geometry and mea-
surement. To define the PSK of mathematics teachers, we use a combination of
Shulman’s Pedagogical Content Knowledge (PCK) and its corresponding mathe-
matical knowledge (e.g., knowledge of area concept, units of measurement, areas of
polygons, geometric transformations, congruence, congruent triangle conditions,
similar triangles, parallel lines and angle relations, concept of altitude in triangles
and quadrilaterals, etc.).

There are several assumptions we are making in our work. We assume that, in
order to possess and develop PSK, teachers have to have corresponding mathe-
matical content knowledge (subject matter knowledge). Teachers develop PSK for
each mathematics topic individually. In other words, just because a teacher has a
very strong PSK for teaching angles, does not mean that he or she will effectively
teach the surface area of a cone. We also assume that one of the ways to gather
information on teachers’ PSK is to observe their interaction with a virtual manip-
ulative and collect their reflections on such an experience, as well as obtain data on
their analysis of student work samples. Finally, we make an assumption that in
order to design an effective professional development (PD) for teachers, specific
information on subject matter knowledge as well as PCK has to be collected and
considered prior to PD.

In this chapter, we propose designing online, interactive, dynamic, short,
scenario-based instruments that would allow mathematics educators to gather
information needed to design differentiated PD for mathematics teachers. These
electronic instruments may also allow us to develop an understanding of the rela-
tionships and connections between different types of teachers’ knowledge, which
would be important for the design and development of mathematics teacher training
programs.

Currently, there are many different types of instruments used in the field for
measuring teachers’ professionally situated knowledge (PSK), and other related
constructs. These tools have their own strengths and limitations, and range from
lesson observation protocols to paper and pencil tests (Hill et al. 2008; Knowing
Mathematics for Teaching Algebra Project 2006; University of Louisville 2004).
Several research teams have spent significant time and money to develop such
instruments (Hill et al. 2008; Silverman and Thompson 2008). The major limita-
tions of these instruments are that they are too long, costly, and do not cover all of
the mathematics applicable for the content background of any group of mathematics
teachers, such as geometry teachers. That is why we propose developing content
specific, short, interactive, online, scenario-based instruments, which are adaptable
to multiple mathematics topics. These instruments would incorporate virtual
manipulatives developed in GeoGebra or another software, as one of the many
ways to measure and describe teachers’ PSK in the domains of geometry and
measurement. These types of instruments could be coupled with other existing
standardized measures to gather information about teachers’ backgrounds.
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In this chapter, we specifically address the following research questions:

1. In what ways, can we incorporate virtual manipulatives into designing measures
of mathematics teachers’ PSK?

2. What are some affordances of virtual manipulatives developed in GeoGebra that
may enhance or hinder their use in a PD for geometry and measurement?

3. How can we develop profiles of mathematics teachers’ PSK in geometry and
measurement?

14.1.1 Virtual Manipulatives as Special Mathematics
Machines or Digital Objects

Our decision to employ virtual manipulatives in this work was not made arbitrarily.
The literature on this subject confirms that virtual manipulatives can be thought of
as mathematical machines, which are suitable for laboratory sessions (see Bartolini
Bussi and Maschietto 2008) with mathematics teachers. If used in this way, virtual
manipulatives could reveal different aspects of mathematics teachers’ PSK.

In our research, we extend Bartolini and Maschietto’s (2008) ideas about the
“specific professional competences” needed by teachers to effectively use artifacts
in the mathematics classroom. For example, Bartolini and Maschietto use concrete
artifacts (compass, Mira mirrors, etc.) with student teachers, because through gui-
ded use the mathematical meanings of these tools become more transparent. In our
view, practicing teachers have already passed through this stage where they unpack
the concrete artifact. School districts currently provide teachers with concrete tools
that are well known and that have been part of mathematics culture for some time
already (e.g., base 10 blocks, interlocking cubes, scales, and kits for 3-D geometry).

On the other hand, virtual tools (e.g., calculators and dynamic geometry soft-
ware) change over time and teachers need to be trained in their use. Digital objects
created in virtual tools come in a multitude of forms for different purposes. Such
objects become virtual manipulatives when their mathematical meaning is uncov-
ered through activity. Because the digital objects described in this chapter are
claimed to have been created by students, they could be used to invite teachers to
implement their formative assessment skills to connect them to their pedagogy. In
addition, the teachers are asked to interpret and improve these objects to uncover
and build upon their potentially limited mathematical meaning. Through this pro-
cess the digital objects we developed, become virtual manipulatives. In conjunction
with targeted questions, these virtual manipulatives are grounded in the multi-
faceted nature of teachers’ PSK. We defined PSK as the possession of the following
qualities: (1) specialized geometric content knowledge; (2) knowledge of student
challenges and understandings; (3) ability to ask appropriate diagnostic questions;
(4) pedagogical knowledge of appropriate instructional strategies and knowledge of
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proper use of manipulatives and technology; and (5) knowledge of geometric
extensions designed to deepen students’ understanding of the problem.

Mathematics manipulatives are usually used in demonstrations of a concept or in
explorations (Marshall and Paul 2008). Accordingly, a virtual manipulative is
defined as “an interactive, Web-based visual representation of a dynamic object that
presents opportunities for constructing mathematical knowledge” (Moyer et al.
2002, p. 373). Virtual manipulatives created in GeoGebra have the common
characteristics of all digitally created objects in what is called dynamic geometry
software: (a) users can move images to change their position on the screen or to
zoom in or out; (b) some points on these objects could be dragged while keeping
interdependencies intact (a vertex of the triangle can be dragged to resize the
triangle and change its shape, unless the triangle was constructed to have specific
features, e.g., as equilateral or right, in which case these features remain during
dragging); and, (c) users have control over the software and the object (e.g., to
develop, animate, and change objects on the screen). While the objects created in
software are not material they act like material objects by being responsive to users’
actions. When the user manipulates these objects, s/he moves between the physical,
the perceptual, and the conceptual domains, which may ultimately bring mathe-
matical ideas and processes to the conscious level (Sarama and Clements 2009).
This process may be useful for students as well as teachers as they develop their
understanding of the presented mathematical concepts.

Stacey and Wiliam (2013) state that dynamic geometry programs allow students
to “demonstrate a wide range of abilities” (p. 745). It stands to reason that they
could also be used to reveal a teacher’s abilities to experiment, investigate, make
and test hypotheses, and create proofs (Sinclair and Robutti 2013). Also, there is a
body of literature which states that when the virtual manipulative is designed so that
the users can explore it (e.g., move it, change its features and parameters), its users
may achieve more than when using physical manipulatives, although for the largest
effect, it is advisable to combine virtual and physical manipulatives in mathematics
teaching (Moyer-Packenham and Westenskow 2013). According to Sarama and
Clements, careful design of virtual manipulatives, which brings forward specific
features and allows for guided exploration, can make them superior to physical
manipulatives. Virtual manipulatives can help learners to develop new conjectures
about a mathematical topic. As they are created for a specific purpose, these virtual
manipulatives provide an environment that is defined by the affordances and con-
straints of (a) the software, (b) the mathematical objects or artifacts implemented in
them, and (c) the pedagogical ideas of their designers (Martinovic et al. 2015). By
observing teachers when using these manipulatives and recording their reflections,
we could identify aspects, such as (1) knowledge related to the area concept, units
of measurement, areas of polygons, geometric transformations, congruence, con-
gruent triangle conditions, similar triangles, parallel lines and angle relations, the
concept of altitude in triangles and quadrilaterals; (2) knowledge of student chal-
lenges and understandings related to developing the formula for the area of a
trapezoid; (3) ability to ask appropriate diagnostic questions; (4) pedagogical
knowledge of appropriate instructional strategies and knowledge of proper use of
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manipulatives and technology; and (5) knowledge of geometric extensions designed
to deepen students’ understanding of developing the formula for the area of a
trapezoid. Once we identify and measure the components of teachers’ PSK related
to this specific topic in geometry (using rubrics developed in the study) we map
them as radar diagrams described later in this paper.

We selected the area of a trapezoid as a content focus of this study. It is
important to have PSK about the area of a trapezoid because this is one of the
commonly taught concepts at the middle and high school levels. Often, students do
not get an opportunity to explore and discover the formula for the area of a
trapezoid in their mathematics classrooms, however when given a chance, they can
come up with multiple ways of justifying/discovering this formula. When teaching
the concept of area, it is not sufficient to give students the pertinent formulas and
have them merely compute the areas of various polygons. It is very important that
students develop an understanding of the concept of area so they can reason about
the relationships between shapes to determine area (Manizade and Mason 2014).
We believe that teachers with a higher PSK are more likely to provide such
opportunities to their students.

14.2 Methodology

The virtual manipulatives described in this chapter were created as part of the larger
study in which we used multiple data collection methods to understand the status of
the participants’ PSK related to the area of a trapezoid.

14.2.1 Participants

The participants in the study were 39 volunteer Geometry teachers from 12 divi-
sions in one of the eastern states of the United States. They had a wide range of
teaching experience (i.e., 1–16 years, M = 7 years). Also, 37 of 39 (95 %) par-
ticipants had at least 1 year of high school level Geometry teaching experience. All
participants taught high school level mathematics classes at either high school or
middle school. Based on self-reported data, they were familiar with the mathe-
matical topic presented to them in the study, which was the area of the trapezoid.
The volunteers were recruited from the M.S. program in mathematics education in a
state university in the Southeastern United States. They were all taking an online
graduate course on Euclidian and Non-Euclidian Geometry while the initial data
collection was conducted.
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14.2.2 Instrumentation

Nine virtual manipulatives (PCK instrument, adapted from Manizade 2006;
Manizade and Mason 2011, 2014)—presented as dynamic GeoGebra files, were
used as fictional samples of student work. The teachers were asked to interpret
student work, rate the appropriateness, clarity, sophistication, and limitations of
student strategies, and propose possible ways to address students’ misconceptions
and difficulties. Here we present four virtual manipulatives (presented as the work
of Adam, Whitney, Donna, and Paul, see Appendix 1) together with guiding
questions to help teachers evaluate the students’ work, explain their thinking, and
provide alternative approaches and proofs.

The selection of four examples is based on the three types of approaches one
may use to derive the formula of an area of trapezoid (i.e., decomposing, using
transformational geometry, and enclosing the trapezoid; Manizade and Mason
2014). For example, the student can decompose a trapezoid into simpler shapes
(triangles, rectangles) and then find the area of a trapezoid as a sum (see Whitney’s
and Paul’s approaches in Appendix 1). Another approach is used when the student
uses transformational geometry (rotation, translation, reflection), as shown in
Adam’s approach. Finally, the student may attempt to construct a shape that
encloses the original trapezoid. Then the student finds the area of a trapezoid by
subtracting the areas of external pieces from that of the enclosing shape, as pre-
sented in Donna’s approach.

14.2.3 Data Collection

The data used in this chapter was obtained in a larger study in which we collected
data on different components of 39 mathematics teachers’ PSK and triangulated
information using multiple sources of qualitative and qualitative data. The data were
collected using the following instruments: (1) A van Hiele test to determine each
teacher’s developmental level in Geometry; (2) a Trapezoid Questionnaire pre-test
that we developed to measure teachers’ knowledge of the area of the trapezoid
concept; (3) a Trapezoid PCK instrument with nine fictional samples of student
solutions (adapted from Manizade and Mason 2011, 2014) created in GeoGebra,
where we asked teachers to interpret student work, rate the appropriateness, clarity,
sophistication, and limitations of student strategies, and propose possible ways to
address students’ misconceptions and difficulties; (4) teachers’ reflections on their
perceived PCK learning in this process; (5) teachers’ demographic survey, where we
recorded their gender, school grades taught, years of teaching experience, and years
of teaching geometry; and, 6) follow-up classroom observations using the
Instructional Quality Assessment Classroom Observation Tool (IQA), where we
observed the instructional practices of purposefully selected teachers and validated
previous findings. All data, except during the classroom observations, were collected
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using online means (e.g., electronically created and submitted responses through
Desire 2 Learn and Adobe Connect, the online course learning management
systems).

In this chapter, we focus on the aspect of the study related to the use of virtual
manipulatives in order to gather information about the teachers’ professionally
situated knowledge (a Trapezoid PCK instrument) and to analyze the role of
incorporated affordances when designing teachers’ PD. We used virtual manipu-
latives in the instrument items by asking teachers to assess students’ approaches and
knowledge (Nührenbörger and Steinbring 2008). All teachers were given GeoGebra
files to explore and to describe student thinking and come up with possible mis-
conceptions the student might have (to see the GeoGebra files go to the GeoGebra
book at the link: http://ggbtu.be/buLXjTUHI).

We also asked participants to develop a critical understanding of the episte-
mological character of each manipulative (Nührenbörger and Steinbring 2008). The
teachers needed to come up with a strategy to use the current manipulative or to
design a new one, which would address the student’s misconception or misun-
derstanding and help the student to further his/her understanding of the area of a
trapezoid. All of the qualitative data were collected from the teachers as written
responses to the open ended questions. We allowed teachers to take as much time as
needed to answer the questions. We consistently used the aforementioned instru-
ments to collect qualitative data from every participant.

14.2.4 Data Analysis

The validity, reliability, trustworthiness, and rigor of the PSK-related questions
included in the instruments used in the Delphi study (Manizade and Mason 2011)
have been established and reported in the literature. The Delphi methodology
included three rounds of surveys of a diverse panel of 20 experts. The data analysis
and data collection were done reflectively. Initial items were developed based on
the research literature in the field of teacher knowledge, and geometry teaching and
learning. New categories for the analysis emerged from the data and were used to
complete the analysis. The experts reached consensus after the third round of
surveys, producing the assessment instrument (Manizade and Mason 2011). The
adapted versions of instrument Items W-Z we developed for this study went
through multiple rounds of peer review (five mathematics education researchers
reviewed the instruments at least three times each).

Grounded Theory (Charmaz 2014; Glaser and Strauss 1967) was used to finalize
the instrument and to develop rubrics to evaluate teachers’ responses. This
methodology provided us with a way to identify how different levels of teachers’
content knowledge about the area of a trapezoid interact with teachers’ PCK, what
the role of affordances in teachers’ PD was, and how to develop PSK profiles for
each teacher. We achieved credibility by collecting a multitude of different data to
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merit our claims. One of the authors was the instructor in the course and had
first-hand familiarity with the topic and the participants.

Qualitative data collected using the aforementioned items were coded using an
open coding technique and analyzed for emerging themes related to teachers’ PCK,
according to our theoretical framework. We created rubrics to evaluate teachers’
responses on the PCK items. This was done through a reflexive process of constant
comparison between data and emerging rubrics and consisted of open-coding the
responses, so that the core categories and the main themes became apparent.
Memos were written throughout the entire process. We conducted selective coding
and theoretical sampling. Additional sampling was conducted to saturate the core
category and related categories. Once the categories became saturated, the memos
were sorted out to find the theoretical code(s) which best organized the substantive
codes.

Based on the themes that emerged from the data, we modified our initial defi-
nition of teachers’ PSK used in the measures incorporating virtual manipulatives.
The new working definition of the PSK included five subcomponents: Geometric
knowledge, knowledge of student challenges and conceptions, ability to ask
diagnostic questions, knowledge of applicable instructional strategies and tools, and
ability to provide geometric extensions. These became rays in a visual represen-
tation of teachers’ profiles as depicted in Fig. 14.1. Based on grounded theory
techniques, once the working definition of PSK was generated, the literature related
to the use of virtual manipulatives in education research, as well as the role of
affordances (incorporated in the virtual manipulatives) in a PD for the mathematics
teachers, were integrated to show how virtual manipulatives could be used to to
gather information on teachers’ PSK.

The rubrics were designed to discriminate between five levels of teachers’ PSK
(i.e., 0–4) and its sub-components. The initial versions of the rubrics were devel-
oped using the mathematics education literature and our professional experiences.

Fig. 14.1 Sample of individual profiles of marker teachers
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Initial coding led us to develop new ideas and strategies for further data collection.
We modified the rubrics after we coded teachers’ responses as qualitative data for
the additional emerging themes, and the new themes were identified and included in
the corresponding PSK subcomponents of the developed rubrics. Then the new
rubrics were checked against the qualitative data collected through the PCK
Trapezoid instrument to look for any additional categories and themes, thus pulling
us into an “interactive space” (Charmaz 2014, p. 115), where we critically inspected
and challenged our preconceived ideas. We conducted coding with gerunds, “to
define implicit meanings and actions” (p. 121), and to realize directions for
exploration and comparison of data. The rubrics were then modified three to four
times and refined to differentiate between levels of teacher competencies through a
reflexive process of linking rubrics to the collected sets of raw data from 39
teachers. The developed rubrics allowed us to identify levels 0–4 (4 being the
highest) of teacher responses for each of the aforementioned dimensions of PSK in
the instrument using virtual manipulatives designed with GeoGebra.

14.3 Results

As a result of the study, we developed teacher profiles represented by radar dia-
grams as shown in Fig. 14.1. To create each ray of the radar diagram, we developed
and implemented rubrics to discriminate between levels 0–4 for each of the sub-
components of PSK—geometric knowledge, knowledge of student challenges and
conceptions, ability to ask diagnostic questions, knowledge of applicable instruc-
tional strategies and tools, and ability to provide geometric extensions. Then we
plotted the numerical score for each teacher on the axes and connected the vertices
to create a visual representation of individual teachers’ PSK in geometry.

Figure 14.1 contains a visual depiction of the PSK of the seven teachers pur-
posefully selected to cover the range of the teachers’ developmental levels in
Geometry, as determined through a van Hiele test (see the Geometric Knowledge
axis) and the parameters of theoretical sampling (Charmaz 2014). Consequently, we
selected one case each at Levels 1 and 4, two cases at Level 2 and three cases at
Level 3.

In the further text, we present some examples of different levels of development
of teachers’ PSK identified using the manipulatives. In these examples, we focus on
one of the five identified subcomponents of PSK titled ‘Knowledge of Student
Challenges and Conceptions’. For the comparison purposes we present examples of
teachers’ work rated as 1 versus 4 using the rubrics developed in the study.
Table 14.1 (see Appendix 2) presents components of the rubric used to identify
teachers’ knowledge of student challenges and conceptions at Level 4. As a con-
trast, Table 14.2 (see Appendix 2) includes the rubric related to the teachers’
knowledge of student challenges and conceptions at Level 1.
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14.3.1 Whitney’s Case

The following answer was evaluated as Level 4, strong:

Whitney has the automatic response of using the “traditional trapezoid” typically used
in the classroom, which in turn is not inherently a negative viewpoint. This simply limits
the ability to test her derivation on a more “interesting” example. Based on this figure, it
seems that by cutting a right triangle and then pairing it with a mate on the other side would
form a square when adding the areas together. This is noted by having both triangles

Table 14.1 Rubric used to evaluate teacher’s knowledge of student challenges and conceptions,
level 4

Teacher is able to identify A and (B or C) and (D or E) and F

(A) A student’s limited conception of a trapezoid (e.g., isosceles, right). Or generalizability of the
student’s approach

(B) A student’s limited strategy/method (e.g., using only decomposition; composition is basic;
strategy that may not always work—decomposing trapezoid into a rectangle and two triangles,
transformation may not always work, while enclosing and subtracting excess will always work)
OR
(C) A special case potentially resulting in a limited or wrong formula. Or a generalizable case
applicable for any trapezoid resulting in a proper formula

(D) A student’s developmental level in geometry using the van Hiele theory of a trapezoid
concept OR
(E) A student’s developmental level in geometry using the van Hiele theory with respect to area
concept (0-not understanding area; 1-basic understanding of adding units; 2-if the shapes match
then their areas are equal; 3-if you re-arrange them they will still be the same; 4-using
transformational geometry or simple Euclidian proof to claim equal areas)

(F) A student potentially developing these challenges due to the limited experiences with
different types of trapezoids or tools used or lack of motivation

Table 14.2 Rubric used to evaluate teacher’s knowledge of student challenges and conceptions,
level 1

Teacher’s response covers G and (H or I)

(G) Teacher recognizes that there is a misconception (if any) in student thinking but does not
provide sufficient explanation of the actual misconception OR his/her explanation is
mathematically incorrect

(H) The main focus is on the formula, algebra and counting the area units. OR
(I) The mathematical terminology is incorrect/poor. OR there is evidence of limitations in the
teacher’s understanding of the concepts of trapezoids and/or area (e.g. considers a set of special
cases of trapezoids)
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outlined in blue. They complete each other. Then there is a square in the middle which is
depicted by the altitudes of the two triangles adjacent it. Thus, creating two very simplistic
shapes that can be easily analyzed. The grid in the background details exactly how many
blocks (units) this trapezoid has in total.

I don’t believe this would work on all trapezoids simply because not all trapezoids have
a pair of triangles that can be dissected from it. Some consist of merely one triangle and a
square or there may be two triangles that are not identical; therefore, complicating the task
of “counting” square units.

We concluded that the teacher understands the student’s challenges related to the
area of the trapezoid. She recognized the student’s limited conception of a trapezoid
(e.g., isosceles). In addition, she acknowledged a limited strategy used by the
student (e.g., using only decomposition; composition is basic; strategy that may not
always work—decomposing trapezoid into a square and two triangles). The teacher
identified this as a special case potentially resulting in a limited or wrong formula.
She also referenced the student’s low developmental level in geometry with respect
to the area concept (grid in the background for counting the units of the area).
Finally, this teacher referenced the potential reason for the student’s challenges as
being due to the student’s limited experiences with different types of trapezoids.

On the other hand, the following answer was evaluated as Level 1, weak:

The given trapezoid easily decomposes to a square and two triangles. This is a very
common visual, however, it will not work for all trapezoids. There are some irregular
trapezoids on which this would not work. Whitney assumes that a segment can be drawn
from one end of the top base to be perpendicular to the bottom base. This is not true in all
trapezoids.

In this example, the teacher recognized that there is a misconception in the
student’s thinking but did not provide a sufficient explanation of the actual mis-
conception. She did not mention that this is a special case. Her use of mathematical
terminology was poor. Terms such as “congruent”, “height” and “segment” were
not properly used. She also mentioned that for “some irregular trapezoids” this
method would not work, while “some” should be “the most.”

14.3.2 Donna’s Case

This response was evaluated as Level 1, weak and not concrete:

Based on Donna’s approach, I believe that she has tried to simplify finding the area of
the original trapezoid by decomposing it into simpler polygons so that the area would be
easier to find.
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In this case, the explanation was mathematically incorrect and terminology used
was poor. The teacher in this sample data does not recognize that the trapezoid in
this sample is not being decomposed, but instead it is being enclosed into a
parallelogram.

Compare it to the response below, rated as Level 4, that had details and used
proper mathematics language, referenced a higher level of geometric development
presented in the manipulative, and recognized the generalizability of the proposed
method:

Donna constructed another shape to contain the trapezoid. Donna recognized that since a
trapezoid only has one pair of parallel sides, it is always possible to construct a line through
one point of the trapezoid that is parallel to one of the non-parallel sides. By extending one
of the bases, a parallelogram is constructed, since the bases are already parallel. The triangle
formed by the gap between the parallelogram and the trapezoid will always have a base
congruent to the opposite base in the trapezoid and the heights are also congruent.

14.3.3 Paul’s Case

The following response was evaluated as Level 4, strong. It had enough detail
and included a counterexample developed as a virtual manipulative. The teacher
recognized the student’s limited conception of a trapezoid (i.e., right angle trape-
zoid), limited strategy in deriving the formula, and lower level of geometric
development related to the concept of a trapezoid. Finally, this teacher used
mathematical terms correctly:

Paul’s method is similar to Whitney’s: he can see that this particular trapezoid, with its right
angles, lends itself well to being decomposed into a right triangle and a rectangle. However,
this method will not work for any trapezoid since not all trapezoids have right angles. When
presented with a trapezoid like the one Whitney had, Paul would have to adapt his method
to incorporate a second triangle. If given a trapezoid like the one below, Paul would have
no way to use his method since no rectangle can be easily derived. Even with the two right
angles, a rectangle does not exist, since there are not two pairs or parallel sides or right
angles for the quadrilateral:
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The following answer was evaluated as Level 1, weak, due to the lack of the
teacher’s understanding of the mathematics involved in this sample of a student’s
work:

Paul has broken the trapezoid into a right triangle and a rectangle. This would not work for
any trapezoid because two right triangles will be formed in many trapezoids.

The teacher recognized that there was a misconception in the student’s thinking
but did not provide a sufficient explanation of the actual misconception. In addition,
there is evidence that the teacher has a limited understanding of trapezoids. The
participant’s response indicates that he or she considered the case of a trapezoid in
which the height creates two right triangles, but did not consider the case of a
trapezoid presented in the image above.

Based on our data analysis, when teachers described how they would use
manipulatives or technology to address student understanding of the concept, they
mostly gave examples of using rubber bands and geoboards, tangrams, grid paper,
Ang-legs, protractors and rulers to explore various trapezoids and to find their area.
One teacher had the idea of giving the students “scissors, a pencil, and a ruler and
ask [them] to try partitioning the trapezoid into the shapes that [they] used.” The
teachers also mentioned using technology such as Geometer’s Sketchpad and
GeoGebra, but in some cases called it a “paint program,” presenting a very limited
understanding of its affordances.

We identified affordances for each of the virtual manipulatives developed in this
study using GeoGebra. These affordances may enhance or hinder the quality of
discussions in the PD for geometry and measurement. They could also provide
additional data points related to teachers’ PSK. As teachers moved, stretched, and
dragged trapezoids in the aforementioned cases of the manipulatives, they were able
to gather information on how students created these tools and obtain insight on
students’ geometric reasoning related to trapezoids and the area. Teachers’ peda-
gogical analysis of students’ thinking provided supplementary data for the fol-
lowing two rays of the radar diagram presented in Fig. 14.1: geometric knowledge,
and knowledge of student challenges and conceptions. Additional research is
needed to identify the role of affordances in relation to the remaining rays of
teachers’ profiles. In future studies, it would be useful to further explore the rela-
tionship between affordances of virtual manipulatives and their potential to enhance
or hinder PD in geometry and measurement.

14.4 Discussion

In this chapter, we discussed some ways in which we could incorporate virtual
manipulatives into designing measures of mathematics teachers’ PSK (i.e., our first
research question). Our experience in doing so was positive. The virtual manipu-
latives we used (see Items W-Z at http://ggbtu.be/buLXjTUHI) have helped us
develop the PSK profiles of mathematics teachers presented in Fig. 14.1 with
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respect to the area of a trapezoid. This process allowed us to identify the range of
the in-service teachers’ knowledge of geometry concepts and pedagogy, and also
the ways in which their teaching philosophies and attitudes differ.

For example, some participants claimed that their main responsibility is to have
an ordered, teacher-centered classroom, as exploration “often leads to chaos and a
lot of wasted time.” Other participants were inspired to use more exploration in
their classes, followed by a whole-group discussion, so students can compare and
review their ideas. Some teachers thought that their students do not have the skills
and mindset conducive to exploration (e.g., “I anticipate that students will not want
to come up with a formula-they would rather be told”; “Students are so used to
being given a formula and a set of algorithms to follow I think at first they will find
it difficult to come up with their own ideas”). Teachers with lower geometric
knowledge retained this perspective even after working with virtual manipulatives,
while the teachers with higher geometric knowledge expressed more openness to
use virtual manipulatives with their students as exploration tools. As we continue
to collect data in the future years of this longitudinal study, it would be interesting
to know in what way, if any, the difference in teachers’ perspectives affects their
PSK profiles.

We also looked into affordances of virtual manipulatives developed in GeoGebra
to see if they may enhance or hinder their use in a PD for geometry and mea-
surement (i.e., the second research question). Using virtual manipulatives pur-
posefully created as samples of students’ varied understanding of a concept
provided opportunities for laboratory sessions (Bartolini Bussi and Maschietto
2008), in which teachers moved, stretched, and dragged manipulatives on the
screen in an attempt to understand how they were created and why. When teachers
answer questions that target this understanding and relate it to their pedagogy, they
reveal aspects of their PSK (that we presented as radar diagrams). The virtual
manipulatives used in this project also present opportunities for the construction of
mathematical knowledge (Moyer et al. 2002) and for this reason could be imple-
mented in PD situations.

Our data also showed a difference in teachers’ attitudes towards using tech-
nology. For example, one self-confident teacher claimed that every activity in a
geometry classroom has to be a technology-based exploratory activity. While other
teachers acknowledged that technology may be useful for developing conjectures,
most of them thought that it would take substantial time to learn to use it effectively.
Teacher attitudes towards technological tools and other manipulatives influenced
the 4th subcomponent of PSK—knowledge of applicable instructional strategies
and tools—as referenced in Fig. 14.1.

While here we presented one approach to developing profiles of mathematics
teachers’ PSK in geometry and measurement (i.e., the third research question),
further studies are needed to explore connections between different subcomponents
of the PSK and the ways they influence each other. The profiles themselves can be
used to create a differentiated PD experience for geometry teachers. This study can
also be replicated and used for other branches of mathematics.
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Appendix 1

Virtual manipulatives (presented as the work of Whitney, Paul, Adam, and Donna)
together with guiding questions to help teachers evaluate the students’ work,
explain their thinking, and provide alternative approaches and proofs.

Item W: Whitney’s Approach
When presented with the task of developing a formula for the area of any
trapezoid in her high school geometry class, Whitney developed the diagrams
as a strategy for deriving the formula for the area of a trapezoid described by
the sketches below. She decomposed a trapezoid into a rectangle and two
congruent triangles. Then, she added the areas of all three shapes to calculate
the area of the trapezoid.

(a) Based on the diagram above, describe Whitney’s thinking. If she were to
complete the formal derivation of the area formula using her diagrams,
would her method work for any trapezoid? Why, or why not?

(b) If Whitney’s approach presents a challenge or misunderstanding, what
underlying geometric conception(s) or understanding(s) might lead her to
the error presented in this item?

(c) If Whitney’s approach presents a challenge or misunderstanding, how
might she have developed them?

(d) What further question(s) might you ask Whitney to understand her
thinking?

(e) What instructional strategies and/or tasks would you use during the next
instructional period to address Whitney’s challenge(s) (if any presented)?
Why?

(f) If applicable, how would you use technology or manipulatives to address
Whitney’s challenge or misunderstanding?

(g) How would you extend this problem to help Whitney further develop her
understanding of the area of a trapezoid?
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Item X: Paul’s Approach
When presented with the task of developing a formula for the area of any
trapezoid in his high school geometry class, Paul developed the diagrams as a
strategy for deriving the formula for the area of a trapezoid described by the
sketches below. He decomposed a trapezoid into a rectangle and a right
triangle. Then he added the areas of these shapes to calculate the area of the
trapezoid.

(a) Based on the diagram above, describe Paul’s thinking. If he were to
complete the formal derivation of the area formula in his diagrams, would
his method work for any trapezoid? Why, or why not?

(b) If Paul’s approach presents a challenge or misunderstanding, what
underlying geometric conception(s) or understanding(s) might lead him to
the error presented in this item?

(c) If Paul’s approach presents a challenge or misunderstanding, how might
he have developed them?

(d) What further question(s) might you ask Paul to understand his thinking?
(e) What instructional strategies and/or tasks would you use during the next

instructional period to address Paul’s challenge(s) (if any presented)?
Why?

(f) If applicable, how would you use technology or manipulatives to address
Paul’s challenge or misunderstanding?

(g) How would you extend this problem to help Paul further develop his
understanding of the area of a trapezoid?

Item Y: Adam’s Approach
When presented with the task of developing a formula for the area of any
trapezoid in his high school geometry class, Adam developed the diagrams as
a strategy for deriving the formula for the area of a trapezoid described by the
sketches below. He created a midsegment FS of trapezoid ABCD. This
allowed him to create a new trapezoid, FABS. He rotated this trapezoid
around point S to create a parallelogram, FE’A’D. He calculated the area of
parallelogram FE’A’D to find the area of the original trapezoid, ABCD.
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(a) Based on the diagram above, describe Adam’s thinking. If he were to
complete the formal derivation of the area formula in his diagrams, would
his method work for any trapezoid? Why, or why not?

(b) If Adam’s approach presents a challenge or misunderstanding, what
underlying geometric conception(s) or understanding(s) might lead him to
the error presented in this item?

(c) If Adam’s approach presents a challenge or misunderstanding, how might
he have developed them?

(d) What further question(s) might you ask Adam to understand his thinking?
(e) What instructional strategies and/or tasks would you use during the next

instructional period to address Adam’s challenge(s) (if any presented)?
Why?

(f) If applicable, how would you use technology or manipulatives to address
Adam’s challenge or misunderstanding?

(g) How would you extend this problem to help Adam further develop his
understanding of the area of a trapezoid?

Item Z: Donna’s Approach
When presented with the task of developing a formula for the area of any
trapezoid in her high school geometry class, Donna developed the diagrams
as a strategy for deriving the formula for the area of a trapezoid described by
the sketches below. She created a line CF parallel to the side AD of the
trapezoid ABCD. She then extended side AB. This allowed her to create a
parallelogram, AFCD. Then she subtracted the area of triangle BFC from the
area of parallelogram AFCD to calculate the area of the original trapezoid
ABCD.
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(a) Based on the diagram above, describe Donna’s thinking. If she were to
complete the formal derivation of the area formula in her diagrams, would
her method work for any trapezoid? Why, or why not?

(b) If Donna’s approach presents a challenge or misunderstanding, what
underlying geometric conception(s) or understanding(s) might lead her to
the error presented in this item?

(c) If Donna’s approach presents a challenge or misunderstanding, how might
she have developed them?

(d) What further question(s) might you ask Donna to understand her thinking?
(e) What instructional strategies and/or tasks would you use during the next

instructional period to address Donna’s challenge(s) (if any presented)?
Why?

(f) If applicable, how would you use technology or manipulatives to address
Donna’s challenge or misunderstanding?

(g) How would you extend this problem to help Donna further develop her
understanding of the area of a trapezoid?

Appendix 2

Components of the rubric used to identify teachers’ knowledge of student chal-
lenges and conceptions at Level 4 (Table 14.1) and Level 1 (Table 14.2).
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