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Abstract— Pancreatic tumors are characterized by marked 
deposition of extra-cellular matrix, also called desmoplasia, 
which interacts with tumor cells and facilitates the tumor onset 
and progression. Thus, it would be relevant to develop a meth-
od to quantitatively assess the amount of desmoplasia in imag-
es derived from bioptic tissue fragments of the pancreas. To 
this purpose, we applied the principles of fractal geometry, for 
the assessment of the fractal dimension of images of Masson's 
trichrome stained pancreatic tissue. Thus, we implemented an 
algorithm for the computation of the Hausdorff dimension, 
based on the box counting method: the image is split into boxes 
of identical size, and the number of boxes needed to cover the 
features of interest in the image is counted. The process is then 
iterated with boxes of lower size, and finally all box counts 
obtained at the different steps are considered, to get the  
estimate of the Hausdorff dimension, D. After validating the 
algorithm with appropriate tests, we applied it to pancreatic 
images, where some regions of interest (ROI) were identified, 
including both healthy and non-healthy (fibrotic) tissue. We 
found that non-healthy ROI typically show higher D values 
than healthy ROI (1.927±0.086 vs. 1.750±0.070 (mean±SD), 
p=0.0013).  Thus, our approach may be of help for an accu-
rate quantification of the degree of severity of pancreatic  
tumors. 

Keywords— Hausdorff-Besicovitch dimension, Hurst  
exponent, desmoplasia, adenocarcinoma, image processing. 

I. INTRODUCTION  

Pancreatic tumors are characterized by marked 
desmoplastic reaction. In fact, activated pancreatic stellate 
cells, which are the main source of extracellular-matrix 
(ECM) in the microenvironment, strongly interact with 
tumor cells, thus facilitating tumor growth [1]. Thus, it 
would be relevant to develop a method for automated, quan-
titative assessment of the amount of ECM in images derived 
by biopsy of the pancreatic tissue. This would be of help for 
evaluation of the degree of severity of pancreatic tumors. 

The ECM consists of a complex set of irregularly shaped 
fragments, thus the Euclidean metric appears inadequate to 

describe such kind of shapes [2]. To this purpose, a more 
appropriate approach may be the fractal geometry. Indeed, 
fractal geometry was introduced by Benoit Mandelbrot some 
decades ago [3], and it was subsequently proposed to apply it 
in the field of human physiology and pathology [4-8]. 

In this study, we apply the principles of fractal geometry 
for the assessment of the fractal dimension of images de-
rived by pancreatic tissue and treated by Masson's trichrome 
stain [9, 10]. Our aim was to explore the potential of fractal 
dimension assessment to discriminate between normal and 
tumor tissue. 

II. MATERIALS AND METHODS 

A. The Concept of Fractals 

The concept of fractal object was introduced by Man-
delbrot [3], which aimed to provide the basis of a new ge-
ometry that was appropriate for the analysis of irregular, 
even chaotic phenomena, whose study through traditional 
geometry was not sufficiently accurate for the typical appli-
cations. In this study, we focus on one of the main proper-
ties of the fractal objects, that is, the fractal (non-integer) 
dimension. More specifically, we developed an algorithm 
for the calculation of the Hausdorff (also called Hausdorff-
Besicovitch) dimension [11, 12]. 

B. Box Counting Algorithm 

The direct calculation of the Hausdorff dimension for bi-
ological fractal objects can be difficult (such objects often 
do not display a specific homothety ratio), and hence an 
approximated calculation is performed. Three main methods 
have been proposed for this purpose: i) cluster growing [13, 
14]; ii) correlation analysis [15, 16]; iii) box counting [17, 
18]. In this study, we focused on the box counting method. 
The Hausdorff fractal dimension, D, is calculated as: 

ܦ  = limఌ→଴ inf log (ܰ(ߝ))log (1/ߝ)  
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Where ε is the length of the box side, and N(ε) is the mini-
mum number of boxes necessary to cover the surface of interest. 

The flow chart of the method is reported in Figure 1. 
 

 
* Shift the window W one pixel at a time, sweeping the image I left to right 
and top to bottom 

Fig. 1 Flow chart of the method for calculation of the fractal dimension. 

The algorithm splits the image of interest into boxes. 
Then, the number of boxes, which are necessary for image 
covering, and which contain useful information, is counted. 
The process is iterated for decreasing ε values, and the an-
gular coefficient of the regression line of log(N(ε)) versus 
log(1/ε) is eventually computed. Since at each step the cov-
ering boxes are of equal size, an approximation of the 
Hausdorff fractal dimension is obtained. 

More specifically, our algorithm is based on the follow-
ing steps: 

i) Load the image of interest; 
ii) Convert it into black and white: the black part should 

represent the component containing information of interest, 
that is, regions with ECM (some details are reported in one 
of the next sections); 

 
 

iii) Find one sub-image, entirely included in the original 
image, with the biggest possible size, but of square type, 
i.e., its number of pixels per side is a power of 2 (let’s call n 
that power); 

iv) For i from 0 to n-1, divide every side of the square 
image into 2i segments of length ε=2n-i, in order to obtain 2i 
× 2i subfigures, which are the boxes; 

v) Count the number of boxes containing at least one pix-
el of information (0-valued pixel, i.e., black); 

vi) Defining N(ε) as the number of counted boxes of 
side ε, plot the function log(N(ε))/log(1/ε); 

vii) Estimate the slope of the plot indicated above, and 
assume it as the estimate of D; 

viii) Repeat the procedure indicated in steps iv) to vii) for 
all the possible square sub-images in the original image (see 
step iii)), and save the corresponding D values obtained; 

ix) Plot the histogram of all the D values; 
x) Assuming the histogram as the density function of 

D, compute its mean and standard deviation. 
The described algorithm was implemented under 

MATLAB® environment (The MathWorks, Inc., USA). 

C. Algorithm Validation 

Several tests were performed to assess the accuracy of 
the algorithm, based on black and white images generated 
randomly or taken from the scientific literature. Among the 
most relevant tests, we mention the test performed on the 
Sierpinski carpet [19] (Figure 2).  

In fact, for such image the fractal dimension can be com-
puted theoretically, and equals log38 (approx. 1.8928). Our 
algorithm applied to the finite approximations of the 
Sierpinski carpet returns fractal dimension 1.9015±0.0081 
for the 4 iterations approximation, and 1.8454±0.0221 for 
the 5 iterations approximation, in good agreement with the 
theoretical value.  

D. Analyses of Images of Masson's Trichrome Stained 
Pancreatic Tissue 

Masson's trichrome stain is a widely used histochemical 
staining method to highlight the presence of ECM (thus 
allowing the identification of the regions with possible 
desmoplastic reaction). Collagen is in fact colored in green 
or cyan. Instead, parenchymal tissue (that is, the residual 
functional tissue) assumes brown color.  

An example of Masson's trichrome stained tissue is 
shown in Figure 3. It reports a wide portion of the pancreat-
ic biopsy, with tissues in different conditions. 

Load the MxN image I
and convert it into a BW image

Align the square window  

W of side 2n pixels with the
upper left corner of I

Divide the sides of W into 2i

segments of length  = 2n-i to
obtain 2ix2i boxes

i=0

i ≤ n – 1 ?

Count the number N( ) of
boxes containing at least one

black pixel
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Fig. 2 Sierpinski carpet, obtained with three (top) and five (bottom) itera-
tions of the corresponding generating algorithm. 

 

Fig. 3 Masson's trichrome-based image of pancreatic tissue, with indica-
tion of different regions: healthy parenchymal tissue (green), ductal paren-
chymal tissue with fibrosis in the normal range (yellow), neoplastic tissue 

with marked development of fibrosis (blue), neoplastic gland (red). 

The assessment of the fractal dimension as described in 
the previous sections requires black and white images. 
Therefore, the Masson's trichrome-based images need to be 
properly transformed. To this purpose, some ad-hoc image 
functions were developed based on two possible strategies: 

i) The image of interest is converted from Red-Green-
Blue (RGB) format into grey scale format. Subsequently, 
the gray scale image is inspected pixel-by-pixel, and each 
pixel is assigned to black (0-value) or white (255-value) 
color, based on the comparison with a threshold, empirically 
identified to discriminate between useful or not-useful im-
age information. 

ii) The image of interest is converted directly from RGB 
format into black and white format, based on empirical 
ranges again empirically identified. Our tests showed that 
the approach ii) provided the best results, thus it was cho-
sen. Selected RGB ranges providing black pixels were 55-
203, 140-235, 120-255 for red, green, blue, respectively. 

In this study, we analyzed images from six patients (av-
erage age 65 yr), which provided informed consent for bi-
opsy execution. Each image derived from the acquisition 
through microscopy (at 5x objective magnification) of the 
biopsy pancreatic tissue. For each image, the pathologist 
manually identified four regions (ROI), considered well 
representing the tissue in a specific state, including fibrosis 
at different degree of deposition, and natural (i.e., healthy) 
parenchyma. For each ROI, fractal dimension estimate was 
performed. 

III. RESULTS 

All tests performed for the validation of the algorithm 
confirmed its reliability. As regards the tests on Sierpinski 
carpet, for the image derived by five iterations (see Figure 
2, bottom) we obtained D = 1.8454±0.0221, which is close 
to the theoretical value of the carpet. 

 
 

 

Fig. 4 The analyzed Masson's trichrome-based images of pancreatic tis-
sues, with four regions of interest (ROI) selected in each image. Image 

order (1-6) is left to right, then top to bottom. 
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Figure 4 shows the six pancreatic images with the indica-
tion of the selected ROI for each image.  

ROI were classified into the following categories: 
Type i) Fibrosis; 
Type ii) Fibrosis with neoplastic glands; 
Type iii) Fibrosis and parenchyma; 
Type iv) Fibrosis with traces of parenchyma; 
Type v) Natural parenchyma; 
Type vi) Natural parenchyma with blood vessels; 
Type vii) Parenchyma with only traces of fibrosis. 

An example of histogram for the computed values of the 
fractal dimension D for each ROI is reported in Figure 5. 

 

Fig. 5 Histogram of the D values for ROI a (top, left), b (top, right), c 
(bottom, left), d (bottom, right), for image 1. 

Figure 6 reports the same plot but with equal x-axis scale 
for easier comparison.  

 
 

 

Fig. 6 Histogram of the D values for ROI a (top, left), b (top, right), c 
(bottom, left), d (bottom, right), for image 1 , with the same x-axis scale. 

Table 1 reports the classification of the different ROI of 
the six images, with the corresponding D value.  

Table 1 Classification (histology) and D value of the image ROI 

 

Image and 
ROI Classification D value (mean±SD) 

1a Parenchyma with traces of fibr. 1.7976±0.0104

1b Fibrosis 1.9687±7.8484e-04

1c Fibrosis and parenchyma 1.9148±0.0047

1d Fibrosis 1.8924±0.0044

2a Fibrosis 1.9902±4.8633e-04

2b Fibrosis 1.9930±7.3133e-04

2c Fibrosis with traces of par. 1.9930±7.3133e-04

2d Fibrosis with traces of par. 1.9587±7.3842e-04

3a Fibrosis 1.97122±0.0014

3b Fibrosis 1.9433±0.0028

3c Healthy parenchyma 1.7697±0.0057

3d Parenchyma with traces of fibr. 1.85607±0.0031

4a Fibrosis 1.9241±0.0056

4b Fibrosis 1.9095±0.0052

4c Fibrosis with neoplastic glands 1.7592±0.0045

4d Fibrosis with neoplastic glands 1.6709±0.0079

5a Fibrosis 1.9639±0.0019

5b Fibrosis 1.9681±0.0013

5c Natural parenchyma 1.7634±0.0051

5d Natural parenchyma 1.7342±0.0098

6a Fibrosis and parenchyma 1.9713±0.0013

6b Natural parenchyma 1.6703±0.0087

6c Fibrosis 1.9611±0.0015

6d Natural parenchyma with vessels  1.6564±0.0021

 
By inspection of the table, it can be noticed that ROI 

with fibrosis tend to display higher D values. When group-
ing all the ROI with some degree of fibrosis (i.e., types i)-
iv)) into a unique category (fibrotic tissue), and similarly for 
ROI with natural (or almost natural) parenchyma (i.e., types 
v)-vii): non-fibrotic tissue), by considering the mean D val-
ues in each ROI, a statistically significant difference was 
found between fibrotic and non-fibrotic tissue (1.927±0.086 
and 1.750±0.070 (mean±SD), p=0.0013, according to non-
parametric Mann-Whitney test). 

IV. DISCUSSSION 

In this study, we estimated the fractal dimension of im-
ages derived by pancreatic biopsy, whose tissue was treated 
with the Masson's trichrome stain. We found that images 
related to tissue with fibrosis display higher values of the 
fractal dimension, as it can be appreciated from the example 
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histogram of Figure 6 and by inspection of Table 1, and 
confirmed by the statistical testing.  

Comparison with previous studies is difficult. In fact, 
fractal dimension analysis was previously applied to images 
of different organs rather than pancreas, such as brain tu-
mors [7, 8] or the liver [20, 21]. As regards pancreatic tis-
sues, to our knowledge, only two previous studies per-
formed fractal analyses [22, 23]. However, in study [22], 
the focus was on the analysis of the fractal microvascular 
morphology, rather than the analysis of desmoplastic reac-
tion in the pancreatic microenvironment. Also, experiments 
were performed on animals and not on human tissues. In 
study [23], focus was again partially different than in our 
study, since the fractal analysis was applied for the assess-
ment of nuclear shape and chromatin distribution of the 
pancreatic cells. Moreover, study [23] aimed to distinguish 
between resectable and non-resectable tumors, thus analyses 
and comparisons with natural tissue (which is important for 
a full validation of the fractal approach) were missing. Fur-
thermore, the tissues were not treated with the Masson's 
trichrome stain, but with other techniques. Nonetheless, it 
can be noticed that non-resectable (i.e., more advanced) 
tumors showed higher fractal dimensions than resectable 
tumors, and this is essentially in agreement with our results. 

Our study has some limitations that need to be addressed 
in future studies. In fact, a larger image dataset should be 
analyzed, with the purpose to evaluate the actual potential 
of the approach not only to distinguish between natural and 
diseased tissues, but also to classify the severity of a tumor, 
in combination with other clinical parameters. Also, an 
automated algorithm should be developed for appropriate 
selection of the regions where fractal analysis has to be 
carried out, to replace the manual (i.e., partially subjective) 
selection performed in this study. For binarization of the 
images automatic segmentation methods will also be  
considered. Furthermore, performance of our approach on 
images at higher level of magnification should be tested. 
Finally, comparison should be performed with other stain-
ing approaches used in histology, such as the Picrosirius red 
[24], which represents another technique to detect the pres-
ence of ECM.  

V. CONCLUSIONS 

We implemented an algorithm for calculating the fractal 
dimension of pancreatic biopsy derived images, based on 
Masson's trichrome stain. We found that images related to 
tissue with fibrosis display higher levels of the fractal di-
mension. This may be useful for improved accuracy in the 
staging of pancreatic tumors. 
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