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Abstract— Diffusion Tensor Imaging (DTI) is a powerful
technique for studying tissue connectivity that starts to find
routine clinical use in Magnetic Resonance Imaging (MRI),
primarily in the brain. The extraction of tracts is an issue
under active research. In this work we present an algorithm
for recovering tracts, that is based on Dijkstra’s minimum-cost
path. A novel cost definition algorithm is presented that allows
tract reconstruction, considering the tract’s curvature, as well
as its alignment with the diffusion vector field. Results are
shown for two (2D) and three dimensional (3D) synthetic data,
as well as for a clinical MRI-DTI brain study

Keywords— Diffusion Tensor Imaging (DTI), Tractography,
Dijkstra’s minimum-cost path.

1. INTRODUCTION

Magnetic Resonance Diffusion Tensor Imaging (MRI —
DTTI) images the process of diffusion in tissue and it is clini-
cally often applied to brain imaging [1], [2]. DTI is able to
image neural fibers in white matter in the brain. Tracing
image voxels with almost co-linear principal direction of
diffusion is the basis for tractography (tracing fibers in MR
images). Straightforward approaches like [2] have been
reported. However, fiber crossing in the same image voxel,
tissue regions with non-preferred direction of diffusion pose
problems to tractography algorithms. A number of different
approaches have been proposed to handle the aforemen-
tioned problems and better resolve fibers, using probabilis-
tic models or non-Gaussian functions to model the orienta-
tion of diffusivity, such as Q-ball tractography, [3-5],
diffusion spectral imaging [6], multiple tensor model, the
CHARMED technique [7-10] or the “ball and stick” model
[11]. Techniques based on spherical deconvolution [12].
Some of these approaches require high angular resolution
diffusion imaging (HARDI) techniques [13].

An approach utilizing Dijkstra’s shortest path algorithm
has been proposed in [14]. A probabilistic shortest path
approach applied to both synthetic and real data is shown in
[15]. In [16], a shortest-path approach based on Gaussian
process solvers of ordinary differential equations is demon-
strated. Other MRI tractography algorithms that formulate
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the task as a Hamilton — Jacobi problem, utilize shortest-
path methods [17].

In this work we present a fiber tracking algorithm that is
also based on Dijkstra’s shortest-path algorithm. We pro-
pose a novel cost function to assign weight to transition
between image voxels that considers fiber smoothness,
Euclidean distance and principal diffusion co-linearity, with
variable relative weight factors, depending on the character-
istics of the local diffusion tensor. Initial results are shown
for synthetic two and three-dimensional data as well as
clinical data.

1. METHODOLOGY

A. Basic Principles of MRI DTI

In the case of DTI, a symmetric 3x3 table D, called Dif-
fusion tensor, is defined for each image voxel. The eigen-
analysis of the D completely defines the anisotropy in water
diffusion for the specific voxel. For simplicity we will not
include voxel indexes in the following Equations.

d, d, d;
D=\d, d, dy (D
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For the case of anisotropy diffusion the volume is imaged
using different gradient vectors gy, is the diffusion sensitiz-
ing gradient vectors, with k=1,2,... N with N> 6. The MR
signal S; from each voxel for the ith gradient vector g; is
given by the following equation (originally described in
[19]):

S, =S, - e b8k Dk )
where S, is the signal intensity for the current voxel in the
absence of a diffusion gradient (go = 0), b is the diffusion
weighting factor [1].

For each voxel the calculation of diffusion tensor for
each voxel requires at least 6 measurements with different
gradient directions (since D has 6 unique elements). By
taking the logarithm of the above we obtain a linear system
of equations:

A.D=S 3)
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Eq.(3) is an over-determined system of linear equations (6
unknowns in D with N linear equations available). This
system is easily solved:

D= (Agxn “Anxe) - 'Agxn Vst (4)

Table D is calculated as aforementioned for each voxel.
Thereafter, for every voxel in our data set we calculate the
three eigenvectors (vy, v, v3) of D. In the rest of this paper
it is assumed that the eigenvectors are stored in descending
order of the corresponding eigenvalues (1;>1,>43).

The relation between the eigenvalues of each voxel char-
acterizes if there is a preferred direction along which diffu-
sion occurs. More specifically, if the largest eigenvalue (4,)
is significantly greater than the second largest on (4,), then
the diffusion occurs along a preferred direction, instead of it
being isotropic. On the other hand, if all three eigenvalues
are comparable, then diffusion occurs isotropically. If the
two largest eigenvalues are similar and both are much larg-
est than the smallest eigenvalue, then diffusion occurs pre-
dominantly along a plane (defined by v; and v,). Linear,
planar and isotropic (spherical) diffusivity is quantified by
cl, cp and cs as it follows:

A1-22

Cp = T) (Sb)
A3

cs =77 (5¢)

The values of these measurements ranging from zero to
one and their sum equals one:
cl+cp+cs=1

B. The proposed DTI Tractography algorithm

The proposed algorithm uses a minimum-cost (or short-
est path using an appropriate distance metric) approach to
extract tracts from the vector field of the DTI. We utilize the
well-known Dijkstra’s algorithm. The image (2D or 3D) is
considered as a directed graph G=(V.E), with each pix-
el/voxel being connected to all its neighbors. In 2D we
employ 8-connectivity, whereas in 3D 26-voxel connectivi-
ty is considered. The algorithm is implemented similarly to
its textbook version, with the following differences: A) The
set of vertices S with determined distance from source is
kept in a 2D/3D array. B) The distance map that holds the
current estimation of the distance/cost of each voxel from
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the seed voxel is also a 2D/3D array with the same size as
the image’s. Finally two (or three in the case of 3D image)
arrays of size equal to that of the image are used to store the
predecessor of each pixel (voxel in 3D).

All elements of distance map array, except for a single
pixel that is defined as the destination, are initialized to
infinity. The cost of the destination pixel is set to 0. The
arrays that hold the predecessors of the pixels in A are ini-
tialized to NIL.

The cost of transition between any two adjacent nodes —
pixels- is calculated by considering the following factors.
Let pi.1, piand pi+ be the position vectors of the predecessor
of the current pixel, the position vector of the current pixel
and is the position vector of the candidate destination re-
spectively. (Candidate destination is one of the neighboring
pixels of p; , excluding its predecessor). Similarly, let V;
and Vj, be the corresponding eigenvectors (of the current
and candidate destination voxel) with the largest eigenvalue
and c/; be the linear diffusivity of the corresponding pixel p;.
We calculate the angle 8, between (p; -pi.1) and (pi+1 - i), as
shown in Fig. 1. Thus, the first term of the cost function is
defined as F, = (cosf, + 1) . Minimization of this term
favors smooth curves.

The second term is defined as: F, = (1 —|cos6,]|),
where 0, is the angle between (p;s - p;) and V;. Thus mini-
mization of this term favors the local transition from p; to
pi+1 , which is almost parallel to eigenvector V; of the cur-
rent node p; .The absolute value | |, is inserted because
both directions of V; may be selected.

The third term is defined as F3 = (|cosf5| + 1), where
0; is the angle between V; and V.. This term favors transi-
tions to a neighboring pixel with eigenvector Vi, that is
almost parallel to eigenvector V;.

We combine the three mentioned terms by adding them
use these calculations by summarize them in the following
equation:

(cosB; + 1) + (1 —|cosb,|) + (1 — |cosBs]) (6)

We rely heavily on the above distance (cost) metric for
pixels with high linear diffusivity measure (c/) as defined in
Eq.(5a). In the case of current voxel with low coefficient of
linear diffusivity, we use primarily the Euclidean distance
of the transition from current voxel to the candidate destina-
tion. Thus, the cost d;; (distance metric) of the transition
from p; to p;,, 1s defined as the weighted average of the
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expression in (6) and the Euclidean distance of the transi-
tion ||p;+1 — p;ll as follows:
d, = ((cos 6, +1)+(1-|cos 6] )+ (1—-|cos 93|)) cl, @)

+||pi+l - pi||CZi

vl~1

Fig. 1. The concept of calculating the cost of moving from pixel p; to
Pi+1, given the predecessor of p; and the largest eigenvectors of p; and pis1.

III. RESULTS

A. Synthetic and real data

In order to quantify the accuracy of the algorithm we gener-
ated synthetic data as following. A 2D domain

D =[-2,2]x[-2,2] = R’ was arbitrarily defined. Domain D

was discretized to produce pixels of size (dx, dy). Let us call
the discrete domain A. Thus the center of A, equals

(—2+j+6x/2,2+i+5y/2).
A continuous curve ¢(t)=(x(¢),y(¢)) representing the

tract (to be discovered) was selected inside D, using b-
spline interpolation over a number of arbitrarily selected
points. Thus ¢(#) is known in advance and will be used for
ground truth. The proposed tracking algorithm uses the
principal eigenvector at each pixel, as well as the linear
diffusivity —defined Eq.(5a). Let v1(i/)=(vi(i,)), v,(i,)) be
the principal eigenvector of ¢(7) at pixel (ij) of A. In the
synthetic data, the principal eigenvectors were simulated as
following. Curve ¢(?) is discretized by varying its parameter
t by a small step o (we will refer to the discrete curve as
c[t]). vi(iy) is initialized as (0,0) for each (i,j) in A. For each
point of ¢[7], the closest pixel (i,j) of A is located and the
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corresponding principal eigenvector was set as the unit-
length tangent vector of c[t]:

V(i) = (v (.7)v, () = €[]/ el ]|

= (/<1 5[] ©

¢[r]=¢[t+01]-¢[r]
An inpainting algorithm was employed to fill the rest of the
pixels of A by cascading K times the linear convolution
operator of the X and Y components of v with a 3x3 mask M

[18], thus inducing isotropic diffusion of the initial eigen-
vectors across the pixels of A.

for k=1 to K {
V=V, * M;
W=y, * M;

}

where M is defined as

c ¢ ¢
M=|c 0 c ,02% @)
c ¢ ¢

Fig. 2 shows the ground truth track superimposed on the
vector field that will be used as the primary eigenvector in
our tractography experiments with synthetic data. The
length of the vectors is used to emulate the linear diffusivity
factor ¢/ in a real DTI study.

-2 -1 0 1 2
Fig. 2 The artificial fiber and the primary vectors according to Eq. (4). The
length of the vectors represents the linear diffusivity factor ¢/ Eq. (5a).

More than one artificial tracts can be defined and the rele-
vant vector field (with the diffusivity factor ¢/) may be gen-
erated by simple vector/algebraic addition. Fig. 3 shows two
fibers (tracts) and the corresponding vector field. This im-
age is also used in this work to test the ability of the pro-
posed algorithm to track crossing tracts.
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-2 -1 0 1 2
Fig. 3. Two artificial fibers (racks) and the primary vectors according to
Eq.(6). The length of the vectors represents the linear diffusivity factor c/.

Synthetic data are also generated in three dimensions
(3D) by generalizing the aforementioned process. A number
of experiments were conducted for 1 and 2 tracts, using
different pixilations of the A image domain. Similarly, ex-
periments with different number of voxels were carried out
in 3D synthetic data. For low resolution data (64x64x32) the
proposed algorithm requires approx. 4 minutes on an aver-
age laptop using Matlab.

Real data consist of an anonymous clinical brain DTI
study using 32 different gradients, each of which imaged 27
transverse slices of 256x256 pixels, at different gradient
vectors. The data were provides by the Dept. of Medicine,
University of Thessaly.

B. Quantitative results

The positional error of the tract determined by the pro-
posed algorithm was quantified as following. A binary im-
age B of size equal to image domain A is initialized to 0.
The pixels of the discretized ground truth tract ¢[] in image
B are set to 1. The distance transform (D7) of B is calculat-
ed. Finally, the positional error (err) is calculated as the
mean value of the pixels determined by the proposed track-
ing algorithm q(n), n=1,2, ...

err:%Zn:I(q(n)),l:DT(B(c[t])) (8)

Units of error are in pixels, thus average positional error
below 1 indicates subpixel accuracy.

Table I shows the mean positional error achieved by the
proposed algorithm, for several tracking experiments of
synthetic fibers in 2 and 3 dimensions. In case of more than
one existing fiber, the following symbols are used in col-
umn 3: U: upper, D: down, R: right. L: left.
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Table 1 Average positional error (in pixels) of the proposed tractography
algorithm for several experimental setups.

Domain Average positional

Experiment pixilation Fibers error (pixels)
Synthetic 2D, 1 tract 32x32 1 0.15
41x41 1 0.22
64x64 1 0.40
128%128 1 0.42
Synthetic 2D, 2 tracts 32x32 UL—DR 0.25
64x64 UL—DR 0.32
128x128 UL—DR 0.38
32x32 DL—UR 0.38
64x64 DL—UR 0.79
128%128 DL—UR 0.49
Synthetic 3D, 1 tract 16x16x16 1 225
32x32x32 1 2.15

The tract found by the proposed algorithm for the 2D
single tract synthetic data are shown in Fig. 4 for two differ-
ent pixilations of A: 32x32 (a) and 128x128 (b). Filled
circle denotes destination point, star denotes starting pixel.
The ground truth fiber (dark thick curve) is also shown. Fig.
5 presents the resulting tract for the 2D synthetic data that
contain 2 intersecting tracts, with 64x64 size of the discrete
domain A.

(®)
Fig. 4. The resulting tract (green thick curve) of the proposed algorithm
for synthetic 2D image with 1 fiber. Filled circle denotes destination point,
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star —upper right- denotes starting pixel. The ground truth fiber (dark thick

curve is also shown).

posed algorithm (filled circle denotes destination point, star —upper right-
denotes starting pixel). The ground truth tract (dark thick curve is also

shown).

Fig. 6 shows the resulting tract for the 3D synthetic data

(that contain a single tract), with 32x32x32 size of the dis-
crete domain A. The accuracy of the tracking process may
be assessed visually. It is also quantified in Table 1.

0

Fig. 6. The resulting tract (green thick curve) of the proposed algorithm
in the case of 3D synthetic data of resolution 32x32x32. Filled circle

denotes destination point, star —upper right- denotes starting pixel. The
ground truth tract (dark thick curve) is also shown.

The proposed algorithm was also applied to clinical
MDI-DTI. The resulting fibers for two well-known exiting
neural paths, are shown in Fig. 7. Starting and ending
voxels are indicated by a star and a circle respectively. The

primary vectors are also shown for pixels with high linear
diffusivity cl.
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(b
Fig. 7. The resulting fiber (green thick curve) generated by the pro-
posed algorithm (filled circle denotes destination point, star —upper right-

denotes starting pixel). The ground truth tract (dark thick curve is also
shown)

The details of fiber tracking in real MRI-DTI data are
shown in Fig. 8. The resulting fibers appear visually plausi-
ble, in accordance to the definition of the cost function and
appear to agree with physiology.

2

)

z!
i
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(b)

Fig. 8. Details of fiber tracking of Fig. 7.

V. CONCLUSIONS

An algorithm for tracing fibers in MRI DTT studies has been
presented. The proposed algorithm is based on Dijkstra’s
shortest path and uses a suitably defined cost function to
calculate the cost of transition between neighboring voxels.
Results on synthetic 2D tensor fields show sub-pixel accu-
racy, even in cases of intersecting fibers. Initial results from
3D tensor fields (emulating MRI-DTI data) show average
positional error of approx. 2.5 voxels. When applied to real
brain MRI-DTI studies, the proposed algorithm identified
well known neural tracks.
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