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Abstract— Medical image analysis and visualization, can 
contribute in quantitative and qualitative analysis of Magnetic 
Resonance Imaging (MRI) towards an earlier diagnosis of 
Alzheimer’s disease (AD). Moreover, the early detection of 
Mild Cognitive Impairment (MCI) has recently attracted a lot 
of attention. The main objective of this paper is to present a 
survey of recent key papers focused on the classification of 
MCI and AD and the prediction of conversion from MCI to 
AD using volume, shape and texture analysis. The most fre-
quent anatomical features used in the assessment of AD, is the 
hippocampus, the cortex and the local concentration of grey 
matter. Shape analysis can identify the signs of early hippo-
campal atrophy, whereas volume analysis evaluates the struc-
ture as a whole. Shape analysis seems to be a more accurate 
technique both in classification of patients and in prognostic 
prediction. Compared to volume, shape and voxel based 
morphometry (VBM) techniques, texture analysis can be used 
to identify the microstructural changes before the larger-scale 
morphological characteristics which are detected by the other 
aforementioned techniques. We concluded that quantitative 
MRI measurements can be used as an in vivo surrogate for the 
classification of patients and furthermore, for the tracking the 
Alzheimer’s disease progression.  

Keywords— Alzheimer’s disease; Mild Cognitive Impair-
ment; quantitative MRI; temporal lobe; hippocampus; brain 
volume; prediction; classification. 

I. INTRODUCTION 

Mild Cognitive Impairment (MCI) represents a transi-
tional period between normal ageing and clinical probable 
Alzheimer’s disease (AD) [1]. Nowadays, the diagnosis of 
AD is based on Mini Mental State examination (MMSE) 
such as the criteria documented in the Diagnostic and Statis-
tical Manual of Mental Disorders based on the revised rec-
ommendations of the National Institute of Neurological 
Disorders and Stroke–Alzheimer Disease and Related Dis-
orders working group [2]. However, by the time a patient is 
diagnosed with AD using the standard clinical assessment, 
the brain tissue has already undergone widespread and irre-
versible synaptic loss [3]. AD is indicated by inevitable and 
insidious progression of atrophy which initially affects the 

Medial Temporal Lobe (MTL) of the brain [4], a region of 
the brain which includes anatomically related structures that 
are essential for declarative memory [5]. The regions affect-
ed earlier by AD are the entorhinal cortex, followed by 
hippocampus, amygdala (see Fig. 1) and parahippocampal 
gyrus, a grey cortical region that surrounds hippocampus. 
With disease progression, these regions lose neuronal tissue 
with consequent brain atrophy [6].  

There is a pressing need to identify the early signs of the 
disease using in vivo techniques, apart from the MMSE 
tests. In order to identify the MCI stage, suitable biomarkers 
need to be used. A biomarker is a biochemical or anatomi-
cal factor which can provide quantitative measurements of 
the pathophysiologic processes of a disease [2] thus, many 
researchers have been using neuroimaging to evaluate this 
possibility. The Alzheimer’s disease Neuroimaging Initia-
tive (ADNI) [7] is a multicenter collaborative effort created 
in 2003 by the National Institute on Aging, the National 
Institute of Biomedical Imaging and Bioengineering, the 
Food and Drug Administration, private pharmaceutical 
companies and non-profit organizations. It is an open source 
database where a huge collection of Positron Emission To-
mography (PET) and MRI images are available online. 
Apart from imaging data, other biological markers such as 
cerebrospinal fluid (CSF) of more than 2000 participants 
including AD patients, MCI subjects and elderly controls 
are available online. This paper focuses on studies derived 
mainly from the ADNI database, and more specifically on 
the studies where quantitative MRI analysis was used for 
the assessment of the disease. 

Structural MRI is a non-invasive imaging modality that 
provides high resolution images of the brain in any plane. 
The high tissue contrast images provided by 3D T1-
weighted acquisitions enables accurate structural neuroim-
aging analysis which can be used as a possible biomarker 
for both the assessment of the disease and the prediction of 
conversion from MCI to AD [8]. Furthermore, because MRI 
does not use any ionizing radiation it is a suitable technique 
for longitudinal studies, which are necessary in the investi-
gation of AD. It has been proved by many volumetric and 
shape and thickness analysis studies [9]–[13] that structural 
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MRI based software tools allow the visualization of macro-
scopic tissue changes, and thus can help on the detection of 
neuronal loss in the initial stages of the disease. Features 
related to texture may have the potential to detect earlier 
and more subtle changes in neural tissue than other volu-
metric or shape analysis techniques [14].  

This paper also provides a very brief review of the most 
widely referenced medical image analysis techniques used 
in the assessment of AD. It focuses on selected studies pub-
lished in the last decade, investigating the prediction of 
conversion from MCI to AD and the classification of MCI 
patients, using only structural MRI imaging and specifically 
volume, shape and texture analysis techniques. The results 
of the various ADNI studies might not be directly compara-
ble; however, the data used are from the same database. 

 

  

Fig. 1 Axial (A), sagittal (B) MRI views of hippocampus (H) and amygda-
la (A) segmentation [15]. Brain regions that are affected earlier by AD 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. QUANTITATIVE MRI STUDIES BASED ON 
VOLUME AND SHAPE CHARACTERISTICS 

Table 1 and Table 2 tabulate quantitative MRI studies 
covering volume, shape and texture analysis for brain atro-
phy classification and prediction from MCI to AD, respec-
tively. In each table the following data are presented:  
study, subjects, follow-up duration, region of interest (ROI) 
investigated, data type, classifier, accuracy, sensitivity and 
specificity. 

II.A Classification of MCI and AD studies: One of the 
most common areas affected, at the very early stage of the 
disease, is the hippocampus [16], [17]. Several studies [5], 
[9], have used volume measurements and confirmed that 
hippocampus atrophy as seen in structural MRI can consti-
tute a useful diagnostic biomarker. Desikan et al., [18] car-
ried out automated structural measurements of entorhinal 
cortex and supramarginal gyrus thickness. In conjunction 
with hippocampal volume, they classified MCI from AD 
patients with high accuracy. Gerardin et al. [19] used hippo-
campal shape features instead of volume analysis. Shape 
analysis methods can be used to reveal atrophy on local and 
non-global areas of the hippocampus, and according to the 
authors, the classification accuracy was superior to studies 
that used volume analysis. Specifically, they obtained a 
classification rate of 94%, with a sensitivity of 96% and a 
specificity of 92% for AD vs controls, and for MCI vs con-
trols an accuracy of 83%, sensitivity 83% and specificity 
84%. Kloppel et al., [20] used SVM for the classification of  
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Quantitative MRI studies in the classification of MCI and AD patients 

Volume and shape analysis 
Study Subjects ROI Data type Classification method Classification Acc. Se. Sp. 

Desikan et al., 
2009 [18] 

49 NC, 48 MCI 
 

94 NC, 57 MCI 

Entorhinal cortex 
& supramarginal 

gyrus 

Volume & 
Thickness 

Logistic regression 
model 

MCI 
AUC: 0.91 
AUC: 0.95 

74% 
90% 

94% 
91% 

Gerardin et al., 
2009 [19] 

23 NC, 23 MCI, 
25 AD 

Hippocampus Shape SVM 
NC vs AD 
NC vs MCI 

94% 
83% 

96% 
83% 

92% 
84% 

Kloppel et al., 
2008 [20] 

20 NC, 20 AD Grey matter Thickness SVM 
NC vs AD

NC vs mAD 
mAD vs FTLD 

95% 
81.1% 
89.2% 

95%
60.6% 
94.7% 

95%
93.0%
83.3%

Texture analysis 

Zhang et al., 
2012 [21] 

17 NC, 17 AD 
Hippocampus & 
entorhinal cortex 

3D 
texture 

Non-linear ANN NC vs AD 
64.3% - 
96.4% 

- - 

Simoes et al., 
2012 [22] 

15 NC, 15 MCI Grey matter 
Texture 
maps 

SVM NC vs MCI 87% 85% 95% 

GLOSSARY: ROI: Region of interest; Acc: accuracy; Se: sensitivity; Sp: specificity; MCIc: MCI converters; MCInc: MCI non converters; SVM: 
support vector machine; AUC: area under curve; NC: Normal controls; ANN: Artificial neural network; mAD: mild AD; FTLD: frontotemporal 
lobar degeneration. 
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patients (from 3 different groups) by using two different 
types of analysis: in the first model they used data from the 
whole brain and on the second they used data from an ROI 
within the hippocampus. Their results were comparable 
with other techniques which restrict their analysis only to 
medial temporal lobe structures. However, shape analysis 
used in [19] resulted in a better classification accuracy for 
both AD vs NC and MCI vs NC. 

II.B Prediction of conversion from MCI to AD studies: 
Many studies have been investigating the prediction of con-
version from MCI to AD (see Table 2). Chupin et al., 2009 
[10] used automated segmentation techniques in order to 
calculate hippocampal volume in an attempt to predict the 
conversion from MCI to AD. In their study, they achieved 
an overall classification accuracy of 64%, showing that 
global hippocampal volume evaluation may not be a very 
accurate measure, mainly due to the fact that hippocampal 
volume is as variable in young as in older adults, thus this 
may have implications on the final results [23]. In a recent 
study, Costafreda et al., [24] used a fully automated proce-
dure to extract 3D hippocampal shape morphology in order 
to predict conversion from MCI to AD. Their predicting 
model had an accuracy of 80% (sensitivity 77%, and speci-
ficity 80%) which was competitive with other predictive 
models which used non automated measurements. In their 
prediction model, only hippocampus was used, which inter-
estingly achieved a predictive performance comparable or 
superior to those employing a multi-region or whole brain 
approach [14],[15]. In [25], the authors used VBM analysis 
to evaluate the volume of white matter (WM) and grey mat-
ter (GM) of 103 MCI patients which they followed up for 
15 months in order to predict which individuals will convert 
to AD. They evaluated their results via cross-validation and 
achieved an accuracy of 81.5% which is the one of best 
results published. Plant et al., 2010 [17] in order to predict 
the conversion from MCI to AD from atrophic changes 
across the brain, they used 3 different classifiers including 
Support vector machine (SVM), Bayes statistics, and Vot-
ing Feature Intervals (VFI). When the anterior cingulate 
gyrus and orbitofrontal cortex was included in their meas-
urements, they obtained their best predictive accuracy 
which was 75%. Bakkour et al., [27] applied measures on 
cortical thickness of nine ROI’s to test the predictive per-
formance of this model. Among the other ROI’s, MTL, 
cortical thickness had the best peak performance, predicting 
conversion to mild AD with 83% sensitivity and 65% speci-
ficity. Querbes et al., [28] used mean cortical thickness 
within 22 ROI’s and they obtained an accuracy of 73% and 
a sensitivity of 75% by applying their Normalized Thick-
ness Index (NTI) on subjects from the ADNI database. In a 
very similar study [13], cortical thickness was measured, 
and based on the results, it was noticed that atrophy patterns 

differ with the disease progression, thus by learning these 
differences, the prediction accuracies can be improved. The 
aforementioned ROI and whole brain studies successfully 
discriminated the individuals who converted from MCI to 
AD. The study by Desikan et al., [29] attempted to predict 
the time to progress from MCI to AD. They used automated 
MRI-based software tools to apply measurements of medial 
temporal cortex thickness and volume on 64 ROI’s among 
the two hemispheres of 324 MCI patients. Furthermore, 
they compared their results with CSF samples and PET 
measures and interestingly, their results revealed that struc-
tural MRI could better predict the disease progression rather 
than CSF biomarkers and metabolic changes detected rom 
PET.  

In a very similar study by Vemuri et al., [30] where struc-
tural MRI and CSF biomarkers on 399 subjects were used, 
the results were similar to the study in [29] as it was found 
that MRI could predict with higher accuracy the time to 
conversion from amnestic MCI to AD, compared to CSF 
biomarkers. 

III. QUANTITATIVE MRI STUDIES BASED ON 
TEXTURE ANALYSIS 

Texture analysis, is a less frequently used compared to 
volume and shape analysis. The information provided by 
texture analysis cannot be visible through volume and 
shape properties [22] thus, texture analysis techniques may 
have the advantage of detecting earlier, subtle changes [31]. 
There exist different methods for texture analysis: (i) struc-
tural methods, (ii) statistical based methods, (iii) model 
based methods [32] and (vi) transform based methods [33]. 
Quite frequently, the features are extracted from the grey 
level co-occurrence matrix (GLCM) methods which com-
putes how often pair of pixels with specific values occur in 
an image [34]. 

III.A Classification of MCI and AD studies: In [21], 
Zhang et al., used 3D texture features to identify normal 
controls from AD patients. They used over 100 texture fea-
tures which were extracted from spherical ROIs placed 
within the area of the hippocampus and the entorhinal cor-
tex, using image histograms, gradients, co-occurrence ma-
trices and Run Length matrices (RLM). However, the clas-
sification accuracy of the method varied significantly, from 
64.3% to 96.4%, depending on the chosen ROI. Not many 
studies applied texture analysis on MCI patients. One such 
study was that of Oliveira et al., [35] where texture analysis 
was carried out only in the thalamus and corpus callosum of 
the brain. Because of the small number of subjects (17 MCI, 
16 mild AD patients and 16 NC) the segmentation of corpus 
callosum and the thalamus was carried out manually and 44 
texture parameters were extracted. The analysis was carried 
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out separately for the two types of ROI’s (and not on the 
whole brain) using the MaZda program [36]. According to 
the authors that method was more reliable than other tech-
niques, where they analyze the brain texture as a homoge-
nous structure. The aim of their study was to classify nor-
mal aging subjects from MCI and AD patients. In a similar 
study [37], where only corpus callosum was evaluated using 
3D texture analysis on AD, MCI and normal controls, it was 
found that the 3D texture features had significance differ-
ences between the 3 groups of subjects. Because micro-
structural changes on the brain tissue start to develop years 
before the larger- scale alterations, Simoes et al., [22] used 
a whole-brain voxel-wise approach by applying local statis-
tical texture maps for the classification of MCI patients 
from NC. In order to classify the two groups they used 
SVMs and they obtained a mean accuracy of 87%, with a 
sensitivity at 85% and a specificity at 95%. However, the 
number of samples used in the study was very small as they 
used only 15 NC and 15 MCI patients. 

III.B Prediction of conversion from MCI to AD studies: 
One of the few recent studies that carried out texture analy-
sis to predict MCI to AD progression was that of Martinez 
Torteya et al., [38]. In their study, they used Magnetization-
Prepared Rapid Acquisition with Gradient Echo (MP-
RAGE) images from the ADNI database and they include 
six features, one related to genotyping, three related to  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

image signal distribution and two related to texture features. 
In order to apply ROI’s for every image, they used it’s cor-
responding segmentation mask provided by [39]. For each 
ROI they used 9 texture-related features together with 13 
morphological features and 28 signal distribution related 
features. They presented an MCI to AD progression bi-
omarker which yielded a mean blind accuracy of 0.79. 

IV. MAGNETIC RESONANCE SPECTROSCOPY  
AND DIFFUSION TENSOR IMAGING  

IN THE ASSESSMENT OF MCI AND AD 

Magnetic Resonance Spectroscopy (MRS) is a non-
invasive technique, which can be used to measure metabo-
lites [40]. The concentration of N-acetyl aspartate (NAA) in 
cortical tissue has been associated with neuronal density and 
consequently, with AD patients [41]. MRS was used previ-
ously in order to test its ability in the distinction of normal 
older subjects and AD patients. However, the results were 
variable and dependent on the anatomic region analysed. 
MRS it was found to be ineffective in clinical practice [42]. 

Diffusion tensor imaging (DTI) is MRI technique which 
studies the orientation and integrity of WM tracts by meas-
uring the diffusion of water molecule in neural tissue [43]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Quantitative MRI studies in the prediction of conversion from MCI to AD 

Volume and shape analysis

Study Subjects 
Follow-up 
(months) 

ROI Data type 
Converters/  
total MCI 

 Classifi-
cation 

method 
Acc. Se. Sp. 

Chupin et al, 
2009 [10] 210 MCI 0-18 

Hippocampus 
& amygdala 

Atlas based 76/210 k-means 64% 60% 65% 

Costafreda et 
al., 2011 [24] 

71 AD, 103 MCI  
88 NC 

0-12 Hippocampus Shape 22/103 nSVM 80% 77% 80% 

Misra et al., 
2009 [25] 103 MCI 0-36 Whole brain 

VBM - Grey 
& White 
matter 

27/103 nSVM 81.5% - - 

Plant et al., 
2010 [26] 

32 AD,  24 MCI  
18 NC 

0-30 Whole brain 
VBM - Grey 

matter 
9/24 VFI 75% 56% 87% 

Querbes et al 
2009 [28] 

130 AD 122 MCI 
130 NC 

0-24 Cortex Thickness 77 /122 LDA 73% 75% 69% 

Desikan et al., 
2010 [29] 324 MCI 0-36 Neocortex 

Volume and 
Thickness 

TC: 60/162 
VC: 58/162 

Factor    
analysis 

AUC:0.82 
AUC:0.84 

74% 
87% 

84% 
66% 

Texture analysis 
Martinez-

Torteya et al., 
2010 

62 MCI 0-24 Whole brain 
Signal and 

texture 
- 

Risk 
analysis 

AUC: 0.79 - - 

GLOSSARY: ROI: Region of interest; Acc: accuracy; Se: sensitivity; Sp: specificity; QAD: questionable AD dementia; ROC: receiver operating 
characteristic; LDA: linear discriminant analysis; nSVM: non Support Vector Machine; VFI: voting feature interval; TC: Testing cohort; VC:  
Validation cohort; AUC: area under curve; NC: Normal controls.  
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DTI studies have been used to detect the levels of Fractional 
Anisotropy (FA) of water molecules in order to detect 
changes of white matter in AD. FA was found to be de-
creased in specific regions of the brain in AD and MCI 
patients compared to controls [44].  

However, both MRS and DTI techniques are beyond the 
scope of this paper and they are not included in the National 
Institute on Aging and Alzheimer’s Association criteria for 
preclinical, MCI, and AD [45]. 

V. CONCLUDING REMARKS 

The challenge for modern neuroimaging is to provide 
early diagnosis of Alzheimer’s disease. Quantitative struc-
tural MRI is sensitive to the neurodegeneration that occurs 
in mild AD as it reveals the atrophy of the structures within 
the MTL, thus it can be used as a diagnostic marker in the 
assessment of early AD or the MCI stage. 

The techniques compared can be grouped into three catego-
ries. In the first category volume or shape analysis methods 
are being used, mainly on the hippocampus. The second cate-
gory, used VBM analysis measurements on the cortical sur-
face and mainly on the cortical thickness. The methods of the 
third category included features extracted from texture analy-
sis. All the studies used automatic classification methods and 
most of them discriminate with high accuracy the normal from 
AD subjects. However, their sensitivity appears to be lower 
for the classification of MCI subjects. Perhaps, if additional 
data from other biomarkers such as CSF or PET can be com-
bined with quantitative MRI, the accuracy could improve. 
Similar results were observed when morphometric pattern 
analysis was used in order to predict the prognostic conversion 
from MCI to AD as the results of shape analysis, were more 
accurate than volumetric measures. 

The main findings can be summarized as follows:  
1. MRI could predict with higher accuracy the time to 

conversion from amnestic MCI to AD, compared to 
CSF biomarkers [29], [30]. 

2. Shape analysis appears to be a more sensitive technique 
than volume analysis [19], [24]. 

3. There is a lack of research in the assessment of AD us-
ing texture analysis. However, it has a very important 
role in image analysis research and may develop into a 
useful clinical imaging tool [21]. 

4. Image analysis needs to be applied on images acquired 
from 3.0 Tesla MRIs in order to investigate if both 
structure and texture features perform differently.  

5. As the structures vulnerable to AD have been identified 
and used for the prediction of conversion from MCI to 
AD, further investigations is required in order to evaluate 
if the same structures can be used to predict the onset of 
cognitive impairment. 
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