
Abstract— Automated centroblast (CB) detection in Follicu-
lar Lymphoma (FL) tissue samples has recently attracted 
significant research interest. Most of the methods described in 
the literature are based on the use of Hematoxilin and Eosin 
(H&E) stain. However, the automated detection of CBs from 
H&E stained images remains a challenging issue. To this end, 
this paper presents a novel approach which is based on the use 
of both PAX5 and H&E stains in tissue sections sliced at the 
thickness of 1μm. The goal of PAX5 is three-fold: to facilitate 
the segmentation of nuclei, to remove a number of follicular 
dendritic cells and finally to extract morphological characteris-
tics of nuclei. Furthermore, the use of H&E stain enables us to 
extract textural information related to histological characteris-
tics used by pathologists in diagnosis of FL grading. In our 
method we propose a novel algorithm for the separation of 
overlapped nuclei inspired by the clustering of large scale 
visual vocabularies. Finally, aiming to model pathologists' 
knowledge used in FL grading, we use a Bayesian Network 
classifier to combine the morphological and textural character-
istics. Experiments conducted on a dataset of ten pairs of 
PAX5 and H&E images demonstrate the potential of the pro-
posed approach providing an average detection rate of 
93.46%. 
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I. INTRODUCTION  

Follicular Lymphoma (FL) is one of the most common 
lymphoma diagnosed in United States and Western Europe 
[1]. The most commonly used practice for grading of FL, 
which has also been adopted by the World Health Organiza-
tion, was proposed by Mann and Berard [2]. According to 
this method, follicular lymphoma grading depends on the 
number of CBs that are recognized by a pathologist: Grade I 
with 0-5 CBs/HPF (high power field), Grade II with 6-15 
CBs/HPF and Grade III with more than 15 CBs/HPF [3]. 
Tissue biopsies of FL are stained with Hematoxilin and 
Eosin (H&E), which is one of the principal stains in histol-
ogy, and they are visually inspected by pathologists. In 
order to account for tissue heterogeneity, the average CB 
number in ten different HPF images (derived from the same 

tissue section) is being estimated [4]. Since this manual 
procedure is highly subjective and requires extensive train-
ing, various methods [5][6] for automatic FL grading have 
been proposed to increase the accuracy and reproducibility 
of diagnosis, which is directly related to the time and type 
of therapy.  

The main challenge of these methodologies is the accu-
rate segmentation of nuclei and the extraction of a suitable 
set of features for their classification into CBs or non-CBs. 
Especially the latter requires the modelling of pathologists' 
knowledge used in clinical practice, that is, the identifica-
tion of a number of features, such as morphological  charac-
teristics of nucleus (i.e., its size and circularity), the uni-
formity and brightness of its texture, the number and size of 
nucleoli or the texture of the cytoplasm in the surrounding 
area. Thus, either only morphological characteristics of 
nuclei are used or the textural variation of nuclei is consid-
ered along with their morphology. To overcome the prob-
lem, some recent studies consider the whole nucleus with its 
surrounding area as a single feature vector, whose dimen-
sionality is reduced before the final classification step [7], 
while other researcher efforts have focused on the identifi-
cation of various texture features [8][9][10]. By taking ad-
vantage of the fact that different stains can provide valuable 
information to aid understanding of the physical or func-
tional properties of tissue [11], we propose the use of PAX5 
and H&E stains in tissue sections sliced at the thickness 
level of 1μm. 

Immunostain for PAX5, a transcription factor localized 
in the nucleus, is expressed by the most B-cells, from B 
lymphoid progenitors to the mature B-cell stage [12]. The 
PAX5 gene is essential for B-cell differentiation and has 
been utilized in the differential diagnosis of undifferentiated 
malignant neoplasms [13]. The main advantage of PAX5 
stain in 1μm sliced tissues of FL is the fact that it facilitates 
the segmentation of nucleoli from cytoplasm, whilst at the 
same time it enables the removal of a number of follicular 
dendritic cells -that appear as blue-coloured nuclei- which 
could be easily misclassified if only H&E stain was used. 

To this end, in this paper we aim to propose a new meth-
odological framework for the automated segmentation and 
classification of nuclei in FL tissue sections, by making the 
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following contributions: a) combine both morphological and 
textural characteristics of nuclei using respectively PAX5 
and H&E stains in tissue sections sliced at the thickness 
level of 1μm, b) introduce a novel approach for overlapped 
nuclei splitting and c) design a Bayesian network classifier 
for the combination of characteristics in order to model the 
knowledge of pathologists. 

The remainder of this paper is organized as follows: Sec-
tion II describes in detail the different processing steps of 
the proposed methodology. In section III, experimental 
results are presented. Finally, conclusions are drawn in 
Section VII. 

II. METHODOLOGY 

A novel framework is proposed for the segmentation and 
classification of nuclei based on the use of PAX5 and H&E 
stains in tissue sections sliced at the thickness of 1μm. By 
employing PAX5 immunohistochemistry, we facilitate the 
segmentation of nuclei, while at the same time we can re-
move a number of follicular dendritic cells, which would be 
easily misclassified if only H&E stain has been used. On the 
other hand, the use of H&E stain enables us to extract tex-
tural information related to histological characteristics used 
by pathologists in diagnosis of FL grading, i.e., the number 
and size of nucleoli as well as textural features of the nucle-
us and its surrounding cytoplasm. 

 

 
Fig. 1 Methodology of proposed algorithm. 

 
The proposed method for classification of nuclei in FL 

tissue sections using Bayesian Network is shown in Fig. 1. 
More specifically, after retrieving pairs of PAX5 and H&E 
images, for the segmentation procedure of nuclei we use 

PAX5 stained images. We initially apply an energy minimi-
zation technique based on graph cuts and then we propose a 
novel algorithm for the splitting of clustered nuclei inspired 
by the clustering of large scale visual vocabularies. For the 
identification of segmented nuclei in H&E stained images 
intensity-based rigid image registration is employed and 
nuclei textural analysis is applied to extract features related 
to the internal and external texture of nuclei as well as the 
number and the size of nucleoli. Finally, for the combina-
tion of the morphological characteristics of nuclei extracted 
from PAX5 stained images with their textural characteris-
tics in H&E images, a Bayesian Network classifier is pro-
posed aiming to model pathologists' knowledge used in the 
diagnostic approach of FL grading. These steps are de-
scribed in detail in the following subsections. 
 
A. Nuclei segmentation using energy minimization 

For the segmentation of nuclei in PAX5 stained images, 
we apply an energy minimization technique based on graph 
cuts, which is an unsupervised approach that can be em-
ployed efficiently to various image segmentation problems. 
Specifically, the segmentation procedure is considered as a 
labelling problem, where the labels in our case represent 
different cytological components, i.e., nuclei and cytoplasm. 
In practice, apart from the cytoplasm, the second class also 
contains the blue-coloured nuclei including follicular den-
dritic cells. In our experiments, the expansion algorithm 
[14] was used, which is one of the most efficient algorithms 
for minimizing discontinuity-preserving energy functions. 

 
B. Separation of clustered nuclei 

After the segmentation step, a number of nuclei overlap 
with each other forming clusters of cells. To overcome this 
problem, in this section we propose a novel approach, 
which aims to initially estimate the correct number and 
location of seeds (nuclei centres) and then to detect each 
nucleus using an ellipsoidal model. 

Initially we aim to identify a list of candidate seeds. We 
apply a distance transform and we estimate the regional 
maxima in the generated distance image D. The number of 
seeds is the result of the only one maximum that can be 
accepted in each neighbourhood. Towards this end, we 
apply a regional H-maxima transform [15] in order to sup-
press all local maxima in its vicinity. 

Based on the hypothesis that nuclei can be spatially mod-
elled as ellipsoids, the pixel coordinates in each cell are 
modelled using a Gaussian distribution. More precisely, a 
Gaussian mixture model is applied with the number of clus-
ters, k, being equal to that of candidate seeds. The unknown 
parameters of the Gaussian mixture, i.e., Θ = {πi, μi, Σi}, 

Segmentation 
& splitting of 

nuclei

PAX5 H&E

Use of stains 

Registration

Morphological 
characteristics

Textural 
characteristics

Bayesian Network 
classifier

 

 IFMBE Proceedings Vol. 57  
  

Classification of Nuclei in Follicular Lyphoma Tissue Sections Using Different Stains and Bayesian Networks 235



where μi, and Σi are the mean value and the covariance ma-
trix respectively of the distributions of pixel coordinates in 
each nucleus and πi are the mixing coefficients, are estimat-
ed using the expectation maximization (EM) algorithm. 

After estimating the ellipsoidal models of nuclei for all 
seeds, we need to identify if there is a spurious cell from the 
list of candidate seeds in order to estimate the correct num-
ber of nuclei. To do so, we attempt to compute an overlap 
measure for the estimated clusters. Based in [16] we try to 
identify the weak seed in the cluster and then we propose a 
validation process in order to decide whether a cluster is 
redundant or not. We can say that ]1,0[ˆ)(ˆ �� fggf p ��  is 

the generalized responsibility of component g, for compo-
nent f and, in general, that ii�̂ is the responsibility of com-
ponent i for itself, with each component of the mixture 
corresponding to a unique seed. In this paper we propose 
the identification of the weak seed based on the criterion of 
the following equation: 
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That is, the seed whose cluster has the lowest kir ˆ,  

among 

all the mixture components in the clustered nuclei is consid-
ered as the weak seed, sw:  
 

 
)(minarg ˆ,kiiw rs �   (2) 

 
The above indication, however, is not enough for purging 

seed sw from the list, therefore, a cluster validation process 
is needed in order to make the final decision.  Similar to 
[17], we use a validation criterion, which requires the clus-
ters to be well-separated and with a compact structure, and 
also introduce a “Fitness score” which aims to measure how 
well the ellipsoidal models fit to the elements of their clus-
ters: 
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The Fitness score )ˆ(kFitness is defined as the sum of the 

normalized fitness scores of each individual cluster, which 
are computed as the sum of distances of all elements in set 

iii XEW 	�  (where sets Ei and Xi represent the elements of 
ellipsoidal component i and the elements of the correspond-
ing cluster respectively and 	 is the symmetric difference 

operator) from the centroid of cluster i, normalized by the 
maximum distance within the cluster from its centroid. For 
the estimation of the separation and compactness measures 
Sep and Comp respectively, the reader is referred to [17].   

After that, we can easily compute the validation index V 
of the estimated clusters from equation (3). Then, we can 
simply claim that if a new EM solution


�
increases the va-

lidity index V, then the weak seed sw can be considered as a 
spurious seed and is deleted from the list. The same proce-
dure is repeated for the identification of other spurious 
seeds in the list until the validity index cannot be further 
increased. 

 
C. Nuclei classification 

After the splitting of nuclei, some dendritic cells exhibit 
similar morphological characteristics (they are large and 
round cells) [18] with CBs and could be easily misclassified 
if only H&E stain was used. Moreover, endothelial cells 
would be difficult to discriminate (they are relatively large 
and sometimes elongated cells) from CBs cells if only 
PAX5 image was used. 

In order to assess the shape of nuclei in PAX5 stained 
images, the perimeter of  each nucleus is extracted and the 
best fitting ellipse is estimated using the Orthogonal Dis-
tance Regression (ODR) algorithm [19]. Subsequently, 
ellipse residual is being estimated as the average geometric 
distance of the pixels in the perimeter from the ellipse. This 
feature is referred to as nuclear regularity, since it estimates 
the regularity of the shape of the nucleus.   

In order to extract textural information from the corre-
sponding H&E stained images, the registration of H&E and 
PAX5 stained images is needed. Towards this end, we apply 
an intensity-based rigid image registration [22] to determine 
the locations of the corresponding nuclei in H&E stained 
images. Textural analysis can then be applied to extract 
features related to the internal and external texture of nuclei 
as well as the number and the size of nucleoli in their interi-
or, as proposed in [20]. 

For the classification of cells into CBs and non-CBs we 
propose the design of a classifier which is based on proba-
bilistic graphical models, such as Bayesian Networks [21], 
in order to better model the decision making procedure of 
pathologists. The classifier combines strengths of both the 
morphological characteristics of nuclei in PAX5 images and 
the textural characteristics of nuclei in H&E images.  

More specifically, the proposed BN classifier (Fig. 2) re-
ceives as input a feature vector containing nine individual 
features (two morphological and seven textural), extracted 
after the identification of nuclei in both PAX5 and H&E 
stained images. Finally, the decision for the classification of 
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a nucleus is taken based on the conditional probabilities of 
the parent nodes in the second level of DAG, which quanti-
fy different properties of nuclei associated with their mor-
phology, internal texture, nucleoli characteristics and exter-
nal texture. 

  

 
Fig. 2. The structure of the proposed BN classifier 

 

III. EXPERIMENTAL RESULTS 

The performance of the proposed method for automated 
nuclei segmentation and classification was evaluated using 
a dataset consisting of ten pairs of PAX5 and H&E stained 
HPF images of 1280x960 pixels using a Nikon Eclipse 
E600W microscope and a Nikon DS-Fi1 digital camera. CB 
and non-CB cells from three additional image pairs were 
used for the training of  the BN classifier. 

Regarding the classification results, Fig. 3 and Fig. 4 pre-
sent detailed evaluation results for each tissue slide. Specif-
ically, Fig. 3 presents the True Positive (TP) rate and Fig. 4 
presents the False Positive (FP) rate, which is the number of 
non-CB cells erroneously detected as CBs divided by the 
number of annotated non-CBs in each slide. As shown in 
Fig. 3, the proposed method provides an average TP rate of 
93.46% and the average FP rate (Fig. 4) is 2.46%. 

 
Fig. 3 True Positive (TP) per slide and average rate 

 

 
Fig. 4 False Positive (FP) per slide and average rate. 

 
Finally, two different examples of CB detection are pre-

sented in Fig. 5. More specifically, in the first case Fig. 5(a) 
contains a CB and a dendritic cell, while in Fig. 5(b) only 
one CB exists in the selected Region of Interest (ROI). As 
we can see from Fig. 5(c), the dendritic cell appears in blue 
colour in the corresponding PAX5 stained image, so the 
segmentation algorithm can easily discard it. As seen in Fig. 
5(c-d), CB cells are correctly identified in both cases. In 
Fig. 5(e-f), the final classification result is shown. 

IV. CONCLUSIONS 

In this paper, we have proposed a new method for auto-
mated for nuclei segmentation and classification in FL tis-
sue sections using Bayesian Networks. The proposed meth-
od combines morphological characteristics of nuclei in 
PAX5 images with textural characteristics of the corre-
sponding nuclei in H&E stained images. Experimental re-
sults using ten HPF images showed that the proposed meth-
odology can achieve high detection rates while the number 
of false positives is kept relatively low. Future work may be 
focused on applying different stains and using different 
classification methods (e.g., deep learning). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5 Two examples of CB detection (black circles indicate CBs, while red 
circles indicate dendritic cells). a-b) the H&E stained images, c-d) the 

corresponding PAX5 stained images, and e-f) the two classification results. 
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