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Abstract— Electrical impedance tomography (EIT) has the 

potential to become a bedside tool for monitoring and guiding 
ventilator therapy, as well as tracking the development of 
chronic lung diseases. This paper describes the measurement 
principle of this novel technique and an overview of the appli-
cations of pulmonary EIT in the intensive care unit, including 
monitoring of ventilation and ventilator-induced lung injury, 
EIT-guided lung-protective ventilation and pulmonary perfu-
sion. Limitations that hinder EIT to become a routinely used 
tool in a clinical setting are briefly discussed. 
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induced lung injury, lung-protective ventilation, pulmonary 
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I. INTRODUCTION*  

Electrical impedance tomography (EIT) is a non-invasive, 
radiation-free monitoring imaging technique. The idea of EIT 
was introduced in mid-1980s by Barber and Brown [1]. Early 
EIT systems had poor sensitivity and were susceptible to signal 
interference in clinical settings. After 30 years of develop-
ments, both instrumentation and reconstruction algorithms 
have been intensively improved. Nowadays, EIT becomes one 
of the active research fields for various clinical applications. 
Studies show that EIT has the potential to monitor the cerebral 
ischaemia, stroke or intracranial hemorrhage [2-4], to differen-
tiate malignant from benign regions within the breast [5-6], and 
to monitor the bladder emptying [7-8]. Among all the clinical 
applications, the most promising field is chest EIT. It has been 
proven that EIT can be used as a bedside tool for monitoring 
and guiding ventilator therapy [9-10], as well as tracking the 
development of chronic lung diseases [11-12]. A few years 
ago, first EIT devices became commercially available on the 
market. After decades of developments, now it is a critical time 
for this technique, to turn laboratory researches to daily clinical 
practices. The aim of this paper was to introduce the measure-
ment principle and clinical applications of chest EIT. 

II. BASIC PRINCIPLE AND MEASUREMENT 

EIT measures the electrical potentials at the chest wall 
surface based on the phenomenon that changes in regional 
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air content and regional blood flow modify the electrical 
impedance of lung tissue [13-14]. Before measurement, 
electrodes are places around the thorax in the fifth inter-
costal space and one reference electrode is placed at the 
patients’ abdomen. The placement of the electrode planes 
may vary according to the regions of interest. However, the 
correlation between impedance and volume changes may be 
different [15]. Typical chest EIT systems inject alternating 
currents at a single frequency, ranging from 50 to 150 kHz, 
through chest wall surface. The number of electrodes,  
current injection and voltage measurement patterns may 
vary depending on the application fields. Typical chest EIT 
devices facilitate 8, 16 or 32 ECG electrodes and use  
adjacent pattern for both current injection and voltage 
measurement. Taking 16-electrode system for example (Fig. 

1), current injection through one adjacent electrode pair 
(e.g. electrodes No. 1 and No. 2) results voltage changes at 
chest wall surface, which are measured by the rest of 13 
electrode pairs (excluding the current injection electrodes). 
Subsequently, the next adjacent electrode pair (e.g. elec-
trodes No. 2 and 3) is used for the next current application 
and another 13 voltage measurements are performed. The 
location of the injecting and measuring electrode pairs suc-
cessively rotates around the entire thorax. One complete 
rotation results 208 voltage values, and these values are 
used to reconstruct one cross-sectional EIT image, which is 
also called a frame.  

 

 

Fig. 1 Finite element model of a patient thorax (cross-sectional) and the 
electrode positions. Ideally, the electrodes should be placed at equal dis-

tance obliquely or in one transverse plane. 

http://dx.doi.org/10.1007/978-3-319-32703-7_260
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Fig. 2 The relative vertical sensitivity of EIT measurements as a function 
of the position above and below the electrode plane. Color intensity (grey = 

0) corresponds to sensitivity. Same color regions have equal sensitivity. 
Red band indicates the electrode plane. Y-axis: anteroposterior distance 
from electrode plane in centimeter; x-axis: lateral distance in centimeter. 

Since the electrical current is not going through the thorax 
in a straight line (different from x-ray), the cross-sectional 
EIT image that we reconstruct contains the lens-shaped intra-
thoracic volume whose bioimpedance changes contribute to 
the generation of EIT images (Fig. 2). The thickness of the 
measurement plane increases towards the central region of 
the thorax. The contribution of impedance changes is reduced 
with increasing distance from the electrode plane. Therefore, 
EIT measurement at one plane will not cover the whole 
lungs, but it is much more than just one thin layer like CT 
scan. 

Most of the EIT systems calculate time-difference rela-
tive impedance changes. That means the impedance value at 
current time point is not an absolute value. Instead, it is 
subtracted from a value at pre-defined baseline. In this way, 
image reconstruction errors due to electrode positions, un-
balance of contact impedance etc. can be minimized (the 
idea is similar to instrumental amplifier). 

III. CLINICAL APPLICATIONS IN INTENSIVE 
CARE UNIT 

Patients in intensive care unit (ICU) often require support 
from ventilators. The lung status of these patients is one 

major concern and key factor that influence the ICU dis-
charge. Except EIT, there is no well-established bedside 
tools that can monitor regional ventilation distribution and 
thereby evaluate the efficiency of interventions. In the fol-
lowing, we are going to discuss some of the most frequent 
EIT applications in ICU. 

A. Monitoring of Ventilation and Ventilator-Induced Lung 
Injury 

Inappropriate setting of ventilator may introduce injury 
to the lung, including atelectrauma (collapse and reopen-
ing of alveoli), barotrauma and volutrauma (lung tissue 
over-distended at high pressure) [16]. Due to the high 
temporal resolution of EIT, dynamic information within a 
breath can be captured. Regional ventilation delay was 
proposed with low-flow inflation maneuver to reveal the 
late “opening” of lung units that collapsed during expira-
tion [17-18]. Lowhagen et al. have found that Slow mod-
erate-pressure RM results in lower optimal PEEP and 
plateau pressures [19]. 

Figure 3 shows one kind of functional EIT images that 
highlighted the regions of overdistension, recruitment and 
tidal recruitment. A lavaged pig was mechanically ventilat-
ed with pressure-controlled mode. During an incremental 
PEEP trial (positive end-expiratory pressure; starting from 
1st, PEEP = 5 cmH2O to 7th, PEEP = 35 cmH2O), more and 
more regions are recruited compared to the first PEEP level 
(purple regions in the functional EIT images in the first two 
columns; the order of the subfigures are indicated by the 
solid line with arrow). Regions of overdistension increase 
with increasing PEEP levels (blue regions). No tidal reopen-
ing regions were found at high PEEP levels (white regions). 
During decremental PEEP trial (starting from 7th to 13th 
PEEP levels), regions of overdistension decrease. There are 
no regions collapsed at 13th PEEP level (few purple regions 
at 7th PEEP level), which indicates an efficient recruitment 
maneuver.  

B. EIT-Guided Lung-Protective Ventilation 

Many EIT-based indices were developed to indicate het-
erogeneity of ventilation distribution [9], center of ventila-
tion [10] and to optimize regional compliance [20]. With 
these indices, EIT may be used in automated ventilation 
algorithms to determine the necessity of lung recruitment 
maneuvers and the sufficiency of PEEP levels. Regional 
pressure-volume (impedance) curves can be used to deter-
mine regional upper inflection points [21]. By evaluating 
the distribution of ventilation, Mauri et al. found out that 
sighs reduce strain and ventilation heterogeneity during 
assisted ventilation in patients with acute respiratory dis-
tress syndrome [22].  



Chest Electrical Impedance Tomography and Its Clinical Applications 1261
 

 IFMBE Proceedings Vol. 57  
  

 

High frequency oscillatory ventilation (HFOV) is con-
sidered as one of the lung protective strategies. However, 
respiration rate up to several hertz makes the ventilation 
distribution during HFOV a mystery to the physicians. Pre-
vious studies suggest that EIT is able to assess regional lung 
volume distribution during HFOV [23-24]. Figure 4 shows 

the ventilation distribution in one pig during HFOV (Fig. 4 
left; mean airway pressure of 30 cmH2O) and conventional 
ventilation (Fig. 4 right; PEEP = 21 cmH2O). Since two data 
sets had different reference frames, the amplitudes of the 
EIT waveforms are not comparable. The ventilation distri-
bution during HFOV is similar to that during conventional 

 
Fig. 3 PEEP titration and the corresponding functional EIT images at each PEEP steps. (unpublished data; measured with Pulmovista 500, Draeger Medi-
cal; processed with MATLAB). Top: global impedance waveform during the incremental and decremental PEEP titration. Left (first two columns): func-
tional EIT images during incremental PEEP. Purple regions are recruited regions at the current PEEP step compared to the 1. PEEP step. Overdistension 

regions are marked in blue and intra-tidal recruited/derecruited regions are indicated in white. Right (last two columns): functional EIT images during 
decremental PEEP. Purple regions are recruited regions at the current PEEP step compared to the 13. PEEP step. Overdistension regions are marked in 

blue and intra-tidal recruited/derecruited regions are indicated in white.  
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ventilation with less overdistension in the gravity non-
dependent regions.  

Besides, prone position demonstrates also lung protective 
effects. Changes of ventilation distribution from supine to 
prone position can be monitored with EIT [25-26]. 

C. Pulmonary Perfusion 

Cardiac-related impedance changes are much smaller 
than ventilation-induced impedance changes. Nevertheless, 
EIT can capture the cardiac-related impedance changes as 
well, by applying ECG-triggered or breath-hold measure-
ment, or by frequency domain filtering [27-28]. The signal 
is not directly related to stroke volume but more to vessel 
pulsations. High conductivity of hypertonic saline makes it 
suitable for an electric contrast agent and increases the am-
plitude of cardiac-related impedance changes. Borges and 
his colleagues injected hypertonic saline in the right atrium 
and performed a first-pass kinetics analysis [29]. They 
found that the distribution of pulmonary blood flow as as-
sessed by EIT agreed well with the one obtained by single-
photon-emission computerized tomography. 

 

Fig. 4 comparison of ventilation distribution during left, high frequency 
oscillatory ventilation (HFOV) and right, conventional mechanical ventila-
tion (CMV) in a lavaged pig (unpublished data). Global relative impedance 
waveforms of 5 seconds of each period are showed. Since the baseline of 
these two data sets are different, the amplitude of the relative impedance 

values are not comparable. 

IV. LIMITATIONS AND FUTURE DEVELOPMENTS  

New users often compare EIT to imaging techniques that 
they are familiar with, such as computed tomography (CT) 

and magnetic resonance imaging (MRI). They might not be 
satisfied with the limited spatial resolution of EIT. Indeed, 
no anatomical structures can be recognized in an EIT image. 
However, with up to 50 Hz temporal resolution, EIT should 
be considered as a functional imaging technique that cap-
tures different information as CT and MRI [30]. Unable to 
measure absolute impedance values and unable to cover the 
whole lungs during one measurement are two major limita-
tions of EIT, which require a lot of experiences in data 
analysis and interpretation. Simultaneous EIT measure-
ments at different cross-sectional planes might be developed 
in the future as a single device. 

In order to make EIT as a routine clinical practice, stand-
ardizing EIT measurements for various clinical scenarios is 
urgently required. 

A large number of EIT studies on clinical applications 
and diseases were published in the past decades. With re-
spect to applicability, time and radiation exposure, EIT may 
represent a promising supplement for X-ray and CT in the 
future. 
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