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Abstract— The features associated with temporal gait biome-

chanical data are complex and multivariate and it is therefore 
necessary to identify methods that reduce the difficulty underly-
ing the interpretation and identification of differences between 
groups of interest. Discrete variables and principal component 
analysis (PCA) are feature extraction methods that have been 
widely used. However, a comprehensive understanding of the 
relationship between discrete variables and PCA features has 
never been completed. The objectives of this study were to (1) 
determine the relationships between the two feature methods and 
(2) compare the performance of each for the identification and 
discrimination of between-group differences for injured and non-
injured subjects. Running gait kinematic data of 48 patients 
experiencing iliotibial band syndrome (ITBS) were compared to 
a group of 48 asymptomatic control subjects for transverse plane 
hip and ankle joint and frontal plane hip joint waveform data. 
Twenty-two discrete variables and three to four PCA features 
were extracted from each waveform and divided into three sub-
groups: magnitude features, difference operator features, and 
phase shift features. The following key results were obtained: (1) 
strong correlations were found between discrete variables; (2) the 
first PCA feature captured the magnitude information and thus 
showed strong correlation with the discrete variables in the mag-
nitude group; (3) there was no consistent result that showed all 
discrete variables were found in the first few principal compo-
nents; (4) the performance of the PCA features in identifying 
between-group differences decreased (reduced the effect size) as 
compared to using the discrete variables, but this does not neces-
sarily result in a decrease in the performance of the PCA features 
to discriminate between ITBS and controls using a support vec-
tor machine classifier. These results suggest care must be taken 
when selecting features of gait waveforms for both identification 
and discrimination of between-group differences for injured and 
non-injured runners. 
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I. INTRODUCTION 

Both identification and discrimination of between-group 
differences are important in gait biomechanics research [1-3]. 
The three-dimensional (3D) aspect of gait kinematics makes 
the data complex and possibly correlated. Therefore, a smaller 
number of features extracted from a set of temporal wave-
forms representing joint angles during the gait cycle are neces-
sary in order to improve the identification performance (the 
use of features to determine between-group differences; e.g. 
the multiple comparisons problem [1-2]) and/or the discrimi-
nation performance (the use of features to allow an unknown 
new subject to be correctly classified as belonging to one 
group or another [2-3]). Finally, identifying a smaller number 
of features can help reduce the difficulty of interpreting the 3D 
data into clinically meaningful information. 

One of the most commonly used, and simplest feature 
extraction methods for analyzing gait data, is the use of 
discrete events and descriptive statistics of the gait wave-
form. For example, the joint angle at touchdown and toe-
off, peak angles, ranges of motion, and time-to-peak angles 
are commonly extracted from waveform data. However, this 
method calls for the a priori selection of discrete features 
and relies on sufficient background knowledge [1] and/or 
subjective opinion. Moreover, the selection of these discrete 
features neglect the temporal information of the gait wave-
forms, and the strong correlations between untransformed 
features of gait waveforms may remain. 

To analyze the entire gait waveforms, feature transfor-
mation techniques have been applied to gait kinematic data 
[4]. The most commonly used method is a principal compo-
nent analysis (PCA) method. In brief, a PCA transforms a 
set of raw data into a set of linearly uncorrelated variables 
called principal components (PCs), and PCA-derived scores 
(PC-scores) are commonly used as the features of gait 
waveforms [2, 5-6]. While these features can capture tem-
poral information, interpreting the biomechanical meaning 
of the PCA features is difficult and can be a subjective 
process [4]. The computational complexity for the PCA 
procedure also increases as compared to the discrete  
variables. 
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Despite the growing use of PCA in gait studies, and the 
need to detect significant differences and discriminate be-
tween two groups of interest, there remains a need for a com-
prehensive understanding of the relationship between discrete 
variables and PCA features. Therefore, the first purpose of 
this study was to determine the relationships between the two 
feature types by (1) dividing them into subgroups according 
to mathematical properties and information captured in dis-
crete and waveform features, and (2) measuring the linear 
correlation between the two feature types based on the sub-
groups determined. Additionally, the second purpose of this 
study was to compare the performances of both feature types 
for the identification and discrimination of differences be-
tween groups of injured and non-injured subjects. 

The injury examined was iliotibial band syndrome (ITBS), 
the second most common running-related injury and the most 
common cause of lateral knee pain [7]. Atypical running gait 
biomechanics are considered a primary factor in the aetiology 
of ITBS [8]. The current analysis focused on three running 
gait waveforms based on previous literature [7] demonstrat-
ing their relevance to ITBS: hip and ankle joint transverse 
plane angles and hip joint frontal plane angles. 

II. METHODS 

A. Data Collection and Processing 

Transverse plane hip joint kinematic data were collected 
from 29 female runners with ITBS (34 ± 8 years) and 29 
healthy female runners (35 ± 8 years), while transverse plane 
ankle and frontal plane hip angles were collected from 19 
male runners with ITBS (39 ± 12 years) and 19 healthy male 
counterparts (39 ± 12 years). Injured runners were matched for 
sex, age, height, weight, and running speed, with healthy con-
trols who had no experienced any musculoskeletal injuries 
over the six months prior to the time of testing. The University 
of Calgary’s Conjoint Health Research Ethics Board approved 
the collection and the analysis of the data, and prior to collect-
ing the data, all participants provided their written informed 
consent to participate. 

Eight high-speed digital video cameras were used to film 
running gait at 200 Hz while the subjects ran on the tread-
mill at a comfortable self-selected speed for 20 s. Kinematic 
joint angles were calculated and normalized for the stance 
phase (1%-35%) and the swing phase (36%-100%) of run-
ning gait. Each feature was extracted from each stride, and 
the mean value of ten strides was used as the feature dis-
crete value for each subject. Details of inclusion and exclu-
sion criteria for the ITBS runners along with more details 
about data collection can be found in Phinyomark et al. [7]. 

B. Discrete Variables 

In the current investigation, discrete gait biomechanical var-
iables were divided into three groups based on mathematical 

properties and the information captured in the features: (1) a 
magnitude feature group, (2) a difference operator feature 
group, and (3) a phase shift feature group. Specifically, a mag-
nitude feature was defined as the amplitude value of the tem-
poral waveform at a specific event of the gait cycle (i.e., a sin-
gle-point magnitude feature) or an average amplitude value of 
the temporal waveform over a specific period of the gait cycle. 
Eight gait events were selected involving (F1) touchdown, (F2) 
mid-stance, (F3) toe-off, (F4) mid-swing, (F5) maximum peak 
during stance, (F6) minimum peak during stance, (F7) maxi-
mum peak during swing, and (F8) minimum peak during 
swing. In addition, meaningful joint angles determined from 
previous research [7] were used to determine the amplitude 
value of the temporal waveform over a specific period during 
(F9) stance, (F10) the swing phase, and (F11) the entire gait 
cycle. 

A difference operator feature was defined as a relative 
change in the amplitude of two gait events and angular ex-
cursion and the range of motion were the two features of 
interest. Angular excursion was defined as the peak angle 
subtracted from the initial angle at the start of the gait cycle. 
These consisted of (F12-F13) the maximum peak excursion 
during the stance phase and the swing phase and (F14-F15) 
the minimum peak excursion during the stance phase and 
the swing phase. Range of motion (ROM) was defined  
as the difference between the maximum peak and the mini-
mum peak during (F16) the stance phase, (F17) the swing 
phase, and (F18) the entire gait cycle. 

A phase shift feature was defined as a relative change in 
the timing of two gait events, i.e., time-to-peak. Time-to-
peak was defined as a time interval from the initial angle at 
the start of the gait phase to the peak angle. There were 
(F19-F20) time-to-maximum peak variables and (F21-F22) 
time-to-minimum peak variables during the stance and the 
swing phase. In total, there were 22 discrete variables or 
features extracted from each waveform. 

C. Principal Component Analysis 

The PCA attempts to account for as much of the variabil-
ity in the original data within the first few PCs. In the cur-
rent investigation, the first PCs that collectively explained at 
least 90% of the cumulative variance in the original data, 
and had an eigenvalue >1 [5] were retained. The PC-scores 
were computed by multiplying the standardized data matrix 
(zero mean, unit variance) by the eigenvector matrix and 
were used as the PCA features. Subsequently, each PCA 
feature was assigned to one of the three feature groups as 
defined by the discrete variables: the magnitude feature 
group, the difference operator feature group, and the phase 
shift feature group. This step was either done by inspecting 
the shape of the PC loading vector [4, 9] or by examining  
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the differences between two representative original [9] or 
reconstructed [4] waveforms chosen from some quantiles of 
the data. Hence, the number of PCA features in each group 
was dependent on each waveform. 

D. Data Analysis 

First, all features extracted were assigned to their respec-
tive feature groups. Next, one representative feature from 
each group was determined using Cohen’s effect size, d, for 
both discrete variables and PCA features. An effect size 
between 0.20-0.49 was defined as a small effect, 0.50-0.79 a 
medium effect, and ≥ 0.80 a large effect [10]. Third, the 
correlation coefficients between the representative features 
were computed for each waveform and correlation coeffi-
cients between features within the same group were also 
calculated. A correlation coefficient, r, of ≤ 0.35 was  
defined as a weak correlation, 0.36 to 0.67 a moderate cor-
relation, and 0.68 to 1.0 a strong correlation [11]. Finally, 
the performance of both feature types for the identification 
and the discrimination of differences between the ITBS and 
healthy runners were respectively examined by a one-way 
analysis of variance (ANOVA) and a support vector  
machine (SVM) classifier with a linear kernel [2, 12].  
Significance was set at P < 0.05, and a leave-one-out cross 
validation method was applied to obtain classification rates. 

III. RESULTS 

All proposed discrete variables were computed, except 
two variables from the hip frontal plane waveform (F9 and 
F11) because of no meaningful joint angles during stance. 
For the PCA, three PCs (PC1-PC3), which explained 
92.20% of the variance in the data, were retained for the hip 
transverse plane waveform. Four PCs (PC1-PC4), which 
explained 91.39% and 93.82% of the variance in the data 
were retained for the ankle transverse plane and hip frontal 
plane waveforms, respectively. Effect size (range of values) 
and correlation coefficients for magnitude, difference opera-
tor, phase shift, and PCA features in the same group are 
shown in Table 1. 

The representative discrete features for the hip transverse 
plane waveforms for the female ITBS and healthy groups 
were F6 (the minimum peak angle during stance; a magnitude 
feature), F11 (the mean value of joint angles during 26%-39% 
and 51%-65% of gait cycle; a magnitude feature), F14 (the 
minimum peak excursion during stance; a difference operator 
feature), and F19 (the time-to-maximum peak during stance;  
a phase shift feature). The PC1-score was a magnitude feature 
while PC2- and PC3-scores were a difference operator feature 
and a phase shift feature, respectively. 

Table 1 Effect size, d, values of features and correlation coefficients, r, 
between features in the same group: magnitude discrete variables, 

difference operator discrete variables, phase shift discrete variables and 
PCA features. 

Waveform Magnitude Difference Phase shift PCA 

Hip Transverse – 
Female 

d 0.20-0.95 0.21-0.84 0.02-0.24 0.22-0.70 

r 0.57-0.99 0.18-0.99 0.01-0.75 < 0.01 

Ankle Transverse 
– Male 

d 0.79-1.20 0.03-0.24 0.12-0.40 0.08-1.04 

r 0.65-0.99 0.03-0.84 0.09-0.44 < 0.33 

Hip Frontal – 
Male 

d 0.13-1.05 0.06-0.87 0.07-0.36 0.01-0.48 

r 0.04-0.95 0.01-0.93 0.17-0.74 < 0.08 

 

 

Fig. 1 Transverse plane gait waveform of the hip joint for female runners. 
(a) Correlation coefficients, r, between the representative features: F6, F11, 

F14, F19, PC1, PC2, and PC3. A strong correlation is presented in white 
font. (b) Effect size, d, (bars), statistical between-group differences (*) and 
classification accuracy (line) for the differences between female ITBS and 

healthy runners. 
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Fig. 2 Transverse plane gait waveform of the ankle joint for male runners. 
(a) Correlation coefficients, r, between the representative features: F7, F10, 

F17, F22, PC1, PC2, PC3, and PC4. A strong correlation is presented in 
white font. (b) Effect size, d, (bars), statistical between-group differences 

(*) and classification accuracy (line) for the differences between male 
ITBS and healthy runners. 

The representative discrete features of ankle transverse 
plane waveforms for the male ITBS and healthy groups 
were F7 (the maximum peak angle during swing; a magni-
tude feature), F10 (the mean value of angles during 1%-
17%, 31%-39%, and 62%-100% of gait cycle; a magnitude 
feature), F17 (ROM during the swing phase; a difference 
operator feature), and F22 (the time-to-minimum peak dur-
ing the swing phase; a phase shift feature). The PC1-score 
was a magnitude feature while PC2- to PC4-scores were 
phase shift features. 

The representative discrete features for the hip frontal 
plane waveforms for male runners were F7 (the maximum 
peak angle during swing; a magnitude feature), F10 (the 
mean value of angles during 36%-45% of gait cycle; a 

 

 

Fig. 3 Frontal plane gait waveform of the hip joint for male runners.  
(a) Correlation coefficients, r, between the representative features:  
F7, F10, F17, F22, PC1, PC2, PC3, and PC4. A strong correlation  

is presented in white font. (b) A strong correlation is presented in white.  
(b) Effect size, d, (bars), statistical between-group differences (*) and 
classification accuracy (line) for the differences between male ITBS  

and healthy runners. 

magnitude feature), F17 (ROM during the swing phase; a 
difference operator feature), and F22 (the time-to-minimum 
peak during the swing phase; a phase shift feature). The 
PC1-score was a magnitude feature while PC2- and PC4-
scores were difference operator features and PC3-score was 
a phase shift feature. 

Correlation coefficients between the representative fea-
tures for the three waveforms are shown in Fig. 1(a), 2(a), 
and 3(a). Effect sizes for the representative features and 
their statistical significance for the three waveforms are 
shown in Fig. 1(b), 2(b), and 3(b), together with classifica-
tion accuracies of discrimination between ITBS and healthy 
groups. 
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IV. DISCUSSION AND FUTURE WORKS 

Strong linear relationships were found between most of the 
discrete variables in the same group, particularly in the magni-
tude feature group (Table 1). These results are consistent with 
previous literature showing that strong correlations can be 
found between gait waveforms [13]. Thus, excluding the re-
maining set of highly correlated discrete-time variables should 
not effectively reduce discrimination performance. These 
results are similar to the classification of microarray gene 
expression data [14] as well as surface EMG data [15] and 
suggest that adding or eliminating the correlated variables 
from a feature vector does not significantly increase or de-
crease the classification accuracy of a classifier. Future  
studies, however, should further investigate the issue of  
“redundancy” of discrete variables from gait waveform data 
using other correlation measures (when the relationship is not 
linear) and as well the effect on classification performance (for 
both linear and nonlinear classifiers). 

Because of the data redundancy, only the best discrimi-
natory discrete variables for each feature type should there-
fore be used for further analysis. The current investigation, 
however, involved only three types of time-domain features. 
Future studies should involve other useful discrete variables 
in the frequency domain and time-frequency representation 
in an attempt to better understand the relationships between 
discrete variables of gait waveform data. 

Since no linear relationship, or a weak relationship, existed 
for the PCA features (Table 1), all the PCA features were 
interpreted and assigned the feature types by inspecting the 
shape of the PC loading vector together with examining the 
differences between two representative extreme subject wave-
forms. For example, the PC1 loading vector exhibited a posi-
tive magnitude throughout the gait cycle for all the waveforms 
of interest. The extreme raw waveforms also showed a large 
difference in the amplitude during the entire gait cycle sug-
gesting that PC1 captured between-subject variance as a mag-
nitude feature throughout the gait cycle. The results of the 
current study also showed that the PC1-score had a strong 
linear relationship with the discrete variables in the magnitude 
feature group (Fig. 1(a), 2(a), and 3(a)). However, the perfor-
mance of the PC1-score in identifying between-group differ-
ences decreased, along with a reduced effect size, as compared 
to using the discrete variables in the magnitude feature group 
(Fig. 1(b), 2(b), and 3(b)). 

This current study also suggests that the a priori selec-
tion of discrete features, which relies on either relevant 
background knowledge [1] or search approaches combined 
with filter metrics [2, 3, 12], achieved good results and only 
one representative magnitude discrete variable (such as a 
peak angle) for each waveform was necessary, as compared 
to using the PC1-score. For instance, the effect size for the 

PC1-score of the hip transverse plane waveform decreased 
as compared to using the minimum peak angle during 
stance (F6) and the mean value of the joint angles (F11) 
(Fig. 1(b)). However, the classification accuracy using the 
PC1-score increased as compared to only using the discrete 
variables. Moreover, the PC1-score was sufficient enough 
to determine between-group differences (Fig. 1(b), 2(b), and 
3(b)), while the a priori selection of PCA features was un-
necessary. Therefore, these results suggest care must be 
taken when selecting gait waveform features for either the 
identification or the discrimination between two groups of 
injured and non-injured runners. Moreover, future research 
is needed to better understand the relationship between 
identification and discrimination performances of biome-
chanical features. 

Since a difference operator feature was defined as a rela-
tive change in the amplitude of two gait events, it is reason-
able to expect that the representative discrete variables in 
this group, and in the magnitude feature group, exhibited a 
moderate correlation (e.g. F6, F11 and F14 in Fig. 1(a); F7, 
F10 and F17 in Fig. 3(a)). A strong correlation was also 
found between the representative discrete variable and the 
PC-score if the PC captured the similar relative change in 
the amplitude (e.g. F14 and PC2 in Fig. 1(a); F22 and PC2 
in Fig. 3(a)). In the current investigation, PC2-score of the 
hip transverse plane waveform, as well as PC2- and PC4-
scores of the hip frontal plane waveform, were associated 
with a difference operator feature. The loading vectors of 
these PCs had a positive or a negative peak aligned with one 
local peak in the mean raw waveform and then an opposite 
peak angle aligned with the consecutive local peak in the 
mean raw waveform. Specifically, PC2-scores of the hip 
transverse plane waveform for a female group and the hip 
frontal plane waveform for a male group captured a large 
change between the minimum peak and the maximum peak 
angles during the swing phase (F17). In addition, PC4-score 
of the hip frontal plane waveform captured a change be-
tween local peaks for both gait phases and also captured a 
change in the timing of the maximum peak angle during the 
swing phase. Further, the performances for identifying and 
discriminating between-group differences using the PC-
scores in this group were similar to the results found in the 
group of magnitude features. 

Phase shift features did not provide good results for both 
identification and discrimination of ITBS and healthy run-
ners in comparison to other features types. However, phase 
shift features may be useful for identifying between-group 
differences for other running-related injuries such as 
patellofemoral pain (PFP) and future research is therefore 
needed to evaluate the usefulness of this feature type. On 
the other hand, due to weak linear relationships between 
features, the representative group discrete features may 
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improve the discrimination performance of the classifier 
[14-16]. 

In the current investigation, PC3-score for the hip trans-
verse plane waveform, PC2- to PC4-scores for the ankle 
transverse plane waveform and the PC3-score for the hip 
frontal plane waveform were likely a phase shift feature. Spe-
cifically, PC3-score of the hip transverse plane waveform 
captured a difference in the timing of the maximum peak dur-
ing the swing phase (F21). For the ankle transverse plane 
waveform, the PC2-score captured differences in the timing of 
the maximum peak angle during the stance phase and as well 
the swing phase as a combination of F19 and F21, while PC3- 
and PC4-scores only captured the timing of the maximum 
peak angle during the swing phase (F21). For the hip frontal 
plane waveform, the PC3-score captured differences in the 
timing of the maximum and minimum peak angles during the 
swing phase as a combination of F20 and F21. 

Only the first few PCs, or lower-order PCs [5], were re-
tained as these PCs are generally applied in gait biomechan-
ics research [6, 13]. However, we can observe that the first 
few PCs (PC1-PC4) of the ankle transverse plane waveform 
did not capture the three features types. These results sup-
port previous research [5] and suggest that excluding the 
remaining set of intermediate- and higher-order PCs may 
remove valuable information. 

The following concluding remarks can be drawn from the 
current investigation: (1) strong linear relationships were 
found between discrete variables while no linear relation-
ships, or weak linear relationships, were found between 
PCA features; (2) PC1 for each waveform captured the 
magnitude information and thus showed a strong linear 
relationship with the discrete variables in the magnitude 
group; (3) there is no guarantee that the first few PCs (PC2-
PC4) for each waveform will capture all features types;  
(4) the ability of the PCA to identify between-group differ-
ences decreased as compared to using the discrete variables, 
but this does not necessarily mean that the performance of 
the PCA to discriminate between ITBS and controls using a 
support vector machine classifier will also decrease. 
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