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Abstract. Molecular docking is a computational method to study the formation
of intermolecular complexes between two molecules. In drug discovery, it is
employed to estimate the binding between a small ligand (the drug candidate),
and a protein of known three-dimensional structure. Docking is becoming a
standard part of workflow in drug discovery. Recently, we have used the soft-
ware VINA, a de facto standard in molecular docking, to perform extensive
docking analysis. Unfortunately, performing a successful blind docking proce-
dure requires large computational resources that can be obtained by the use of
clusters or dedicated grid. Here we present a new tool to distribute efficiently a
molecular docking calculation onto a grid changing the distribution paradigm:
we define portions on the protein surface, named hotspots, and the grid will
perform a local docking for each region. Performance studies have been con-
ducted via the software GRIMD.

1 Introduction

Drug discovery is a time-consuming, risky, and expensive process. To shorten the
research cycle and to lower the failure rate, Computer-Aided Drug Design is applied in
the early drug discovery phases. Molecular docking is one of the most popular
strategies to evaluate the drugability of a molecule. An efficient search of the best
binding interaction of a ligand is extremely computationally demanding, and existing
software suffer several limitations. As result, the predictive ability of docking software
is severely limited, especially for blind docking. Different approaches have been used
by different research groups to identify the receptor binding site and to estimate all the
contributions to the total binding energy of the ligand — receptor complex. No com-
mercially available or free-to-use software for molecular docking consider the impor-
tance of conserved sequence in proteins. Often the active site of the receptor is
unknown, so the only option left to identify all the possible binding sites on the
receptor is to extend the search box to all the receptor, a type of molecular docking also
known as blind docking, reducing the accuracy of the procedure and leading to an
increase of computing times. The existing software are, from a computational point of
view, extremely inefficient. In fact, programs like Vina [1] can generate thousands of
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poses with a small coverage of the conformational space. What is worst is that the best
pose is often rejected even after an exhaustive pose generation. This means that the
program found a pose close to the experimental one but the scoring function poorly
evaluated it. The pose ranking is based on a calculated binding energy that shows a
poor correlation with experimental binding energies. For this reason, one cannot simply
rely on massive calculation of an astronomic number of poses, because the ranking
functions are not properly calibrated. During extensive docking analysis, we observed
that conserved residues often lie on binding sites [2, 3]. Our idea was to drive ligands
toward conserved regions on the surface adding an extra term to the force field. We
decided to use the software Vina because it is efficient and open source. We could
observe that, in most cases, binding sites lie on conserved portion on the protein surface
[2, 3]. The opposite in not always true, so we can assume that the presence of con-
served residues is a necessary but not sufficient condition to predict a binding site.
Conserved residues are rarely isolated. Normally, a binding site can be made of several
spatially closed but non-adjacent residues.

2 Experimental Part

We define as hotspot (HS) the barycenter of spatially related conserved residues. The
conserved regions can be easily obtained by multiple sequence analysis, but an easier
way consists in downloading essential information from the server PDBFinder [4]. The
distance of a pose from the HS is then used to modify the Vina function.

The poses that satisfied the Vina criteria are checked out in terms of distance from
the HS. The binding energy is than modified according to Eq. (1), adding a term that
depends on the minimal distance (d) between the ligand barycenter and the nearest HS.
The new energy takes into account also the conservation value of the residue (con-
servation weight, Cy):

E%\C,,
d2

Egn = EQy + (1)
These values of Eqn (quasi-Newton energy) are saved in the Prop channel and used to
train the genetic algorithm.

void quasi_newton: :operator () (model& m, const
precalculate& p, const igrid& ig, output_type& out,
change& g, const vec& v) const { // g must have correct
size

quasi_newton_aux aux(&m, &p, &ig, V);

fl res = bfgs(aux, out.c, g, max_steps, aver-
age_required_improvement, 10);

fl hsval = m.eval_conservation (out.coords,out) ;

out .yadaRankProp = res*hsval;

out.dist = hsval;

out.e = res;

}
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In red is highlighted where the calculation is called in the original quasi_newton.
cpp Vina file. The definition of the function eval_conservation is in the file model.cpp.

f1 model::eval_conservation(vecv poseCoords,output_type&
out)
{
//find nearest hot spot
if (poseCoords.size()==0)
return 0;
// for each hot spot check which of them is close
to current ligand
int j;
int hsmin = 0;
£l min distance =
std::numeric_limits<float>::max();;
for (j=0;j<yada_hscoords.size () ;j++)
{
fl r;
int k;
r =0;
int c;
for (k=0;k<=poseCoords.size() ;k++)
for (c=0;c<=3;c++)
r+= pow(poseCoords [k] [c]
-yada_hscoords[j] [c],2) ;
r = sqgrt(xr);
if (r<min_distance)
{
min_distance = r;
hsmin=j;
}
}
// nearest hotspot found. Looking for reference
atom.
int k;
min _distance = std::numeric_limits<float>::max();
for (k=0;k<=poseCoords.size () ;k++)
{
// check distance between atom and
'reference atom' in nearest
// hotspot
int c;
float r;
r=0;
for (c=0;c<=3;c++)
r+= pow (poseCoords [k] [c] -
yada_hscoords [hsmin] [c],2) ;
r = sqrt(xr);
if (r<min_distance)
{
min_distance = r;
}
}
// save nearest atom
vec
hsrefatompos (yada_hscoords [hsmin] [0] ,yada_hscoords [hsmin]
[1], yada_hscoords[hsmin] [2]);
out.hsrefatomcoords = hsrefatompos;
// return prop
return
pow (yada_hscoords [hsmin] .hsval, 2) * (1/min_distance) ;
}
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When we want to explicitly consider the presence of water molecules, the program
checks if there is space to introduce an oxygen atom at 2.9 A from electronegative
atoms in the ligand. If so, the QN function is called with and without oxygen and only
the pose with the maximum QN is chosen.

The choice of poses is made with a traditional Metropolis approach. Metropolis
algorithm is a Markov chain Monte Carlo method for obtaining a sequence of random
poses from a probability distribution for which direct sampling is difficult. When the
energy results are to be higher, the new conformation will be accepted or rejected if an
acceptance probability law

p_ ol 2)

is randomly satisfied, where T is temperature and kB the Boltzmann’s constant. The
acceptance condition is verified if generating a pseudo-random number u, uniformly
distributed between 0—1, will result u < P.

The following changes have been introduced in metropolis.cpp.

bool metropolis_accept (fl old _f, fl new f, fl tempera-
ture, rng& generator,fl dist,output_type& m ) {

if (dist>5) return false;

if (new_f < old_f) return true;

const fl acceptance probability = std::exp((old_f
- new_£f) / temperature);

// £lip coin here,

return random_f1(0, 1, generator) < ac-
ceptance_probability;
}

The initial idea was to increase the acceptance probability nearby conserved regions
in order to drive the ligands toward those sites. The acceptance rate was therefore
modified as:

1
AccProb = AccProb - (3)

K 2
(dlStanceposefhotspot)

The distance is obtained from the routine Quasi_Newton to decrease the computing
time. The instruction m.metEnable, reads the flag to tell the program when use the
modified Metropolis.
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bool metropolis_accept(fl old _f, fl new_£f, fl tempera-
ture, rng& generator,fl dist,output_type& m ) {
if (dist>5) return false;
if (new_f < old _f) return true;
fl yada_increase = 0;
if (m.metenable)
yada_increase = 1/pow(m.hsdistance, 2)

const fl acceptance_probability = std::exp((old_f
- new_f) / temperature) + yada_increase;
return random_f1(0, 1, generator) < ac-
ceptance_probability;
}

The flowchart representing the implementation of HS in the original Vina code is
shown in Fig. 1.

2.1 Improving the Scoring Function

One of the typical problems with docking software, and Vina makes no exception, is
that the pose ranking is made in terms of energy. Vina uses a semi-empiric calculation
of the pose energy. Unfortunately, the calculation of free energy is far from being
optimal and, consequently, the ranking process is poor. This means that the best pose,
i.e. the one with the minimum RMSD from experimental data, is not the first in rank.
We have performed an extensive genetic algorithm study to improve the ranking. As
result, in 95 % of the cases, the best pose is the one with the highest score.

2.2 Porting on Grimd

Grimd is a software that can easily create a computer grid [5]. Grimd can chunk a
complex calculation in a number of smaller jobs. The jobs are sent to available PCs
(slaves) and, after completion, the most relevant results are collected and made
available via web interface. The Master, which is a dedicated machine, runs a program
that takes care of the input data partitioning, the scheduling, the tasks execution across
a set of machines (dynamically updated), the handling of machine failures, and the
managing of the required inter-machine communication. The Master implements a
basic authentication mechanism when a new slave subscribes to the “Grimd Network”,
managing communication privacy through channel encryption (a sort of VPN) and
client-side strong authentication through session key negotiation. The distributed grid
was already successfully applied for a wide range of applications [6—10]. Grimd was
used to perform a flexible ligand-flexible receptor docking encoding the conformational
spaces of molecules through a protocol of molecular dynamics, followed by the gen-
eration of an ensemble of rotamers. These conformational subspaces can be built to
span a range of conformations important for the biological activity of a protein.
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Fig. 1. Flowchart of the implementation of HS on Vina code

A variety of motions can be combined, ranging from domains moving as rigid bodies
or backbone atoms undergoing normal mode-based deformations, to side chains
assuming rotameric conformations. In addition, Grimd can be easily used for the
screening of several receptors against a large library of ligands. Because of the
underlying architecture, Grimd is not limited to docking or molecular dynamics, but it
has been also applied to extend coarse grain dynamics [11, 12], to distribute quantum
mechanical calculations [13, 14], and to improve of orders of magnitude the speed of



Novel Algorithm for Efficient Distribution 71

Monte Carlo simulations [15]. The concept of hotspot permitted a straightforward
distribution on a grid. In fact, each hotspot can be computed on a different node of the
grid. To run a full blind docking calculation, it is necessary to send three files to the
Master: the receptor and the ligand in pdbqt format, and a text file containing the
conservation string. An example of the text file is:

##EXPLOSION (1) = WRITE_RANGE[30,60,1] @ENDEXP
lau2_ligand.pdbgt lau2_receptor.pdbgt
893579884593865885983998997994486897531346847549949698992
138399399473389497227297658439891625419274322257232661475
254925832886136877767874125955933989263273333669687589992
32624597789998329934996275763471788832878926

#min range = '@EXPLOSION(1l)@'
#hotspot_pos = @HS@
#exit

Once the Master received the job request, each HS is assigned to a different Slave.
Once the local calculation is completed, the Slaves create two files: a file with results
and a log file. These files are sent back to the Master that reduces the information into a
global result file, sorts the poses using the binding energy and print out one or more
poses. No changes are necessary on the Master to distribute the calculation. The
flowchart representing the porting of Vina on Grimd is shown in Fig. 2.

GRIMD Slaves
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Upload on
GRIMD Web
Server

Results
Database

Instance Hotspot 2
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string

Explode
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Reduce and
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Binding
Energy

g Instance Hotspotn |—

Best pose by
Binding energy

Fig. 2. Flowchart of VINA porting on GRIMD

3 Results

3.1 Docking Validation

We tested the accuracy of the new approach on a customized version of the Aspex list
of PDBs available in literature. The validation of a docking software is always a critical
task. Several works already discussed this point [3]. Among others, two aspects appear
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to be critical: the choice of the validation data set, and the position (and dimension) of
the docking box. In fact, it is evident that an ad hoc choice of the proteins to be docked
can give the illusion of fantastic performance. Few publications offer a systematic
comparison of software performances. The validation did not use any prior information
on the docking box, or ligand orientation, nor had we used a particular (and benevo-
lent) pdb validation set. The evaluation of was performed on a set of 180 proteins and
the results compared to Vina, a de facto standard in molecular docking. The docking
procedure was total blind docking, 250 runs, Amber03 ff, no water molecules. We have
considered two aspects in blind docking: the goodness of the first pose in terms of
RMSD between the docked pose and the experimental data, the free energy of binding
and the execution time.

3.2 Grid Tests

Standard procedures were followed to set up the virtual docking. AutoDock requires
that the ligands and receptor be formatted in pdbqt files. This format is similar to a PDB
file and also has charge and AutoDock atom-type information. These files can be
created with the AutoDockTools (ADT) [16] interface or with scripts provided with the
software. ADT is a graphical interface provided with the AutoDock software and can
be used to carry out serial docking jobs, prepare files, and analyze results. The provided
scripts were used to add partial charges to each atom, merge nonpolar hydrogens with
the heavy atoms to which they are covalently bound and determine the AutoDock atom
types of each atom for all the ligands and decoys. Using HSs, a docking calculation
with Vina can be easily distributed on several machines.

In Fig. 3, it is shown the computing time for the system 1 fkg distributed on a
number of nodes between 1 and 10. The behavior of the net is almost linear demon-
strating a perfect distribution of the docking.
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Fig. 3. Running time as function of slave number
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4 Conclusions

We presented here a modification of Vina that permitted to increase the accuracy of
docking as well as a load distribution on a dedicated grid that permitted a drastic
reduction of the computational time. The pose generation algorithms and the scoring
function for pose ranking have been modified in order to consider the conservation of
residues in the protein sequence. To assign the conservation weights to each residue we
used a customized version of the HSSP database [4]. In correspondence to each con-
served region, the program places new local search boxes. The size of these boxes is
inversely depending on the conservation of the residue: the highest the conservation,
the smallest is the size. The choice of the best pose follows a completely novel
approach. We have used Genetic Algorithms (GA) to develop a scoring function that
takes into account force field related energy as well as the distance of the ligand from
conservation regions. According to this, our new ranking function allows the final user
to pick the best pose after the molecular docking with a better accuracy and reliability.
Finally, the introduction of hotspots, i.e. highly conserved residues in a protein, per-
mitted a straightforward and efficient distribution onto a dedicated grid.
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