
Optimizing Feed-Forward Neural Network
Topology by Multi-objective Evolutionary

Algorithms: A Comparative Study on
Biomedical Datasets

Vitoantonio Bevilacqua1(B), Fabio Cassano1, Ernesto Mininno2,
and Giovanni Iacca2

1 Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari,
via Orabona 4, 70125 Bari, Italy

vitoantonio.bevilacqua@poliba.it
2 Cyber Dyne S.r.l., Via Scipione Crisanzio 119, 70123 Bari, Italy

Abstract. The design of robust classifiers, for instance Artificial Neural
Networks (ANNs), is a critical aspect in all complex pattern recognition
or classification tasks. Poor design choices may undermine the ability
of the system to correctly classify the data samples. In this context,
evolutionary techniques have proven particularly successful in exploring
the complex state-space underlying the design of ANNs. Here, we report
an extensive comparative study on the application of several modern
Multi-Objective Evolutionary Algorithms to the design and training of
an ANN for the classification of samples from two different biomedical
datasets. Numerical results show that different algorithms have different
strengths and weaknesses, leading to ANNs characterized by different
levels of classification accuracy and network complexity.

Keywords: Artificial Neural Networks · Multi-Objective Evolutionary
Algorithms · Akaike Information Criterion

1 Introduction

Over the past two decades, the amount of data produced yearly in all human
applications has reached an unprecedented level. As the quantity of data gener-
ated in the most complex engineering, networking, and financial systems, is for
obvious reasons, impossible to analyze manually, the need arises for expert sys-
tems capable of analyzing the data automatically, for instance for the purpose of
classification, pattern recognition, and feature extraction. This need is bringing
Machine Learning (ML) to a new level, and novel approaches are being presented
in the literature, specifically tailored for problems of increasing complexity.

Interestingly, many modern ML classification techniques are now based on
Artificial Neural Networks (ANNs). In fact, despite being one of the oldest com-
putational tools known in ML, ANNs are still today among the most effective
c© Springer International Publishing Switzerland 2016
F. Rossi et al. (Eds.): WIVACE 2015, CCIS 587, pp. 53–64, 2016.
DOI: 10.1007/978-3-319-32695-5 5



54 V. Bevilacqua et al.

techniques available to solve most kinds of classification problems. On the other
hand, while ANNs are powerful learners per se, their performance on specific
datasets can be severely affected by several factors. First of all, since neural
networks need to learn from examples, typically the training and validation sets
must be quite large and should contain balanced class examples. The second
problem is feature selection, i.e. the choice of which features should be used as
input to the classifier. More features do not lead necessarily to a better classifi-
cation accuracy, however feature selection can be especially hard in some cases.

One of the most prominent areas of application of ANNs is nowadays health
care and health improvement, see e.g. [1,2]. For example, computerized medical
imaging systems are constantly improving their ability to extract numerical fea-
tures from biological data, features that can be used in expert systems (based
on ANNs) to assist diagnosis and therapy. Typically, in order to train a robust
expert system and obtain a high classification accuracy, one needs a large set of
labeled samples. However, in most cases, data acquisition and labeling is expen-
sive (due to the cost of the medical tests, and to the need for a human expert to
label the training samples) and the expert system must be trained on a relatively
small dataset. Therefore, a third major challenge is to reach a high accuracy with
a limited number of labeled samples.

Finally, on top of all the above mentioned problems, there is the choice of
the ANN topology, namely the number of layers, the number of nodes per layer,
and the activation function used in each node. While simple rules of thumb exist
for such a choice, there is no way to predict which configuration of the network
is the best to use in each case and one often has to rely on manual trial-and-
error. However, the training of each different network configuration is a time
consuming process and trial-and-error is obviously prone to sub-optimal results.

Thanks to the ever-increasing availability of computing power, a viable alter-
native for solving these problems is now the use of automatic techniques that
explore the entire space of solutions defined by the ANN topologies, while per-
forming the training of each network on multiple shuffled versions of the dataset
at hand. One such example is presented in [3], where Multi-Objective Genetic
Algorithm (MOGA) [4] is used to find the optimal ANN topology (i.e., the opti-
mal number of hidden layers and the number of nodes for each hidden layer)
which leads to the best classification of the samples from the Wisconsin Breast
Cancer Dataset (WBCD) [5].

In this paper, we follow up on [3] by performing an extensive comparison of a
whole set of Multi-Objective Evolutionary Algorithms (MOEAs) on two different
datasets, namely the aforementioned WBCD and the Hepatitis Dataset (HD)[5].
First, we try to obtain on each dataset the best possible accuracy, by minimizing
at the same time the validation and test error. In a second set of experiments,
we try to identify the best trade-off between accuracy and network complexity:
in this latter case, the optimization criteria are the minimization of (1) the
validation error, and (2) a measure of the network complexity, i.e. the Akaike
Information Criterion [6] (rather than an explicit minimization of the number of
hidden layers and hidden nodes per layer).



Optimizing Feed-Forward Neural Network Topology 55

The rest of this paper is organized as follows. The next section briefly sum-
marizes the related work on the use of MOEAs for automatic design of classifiers.
Section 3 describes the MOEA-based method used in the study, while numerical
results are reported in Sect. 4. Finally, Sect. 5 concludes this work.

2 Related Work

MOEAs are bio-inspired multi-objective optimization techniques that have been
successfully used in several applications domains, such as engineering design
[7,8] and combinatorial optimization [9]. Recently, MOEAs have also been used
in real-time applications, as shown in [10], and biomedical applications [11,12].

In the ML domain, there are several examples of application of (either single-
objective or multi-objective) Evolutionary Algorithms to the optimization of
neural network topology (see e.g. [13]), or for training ANNs [14]. Another exam-
ple is given by [15], where an improved version of classic Genetic Algorithms
(GA) is introduced, specifically designed to optimize the structure of a neural
network. In the aforementioned work [4], Multi-Objective Genetic Algorithm
(MOGA) has been used to find the best topology in order to improve the neural
network accuracy on the WBCD dataset. A similar technique was also proposed
in a more recent study [16]. Other biomedical applications of optimized neural
networks are also presented in [17–19].

3 Proposed Approach

As mentioned earlier, the main idea of this study is to formulate the problem of
the definition of an optimal ANN for a specific dataset in a multi-objective fash-
ion. For example, in order to maximize the accuracy, a Multi-Objective Evolu-
tionary Algorithm can be used to minimize the validation error while minimizing
the test error. However, depending on the requirements one could also include
different optimization criteria in the problem formulation, such as a measure of
complexity of the classifier ANN. We will show this in the next section.

In a nutshell, the proposed multi-objective approach consists of two nested
loops, as depicted in Fig. 1: (1) an outer loop, where populations of candidate
ANNs are generated and optimized by a MOEA; (2) an inner loop, where each
candidate ANN is trained, validated and tested.

More specifically, in the first step, the MOEA defines for each candidate ANN
the number of hidden layers, the number of nodes per layer, and (optionally)
the activation function that must be used in each layer. This information is then
used to create neural networks that are structured as follows: (1) an input layer
made of as many nodes as the number of the features of the dataset, with no
bias; (2) a variable number of hidden layers, each of which is made of a variable
number of nodes (as determined by the MOEA), with bias; (3) an output layer,
with a single node (the classification value), with no bias. For every layer, it is
possible to select the activation function a priori, or have the MOEA select it:
as shown in the next section, in our experiments we tested both options.



56 V. Bevilacqua et al.

Number of 
hidden layers

Number of 
hidden nodes 

per layer

(Activation 
function 

per layer)

Objectives: validation error, test 
error, network complexity, etc.

MOEA (Kimeme) Training/Validation/Test (Encog)

Validation

Create ANN

Training

Test

Resilient Propagation 
and 10-fold validation

Fig. 1. Conceptual scheme of the MOEA-based approach.

In the second step, each ANN so generated, is then trained, validated and
tested on the dataset. This procedure is performed as follows. First, the original
dataset is shuffled and partitioned into three sets (in our experiments, 60 %, 20 %,
and 20 % of the entire dataset, respectively). Then, the first set is used to train
and validate the neural network topology, by means of a 10-fold cross validation.
The training method we use in our experiments is the Resilient Propagation
[20], with stop condition on a training error threshold. The second and third
sets are finally used to calculate, respectively, the validation error, the test error,
and the confusion matrix. This information (or, if needed, a metric of network
complexity) is then fed back to the outer loop, and used to calculate the fitness
functions to be optimized by the MOEA.

In all our experiments (see the next section for further details), we used
some of the state-of-the-art MOEAs available in Kimeme, a multi-disciplinary
optimization platform introduced in [21,22]. The reason for using Kimeme was
manifold: first of all, Kimeme provides a rich set of state-of-the-art single and
multi-objective optimization algorithms, as well as an extensive post-processing
toolkit. Secondly, Kimeme can be easily coupled with external software and
pieces of code (such as Java or Python classes, or Matlab scripts). Importantly,
Kimeme also integrates a distributed computing framework, which allowed us to
easily run massively parallel calculations. As for the ANN implementation, we
used the open-source Java library Encog [23], which is characterized by a great
flexibility in the definition of neural networks and training algorithms.

4 Numerical Results

In the following, first we describe our experimental setup (datasets and multi-
objective algorithms), then we analyze the numerical results obtained in the
different experiments with the approach described in the previous section. We
finally report a brief analysis of the execution times of our experiments.



Optimizing Feed-Forward Neural Network Topology 57

4.1 Datasets

In our experimental study, we consider two biomedical datasets:

– The Wisconsin Breast Cancer Dataset (WBCD) [5]. The WBCD is composed
of 699 labeled samples, each defined by 9 biomedical features, namely: clump
thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion,
single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and
mitoses. The dataset contains 16 samples with one or more missing values,
which we omit from our analysis.

– The Hepatitis Dataset (HD) [5]. The dataset is composed of 155 labeled
samples, each defined by 19, namely: age, sex, steroid, antivirals, fatigue,
malaise, anorexia, liver big, liver firm, spleen palpable, spiders, ascites, varices,
bilirubin, alk phosphate, sgot, albumin, protime, histology. 75 samples have
one or more missing value, so we discard them in our analysis. Since this
dataset is unbalanced, to avoid over-fitting we have added 30 synthetic entries
to the least represented class (“die”), each one obtained selecting randomly
one of the original samples, and adding (or subtracting), with probability
p = 0.3, a small uniform random number to each of its features.

On both datasets, we normalize the input features in the range [0, 1]. Also,
since both datasets refer to a binary classification problem (positive vs negative
diagnosis), for the purpose of classification we set a threshold of 0.5 on the output
of the single output node (see the previous section), to discriminate between the
two sample classes (corresponding to 0/1 classification values).

4.2 Algorithms

Among the open-source algorithms available in Kimeme, we chose for this com-
parative study four MOEAs together with a version of Multi-Objective Particle
Swarm Optimization used here as control experiment1. These algorithms were
chosen as they are currently considered the state-of-the-art in multi-objective
optimization, and our aim here is to show how general-purpose MOEAs can be
used for the automatic design of classifiers. A brief description of the selected
algorithms follows, with the related parametrization (for a more thorough expla-
nation of the algorithms and their parameters, please refer to the original
papers). All algorithms were configured to use a population of 100 individuals,
with stop condition on the number of generations (500).

– Multi-Objective Differential Evolution (MODE). This is a custom multi-
objective variant (with elitism) of Differential Evolution (DE) [24], that
simply combines with the classic DE mutation/crossover operators the non-
dominated sorting and crowding distance mechanisms used in NSGA2 (see
below). We set crossover rate Cr = 0.3 and scale factor F = 0.5.

1 We should note that, technically speaking, MOPSO is not a MOEA, as it is inspired
by Swarm Intelligence rather than Evolutionary Algorithms. Nevertheless, for sim-
plicity of notation in the following we will use the wording “MOEAs” to refer gener-
ically to all the algorithms tested in this study, including MOPSO.



58 V. Bevilacqua et al.

– Multi-Objective Evolution Strategies (MOES) [25]. This is a multi-objective
variant of classic Evolution Strategies (ES), an evolutionary algorithm based
on mutation only. Mutation simply adds to each component of the solution
a random number drawn from an adaptive distribution. Solutions are then
ranked, based on their fitness values, to obtain the Pareto front. We set min-
imum step size μmin = 0.01, initial step size μinit = 0.2, life span LS = 30,
scaling factor α = 0.2, and learning rate τ = 1.

– Non-Dominated Sorting Genetic Algorithm-2 (NSGA2) [26]. NSGA2 is
arguably the most popular algorithm in multi-objective-optimization. It is a
variant of Genetic Algorithm that uses a non-dominated sorting mechanism
(to rank solutions based on their dominance level) and a crowding distance
operator (which preserves a high diversity in the population). We set tour-
nament size T = 2, crossover probability Cr = 0.75, mutation probability
m = 0.05, selection percentage s = 0.35, and exploration factor e = 0.8.

– Strength Pareto Evolutionary Algorithm-2 (SPEA2) [27]. SPEA2 relies on
an archive of boundary solutions and a mechanism for pruning such archive
along the evolutionary process. Additionally, it incorporates a fine-grained
fitness assignment strategy based on a nearest-neighbor density estimation
technique which guides the search more efficiently. We set tournament size
T = 2, crossover probability Cr = 0.9, and mutation probability m = 0.01.

– Multi-Objective Particle Swarm Optimization (MOPSO) [28]. This is a multi-
objective variant of Particle Swarm Optimization, that simply combines with
the classic PSO logics the non-dominated sorting used in NSGA2. The para-
metrization is the one proposed in [28].

4.3 Minimization of Test Error vs Minimization of Validation Error

The first set of experiments has as main objective the minimization of validation
and test error. Minimizing the validation error allows one to avoid the overfitting
problem, whereas minimizing the test error gives the best performance in terms
of accuracy. We repeat the experiments on each dataset in two conditions, i.e. (1)
one in which the activation function is fixed, a priori and for the entire network,
to one of the following: {Gaussian, Linear, Sigmoid, Sin, Step} and (2) one in
which the activation function is free to vary for each layer, and is chosen by the
MOEA. In the latter case, the activation function is chosen within the following
set of functions: {Bipolar, Competitive, Gaussian, Linear, Log, Ramp, Sigmoid,
Sin, SoftMax, Step, Tanh, Elliott, Symmetric Elliott}; moreover, the MOEA is
allowed to select the same activation function for more than one layer.

In both cases, the neural network topologies are structured as described in
Sect. 3. The number of hidden layers varies in [1, 3], with the first layer having a
variable number of nodes in the range [1, 255], while the size of the second and
the third layers vary in [0, 255], with zero meaning that the layer is not present.
This way, we enforce the condition that the network has at least a hidden layer
made of a single node, while the other two hidden layers might not be present.

We execute the five MOEAs 5 independent times, with different random
seeds, on both datasets in the two conditions. For each algorithm we then



Optimizing Feed-Forward Neural Network Topology 59

aggregate the Pareto-optimal solutions found at the end of each run, and finally
we select the non-dominated solutions among all the optimal solutions found.
We report the set of non-dominated solutions obtained by each algorithm on
the WBCD in Figs. 2 and 3a, respectively for the case with fixed and variable
activation function. As for the HD, due to space limitations we report only the
non-dominated solutions obtained with variable activation function, see Fig. 4.

In all figures, the solutions marked with a black square indicate neural net-
works reaching a full accuracy of 100%. We should note that, while validation
and test error are calculated as Mean Squared Error (MSE) between the expected
classification value (0/1) and actual neural network output (ranging in [0, 1], and
depending on the output activation function), the accuracy is calculated based
on the confusion matrix: (True Positives + True Negatives)/(Total sample size).

The numerical results show that on both datasets and conditions (fixed or
variable activation function), the MOEAs obtain several solutions with full accu-
racy, with no clear superiority of any of the algorithms. Also, the choice of the
activation function seems to affect only marginally the performance. Notably,
using a variable activation function allowed us to find, on the WBCD, the two
full accuracy classifiers with the lowest validation/test error (see the red circle,
in Fig. 3a, grey in print). The MOEAs were also successful on the HD, find-
ing numerous full accuracy ANNs, although with a higher validation/test error
compared to WBCD (most probably because of the unbalance of the dataset).

To further highlight the potentialities of the MOEA-based method, we report
in Tables 1 and 2 a comparison of the best accuracy found in this study against
the accuracy obtained in the state-of-art literature, respectively on the WBCD
and the HD. We can see that the MOEA-based method tested here is the only
one capable of reaching an accuracy value of 100% on both datasets.

4.4 Minimization of Network Complexity vs Minimization of
Validation Error

As an additional experiment, we apply the MOEA-based method to a different
formulation of the neural network optimal design, one in which the optimization
criteria are the minimization of validation error and network computational com-
plexity. The latter is measured here via the Akaike Information Criterion (AIC)
[6], defined as −2 · ln(MSE)+2k, where k is the number of weights in the ANNs.
This second goal might be important, for instance, in contexts where the clas-
sifier ANN must be used in real-time and therefore should be computationally
cheap, still guaranteeing robust classification performance.

Due to space limitations, we report only the results on the WBCD (Fig. 3b),
but similar considerations apply also to the other dataset. Also, in this case we
consider only variable activation functions. Results show that in this case the
MOEAs find only one solution with full accuracy, that is associated to the lowest
AIC level. On the other hand, ANNs of higher complexity are, unsurprisingly,
characterized by a lower validation error but, because of overfitting, none of
them is capable of generalizing and obtain full accuracy.



60 V. Bevilacqua et al.

Validation Error
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

T
es

t E
rr

or

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
MODE
MOES
MOPSO
NSGA2
SPEA2

(a)

Validation Error
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

T
es

t E
rr

or

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
MODE
MOES
MOPSO
NSGA2
SPEA2

(b)

Validation Error
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

T
es

t E
rr

or

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
MODE
MOES
MOPSO
NSGA2
SPEA2

(c)

Validation Error
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

T
es

t E
rr

or

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
MODE
MOES
MOPSO
NSGA2
SPEA2

(d)

Validation Error
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

T
es

t E
rr

or

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
MODE
MOES
MOPSO
NSGA2
SPEA2

(e)

Fig. 2. Non-dominated solutions on the WBCD (with fixed activation function): min-
imization of validation and test error with Gaussian (a); Linear (b); Sigmoid (c); Sin
(d); and Step (e) function.



Optimizing Feed-Forward Neural Network Topology 61

Fig. 3. Non-dominated solutions on the WBCD (with variable activation function):
minimization of validation and test error (a); minimization of validation error and
Akaike Information Criterion (b).

Validation Error
0 0.05 0.1 0.15 0.2 0.25 0.3

T
es

t E
rr

or

0

0.05

0.1

0.15

0.2

0.25

0.3
MODE
MOES
MOPSO
NSGA2
SPEA2

(a)

Fig. 4. Non-dominated solutions on the HD (with variable activation function): mini-
mization of validation and test error.

4.5 Execution Times of the Experiments

Finally, we conclude our presentation of the numerical results with a brief analy-
sis of the execution times. On the WBCD, each run of the various MOEAs is
executed in approximately 2–6 min. On the HD instead, each run is executed in
approximately 2–3 h (except for MOPSO, which takes up to 5 h/run). All tests
were executed using 8 threads in parallel on a Linux (Ubuntu 15.04) machine



62 V. Bevilacqua et al.

Table 1. Accuracy on the WBCD

Accuracy Reference

99.51% [29]

99.14% [30]

97.8% [31]

97.21% [32]

100% this work

Table 2. Accuracy on the HD

Accuracy Reference

96.25% [33]

94,12% [34]

92.9% [35]

100% this work

with an eight-core i7-5960X CPU and 16 GB RAM. The large difference in run-
time between the two datasets can be explained considering that the HD is an
unbalanced dataset and the training time on each shuffled version of it takes
more time to reach the training error threshold2.

5 Conclusion

In this paper we have introduced a multi-objective optimization approach for
optimally designing and training Artificial Neural Networks used for classifi-
cation problems. The proposed method leverages several state-of-the-art algo-
rithms provided by Kimeme, an optimization platform available online. We con-
ducted a thorough experimental campaign testing a number of modern multi-
objective optimization algorithms, including MOES, MODE, MOPSO, NSGA2
and SPEA2 on two different datasets. Such comparative study was performed on
the Breast Cancer Wisconsin Dataset and the Hepatitis dataset from the UCI
repository. The aim was to find the non-dominated ANNs minimizing the valida-
tion error and the test error, or, alternatively, minimizing at the same time the
validation error and the ANN complexity. The latter was measured by means of
the Akaike Information Criterion.

All the tested algorithms were able to find, in all conditions on both datasets,
several ANNs characterized by 100% accuracy, improving upon results previ-
ously found in the literature. Among the algorithms selected in the study though,
we observed a substantial equivalence.

The proposed approach reveals that the automatic design of Artificial Neural
Networks by means of multi-objective optimization is a viable solution in the
context of complex classification problems. This is especially true when any
prior information about the problem at hand is scarce, or not available at all.
Furthermore, such an automatic design has a high degree of general purposeness,
as it can be easily extended to different classification tasks.

In future studies, we will attempt to test this method on new problems, and
we will try to devise novel optimization schemes specifically designed for ML.

2 We should note though, that while in the case of WBCD we used a training error
threshold 0.1, in the case of HD we used a threshold of 0.2, to improve the training
time and avoid overfitting.



Optimizing Feed-Forward Neural Network Topology 63

References

1. Baxt, W.G.: Application of artificial neural networks to clinical medicine. Lancet
346(8983), 1135–1138 (1995)

2. Floyd, C.E., Lo, J.Y., Yun, A.J., Sullivan, D.C., Kornguth, P.J.: Prediction of
breast cancer malignancy using an artificial neural network. Cancer 74(11), 2944–
2948 (1994)

3. Bevilacqua, V., Mastronardi, G., Menolascina, F., Pannarale, P., Pedone, A.: A
novel multi-objective genetic algorithm approach to artificial neural network topol-
ogy optimisation: the breast cancer classification problem. In: International Joint
Conference on Neural Networks, pp. 1958–1965. IEEE (2006)

4. Fonseca, C., Fleming, P.: Multiobjective genetic algorithms made easy: selection
sharing and mating restriction. In: First International Conference on Genetic Algo-
rithms in Engineering Systems: Innovations and Applications, GALESIA 1995, pp.
45–52 (1995)

5. Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.
edu/ml

6. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom.
Control 19(6), 716–723 (1974)

7. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16.
Wiley, New York (2001)

8. Bevilacqua, V., Costantino, N., Dotoli, M., Falagario, M., Sciancalepore, F.: Strate-
gic design and multi-objective optimisation of distribution networks based on
genetic algorithms. Int. J. Comput. Integr. Manufact. 25(12), 1139–1150 (2012)

9. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algo-
rithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2),
264–283 (2015)

10. Coello, C.A.C.: Multi-objective evolutionary algorithms in real-world applications:
some recent results and current challenges. In: Greiner, D., Galván, B., Périaux,
J., Gauger, N., Giannakoglou, K., Winter, G. (eds.) Advances in Evolutionary and
Deterministic Methods for Design, Optimization and Control in Engineering and
Sciences, pp. 3–18. Springer, New York (2015)

11. Bevilacqua, V., Mastronardi, G., Piscopo, G.: Evolutionary approach to inverse
planning in coplanar radiotherapy. Image Vision Comput. 25(2), 196–203 (2007)

12. Menolascina, F., Bellomo, D., Maiwald, T., Bevilacqua, V., Ciminelli, C., Par-
adiso, A., Tommasi, S.: Developing optimal input design strategies in cancer sys-
tems biology with applications to microfluidic device engineering. BMC Bioinform.
10(S–12), 1–4 (2009)

13. Whitley, D., Starkweather, T., Bogart, C.: Genetic algorithms and neural networks:
optimizing connections and connectivity. Parallel Comput. 14(3), 347–361 (1990)

14. Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algo-
rithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)

15. Leung, F.H., Lam, H.K., Ling, S.H., Tam, P.K.: Tuning of the structure and para-
meters of a neural network using an improved genetic algorithm. IEEE Trans.
Neural Netw. 14(1), 79–88 (2003)

16. Bhardwaj, A., Tiwari, A.: Breast cancer diagnosis using genetically optimized
neural network model. Expert Syst. Appl. 42(10), 4611–4620 (2015)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


64 V. Bevilacqua et al.

17. Bevilacqua, V., Brunetti, A., de Biase, D., Tattoli, G., Santoro, R., Trotta, G.F.,
Cassano, F., Pantaleo, M., Mastronardi, G., Ivona, F., et al.: A P300 clustering
of mild cognitive impairment patients stimulated in an immersive virtual real-
ity scenario. In: Intelligent Computing Theories and Methodologies, pp. 226–236.
Springer (2015)

18. Bevilacqua, V., Salatino, A.A., Di Leo, C., Tattoli, G., Buongiorno, D., Signorile,
D., Babiloni, C., Del Percio, C., Triggiani, A.I., Gesualdo, L.: Advanced classi-
fication of alzheimer’s disease and healthy subjects based on EEG markers. In:
International Joint Conference On Neural Networks, pp. 1–5. IEEE (2015)

19. Bevilacqua, V., Tattoli, G., Buongiorno, D., Loconsole, C., Leonardis, D., Bar-
sotti, M., Frisoli, A., Bergamasco, M.: A novel BCI-SSVEP based approach for
control of walking in virtual environment using a convolutional neural network. In:
International Joint Conference On Neural Networks, pp. 4121–4128. IEEE (2014)

20. Riedmiller, M., Braun, H.: RPROP-a Fast Adaptive Learning Algorithm. In: Pro-
ceedings of ISCIS VII, Universitat (1992)

21. Cyber Dyne Srl: Kimeme. http://cyberdynesoft.it/
22. Iacca, G., Mininno, E.: Introducing kimeme, a novel platform for multi-disciplinary

multi-objective optimization. In: Rossi, F., et al. (eds.) WIVACE 2015. CCIS, vol.
587, pp. 40–52. Springer, Heildelberg (2016). doi:10.1007/978-3-319-32695-5 4

23. Heaton, J.: Programming Neural Networks with Encog 2 in Java (2010)
24. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global

optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
25. Beyer, H.G., Arnold, D.V.: Theory of evolution strategies - a tutorial. In: Kallel,

L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing,
pp. 109–133. Springer, New York (2001)

26. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

27. Zitzler, E., Laumanns, M., Thiele, L., Zitzler, E., Zitzler, E., Thiele, L., Thiele, L.:
SPEA2: Improving the Strength Pareto Evolutionary Algorithm (2001)

28. Wickramasinghe, U., Li, X.: Choosing leaders for multi-objective PSO algorithms
using differential evolution. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361,
pp. 249–258. Springer, New York (2008)

29. Akay, M.F.: Support vector machines combined with feature selection for breast
cancer diagnosis. Expert Syst. Appl. 36(2), 3240–3247 (2009)

30. Şahan, S., Polat, K., Kodaz, H., Güneş, S.: A new hybrid method based on fuzzy-
artificial immune system and k-nn algorithm for breast cancer diagnosis. Comput.
Biol. Med. 37(3), 415–423 (2007)

31. Pena-Reyes, C.A., Sipper, M.: A fuzzy-genetic approach to breast cancer diagnosis.
Artif. Intell. Med. 17(2), 131–155 (1999)

32. Setiono, R., Liu, H.: Symbolic representation of neural networks. Computer 29(3),
71–77 (1996)

33. Sartakhti, J.S., Zangooei, M.H., Mozafari, K.: Hepatitis disease diagnosis using a
novel hybrid method based on support vector machine and simulated annealing
(SVM-SA). Comput. Methods Programs Biomed. 108(2), 570–579 (2012)

34. Polat, K., Güneş, S.: Prediction of hepatitis disease based on principal component
analysis and artificial immune recognition system. Appl. Math. Comput. 189(2),
1282–1291 (2007)

35. Bascil, M.S., Oztekin, H.: A study on hepatitis disease diagnosis using probabilistic
neural network. J. Med. Syst. 36(3), 1603–1606 (2012)

http://cyberdynesoft.it/
http://dx.doi.org/10.1007/978-3-319-32695-5_4

	Optimizing Feed-Forward Neural Network Topology by Multi-objective Evolutionary Algorithms: A Comparative Study on Biomedical Datasets
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Numerical Results
	4.1 Datasets
	4.2 Algorithms
	4.3 Minimization of Test Error vs Minimization of Validation Error
	4.4 Minimization of Network Complexity vs Minimization of Validation Error
	4.5 Execution Times of the Experiments

	5 Conclusion
	References


