Dynamically Critical Systems and Power-Law
Distributions: Avalanches Revisited

Marina L. Di Stefano!, Marco Villani', Luca La Rocca’,
Stuart A. Kauffmanz, and Roberto Serra'®”

! Department of Physics, Informatics and Mathematics,
University of Modena and Reggio Emilia, v. Campi 213a, 41125 Modena, Italy
luce.marina@gmail.com,
{marco.villani, luca.larocca, roberto.serra}@unimore.it
Institute for Systems Biology, Seattle 401 Terry Ave N, Seattle, WA 98109, USA
stukauffman@gmail.com

[N

Abstract. In this paper we show that a well-known model of genetic regulatory
networks, namely that of Random Boolean Networks (RBNs), allows one to study
in depth the relationship between two important properties of complex systems,
i.e. dynamical criticality and power-law distributions. The study is based upon an
analysis of the response of a RBN to permanent perturbations, that may lead to
avalanches of changes in activation levels, whose statistical properties are deter-
mined by the same parameter that characterizes the dynamical state of the network
(ordered, critical or disordered). Under suitable approximations, in the case of
large sparse random networks an analytical expression for the probability density
of avalanches of different sizes is proposed, and it is shown that for not-too-small
avalanches of critical systems it may be approximated by a power law. In the case
of small networks the above-mentioned formula does not maintain its validity,
because of the phenomenon of self-interference of avalanches, which is also
explored by numerical simulations.

1 Introduction

It has been repeatedly suggested that biological (and perhaps also artificial) evolution
should preferentially lead to states that are dynamically critical [1-6]. These states,
sometimes said to be “at the edge of chaos”, are neither too rigidly ordered nor chaotic;
if the system is described by a dynamical system, the claim translates into the statement
that evolution should tune the system’s parameters, so they should be at (or close to) the
separatrices between regions of ordered behavior (where the attractors are, e.g., fixed
points or limit cycles) and regions where the attractors are chaotic.

It is also often assumed that the presence of power-law distributions is the hallmark
of criticality. Indeed, slightly different (although overlapping) notions of criticality have
been used [7]. In this paper we show that a well-known model of genetic regulatory
networks, introduced by one of us several years ago [8], i.e. that of Random Boolean
Networks (RBNs), can be used to study the relationships between power-law distribu-
tions and criticality issues.
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This work is based in part on previous investigations by some of us [9, 10],
where it had been shown that RBNs can simulate the statistical properties of the
changes induced by single gene knock-out in the expression levels of all the genes
of S. Cerevisiae. In this paper we are not concerned with the comparison of the
model with experimental data, but we rather deepen the analysis of the behavior of
the model when subject to small permanent perturbations. The smallest perturbation
of this type consists in fixing the value of a single node. Here we will consider
perturbations that simulate the knock-out of a randomly chosen gene: among the N
nodes of the network, one is chosen at random and its value is fixed to 0. However,
as it will be discussed in Sect. 2, RBNs have cyclic attractors, and we perform the
perturbation after the network has reached an attractor. It is therefore possible that
the candidate node be always O in every state of the attractor, but in this case
clamping it to 0 would have no effect at all; so we discard that node and we choose
another one.

In our studies we then compare the time behavior of the unperturbed (“wild type”,
briefly WT) network with that of the perturbed one (“knocked-out”, KO) that differs
from the first by the clamping to O of the chosen node (let us call it node R). A node is
said to be affected if its value in the KO network differs from that in the WT network at
least once, after the clamping in root. Since nodes are connected, the perturbation can
in principle spread, and it is not limited to node R, or to those nodes that are directly
connected to it. The avalanche associated to that particular knock-out is the set of affected
genes, and the size of the avalanche is the cardinality of that set (let us call it V). In order
to compare results concerning different networks, it is sometimes useful to use the rela-
tive size of the avalanche, i.e. the ratio V/N.

One of the most intriguing features of the RBN model is that it allows one to distin-
guish ordered from disordered (often called “chaotic”) regimes on the basis of a single
parameter, sometimes called the Derrida parameter A; as it will be discussed in Sect. 2
this parameter depends upon the choice of the Boolean functions and upon the average
number of links per node. Ordered states have A < 1, for chaotic states A > 1; the value
A = 1 separates order from chaos, and it is therefore the critical value.

Under the assumptions that the number of incoming links per node A is small
(A << N) and that the overall avalanche is small (V << N), it can be proven, as it will
be shown in Sect. 3, that the distribution of avalanches depends only upon the same
Derrida parameter that determines the dynamical regime of the network. The assump-
tions made here amount to suppose that an avalanche never interferes with itself.
Precisely: an affected node B is defined to be the parent of another affected node C if
the first deviation of C from the unperturbed value is due to the influence of B. The non-
interference condition amounts to assuming that every node C in the avalanche is not
affected by any other affected node different from B (neither at a later stage nor at the
same time). Therefore, under these assumptions the topology of a spreading avalanche
is that of a tree, where each node has a single parent.

The dependency of the avalanche distribution upon A had already been derived in
our previous paper [10], however at that time it was not possible to provide a formula
for avalanches of arbitrary size, because a numerical coefficient had to be manually
computed. Here, after correcting a missing term, a recursive formula appears to correctly
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describe the distribution of avalanches up to size 8. It has then been hypothesized that

the formula holds for any avalanche size v, an ansatz that has been numerically verified

on simulated avalanches in networks with 1000 nodes and also theoretically proven.
The correct formula for p(v) = Pr(V =v) is then:

v—2
' llv—le—iv (1)

_ 1%
pv) = oo

Equation 1 is the same as the one that had been previously reported by Ramo [11], but
here it is derived in the physically sound “quenched’” model, where all the connections and
Boolean functions are fixed for each network, without resorting to the “annealed” approx-
imation [12], where connections and Boolean functions are changed at random at each time
step, thus losing any possibility of identifying dynamical attractors.

Equation 1 is valid for avalanches of any size and it is not a power law; by inserting
the value A = 1 we can derive the distribution for avalanches of any size in dynamically
critical networks. As it will be shown in Sect. 3, this does not lead to a true power law.
However, if we consider fairly large avalanches, for which the Stirling approximation
holds (while still being V << N), it turns out that the distribution indeed approximates
a power law with slope —3/2.

These results help to clarify the relationship between the concepts of dynamical
criticality and those based upon the existence of power-law distributions. In our view,
dynamical criticality is a more profound concept, and it may lead (and it often leads) to
approximate power-law distributions of interesting quantities.

Due to their modularity, it is sometimes interesting to consider relatively small gene
regulatory networks. In these cases the approximation V << N may not hold, and an
affected node may be subject to the influence of another changed node, so self-interfer-
ence can take place. We have also numerically explored this phenomenon, by counting
the fraction of self-interfering avalanches as a function of the network size. It is shown
in Sect. 4 that this fraction can be a substantial one in networks composed by tens or
even hundreds of genes. Note that, while real genetic networks usually host thousands
of genes, most of those networks that have been described in detail in the literature are
relatively small ones; if it were true that their behavior be largely uncoupled from that
of the whole network, then the self-interference of avalanches might have relevant
biological implications.

Some comments and conclusions are finally drawn in Sect. 5

2 Random Boolean Networks

Here below a synthetic description of the model main properties is presented, referring
the reader to [1, 2, 13] for a more detailed account. Several variants of the model have
been presented and discussed, but we will restrict our attention here to the “classical”
model. A classical RBN is a dynamical system composed of N genes, or nodes, which
can take either the value 0 (inactive) or 1 (active). Let x,(#)€{0,1} be the activation value
of node i at time ¢, and let X(7) = [x;(2), x,(¢) ... x5(1)] be the vector of activation values
of all the genes.
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The relationships between genes are represented by directed links and Boolean
functions, which model the response of each node to the values of its input nodes. In a
classical RBN each node has the same number of incoming connections k;,, and its k;,
input nodes are chosen at random with uniform probability among the remaining N — 1
nodes: in such a way the distribution of the outgoing connections per node tends to a
Poisson distribution for large N. The Boolean functions can be chosen in different ways:
in this paper we will only examine the case where they are chosen at random with
uniform probability in a predefined set of allowed transition functions.

In the quenched model, both the topology and the Boolean function associated to
each node do not change in time. The network dynamics are discrete and synchronous,
so fixed points and cycles are the only possible asymptotic states in finite networks (a
single RBN can have, and usually has, more than one attractor). The model shows two
main dynamical regimes, ordered and disordered, depending upon the degree of connec-
tivity and upon the Boolean functions. Typically, the average cycle length grows as a
power of the number of nodes N in the ordered region and diverges exponentially in the
disordered region [1]. The dynamically disordered region also shows sensitive depend-
ence upon the initial conditions, not observed in the ordered one.

It should be mentioned that some interesting analytical results have been obtained
by the annealed approach [12], in which the topology and the Boolean functions asso-
ciated to the nodes change at each step. Several results for annealed nets hold also for
the corresponding ensembles of quenched networks. Although the annealed approxi-
mation may be useful for analytical investigations [13], in this work we will always be
concerned with quenched RBNs, which are closer to real gene regulatory networks.

A very important aspect concerns how to determine and measure the RBNs’ dynam-
ical regime: while several procedures have been proposed, an interesting and well-
known method directly measures the spreading of perturbations through the network.
This measure involves two parallel runs of the same system, whose initial states differ
for only a small fraction of the units. This difference is usually measured by means of
the Hamming distance h(t), defined as the number of units that have different activations
on the two runs at the same time step (the measure is performed on many different initial
condition realizations, so one actually considers the average value <h(f)>, but we will
omit below the somewhat pedantic brackets). If the two runs converge to the same state,
i.e. h(t)—0, then the dynamics of the system are robust with respect to small perturba-
tions (a signature of the ordered regime), while if /() grows in time (at least initially)
then the system is in a disordered state. The critical states are those where A(f) remains
initially constant. If a single node is perturbed, the average number of differing nodes
at the following time step will be equal to [the probability that a node changes value if
one of its input changes] times [the average number of connections per node], a quantity
that is sometimes called the Derrida parameter.

In the classical model of RBNs, Boolean functions are often chosen at random among
all those with k;, values, but a detailed study of tens of actual genetic control circuits [14]
has shown that in real biological systems only canalizing functions are found: a function
is said to be canalizing if there is at least one value of one of its inputs that uniquely
determines the output. Therefore it may be interesting to consider cases where only
canalizing functions are allowed. Moreover, if we associate the value O to inactivity, a
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node that is always 0 will never show its presence, so it may be interesting also to
consider cases where the null function is excluded [9].

3 Perturbations in RBNs

As discussed in the Introduction, one can compare what happens in the WT RBN and
in the KO RBN: at the beginning, a single node (that is, the knocked-out one, also called
the root of the perturbation) will differ in the two cases, so the size of the initial avalanche
will be 1. If no one of the nodes that receive input from the root changes its value, then
the avalanche stops there and it will turn out to be of size 1.

Therefore one can compute p;, i.e. the probability that an avalanche has size 1, as
follows. Let g be the probability that a node chosen at random changes its value if one
(and only one) of its inputs changes its value; p; is then the probability that all the output
nodes of the root do not change, and if there are k outgoing connections, this probability
is ¢*; therefore, integrating over the outgoing distribution:

N-1

P = ) Poub)d @)
k=0

where p,,,(k) is the probability that a node chosen at random has k outgoing connections.

As far as larger avalanches are concerned, we will limit in this section to consider
the case of large sparse networks with (on average) a few connections per node; therefore
the probability that an output node of the root is also one of its input nodes is negligible.
In this case the probability that an avalanche has size 2 equals the probability that only
one of the output nodes of the root (i.e. a node at level 1) changes its value, and that the
perturbation does not propagate downwards to level 2 (i.e. that nodes which receive
connections from the affected node do not change their value). Therefore:

N-1 N—k—1
P2 = D k0, (0d A =q) Y pomyg” 3)
k=0 m=0

By applying the same reasoning, one can continue and compute the probability of
avalanches of increasing size. Of course, calculations become more and more cumber-
some, as the same size can be achieved in different ways (for example, an avalanche of
size 3 may be composed by the root and by two nodes at level 1, none at level 2, or by
the root, one node at level 1 and one at level 2).

It is however possible to show that every p,, can be written as a function of the

probability generating function F(g) of the outdegree distribution, defined as:

N-1

F =" 4"p,(m) “
k=0
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and of its derivatives. Indeed p; directly coincides with F (see Eq. 2); noting that
N-1

’;—Z = Y p,.(K)kg"~" one can show that p, (Eq. 3) can be written as:
k=0

oF
p,=(x —q)Fa—q 3)

In the same way it can be shown [10] that also the higher order probabilities can be
expressed as functions of F and its derivatives.

One can move one step further by taking into account the fact that the outdegree
distribution in the (classical) model networks is approximately Poissonian:

Ak
— AL
pout(k) =e k' (6)
where A = <k> (note that the average of the number of ingoing connections necessarily
equals that of the outgoing connections, so there is no need to specify). In this case
Eq. 4 becomes:

N-1 ©
AF Ak
_ kA" o k —AAT 1 gA
F= k_zoq e _k! = k_EOq e _k! =e¢ e (@)

and therefore, introducing the variable A = In(1/F) [15]:

A=(1-q)A
F=e? @®)
pn — Bnﬂn—le—ni

From Eq. 8 one can observe that F, and therefore the avalanche distribution (the
coefficient B, depending only on the graph of perturbation spreading) depends only upon
the parameter A that is the product of two terms, i.e. [probability that a node changes
value if one of its input changes]*[average number of connections per node]. Therefore
it coincides with the same Derrida parameter defined in Sect. 1.

The computation of the coefficients B, is lengthy an tedious; it has been explicitly
performed [15] up to the avalanche of size 8, and the results are summarized in Table 1.

Table 1. Coefficients of the avalanche distribution

Term Value Term Value Term Value Term Value
B, 1 B; 3/2 B; 125/24 B, 16807/720
B, 1 B, 16/6 Bg 1296/120 By 262144/5040

By looking at the way in which these numbers are generated, the following formula
can be suggested [15]:

B,=n""?/(n-1)! )
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Equation 9 correctly describes the entries of Table 1, and it can be conjectured that
it holds for every avalanche size n; taken together with Eq. 8 it leads to Eq. 1 (where the
size of the avalanche was denoted by v). In Fig. 1 it is shown that this formula does well
approximate the observed distribution of avalanches in simulated RBNs with 1000 nodes
(right panel), while the comparison is not satisfactory for small networks (20 nodes, left
panel), where self-interference plays a key role; see Sect. 4 for further comments.
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Fig. 1. The theoretical avalanche distribution given by Eq. 1 (red circles) is shown together with
the distribution observed in simulations (blue triangles). Every node has exactly 2 inputs, and all
the 16 Boolean function are allowed with uniform probability. Left: networks with 20 nodes; right:
networks with 1000 nodes (Color figure online)

Let us now come back to the issue of critical systems. The formula for the avalanche
distribution (Eq. 1) is valid for avalanches of any size; by inserting the value A = 1 we
can derive the distribution for avalanches of any size in dynamically critical networks:

Vv—2
v—-1n!

pv) = e (10)

It is often stated that power-law distributions are associated with critical states, but
Eq. 10 does not describe a power law. However, if we consider fairly large avalanches,
such that they still are v << N, but for which the Stirling approximation holds, i.e.

v! = 4/(2zv)(v/ e)’, we obtain the approximate formula:

p(v) = (271)_% Vo (11)

that is indeed a power law. This result helps to clarify the relationship between the
concepts of dynamical criticality (that, for the reasons given in Sect. 1, appear to be the
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deeper ones) and those based upon the existence of power-law distributions (that are
approximate relationships that often hold at criticality).

It goes without saying that the above remark holds for power-law distributions; close
to critical states another type of power-law relationship often holds, which describes the
relationship between two different variables (i.e., scaling laws of order parameters as a
function of the distance from the critical point).

4 Self-Interfering Avalanches

As it has been observed in Sects. 1 and 3, the theoretical Eq. 1 has been derived by
assuming that avalanches do not interfere with themselves. This approximation breaks
down when the network is “small”, so that it is likely that some avalanches actually
show the phenomenon of self-interference. Indeed, it has been shown in Fig. 1 that the
distribution of avalanches is largely different from the theoretical one for small networks
of 20 nodes. If a portion of a genetic network is, at least under some circumstances,
largely decoupled from the rest, then it may be interesting to consider also small
networks; therefore we have analyzed the behavior of networks of different sizes, while
keeping the connection fixed (two inputs per node).

Avalanche distribution (Total) Avalanche distribution {non-nterfering)
045 : : T T T T T 045 T T T T T T T
0 8 Srulated ¥ VU smuated
Theoretica O Theorstical

04- E— 04- -

035 035

03- v 03-
3
8025~ 025~
o
e
°
2 o2r 02-
: v

aus- O ust 0

01+ 1 01+

v 0
005+ v X 005+ 0 8 8 -
a223 854 Yo
A 0 {8 EEEEy .. 99¢¢ :
0 2 4 a 012 i 18 0 2 4 a 10
Avelanche size Avelanche size

Fig. 2. Distribution of total avalanches (left) and of non-interfering ones (right) for a network
with 20 nodes, two connections per node, only canalizing functions allowed

We have developed an algorithm that provides a good approximation to the number
of really interfering avalanches, thus separating them from the non-interfering ones. The
results obtained for N = 20 networks are shown in Fig. 2 and it can be seen that they
provide support to our guess that departures from the theoretical formula Eq. 1. are
largely due to self-interference. Similar results have been obtained by considering



Dynamically Critical Systems and Power-Law Distributions 37

networks of different sizes; as it should be expected, ceteris paribus the fraction of
interfering avalanches is a monotonous decreasing function of the network size N.

The reported simulations have been performed by considering the case where only
canalizing functions are used. As it has been observed, there is a biological reason for that.
In this case, the 1—¢ term, i.e. the probability that a node is changed when one of its parent
nodes is changed, is no longer ¥2 (like in the case with all the Boolean functions) but it is
rather 3/7. Another biologically interesting case is the one where all the non-canalizing
functions and the NULL function are excluded (in this case 1—¢ = 6/13). Simulations of
avalanche distributions also in this case (not shown here) broadly confirm the above remarks.

5 Conclusions

We have shown here that a very simple formula describes the distribution of non-inter-
fering avalanches of all sizes (provided that they fulfill the non-interference constraint).
A similar formula had been obtained by Ramo [11], but by resorting to the annealed
approximation. Here the distribution has been explicitly computed for avalanches up to
size 8: arecursive formula shows up, so a generalization has been proposed and checked
against simulations. It is worth observing that the formula has actually also been proven
by the theory of branching process; the interested reader is referred to [15] for details.

The formula allows one to show that approximate power-law distributions can indeed
be observed in critical systems for not too small avalanches.

The very interesting phenomenon of avalanche self-interference has been observed
and described. It certainly deserves more careful future investigations.

Last but not least, it will be extremely interesting to consider the results of the inter-
action among different avalanches. This might indeed be the most common case in
biology: for example when a chemical is introduced into a cell it is likely to affect more
genes at the same time. Interesting effects like the nonlinear dose-response relationships
that have been observed might perhaps find at least a partial explanation in the study of
the interactions among avalanches.

A final mention of data on real systems is worth, although this paper is not concerned
with comparisons with experimental data. It is however interesting to mention that by
comparing the experimental data on S.Cerevisiae with the theoretical distribution of
Eq. 1, using the jackknife method [16, 17], it is possible to locate the A parameter in the
95 % confidence interval [0.84, 0.93]. Moreover, an analysis of the same data using
Bayes factors [18, 19], leads to reject the hypothesis that the network is precisely critical,
since the probability that A = 1 given the data is smaller than 10~ under a broad range
of prior distributions. The interested reader is referred to [15] for further details.

Of course these results are not conclusive, given that we have analyzed a single data
set, but they are very interesting. Note also that Kauffman had suggested that living
beings might live “in the ordered region, close to the order-chaos border”, and this is
perfectly compatible with the results of the above analysis. Note also that the claim
concerning the advantages of critical states might refer to organisms or colonies, and
not necessarily to single cells. The relationship between the dynamics of a single cell
and that of an organism (or of an organ) may be far from trivial and we refer the interested
reader to [20-23].
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