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Abstract. The identification of system’s parts that rule its dynam-
ics and the understanding of its dynamical organisation is a para-
mount objective in the analysis of complex systems. In previous work
we have proposed the Dynamical Cluster Index method, which is based
on information-theoretical measures. This method makes it possible to
identify the components of a complex system that are relevant for its
dynamics as well as their relation in terms of information flow. Complex
systems’ organisation is often characterised by intertwined components.
The detection of such dynamical structures is a prerequisite for infer-
ring the hierarchical organisation of the system. The method relies on a
ranking based on a statistical index, which depends on a reference sys-
tem (the homogeneous system) generated according to a parametrised
sampling procedure. In this paper we address the issue of assessing the
robustness of the method against the homogeneous system generation
model. The results show that the method is robust and can be reliably
applied to the analysis of data from complex system dynamics in general
settings, without requiring particular hypotheses.

Keywords: Information theory · Mutual information · Information
integration · Dynamical cluster index · Dynamical system · Boolean
networks

1 Introduction

Complex systems often show forms of tangled organisation, characterised by the
intertwined relation of their parts. When modelling a complex system it is com-
mon to associate variables to its atomic components and the actual dynamics
of the system can be represented by the interplay among some of its groups
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of variables, which we may call relevant subsets. The identification of relevant
subsets in a complex system is a key issue in contexts as diverse as biology,
neuroscience, environmental studies, big data analysis, economics and robotics,
just to mention some. In previous works, we have proposed a method based on
information-theoretical measures that aims at identifying those relevant subsets
(heareafter referred to as RSs). The technique is named the Dynamical Cluster
Index method (DCI) and has been shown to effectively capture the dynamical
organisation of complex systems of several kinds, such as genetic networks and
chemical reactions [1,14]. This method has been shown to be superior to classi-
cal correlation-based techniques and can be applied to dynamical systems non
necessarily in stationary states. Recently, we have proposed an operational def-
inition of RS in terms of a filtering algorithm and suggested the use of transfer
entropy for the assessment of the information flow among RSs [2]. The overall
method developed makes it possible to identify the components of a complex
system that are relevant for its dynamics as well as their relation in terms of
information flow. The detection of such dynamical structure is a prerequisite
for inferring a likely hierarchical organisation of the system. The identification
of the RSs relies on a ranking based on a statistical index, which depends on
a reference system. This system should provide a baseline for the assessment
of the results and it is usually generated by means of a stochastic model, so
as to both capture the main statistical properties of the complex system to be
analysed and provide a reference homogeneous system, i.e. a system without RSs.
A subtle yet crucial point concerns the robustness and significance of the results
attained by the application of the DCI method against the fluctuations induced
by the sampling of the homogeneous system.

In this paper we address this issue and show that the results attained by
the DCI method are valid in general and do not depend upon the homogeneous
system instances generated. We first briefly recall the basic notions and provide
an overview of the DCI method in Sect. 2. In Sect. 3 we succinctly illustrate the
sieving procedure used for identifying the RSs and their exchange of information.
The robustness of the results is discussed in Sect. 4, where we present the results
of a thorough statistical analysis. Finally, we discuss further improvements of
the method and we conclude with Sect. 6.

2 The Dynamical Cluster Index Method

The DCI method has been introduced in previous work and the interested reader
can find details in [1,12,13]. For the sake of completeness, we provide a brief
summary of the main notions and the method itself. Let us consider a system
modelled with a set U of n variables ranging in finite and discrete value domains.
The cluster index of a subset S of variables in U , S ⊂ U , as defined by Tononi
et al. [10], estimates the ratio between the amount of information integration
among the variables in S and the amount of integration between S and U .
These quantities are based on the Shannon entropy of both the single elements
and sets of elements in U . The entropy of an element xi is defined as:
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H(xi) = −
∑

v∈Vi

p(v) log p(v) (1)

where Vi is the set of the possible values of xi and p(v) the probability of
occurrence of symbol v.

In this work, we deal with observational data, therefore probabilities are
estimated by means of relative frequencies. The cluster index C(S) of a set S
of k elements is defined as the ratio between the integration I(S) of S and the
mutual information between S and the rest of the system U −S. The integration
of S is defined as:

I(S) =
∑

x∈S

H(x) − H(S) (2)

I(S) represents the deviation from statistical independence of the k elements
in S. The mutual information M(S;U − S) is defined as:

M(S;U − S) ≡ H(S) − H(S|U − S) = H(S) + H(U − S) − H(S,U − S) (3)

where H(A|B) is the conditional entropy and H(A,B) the joint entropy. Note
that H(A) denotes the entropy of the set A. Finally, the cluster index C(S) is
defined as:

C(S) =
I(S)

M(S;U − S)
(4)

Since C is defined as a ratio, it is undefined in all those cases where M(S;U −
S) vanishes. In this case, the subset S is statistically independent from the rest of
the system and it has to be analyzed separately. As C(S) scales with the size of
S, cluster index values of systems of different size need to be normalized. To this
aim, a reference system is defined, i.e., the homogeneous system Uh, that keep
some statistical properties of the original system but does not contain clusters.
There are several ways to generate Uh, which will be discussed in Sect. 4. In
general, for each subsystem size of Uh the average integration Ih and the average
mutual information Mh are computed. The cluster index value of S is normalized
by means of the appropriate normalization constant:

C ′(S) =
I(S)
〈Ih〉 /

M(S;U − S)
〈Mh〉 (5)

Furthermore, to assess the significance of the differences observed in the
cluster index values, a statistical index Tc is computed:

Tc(S) =
C ′(S) − 〈C ′

h〉
σ(C ′

h)
=

C(S) − 〈Ch〉
σ(Ch)

(6)

where 〈Ch〉, σ(Ch) and 〈C ′
h〉 and σ(C ′

h) are the average and the standard
deviation of the population of cluster indices and normalized cluster indices
with the same size of S from the homogeneous system.

The search for RSs of a dynamical system by means of the DCI requires first
the collection of observations of the values of the variables at different instants.
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As the DCI is computed on the basis of symbol frequencies, in principle it is not
required to have a time series but just a collection of snapshots of the system
variables. However, the results discussed in this paper have been obtained by
analysing time series of discrete-time discrete-state systems. In order to find the
RSs, in principle all the possible subsets of system variables should be considered
and their DCI computed. In practice, this procedure is feasible only for small-size
subsystems in a reasonable amount of time. Therefore, heuristics are required to
address the study of large-size systems.

3 Relevant Subsets

The list of candidate RSs (CRSs) can be ranked according to the significance of
their DCI. In many cases this analysis might return a huge list of entangled sets,
so that a direct inspection is required for explaining their relevance. To this aim,
we have introduced a DCI analysis post-processing sieving algorithm to reduce
the overall number of CRSs to manually tackle [2]. A main limitation might be
owing to the fact that if a CRS A is a proper subset of CRS B, then only the
subset with the higher DCI is maintained between the two. Thus, only disjoint
or partially overlapping CRSs are retained: the used assumption implies that the
remaining CRSs are not further decomposable, forming in such a way the “build-
ing blocks” of the dynamical organisation of the system. The sieving algorithm
enables us to provide a precise definition of RSs, avoiding the fuzzyness typical
of the definitions of clusters in general. Of course, this operational definition
is based on some assumptions, which might limit the outcome of a DCI-based
analysis. The main assumption is that the ranking of the CRSs depends upon
the homogeneous system: this issue will be thoroughly discussed in Sect. 4.

3.1 Information Flow Among RSs

The transfer entropy (TE) has been introduced by Schreiber [6] as a measure to
quantify information transfer between systems evolving in time. Let X and Y
be two random variables representing the state transition of two stochastic or
deterministic systems. Let xt and yt be the values respectively of X and Y at
time t. Let also suppose that the systems are Markovian processes of order 1, i.e.
p(xt+1|xt, xt−1, xt−2, . . .) = p(xt+1|xt).1 The transfer entropy TX→Y quantifies
the amount of information available from knowing yt on xt+1 and is defined as
follows:

TY →X =
∑

X,Y

p(xt+1, xt, yt) log
p(xt+1|xt, yt)
p(xt+1|xt)

, (7)

We note that the temporal dependency is not necessarily of unitary lag, i.e.
t − 1 → t. For a complete assessment of the statistical dependency of X on Y
one should sum over t− 1, t− 2, . . . , t− k, where k is the order of the Markovian
1 We will further discuss the consequences of this hypothesis.



On the Robustness of the Detection of Relevant Sets 19

Table 1. The update rules of the boolean networks discussed in the text. Random(0.5)
denotes a Bernoulli distribution with probability 0.5.

Node Node Rule

Case 1 Case 2 Case 3 Case 4 Case 5

N01 Random(0.5) Random(0.5) Random(0.5) Random(0.5) Random(0.5)

N02 Random(0.5) Random(0.5) Random(0.5) Random(0.5) Random(0.5)

N03 (N04 ⊕ N05) (N04 ⊕ N05) N10∧(N04 ⊕ N05) (N04 ⊕ N05) (N04 ⊕ N05)

N04 (N03 ⊕ N05) (N03 ⊕ N05) (N03 ⊕ N05) (N03 ⊕ N05) (N03 ⊕ N05)

N05 (N03 ⊕ N04) (N03 ⊕ N04) (N03 ⊕ N04) (N03 ⊕ N04) (N03 ⊕ N04)

N06 Random(0.5) Random(0.5) Random(0.5) (N05 ⊕ N08) (N05 ⊕ N08)

N07 Random(0.5) Random(0.5) Random(0.5) (N07+N08+N09+N10) ≥ 2 ¬(N05 ⊕ N08)

N08 (N09 ⊕ N10) N05∧(N09 ⊕ N10) N05∧(N09 ⊕ N10) N03 ⊕ N05 N09 ⊕ N10

N09 (N08 ⊕ N10) (N08 ⊕ N10) (N08 ⊕ N10) (N04+N05+N07+N08)≤ 2 (N08 ⊕ N10)

N10 (N08 ⊕ N09) (N08 ⊕ N09) (N08 ⊕ N09) N06∧(N05 ⊕ N09) (N08 ⊕ N09)

N11 Random(0.5) Random(0.5) Random(0.5) Random(0.5) Random(0.5)

N12 Random(0.5) Random(0.5) Random(0.5) Random(0.5) Random(0.5)

process. Nevertheless, in this paper (i) we are analysing Markovian systems of
order 1, whose behaviour depends only on the immediately previous step and
(ii) although TE is not a direct measure of causal effect, the use of short history
length and the generation of time series by means of perturbations makes it
possible to consider this measure as a way to infer causal effect [5].

4 Robustness of the Method

In this section we illustrate the results concerning the robustness of the results
returned by the DCI method with respect to the variance introduced by the
homogeneous system generation. We assessed the ranking of the RSs and the
transfer entropy values as a function of a sampled distribution of homogeneous
system instances and we also compared different ways for generating it. We first
describe the test cases used in the analysis; subsequently, we discuss the results
in terms of RSs ranking and transfer entropy.

4.1 Test Cases

We chose five paradigmatic systems composed of 12 nodes updated either by
means of a boolean function or randomly. The rationale behind the definition
of such systems is that, despite their apparent simplicity, they exhibit a non-
trivial dynamics, as they are boolean networks, a modelling framework that has
obtained remarkable results in simulating real gene regulatory networks [7–9,11].
Nodes update their state in parallel and synchronously. The functional depen-
dences and the update rules of these systems are shown in Table 1. The size of
these systems enables us to perform an exhaustive enumeration of all the possible
groups, allowing their complete assessment. The systems analysed are initially
set to a random initial state and are evolved in time for 500 steps. In order to
avoid short attractors and to better observe the relationships among nodes a
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perturbation is made every 10 steps—nodes are perturbed sequentially, but not
in the same order. In Case 5 we also studied trajectories in which each node in
every step has the same probability p = 1.5% of being perturbed. It is worth
remarking that each perturbation is introduced after the system has recovered
a stable dynamical situation.

The five instances share a common structure but differ in specific dynamical
organizations of some nodes. In Case 1 , we consider two independent groups
of three nodes (namely, group A and group B), by assigning at each node the
XOR function of the other two nodes in the group. Case 2 derives from Case 1
by introducing in the first node of group B a further dependence from the last
node of group A, hence introducing information transfer from group A to group
B. Case 3 is a variant of Case 2 in which a functional dependence of the first
node of group A from the last node of group B is introduced. In Case 4 , five
heterogeneously linked nodes are influenced by groupA. The combination of the
dynamical rules of the nodes and their initial condition makes the dynamical
behaviour of the sixth node always in phase with the triplet. Finally, Case 5
derives from Case 1 by adding two nodes whose dynamical behaviour directly
depends on nodes of both group A and group B : these 8 nodes form a group
clearly different from the remaining 4 random nodes, as they are interdependent
and ruled by deterministic functions.

4.2 Relevant Sets Ranking

The usual way of computing the Tc value consists in generating an instance
of an homogeneous system and compute the average of integration and mutual
information of its subsets of any size. These values are then used to assess the sta-
tistical significance of the DCI of a given subset of the system under observation.
The homogeneous system can be generated according to different models and
the time series can be of course of different length. We checked the robustness
of the results against both criteria.

As for the model for generating the homogeneous system, we considered
two possibilities that differ in the distribution probability used. Let s1, s2, . . .
be the time series of the system to be analysed, where si = (xi

1, x
i
2, . . . , x

i
n).

Let ŝi = (x̂i
1, x̂

i
2, . . . , x̂

i
n) be the generic state of the homogeneous system time

series. In the following, without loosing generality, we suppose that variables are
boolean. The two distributions used for generating the homogeneous systems are
the following:

i. Compute the frequency fi of 1 s for each variable xi occurring in the series.2

Generate a series of states in which the values occur according to the
individual frequencies of the variables, i.e. the value of x̂i

j is sampled from a
Bernoulli distribution with parameter fi.

ii. Compute the global frequency f of 1 s occurring in the series. Generate a
series of states in which the values occur according to the global frequencies,
i.e. the value of x̂i

j is sampled from a Bernoulli distribution with parameter f .

2 The frequency of 0 s is simply 1 − fi.
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Table 2. Results attained by using model (i). For each of the first five positions in the
ranking, the group occurring most frequently is shown, along with its frequency.

Case 1

Rank CRS p

1 8,9,10 0.8
2 3,4,5 0.8
3 9,10 0.5
4 8,9 0.5
5 3,4 0.52

Case 2

Rank CRS p

1 3,4,5 0.62
2 9,10 0.36
3 8,9,10 0.2
4 5,8,9,10 0.22
5 8,9,10 0.14

Case 3

Rank CRS p

1 9,10 0.92
2 4,5 0.8
3 8,9,10 0.62
4 3,9,10 0.38
5 4,5,8 0.34

Case 4

Rank CRS p

1 4,6 0.6
2 4,5,6 0.38
3 3,4,5,6 0.28
4 3,4,5,6 0.22
5 4,5,6,8 0.24

Case 5

Rank CRS p

1 6,7 0.94
2 5,6,7 0.76
3 6,7,8 0.74
4 4,6,7 0.52
5 6,7,9 0.36

Both models capture the idea of preserving some statistical properties of
the data to be analysed, while providing a baseline for the estimation of the
main quantities of interest. In particular, randomness is introduced with the aim
of avoiding structure and make it possible to compute integration and mutual
information for a system that does not have relevant sets in its dynamics. The
difference between the two models is that the first maintains the individual
frequencies for each variable, while the second just assumes an overall frequency
of occurrence of the values and it is therefore less accurate than the former.

We compared the rankings produced by using the two models, collecting
statistics for 50 homogeneous system independent replicas. We will first present
the results from each of the models, assessing the robustness against its inherent
variance, and we subsequently compare the results between the two models.

Results for Model (i). Results of model (i) are shown in Table 2, where for
each of the first fives positions in the ranking, the group occurring most fre-
quently is shown, along with its frequency in that position. The results shown
in Table 2 are also confirmed by a statistic on the groups ranked in any of the
top five positions: the most frequently occurring groups in each of the top five
positions are also those with the highest probability of being ranked among the
first five. Results are shown in the appendix (Table 8). The results for Case 1
are sharp, as the two independent groups of variable are always ranked in the
uppermost two positions. The following positions in the rank are occupied by
their subsets. Results for Case 2 are also quite clear: the two dependent groups
are ranked in the first positions and their interaction is captured by the detec-
tion of groups containing variables from both blocks (e.g. group {N5,N8,N9,N10}
ranked in the fourth position for the 20 % of the times). The dynamics of Case 3
is more complex than the previous cases and this is reflected by the rankings
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Table 3. Results attained by using model
(i) after the application of the sieving
algorithm. For each of the first fives posi-
tions in the ranking, the group occurring
most frequently is shown, along with its
frequency.

Case 5

Rank CRS p

1 6,7 0.94
2 3,4,5 0.74
3 8,9,10 0.78
4 5,7,8 0.52
5 5,6,8 0.52

Table 4. Statistics of rankings over 50
independent draws of model (i) homo-
geneous system. For each test case, the
mean and standard deviation of the
Spearman rank correlation coefficient is
shown.

ρs mean std. dev.

Case 1 0.991 0.006
Case 2 0.992 0.004
Case 3 0.992 0.004
Case 4 0.984 0.011
Case 5 0.977 0.016

returned. In fact, the two blocks are no longer emerging as candidate RSs, but
rather their parts are ranked high. This phenomenon can be explained by observ-
ing that pairs of variables are usually way more integrated than triplets. How-
ever, the rankings obtained by model (i) are still able to capture the essence of
system structure. The dependence graph among variables of Case 4 is rather
intricate and so is its dynamics. Nevertheless, the analysis of Case 4 enlightens
some notable groups of interacting variables, such as {N4,N6}, and {N3,N4,N5}.
Finally, results of Case 5 are surprisingly sharp: the two groups of variables (i.e.
group A and group B) are identified, along with the two controlled nodes N6
and N7.

We observe that parts of the same candidate RS are often ranked in the
first positions, thus obfuscating the organisation emerging from the analysis.
To this aim, the sieving algorithm is indeed applied and a clearer picture of
the organisation in terms of RSs is provided. An excerpt of the results of the
application of the sieving algorithm is reported in Table 3 (see the appendix for
complete data in Table 9). The use of this algorithm makes it possible to clean
the picture of the dynamical organisation of the systems and identify its RSs.
As an example, let us consider Case 5 : the three main RSs are robustly ranked
in the first positions.

The advantage of using the sieving algorithm might be harmed by the vari-
ance introduced by the homogeneous system. To estimate this variance, we com-
pared the rankings by means of the Spearman rank correlation coefficient, which
is a special case of the general correlation coefficient introduced by Kendall [4].
The coefficient is applied pairwise, considering two rankings r and s:

ρs = 1 − 6
∑n

i=1(ri − si)2

n2(n2 − 1)
(8)

where ri and si are the rank of element i in the two rankings and n is the number
of elements. Note that the coefficient is well defined only in the case of two rank-
ings containing the same elements. By computing ρs for every possible pair of
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Table 5. Comparison of the rankings
between the two models. For each test
case, the mean and standard deviation of
the Spearman rank correlation coefficient
is shown.

ρs mean std. dev.

Case 1 0.977 0.00003
Case 2 0.986 0.00002
Case 3 0.992 0.00001
Case 4 0.966 0.00018
Case 5 0.968 0.00030

Table 6. Comparison of the rankings
obtained with time series of different
lengths. For each test case, the mean and
standard deviation of the Spearman rank
correlation coefficient is shown.

ρs mean std. dev.

Case 1 0.985 0.009
Case 2 0.991 0.005
Case 3 0.988 0.007
Case 4 0.983 0.010
Case 5 0.972 0.016

the 50 rankings and taking the average, we obtain the results of Table 4. Indeed,
the rankings are rather stable. This observation also suggests the possibility of
taking the average rank as the main information for the sieving algorithm, so as
to dampen fluctuations due to sampling.

Results for Model (ii). The results obtained by applying method (ii) for
generating the homogeneous system do not significantly differ from those of
method (i), both in terms of relative positions and rank correlation coefficient.
For this reason we omit the results.

We conclude by observing that the rankings produced by the two models have
negligible differences, as we can observe by the average rank correlation coeffi-
cient reported in Table 5. The average is computed over all the possible pairs of
rankings. The robustness inter and intra models for generating the homogeneous
system guarantees that the application of the DCI method is reliable and stable.

Data Series Length. We also assessed the robustness of the results as a func-
tion of both models (i) and (ii) and the length of the data series. We applied the
DCI method3 for data series of length 1, 5, 10, 20, 25 and 30 times the length
of the original series. For the sake of brevity, we just report the average rank
correlation coefficient computed across all the possible pairs of rankings for all
the possible data series lengths (see Table 6). We observe that the rankings are
independent of the data series length. This result enables us to assert that a good
practice for the application of the DCI method is to generate a homogeneous
system data series of the same length as the original one.

5 Transfer Entropy

Once the RSs have been identified, the information flow among them—or at
least just correlation—can be quantified by means of TE. The data we have
considered in these experiments are time series of the perturbed time evolution
3 As results are not distinguishable for the two models, results just concern model (i).
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of a discrete system, therefore the analysis made by means of TE can indeed
provide meaningful pieces of knowledge concerning information flow among RSs.

We computed the TE between every pair of RSs. To assess the significance of
these values, we compared them with TE computed over the same time series in
which the observations are randomly permuted. Such a time series has the same
statistical properties of the original one except for the causal relations produced
by the boolean update functions. For each time series, we generated 50 random
shuffling and computed the TE between the RSs identified. These values were
then used to compute a p-value for assessing the significance of the TE values

Table 7. Transfer entropy T between RSs in the five test cases. The values in the table
represent TY →X , where Y is the element in the column and X in the row.

Case 1

TE(col→row) 3,4,5 8,9,10

3,4,5 — 0.001
8,9,10 0.001 —

Case 2

TE(col→row) 3,4,5 8,9,10 9,10 3,4,5,8,9,10 4,5

3,4,5 — 0.005 0.003 0.005 0
8,9,10 0.221 — 0 0.221 0.221
9,10 0.404 0.691 — 0.694 0.379

3,4,5,8,9,10 0 0 0 0 0
4,5 0.117 0.03 0.003 0.118 —

Case 3

TE(col→row) 3,4,5 8,9,10 9,10 3,4,5,8,9,10

3,4,5 — 0.788 0.775 0.788
8,9,10 0.782 — 0 0.782
9,10 0.163 0.838 — 0.853

3,4,5,8,9,10 0 0 0 —

Case 4

TE(col→row) 3,4,5,6 4,5,6,8 4,5,6,10 3,4,6,8,10 4,5,6

3,4,5,6 — 0.212 0.039 0.213 0
4,5,6,8 0.071 — 0.015 0.081 0
4,5,6,10 0.076 0.184 — 0.25 0

3,4,6,8,10 0.078 0.077 0.077 — 0.078
4,5,6 0.096 0.237 0.059 0.309 —

Case 5

TE(col→row) 6,7 8,9,10 3,4,5

6,7 — 0.107 0.116
8,9,10 0.003 — 0.004
3,4,5 0.003 0.004 —



On the Robustness of the Detection of Relevant Sets 25

computed on the original time series. Results are shown in Table 7. The TE
values corresponding to a p-value ≤ 0.05 are in bold. Each entry of the table
contains the TE value computed from the group in the column to the one in
the row. We observe that the TE analysis captures the structure of the boolean
systems, as in each of the five cases, the significant values of TE correspond to
the pairs of groups that actually exchange information. Notably, the actual value
of TE might not be sufficiently informative; indeed, we can observe that there
are low TE values that turn out to be significant (see, e.g. Case 4 in Table 7)
and, conversely, non negligible values that are instead not significant (see, e.g.
Case 2 in Table 7).

A quantitative comparison among groups of different size can be done by
computing a normalised TE. According to [3], the normalised TE (NTE) is
defined as:

NTE(Y → X) =
TE(Y → X) − TE(YS → X))

hx
(9)

where hx = −∑
X p(xt+1, x)log p(xt+1|x) and TE(YS →) is the TE computed

on a homogeneous system obtained by randomly shuffling the observations in the
data series, as previously described. The values of NTE are computed 50 times,
each using a random shuffling of the original data and tables (see Table 10 in
the appendix) report mean and standard deviation. It is important to note that
these results match quite precisely the functional relations introduced by the
boolean functions which impact the dynamics of the system.

6 Conclusion and Future Work

In this work we have assessed the robustness of the DCI method against the
homogeneous system. Results show that the method is both robust and reliable.
Indeed, the robustness of the method is a requirement for its application in the
identification of a plausible and sound hypothesis on the organisation of a dynam-
ical system. It is important to remark that we are interested in the organisation
emerging in a system from its dynamics, rather then its static relational struc-
ture. As ongoing work, we are devising an improvement over the DCI method
that makes it possible to extract information on the hierarchical organisation of
a complex systems, thus not just identifying its RSs and the information flow
among them, but also their possibly tangled hierarchical organisation.
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Appendix

Table 8. Results attained by using model (i). For each group the probability of being
ranked in the first five positions is shown.

Case 1

CRS p

8,9,10 0.98
3,4,5 0.8
3,4 0.7
8,9 0.7
9,10 0.7
4,5 0.18
4,5,8,9,10 0.16
3,4,5,9 0.16
3,4,8,9,10 0.16
4,8,9,10 0.16
3,4,5,9,10 0.14
3,4,5,6 0.12
3,4,5,8,9,10 0.04

Case 2

CRS p

3,4,5 0.96
9,10 0.92
3,4,5,8 0.74
8,9,10 0.5
3,4 0.46
5,8,9,10 0.42
4,5 0.3
3,4,8 0.22
3,4,5,6 0.14
4,5,8,9,10 0.12
4,5,8 0.08
3,4,5,8,9,10 0.06
3,4,8,9,10 0.04
3,4,5,9,10 0.02
5,8 0.02

Case 3

CRS p

8,9,10 1.0
9,10 1.0
4,5 0.92
3,9,10 0.74
4,5,9,10 0.58
4,5,8 0.4
4,5,8,9,10 0.22
3,8,9,10 0.08
9,10,11 0.06

Case 4

CRS p

4,5,6 0.98
4,6 0.98
3,4,5,6 0.76
3,4,5 0.58
4,5,6,8 0.42
4,5 0.36
5,6 0.22
3,4,5,6,8 0.18
3,4,6 0.14
4,5,6,10 0.14
3,8 0.08
3,4,5,6,10 0.08
4,6,8 0.06
4,5,6,8,10 0.02

Case 5

CRS p

6,7 1.0
5,6,7 0.86
6,7,8 0.84
4,6,7 0.58
5,6,7,8 0.52
6,7,9 0.36
4,5,6,7 0.32
3,4,5,6,7 0.16
6,7,8,9 0.12
3,4,6,7 0.12
6,7,8,9,10 0.08
4,5 0.02
4,5,6,7,8 0.02

Table 9. Results attained by using model (i) after the application of the sieving
algorithm. For each of the first fives positions in the ranking, the group occurring most
frequently is shown, along with its frequency.

Case 1

Rank CRS p

1 8,9,10 0.8
2 3,4,5 0.8
3 3,4,9,10 0.52
4 4,5,9,10 0.52
5 3,4,8,9 0.52

Case 2

Rank CRS p

1 3,4,5 0.62
2 9,10 0.42
3 3,4,8 0.58
4 4,5,8 0.58
5 3,4,7 0.46

Case 3

Rank CRS p

1 9,10 0.92
2 4,5 0.92
3 4,8 0.42
4 3,8 0.2
5 1,3,5,8 0.34

Case 4

Rank CRS p

1 4,6 0.6
2 3,4,5 0.54
3 5,6 0.5
4 3,8 0.34
5 8,10 0.34

Case 5

Rank CRS p

1 6,7 0.94
2 3,4,5 0.74
3 8,9,10 0.78
4 5,7,8 0.52
5 5,6,8 0.52
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Table 10. Normalised transfer entropy T between RSs in the five test cases. The values
in the table are the average values and their standard deviation of NTY →X , where Y
is the element in the column and X in the row. Statistics are computed across 50
homogeneous system instances.

Case 1

NTE(col→row) 3,4,5 8,9,10

3,4,5 — -0.06 ± 0.06
8,9,10 -0.07 ± 0.06 —

Case 2

NTE(col→row) 3,4,5 8,9,10 9,10 3,4,5,8,9,10 4,5

3,4,5 — -0.13 ± 0.03 -0.07 ± 0.03 -0.47 ± 0.09 0 ± 0
8,9,10 0.48 ± 0.02 — 0 ± 0 0.31 ± 0.04 0.502 ± 0.019
9,10 0.462 ± 0.009 0.844 ± 0.008 — 0.769 ± 0.018 0.44 ± 0.01

3,4,5,8,9,10 0 ± 0 0 ± 0 0 ± 0 — 0 ± 0
4,5 0.525 ± 0.019 0. ± 0.03 -0.07 ± 0.03 0.24 ± 0.05 —

Case 3

NTE(col→row) 3,4,5 8,9,10 9,10 3,4,5,8,9,10

3,4,5 — 0.799 ± 0.01 0.811 ± 0.006 0.66 ± 0.03
8,9,10 0.794 ± 0.013 — 0 ± 0 0.67 ± 0.03
9,10 0.132 ± 0.008 0.884 ± 0.004 — 0.798 ± 0.016

3,4,5,8,9,10 0 ± 0 0 ± 0 0 ± 0 —

Case 4

NTE(col→row) 3,4,5,6 4,5,6,8 4,5,6,10 3,4,6,8,10 4,5,6

3,4,5,6 — 0.465 ± 0.019 0.017 ± 0.016 0.37 ± 0.02 0 ± 0
4,5,6,8 0.146 ± 0.013 — -0.069 ± 0.019 0.03 ± 0.03 0 ± 0
4,5,6,10 0.107 ± 0.011 0.28 ± 0.012 — 0.35 ± 0.02 0 ± 0

3,4,6,8,10 0.136 ± 0.012 0.088 ± 0.018 0.09 ± 0.02 — 0.077 ± 0.017
4,5,6 0.183 ± 0.01 0.483 ± 0.009 0.084 ± 0.01 0.54 ± 0.02 —

Case 5

NTE(col→row) 6,7 8,9,10 3,4,5

6,7 — 0.26 ± 0.008 0.286 ± 0.01
8,9,10 -0.022 ± 0.018 — -0.05 ± 0.03
3,4,5 -0.021 ± 0.027 -0.047 ± 0.026 —
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Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances in Arti-
ficial Life, ECAL 2013, pp. 372–378. The MIT Press, Cambridge (2013).
http://mitpress.mit.edu/books/advances-artificial-life-ecal-2013

14. Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search
for candidate relevant subsets of variables in complex systems. Artif. Life 21(4),
395–397 (2015)

http://mitpress.mit.edu/books/advances-artificial-life-ecal-2013

	On the Robustness of the Detection of Relevant Sets in Complex Dynamical Systems
	1 Introduction
	2 The Dynamical Cluster Index Method
	3 Relevant Subsets
	3.1 Information Flow Among RSs

	4 Robustness of the Method
	4.1 Test Cases
	4.2 Relevant Sets Ranking

	5 Transfer Entropy
	6 Conclusion and Future Work
	References


