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Abstract. A discrete event system (DES) is a dynamic system with dis-
crete states the transitions of which are triggered by events. In this paper
we propose the application of the Spin software model checker to a dis-
crete event system that controls the industrial production of autonomous
products. The flow of material is asynchronous and buffered. The aim
of this work is to find concurrent plans that optimize the throughput
of the system. In the mapping the discrete event system directly to the
model checker, we model the production line as a set of communicating
processes, with the movement of items modeled as channels. Experiments
shows that the model checker is able to analyze the DES, subject to the
partial ordering of the product parts. It derives valid and optimized plans
with several thousands of steps using constraint branch-and-bound.

1 Introduction

Discrete event (dynamic) systems (DES) provide a general framework for sys-
tems where the system dynamics not only follow physical laws but also additional
firing conditions. DES research is concerned about performance analysis, eval-
uation, and optimization of DES. As the systems are often only available as
computer programs, it turns out to be difficult to describe the dynamics of these
systems using closed-form equations.

In many cases, discrete event system simulation (DESS) is chosen to describe
the DES dynamics and for performance evaluation. Between consecutive events,
no change in the system is assumed to occur; thus the simulation can directly
jump in time from one event to the next. Each simulation activity is modeled by
a process. The idea of a process is similar to the notion in model checking, and
indeed one could write process-oriented simulations using independent processes.
Most DESS systems store information about pending events in a data structure
known as an event queue. Each item in the queue would at minimum contain
the following information: a timestamp and a piece of software for executing
event. The typical operations on an event queue are: inserting a new event and
removing the next event (the one with the lowest timestamp) from the queue.
It may also be necessary to cancel a scheduled event.

DESS is probably the most widely used simulation technique. Similar
approaches are system dynamics (SD), and agent-based simulation (ABS). As the
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name suggests DES model a process as a series of discrete events. They are built
using: entities (objects that move through the system; events (processes which
the entities pass through); and resources (objects, which are needed to trigger
event). SD are related to DES, focusing on flows around networks rather than
queueing systems, it considers: stocks (basic stores of objects); flows (movement
of objects between different stocks in the system); delays (between the measuring
and then acting on that measurement). ABS is a relatively new technique in OR
and consists of: autonomous agents (self-directed objects which move about the
system) and rules (which the agents follow to achieve their objectives). Agents
move about the system interacting with each other and the environment. ABS
are used to model situations in which the entities have some form of intelligence.

Earlier simulation software was efficient but platform-dependent, due to the
need for stack manipulation. Modern software systems, however, support light-
weight processes or threads. By the growing amount of non-determinism, how-
ever, DESS encounters its limits to optimize the concurrent acting of individual
processes.

With the advances in technology, more and more complex systems were built,
e.g., transportation networks, communication and computer networks, manufac-
turing lines. In these systems, the main dynamic mechanism in task succession
stems from synchronization and competition in the use of common resources,
which requires a policy to arbitrate conflicts and define priorities, all kinds of
problems generally referred to under the generic terminology of scheduling. This
type of dynamics hardly can be captured by differential equations or by their
discrete time analogues. This is certainly the reason why those systems, which
are nevertheless true dynamic systems, have long been disregarded by formal
method experts and have been rather considered by operations researchers and
specialists of manufacturing with no strong connections with system theory. The
dynamics are made up of events, which may have a continuous evolution imposed
by some called software once they start, but this is not what one is mainly inter-
ested in: the primary focus is on the beginning and the end of such events, since
ends can cause new beginnings. Hence, the word discrete includes time and state.

In this paper, we utilize the state-of-the-art model checker Spin [25] as a
performance analysis and optimization tool, together with its input language
Promela to express the flow production of goods. There are several twists needed
to adapt Spin to the optimization of DES(S) that are uncovered in the sequel
of the text. Our running case study is the Z2, a physical monorail system for
the assembling of tail-lights. Unlike most production systems, Z2 employs agent
technology to represent autonomous products and assembly stations. The tech-
niques developed, however, will be applicable to most flow production systems.
We formalize the production floor as a system of communicating processes and
apply Spin for analyzing its behavior. Using optimization mechanisms imple-
mented on top of Spin, additional to the verification of the correctness of the
model, we exploit its exploration process for optimization of the production.

For the optimization via model checking we use many new language features
from the latest version of the Spin model checker including loops and native
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c-code verification. The optimization approach originally invented for Spin was
designed for state space trees [36,37], while the proposed approach also sup-
ports state space graphs. Scheduling via model checking has been pioneered by
Maler [1], Binksma [7], and Wijs [40].

The paper is structured as follows. First, we introduce discrete event simu-
lation and industrial (flow) production. Then, we review related work including
scheduling via model checking. Next, we introduce the industrial case study, and
its modeling as well as its simulation as a DES. The simulator is used to mea-
sure the increments of the cost function to be optimized. Afterwards, we turn
to the intricacies of the Promela model specification, to the parameterization
of SPIN, as well as to the novel branch-and-bound optimization scheme. In the
experiments, we study the effectiveness of the approach.

2 Preliminaries

2.1 Discrete Event Simulation

An entity is an object of interest in the system, and an attribute is a (rele-
vant) property of an entity. Attributes are state variables, while activities form
part of the model specification and delays form part of the simulation result.
The (system) state is a variable needed to describe the state (e.g., length of a
queue), which is aimed to be complete and minimal at any point in time. The
occurrence of a primary event (e.g. arrival) is scheduled at a certain time, while
a secondary event (e.g. queueing) is triggered by a certain condition becoming
true. An event is an occurrence which is instantaneous may change the state
of the system. The (future) event list PQ controls the simulation: it contains
all future events that are scheduled, and is ordered by increasing time of events.
Operations on the PQ are: insert an event into PQ (at an appropriate position!),
remove first event from PQ for processing, and delete an event from PQ. Thus,
PQ is a priorty queue. As operations must be performed efficiently, the common
implementation of an event queue is a (binary) heap. With such a data struc-
ture, access to the next event requires O(1) time, while inserting/deleting an
event requires O(log(n)) time, where n is the number of events currently in the
queue. Depending on the implementation (e.g., Fibonacci heaps), there are other
trade-offs, with constant-time insertion and O(log(n)) (amortized) deletion. The
generic DES simulation algorithm looks as follows:

1. IF (PQ empty) THEN exit
2. remove & process 1st primary event e from PQ
3. IF (conditional event e′ enabled) THEN remove & process e′, goto 3. ELSE

goto 1.

We assume exact timing, i.e., deterministic time. However, by different
choices points for generating successor events, the simulated DES itself is non-
deterministic. Events inserted with priority t are generally assumed to remain
unchanged until deletion at time t.
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2.2 Flow Manufacturing

Flow manufacturing systems are DES installed for products that are produced
in high quantities. By optimizing the flow of production, manufacturers hope
to speed up production at a lower cost, and in a more environmentally sound
way. In manufacturing practice there are not only series flow lines (with stations
arranged one behind the other), but also more complex networks of stations
at which assembly operations are performed (assembly lines). The considerable
difference from flow lines, which can be analyzed by known methods, is that a
number of required components are brought together to form a single unit for
further processing at the assembly stations. An assembly operation can begin
only if all required parts are available.

Performance analysis of flow manufacturing systems is generally needed dur-
ing the planning phase regarding the system design, when the decision for a
concrete configuration of such a system has to be made. The planning problem
arises, e.g., with the introduction of a new model or the installation of a new
manufacturing plant. Because of the investments involved, an optimization prob-
lem arises. The expenditure for new machines, for buffer or handling equipment,
and the holding costs for the expected work-in-process face revenues from sold
products. The performance of a concrete configuration is characterized by the
throughput, i.e., the number of items that are produced per time unit. Other
performance measures are the expected work in process or the idle times of
machines or workers.

We consider assembly-line networks with stations, which are represented as
a directed graph. Between any two successive nodes in the network, we assume
a buffer of finite capacity. In the buffers between stations and other network
elements, work pieces are stored, waiting for service. At assembly stations, ser-
vice is given to work pieces. Travel time is measured and overall time is to be
optimized.

In a general notation of flow manufacturing, system progress is non-
deterministic and asynchronous, while the progress of time is monitored.

Definition 1 (Flow Manufacturing System). A flow manufacturing system
is a tuple F = (A,E,G,≺, S,Q) where

– A is a set of all possible assembling actions
– P is a set of n products; each Pi ∈ P , i ∈ {1, . . . , n}, is a set of assembling

actions, i.e., Pi ⊆ A
– G = (V,E,w, s, t) is a graph with start node s, goal node t, and weight function

w : E → IR≥0

– ≺ = (≺1, . . . ,≺n) is a vector of assembling plans with each ≺i ⊆ A × A,
i ∈ {1, . . . , n}, being a partial order

– S ⊆ E is the set of assembling stations induced by a labeling ρ : E → A∪{∅},
i.e., S = {e ∈ E | ρ(e) �= ∅}

– Q is a set of (FIFO) queues of finite size, i.e., ∀q ∈ Q : |q| < ∞, together
with a labeling ψ : E → Q.
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Products Pi, i ∈ {1, . . . , n}, travel through the network G, meeting their
assembling plans/order ≺i ⊆ A × A of the assembling actions A. For defining
the cost function we use the set of predecessor edges Pred(e) = {e′ = (u, v) ∈
E | e = (v, w)}.

Definition 2 (Run, Plan, and Path). Let F = (A,E,G,≺, S,Q) be a flow
manufacturing system. A run π is a schedule of triples (ej , tj , lj) of edges ej,
queue insertion positions lj, and execution time-stamp tj, j ∈ {1, . . . , n}. The
set of all runs is denoted as Π. Each run π partitions into a set of n plans
πi = (e1, t1, l1), . . . , (em, tm, lm), one for each product Pi, i ∈ {1, . . . , n}. Each
plan πi corresponds to a path, starting at the initial node s and terminating at
goal node t in G.

The objective in a flow manufacturing system can be formally described as
follows.

Definition 3 (Product Objective, Travel and Waiting Time). The objec-
tive for product i is to minimize

max
1≤i≤n

wait(πi) + time(πi),

over all possible paths with initial node s and goal node t, where

– time(πi) is the travel time of product Pi, defined as the sum of edge costs
time(πi) =

∑
e∈πi

w(e), and
– wait(πi) the waiting time, defined as wait(πi) =

∑
(e,t,l),(e′,t′,l′)∈πi,e′∈Pred(e) t−

(t′ + w(e′)).

Definition 4 (Overall Objective). With cost(πi) = wait(πi) + time(πi), as
overall objective function we have minπ∈Π max1≤i≤n cost(πi)

= minπ∈Π max1≤i≤n

∑

e∈πi

w(e)

+
∑

(e,t,l),(e′,t′,l′)∈πi,e′∈Pred(e)
t − (t′ + w(e′))

= minπ∈Π max1≤i≤n,(e,t,l)∈πi
t + w(e)

subject to the side constraints that

– time stamps on all runs πi = (e1, t1, l1) . . . (em, tm, lm), i ∈ {1, . . . , n} are
monotonically increasing, i.e., tl ≤ tk for all 1 ≤ l < k ≤ m.

– after assembling all products are complete, i.e., all assembling actions have
been executed, so that for all i ∈ {1, . . . , n} we have Pi = ∪(ej ,tj ,lj)∈πi

{ρ(ej)}
– the order of assembling product Pi on path πi = (e1, t1, l1) . . . (em, tm, lm),

i ∈ {1, . . . , n}, is preserved, i.e., for all (a, a′) ∈≺i and a = ρ(ej), a′ = ρ(ek)
we have j < k,

– all insertions to queues respect their sizes, i.e., for all πi = (e1, t1, l1) . . .
(em, tm, lm), i ∈ {1, . . . , n}, we have that 0 ≤ lj < |ψ(ej)|.
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3 Related Work

One of the most interesting problems in manufacturing is job shop scheduling [3].
When solving the scheduling problem, a set of n jobs has to be assigned to a set
of m machines. Consequently, the total number of possible solutions is (n!)m.
The problem complexity grows when the number of required ressources increases,
e.g. by adding specific tools or operators to run machines. For an additional set
k of necessary ressources, the number of possible solution increases to ((n!)m)k

[38]. In the related flow shop scheduling problem, a fixed sequence of tasks forms
a job [16]. It is applicable to optimize the so called makespan on assembly lines.

Flow line analysis is a more complex setting, often done with queuing theory [8,
33]. Pioneering work in analyzing assembly queuing systems with synchronization
constraints analyzes assembly-like queues with unlimited buffer capacities [22]. It
shows that the time an item has to wait for synchronization may grow without
bound, while limitation of the number of items in the system works as a control
mechanism and ensures stability. Work on assembly-like queues with finite buffers
all assume exponential service times [4,26,30].

A rare example of model checking flow production are timed automata that
were used for simulating material flow in agricultural production [23].

Since the origin of the term artificial intelligence, the automated generation
of plans for a given task has been seen as an integral part of problem solving in
a computer. In action planning [35], we are confronted with the descriptions of
the initial state, the goal (states) and the available actions. Based on these we
want to find a plan containing as few actions as possible (in case of unit-cost
actions, or if no costs are specified at all) or with the lowest possible total cost
(in case of general action costs).

The process of fully-automated property validation and correctness verifica-
tion is referred to as model checking [11]. Given a formal model of a system M
and a property specification φ in some form of temporal logic like LTL [17], the
task is to validate, whether or not the specification is satisfied in the model,
M |= φ. If not, a model checker usually returns a counterexample trace as a
witness for the falsification of the property.

Planning and model checking have much in common [9,18]. Both rely on the
exploration of a potentially large state space of system states. Usually, model
checkers only search for the existence of specification errors in the model, while
planners search for a short path from the initial state to one of the goal states.
Nonetheless, there is rising interest in planners that prove insolvability [24], and
in model checkers to produce minimal counterexamples [14].

In terms of leveraging state space search, over the last decades there has been
much cross-fertilization between the fields. For example, based on Satplan [28]
bounded model checkers exploit SAT and SMT representations [2,5] of the system
to be verified, while directed model checkers [12,29] exploit panning heuristics
to improve the exploration for falsification; partial-order reduction [19,39] and
symmetry detection [15,32] limit the number of successor states, while symbolic
planners [10,13,27] apply functional data structures like BDDs to represent sets
of states succinctly.
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4 Case Study

We consider the simulation of the real-world Z2 production floor unit [34]. The
Z2 unit consists of six workstations where human workers assemble parts of
automotive tail-lights. The system allows production of certain product varia-
tions and reacts dynamically to any change in the current order situation, e.g.,
a decrease or an increase in the number of orders of a certain variant. As indi-
vidual production steps are performed at the different stations, all stations are
interconnected by a monorail transport system. The structure of the transport
system is shown in Fig. 1. On the rails, autonomously moving shuttles carry the
products from one station to another, depending on the products’ requirements.
The monorail system has multiple switches which allow the shuttles to enter,
leave or pass workstations and the central hubs. The goods transported by the
shuttles are also autonomous, which means that each product decides on its own
which variant to become and which station to visit. This way, a decentralized
control of the production system is possible.

Fig. 1. Assembly scenario for tail-lights.

The modular system consists of six different workstations, each is operated
manually by a human worker and dedicated to one specific production step.
Different parts can be used to assemble different variants of the tail-lights. At the
first station, the basic metal-cast parts enter the monorail on a dedicated shuttle.
The monorail connects all stations, each station is assigned to one specific task,
such as adding bulbs or electronics. Each tail-light is transported from station
to station until it is assembled completely. In the DESS implementation of the
Z2 system, every assembly station, every monorail shuttle and every product is
represented by a software process. Even the RFID readers which keep track of
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product positions are represented by software processes, which decide when a
shuttle may pass or stop.

Most processes in this DESS resemble simple reflex methods. These processes
just react to requests or events which were caused by other processes or the
human workers involved in the manufacturing process. In contrast, the processes
which represent products are actively working towards their individual goal of
becoming a complete tail-light and reaching the storage station. In order to
complete its task, each product has to reach sub-goals which may change during
production as the order situation may change. The number of possible actions
is limited by sub-goals which already have been reached, since every possible
production step has individual preconditions.

The product processes constantly request updates regarding queue lengths
at the various stations and the overall order situation. The information is used
to compute the utility of the expected outcome of every action. High utility is
given when an action leads to fulfillment of an outstanding order and takes as
little time as possible. Time, in this case, is spent either on actions, such as
moving along the railway or being processed, or on waiting in line at a station
or a switch.

The Z2 DES was developed strictly for the purpose of controlling the Z2
monorail hardware setup. Nonetheless, due to its hardware abstraction layer
[34], the Z2 DES can be adapted into other hardware or software environ-
ments. By replacing the hardware with other processes and adapting the mono-
rail infrastructure into a directed graph, the Z2 DES has been transferred to
a DESS [21]. Such an environment, which treats the original Z2 modules like
black boxes, can easily be hosted by a DESS. Experiments showed how close the
simulated and the real-world scenarios match.

For this study, we provided the model with timers to measure the time taken
between two graph nodes. Since the hardware includes many RFID readers along

Fig. 2. Weighted graph model of the assembly scenario.
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the monorail, which all are represented by an agent and a node within the simula-
tion, we simplified the graph and kept only three types of nodes: switches, produc-
tion station entrances and production station exits. The resulting abstract model
of the system is a weighted graph (see Fig. 2), where the weight of an edge denotes
the traveling/processing time of the shuttle between two respective nodes.

5 Promela Specification

Promela is the input language of the model checker Spin1, the ACM-awarded
popular open-source software verification tool, designed for the formal verifica-
tion of multi-threaded software applications, and used by thousands of people
worldwide. Promela defines asynchronously running communicating processes,
which are compiled to finite state machines. It has a c-like syntax, and supports
bounded channels for sending and receiving messages.

Channels in Promela follow the FIFO principle. Therefore, they implicitly
maintain order of incoming messages and can be limited to a certain buffer size.
Consequently, we are able to map edges to communication channels. Unlike the
original Z2 ABS, the products are not considered to be decision making entities
within our Promela model. Instead, the products are represented by messages
which are passed along the node processes, which resemble switches, station
entrances and exits.

Unlike the original DESS, the Promela model is designed to apply a branch-
and-bound optimization to evaluate the optimal throughput of the original
system. Instead of local decision making, the various processes have certain non-
deterministic options of handling incoming messages, each leading to a different
system state. The model checker systematically computes these states and mem-
orizes paths to desirable outcomes when it ends up in a final state. As mentioned
before, decreasing production time for a given number of products increases the
utility of the final state.

We derive a Promela model of the Z2 as follows. First, we define global setting
on the number of stations and number of switches. We also define the data type
storing the index of the shuttle/product to be byte. In the model, switches are
realized as processes and edges between the units by the following channels.

chan entrance_to_exit[STATIONS] = [1] of {shuttle};
chan exit_to_switch[STATIONS] = [BUFFERSIZE] of {shuttle};
chan switch_to_switch[SWITCHES] = [BUFFERSIZE] of {shuttle};
chan switch_to_entrance[STATIONS] = [BUFFERSIZE] of {shuttle};

As global variables, we have bit-vectors for marking the different assemblies.

bit metalcast[SHUTTLES]; bit electronics[SHUTTLES];
bit bulb[SHUTTLES]; bit seal[SHUTTLES]; bit cover[SHUTTLES];

1 http://spinroot.com/spin/whatispin.html.

http://spinroot.com/spin/whatispin.html
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Additionally, we have a bit-vector that denotes when a shuttle with a fully
assembled item has finally arrived at its goal location. A second bit-vector is
used to set for each shuttle whether it has to acquire a colored or a clear bulb.

bit goals[SHUTTLES]; bit color[SHUTTLES];

A switch is a process that controls the flow of the shuttles. In the model, a
non-deterministic choice is added to either enter the station or to continue trav-
eling onwards on the cycle. Three of four switching options are made available,
as immediate re-entering a station from its exit is prohibited.

proctype Switch(byte in; byte out; byte station) {
shuttle s;
do
:: exit_to_switch[station]?s; switch_to_switch[out]!s;
:: switch_to_switch[in]?s; switch_to_switch[out]!s;
:: switch_to_switch[in]?s; switch_to_entrance[station]!s;
od

}

The entrance of a manufacturing station takes the item from the according
switch and moves it to the exit. It also controls that the manufacturing complies
with the capability of the station.

First, the assembling of product parts is different at each station, in the sta-
tions 1 and 3 we have the insertion of bulbs (station 1 provides colored bulbs,
station 3 provides clear bulbs), station 2 assembles the seal, station 4 the elec-
tronics and station 0 the cover. Station 5 is the storage station where empty metal
casts are placed on the monorail shuttles and finished products are removed to
be taken into storage. Secondly, there is a partial order of the respective product
parts to allow flexible processing and a better optimization based on the current
load of the ongoing production.

proctype Entrance(byte station) {

shuttle s;

do

:: switch_to_entrance[station]?s;

entrance_to_exit[station]!s

if

:: (station == 4) -> electronics[s] = 1;

:: (station == 3 && !color[s]) -> bulb[s] = 1;

:: (station == 2)-> seal[s] = 1;

:: (station == 1 && color[s]) -> bulb[s] = 1;

:: (station == 0 && seal[s] && bulb[s] && electronics[s])-> cover[s] = 1;

:: (station == 5 && cover[s]) -> goals[s] = 1;

:: else

fi

od

}
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An exit is a node that is located at the end of a station, at which assembling
took place. It is connected to the entrance of the station and the switch linked
to it.

proctype Exit(byte station) {
shuttle s;
do
:: entrance_to_exit[station]?s; exit_to_switch[station]!s;
od

}

A hub is a switch that is not connected to a station but provides a shortcut
in the monorail network. Again, three of four possible shuttle movement options
are provided

proctype Hub(byte in1; byte out1; byte in2; byte out2) {
shuttle s;
do
:: switch_to_switch[in1]?s; switch_to_switch[out1]!s;
:: switch_to_switch[in1]?s; switch_to_switch[out2]!s;
:: switch_to_switch[in2]?s; switch_to_switch[out1]!s;
od

}

In the initial state, we start the individual processes, which represent switches
and hereby define the network of the monorail system. Moreover, initially, we
have that the metal cast of each product is already present on its carrier, the
shuttle. The coloring of the tail-lights can be defined at the beginning or in
the progress of the production. Last, but not least, we initialize the process by
inserting shuttles on the starting rail (at station 5).

init {
atomic {

byte i;
c_code { cost = 0; }
c_code { best_cost = infinity; }
for (i : 0 .. (SHUTTLES)/2)){ color[i] = 1; }
for (i : 0 .. (SHUTTLES-1)) { metalcast[i] = 1; }
for (i : 0 .. (STATIONS-1)) { run Entrance(i); run Exit(i); }
run Switch(7,0,5); run Switch(0,1,4);
run Switch(1,2,3); run Switch(3,4,2);
run Switch(4,5,1); run Switch(5,6,0);
run Hub(2,3,8,9); run Hub(6,7,9,8);
for (i : 0 .. (SHUTTLES-1)) { exit_to_switch[5]!i; }}

}

We also heavily made use of the term atomic, which enhances the exploration
for the model checker, allowing it to merge states within the search. In difference to
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the more aggressive d step keyword, in an atomic block all communication queue
actions are blocking, so that we chose to use an atomic block around each loop.

6 Optimized Scheduling

Inspired by [7,31,36] we applied and improved branch-and-bound (BnB) opti-
mization. Branching is the process of spawning subproblems, while bounding
refers to ignoring partial solutions that cannot be better than the current best
solution. To this end, lower and upper bounds and are maintained as global
control values on the solution quality, which improves over time.

For applying BnB to general flow manufacturing systems, we extend depth-
first search (DFS) with upper (and lower) bounds. In this context, branching
corresponds to the generation of successors, so that DFS can be casted as gener-
ating a branch-and-bound search tree. One way of obtaining a lower bound L for
the problem state u is to apply an admissible heuristic h with L(u) = g(u)+h(u),
where g denotes the cost for reaching the current node from the root, and h is
a function that always underestimates the remaining cost to reach a goal.

As with standard DFS, the first solution obtained might not be optimal. With
depth-first branch-and-bound (DFBnB), however, the solution quality improves
over time together with the global value U until eventually the lower bound
L(u) at some node u is equal to U . The pseudo-code of this approach is shown
in Algorithm 1. In standard Spin, the trivial heuristic is h ≡ 0 used, but in
HSF-Spin [12], a few heuristic functions have been implemented. We obtain the
following result.

Theorem 1 (Optimality of Branch-and-Bound for Flow Manufacturing). For
a admissible heuristic function h, the DFBnB procedure in Algorithm1 will
eventually find the optimal solution to the flow manufacturing problem F =
(A,E,G,≺, S,Q).

Proof. We can compute costs for partial runs and extend partial schedules incre-
mentally. The objective function to be minimized over all possible runs Π in the
system is monotone increasing. Only inferior paths that cannot be extended to a
better path than the currently best known one are pruned. As the state space is
finite, the search will eventually terminate and return the optimal solution. q.e.d.

There are different options for finding optimized schedules with the help of
a model checker that have been proposed in the literature. First, in the Soldier
model of [37], rendezvous communication to an additional synchronized process
has been used to increase cost, dependent on the transition chosen, together with
a specialized LTL property to limit the total cost for the model checking solver.
This approach, however, turned out to be limited for our purpose. An alternative
proposal for branch-and-bound search is based on the support of native c-code in
Spin (introduced in version 4.0) [36]. One running example is the traveling sales-
man problem (TSP), but the approach is generally applicable to many other opti-
mization problems. However, as implemented, there are certain limitations to the
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Algorithm 1. DFBnB Algorithm.

DFBnB(F = (A, E, G, ≺, S, Q))
Initialize upper bound U
π′ ← π ← ∅
DFS(F, (s, . . . , s), 0, U)
return π′

DFS(F, u, π, U)
π ← extend(π, u)
if (u = (t, . . . , t))

if (cost(π) < U) π′ ← π; U ← cost(π)
else for each v in successors(u)

if (cost(π) + h(v) < U) DFS(F, v, π, U)

scalability of state space problem graphs. Recall that the problem graph induced
by the TSP is in fact a tree, generating all possible permutations for the cities.

Following [7,12,36] we applied branch-and-bound optimization within Spin.
Essentially, the model checker can find traces of several hundreds of steps and
provides trace optimization by finding the shortest path towards a counterex-
ample if ran with the parameter ./pan –i. As these traces are step-optimized,
and not cost-optimized, Ruys [36] proposed to introduce a variable cost that we
extend as follows.

c_state "int min_cost" "Hidden" c_state "int min_cost" "Hidden"

c_code { int cost; } c_code { int cost[SHUTTLES]; }

c_track "cost" "sizeof(int)" "Matched" c_track "cost" STRING "Matched"

While the cost variable increases the amount of memory required for each
state, it also limits the power of Spins built-in duplicate detection, as two other-
wise identical states are considered different if reached by different accumulated
cost. If the search space is small, so that it can be explored even for the enlarged
state vector, then this option is sound and complete, and finally returns the opti-
mal solution to the optimization problem. However, there might be simply too
many repetitions in the model so that introducing cost to the state vector leads
to a drastic increase in state space size, so that otherwise checkable instances now
become intractable. We noticed that even by concentrating on safety properties
(such as the failed assertion mentioned), the insertion of costs causes troubles.

6.1 Guarded Branching

For our model, cost has to be tracked for every shuttle individually. The variable
cost of the most expensive shuttle indicates the duration of the whole produc-
tion process. Furthermore, the cost total provides insight regarding unnecessary
detours or long waiting times. Hence, minimizing both criteria are the optimiza-
tion goals of this model.

In Promela, every do-loop is allowed to contain an unlimited number of pos-
sible options for the model checker to choose from. The model checker randomly
chooses between these options, however, it is possible to add an if -like condition
to an option: If the first statement of a do option holds, Spin will start to execute
the following statements, otherwise, it will pick a different option.
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Since the model checker explores any possible state of the system, many of
these states are technically reachable but completely useless from an optimiza-
tion point of view. In order to reduce state space size to a manageable level, we
add constraints to the relevant receiving options in the do-loops of every node
process.

Peeking into the incoming queue to find out, which shuttle is waiting to
be received is already considered a complete statement in Promela. There-
fore, we exploit C-expressions (c expr) to combine several operations into one
atomic statement. For every station t and every incoming channel q, a function
prerequisites(t, q) determines, if the first shuttle in q meets the prerequisites for
t, as given by Fig. ??.

shuttle s;

do

:: c_expr{prerequisites(Px->q,Px->t)} -> channel[q]?s; channel[out]!;

od

At termination of a successful run, we now extend the proposeal of [36]. We
use the integer array cost[SHUTTLES] of the Promela model. It enables each
process to keep track of its local cost vector and is increased by the cost of each
action as soon as the action is executed. This enables the model checker to print
values to the output, only if the values of the current max cost and total cost
have improved.

terminate:
c_code {
int max = 0, total = 0, j;
for (j=0; j<SHUTTLES; j++) {

total += cost[j];
if (cost[j] > max) max = cost[j]; }

if (max < min_cost) { min_cost = max; putrail(); Nr_Trails--; };
}

For solution reconstruction, we write a file for each new cost value obtained,
temporarily renaming the trail file as follows.

char mytrailfile[512];
sprintf(mytrailfile, "%s_t%d_st%d.pr", base,min_cost,total);
char* y = mytrailfile;
swap(&TrailFile, &y);
putrail();
swap(&y, &TrailFile);

6.2 Process Synchronization

Due to the nature of the state space search of the model checker, processes in
the Promela model do not make decisions. Nonetheless, the given model is a
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distributed DES consisting of a varying number of processes, which potentially
influence each other if executed in parallel.

We addressed this problem by introducing an event-based time progress to
the Promela model. Whenever a shuttle s travels along one of the edges, the
corresponding message is put into a channel and the cost of the respective shuttle
is increased by the cost of the given edge.

shuttle s;
do
:: c_expr{ canreceive(channel,Px->q,Px->station) }

-> channel[q]?s
c_code { cost[s] += Px->c; }
channel[out] ! s;

od

We introduce an atomic C function canreceive(q) that returns true only if
the first item s of q has minimal cost(s), changing the receiving constraint to the
following.

c_code {
int canreceive(int channeltype, int arrayidx, int station) {

int channelidx = -1;
switch(channeltype) {

case xyz: channelidx = now.xyz[arrayidx]; break; [...]
}
if(channelidx > -1 && q_len(channelidx) > 0) {

int shuttle = qrecv(channelidx, 0, 0, 0);
int minimum = infinity;
for (int j=0; j<SHUTTLES; j++) {

if (cost[j] < minimum) minimum = cost[j]; }
return (minimum == cost[shuttle]); }

return 0;
}

Within Spin, the global Boolean variable timeout is automatically set to
true when all current processes are unable to proceed, e.g., because they cannot
receive a message. Consequently, for every shuttle p, all processes will be blocked
and timeout will be set to true. As suggested by Bošnački and Dams [6], we
add a process that enforces time progress, whenever timeout occurs (final is a
macro for reaching the goal).

active proctype watchdog() {
do
::timeout -> c_code{ increase(); } ; assert(!final);
od

}
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Time delay is enforced as follows: if the minimum event in the future event
list is blocked (e.g., a shuttle is not first in its queue), we compute the wake-up
time of the second best event. If the two are of the same time, a time increment
of 1 is enforced. In the other case, the second best event time is taken as the
new one for the first. It is easy to see that this strategy eventually resolves all
possible deadlocks. Its implementation is as follows.

int increase() {
int j, l = 0, minimum = cost[0];
for (j=1; j<SHUTTLES; j++)

if (cost[j] < minimum) { minimum = cost[j]; l = j; }
int second = infinity;
for (j=0; j<SHUTTLES; j++) {

if (cost[j] < second && cost[j] > minimum)
second = cost[j]; }

cost[l] = (second == infinity) ? minimum + 1 : second;
}

As a summary, the constraint bounded depth-first exploration has turned
into the automated generation of the underlying state space of the DES, using
c-code to preserve the causality of actions and to simulate the future event list.

7 Evaluation

In this section, we present results of a series of experiments executing two differ-
ent Promela models. We compare the results of the exploration minimizing local
virtual time (LVT) [20] to the ones simulating the discrete event system (DES)
described in this paper. For comparison, we also present results of simulation
runs of the original implementation on hardware [21].

Unlike the original system, the Promela models do not rely on local deci-
sion making but searches for an optimal solution systematically. Therefore, both
Promela models resemble a centralized planning approach.

For executing the model checking, we chose version 6.4.3 of Spin. As a com-
piler we used gcc version 4.9.3, with the posix thread model. For the standard
setting of trace optimization for safety checking (option –DSAFETY), we compiled
the model as follows.

./spin -a z2.pr;
gcc -O2 -DREACH -DSAFETY -o pan pan.c;
./pan -i -m30000

Parameter –i stands for the incremental optimization of the counterexample
length. We regularly increased the maximal tail length with option –m, as in
some cases of our running example, the traces turned out to be longer than the
standard setting of at most 10000 steps. Option –DREACH is needed to warrant
minimal counterexamples at the end. To run experiments, we used a common
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Table 1. Sequences of events for n = 3 products. (Product ⇒ Station, where ⇒
indicates a finished production step.)

ABS LVT DES

0 ⇒ 4 0 ⇒ 4 0 ⇒ 4

1 ⇒ 2 1 ⇒ 4 1 ⇒ 4

0 ⇒ 3 2 ⇒ 4 2 ⇒ 4

2 ⇒ 1 0 ⇒ 3 0 ⇒ 3

0 ⇒ 2 2 ⇒ 3 1 ⇒ 2

1 ⇒ 4 1 ⇒ 2 2 ⇒ 3

0 ⇒ 0 1 ⇒ 1 0 ⇒ 2

2 ⇒ 4 2 ⇒ 2 1 ⇒ 1

0 ⇒ 5 1 ⇒ 0 2 ⇒ 2

1 ⇒ 1 0 ⇒ 2 0 ⇒ 0

2 ⇒ 2 2 ⇒ 0 1 ⇒ 0

1 ⇒ 0 0 ⇒ 0 2 ⇒ 0

2 ⇒ 0 1 ⇒ 5 0 ⇒ 5

1 ⇒ 5 2 ⇒ 5 1 ⇒ 5

2 ⇒ 5 0 ⇒ 5 2 ⇒ 5

notebook with an Intel(R) Core(TM) i7-4710HQ CPU at 2.50 GHz, 16 GB of
RAM and Windows 10 (64 Bit).

For smaller problems we experimented with Spin’s parallel BFS (–DBFS PAR),
as it computes optimal-length counterexamples. The hash table is shared
based on compare-and-swap (CAS). We also tried supertrace/bitstate hashing
(-DBITSTATE) as a trade-off. Unfortunately, BFS interacts with c track, so we
had to drop the experiments for cost optimization. Swarm tree search (./swarm
–c3 –m16G –t1 –f) found many solutions, some of them being shorter than the
ones offered by option –i (indicating ordering effects), but due to the increased
amount of randomness, for the optimized scheduling in general no better results
that ordinary DFS were found.

In each experiment run, a number of n ∈ {2 . . . 20} shuttles carry products
through the facility. All shuttles with even IDs acquire clear bulbs, all shuttles
with odd IDs acquire colored ones.

A close look at the experiment results of every simulation run reveals that,
given the same number of products to produce, all three approaches result in
different sequences of events. However, LVT and DES propose the same sequence
of production steps for the product of each shuttle. The example given in Fig. 1
shows that for all shuttles 0 . . . 2 the scheduling sequence is exactly the same in
LVT and DES, while the original ABS often proposes a different schedule. In the
given example, both LVT and DES propose a sequence of 4, 2, 1, 0, 5 for shuttle
1. To the contrary, the ABS approach proposes 2, 1, 4, 0, 5 for shuttle 1. The
same phenomenon can be observed for every n ∈ {2 . . . 20} number of shuttles.
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All three simulation models keep track of the local production time of each
shuttle’s product. In ABS and LVT simulation, minimizing maximum local pro-
duction time is the optimization goal. Steady, synchronized progress of time is
maintained centrally after every production step. Hence, whenever a shuttle has to
wait in a queue, its total production time increases. For the DES model, progress
of time is managed differently, as illustrated in Sect. 6.2. Results show that max.
production time in DES is lower than LVT and ABS production times in all cases.

For every experiment, the amount of RAM required by DES to determine an
optimal solution is slightly lower than the amount required by LVT as shown in
Table 2. While the LVT required several iterations to find an optimal solution,
the first valid solution found by DES was already the optimal solution in any
conducted experiment. However, the LVT model is able to search the whole state
space within the 16 GB RAM limit (given by our machine) for n ≤ 3 shuttles,
whereas the DES model is unable to search the whole state space for n > 2.
For every experiment with n > 3 (LVT) or n > 2 (DES) shuttles respectively,
searching the state space for better results was cancelled, when the 16 GB RAM
limit was reached.

Table 2. Simulated production times for n products in the original ABS and Spin
simulation, including the amount of RAM required to compute the given result.

Products ABS LVT DES

Max. Prod. Time Max. Prod. Time RAM Max. Prod. Time RAM

2 4:01 3:24 987 MBa 2:53 731 MBa

3 4:06 3:34 2154 MBa 3:04 503 MB

4 4:46 3:56 557 MB 3:13 519 MB

5 4:16 4:31 587 MB 3:25 541 MB

6 5:29 4:31 611 MB 3:34 565 MB

7 5:18 5:08 636 MB 3:45 587 MB

8 5:57 5:43 670 MB 3:55 610 MB

9 6:00 5:43 692 MB 4:06 635 MB

10 6:08 5:43 715 MB 4:15 557 MB

20 9:03 8:56 977 MB 5:59 857 MB
a indicates that the whole state space was searched within the given RAM usage

While the experiments indicate that the DES is faster and more memory
efficient than the LVT approach, we observe that the mapping cost to time in
the DES is limited. Assuming that events are processed by the time stamp while
inserted in the priority queue is a limitation. Extensions of the future event list
supporting the priority queue operation increaseKey have to be looked at. In our
experiment if one element in a process queue was delayed, all the ones behind it
were delayed as well. While DES and LVT are both sound in resolving deadlocks,
LVT has the more accurate representation for the progress of time.
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8 Conclusions

Simulation provides a method to approximate the behaviour in a real system (and,
hence, can be used for testing scenarios). Constructing the model can prove useful
in achieving greater understanding of the system. In this paper, we presented a
novel approach for model checking (instead of simulating) DES. The research is
motivated by our interest in finding and comparing centralized and distributed
solutions to the optimization problems in autonomous manufacturing.

Using model checking for optimizing DES is a relative new playground for
formal method tools in form of a new analysis paradigm. The formal model in
Promela reflects the routing and scheduling of entities in the DES. Switches of
the rail network were modeled as processes, the edges between the switches as
communication channels. Additional constraints to the order of production steps
enable to carry out a complex planning and scheduling task. Our results clearly
indicate a lot of room for improvement in the decentralized solution, since the
model checker found more efficient ways to route and schedule the shuttles on
several occasions. Furthermore, the model checker could derive optimized plans
of several thousand steps.
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