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78. Perceptual Robotics

Heinrich Bülthoff, Christian Wallraven, Martin A. Giese

Robots that share their environment with humans
need to be able to recognize and manipulate ob-
jects and users, perform complex navigation tasks,
and interpret and react to human emotional and
communicative gestures. In all of these percep-
tual capabilities, the human brain, however, is
still far ahead of robotic systems. Hence, tak-
ing clues from the way the human brain solves
such complex perceptual tasks will help to de-
sign better robots. Similarly, once a robot interacts
with humans, its behaviors and reactions will be
judged by humans – movements of the robot,
for example, should be fluid and graceful, and
it should not evoke an eerie feeling when inter-
acting with a user. In this chapter, we present
Perceptual Robotics as the field of robotics that
takes inspiration from perception research and
neuroscience to, first, build better perceptual ca-
pabilities into robotic systems and, second, to
validate the perceptual impact of robotic systems
on the user.
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The technical realization of perceptual functions is
a central problem for many applications in robotics.
Robots require perception to navigate in space and to lo-
calize and recognize goal objects, e.g., for manipulation
(Chaps. 7, 8, 32, 33, 36–38, 47, 67). Social interac-
tive robots must be able to interpret gestures, actions,
and even emotions (Chap. 69, 71, 72) in order to inter-
act naturally with their users. One important approach
for the programming of complex perceptual and be-
havioral functions, for example, needed for humanoid
robots is imitation learning (Chaps. 75, 77). Imitation
learning requires the robot to perceive complex actions

that are executed by the user and to subsequently map
them into an efficient representation that is suitable for
the synthesis of the corresponding motor behavior on
the available platform. This chapter focuses on impor-
tant principles of the representation of complex shapes
and movements, which can be derived from biologi-
cal perception systems, and more specifically the basic
functionality of the primate visual cortex. Such prin-
ciples have interesting implications for the design of
technical systems in robotics and computer vision for
the recognition of objects, shapes and faces, and for the
recognition and synthesis of complex movements and
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actions. The limited space of the chapter forced us to
focus mainly on visual perception and related techni-
cal applications. In the context of robotics many other
aspects of perception are important, for example hap-
tic perception (Chap. 41), auditory perception, sensory
cue fusion (Chap. 35), and the interaction between the
visual recognition of objects and actions and motor pro-
grams, e.g., during grasping (treated in Chap. 38).
In the following, we will first formulate several biolog-
ical principles that are relevant for form and motion
representations, specifically in the visual system. We
will then, on the one hand, describe technical systems
that implement these principles using neural mecha-
nisms that are inspired by the basic architecture of the
brain. On the other hand, we will discuss also imple-
mentations that are inspired by biological principles on
a more abstract level, and which exploit instead of neu-
ral networks more efficient technical algorithms for the
realization of biologically relevant functions. Many of
these systems are derived in the field of computer vi-
sion and are based on the advantages and limitations of
modern digital computers in order to more efficiently
realize biological principles of information processing.

Our approach to establish relationships between
biological perception and robotics systems at differ-
ent levels reflects David Marr’s classical distinction of
multiple levels of description, originally developed for
the analysis of vision systems [78.1]: Robotics systems
can be inspired by biological system at the level of
implementation, i. e., one can try to build robots con-
taining neural mechanisms that imitate the function of
neurons in central nervous systems of biological or-
ganisms. This type of analogy between technical and
biological systems coincides with the definition of Neu-
rorobotics given in Chap. 77. A transfer of principles
from biological perception systems to robots might also
be accomplished at the more abstract levels of compu-
tational problems and algorithms. The computational
level is defined by the abstract theoretical formulation
of computational problems that have to be solved by
perception systems. Examples are the identification or
classification of goal object, or the recognition of hu-
man gestures. Marr’s level of algorithms specifies the
computational methods for the solution of such prob-
lems, independent of the underlying specific hardware
or architecture. For example, an object might be rep-
resented by modeling its full 3-D structure, e.g., using
a parametric 3-D shape model, or it might be rep-
resented in terms of two-dimensional example views.
Example views, however, might be represented using
neural networks, establishing an analogy with the hu-
man brain at the level of implementation, or using more
efficient computational methods, e.g., as support vec-
tors of a classifier that has been trained with appropriate

images of the object and distractor patterns. In both the
cases, the robot system realizes mechanisms that are de-
rived form perception in biological systems.

Marr’s distinction of levels is only one way to in-
troduce description levels for complex systems. Other
approaches, particularly relevant for robotics, are, for
example the subsumption architecture and behavior-
based approaches (Chap. 13) that decompose robotics
system into a system of simpler behavioral modules.
Another examples are dynamical systems approaches
to robotics [78.2–4] that are based on the biologi-
cally motivated idea that behaviors can be mapped onto
stable states of (nonlinear) dynamical systems or re-
current neural networks. Individual behaviors result by
self-organization over the whole system as collectively
stable modes, which can be described and analyzed
by the introduction of appropriate collective variables.
Interestingly, such robotics-inspired approaches have
been quite successful in modeling human navigation be-
havior [78.5].

In the following, we will apply the term Perceptual
Robotics to signify the design of robots based on prin-
ciples that are derived from human perception on all
three levels in the sense of Marr. This includes a real-
ization in terms of specific neural circuits as well as the
transfer of more abstract biologically inspired strategies
for the solution of relevant computational problems.
A direct interaction between robotics and perception
research can be very fruitful for both disciplines. On
the one hand, our current knowledge about the human
perception and the underlying computational principles
might help us to build more efficient robotics architec-
tures that inherit properties from biological perception,
e.g., very efficient and robust processing or complex
dynamic flexibility. Such architectures will be a neces-
sary pre-requisite for the creation of truly intelligent,
cognitive robots (Chaps. 13, 71, 74, 75). On the other
hand, perception science often uses robots as testbed
for gaining a deeper understanding of computational
processes, in particular, for testing the computational
power of specific computational solutions under real-
world conditions. How can a child, for example, learn
how to handle new objects, and what allows us to
learn the visual categorization of thousands of objects
from just a few examples? Perceptual robot platforms,
equipped with a variety of sensory inputs and operating
in different types of artificially structured or real-world
environments provide very helpful tools for the study of
such questions.

Finally, perceptual robotics not only means to take
inspiration from perception to build more efficient
robots, but it also encapsulates the perceptual valida-
tion of robotic systems. As robots move into the human
environment and are increasingly also interacting with
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humans, it becomes important to evaluate and validate
their effectiveness and efficacy with respect to human
standards. Here, we do not refer to their social accep-
tance, but rather to the way that robots are judged by
humans in terms of their appearance, movements, and
interactive capabilities. If a robot displays jerky move-
ments, for example, it may still successfully grasp and
manipulate an object, but it would be immediately no-
ticeable to a human observer and potentially disturbing
to interact with. This eeriness or weirdness was already
anticipated in the early 1970s in a famous paper about
the uncanny valley by a Japanese roboticist [78.6]. Mori
anticipated that as robots become more human-like, hu-
mans’ familiarity with the robot would increase until
at some point (when the robot looks or acts almost
human-like), they would suddenly feel highly unfamil-
iar toward the robot. As the human likeness increases
further, the robot would again be judged as familiar or
appealing.

More specifically, Mori also postulated that this un-
canny valley would not only hold for the robot’s static
appearance, but would in fact be increased for a moving
or acting robot. With the increase in interest in develop-

ing humanoid robots over the past decades, being aware
of the perceptual judgments of such humanoids be-
comes a critical component in their development. Since
the evaluation of appearance and movements of a hu-
manoid are driven by perceptual processes, it makes
sense to also use protocols from perception research to
evaluate and fine-tune their effectiveness. In such exper-
iments, typically the robot’s performance is evaluated
with respect to measures such as general user accep-
tance, recognizability of expressions, smoothness of
motions, ease of interaction, duration and quality of in-
teraction, etc. It is important that the experiment should
not only be about simply asking how good is the robot,
but it should actually tests the robot in the intended task
context or that whether it uses additional, indirect mea-
sures of effectiveness. As a tutorial on designing and
analyzing perceptual experiments and user studies is
beyond the scope of this chapter, we refer the reader
to introductory texts such as [78.7, 8]. In this chapter,
we will focus on two important topics related to hu-
manoid perception in the context of perceptual robotics:
facial animation and the perceptual processing of body
movements.

78.1 Perceptual Mechanisms of Object Representations

Object recognition is a fundamental visual function
that is critical for many applications in robotics. Ma-
nipulation and grasping (Chaps. 36–38) require exact
knowledge about the shape of the goal object that
is often derived from visual sensors. Also the imita-
tion of goal-directed movements (Chap. 77) requires
knowledge about target objects. Finally, social and col-
lective robots require robust recognition of other agents
and objects which are taking part in the present ac-
tion (Chaps. 71, 72). The importance of object and
shape recognition for many other applied robot sys-
tems, like construction and assembly robots or smart
cars (Chap. 54) is immediately evident.

78.1.1 Perceptual and Computational Basis
of Object Representations

The question of how humans learn, represent, and
recognize objects under a wide variety of viewing con-
ditions presents a great challenge to both neurophysiol-
ogy and cognitive research. Frameworks for explaining
the amazing robustness of human recognition processes
and how humans represent objects can be broadly
classified into two approaches: in the model-based rep-
resentation, an image on the retina is analyzed to yield
three-dimensional parts of an object based on geomet-

ric primitives (cf. also Chap. 32). These primitives are
then matched to an internal, three-dimensional model
of the object (Fig. 78.1, bottom). Exemplar-based rep-
resentation approaches assume that the internal storage
consists of, typically two-dimensional, snapshot-like
representations of objects, which are directly compared
to the visual input via simple image transformations.
In the following, we will briefly describe the basic
properties of these two approaches as well as percep-
tual evidence for their plausibility in explaining human
recognition performance.

Structural Description Models
The basic idea of structural description models is that
object recognition or categorization is based on a struc-
tural representation, which is defined as a configura-
tion of elementary object parts that are regarded as
shape primitives [78.9]. Structural description models
aim at supplying abstract and propositional descrip-
tions of objects, while at the same time disregard-
ing irrelevant spatial information. Therefore, structural
description models typically predict that recognition
performance is invariant regarding spatial transforma-
tions. Biederman’s recognition-by-components (RBCs)
or geon structural description (GSD) model can be
regarded as the best developed example of the struc-
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Fig. 78.1 Schematic drawing comparing exemplar-based with model-based representations. Object perception based on
model-based representations assumes that the brain extracts 3-D parts from the visual image, which are then matched to
an internally stored 3-D model of the teapot. Contrasting with this approach, object perception based on exemplar-based
representations is accomplished by directly comparing stored templates or example images with the current picture of
the teapot

tural description model type [78.10]. According to
this model, objects are represented as configurations
of elementary three-dimensional primitive parts, called
geons. These geons are derived from nonaccidental
properties (NAPs) in the image, i. e., from properties
which unlikely arise by chance, and are more or less in-
variant over a wide range of views. For example, the
properties straight vs. curved, symmetrical vs. asym-
metrical, parallel vs. nonparallel are regarded as NAPs
(NAPs were originally proposed within an image-based
approach by Lowe [78.11]). According to the model,
geons and their spatial configuration are combined into
a structural representation, called GSD. The spatial re-
lations between parts are described in a categorical way,
using relations like above, below, etc. Like other struc-
tural description models, Biederman’s model predicts
invariance in relation to position and size and also in
relation to orientation in depth, as long as no parts are
occluded.

The question has to be raised whether objects can
be decomposed into geons at all. It was argued that
Biederman’s RBC cannot be applied to a whole range
of biological stimuli [78.12], or that biological shapes
in general cannot be adequately described by struc-

tural description models [78.13]. This problem extends
also to artifact categories like shoe, hat or backpack,
which seem to exceed the scope of the geon model.
Therefore it has to be doubted that object parts are
necessarily represented as geons, or as similar geomet-
rical primitives (further problems of RBC in [78.14,
15]). However, this does not mean that category rep-
resentations do not have a part structure: in fact, it is
not the notion of the part structure in object representa-
tions by itself which is problematic, but the use of parts
and relations as a basis to derive invariant recognition
performance [78.15].

Exemplar-Based Models
Over the last two decades, an increasing number of
studies has demonstrated that recognition is not view-
independent. Orientation-dependent recognition effects
were found for novel objects [78.16, 17], and also
for common, familiar objects [78.18, 19]. Orientation-
dependent recognition performance has been shown not
to be limited to individual objects, such as faces [78.20,
21], or to objects on the subordinate level of catego-
rization [78.16, 22], but also was demonstrated for basic
level recognition [78.19, 23].
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Moreover, recognition performance is not only in-
fluenced by the orientation, but also by the size of the
stimulus. Results are quite similar: reaction times (RTs)
and error rates depend on the extent of transforma-
tion that is necessary to align memory and stimulus
representation. RTs increase in a monotonic way with
increasing change of (perceived) size (for a review
Ashbridge and Perrett [78.24]). Several studies even
show a systematic relationship between the amount
of translation and recognition performance: Increasing
displacement between two sequentially presented stim-
uli led to a deterioration of performance, both for novel
objects [78.25] and familiar objects [78.26]. Overall,
view-independent models are difficult to reconcile with
these findings which indicate that recognition perfor-
mance depends systematically on different spatial trans-
formations.

In the following, we will briefly review three
types of exemplar-based models, which – by virtue
of different computational mechanisms and pro-
cesses (including alignment, interpolation, and pooling/
thresholding) – explain the transformation-dependent
performance that was found in the psychophysical ex-
periments.

In the class of alignment models, Ullman’s [78.12,
27] 3-D alignment model and Lowe’s [78.11] SCERPO
model are probably the best-known examples. Both
models work by storing 3-D models of objects, which
are aligned to images by perspective projection of cor-
responding features (edges or feature points on the
object). As an alternative to Ullman’s [78.27] model
that relies on 3-D object representations, Ullman and
Basri [78.28] suggested an alignment model on the ba-
sis of 2-D (two-dimensional) views. In this model, an
internal object model is constructed by a linear com-
bination of a small number of stored 2-D exemplar
images. Thus, the alignment is not achieved by a spa-
tial compensation process, but by linear combination
of images. The intuition behind the linear combination
approach can be explained in simple terms. Suppose
that two views of the same three-dimensional object are
stored, taken from somewhat different viewing direc-
tions. An intermediate view can then be described as
a weighted sum of the views that are already stored.
In this case, the representation is based on the two-
dimensional positions of corresponding features in each
view. Making the set of views closer results in an ob-
ject representation that is equivalent to storing a 3-D
model.

In the interpolation model, recognition is achieved
by localization in a multidimensional representational
space, which is spanned by stored views [78.29]. The
interpolation model is based on the theory of approx-
imation of multivariate functions and can be imple-

mented with radial basis functions (RBFs). In this
scheme, the whole viewing space of an object is approx-
imated by the learned exemplar views through a limited
number of series of so-called radial basis functions
(such as Gaussian functions) each of which becomes ac-
tivated within a limited region of the high-dimensional
feature space. Object recognition then means to exam-
ine whether a new point corresponding to the actual
stimulus can be approximated by the existing tuned
set of basis functions. Thus, recognition does not oc-
cur by transformation or reconstruction of an internal
image, but rather by interpolation or approximation
of exemplars in a high-dimensional representational
space.

At the end of the 1990s – and as an extension to
the interpolation models – recognition models based on
pooling and thresholding were developed [78.30–33].
Recognition is explained on the basis of the behaviour
of cells that are selectively tuned to specific image fea-
tures (fragments or whole shapes) in a view-dependent
(and size-dependent) way. A hierarchical pooling of the
outputs of view-specific cells provides generalization
over viewing conditions [78.30]. A similar proposal
was made by Riesenhuber and Poggio [78.31]. The
threshold model [78.34] also accounts for the sys-
tematic relation between recognition latencies and the
amount of rotation (and size-scaling). The speed of
object recognition depends on the rate of accumula-
tion of activity from neurons selective for the object,
evoked by a particular viewing circumstance. For a fa-
miliar object, more tuned cells will be activated in the
views most frequently presented, so that a given level
of evidence (threshold) can be achieved fast. When the
object is seen in an unusual view, fewer cells will re-
spond, and activity among the population of cells selec-
tive for the object’s appearance will accumulate more
slowly. Consequently, these threshold models explain
orientation-dependence without the need to postulate
transformation or interpolation processes.

In a recent paper, an attempt has been made at
view-dependent and view-independent approaches to
object processing [78.35]. A careful study of the view-
dependency of novel objects was designed by combin-
ing structural properties (number of parts) with metric
properties (thickness, size of parts) has found that both
view-dependent and view-independent processing seem
to be combined in object recognition. Thus, instead of
taking the extreme standpoints of view-based versus
view-invariant processing, one might envisage a visual
processing framework in which features are selected
according to the current task, where the optimality, effi-
ciency and thus the dependency on viewing parameters
of the features depend on the amount of visual experi-
ence with this particular task.
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Several computational models have been proposed
that aim at modelling and explaining the dependence
of human recognition performance on spatial transfor-
mations in its complexity. All of these models rely on
storing exemplars – in the simplest form just 2-D views
of objects – and matching the retinal image to these
stored examples by different computational methods.
The later models of recognition take their inspira-
tion from recent findings from physiological studies
concerning the functional building blocks of human vi-
sion in the brain. In the following, we will therefore
briefly review the neural processing of visual informa-
tion in the brain that underlies our ability to recognize
objects.

78.1.2 Neural Representations
in Object Recognition

Functionally, it has been shown that the flow of visual
information in the brain can be divided into two major
pathways: the dorsal pathway is believed to process
motion and motor- or action-related visual information,
whereas the ventral pathway usually is associated with
the task of object recognition. The structure of the
ventral pathway is hierarchically organized and consists
of a series of interconnected stages that start from the
retina, passing through the lateral geniculate nucleus
(LGN) to the primary visual cortex (V1) and extrastriate
visual areas V2, V4, and IT. The inferotemporal cortex
(IT) provides input to the prefrontal cortex (PFC),
which is believed to play an important role in identifi-
cation and categorization of visual stimuli. Recordings
in the parietal cortex [78.36] suggest, in addition, that
specifically for grasping and object manipulation also
dorsal regions might be centrally involved in the recog-
nition of manipulable objects and their affordances
(Chap. 77 for a more detailed discussion).

The seminal work of Hubel and Wiesel [78.37] in
the cat (and later also in the macaque) visual cortex first
established the idea of a hierarchical organization of vi-
sual processing. They found so-called simple cells in
the early visual cortex (area V1) that responded best to
bar-like stimuli at a particular orientation and position
in the visual field. The response pattern of these cells
could be modeled as a receptive field using Gabor-type
functions. Later in the processing stream they found so-
called complex cells which responded best to bar-like
stimuli at a particular orientation nearly everywhere in
the visual field – cells, which had become partially posi-
tion invariant. This general idea of increasing invariance
to stimulus properties with later stages of the process-
ing stream has been verified in further physiological
studies. In general, it has been found that the receptive
field of the neurons increases and that the complexity of

the stimulus it responds also increases. One of the key
studies about the functional role of IT regions has inves-
tigated the responses of neurons to real-world objects in
anesthetized monkeys ([78.38]; see also Tanaka [78.39]
for a review). Although some neurons were found
which responded maximally to simple bar-like stimuli,
the majority of neurons in posterior inferotemporal cor-
tex (PIT) preferred complex objects such as star shapes
or circles with protruding elements. Interestingly, neu-
rons were highly sensitive to minuscule changes to
these objects such as the relative orientation or thick-
ness of the elements. On the other hand, neurons were
quite insensitive to stimulus variations such as size,
contrast or retinal location. These findings were taken
as evidence that one of the strategies for representing
objects might be to use a number of moderately com-
plex visual elements, whose pattern of co-activation
encodes the visual appearance of the stimulus. In ad-
dition, Wang et al. [78.38] found neurons in anterior
inferotemporal cortex (AIT), which responded maxi-
mally to images of whole objects such as faces or cars,
indicating that already in IT object specific encodings
might be present. Several other studies have also found
neurons in this area which are tuned to faces, parts of
faces, as well as body parts ([78.40] for a review).

In another set of experiments, Logothetis
et al. [78.41] found AIT neurons, which showed
a strong view-based behavior for the same stimuli
that were used in the study of Bülthoff and Edel-
man [78.16], whereas they were invariant to size and
location of the stimulus. Their findings provide strong
evidence that a neural implementation of view-based
object encoding is possible and indeed seems to be
used for recognition. In addition to view-selectivity and
size invariance, the investigated cells were also found
to be maximally selective for the holistic stimulus
rather than its constituent parts. This finding indicates
that these cells might be encoding the pooled co-
activation pattern of earlier PIT cells and thus form
view-tuned units of recognition. It is important to stress
in this context that an abstraction such as grandmother
neurons, which specifically encode only one stimulus,
does not seem plausible. Rather, the majority of neural
responses in this and other experiments showed selec-
tivity for a number of stimuli. A plausible explanation
for this finding is that objects are encoded not by
a single neuron but by a population code encompassing
a number of neurons, which greatly increases the
robustness of the representation [78.33].

The findings from this area of research can be
summarized in a simple functional architecture: going
from early stages to later stages of visual processing
in a feedforward fashion, feature complexity increases
from simple edge detectors toward view-tuned, com-

http://dx.doi.org/10.1007/978-3-319-32552-1_77
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plex object cells and invariance to changes in the
stimulus increases. This functional architecture is re-
flected not only in the object recognition framework
discussed previously, but it also provides the motivation
for computational vision systems that have been devel-
oped over the last few decades which will be discussed
in the following.

78.1.3 Object Recognition:
Lessons from Computer Vision

Computer vision started out as a subfield of artificial
intelligence in the 1960s. Early work on scene under-
standing by Roberts [78.42] showed how computers
could parse worlds consisting of simple, geometric ob-
jects such as cubes, pyramids, etc. The main thrust of
computer vision systems in the following decades con-
sisted of building algorithms for reconstructing a three-
dimensional world from images – this development was
further stimulated by Marr’s very influential theory of
vision as 3-D reconstruction [78.1]. This theory was
built on extracting geometric primitives from images
that could be mathematically described as generalized
cylinders. Although the mathematical rigor of such ap-
proaches was very appealing, computational implemen-
tations turned out to have strong limitations. Extracting
robust features is a necessary prerequisite for building
a 3-D reconstruction of the image, and finding these
features proved to be hard under real-world conditions
due to the enormous amount of variation in the image
caused by changes in lighting, depth rotations, noise,
occlusion, etc.

Parallel to the paradigm shift in human psy-
chophysics and physiology, exemplar-based computa-
tional systems began to emerge, which for the first time
showed good recognition performance under a larger
range of viewing conditions. These recognition sys-
tems were based on – sometimes surprisingly simple –
histograms of pixel values [78.43], local feature de-
tectors [78.44, 45] or on a straightforward pixel repre-
sentation of images using principle components analy-
sis [78.46]. All of these recognition systems relied on
a database of labeled example images, an algorithm
for extracting features from these images, and a suit-
able classification method for comparing sets of image
features.

Returning to the discussion of modeling human vi-
sion, in the following we provide an exemplary review
of three neuromorphic recognition systems that are
based on a functionally plausible, exemplar-based ar-
chitecture: these are SpikeNET [78.48], LeNet [78.49],
and a framework by Serre et al. [78.50]. The first system
is motivated by the finding that humans are amazingly
fast at categorizing images as containing an animal or

a face [78.51]. Typical response times for this task are
so small (on the order of 100ms) that the visual sig-
nal has only time for one feedforward pass through
the visual areas of the brain (Fig. 78.2) – any recur-
rent feedback processing would necessarily delay the
decision and therefore result in longer response times.
Based on this finding, a neural network architecture
was designed [78.48] that exploits the timing of neu-
ronal responses (spikes) to encode visual signals using
a who fires first – strategy. This is different from tra-
ditional neural networks in that the timing is used
rather than the firing strength. An object in this sys-
tem will therefore be represented by an ensemble of
neurons that represents a pattern of spike responses
from earlier low-level, feature extraction neurons. In
their implementation, these low-level neurons consist
of standard Gabor-type receptive fields that are similar
to the receptive fields found in the cat’s visual cor-
tex [78.37]. This spike time encoding allows for very
fast processing of visual stimuli and has been shown
to provide robust recognition results. The network ar-
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Fig. 78.2 Recognition performance of four highly similar object
(shown in the inset) by an in-hand recognition system using active
view selection (after [78.47]). The five methods compared in the
plot contrast planned (blue) and unplanned (orange) exploration of
the objects in the hand of the robot. The x-axis is the number of iter-
ations, and the y-axis is the recognition accuracy in percent. As time
(or iteration number) proceeds, the planned approaches surpass ran-
dom exploration significantly. In addition, employing proabilistic
methods for recognition of the objects using a particle filter also
provides a recognition improvement. Finally, the thick, solid blue
line shows performance in a system which boosts the likelihood
of an object given the current visual evidence in the particle filter
framework – this approach fares best overall. These results show
that active view selection enhances the robot’s ability to learn and
recognize objects in real-world environments
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chitecture LeNet [78.49] consists of a neural network
that uses a hierarchy of layers of trainable convolutions
and spatial subsampling, as well as nonlinear filtering
to extract features of increasingly large receptive fields,
increasing complexity, and increasing robustness. Us-
ing extensive, supervised training of the full hierarchy,
such a network provides a very efficient, sparse set of
features for many visual recognition tasks. Finally, the
network architecture by Serre et al. [78.50] uses a very
similar hierarchical structure of layers in which feature
complexity and invariance are successively increased
by linear and nonlinear pooling – its lower level fea-
ture detectors, however, are trained in an unsupervised
fashion on a large database of natural images, yield-
ing a large set of detectors that are optimally tuned
to natural image statistics. Again, the performance of
this model in recognition tasks has been shown to be
very good – in addition, comparisons with physiolog-
ical and psychophysical experiments have shown that
this framework is also capable of modeling human re-
sults from these experiments.

Recent research has mainly focused on two top-
ics: the automatic extraction of optimal visual features
for efficient recognition and categorization, and the
extension of the frameworks for providing invariance
against changes in viewing conditions (such as rotations
in depth, scaling, translation, illumination, and occlu-
sion, for example, DiCarlo et al. [78.52], Rolls [78.53]
for discussions of invariance in neuromorphic architec-
tures). In a recent paper [78.54], these two issues have
been addressed in a face recognition task conducted
on a difficult database of faces taken in uncontrolled
environments. The selection of optimal features was
done by evaluating a large set of potential visual fea-
ture combinations using GPU-accelerated algorithms.
The issue of invariance was addressed by using a hier-
archical, multilayer model in which each layer includes
linear and nonlinear pooling operations that encode the
input image. The combined system was benchmarked
against other standard feature-extraction methods and
a flat, nonhierarchical one-layer model. Both proper-
ties resulted in increased recognition performance on
the database outperforming other benchmarked state-
of-the-art methods. In addition, the system also showed
increased robustness against viewing variations, which
included pose, position, scale, and background clutter.

In summary, neuromorphic architectures have now
reached a stage of maturity that can put them even
ahead of sophisticated, state-of-the-art computer vision
frameworks. The ability to learn and adapt the feature
set to viewing conditions and the increased robustness
to viewing conditions makes such architectures good
candidates for building the visual learning and recog-
nition system for a perceptual robot.

78.1.4 Object Learning and Recognition
for Perceptual Robotics

In general, it can be said that the success of perceptu-
ally inspired recognition systems can be seen as a strong
indicator for the feasibility of a data-driven, exemplar-
based approach to recognition. There are three issues,
however, which so far have not been addressed in any of
these vision systems and which will be important both
for achieving human performance in generic recogni-
tion tasks in a perceptual robotics application – as well
as for a full understanding of the processes in human
object recognition.

First of all, all of the above-mentioned systems are
feedforward – virtually no feedback, recurrent process-
ing is implemented in their architecture, which makes
them in a sense very similar to the simpler frog- or bee-
like neural systems discussed in Chap. 77. Although
there is evidence that humans solve some recogni-
tion tasks using very little feedback (see, e.g., Thorpe
et al. [78.51]; DiCarlo et al. [78.52]), it nevertheless is
a crucial component of visual processing driving, for
example, attentional focus, context awareness, as well
as memory and reasoning processes – basically every-
thing that makes up visual intelligence. Some visual
attention models that are relevant for robotics systems
are reviewed in Chap. 77.

Secondly, a severe limitation of most of today’s ar-
tificial recognition systems is that they solely focus on
the static domain of object recognition. Visual input on
the retina, however, consists of dynamic changes due to
object- and self-motion, nonrigid deformations of ob-
jects, articulated object motion as well as scene changes
such as variations in lighting, occluding, and re- and
disappearing objects – where at any given point in time
several of these changes can be interacting. Several
psychophysical experiments, indeed suggest an impor-
tant role for dynamic information, both in learning and
recognition of objects [78.55–58]. These results ask
for an extension of current object recognition frame-
works with a temporal component in order to arrive
at truly spatiotemporal object representations. Com-
bining methods from computer vision, psychophysics,
and machine learning, Wallraven and Bülthoff [78.59,
60], have developed a framework that fulfills this re-
quirement and learns spatiotemporal, exemplar-based
object representations from image sequences. More
specifically, spatiotemporal characteristics of the visual
input are integrated into a connected view-graph rep-
resentation based on tracked local features. In order
to provide robust classification performance, machine
learning techniques are used to design efficient meth-
ods for combining support vector classification schemes
with these local feature representations [78.61]. In sev-

http://dx.doi.org/10.1007/978-3-319-32552-1_77
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Perceptual Robotics 78.2 Perceptual Mechanisms of Action Representation 2103
Part

G
|78.2

eral studies it was shown that the framework achieved
excellent recognition results on both highly controlled
databases as well as on real-world data. The integration
of spatiotemporal information provides characteristic
information about dynamic visual input via the connec-
tion of views and the two-dimensional image motion of
discriminative features. In addition to delivering good
recognition performance, the framework was also able
to model results from psychophysical experiments on
face and object recognition. A similar model using
a neuromorphic architecture integrating the temporal
dimension was proposed by Kietzmann et al. [78.62].

A third issue that – in our view – will be essen-
tial for designing and implementing efficient perceptual
robots consists of the multisensory nature of our per-
ceptual system (see also the discussion of embodied
robots in Chap. 13). As an example, there is a close
coupling between the human visual and haptic system –
touch can provide a wealth of complementary infor-
mation about an object when it is manipulated, such
as its texture, its shape, its position in space relative
to our body, etc. In a series of psychophysical exper-
iments [78.63], participants had to learn views of four
simple, 3-D objects made of stacked toy-bricks either in
the haptic modality (when they were blind-folded) or in
the visual modality (without being able to touch them).
Subsequently, they were tested both within the same
modality as well as across modalities. Recognition re-
sults showed that cross-modal recognition is possible
well above chance. Not surprisingly, recognition of
rotated objects in the within-modality condition was
severely affected by rotation in both modalities. This
shows that not only visual recognition is highly view-
dependent but also that haptic recognition performance
is directly affected by different viewing parameters. The
results from this experiment thus support the view that
haptic recognition is also mediated by exemplar-based
processes.

Taken together with the keyframe framework out-
lined above, this cross-modal transfer might be an
important reason for the excellent visual performance

of human object recognition – after all, it is known
that infants learn extensively by actively grasping and
touching objects, which thus could provide a database
of object representations for visual recognition [78.64].
Using this basic perceptual principle as a motiva-
tion [78.60] have applied an extension of the keyframe
framework in an online robotics scenario for efficient
learning and recognition of multisensory object rep-
resentations. More specifically, a framework was de-
veloped to integrate both proprioceptive information
originating from haptic sensors in the robot’s hands
and visual information coming from the robot’s cam-
eras. For this, the robot would perform an exploratory
movement with an object in its hand (such as turning it
and looking at it from all angles) and from the result-
ing image sequence learn spatiotemporal, view-based
representations using the keyframe framework. Each
view of this representation, however, is also linked to
the current proprioceptive state (i. e., the joint angles
of the hand at that point in time) and therefore pro-
vides an anchor into a hand-centered, three-dimensional
space. In this way, a representation is generated that
links perception and action. The proprioceptive infor-
mation can then be used as an additional constraint for
both learning of objects and recognition of objects and
was shown to provide increased robustness compared
to visual matching alone. The framework was also used
as the basis for recent work in which a humanoid robot
(the iCub) performed active in-hand object recognition,
searching for the optimal view that allowed it to disam-
biguate the object currently held from other, previously
seen objects [78.47]. Again, linking the exploratory ac-
tions (turning the hand) with the visual data resulted
in a much faster and more reliable object recognition
performance. Sample data comparing unplanned and
planned recognition of difficult objects is shown in
Fig. 78.2 ( VIDEO 569 ).

Such approaches pave the way for a view of recog-
nition as an active, multisensory process in which rich,
extensible object representations are formed and im-
proved over the life-time of the robot.

78.2 Perceptual Mechanisms of Action Representation

The recognition of complex movements and actions is
fundamental for many applications in robotics, such
as imitation learning by observation. Interactive robots
need to analyze their users’ movements in order to re-
spond in a natural way to their social and emotional
behavior (Chap. 72). The following section reviews
what is known about movement and action recognition
in the brain and tries to highlight a few aspects that have

or might be successfully transferred to biologically in-
spired applications in robotics and computer vision.

78.2.1 Recognition of Complex Movements
and Actions in Primate Cortex

The recognition of complex movements and actions is
a fundamental problem for higher animals and specif-

http://dx.doi.org/10.1007/978-3-319-32552-1_13
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ically for primates. While simple movement patterns
are sufficient for eliciting stereotypical prey catch-
ing behavior in simple vertebrates ([78.65]; see also
Chap. 77), higher animals exploit more complex move-
ment patters, e.g., for the recognition of conspecifics
or predators, or for communication by facial move-
ments, gestures, or body expressions. Human percep-
tion of body motion patterns is very efficient, even for
extremely impoverished stimuli. This has been demon-
strated in classical experiments by Johansson [78.66],
who showed that complex dynamic actions can be rec-
ognized even from displays that consist only of a small
number of dots moving like the joints of a human ac-
tor. Subsequent research has demonstrated that humans
can extract highly specific information from such point-
light displays, e.g., the gender or the identity of people.
To our knowledge, no technical system for motion
recognition has been proposed so far that accomplishes
a comparable level of robustness. While much more
research in neuroscience has been dedicated to object
recognition (Sect. 78.1.2), some studies have tried to
uncover neural [78.67–70], and computational princi-
ples [78.71–73] of visual movement recognition. Some
of these principles have been transferred to the con-
struction of systems in computer vision and robotics.

Neurophysiological and brain-imaging studies indi-
cate that the recognition of facial and body movements
involves the ventral and the dorsal visual pathway. This
implies that likely form and optic flow information are
integrated during the processing of action stimuli in vi-
sual cortex. The ventral pathway, which is specifically
responsible for the processing of form information has
been discussed already in Sect. 78.1.2. Like the ventral
stream, also the dorsal pathway is hierarchically struc-
tured, and the size of the receptive fields of the neurons
increases along the hierarchy. Some cortical areas that
are part of the dorsal pathway are listed in Fig. 78.3.
The medial temporal area (MT) contains neurons that
are selective for simple local motion and coherent mo-
tion. On higher levels of the dorsal stream, e.g., in the
superior temporal sulcus (STS), neurons that are se-
lective for hand and body movements and for facial
expressions have been found in monkeys [78.69], and
similar structures are activated by these stimuli in the
human brain. In addition, areas selective for human
body shapes, such as the extrastriate body part area
(EBA), likely to contribute to the recognition of ac-
tions [78.74], where information of form and motion
features seems to be integrated on higher processing
levels [78.73].

For the recognition of goal-directed actions, such as
reaching or grasping, in addition cortical structures be-
yond the visual cortex, such as the parietal and premotor
cortex, seem to play a critical role. The role of these

structures for action recognition has been analyzed in
particular in the context of the study of the mirror neu-
ron system [78.75]. Mirror neurons are sensorimotor
neurons that combine visual tuning during action ob-
servation as well as selective motor tuning. Areas in
parietal cortex, such as the anterior might be specifi-
cally relevant for the recognition of action-related ob-
jects and their relationship to moving effectors [78.36].
Research about the mirror neuron system has influenced
the construction of a whole generation of biologically
inspired robots (Chap. 77). The guiding hypothesis has
been that the visual recognition and understanding of
actions is accomplished by mapping of observed body
movements onto motor representations that are relevant
for the execution of the same type of action.

78.2.2 Biological Principles with Relevance
for Computer Vision and Robotics

We discuss in the following two major principles that
have been derived from the analysis of action recogni-
tion in biological systems that have been transferred to
technical applications in computer vision and robotics.

A first principle that seems to be implemented in
movement recognition in primate cortex is a hierar-
chical architecture of feature detectors, which accom-
plishes action recognition by the detection of temporal
sequences of relevant motion and form features. Such
detection does not necessarily require the reconstruc-
tion of the three-dimensional facial or body shape,
nor an exact simulation of the dynamics of the under-
lying movements. Instead it can be accomplished by
much simpler computational mechanisms. Like object
recognition, the recognition of complex motion pat-
terns is strongly orientation- and view-dependent. This
property has been observed at the level of individual
neurons in the STS, and for the activation of biologi-
cal motion-selective areas in human cortex [78.69] as
well as for action-selective neurons in higher areas
such as the premotor cortex [78.76]. View- and orien-
tation dependence seem compatible with an encoding
of visually perceived movements in terms of poten-
tially learned example views, or keyframes (snap shots),
and of instantaneous optic flow patterns that are char-
acteristic for actions [78.67, 73]. While there might be
some innate preferences for specific features [78.77],
psychophysical and fMRI (functional magnetic reso-
nance imaging) experiments suggest an important role
of learning in visual movement recognition [78.78–80].
For example, subjects can learn easily to recognize indi-
vidually – specific body and facial movements [78.81,
82]. Learning-based theoretical models, exploiting sim-
ilar principles as neural object recognition models,
account for a variety of experimental data on action

http://dx.doi.org/10.1007/978-3-319-32552-1_77
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Fig. 78.3 Example-based neural model for the visual recognition of body movements that integrates the processing of
form and motion features in the ventral and dorsal visual pathways (after Giese and Poggio [78.73])

recognition in biological systems [78.73, 83, 84], also
supporting a central role of learning.

As an example of such a learning-based archi-
texture, Fig. 78.3 illustrates a hierarchical model for
the recognition of complex body movements [78.73].
It consists of two hierarchical streams modeling the
ventral and the dorsal visual pathways, which contain
detectors for action-specific motion and form features.
The form pathway of this model is similar to the
object recognition models described in Sect. 78.1.2.
The motion pathway of the model contains detectors
for action-specific optic flow features with different
complexity. Like for the described object recognition
models, position, and scale invariance is accomplished
by appropriate nonlinear pooling of the responses of de-
tectors with different spatial and scale selectivity along
the hierarchy. In addition, the model contains recurrent
neural circuits that make the responses of the recogni-
tion neurons selective for temporal order. In this way the
model responds only to actions that are executed with
the correct temporal order, and also with approximately
correct speed. The underlying network dynamics can
be interpreted as a neural implementation of a Markov
model, where the present recognized pattern predicts

possible future patterns (Chap. 68). A strong activity in
the network emerges only when the stimulus sequence
matches these predictions.

Similar hierarchical neural architectures inspired by
the visual cortex have been used in the context of
mirror-neuron robot systems [78.85, 86]. In addition,
recent work in computer vision shows that such bi-
ologically inspired architectures can reach very high
performance levels, comparable to state-of-the-art algo-
rithms in computer vision [78.87–89].

A second principle of movement recognition, which
has been discussed extensively as basis for the recog-
nition of imitable actions, and as explanation of the
function of the mirror neuron system [78.75] is the
idea that action observation is based on an internal sim-
ulation of the observed motor behavior. A variety of
computational models for action recognition by internal
simulation have been proposed in the neuroscience lit-
erature, e.g., exploiting feedforward controllers [78.90],
coupled forward and backward models [78.91], hier-
archical Bayesian predictive models [78.92], or a free
energy minimization framework [78.93]. (A further
more extensive discussion about theoretical models for
the mirror neuron system with relevance for robotics

http://dx.doi.org/10.1007/978-3-319-32552-1_68


Part
G
|78.2

2106 Part G Robots and Humans

can be found in Chaps. 68 and 77.) A main difficulty
of the recognition of actions by internal simulation of
associated motor behaviors is the accurate estimation
of relevant geometrical quantities from image data, es-
pecially when no special depth sensors or even online
motion capture are available. Many of the underly-
ing motor control models are formulated in joint angle
space, and the robust recognition of joint angles from
monocular videos is known to be a difficult computer
vision problem, which so far is solvable only for highly
restricted classes of movements with strong learned pri-
ors, and at considerable computational cost [78.94, 95].
This raises the question about simpler computational
approaches for the recognition of goal-directed actions,
which explain biological data and might be interesting
for technical applications.

A recently developed model for the visual recogni-
tion of goal-directed hand actions in cortex that follows
these lines [78.96] is illustrated in Fig. 78.4. The under-
lying architecture is an extension of the form pathway
of the model shown in Fig. 78.3, by the addition
of neural circuits that process the spatial and tempo-
ral relationship between the observed effector (in this
case the hand) and the recognized goal object (e.g.,
a grasped object). The model works, exploiting a purely
exemplar-based approach (Sect. 78.1.1), without ex-
plicit reconstruction of the three-dimensional structure
of the object or the effector. The model comprises
three modules: The first module (A, in Fig. 78.4) rec-
ognizes shapes of the goal object and of the effector,
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Fig.78.4a–c Physiologically inspired model for the recognition of goal-directed hand actions. The shape-recognition (a) rec-
ognizes the shape of goal objects and the shapes of individual hand postures, retaining some course position information. The
module (b) associates the information of hand and object by computing maps that represent the relative positions of hand and
object in image coordinates. From these maps the spatial matching hand and object and their relative motion can be computed.
The highest level module (c) contains model neurons that are selective for different types of goal-directed actions. Up to this
level the model recognizes actions in a view-dependent manner, and only at the highest level (view-independent transitive actions
neurons) the model accomplishes view independence by pooling the outputs from view-specific modules (courtesy of Fleischer
et al. [78.96])

implementing a shape recognition hierarchy similar to
standard object recognition models as the ones de-
scribed in Sect. 78.1.3. The analysis of the temporal
deformation of the hand is based on the recognition
of sequences of key shapes, like in the form path-
way of the model in Fig. 78.3. Opposed to standard
object recognition models, however, the highest level
of this shape recognition hierarchy is not completely
position-invariant. Rather, it retains coarse position se-
lectivity by implementing multiple replica of the same
shape detectors that are selective for different image po-
sitions. This makes it possible to further analyze the
spatiotemporal relationship of the recognized goal ob-
jects and effector. This analysis is realized in the second
module (B) whose core is formed by two-dimensional
relative position maps. These are neural activity maps
that represent the effector position as activity peak in
a two-dimensional coordinate system that is centered
on the object position in the image. These maps are
computed by a gain fields [78.97] that multiply the
output activities of shape selective neurons with selec-
tivity for object and effector. The activity distribution
in these neural map is analyzed by affordance neurons
that are activated only when hand and object shape
match and are in a spatial relationship that is suit-
able for a successful grip. By appropriate pooling of
the responses of motion energy detectors that receive
input from the relative position map relative motion
neurons can be constructed, whose activity character-
izes the relative motion between the effector and object

http://dx.doi.org/10.1007/978-3-319-32552-1_68
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(e.g., the hand approaching the object). The outputs
of affordance and the relative motion neurons are in-
tegrated in the third module (C), which contains only
neurons that are selective for visually observed goal-
directed actions. This integration of information is first
accomplished in a purely view-specific manner. View
independence is not established until the very last hier-
archy level of the model that contains view-independent
action-selective neurons. The idea of establishing view-
dependence only very late in the cortical hierarchy
seems counter-intuitive, and is at odds with several es-
tablished computational models for action recognition.
However, this dominance of exemplar-based represen-
tations until very high levels of the cortical processing
hierarchy has been observed in electrophysiological
experiments studying mirror neurons in premotor cor-

tex [78.76]. In this structure, which is traditionally
associated with motor planning, the majority of mir-
ror neurons is view-dependent and only a minority is
view-independent. The discussed model can recognize
hand actions from gray level videos. It could be aug-
mented by integration of disparity or depth features,
and by appropriate attentional control mechanisms that
would make it more robust to cluttered scenes with
multiple relevant objects. Whether similar architectures
have advantages for the robust visual recognition of
goal-directed actions in technical systems remains to
be shown. Very recent work shows that such hierarchi-
cal deep architectures, which consist of learned feature
detectors, outperform classical technical solutions on
actual computer vision benchmarks for action detec-
tion [78.98].

78.3 Perceptual Validation of Robotics

Successful human–robot interaction is perhaps easiest
when the robot offers interaction channels that are com-
patible to that of human–human interaction [78.99].
The most important interaction channels in this case
are verbal and nonverbal communication with the face.
Importantly, in human–human interaction, nonverbal
communication using facial expressions, for example,
constitutes up to 30% of the communicative content.
Facial expressions are not only used to convey some-
one’s mood and emotion [78.100], but are also used in
communicative contexts to signal understanding (a nod
of the head), to modify what is being said (a raise
of the eye-brows), and to control the conversational
flow (a look of confusion may signal to the speaker
to repeat what has been said). Hence, many humanoids
have incorporated more or less sophisticated heads ca-
pable of producing human-like facial expressions and
movements. Traditionally, this has been achieved us-
ing mechatronic implementations in which actuators
drive facial features directly (e.g., as in the MDS robot
by Lee and Breazeal [78.101]), or – in more com-
plex implementations of android robots – mimic human
muscle movements that are then used to deform artifi-
cial skin [78.102–104]. Other systems have used LEDs
for displaying simple, changeable facial features (e.g.,
as in the iCub platform [78.105].

78.3.1 Realistic Faces for Robots

With such a great variety of robot systems also comes
the need for an investigation of their perceptual eval-
uation and their interaction capabilities ([78.106] for
such a study in the context of facial animations in

computer graphics). Indeed, one particular problem of
android, human-like systems is that they easily could
suffer from the uncanny valley effect as the actuators
and/or the control framework cannot easily reproduce
the smoothness of human facial expressions. A study
of morphed images between a nonhuman robot face
and a highly realistic android robot head, for exam-
ple, clearly showed evidence of the uncanny valley
effect [78.107] – a similar study for moving robot faces
yielded more mixed results, but still showed that the
most realistic robotic faces were clearly perceived as
different from that of a human talking [78.108]. One so-
lution for this is to change the robot’s appearance such
that it stays away from close human likeness; however,
conveying the full breadth of human communicative
signals with different facial features, or a different facial
topology may also be problematic. A different solution
consists of avoiding a mechanical solution and instead
resorting to facial animation from computer graphics.
One example of such a system was presented in De-
launay et al. [78.109] in which facial animations are
projected onto a rigid face mask. Since facial anima-
tion techniques are in many ways much more advanced,
such a system allows for a more realistic and flexi-
ble interaction in human–robot interaction. Subtle cues
such as eye-gaze, wrinkles, and other nonrigid facial
deformations could be displayed via projection of an
advanced facial animation engine. Initial perceptual ex-
periments with such systems [78.109, 110] have yielded
promising results. However, more studies need to be
done to assess the properties of human–robot inter-
actions in these and other implementations of facial
displays.
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Fig. 78.5 Stimuli used in experiment
investigating the fMRI correlates of
the observation of human and robot
movements. The neural responses to
the movements by a real human are
compared with the ones induced by
a human-looking robot (Android),
and by a nonhumanlike robot (Robot)
(after Saygin et al. [78.111])

78.3.2 Perceptual and Neural Processing
of Body Movements of Robots

Research in humanoid robotics finally aims at opti-
mizing the perceived naturalness or human-likeness of
generated robot movements, since this in the long run
will increase the acceptance of humanoid robots in
social contexts. However, the present humanoid plat-
forms have typically substantial constraints that still
prevent the realization of complex really human-like
movements. This is even more the case for the real-
ization of behaviors on bipedal robots, due to the dif-
ficult problem to maintain dynamic balance (Chap. 67).
Therefore, most body movements realized by present
humanoid robots still differ in many aspects from hu-
man movements. This makes the quantification of the
degree of realism of such movements presently a less
pressing topic than the field of computer graphics,
where psychophysical studies for the validation of the
realism and quality of computer animation methods
are meanwhile a standard [78.112–114]. However, re-
search in psychophysics and neuroscience has started
to investigate the differences between the perceptual
processing of human and robot movements, and inter-
esting results have been obtained that localize corti-
cal subsystems that might be essential to distinguish
human and nonhuman robot movements. A typical
question in these studies has been which critical prop-
erties determine whether visual stimuli produce motor
resonance, or an activation of action-selective neural
structures. The results of such studies have not been
completely consistent, since some studies found de-
creased activation of action-selective networks for robot
movements [78.115–118] while others found no such
differences [78.119]. Primarily visual processing areas
responded sometimes more for robot movements than
for normal human [78.111, 117].

The problem of such studies is that many factors
might influence the perception and neural signals in
action-selective areas, such as form, kinematics, and
optic flow patterns. Typically, it is very difficult to
control these parameters separately for real robots. In
addition, the learning experience of observers with the
specific robot might play an important role [78.120].
A recent study by Saygin et al. [78.111] tried to sep-
arate at least the influences of the robot appearance
(shape) and the motion kinematics by comparing the
fMRI signals (using an adaptation paradigm) driven by
three different stimuli (Fig. 78.5): a real person (that
served as model for the building of the robot), the
human-like looking robot (android), and the robot with-
out skin and surface parts that made it look human-like
(resulting in very similar motion as the full robot). In
visual areas (e.g., the extrastriate body area) the hu-
man and the human-like robot stimulus result in very
similar activity. This is not true for the parietal cor-
tex, which is part of the mirror neuron network. This
region shows large differences between the human-
like robot and the other two conditions, potentially
reflecting an increase of neural processing resources
that are required to cope with the contradiction be-
tween the form and the kinematic information that is
presented by this stimulus. Opposed to this, the not
human-like robot makes it expected that the motion
is also not human-like, potentially causing no such
conflict. Future studies of similar type, controlling for
the different information channels of action process-
ing (Sect. 78.2.2) as well as for the predictibility of
such stimuli dependent on previous learning, poten-
tially combined with quantitative neural modeling, will
be required to really understand how different factors
are integrated in the neural processing of robot move-
ments, and how this causes different levels of perceived
human-likeness.

78.4 Conclusion and Further Reading

In this chapter, we have presented several principles
derived from high-level cognitive processing in vi-
sion in the human brain that have been fruitful for

the development of systems in robotics and computer
vision. The recognition of shapes and complex move-
ments and actions is an important problem for many

http://dx.doi.org/10.1007/978-3-319-32552-1_67
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applications in robotics. We have discussed a vari-
ety of results from neuroscience that indicate that
these brain functions are likely realized by example-
based representations. We have discussed neural im-
plementations of such representations which partially
have been tested successfully in the context of tech-
nical applications, and which are strongly inspired by
the real cortical neural architecture. In addition, we
have presented some new computational principles that
seem to emerge from recent experimental results on
the representation of goal-directed actions. Finally, we
have discussed work that tries to use psychophysi-
cal and neuroscience methods for the validation of
the appearance and the movements of human-like
robots, and for the investigation of underlying neural
mechanisms.

Example-based mechanisms for object and motion
recognition account for the invariant recognition of
complex patterns. However, they do not automatically
extract the metric information about the object geom-
etry, position and the spatial parameters of complex
trajectories in world coordinates. For some tasks in
robotics, like grasping, manipulation, or obstacle avoid-
ance, such information is required (Chaps. 36–38, 47).
For such tasks, example-based recognition must be
fused with methods for the extraction of the relevant
metric information. In robotics such information can
be extracted by stereo vision or using special sensors,

like laser range finders. In the brain the fusion between
such spatial information and information about objects
occurs likely in parietal areas, like the anterior interpari-
etal area (AIP) [78.121]. However, it is unclear whether
the information about objects is only represented in
terms of 2-D example views. Instead, it seems likely
that also some form of 3-D information is encoded, po-
tentially in an example-based manner. Also haptic and
visual information about object shape might be merged
in higher brain areas, e.g., in parietal and fusiform ar-
eas [78.122]. A further discussion about biologically
inspired models for the extraction of action-relevant ge-
ometrical information in the context of grasping and
manipulation is given in Chaps. 32 and 77.

The perceptual validation of the human-likeness
and affective impact of humanoid robots likely will
become increasingly important along with the further
development of the technology that will increase the
level of similarity between humanoid robots and hu-
mans. Likewise, it seems increasingly important to use
quantitative methods from perception science to inves-
tigate the quality of the emotional and social interaction
between robots and humans.We expect this to be a field
where psychology can really contribute quantitative
methods to engineering, reaching a level that goes be-
yond a qualitative and subjective comparison of demos
which partially is still the standard in the field of hu-
manoid robotics.
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VIDEO 569 Active in-hand object recognition
available from http://handbookofrobotics.org/view-chapter/78/videodetails/569
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