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77. Neurorobotics: From Vision to Action

Patrick van der Smagt, Michael A. Arbib, Giorgio Metta

The lay view of a robot is a mechanical human,
and thus robotics has always been inspired by
attempts to emulate biology. In this chapter, we
extend this biological motivation from humans to
animals more generally, but with a focus on the
central nervous systems in its relationship to the
bodies of these creatures. In particular, we in-
vestigate the sensorimotor loop in the execution
of sophisticated behavior. Some of these sections
concentrate on cases where vision provides key
sensory data. Neuroethology is the study of the
brain mechanisms underlying animal behavior,
and Sect. 77.2 exemplifies the lessons it has to
offer robotics by looking at optic flow in bees, vi-
sually guided behavior in frogs, and navigation in
rats, turning then to the coordination of behaviors
and the role of attention. Brains are composed of
diverse subsystems, many of which are relevant to
robotics, but we have chosen just two regions of
the mammalian brain for detailed analysis. Sec-
tion 77.3 presents the cerebellum. While we can
plan and execute actions without a cerebellum,
the actions are no longer graceful and become
uncoordinated. We reveal how a cerebellum can
provide a key ingredient in an adaptive control
system, tuning parameters both within and be-
tween motor schemas. Section 77.4 turns to the
mirror system, which provides shared represen-
tations which bridge between the execution of
an action and the observation of that action when
performed by others. We develop a neurobiological
model of how learning may forge mirror neurons
for hand movements, provide a Bayesian view of
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a robot mirror system, and discuss what must be
added to a mirror system to support robot im-
itation. We conclude by emphasizing that, while
neuroscience can inspire novel robotic designs, it is
also the case that robots can be used as embodied
test beds for the analysis of brain models.

http://handbookofrobotics.org/view-chapter/77
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77.1 Definitions and History

Neuroroboticsmay be defined as:

the design of computational structures for robots in-
spired by the study of the nervous systems of humans
and other animals.

We note the success of (deep) artificial neural net-
works – networks of simple computing elements whose
connections change with experience – as providing
a medium for parallel adaptive computation that has
seen application in robot vision systems and controllers
but here we emphasize neural networks derived from
the study of specific neurobiological systems. Neuro-
robotics has a twofold aim: creating better machines
which employ the principles of natural neural compu-
tation; and using the study of bio-inspired robots to
improve understanding of the functioning of the brain.
Chapter 75, Biologically Inspired Robots, complements
our study of brain designwith work on body design, the
design of robotic control and actuator systems based on
careful study of the relevant biology.

77.1.1 History and Definitions

Science has long been playing with technical replicas
of biological behavior. As a famous example, Wal-
ter [77.1] described two biologically inspired robots,
the electromechanical tortoises Machina speculatrix
and M. docilis (though each body has wheels, not
legs). M. speculatrix has a steerable photoelectric cell,
which makes it sensitive to light, and an electrical
contact, which allows it to respond when it bumps
into obstacles. The photoreceptor rotates until a light
of moderate intensity is registered, at which time the
organism orients itself towards the light and approaches
it. However, very bright lights, material obstacles, and
steep gradients are repellent to the tortoise. The latter
stimuli convert the photoamplifier into an oscillator,
which causes alternating movements of butting and
withdrawal, so that the robot pushes small objects out
of its way, goes around heavy ones, and avoids slopes.
The tortoise has a hutch, which contains a bright
light. When the machine’s batteries are charged, this
bright light is repellent. When the batteries are low, the
light becomes attractive to the machine and the light
continues to exert an attraction until the tortoise enters
the hutch, where the machine’s circuitry is temporarily
turned off until the batteries are recharged, at which
time the bright hutch light again exerts a negative
tropism. The second robot, M. docilis was produced
by grafting onto M. speculatrix a circuit designed to

form conditioned reflexes. In one experiment, Walter
connected this circuit to the obstacle-avoiding device in
M. speculatrix. Training consisted of blowing a whistle
just before bumping the shell.

Although Walter’s controllers are simple and not
based on neural analysis, they do illustrate an attempt
to gain inspiration from seeking the simplest mecha-
nisms that will yield an interesting class of biologically
inspired robot behaviors, and then showing how differ-
ent additional mechanisms yield a variety of enriched
behaviors. Braitenberg’s book [77.2] is very much in
this spirit and has entered the canon of neurorobotics.
While their work provides a historical background for
the studies surveyed here, we instead emphasize stud-
ies inspired by the computational neuroscience of the
mechanisms serving vision and action in the human
and in animal brains. We seek lessons from linking
behavior to the analysis of the internal workings of
the brain (1) at the relatively high level of charac-
terizing the functional roles of specific brain regions
(or the functional units of analysis called schemas,
Sect. 77.2.4), and the behaviors which emerge from
the interactions between them, and (2) at the more
detailed level of models of neural circuitry linked to
the data of neuroanatomy and neurophysiology. There
are lessons for neurorobotics to be learned from even
finer-scale analysis of the biophysics of individual neu-
rons and the neurochemistry of synaptic plasticity,
but these are beyond the scope of this chapter (see
Segev and London [77.3] and Fregnac [77.4], respec-
tively, for entry points into the relevant computational
neuroscience).

The plan of this chapter is as follows. We will
start with explaining how the higher-level cognitive
functionality of vision-based planning and navigation
is realized in biology, and how this relates to robotic
systems (Sect. 77.2).We then (Sect. 77.3) explain verte-
brate movement generation itself, and put forth a theory
on what role the cerebellum plays in tuning and coor-
dinating actions. This is followed by a section on the
mirror system and its roles in action recognition and
imitation (Sect. 77.4). The extroduction will then in-
vite readers to explore the many other areas in which
neurorobotics offers lessons from neuroscience to the
development of novel robot designs. What follows,
then, can be seen as a contribution to the continuing
dialog between robot behavior and animal and human
behavior in which particular emphasis is placed on the
search for the neural underpinnings of vision, visually
guided action, and cerebellar control.

http://dx.doi.org/10.1007/978-3-319-32552-1_75
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77.2 The Case for Vision

Before we turn to vertebrate brains for much of our
inspiration for neurorobotics, we briefly sample the
rich literature on insect-inspired research. Among the
founding studies in computational neuroethology were
a series of reports from the laboratory of Werner Re-
ichardt in Tübingen, which linked the delicate anatomy
of the fly’s brain to the extraction of visual data
needed for flight control. More than 40 years ago, Re-
ichardt [77.5] published a model of motion detection
inspired by this work that has long been central to dis-
cussions of visual motion in both the neuroscience and
robotics literatures. Borst and Dickinson [77.6] provide
a recent study of continuing biological research on vi-
sual course control in flies. Such work has inspired
a large number of robot studies, including those of van
der Smagt and Groen [77.7], van der Smagt [77.8], Liu
and Usseglio-Viretta [77.9], Ruffier et al. [77.10], and
Reiser and Dickinson [77.11].

77.2.1 Optic Flow in Bees and Robots

Here, however, we look in a little more detail at honey-
bees. Srinivasan et al. [77.15] continued the tradition
of studying image motion cues in insects by investi-
gating how optic flow (the flow of pattern across the
eye induced by motion relative to the environment) is
exploited by honeybees to guide locomotion and nav-
igation. They analyzed how bees perform a smooth

a) b)

c)

Fig. 77.1 (a) Observation of the trajectories of honeybees
flying in visually textured tunnels has provided insights
into how bees use optic flow cues to regulate flight speed
and estimate distance flown, and balance optic flow in
the two eyes to fly safely through narrow gaps (images
courtesy of Srinivasan et al. [77.12]). This information
has been used to build autonomously navigating robots.
(b) Schematic illustration of a honeybee brain, carrying
about a million neurons within 
 1mm3 (after [77.13]).
(c)Amobile robot guided by an optic flow algorithm based
on the studies exemplified in [77.14]

landing on a flat surface: image velocity is held con-
stant as the surface is approached, thus automatically
ensuring that flight speed is close to zero at touchdown.
This obviates any need for explicit knowledge of flight
speed or height above the ground. This landing strat-
egy was then implemented in a robotic gantry to test
its applicability to autonomous airborne vehicles. Bar-
ron and Srinivasan [77.14] investigated the extent to
which ground speed is affected by headwinds. Honey-
bees were trained to enter a tunnel to forage at a sucrose
feeder placed at its far end (Fig.77.1a). The bees used
visual cues to maintain their ground speed by adjusting
their airspeed to maintain a constant rate of optic flow,
even against headwinds which were, at their strongest,
50% of a bee’s maximum recorded forward velocity.

Vladusich et al. [77.16] studied the effect of adding
goal-defining landmarks. Bees were trained to forage
in an optic-flow-rich tunnel with a landmark posi-
tioned directly above the feeder. They searched much
more accurately when both odometric and landmark
cues were available than when only odometry was
available. When the two cue sources were set in con-
flict, by shifting the position of the landmark in the
tunnel during tests, bees overwhelmingly used land-
mark cues rather than odometry. This, together with
other such experiments, suggests that bees can make
use of odometric and landmark cues in a more flex-
ible and dynamic way than previously envisaged. In
earlier studies of bees flying down a tunnel, Srini-
vasan and Zhang [77.17] placed different patterns on
the left and right walls. They found that bees bal-
ance the image velocities in the left and right visual
fields. This strategy ensures that bees fly down the
middle of the tunnel, without bumping into the side
walls, enabling them to negotiate narrow passages or to
fly between obstacles. This strategy has been applied
to a corridor-following robot (Fig. 77.1c). By hold-
ing constant the average image velocity as seen by the
two eyes during flight, the bee avoids potential col-
lisions, slowing down when it flies through a narrow
passage. The movement-sensitivemechanisms underly-
ing these various behaviors differ qualitatively as well
as quantitatively, from those that mediate the optomo-
tor response (e.g., turning to track a pattern of moving
stripes) that had been the initial target of investigation
of the Reichardt laboratory. The lesson for robot con-
trol is that flight appears to be coordinated by a number
of visuomotor systems acting in concert, and the same
lesson can apply to a whole range of tasks that must
convert vision to action. Of course, vision is but one
of the sensory systems that play a vital role in insect
behavior. Webb [77.18] uses her own work on robot
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design inspired by the auditory control of behavior in
crickets to anchor a far-ranging assessment of the ex-
tent to which robotics can offer good models of animal
behaviors.

77.2.2 Visually Guided Behavior
in Frogs and Robots

Lettvin et al. [77.19] treated the frog’s visual system
from an ethological perspective, analyzing circuitry in
relation to the animal’s ecological niche to show that
different cells in the retina and the visual midbrain
region known as the tectum were specialized for de-
tecting predators and prey. However, in much visually
guided behavior, the animal does not respond to a sin-
gle stimulus, but rather to some property of the overall
configuration. We thus turn to the question what does
the frog’s eye tell the frog?, stressing the embodied ner-
vous system or, perhaps equivalently, an action-oriented
view of perception. Consider, for example, the snap-
ping behavior of frogs confronted with one or more
fly-like stimuli. Ingle [77.20] found that it is only in
a restricted region around the head of a frog that the
presence of a fly-like stimulus elicits a snap, that is, the
frog turns so that its midline is pointed at the stimu-
lus and then lunges forward and captures the prey with
its tongue. There is a larger zone in which the frog
merely orients towards the target, and beyond that zone
the stimulus elicits no response at all. When confronted
with two flies within the snapping zone, either of which
is vigorous enough that it could elicit a snapping re-
sponse alone, the frog exhibits one of three reactions:
it snaps at one of the flies, it does not snap at all, or
it snaps in between at the average fly. Didday [77.21]
offered a simple model of this choice behavior which
may be considered as the prototype for a winner-take-
all (WTA) model, which receives a variety of inputs and
(under ideal circumstances) suppresses the representa-
tion of all but one of them; the one that remains is the
winner that will play the decisive role in further pro-
cessing. This was the beginning of Rana computatrix
(see Arbib [77.22, 23] for overviews).

Studies on frog brains and behavior inspired the
successful use of potential fields for robot navi-
gation strategies. Data on the strategies used by
frogs to capture prey while avoiding static obstacles
(Collett [77.24]) grounded the model by Arbib and
House [77.25], which linked systems for depth percep-
tion to the creation of spatial maps of both prey and
barriers. In one version of their model, they represented
the map of prey by a potential field with long-range at-
traction and the map of barriers by a potential field with
short-range repulsion, and showed that summation of
these fields yielded a field that could guide the frog’s de-

tour around the barrier to catch its prey. Corbacho and
Arbib [77.26] later explored a possible role for learn-
ing in this behavior. Their model incorporated learning
in the weights between the various potential fields to
enable adaptation over trials as observed in the real an-
imals. The success of the models indicated that frogs
use reactive strategies to avoid obstacles while moving
to a goal, rather than employing a planning or cog-
nitive system. Other work, Cobas and Arbib [77.27],
studied how the frog’s ability to catch prey and avoid
obstacles was integrated with its ability to escape from
predators. These models stressed the interaction of the
tectum with a variety of other brain regions such as the
pretectum (for detecting predators) and the tegmentum
(for implementing motor commands for approach or
avoidance).

Arkin [77.28] showed how to combine a com-
puter vision system with a frog-inspired potential field
controller to create a control system for a mobile
robot that could successfully navigate in a fairly struc-
tured environment using camera input. The resultant
system thus enriched other roughly contemporaneous
applications of potential fields in path planning with
obstacle avoidance for both manipulators and mobile
robots (Khatib [77.29], Krogh and Thorpe [77.30]).
The work on Rana computatrix proceeded at two lev-
els – both biologically realistic neural networks and
in terms of functional units called schemas, which
compete and cooperate to determine behavior. Sec-
tion 77.2.4 will show how more general behaviors can
emerge from the competition and cooperation of per-
ceptual and motor schemas, as well as more abstract
coordinating schemas. Such ideas were, of course, de-
veloped independently by a number of authors, and
so entered the robotics literature by various routes, of
which the best known may be the subsumption archi-
tecture of Brooks [77.31] and the ideas of Braitenberg
cited above, whereas Arkin’s work on behavior-based
robotics [77.32] is, indeed, rooted in schema theory.
Arkin et al. [77.33] present a recent example of the con-
tinuing interaction between robotics and ethology, of-
fering a novel method for creating high-fidelity models
of animal behavior for use in robotic systems based on
a behavioral systems approach (i. e., based on a schema-
level model of animal behavior, rather than analysis of
biological circuits in animal brains), and describe how
an ethological model of a domestic dog can be imple-
mented with AIBO, the Sony entertainment robot.

77.2.3 Navigation in Rat and Robot

The tectum, the midbrain visual system which deter-
mines how the frog turns its whole body towards it prey
or orients it for escape from predators (Sect.77.2.2), is
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homologous with the superior colliculus of the mam-
malian midbrain. The rat superior colliculus has been
shown to be frog like, mediating approach and avoid-
ance (Dean et al. [77.34]), whereas the best-studied role
of the superior colliculus of cat, monkey, and human is
in the control of saccades, rapid eye movements to ac-
quire a visual target. Moreover, the superior colliculus
can integrate auditory and somatosensory information
into its visual frame (Stein and Meredith [77.35]), and
this inspired Strosslin et al. [77.36] to use a biolog-
ically inspired approach based on the properties of
neurons in the superior colliculus to learn the rela-
tion between visual and tactile information in control
of a mobile robot platform. More generally, then, the
comparative study of mammalian brains has yielded
a rich variety of computational models of importance in
neurorobotics. In this section, we further introduce the
study of mammalian neurorobotics by looking at stud-
ies of mechanisms of the rat brain for spatial navigation.

The frog’s detour behavior is an example of what
O’Keefe and Nadel [77.37] called the taxon (behavioral
orientation) system (as in Braitenberg, [77.38] a taxis
(plural taxes) is an organism’s response to a stimulus by
movement in a particular direction). They distinguished
this from a system for map-based navigation and pro-
posed that the latter resides in the hippocampus, though
Guazzelli et al. [77.39] qualified this assertion, showing
how the hippocampus may function as part of a cogni-
tive map. The taxon versusmap distinction is akin to the
distinction between reactive and deliberative control in
robotics (Arkin et al. [77.33]). It will be useful to relate
taxis to the notion of an affordance (Gibson [77.40]),
a feature of an object or environment relevant to action,
for example, in picking up an apple or a ball, the iden-
tity of the object may be irrelevant, but the size of the
object is crucial. Similarly, if we wish to push a toy car,
recognizing the make of car copied in the toy is irrele-
vant, whereas it is crucial to recognize the placement of
the wheels to extract the direction in which the car can
be readily pushed. Just as a rat may have basic taxes for
approaching food or avoiding a bright light, say, so does
it have a wider repertoire of affordances for possible
actions associated with the immediate sensing of its en-
vironment. Such affordances include go straight ahead
for visual sighting of a corridor, hide for a dark hole,
eat for food as sensed generically, drink similarly, and
the various turns afforded by, e.g., the sight of the end
of the corridor. It also makes rich use of olfactory cues.
In the same way, a robot’s behavior will rely on a host
of reactions to local conditions in fulfilling a plan, e.g.,
knowing that it must go to the end of a corridor it will
nonetheless use local visual cues to avoid hitting obsta-
cles or to determine through which angle to turn when
reaching a bend in the corridor.

Both normal and hippocampal-lesioned rats can
learn to solve a simple T-maze (e.g., learning whether
to turn left or right to find food) in the absence of
any consistent environmental cues other than the T-
shape of the maze. If anything, the lesioned animals
learn this problem faster than normal ones. After the
criterion was reached, probe trials with an eight-arm
radial maze were interspersed with the usual T-trials.
Animals from both groups consistently chose the side
to which they were trained on the T-maze. However,
many did not choose the 90ı arm but preferred either
the 45ı or 135ı arm, suggesting that the rats eventually
solved the T-maze by learning to rotate within an ego-
centric orientation system at the choice point through
approximately 90ı. This leads to the hypothesis of an
orientation vector being stored in the animal’s brain
but does not tell us where or how the orientation vec-
tor is stored. One possible model would employ coarse
coding in a linear array of cells, coding for turns from
�180ı to C180ı. From the behavior, one might expect
that only the cells close to the preferred behavioral di-
rection are excited, and that learning marches this peak
from the old to the new preferred direction. To unlearn
�90ı, say, the array must reduce the peak there, while
at the same time building a new peak at the new di-
rection of C90ı. If the old peak has massp(t) and the
new peak has massq(t), then as p.t/ declines toward 0
while q.t/ increases steadily from 0, the center of mass
will progress from �90ı toC90ı, fitting the behavioral
data.

The determination of movement direction was mod-
eled by rat-ification of the Arbib and House [77.25]
model of frog detour behavior. There, prey was repre-
sented by excitation coarsely coded across a population,
while barriers were encoded by inhibition whose extent
closely matched the retinotopic extent of each barrier.
The sum of excitation was passed through a winner-
takes-all circuit to yield the choice of movement direc-
tion. As a result, the direction of the gap closest to the
prey, rather than the direction of the prey itself, was of-
ten chosen for the frog’s initial movement. The same
model serves for behavioral orientation once we replace
the direction of the prey (frog) by the direction of the
orientation vector (rat), while the barriers correspond to
the presence of walls rather than alley ways.

To approach the issue of how a cognitive map
can extend the capability of the affordance system,
Guazzelli et al. [77.39] extended the Lieblich and Ar-
bib [77.41] approach to building a cognitive map as
a world graph, a set of nodes connected by a set of
edges, where the nodes represent recognized places or
situations, and the links represent ways of moving from
one situation to another. A crucial notion is that a place
encountered in different circumstances may be repre-
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Fig. 77.2 The TAM-WG model has at its basis a system, TAM (the taxon affordance model), for exploiting affordances.
This is elaborated by a system, WG (the world graph), which can use a cognitive map to plan paths to targets which
are not currently visible. Note that the model processes two different kinds of sensory inputs. At the bottom right are
those associated with, e.g., hypothalamic systems for feeding and drinking and that may provide both incentives and
rewards for the animal’s behavior, contributing both to behavioral choices, and to the reinforcement of certain patterns
of behavior. The nucleus accumbens and caudoputamen mediate an actor-critic style of reinforcement learning based
on the hypothalamic drive of the dopamine system. The sensory inputs at the top left are those that allow the animal to
sense its relation with the external world, determining both where it is (the hippocampal place system), as well as the
affordances for action (the parietal recognition of affordances can shape the premotor selection of an action). The TAM
model focuses on the parietal–premotor reaction to immediate affordances; the WG model places action selection within
the wider context of a cognitive map (after Guazzelli et al. [77.39])

sented by multiple nodes, but that these nodes may
be merged when the similarity between these circum-
stances is recognized. They model the process whereby
the animal decides where to move next, on the ba-
sis of its current drive state (hunger, thirst, fear, etc.).
The emphasis is on spatial maps for guiding locomo-
tion into regions not necessarily currently visible, rather
than retinotopic representations of immediately visible
space, and yields exploration and latent learning with-
out the introduction of an explicit exploratory drive.
The model shows:

1. How a route, possibly of many steps, may be chosen
that leads to the desired goal.

2. How short cuts may be chosen.
3. Through its account of node merging why, in open

fields, place cell firing does not seem to depend on
direction.

The overall structure and general mode of opera-
tion of the complete model is shown in Fig. 77.2, which
gives a vivid sense of the lessons to be learned by study-
ing not only specific systems of the mammalian brain

but also their patterns of large-scale interaction. This
model is but one of many inspired by the data on the
role of the hippocampus and other regions in rat nav-
igation. Here, we just mention as pointers the wider
literature the papers by Girard et al. [77.42] and Meyer
et al. [77.43], which are part of the Psikharpax project,
which does for rats what Rana computatrix did for frogs
and toads.

77.2.4 Salience and Visual Attention

Discussions of how an animal (or robot) grasps an ob-
ject assume that the animal or robot is attending to the
relevant object. Thus, whatever the subtlety of process-
ing in the canonical and mirror systems for grasping,
its success rests on the availability of a visual system
coupled to an oculomotor control system that bring
foveal vision to bear on objects to set the parameters
needed for successful interaction. Indeed, the general
point is that attention greatly reduces the processing
load for animal and robot. The catch, of course, is that
reducing the computing load is a Pyrrhic victory unless



Neurorobotics: From Vision to Action 77.3 Vertebrate Motor Control 2075
Part

G
|77.3

the moving focus of attention captures those aspects
of behavior that are relevant for the current task – or
supports necessary priority interrupts. Indeed, direct-
ing attention appropriately is a topic for which there
is a great richness of both neurophysiological data and
robotic application (see Deco and Rolls [77.44] and
Choi et al. [77.45]).

In their neuromorphic model of the bottom-up guid-
ance of attention in primates, Itti and Koch [77.46] de-
compose the input video stream into eight feature chan-
nels at six spatial scales. After surround suppression,
only a sparse number of locations remain active in each
map, and all maps are combined into a unique saliency
map. This map is scanned by the focus of attention in
order of decreasing saliency through the interaction be-
tween a winner-takes-all mechanism (which selects the
most salient location) and an inhibition-of-returnmech-
anism (which transiently suppresses recently attended
locations from the saliency map). Because it includes
a detailed low-level vision front-end, the model has
been applied not only to laboratory stimuli, but also to
a wide variety of natural scenes, predicting a wealth of
data from psychophysical experiments.

When specific objects are searched for, low-level
visual processing can be biased both by the gist (e.g.,
outdoor suburban scene) and also for the features of
that object. This top-down modulation of bottom-up
processing results in an ability to guide search towards
targets of interest (Wolfe [77.47]). Task affects eye
movements (Yarbus [77.48]), as do training and gen-
eral expertise. Navalpakkam and Itti [77.49] propose
a computational model which emphasizes four aspects
that are important in biological vision: determining the
task relevance of an entity, biasing attention for the
low-level visual features of desired targets, recogniz-
ing these targets using the same low-level features, and
incrementally building a visual map of task relevance

at every scene location. It attends to the most salient
location in the scene, and attempts to recognize the
attended object through hierarchical matching against
object representations stored in long-term memory. It
updates its working memory with the task relevance of
the recognized entity and updates a topographic task-
relevance map with the location and relevance of the
recognized entity; for example, in one task the model
forms a map of likely locations of cars from a video
clip filmed while driving on a highway. Such work illus-
trates the continuing interaction between models based
on visual neurophysiology and human psychophysics
with the tackling of practical robotic applications.

Orabona et al. [77.50] implemented an extension
of the Itti–Koch model on a humanoid robot with
moving eyes, using log-polar vision as in Sandini
and Tagliasco [77.51], and changing the feature con-
struction pyramid by considering proto-object elements
(blob-like structures rather than edges). The inhibition-
of-return mechanism has to take into account a moving
frame of reference, the resolution of the fovea is very
different from that at the periphery of the visual field,
and head and body movements need to be stabilized.
The control of movement might thus have a relation-
ship with the structure and development of the attention
system. Rizzolatti et al. [77.52] proposed a role for
the feedback projections from premotor cortex to the
parietal lobe, assuming that they form a tuning signal
that dynamically changes visual perception. In prac-
tice, this can be seen as an implicit attention system
that selects sensory information while the action is
being prepared and subsequently executed (Flanagan
and Johansson [77.53], Flanagan et al. [77.54], and
Mataric and Pomplun [77.55]). The early responses,
before action onset, of many premotor and parietal neu-
rons suggest a premotor mechanism of attention that
deserves exploration in further work in neurorobotics.

77.3 Vertebrate Motor Control

The body of literature on primate motor control is, of
course, vast, and gives a patchy view on the principles
behind it. Getting a clear view of how limb and general
body control functions is difficult; moreover, there are
no clear proofs of whether any of the existing views on
motor control are correct.

But there exist a few observations of the human cen-
tral and peripheral nervous systems from which clear
conclusions can be drawn. The first observation is the
presence of neural communication delays. How does
the system know the position of limbs? There are two
principled methods: (1) through proprioceptive signals,
consisting of muscle spindles and Golgi tendon or-

gans (GOs); and (2) through skin information. It is,
however, not very likely that information from mus-
cle spindles and GOs are accurate enough to code limb
position. Tendon organs are sensitive to forces along
in-series motor units and there is no physiological ev-
idence that Golgi tendon organs signal muscle length
(but, of course, force changes with muscle length, so
during movement a correlation is found). There is an-
other problem with respect to limb position, which is
particularly clear for fingers: flexibilities and nonlinear
relationships between finger position and muscle force,
in combination with the imprecise receptors, makes the
relationship between GO/spindle data and finger posi-
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Table 77.1 Classification of sensory fibers from muscle (after [77.56])

Type Receptor Axon diameter [
m] Transmission speed [m=s] Sensitive to
Ia Primary spindle endings 12�20 60�100 Muscle length and rate of change
Ib Golgi tendon organs 12�20 60�100 Muscle tension
II Secondary spindle endings 6�12 30�70 Muscle length
III Free nerve endings 2�6 10�30 Skin signals

tion too complex and variable to be a likely candidate
to code finger position; after all, the sensors are in the
forearm rather than in the fingers; and information on
finger position is not available in muscle movement
or tendon force. Furthermore, muscle spindle data is
noisy [77.57]. It has conversely been shown [77.58,
59] that the receptors in hairy skin code information
that can be related to finger position; furthermore, sim-
ilar data have been found for the knee joint [77.60].
Table 77.1 lists nerve transmission speeds for these
signals.

Since neurons are only to be found in the spinal
cord and the brain, for hand skin, therefore, we can
expect signal transfer delays to the spine of around
30�100ms. Round-trip muscle activation is, therefore,
around 70ms for signals based on skin data [77.61],
or around 25ms for spindle-based signals (we have
verified these delays by measuring hand skin-based
reflexes by measuring the corresponding electromyog-
raphy(EMG) signals, and found a round-trip delay of
around 75ms. Spindle-based feedback for the wrist was
measured at around 25ms.

Of course, when a sensory signal has to be pro-
cessed in the brain, the delays are correspondingly
longer. At any rate: error-correcting feedback control
has delays of several tens of milliseconds; feedback
control based on such delays cannot lead to any accept-
able accuracy with the movement speeds that humans
typically display. This means that large portions of our
movement, over time frames in the order of 100ms or
more, need to be controlled open loop.

A second important observation is our generalizing
capabilities. Consider the case of playing fast and ac-
curate sports, e.g., table tennis. During play, we obtain
sensory visual, haptic, and tactile sensory data, the re-
sult of which must lead to an accurate movement of the
bat in order to score a point. Even a player with little
training is able to do this rather accurately: at ball flight
times between 200 and 500ms, the brain does not have
much time to plan an accurate whole-body movement
for each and every possible sensory state, but we are
usually capable of returning the ball. Training helps, but
we do not need to exhaustively learn many states in the
very high-dimensional sensor space in which our obser-
vations move.

Generalization can only be done with reasonably
accurate models of the sensor/motor behavior. How-

ever, models of our motor system are difficult to obtain:
variations such as including payloads, wearing heavy
clothing, muscle fatigue, etc., do not influence our ac-
curacy considerably.

77.3.1 The Flat Hierarchy of Neurocontrol

How is an open-loop movement generated? In this
paper we concentrate on voluntary vertebrate motor
control; the only reason for any animal to have a brain
is to generate movement. Moreover, despite differences
in brain structures, there is a large correspondence in
movement patterns among the whole animal kingdom,
irrespective of the presence of a cortical structure or
a cerebellum. What parts of the brain are directly in-
volved in movement?

The major role of the cerebral cortex seems to
be unsupervised learning to establish relationships be-
tween sensory and action patterns [77.62]. The neocor-
tex is only to be found in mammals; experiments with
decorticated cats [77.63] clearly show that the cortex is
not necessary to generate movement; rather, it is likely
that the motor cortex models and weighs movements, to
subsequently make decisions based thereon.

The major role of the basal ganglia seems to be
reinforcement learning to filter out unwanted move-
ments [77.62]. They play a dominant role in movement
generation or gating (filtering) of generated movement
patterns. The effect of Parkinson’s disease (the in-
ability to initiate movement) and Huntington’s disease
(the inability to prevent unwanted movement) on the
basal ganglia is well known and clearly indicates their
function.

The major role of the cerebellum seems to be su-
pervised learning of motor patterns [77.62]. Moreover,
decerebellation does not lead to complete movement
loss. An individual with cerebellar lesions may be able
to move the arm to successfully reach a target and to
successfully adjust the hand to the size of an object.
However, the action cannot be made swiftly and accu-
rately, and the ability to coordinate the timing of the two
subactions is lacking. The behavior will thus exhibit
decomposition of movement – first the hand is moved
until the thumb touches the object, and only then is the
hand shaped appropriately to grasp the object [77.64].

Robot control usually favors a strict hierarchical
approach. A typical robot works as follows. At the low-
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est level, a very fast .
 100�s/ current control loop
controls the rotation of the dc motor. On top of that,
a torque controller (running typically at 1 kHz) controls
the torque of all joints, and is in its turn controlled by
an impedance or position controller. On top of that, typ-
ically, a Cartesian path planner forms the slowest loop.
An error in any of these elements will disable the robot.

A look into evolutionary development of neural
control thus makes immediately clear that a strict hi-
erarchical approach is not viable in neural control.
Although any of the above-mentioned brain regions is
important in movement control, and similar structures
can be found in any vertebrate, their dysfunction leads
to movement degradation but not to movement loss (this
is, of course, not true for the spinal cord, which (com-
bines and) transmits the controls to the muscles). Also,
the development of the neural system shows that an-
imals were always capable of movement – irrespective
of their brain structure. However, the cerebellum is usu-
ally rightly focused upon when analyzing vertebrate
movement. How do the parts of the brain collaborate
towards smooth goal-directed movement?

In placing the function of the cerebellum in the loop,
a normal distinction is to consider the cerebellum as
representing (a) a forward or direct model which rep-
resents the path from motor command to motor output,
or (b) an inverse model of motor function, i. e., going
from a desired motor outcome to a set of motor com-
mands likely to achieve it. As we have just suggested,
the action plan unfolds as if it were feedforward or
open loop when the actual parameters of the situation
match the stored parameters, while a feedback com-
ponent is employed to counteract disturbances (current
feedback) and to learn from mistakes (learning from
feedback). This is obtained by relying on a forward
model that predicts the outcome of the action as it un-
folds in real time. The accuracy of the forward model
can be evaluated by comparing the output generated
by the system with the signals derived from sensory
feedback (Miall et al. [77.65]). Also, delays must be ac-
counted for to address the different propagation times of
the neural pathways carrying the predicted and actual
outcome of the action. Note that the forward model in
this case is relatively simple, predicting only the motor
output in advance; since motor commands are generated
internally it is easy to imagine a predictor for these sig-
nals (known as an efference copy). The inverse model,
on the other hand, is much more complicated since it
maps sensory feedback (e.g., vision) back into motor
terms.

We suggest a much simpler approach to the ver-
tebrate control system. However, let us first look into
the functionality of the lower-level apparatus: muscle,
spinal cord, and cerebellum.

77.3.2 On Spinal Cord and Muscle

The key element in movement generation is given by
two building blocks: (a) our muscles, and (b) the spinal
cord. Muscle behavior is strongly nonlinear; the exerted
force decreases nonlinearly with velocity (Fig. 77.3)
and varies nonlinearly with length (Fig. 77.4).

Limb movement, however, is caused by a complex
of muscles – for instance, the human arm uses a total
of 19 muscle groups for planar motion of the elbow
and shoulder alone (Nijhof and Kouwenhoven [77.67])
with altogether highly nonlinear dynamics. How can
this large number of actuators be controlled without
feedback error control?

The concept is simple and was first well described
by Bernstein [77.68]: skeletal muscles are always con-
trolled in functional groups, leading to synergies of
movement. Rather than activating muscles indepen-
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Fig. 77.3 The force/velocity and power/velocity relation-
ship of muscle (after [77.56])

Total

Passive

Active

l0

Force

Length

Fig. 77.4 The force/length relationship of muscle (af-
ter [77.56])
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Fig. 77.5 (a) Major cells in the cerebellum. (b) Cells in the Marr–Albus model. The granule cells are state encoders,
feeding system state, and sensor data into the PC. PC/PF synapses are adjusted using the Widrow–Hoff rule. The output
of the PC are steering signals for the robotic system. (c) The APG model, using the same state encoder as in (b).
(d) The MPFIMmodel. A single module corresponds to a group of Purkinje cells: predictor, controller, and responsibility
estimator. The granule cells generate the necessary basis functions of the original information (after [77.66])

dently, a neural signal controls groups of muscles that
perform (a part of) an action. Linear dimension reduc-
tion methods [77.69] (e.g., principal component anal-
ysis, (PCA), independent component analysis (ICA),
or non-negative matrix factorization (NMF)) have been
used to establish synergies in EMG data, and this can
be used [77.70] to linearly combine single-finger move-
ment to whole-hand movement in EMG space. So, we
cannot control single muscles (i. e., coherent groups of
muscle fibers) but rather control muscle groups, the lin-
ear combination of which can be used to span a decent
part of our voluntary movement.

There are currently still open questions as to the na-
ture of movement synergies: howmuch of the synergies
are defined by the biomechanical structure of our mus-
cles and tendons; howmuch of it is laid out in the spinal
cord; and which part of it is learned in the higher move-
ment control regions?

77.3.3 Models of Cerebellar Control

The cerebellum can be divided into two parts: the cor-
tex and the deep nuclei. There are two systems of fibers
bringing input to the both the cortex and nuclei: the
mossy fibers and the climbing fibers. The only output

from the cerebellar nucleus comes from cells called
Purkinje cells, and they project only to the cerebellar
nuclei, where their effect is inhibitory. This inhibition
sculpts the output of the nuclei which (the effect varies
from nucleus to nucleus) may act by modulating ac-
tivity in the spinal cord, the mid-brain, or the cerebral
cortex. We now turn to models that make explicit use of
the cellular structure of the cerebellar cortex (see Ec-
cles et al. [77.71] and Ito [77.72], and also Fig. 77.5a).
The human cerebellum has 7�14million Purkinje cells
(PCs), each receiving about 200 000 synapses. Mossy
fibers (MFs) arise from the spinal cord and brainstem.
They synapse onto granule cells and deep cerebellar nu-
clei. Granule cells have axons which each project up
to form a T, with the bars of the T forming the paral-
lel fibers (PFs). Each PF synapses on about 200 PCs.
The PCs, which are grouped into microzones, inhibit
the deep nuclei. PCs with their target cells in cerebellar
nuclei are grouped together in microcomplexes [77.72].
Microcomplexes are defined by a variety of criteria to
serve as the units of analysis of cerebellar influence
on specific types of motor activity. The climbing fibers
(CFs) arise from the inferior olive (IO). Each PC re-
ceives synapses from only one CF, but a CF makes
about 300 excitatory synapses on each PC that it con-
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tacts. This powerful input alone is enough to fire the PC,
though most PC firing depends on subtle patterns of PF
activity. The cerebellar cortex also contains a variety of
inhibitory interneurons. The basket cell is activated by
PF afferents and makes inhibitory synapses onto PCs.
Golgi cells receive input from PFs, MFs, and CFs, and
inhibit granule cells.

The Marr–Albus Model
In the Marr–Albus model (Marr [77.73] and Al-
bus [77.74]) the cerebellum functions as a classifier of
sensory and motor patterns received through the MFs.
Only a small fraction of the parallel fibers (PF) are ac-
tive when a Purkinje cell (PC) fires and thus influence
the motor neurons. Both Marr and Albus hypothesized
that the error signals for improving PC firing in re-
sponse to PF, and thus MF input were provided by the
climbing fibers (CF), since only one CF affects a given
PC. However, Marr hypothesized that CF activity would
strengthen the active PF/PC synapses using a Widrow–
Hoff learning rule, whereas Albus hypothesized they
would weaken them. This is an important example of
a case where computational modeling inspired impor-
tant experimentation. Eventually, Masao Ito was able
to demonstrate that Albus was correct – the weakening
of active synapses is now known to involve a pro-
cess called long-term depression [77.72]. However, the
rule with weakening of synapses is still known as the
Marr–Albus model, and remains the reference model
for studies of synaptic plasticity of the cerebellar cortex.
However, bothMarr and Albus viewed each PC as func-
tioning as a perceptron whose job it was to control an
elemental movement, contrasting with more plausible
models in which PCs serve to modulate the involvement
of microcomplexes (which include cells of the deep nu-
clei) in motor pattern generators (e.g., the APG model
described below).

Since the development of the Marr–Albus model
several cerebellar models have been introduced in
which cerebellar plasticity plays a key role. Limiting
our overview to computational models, we will de-
scribe:

1. The CMAC (cerebellar model articulation con-
troller).

2. The adjustable pattern generator (APG).
3. The Schweighofer–Arbib model.
4. The multiple paired forward-inverse models [77.75,

76].

The Cerebellar Model Articulation Controller
One of the first well-known computational mod-
els of the cerebellum is the CMAC (Albus [77.77];
Fig. 77.5b). The algorithm was based on Albus’ un-

derstanding of the cerebellum, but it was not proposed
as a biologically plausible model. The idea has its ori-
gins in the BOXES approach, in which for n variables
an n-dimensional hypercube stores function values in
a lookup table. BOXES suffers from the curse of di-
mensionality: if each variable can be discretized into
D different steps, the hypercube has to store Dn func-
tion values in memory. Albus assumed that the mossy
fibers provided discretized function values. If the signal
on a mossy fiber is in the receptive field of a par-
ticular granule cell, it fires onto a parallel fiber. This
mapping of inputs onto binary output variables is of-
ten considered to be the generalization mechanism in
CMAC. The learning signals are provided by the climb-
ing fibers.

Albus’ CMAC can be described in terms of a large
set of overlapping, multidimensional receptive fields
with finite boundaries. Every input vector falls within
the range of some local receptive fields. The response
of CMAC to a given input is determined by the aver-
age of the responses of the receptive fields excited by
that input. Similarly, the training for a given input vec-
tor affects only the parameters of the excited receptive
fields.

The organization of the receptive fields of a typical
Albus CMAC with a two-dimensional input space can
be described as follows. The set of overlapping recep-
tive fields is divided into C subsets, commonly referred
to as layers. Any input vector excites one receptive
field from each layer, for a total of C excited recep-
tive fields for any input. The overlap of the receptive
fields produces input generalization, while the offset of
the adjacent layers of receptive fields produces input
quantization. The ratio of the width of each receptive
field (input generalization) to the offset between adja-
cent layers of receptive fields (input quantization) must
be equal to C for all dimensions of the input space. This
organization of the receptive fields guarantees that only
a fixed number, C, of receptive fields is excited by any
input.

If a receptive field is excited, its response equals
the magnitude of a single adjustable weight specific
to that receptive field. The CMAC output is the aver-
age of the weights of the excited receptive fields. If
nearby points in the input space excite the same re-
ceptive fields, they produce the same output value. The
output only changes when the input crosses one of the
receptive field boundaries. The Albus CMAC thus pro-
duces piecewise-constant outputs. Learning takes place
as described above.

CMAC neural networks have been applied in var-
ious control situations Miller [77.78], starting from
adaptation of PID (proportional–integral–derivative)
control parameters for an industrial robot arm and
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hand–eye systems up to biped walking (see, for in-
stance, Sabourin and Bruneau [77.79]).

The Adjustable Pattern Generator APG
The APG model (Houk et al. [77.80]) got its name be-
cause the model can generate a burst command with
adjustable intensity and duration. The APG is based
on the same understanding of the mossy fiber–granule
cell–parallel fiber structure as CMAC, using the same
state encoder, but has the crucial difference (Fig. 77.2c)
that the role of the nuclei is crucial. In the APG model,
each nucleus cell is connected to a motor cell in a feed-
back circuit. Activity in the loop is then modulated by
Purkinje cell inhibition, a modeling idea introduced by
Arbib et al. [77.81].

The learning algorithm determines which of the
PF–PC synapses will be updated in order to improve
movement generation performance. This is the tradi-
tional credit assignment problem: which synapse (the
structural credit assignment) must be updated based on
a response issued when (temporal credit assignment).
While the former is solved by the CFs, which are con-
sidered binary signals, for the latter eligibility traces on
the synapses are introduced, serving as memory for re-
cent activity to determine which synapses are eligible
for updates. The motivation for the eligibility signal is
this: each firing of a PC cell will take some time to affect
the animal’s movement, and a further delay will occur
before the CF can signal an error in the movement in
which the PC is involved. Thus the error signal should
not affect those PF–PC synapses that are currently ac-
tive, but should instead act upon those synapses that af-
fected the activity whose error is now being registered.

The Schweighofer–Arbib Model
The Schweighofer–Arbib model was introduced in
Schweighofer [77.82]. It does not use the CMAC state
encoder but tries to copy the anatomy of the cerebel-
lum. All the cells, fibers, and axons in Fig. 77.2a are
included. Several assumptions are made:

1. There are two types of mossy fibers, one type re-
flecting the desired state of the controlled plant
and another carrying information on the current
state. A mossy fiber diverges into approximately 16
branches.

2. Granule cells have an average of four dendrites,
each of which receive input from different mossy
fibers through a synaptic structure called the
glomerulus.

3. Three Golgi cells synapse on a granule cell through
the glomerulus and the strength of their influence
depends on the simulated geometric distance be-
tween the glomerulus and the Golgi cell.

4. The climbing fiber connection on nuclear cells as
well as deep nuclei is neglected.

Learning in this model depends on directed error
information given by the climbing fibers from the infe-
rior olive (IO). Here, long-term depression is performed
when the IO firing rate provides an error signal for
an eligible synapse, while compensatory but slower in-
creases in synaptic strength can occur when no error
signal is present. Schweighofer applied the model to
explain several acknowledged cerebellar system func-
tions:

1. Saccadic eye movements
2. Two-link limb movement control Schweighofer

et al. [77.83, 84]
3. Prism adaptation (Arbib et al. [77.85]).

Furthermore, control of a simulated human arm was
demonstrated.

Multiple Paired Forward-Inverse Models
(MPFIM)

Building on a long history of cerebellar modeling,
Wolpert and Kawato [77.86] proposed a functional
model of the cerebellum, which uses multiple coupled
predictors and controllers that are trained for control,
each being responsible for a small state-space region.
TheMPFIMmodel is based on the indirect/direct model
approach by Kawato, and is also based on the micro-
complex theory. We noted earlier that a microzone is
a group of PCs, while a microcomplex combines the
PCs of a microzone with their target cells in cerebel-
lar nuclei. In MPFIM, a microzone consists of a set of
modules controlling the same degree of freedom and is
learned by only one particular climbing fiber. The mod-
ules in this microzone compete to control this particular
synergy. Inside such a module there are three types
of PC, which perform the computations of a forward
model, an inverse model, or a responsibility predic-
tor, but all receiving the same input. A single internal
model i is considered to be a controller that generates
a motor command �i and a predictor that predicts the
current acceleration. Each predictor is a forward model
of the controlled system, while each controller contains
an inverse model of the system in a region of specializa-
tion. The responsibility signal weights the contribution
that this model will make to the overall output of the
microzone. Indeed, MPFIM further assumes that each
microzone contains n internal models of situations oc-
curring in the control task. Model i generates motor
command �i, and estimates its own responsibility ri.
The feedforward motor command �ff consists only of
the output of the single models adjusted by the sum of
responsibility signals: �ff D

P
ri�i=

P
ri.
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The PCs are considered to be roughly linear. The
MF inputs carry all necessary information including
state information, efference copies of the last motor
commands, as well as desired states. Granule cells, and
eventually the inhibitory interneurons as well, nonlin-
early transform the state information to provide a rich
set of basis functions through the PFs. A climbing fiber
carries a scalar error signal while each Purkinje cell en-
codes a scalar output – responsibilities, predictions, and
controller outputs are all one-dimensional values. MP-
FIM has been introduced with different learning meth-
ods: its first implementations were done using gradient
descent methods; subsequently, expectation maximiza-
tion (EM) batch-learning, and hiddenMarkov chain EM
learning were applied.

Comparison of the Models
Summing up, we can categorize the cerebellar mod-
els CMAC, APG, Schweighofer–Arbib, and MPFIM as
follows:

� State-encoder-driven models: This kind of model
assumes that the granule cells are on–off types of
entities that split up the state space. This kind of
model is best suited for, e.g., simple function ap-
proximation, and suffers strongly from the curse of
dimensionality.� Cellular-level models: Obviously, the most realistic
simulations would be at the cellular level. Unfor-
tunately, modeling only a few Purkinje cells at
realistic conditions is an immense computational
challenge, and other relevant neurons are even less
well understood. Still, from the biological point of
view this kind of model is the most important since
it allows obtaining insight into cerebellar function
on cellular level. The first steps in this direction
were taken by the Schweighofer–Arbib model.� Functional models: From the computer-science
point of view, the most interesting models are based
on functional understanding of the cells. In this
case, we obtain only a basic insight of the functions
of the parts and apply it as a crude approximation.
This kind of approach is very promising and MP-
FIM, with its emphasis on the use of responsibility
signals to combine models appropriately, provides
an interesting example of this approach.

Proprioceptive feedback is used for adaptation of
the motor programs as well as for updating the for-
ward model stored in the cerebellum. However, the
Schweighofer–Arbib model is based on the view that
the cerebellum offers not so much a total forward model
of the skeletomuscular system as a forward model of the
difference between the crude model of the skeletomus-

cular system available to the motor planning circuits of
the cerebral cortex, and the more intricately parame-
terized forward model of the skeletomuscular system
needed to support fast, graceful movements with min-
imal use of feedback. This hypothesis is reinforced
by the fact that cerebellar lesions do not prohibit mo-
tion but substantially reduce its quality, since the for-
ward model of the skeletomuscular system is of lesser
quality.

77.3.4 Cerebellar Models and Robotics

From the previous discussions, it is clear that a popular
view is that the function of the cerebellum within the
motor control loop is to represent a forward model of
the skeletomuscular system; but how can these models
be used in control?

Our assumption is that the cerebellum stores motor
primitive relationships, which can be recalled through
a certain state (i. e., sensor plus cerebrum-directed goal)
input. These motor primitives perform certain coordi-
nated movements (synergies) to, e.g., intercept a ball
with a tennis racket. A key property of the underly-
ing spine-controlled musculoskeletal system, however,
is that voluntary movement can be easily interpolated
within the control realm of the spinal cord. With this
we mean that the combination of two movement primi-
tives that are nearby in the relevant sensor domain will
lead to a good prediction. In one possible interpretation,
the spinal cord-based control of our muscular system
is approximately linear or linearized through internal
models [77.87]. It allows the cerebellum to store or
recall movements at any level of granularity, and get
good enough results in unlearned areas. There are vari-
ous papers which, in part, confirm this theory (e.g., Osu
and Gomi show the linear relationship between muscle
activation and joint stiffness [77.88] or Höppner et al.
between grip force and stiffness [77.89]).

Does this understanding of the human control sys-
tem help robotics? Biological control algorithms are
certainly a result of slow feedback loops and the flex-
ibility of the actuators. One may argue that, as robotic
systems move towards their biological counterparts, the
control approaches can or must do the same. There are
many lines of research investigating the former part;
Chaps. 11 and 75. It should be noted that the drive prin-
ciple that is used to move the joints does not necessarily
have a major impact on the outer control loop. Whether
McKibben muscles, which are intrinsically flexible but
bulky (van der Smagt et al. [77.90]), low-dynamics
polymer linear actuators, or direct-current (DC) motors
with spindles and added elastic components are used
does not affect the control approach at the cerebellar
level, but rather at the motor control level (cf. the spinal

http://dx.doi.org/10.1007/978-3-319-32552-1_11
http://dx.doi.org/10.1007/978-3-319-32552-1_75
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cord level). Of key importance, however, are the re-
sulting dynamic properties of the system, which are, of
course, influenced by its actuators. Linearity of the low-
level control system, as we find in biology, is a goal to

strive for. Yet technical systems can benefit from ad-
vanced modeling approaches, and equally good results
can be obtained – yet at the cost of more complex sens-
ing, computation, and less generalizability.

77.4 The Role of Mirror Systems

Area F5 (frontal area 5) in the premotor cortex of the
macaque contains, among others, neurons which fire
when the monkey executes a specific manual action,
e.g., one neuron might fire when the monkey performs
a precision pinch, another when it executes a power
grasp. (In discussing neurorobotics, it seems unneces-
sary to explain in any detail the areas like F5, AIP (an-
terior intraparietal sulcus), and STS (superior temporal
sulcus) described here – they will function as labels for
components of functional systems. To fill in the missing
details see, e.g., Rizzolatti et al. [77.91, 92].)

77.4.1 Mirror Neurons and the Recognition
of Hand Actions

A subset of these neurons, the so-called mirror neurons,
also discharge when the monkey observes meaningful
hand movements made by the experimenter, which are
similar to those whose execution is associated with the
firing of the neuron. In contrast, the canonical neurons
are those belonging to the complementary, anatomically
segregated subset of grasp-related F5 neurons, which
fire when the monkey performs a specific action and
also when it sees an object as a possible target of such
an action – but do not fire when the monkey sees an-
other monkey or human perform the action. Finally, F5
contains a large population of motor neurons that are ac-
tive when the monkey grasps an object (either with the
hand or mouth) but do not possess any visual response.
F5 is clearly a motor area although the details of the
muscular activation are abstracted out – F5 neurons can
be effector-independent. In contrast, the primary motor
cortex (F1) formulates the neural instructions for lower
motor areas and motor neurons.

Moreover, macaque mirror neurons encode transi-
tive actions and do not fire when the monkey sees
the hand movement unless it can also see the object
or, more subtly, if the object is not visible but is ap-
propriately located in working memory because it has
recently been placed on a surface and has then been
obscured by a screen behind which the experimenter
is seen to be reaching (Umiltà et al. [77.93]). All mir-
ror neurons show visual generalization. They fire when
the instrument of the observed action (usually a hand)
is large or small, far from or close to the monkey.

They may also fire even when the action instrument has
shapes as different as those of a human or monkey hand.
Some neurons respond even when the object is grasped
by the mouth. When naive monkeys first see small ob-
jects grasped with a pair of pliers, mirror neurons do
not respond, but after extensive training some precision
pinch mirror neurons do show activity, also with this
new grasp type [77.94].

Mirror neurons for grasping have also been found
in parietal areas of the macaque brain and, recently, it
was shown that parietal mirror neurons are sensitive
to the context of the observed action being predictive
of the outcome as a function of contextual cues – e.g.,
some grasp-related parietal mirror neurons may fire for
a grasp that precedes eating the grasped object, while
others fire for a grasp that precedes placing the object
in a container (Fogassi et al. [77.95]). In practice, the
parieto-frontal circuitry seems to encode action execu-
tion and simultaneously action recognition by taking
into account a large set of potential candidate actions,
which are selected on the basis of a range of cues such
as vision of the relation of the effector to the object
and certain sounds (when relevant for the task). Further,
feedback connections (frontal to parietal) are thought
to be part of a stimulus selection process that refines
the sensory processing by attending to stimuli relevant
for the ongoing action (Rizzolatti et al. [77.52] and re-
call the discussion in Sect. 77.2.4). Recognition is then
supported by the activation of the same circuitry in the
absence of overt movement.

We clarify these ideas by briefly presenting the
FARS model of the canonical F5 neurons and the MNS
model of the F5 mirror neurons. In each case, the F5
neurons function effectively only because of the inter-
action of F5 with a wide range of other regions.We have
stressed (Sect. 77.2.3) the distinction between recogni-
tion of the category of an object and recognition of its
affordances. The parietal area AIP processes visual in-
formation to extract affordances, in this case properties
of the object relevant to grasping it (Taira et al. [77.96]).
AIP and F5 are reciprocally connected, with AIP being
more visual and F5 more motoric.

The Fagg–Arbib–Rizzolatti–Sakata (FARS) model
(Fagg and Arbib [77.97] and Fig. 77.6) embeds F5
canonical neurons in a larger system. The dorsal stream
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(which passes through AIP) can only analyze the ob-
ject as a set of possible affordances, whereas the ventral
stream (via the inferotemporal cortex, IT) is able to
recognize what the object is. The latter information is
passed to the prefrontal cortex (PFC) which can then, on
the basis of the current goals of the organism, bias the
choice of affordances appropriate to the task at hand.
Neuroanatomical data (as analyzed by Rizzolatti and
Luppino [77.98]) suggest that PFC and IT may mod-
ulate action selection at the level of the parietal cortex.
Figure 77.6 gives a partial view of the FARS model up-
dated to show this modified pathway. The affordance
selected by AIP activates F5 neurons to command the
appropriate grip once they receive a go signal from
another region, F6, of the prefrontal cortex. F5 also
accepts signals from other PFC areas to respond to
working memory and instruction stimuli in choosing
among the available affordances. Note that this same
pathway could be implicated in tool use, bringing in
semantic knowledge as well as perceptual attributes to
guide the dorsal system (Johnson–Frey [77.99]).

With this, we turn to the mirror system. Since
grasping a complex object requires careful attention to
motion of, e.g., fingertips relative to the object, we hold
that the primary evolutionary impetus for the mirror
system was to facilitate feedback control of dexterous
movement. We now show how parameters relevant to
such feedback could be crucial in enabling the monkey
to associate the visual appearance of what it is doing
with the task at hand. The key side-effect will be that
this feedback-serving self-recognition is so structured
as to also support recognition of the action when per-
formed by others – and it is this recognition of the
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actions of others that has created the greatest interest
in mirror neurons and systems.

The MNS model of Oztop and Arbib [77.101] pro-
vides some insight into the anatomy while focusing
on the learning capacities of mirror neurons. Here, the
task is to determine whether the shape of the hand and
its trajectory are on track to grasp an observed affor-
dance of an object using a known action. The model
is organized around the idea that the AIP ! F5canonical
pathway emphasized in the FARS model (Fig. 77.6) is
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complemented by another pathway 7b ! F5mirror. As
shown in Fig. 77.7 (middle diagonal), object features
are processed by AIP to extract grasp affordances; these
are sent on to the canonical neurons of F5 that choose
a particular grasp. Recognizing the location of the ob-
ject (top diagonal) provides parameters to the motor
programming area F4 which computes the reach. The
information about the reach and the grasp is taken by
the motor cortex M1 (D F1) to control the hand and the
arm. The rest of the figure provides components that
can learn and apply key criteria for activating a mirror
neuron, recognizing that the preshape of the observed
hand corresponds to the grasp that the mirror neuron en-
codes and is appropriate to the object, and that the hand
is moving on an appropriate trajectory. Making crucial
use of input from the superior temporal sulcus (Perrett
et al. [77.102] and Carey et al. [77.103]), schemas at the
bottom left recognize the shape of the observed hand
and how that hand is moving. Other schemas implement
hand–object spatial relation analysis and check how ob-
ject affordances relate to hand state. Together with F5
canonical neurons, this last schema (in parietal area 7b)
provides the input to the F5 mirror neurons.

In the MNS model, the hand state was defined as
a vector whose components represented the movement
of the wrist relative to the location of the object and of
the hand shape relative to the affordances of the object.
Oztop and Arbib showed that an artificial neural net-
work corresponding to PF and F5mirror could be trained
to recognize the grasp type from the hand state tra-
jectory, with correct classification often being achieved
well before the hand reached the object, using activity
in the F5 canonical neurons that commands a grasp as
training signal for recognizing it visually; this basically
shows that there is a causal relationship. Crucially, this
training prepares the F5 mirror neurons to respond to
hand–object relational trajectories even when the hand
is of the other rather than the self because the hand
state is based on the view of movement of a hand rela-
tive to the object, and thus only indirectly on the retinal
input of seeing the hand and object, which can differ
greatly between observation of self and other. Bonaiuto
et al. [77.104] have developed MNS2, a new version of
the MNS model to address data on audiovisual mirror
neurons that respond to the sight and sound of actions
with characteristic sounds such as paper tearing and nut
cracking Kohler et al. [77.93], and on the response of
mirror neurons when the target object was recently vis-
ible but is currently hidden Umiltà et al. [77.93]. Such
learningmodels, and the data they address, make it clear
that:

mirror neurons are not restricted to recognition of
an innate set of actions but can be recruited to rec-

ognize and encode an expanding repertoire of novel
actions.

The discussion of this section avoided any refer-
ence to imitation (Sect. 77.4.3). On the other hand, even
without considering imitation, mirror neurons provide
a new perspective for tackling the problem of robotic
perception by incorporating action (and motor informa-
tion) into a plausible recognition process. The role of
the fronto-parietal system in relating affordances, plans,
and actions shows the crucial role of motor information
and embodiment. We argue that this holds lessons for
neurorobotics: the richness of the motor system should
strongly influence what the robot can learn, proceeding
autonomously via a process of exploration of the envi-
ronment rather than overly relying on the intermediary
of logic-like formalisms. When recognition exploits the
ability to act, then the breadth of the action space be-
comes crucially related to the precision, quality, and
robustness of the robot’s perception.

77.4.2 Computational Models

Roboticists have been fascinated by the discovery of
mirror neurons and the purported link to imitation that
exists in the human nervous system, for they can help
to teach robots new tasks with relative ease. The litera-
ture on the topic extends from models of the monkey’s
(nonimitative) action recognition system (Oztop and Ar-
bib [77.101]) to models of the putative role of the mirror
system in imitation (Demiris and Johnson [77.105] and
Arbib et al. [77.106]), and in real and virtual robots
(Schaal et al. [77.107]). Oztop et al. [77.108] propose
a taxonomy of the models of the mirror system for
recognition and imitation, and it is interesting to note
how different the computational approaches that have
now been framed as mirror system models are, in-
cluding recurrent neural networks with parametric bias
(Tani et al. [77.109]), behavior-based modular networks
(Demiris and Johnson [77.105]), associative memory-
based methods (Kuniyoshi et al. [77.110]), and the use
of multiple direct-inverse models as in the MOSAIC
architecture (Wolpert et al. [77.111]; cf. the multiple
paired forward-inverse models of Sect. 77.3.2).

Following [77.112], we can cast much that is known
about the mirror system into a controller-predictor
model [77.65, 113] and analyze the resulting model as
a Bayesian classifier. As shown by the FARS model,
the decision to initiate a particular grasping action
is attained by the convergence in area F5 of several
factors, including contextual and object-related infor-
mation; similarly many factors affect the recognition
of an action. All this depends on learning both direct
(from decision to executed action) and inverse models
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(from observation of an action to activation of a mo-
tor command that could yield it). Similar procedures
are well known in the computational motor control lit-
erature [77.114, 115]. Learning of the affordances of
objects with respect to grasping can also be achieved
autonomously by learning from the consequences of
applying many different actions to different parts of dif-
ferent objects.

However, how is the decision made to classify an
observed behavior as an instance of one action or
another? Many comparisons could be performed in par-
allel with the models for one action to become predom-
inantly activated. There are plausible implementations
of this mechanism using a gating network [77.105,
116]. A gating network learns to partition an input space
into regions; for each region a different model can be
applied or a set of models can be combined through an
appropriate weight function. The design of the gating
network can encourage collaboration between models
(e.g., linear combination of models) or competition
(choosing only one model rather than a combination).
Reference [77.117] offers a similar approach to the es-
timation of the mental states of the observed actor,
using some additional circuitry involving the frontal
cortex.

On the other hand, if we take the Bayesian view of
the predictor-controller formulation, then affordances
are simply the priors in the action recognition process
where the evidence is conveyed by the visual infor-
mation of the hand, providing the data for finding the
posterior probabilities as mirror neuron-like responses
which automatically activate for the most probable ob-
served action. Recall that the presence of a goal (at least
in working memory) is needed to elicit mirror neuron
responses in the macaque. We believe it is also partic-
ularly important during the ontogenesis of the human
mirror system. For example, [77.118] has shown that
even at 9 months of age, infants recognized an action
as being novel if it was directed toward a novel ob-
ject rather than just having a different kinematics –
showing that the goal is more fundamental than the
enacted trajectory. Similarly, if one sees someone drink-
ing from a coffee mug then one can hypothesize that
a particular action (that one already knows in motor
terms) is used to obtain that particular effect. The asso-
ciation between the canonical response (object-action)
and the mirror one (including vision) is made when
the observed consequences (or goal) are recognized
as similar in the two cases. Similarity can be evalu-
ated following criteria ranging from kinematic to social
consequences.

In a similar experiment Lopes et al. [77.119] com-
pared action recognition performance (a) when using
the output of an inverse visuo-motor model and thus

employing motor features to aid classification during
the training phase, and (b) when only visual data were
available for recognition. Overall, their interpretation of
the results is that by mapping in motor space through
inverse model mapping, they allow the classifier to
choose features that are much better suited for perform-
ing optimally with respect to the task of recognizing
actions, which in turn facilitates generalization. The
same is not true when recognition is performed purely
in visual space using generic visual features, since
a given action is viewed from different viewpoints. One
may compare this to the viewpoint-invariant hand state
adopted in the MNS model – which has the weakness
of being built in rather than emerging from training.

Along the same line, the work of Gijsberts
et al. [77.120] included motorically-derived affordance
information, which was recorded using a data-glove-
based system and a set of cameras. In this case though,
motor information was not much for action recogni-
tion but rather used to simulate the response of F5’s
canonical neurons by generating discrete grasping types
from the time-varying set of postures recorded with
the data glove. After training the original motor in-
formation is removed and only reconstructed using an
inverse model. Furthermore, this motoric information
was combined with a simulation of the brain ventral
pathway which extracts pictorial features from images
(e.g., SIFT (scale-invariant feature transform), H-Max).
The dorsal and ventral features were combined through
a special kernel function in a simple least squares classi-
fier, showing a significant improvement at recognizing
objects in comparison to a purely visual classification.
A machine learning framework to address the question
of learning frommultimodal signals (some of which can
even be intermittent) is presented in [77.121].

We can speculate that this computational advantage
(better recognition rates) makes the presence of mixed
sensory and motor information compelling in the brain
(i. e., the fronto-parietal system); this may not necessar-
ily lead to mirror neurons although it seems plausible
that any clear advantage of using information at best
is eventually selected during evolution. These exper-
iments, using robots, simulations, and computational
arguments can thus explain the whys of certain brain
structures and mechanisms.

77.4.3 Mirror Neurons and Imitation

Fitzpatrickand Metta [77.122] also addressed the ques-
tion of what is further required for interpreting observed
actions. Whereas in observing its own actions, the robot
identifies them from the effects on the objects, later it
could backtrack and derive the type of action needed
to replicate a certain observed effect on a given object.
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Therefore, imitation can be framed into the identifica-
tion of a common goal between the observed action
and various possible actions in the motor repertoire
of the robot. In [77.122] the robot used the same vi-
sual processing algorithms both in observing its own
hand and the hand of a person (although they were
different in appearance). One might argue that obser-
vation alone can be used for learning, never relying
on active exploration of objects and actions. This is
possibly true to the extent that passive vision is re-
liable and action is not required. The advantage of
the active approach, at least for the robot, is that it
allows controlling the amount of information imping-
ing on the visual sensors by, for instance, controlling
the speed and type of action. This strategy might be
especially useful given the limitations of artificial per-
ceptual systems. Thus, observations can be converted
into interpreted actions. The action whose effects are
closest to the observed consequences on the object
(which we might translate into the goal of the action)
is selected as the most plausible interpretation given
the observation. Most importantly, the interpretation re-
duces to the interpretation of the simple kinematics of
the goal and consequences of the action rather than
to understanding the complex kinematics of the human
manipulator. The robot understands only to the extent
it has learned to act. One might note that a more re-
fined model should probably include visual cues from
the appearance of the manipulator into the interpreta-
tion process. Indeed, the hand state that was central
to the Oztop–Arbib model was based on an object-
centered view of the hand’s trajectory in a coordinate
frame based on the object’s affordances. The last ques-
tion to address is whether a robot can imitate the goal
of the action. The step is indeed small, since most of
the complexity is actually in interpreting observations.
Imitation can be generated by replicating the latest ob-
served human movement with respect to the object
utilizing one of the many approximation methods for
motion generation such as, e.g., a mixture of Gaus-
sians [77.123], dynamic motion primitives [77.124], or
reinforcement learning [77.125]. More generally, fol-
lowing the work of Schaal et al. [77.107] and Oztop
et al. [77.108] we can propose a set of schemas required
to produce imitation:

� Determining what to imitate, inferring the goal of
the demonstrator� Establishing a metric for imitation (correspondence;
see Nehaniv [77.126])� Map between dissimilar bodies (mapping).� Imitating behavior formation.

These are also discussed in greater detail by Ne-
haniv and Dautenhahn [77.127]. In practice, computa-

tional and robotic implementations have tackled these
problems with different approaches and emphasizing
different parts or specific subproblems of the whole, for
example, in the work of Demiris and Hayes [77.128],
the rehearsal of the various actions (akin to the afore-
mentioned theory of motor perception) was used to
generate hypotheses to be compared with the actual sen-
sory input. It is then remarkable how more recently
a modified approach of this paradigm has been used
in comparison with real human transcranial magnetic
stimulation (TMS) data.

Ito et al. [77.129] (not Masao Ito of cerebellar fame)
took a dynamical systems approach using a recurrent
neural network with parametric bias (RNNPB) to teach
a humanoid robot to manipulate certain objects. In
this approach the parametric bias (PB) encodes (tags)
certain sensorimotor trajectories. Once learning is com-
plete, the neural network can be used either to recall
a given trajectory by setting the PB externally or pro-
vide input for the sensory data only and observe the PB
vector that would represent in that case the recognition
of the situation on the basis of the sensory input only
(no motor information available). It is relatively easy to
interpret these two situations as the motor generation
and the observation in a mirror neurons model.

The problem of building useful mappings between
dissimilar bodies (consider a human imitating a bird’s
flapping wings) was tackled by Nehaniv and Daut-
enhahn [77.127] where an algebraic framework for
imitation is described and the correspondence problem
formally addressed. Any system implementing imita-
tion should clearly provide a mapping between either
dissimilar bodies or even in the case of similar bodies
when either the kinematics or dynamics is different de-
pending on the context of the imitative action.

Sauser and Billard [77.130] modeled the ideomotor
principle, according to which observing the behavior of
others influences our own performances. The ideomotor
principle points directly to one of the core issues of the
mirror system, that is, the fact that watching somebody
else’s actions changes something in the activation of the
observer, thus facilitating certain neural pathways. The
work in question also gives a model implemented in
terms of neural fields (see Sauser and Billard [77.130]
for details) and tries to explain the imitative cortical
pathways and the behavior formation.

77.4.4 Mirror System and Speech

Already in the 1960s Liberman et al. [77.131] started to
discuss the possible links between production and per-
ception in speech: in other words the contribution of
articulation into the perception of utterances. Later he
commented [77.132]:
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A result in all cases is that there is not, first, a cog-
nitive representation of the proximal pattern that
is modality-general, followed by a translation to
a particular distal property; rather, perception of
the distal property is immediate, which is to say that
the module has done all the hard work.

Liberman argued that there is no such a thing
as a modality-aspecific representation which then be-
comes speech as an effect of a translation to a specific
set of articulators (the vocal apparatus in this case),
rather, he claimed that perception of speech is immedi-
ate and effected by the same speech module (the same
that generates speech); speech remains a motor fact.
Lately, theories of the motor involvement in speech per-
ception have gained credit because of the discovery
of the mirror neurons. It has been postulated that the
mirror system in humans controls jointly speech pro-
duction and perception, whereby the actions in speech
are the articulation of appropriate segments of the utter-
ances [77.133].

We recall this line of reasoning in the follow-
ing [77.133], that is:

� Mirror neurons (or a mirror system) exist in hu-
mans [77.134].� The human mirror system is identified in Broca’s
area, a cytoarchitectonical homolog of area F5 in
the macaque’s brain.� Speech articulation is coded/controlled in/by the ar-
eas of the human mirror system (Broca’s) [77.135].� The recognition of the intention of the speaker by
the listener owing to a mirror mechanism leads to
the first seed of true communication (via, e.g., oro-
facial gestures) [77.133].� The combinatorial properties of F5/Broca and the
precise control of the effectors are needed to gener-
ate speech (the evolutionarily older animal calls are
too stereotyped to grant this flexibility that eventu-
ally leads to speech proper) [77.136].

To establish that this is the case, however, more em-
pirical evidence is required. Recently, two experiments
improved the plausibility of the mirror neurons theory
of speech perception. In a first TMS experiment, Fadiga
and colleagues [77.137] established that MEPs (motor
evoked potentials) in the tongue muscles directly corre-
late with high specificity to the perception of particular
sounds (these were rr and ff in Italian). The listener was
delivered TMS (single pulse) and the observed MEPs
correlated in amplitude with the different use of the
tongue muscles for the pronunciation of either the rr or
ff sounds (rr in Italian requires a strong mobilization of
the tongue). Albeit convincing, this experiment leaves

open the question of specificity, since it can still be the
case of a diffuse/generic activation of Broca’s area.

A second experiment also by Fadiga et al. [77.137]
was designed to set the issue. In this case, the TMS
was delivered to the primary motor cortex with the aim
of establishing a specific motor involvement into the
perception of different sounds/phones. Two areas were
individuated in the primary motor cortex as responsible
to the lip and tongue movement, respectively (e.g., p/b
sounds versus t=d). The data show a double dissociation
pattern, that is, when the lip motor area is stimulated
there is a decrease of the reaction times (RTs) of the
subject in perceiving the p/b (labial sounds) and vice-
versa an increase for the perception of the t=d (dental
sounds). The opposite happens when the tongue motor
area is stimulated. This experiment clearly relates a very
specific (small) region of the primary motor cortex with
the perception of certain specific (and related) sounds.

Clearly, this is only part of the story; to complicate
matters, for example, the semantic content of words
related to actions (e.g., kick, pick, lick) activate both
motor and pre-motor brain areas somatotopically. Ob-
ject features, odors, etc., instead have been shown to
generate responses in the corresponding cortices. For
a review of these and other results, see [77.136].

Theories and models such as the perception for
action control theory (PACT) [77.138] take a more
moderate interpretation by including both a motor com-
ponent and perceptual shaping, that is, the filtering
of certain linguistic combinations because of purely
perceptual characteristics (e.g., separation of vowel for-
mants). In PACT, it is hypothesized that the motor
system is activated more in adverse conditions, while
it is perhaps under-threshold for normal speech under-
standing in good signal-to-noise conditions.

Indeed, we can recognize speech in a foreign ac-
cent, and recognizing what is being said can then be
decoiupled from being able to articulate how it is being
said – but both possibilities are available. This has led
to a new view of the integration of mirror systems with
other systems [77.139] which downplays the motor the-
ory of speech perception while preserving many other
features of the mirror system hypothesis of Rizzolatti
and Arbib [77.133].

Armed with these results Castellini and col-
leagues [77.140] conducted a computational experi-
ment that mimic some of the TMS results of D’Ausilio
et al. [77.141]. All processing employed a database
of synchronized recordings of Italian speakers with
acoustic, articulograph, camera, ultrasound, and elec-
troglottograph data [77.142]. For the experiments, only
the articulograph and electroglottograph signals were
used together with speech sound. These identify the
position of the tongue and teeth versus the lips in
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Fig. 77.9 Baseline experiment comparing the performance
of acoustic versus motor data (or jointly acoustic plus mo-
tor data) in classifying b=p versus d=t

real time (200Hz) in addition to the activation of the
vocal folds (voicing signal). The conceptual schema
of all experiments and learning follows some previ-
ous work as by Metta et al. [77.112], and which as
is shown in Fig. 77.8. In particular, acoustic data are
mapped into motoric features and these are used for
classifying phones. Similarly to the PACT model, it
was found useful to incorporate also a purely acoustic
classifier. Acoustic features were the standard Mel cep-
stral coefficients with similar parameters and frequency
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Fig. 77.10 Comparison across various
conditions. In all cases apart from
coart4vs1 the use of motor features
improve classification with statistical
significance .p < 0:01/

bands of conventional automatic speech recognition
(ASR).

The mapping from acoustic to motor data was per-
formed using either an artificial neural network or
support vector machine for regression with indistin-
guishable results. The classifier was always a support
vector machine with Gaussian kernel and parameters
optimized through grid search.

In order to compare it with the TMS experiments,
phones were divided into two classes, the b=p and
t=d, respectively, as representing the bi-labial and den-
tal (movement of the tongue toward the teeth) phones.
Fivefold cross-validation was employed on all results
by either random splits of the data or by selecting data
from various participants (e.g., training on 1�5 par-
ticipants, testing on 1�5 participants). Gaussian white
noise was added to the stimuli (at increasing levels from
0 to 150%) to replicate the conditions of the TMS.

Figure 77.9 shows these results. The baseline exper-
iment shows an improved performance where either the
real motoric or jointly motoric and acoustic features are
used. The comparison of audio versus joint features is
statistically significant .p< 0:01/ and verifies the claim
as no new information is added to the system when the
reconstructed motor features are employed. Motor fea-
tures are reconstructed by the audio-motormap (AMM)
of Fig. 77.8 and replicates previous results obtained in
the classification of hand gestures [77.119] or handwrit-
ing characters [77.143].

A second experiment from the same work of
Castellini and colleagues [77.140] shows the behavior
of the same system in various conditions of increased
difficulty ranging from running classification on speak-
ers not included in the training sets to co-articulation.
Figure 77.10 shows a number of variants where N vs M
indicates N speakers for training versus M speakers for
testing given the size of the database (6 speakers). Ex-
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Fig. 77.11 Comparison of acoustic
versus motor features under increasing
level of added Gaussian white noise
for the same classifier of the previous
experiments

periments with co-articulation were conducted also on
five speakers, albeit the number of identifiable examples
in the database was smaller.

In a final experiment, the classifier was tested on
acoustic data corrupted by Gaussian white noise. Re-
sults show a consistent improvement with the motor
information gain increasing with the increase of the
noise level (up to 150% of the speech standard devia-
tion): Fig. 77.11.

More recently a full phone classifier was built using
similar principles [77.144] together with a combina-
tion of deep belief networks (DBNs) and more standard
hidden Markov models (HMMs). The results show im-
provement with respect to the state of the art, continuing
the long tradition of neurorobotics and bringing mod-
els very close to concrete applications on robots that
bear resemblance to the exquisite human performance
in speech recognition in noisy environments.

77.5 Conclusion and Further Reading

As the foregoing makes clear, robotics has much to
learn from neuroscience and much to teach neuro-
science. Neurorobotics can learn from the ways in
which the brains and bodies of different creatures adapt
to diverse ecological niches – as computational neu-
roethology helps us understand how the brain of a crea-
ture has evolved to serve action-oriented perception,
and the attendant processes of learning, memory, plan-
ning, and social interaction.

We have sampled the design of just a few sub-
systems (both functional and structural) in just a few
animals – optic flow in the bee, approach, escape, and
barrier avoidance in frogs and toads, and navigation
in the rat, as well as the control of eye movements in
visual attention, the role of the mammalian cerebel-
lum in handling the nonlinearities and time delays of
flexible motor systems, and the mirror systems of pri-
mates in action recognition and of humans in imitation.
There are many more creatures with lessons to offer the
roboticist than we can sample here.

Moreover, if we just confine attention to the brains
of humans, this chapter has mentioned at least 7a,

7b, AIP, lateral, medial and ventral intraparietal sulcus
(LIP, MIP and VIP), area 46, basal ganglia, caudoputa-
men, cerebellum, F2, F4, F5, hippocampus, hypotha-
lamus, inferotemporal cortex, motor cortex, nucleus
accumbens, parietal cortex, prefrontal cortex, premotor
cortex, pre-SMA (F6), spinal cord, STS, and – and it is
clear that there are many more details to be understood
for each region, and many more regions whose interac-
tions hold lessons for roboticists. We say this not to de-
press the reader, but rather to encourage further explo-
ration of the literature of computational neuroscience
and to note that the exchange with neurorobotics pro-
ceeds both ways: neuroscience can inspire novel robotic
designs; conversely, robots can be used to test whether
brain models still work when they make the transition
from disembodied computer simulation to meeting the
challenge of guiding the interactions of a physically em-
bodied systemwith the complexities of its environment.

Nonetheless, a thorough study of the spinal cord and
its effect on muscle behavior is where a roboticist, who
is interested in replicating some of the functionality of
vertebrate movement, may want to start looking.
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77.5.1 Further Reading

� Arbib (2006) [77.145]: This volume provides 16
articles on the mirror system, written by diverse
experts. Of particular relevance to this chapter are
articles on dynamical systems: brain, body and im-
itation; attention and the minimal subscene; the
development of grasping and the mirror system;
and development of goal-directed imitation, ob-
ject manipulation, and language in humans and
robots.� Bell (1996) [77.146]: This somewhat older BBS
special issue provides what was, back then, a rather
definitive number of articles on the cerebellum, in-
cluding an overview of models in a paper by Houk
et al.� van der Smagt and Bullock (2002) [77.147]: This
special issue is focused on the application of cere-

bellar and other models to robotics tasks, and lists
some successful and – between the lines – more un-
successful applications thereof.� Gallese et al. (1996) [77.148]: This paper provides
a detailed account of the neurophysiological evi-
dence for mirror neurons. It is good reading to get
the real data unbiased from further interpretation on
the role of mirror neurons and it is complete and ac-
curate. Although it is a technical paper it is easy to
read also for a general audience.� Fadiga et al. 2002 [77.149]: This work extends the
mirror system concept with an interesting perspec-
tive on its role into language. This paper is interest-
ing reading by providing evidence in humans (the
other references above are about monkey experi-
ments). In this case, it has been shown that speech
listening facilitates the activation of tongue muscles
which match the specific phoneme being listened to.
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