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49. Modeling and Control of Wheeled
Mobile Robots

Claude Samson, Pascal Morin, Roland Lenain

This chapter may be seen as a followup to Chap. 24,
devoted to the classification and modeling of ba-
sic wheeled mobile robot (WMR) structures, and
a natural complement to Chap. 47, which surveys
motion planning methods for WMRs. A typical out-
put of these methods is a feasible (or admissible)
reference state trajectory for a given mobile robot,
and a question which then arises is how to make
the physical mobile robot track this reference tra-
jectory via the control of the actuators with which
the vehicle is equipped. The object of the present
chapter is to bring elements of the answer to this
question based on simple and effective control
strategies.

The chapter is organized as follows. Sec-
tion 49.2 is devoted to the choice of control models
and the determination of modeling equations as-
sociated with the path-following control problem.
In Sect. 49.3, the path following and trajectory sta-
bilization problems are addressed in the simplest
case when no requirement is made on the robot
orientation (i. e., position control). In Sect. 49.4
the same problems are revisited for the control
of both position and orientation. The previously
mentionned sections consider an ideal robot sat-
isfying the rolling-without-sliding assumption. In
Sect. 49.5, we relax this assumption in order to
take into account nonideal wheel-ground contact.
This is especially important for field-robotics ap-
plications and the proposed results are validated
through full scale experiments on natural terrain.
Finally, a few complementary issues on the feed-
back control of mobile robots are briefly discussed
in the concluding Sect. 49.6, with a list of com-
mented references for further reading on WMRs
motion control.
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49.1 Background

Wheeled mobile robotics remains a very active
research topic, as witnessed by the Darpa Grand Chal-
lenges [49.1]. The first Grand Challenge, in 2005,
took place in a clear environment and was won by
Stanley (Fig. 49.1a). The second Grand Challenge, in
2007, took place in urban environment and demon-
strated autonomous driving capabilities, especially in
complex environments with strong safety and relia-
bility issues. This made possible the development of
autonomous cars, such as google car (Fig. 49.1b).
Whatever the sensors used for localization and de-
tection, the use in every day life of cybercars, such
as VipaLab (Fig. 49.1c), is becoming a reality. Nu-
merous tests are under progress all around the world
showing the benefits of autonomous transportation sys-
tems. On-road transportation probably constitutes the
main and most visible application domain of emerg-
ing autonomous wheeled robots. Driving assistance for
human activities in off-road conditions constitutes an-
other application domain. Indeed, WMRs can also be
used in hazardous environments, or in environments
that are not reachable by humans. Planetary exploration
(Chap. 55), with the example of Curiosity (Fig. 49.1d),
is a popular example of such applications. Other devel-
opments, concerning people well-being and safety, are
also investigated in the field of environmentmonitoring,
surveillance, agriculture, civil protection or defence.
Figure 49.1e,f illustrate these developments with the
first one representing the Claas etrion robot (for au-

a) b) c)

d) e) f)

Fig.49.1a–f Some example of mobile
robots for different applications: (a)
Stanley (Stanford Univ.), off-road
motion; (b) Google car, autonomous
car; (c) Vipa (Institut Pascal/Ligier),
urban transportation; (d) Curiosity
(NASA) planetary exploration; (e)
Etrion (Claas), agriculture robot; (f)
PackBot (iRobot), public safety

tonomous farming, see also Chap. 56) and the second
one representing the SUGV robot manufactured by
iRobot. This robot, dedicated to civil protection, was
the first one to enter the damaged Fukushima power
plant. All these examples highlight the possible bene-
fits and different applications of WMRs. The variety of
robot designs (in term of scale, locomotion mode, or
related actuation strategy see Chap. 24), is in line with
the diversity of application needs. Whatever the system
and application, however, autonomy relies on the de-
sign of efficient feedback laws that can ensure precise
autonomous motion of the vehicle despite all possible
modeling errors and perturbations. This chapter is ded-
icated to this issue and aims at providing the basics of
feedback control design for nonholonomicWMRs. Im-
plementation of these control laws supposes that one
is able to measure the variables involved in the control
loop (typically the position and orientation of the mo-
bile robot with respect to either a fixed frame or a path
that the vehicle should follow). Throughout this chapter
we will assume that these measurements are available
continuously in time and that they are not corrupted by
noise. In a general manner, robustness considerations
will not be discussed in detail, one reason being that,
beyond imposed space limitations, a large part of the
presented approaches are based on linear control the-
ory. The feedback control laws then inherit the strong
robustness properties associated with stable linear sys-
tems. Results can also be subsequently refined by using

http://dx.doi.org/10.1007/978-3-319-32552-1_55
http://dx.doi.org/10.1007/978-3-319-32552-1_56
http://dx.doi.org/10.1007/978-3-319-32552-1_24
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complementary, eventually more elaborate, automatic
control techniques. For the sake of simplicity, the con-
trol methods are developed mainly for unicycle-type
and car-like mobile robots, which correspond respec-
tively to the types .2;0/ and .1;1/ in the classification
proposed in Chap. 24. Most of the results can in fact
be easily extended/adapted to other mobile robots, in
particular to systems with trailers. We will mention the
cases where such extensions are straightforward. All
reported simulation results, illustrating various control
problems and solutions, are carried out for a car-like ve-
hicle, whose kinematics is slightly more complex than
that of unicycle-type vehicles.

Recall (Fig. 49.2) that:

1. A unicycle-type mobile robot is schematically com-
posed of two independent actuated wheels on
a common axle whose direction is rigidly linked
to the robot chassis, and one or several passively
orientable – or caster – wheels, which are not con-
trolled and serve for sustentation purposes.

2. A (rear-drive) car-like mobile robot is composed of
a motorized wheeled axle at the rear of the chas-
sis, and one (or a pair of) orientable front steering
wheel(s).

Note also, as illustrated by the diagram below
(Fig. 49.3), that a car-like mobile robot can be viewed
(at least kinematically) as a unicycle-type mobile robot
to which a trailer is attached.

Despite the variety of application, three generic
control problems can mainly be considered in mobile
robotics and are detailed in this chapter.

49.1.1 Path Following

Given a curve C on the plane, a (nonzero) longitudinal
velocity v0 for the robot chassis, and a point P attached
to the chassis, the goal is to have the point P follow
the curve C when the robot moves with the velocity
v0. The variable that one has to stabilize at zero is thus
the distance between the point P and the curve (i. e.,
the distance between P and the closest point M on C).
This type of problem typically corresponds to driving
on a road while trying to maintain the distance between

Fig.49.2a,b Unicycle-type (a) and car-like (b) mobile
robots

the vehicle chassis and the side of the road constant. Au-
tomatic wall following is another possible application.

49.1.2 Stabilization of Trajectories

This problem differs from the previous one in that the
vehicle’s longitudinal velocity is no longer predeter-
mined because one also aims to monitor the distance
gone along the curve C. This objective supposes that
the geometric curve C is complemented with a time
schedule, i. e., that it is parameterized with the time
variable t. This boils down to defining a trajectory
t 7�! .xr.t/; yr.t// with respect to a reference frame F0.
Then the goal is to stabilize the position error vector
.x.t/� xr.t/; y.t/� yr.t// at zero, with .x.t/; y.t// denot-
ing the coordinates of point P in F0 at time t. The
problem may also be formulated as one of control-
ling the vehicle in order to track a reference vehicle
whose trajectory is given by t 7�! .xr.t/; yr.t//. Note
that perfect tracking is achievable only if the reference
trajectory is feasible for the physical vehicle, and that
a trajectory which is feasible for a unicycle-type vehicle
is not necessarily feasible for a car-like vehicle. Also,
in addition to monitoring the position .x.t/; y.t// of the
robot, one may be willing to control the chassis orien-
tation �.t/ at a desired reference value �r.t/ associated
with the orientation of the reference vehicle. For a non-
holonomic unicycle-type robot, a reference trajectory
.xr.t/; yr.t/; �r.t// is feasible if it is produced by a refer-
ence vehicle which has the same kinematic limitations
as the physical robot. For instance, most trajectories
produced by an omnidirectional vehicle (omnibile vehi-
cle in the terminology of Chap. 24) are not feasible for
a nonholonomic mobile robot. However, nonfeasibility
does not imply that the reference trajectory cannot be
tracked in an approximate manner, i. e., with small (al-
though nonzero) tracking errors.

49.1.3 Stabilization of Fixed Postures

Let F1 denote a frame attached to the robot chassis. In
this chapter, we call a robot posture (or situation) the
association of the position of a point P located on the
robot chassis with the orientation �.t/ of F1 with re-
spect to a fixed frame F0 in the plane of motion. For

φ φ

Fig. 49.3 Analogy car/unicycle with trailer

http://dx.doi.org/10.1007/978-3-319-32552-1_24
http://dx.doi.org/10.1007/978-3-319-32552-1_24
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this last problem, the objective is to stabilize at zero the
posture vector �.t/D .x.t/; y.t/; �.t//, with .x.t/; y.t//
denoting the position of P expressed in F0. Although

a fixed desired (or reference) posture is obviously a par-
ticular case of a feasible trajectory, this problem cannot
be solved by classical control methods.

49.2 Control Models

49.2.1 Kinematics Versus Dynamics

In order to proceed with the control of mobile robots,
a model describing its motion has to be derived. Several
levels of motion equations may be derived, pending on
the targeted application (expected velocity, terrain con-
figuration, etc.). Chapter 24 provides a general config-
uration dynamic model for WMRs. Its particularization
to the case of unicycle-type and car-like mobile robots
gives

H.q/ PuCF.q;u/uD �.�/� ; (49.1)

with q denoting a robot’s configuration vector, u a vec-
tor of independent velocity variables associated with the
robot’s degrees of freedom, H.q/ a reduced inertia ma-
trix (which is invertible for any q), F.q;u/u a vector
of forces combining the contribution of Coriolis and
wheel–ground contact forces, � the orientation angle
of the car’s steering wheel, � an invertible control ma-
trix (which is constant in the case of a unicycle-type
vehicle), and � a vector of independent motor torques
(whose dimension is equal to the number of degrees
of freedom in the case of full actuation, i. e., equal to
two for the vehicles considered herein). In the case of
a unicycle-type vehicle, a configuration vector is com-
posed of the components of the chassis posture vector �
and the orientation angles of the castor wheels (with re-
spect to the chassis). In the case of a car-like vehicle,
a configuration vector is composed of the components
of � and the steering wheel angle �. To be complete,
this dynamic model must be complemented with kine-
matic equations in the form

PqD S.q/u ; (49.2)

from which one can extract a reduced kinematic model

PzD B.z/u ; (49.3)

with zD �, in the case of a unicycle-type vehicle,
and zD .�; �/ in the case of a car-like vehicle. In the
automatic control terminology, the complete dynamic

model (49.1) and (49.2) forms a control system which
can be written as

PXD f .X;�/ with XD .q;u/

denoting the state vector of this system, and � the vec-
tor of control inputs. The kinematic models (49.2) and
(49.3) are also control systems with respective state
vectors q and z and control vector u. Any of these mod-
els can be used for control design and analysis purposes.
In the remainder of this chapter, we have chosen to work
with the kinematic model (49.3). By analogy with the
motion control of manipulator arms, this boils down
to using a model with velocity control inputs, rather
than a model with torque control inputs. This is jus-
tified when dynamic effects are not preponderant and
low-level velocity control loops on the wheels motor are
powerful enough to ensure good velocity tracking. In
Sect. 49.5, however, when nonideal wheel-ground con-
tact is addressed, dynamics is considered.

49.2.2 Modeling in an Absolute Frame

For the unicycle-type mobile robot, the kinematic
model (49.3) used from now on is

8̂
<̂
ˆ̂:

PxD u1 cos � ;

PyD u1 sin � ;

P� D u2 ;

(49.4)

where .x; y/ represents the coordinates of the point Pm
located at mid-distance of the actuated wheels, and the
angle � characterizes the robot’s chassis orientation
(Fig. 49.4). In this equation, u1 represents the intensity
of the vehicle’s longitudinal velocity, and u2 is the chas-
sis instantaneous velocity of rotation. The variables u1
and u2 are themselves related to the angular velocity of
the actuated wheels via the one-to-one relations

u1 D r

2
. P rC P `/ ;

u2 D r

2R
. P r� P `/ ;

with r the wheels’ radius, R the distance between the
two actuated wheels, and P r (resp. P `) the angular ve-
locity of the right (resp. left) rear wheel.

http://dx.doi.org/10.1007/978-3-319-32552-1_24
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For the car-like mobile robot, the kinematic model
(49.3) used from now on is

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

PxD u1 cos � ;

PyD u1 sin � ;

P� D u1
L tan� ;

P� D u2 ;

(49.5)

where � represents the vehicle’s steering wheel angle,
and L is the distance between the rear and front wheels’
axles. In all forthcoming simulations, L is set equal to
1:2m.

49.2.3 Modeling in a Frénet Frame

The object of this subsection is to generalize the pre-
vious kinematic equations when the reference frame is
a Frénet frame. This generalization will be used later on
when addressing the path following problem.

Let us consider a curve C in the plane of motion, as
illustrated on Fig. 49.5, and let us define three frames
F0, Fm, and Fs, as follows. F0 D f0; i; jg is a fixed
frame, Fm D fPm; im; jmg is a frame attached to the mo-
bile robot with its origin – the point Pm – located on the
rear wheels axle, at the mid-distance of the wheels, and
Fs D fPs; is; jsg, which is indexed by the curve’s curvi-
linear abscissa s, is such that the unit vector is tangents
C. Consider now a point P attached to the robot chassis,
and let .l1; l2/ denote the coordinates of P expressed in
the basis of Fm. To determine the equations of motion
of P with respect to the curve C let us introduce three
variables s, d, and �e, defined as follows:

� s is the curvilinear abscissa at the point Ps obtained
by projecting P orthogonally on C. This point exists
and is unique if the point P is close enough to the
curve. More precisely, it suffices that the distance
between P and the curve be smaller than the lower
bound of the curve radii. We will assume that this
condition is satisfied.� d is the ordinate of P in the frame Fs; its absolute
value is also the distance between P and the curve.� �e D � � �s is the angle characterizing the orien-
tation of the robot chassis with respect to the
frame Fs.

We also define the curvature c.s/ of C at Ps, i. e.,
c.s/D @�s=@s.

φ

θ

O

y

j

ix x

Pm θPm

Fig. 49.4 Configuration variables

θs

O

j

i

d

C

isjs

im
jm

θe

Ps

s

Pm

P

Fig. 49.5 Representation in a Frénet frame

Using these notations one easily deduces from
(49.4) the following system of equations ([49.2] for de-
tails), which generalizes (49.4)

8̂
<̂
ˆ̂:

PsD 1
1�dc.s/ Œ.u1 � l2u2/ cos �e � l1u2 sin �e� ;

PdD .u1� l2u2/ sin �e C l1u2 cos �e ;

P�e D u2� Psc.s/ :
(49.6)

For car-like vehicles, one easily verifies, by using
(49.5), that the system (49.6) becomes

8̂
ˆ̂̂<
ˆ̂̂̂
:

PsD u1
1�dc.s/

�
cos �e � tan�

L .l2 cos �e C l1 sin �e/
	
;

PdD u1
�
sin �e C tan�

L .l1 cos �e � l2 sin �e/
	
;

P�e D u1
L tan� � Psc.s/ ;

P� D u2 :
(49.7)
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49.3 Adaptation of Control Methods for Holonomic Systems

We address in this section the problems of trajectory
stabilization and path following.Whenwe defined these
problems in the introduction, we considered a reference
point P attached to the robot chassis. It turns out that
the choice of this point is important. Indeed, consider
for instance the equations (49.6) for a unicycle point P
when C is the axis .O; i/. Then, sD xP, d D yP, and
�e D � represent the robot’s posture with respect to the
fixed reference frame F0. There are two possible cases
depending on whether P is, or is not, located on the ac-
tuated wheels axle. Let us consider the first case, for
which l1 D 0. From the first two equations of (49.6),
one has

PxP D .u1� l2u2/ cos � ; PyP D .u1 � l2u2/ sin � :

These relations indicate that P can move only in the
direction of the vector .cos �; sin �/. This is a direct
consequence of the nonholonomy constraint to which
the vehicle is subjected. Now, if P is not located on the
wheels axle, then

�PxP
PyP
�
D
�
cos � �l1 sin �
sin � l1 cos �

��
1 �l2
0 1

��
u1
u2

�
:

(49.8)

The fact that the two square matrices in the right-hand
side of this equality are invertible indicates that PxP
and PyP can take any values, and thus that the motion of
P is not constrained. By analogy with holonomic ma-
nipulator arms, this means that P may be seen as the
extremity of a two-degree-of-freedom (2-DOF) manip-
ulator, and thus that it can be controlled by applying
the same control laws as those used for manipulators.
In this section, we assume that the point P, used to char-
acterize the robot’s position, is chosen away from the
rear wheels axle. In this case we will see that the prob-
lems of trajectory stabilization and path following can
be solved very simply. However, as shown in the subse-
quent section, choosing P on the wheels axle may also
be of interest in order to better control the vehicle’s ori-
entation.

49.3.1 Stabilization of Trajectories
for a Nonconstrained Point

Unicycle
Consider a differentiable reference trajectory t 7�!
.xr.t/; yr.t// in the plane. Let eD .xP � xr; yP � yr/ de-
note the tracking error in position. The control objective
is to asymptotically stabilize this error at zero. In view

of (49.8), the error equations are

PeD
�
cos � �l1 sin �
sin � l1 cos �

��
u1 � l2u2

u2

�
�
�Pxr
Pyr
�
:

(49.9)

Introducing new control variables .v1; v2/ defined by

�
v1
v2

�
D
�
cos � �l1 sin �
sin � l1 cos �

��
u1 � l2u2

u2

�
; (49.10)

the equations (49.9) become simply

PeD
�
v1
v2

�
�
�Pxr
Pyr
�
:

The classical techniques of stabilization for linear sys-
tems can then be used. For instance, one may consider
a proportional feedback control with precompensation
such as

v1 D Pxr � k1e1 D Pxr � k1.xP � xr/ ; .k1 > 0/ ;

v2 D Pyr � k2e2 D Pyr � k2.yP � yr/ ; .k2 > 0/ ;

which yields the closed-loop equation PeD�Ke. Of
course, this control can be rewritten for the initial con-
trol variables u, since the mapping .u1; u2/ 7�! .v1; v2/
is bijective.

Car
This technique extends to car-like vehicles (and also to
trailer systems) by choosing a point P attached to the
steering wheel frame and not located on the steering
wheel axle.

49.3.2 Path Following
with no Orientation Control

Unicycle
Let us adopt the notation of Fig. 49.5 to address the
problem of following a path associated with a curve C
in the plane. The control objective is to stabilize the dis-
tance d at zero. From (49.6), one has

PdD u1 sin �e C u2.�l2 sin �e C l1 cos �e/ : (49.11)

Recall that in this case the vehicle’s longitudinal veloc-
ity u1 is either imposed or prespecified. We will assume
that the product l1u1 is positive, i. e., the position of the
point P with respect to the actuated wheels axle is cho-
sen in relation to the sign of u1. This assumption will
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be removed in Sect. 49.4. To simplify, we will also as-
sume that l2 D 0, i. e., the point P is located on the axis
.Pm; im/. Let us then consider the following feedback
control law

u2 D�u1 tan �e
l1

� u1
cos �e

k.d; �e/d ; (49.12)

with k a continuous, strictly positive, function on
R� .��=2; �=2/ such that k.d;˙�=2/D 0. Since l2 D
0, applying the control (49.12) to (49.11) gives

PdD�l1u1k.d; �e/d ;
which suggests that the control law (49.12) ensures con-
vergence of d to zero under adequate conditions on
l1; u1, and k. This is made precise in the following result
([49.2] for details).

Proposition 49.1
Consider the path following problem for a unicycle-
type mobile robot with

A. A strictly positive, or strictly negative, longitudinal
velocity u1.

B. A reference point P of coordinates .l1; 0/ in the ve-
hicle’s chassis frame, with l1u1 > 0.

Let k denote a continuous function, strictly posi-
tive onR�.��=2; �=2/, and such that k.d;˙�=2/D 0
for every d (for instance, k.d; �e/D k0 cos �e). Then, for
any initial conditions .s.0/;d.0/; �e.0// such that

�e.0/ 2 .��=2; �=2/ ; l1cmax

1� jd.0/jcmax
< 1 ;

with cmax Dmaxsjc.s/j, the feedback control (49.12)
makes the distance jdj between P and the curve non-
increasing, and makes it converge to zero if

tZ

0

ju1.s/jds�!C1 when t �!C1 :

Car
This control technique also applies to car (or trailer sys-
tems) by considering a point P attached to the steering
wheel frame, with u1 positive.

49.4 Methods Specific to Nonholonomic Systems

The control methods recalled in the previous section are
simple and sufficient for many applications. Their main
limitation comes from the fact that the robot’s orienta-
tion is not actively controlled. This becomes a problem
when the application requires manœuvers (i. e., when
the vehicle’s velocity u1 has to become negative). This
issue is especially critical for trailer systems (including
car-like vehicles). Indeed, when the longitudinal veloc-
ity is positive, the leader vehicle has a pulling action
which tends to align the followers along the curve. In
the other case, the leader has a pushing action which
tends to misalign them, thus leading to collisions be-

t = 1 t = 0

P

u1

P
u1

Fig. 49.6 Path-following instability with reverse longitu-
dinal velocity

tween the vehicles’ components (the jackknife effect,
see Fig. 49.6 for illustration). In order to remove this
constraint on the sign of the longitudinal velocity, the
control has to be designed so that all orientation an-
gles are actively stabilized. An indirect way to do this
consists in choosing the point P on the actuated wheels
axle, at the mid-distance of the wheels, for instance. In
this case, the nonholonomy constraints intervene much
more explicitly, and the control can no longer be ob-
tained by applying the techniques used for holonomic
manipulators.

This section is organized as follows. First, the mod-
eling equations with respect to a Frénet frame are recast
into a canonical form called the chained form. From
there, a solution to the path-following problem with ac-
tive stabilization of the vehicle’s orientation is worked
out. The problem of (feasible) trajectory stabilization
is also revisited with the complementary objective of
controlling the vehicle’s orientation. The asymptotic
stabilization of fixed postures is then addressed. Finally,
some comments on the limitations of the proposed con-
trol strategies, in relation to the objective of asymptotic
stabilization, serve to motivate and introduce a new con-
trol approach developed in the subsequent section.
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49.4.1 Transformation of Kinematic Models
into the Chained Form

The chapter dedicated to path planning shows how the
kinematic equations of the mobile robots here con-
sidered (unicycle-type, car-like, with trailers) can be
transformed into the chain form via a change of state
and control variables. In particular, the equations of
a unicycle (49.4), and those of a car (49.5), can be trans-
formed into a three-dimensional and a four-dimensional
chained system, respectively. Those of a unicycle-type
vehicle with N trailers yield a chained system of dimen-
sion NC3 when the trailers are hooked to each other in
a specific way. As shown below, this transformation can
be generalized to the kinematic models derived with re-
spect to a Frénet frame. The result will be given only for
the unicycle and car cases (49.6) and (49.7), but it also
holds for trailer systems. The reference point P is now
chosen at the mid-distance of the vehicle’s rear wheels
(or at the mid-distance of the wheels of the last trailer,
when trailers are involved).

Let us start with the unicycle case. Under the as-
sumption that P corresponds to the origin of Fm, one
has l1 D l2 D 0 so that the system (49.6) simplifies to

8̂
ˆ̂<
ˆ̂̂:

PsD u1
1� dc.s/

cos �e ;

PdD u1 sin �e ;

P�e D u2� Psc.s/ :
(49.13)

Let us determine a change of coordinates and con-
trol variables .s;d; �e; u1; u2/ 7�! .z1; z2; z3; v1; v2/ al-
lowing to (locally) transform (49.13) into the three-
dimensional chained system

8̂
<
:̂

Pz1 D v1 ;

Pz2 D v1z3 ;

Pz3 D v2 :

(49.14)

By first setting

z1 D s ; v1 D PsD u1
1� dc.s/

cos �e ;

we already obtain Pz1 D v1. This implies that

PdD u1 sin �e D u1
1� dc.s/

cos �eŒ1� dc.s/� tan �e

D v1Œ1� dc.s/� tan �e :

We then set z2 D d and z3 D Œ1�dc.s/� tan �e, so that the
above equation becomes Pz2 D v1z3. Finally, we define

v2 D Pz3
D


�Pdc.s/� d

@c

@s
Ps
�
tan �e

C Œ1� dc.s/�.1C tan2�e/ P�e :

The equations (49.14) are satisfied with the variables zi
and vi so defined.

From this construction it is simple to verify that the
mapping .s; d; �e/ 7�! z is a local change of coordinates
defined on R2 � .��=2; �=2/ (to be more rigorous,
one should also take the constraint jdj< 1=c.s/ into
account). Let us finally remark that the change of con-
trol variables involves the derivative .@c=@s/ of the
path’s curvature (whose knowledge is thus needed for
the calculations). In summary, we have shown that
the change of coordinates and of control variables
.s; d; �e; u1; u2/ 7�! .z1; z2; z3; v1; v2/ defined by

.z1; z2; z3/D .s;d; Œ1� dc.s/� tan �e/

.v1; v2/D .Pz1; Pz3/

transforms the model (49.13) of a unicycle-type ve-
hicle into a three-dimensional (3-D) chained system.
One can similarly transform the car’s equations into
a four-dimensional (4-D) chained system, although the
calculations are slightly more cumbersome. More pre-
cisely, the change of coordinates and control variables
.s; d; �e; �; u1; u2/ 7�! .z1; z2; z3; z4; v1; v2/ defined by

.z1; z2; z3; z4/D
�
s; d; Œ1� dc.s/� tan �e;

� c.s/Œ1� dc.s/�
�
1C 2tan2�e

�

� d
@c

@s
tan �e

CŒ1� dc.s/�2
tan�

L

1C tan2�e
cos �e

�
;

.v1; v2/D .Pz1; Pz4/

transforms the model (49.7) of a car-like vehicle (with
l1 D l2 D 0) into a four-dimensional chained system.

49.4.2 Tracking of a Reference Vehicle
with the Same Kinematics

Let us first consider the problem of tracking, in both po-
sition and orientation, a reference vehicle (Fig. 49.7).
For simplicity, we choose P as the origin Pm of the
robot’s chassis frame Fm.



Modeling and Control of Wheeled Mobile Robots 49.4 Methods Specific to Nonholonomic Systems 1243
Part

E
|49.4

Although the terminology is rather loose, the track-
ing problem is usually associated, in the control liter-
ature, with the problem of asymptotically stabilizing
the reference trajectory. In this case, a necessary con-
dition for the existence of a control solution is that
the reference is feasible. Feasible trajectories t 7�!
.xr.t/; yr.t/; �r.t// are smooth time functions which
are solution to the robot’s kinematic model for some
specific control input t 7�! ur.t/D .u1;r.t/; u2;r.t//T,
called the reference control. For a unicycle-type robot
for example, this means in view of (49.4) that

8̂
<
:̂

Pxr D u1;r cos �r ;

Pyr D u1;r sin �r ;
P�r D u2;r :

(49.15)

In other words, feasible reference trajectories corre-
spond to the motion of a reference frameFr D fPr; ir; jrg
rigidly attached to a reference unicycle-type robot,
with Pr (alike PD Pm) located at the mid-distance of the
actuated wheels (Fig. 49.7). From there, the problem is
to determine a feedback control which asymptotically
stabilizes the tracking error .x�xr; y�yr; ���r/ at zero,
with .xr; yr/ being the coordinates of Pr in F0, and �r
the oriented angles between i and ir. One can proceed
as in the path-following case, first by establishing the
error equations with respect to the frame Fr, then by
transforming these equations into the chain form via
a change of variables like the one used to transform the
kinematic equations of a mobile robot into a chained
system, and finally by designing stabilizing control laws
for the transformed system.

Expressing the tracking error in position .x� xr;
y� yr/ with respect to the frame Fr gives the vector
(Fig. 49.7)

�
xe
ye

�
D
�

cos �r sin �r
� sin �r cos �r

��
x� xr
y� yr

�
: (49.16)

Calculating the time derivative of this vector yields
�Pxe
Pye
�
D
�
u2;rye C u1 cos.� � �r/� u1;r
�u2;rxe C u1 sin.� � �r/

�
:

O
Reference
vehicle

j

i

imjm
θe

Pm
ir

jr

xe

ye

Pr

Fig. 49.7 Reference vehicle and error coordinates

By denoting �e D � � �r, the orientation error between
the frames Fm and Fr, we obtain

8̂
<
:̂

Pxe D u2;rye C u1 cos �e � u1;r ;

Pye D�u2;rxe C u1 sin �e ;
P�e D u2� u2;r :

(49.17)

To determine a control .u1; u2/ which asymptotically
stabilizes the error .xe; ye; �e/ at zero, let us consider the
following change of coordinates and control variables

.xe; ye; �e; u1; u2/ 7�! .z1; z2; z3;w1;w2/ ;

defined by

z1 D xe ;

z2 D ye ;

z3 D tan �e ;

w1 D u1 cos �e � u1;r ;

w2 D u2� u2;r
cos2�e

: (49.18)

Note that, around zero, this mapping is only defined
when �e 2 .��=2; �=2/. In other words, the orientation
error between the physical robot and the reference robot
has to be smaller than �=2.

It is immediate to verify that, in the new variables,
the system (49.17) can be written as

8̂
<
:̂

Pz1 D u2;rz2 Cw1 ;

Pz2 D�u2;rz1 C u1;rz3 Cw1z3 ;

Pz3 D w2 :

(49.19)

We remark that the last term in each of the above three
equations corresponds to the one of a chained system.
From here, it can be shown that the feedback control
law

(
w1 D�k1ju1;rj.z1C z2z3/ .k1 > 0/ ;

w2 D�k2u1;rz2 � k3ju1;rjz3 ; .k2; k3 > 0/ ;

(49.20)

makes the origin of system (49.19) globally asymp-
totically stable provided essentially that u1;r does not
tend to zero as t tends to infinity. A precise stability
statement and associated proof are provided in [49.2],
together with complementary details about the gain tun-
ing. Finally, the velocity control inputs u1 and u2 can be
deduced from w1 and w2 by using the two last lines of
(49.18).
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Generalization to a Car-Like Vehicle
The previous method extends to the car case. We pro-
vide below the main steps of this extension. Consider
the car’s kinematic model (49.5) and a reference ve-
hicle satisfying the same kinematic equations with all
variables indexed by the subscript r. We assume that
there exists ı 2 .0; �=2/ such that the reference steer-
ing angle �r belongs to the interval Œ�ı; ı�. By defining
xe, ye, and �e as in the unicycle case, and by setting
�e D � ��r, one obtains the following system

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Pxe D
�u1;r

L
tan�r

�
ye C u1 cos �e � u1;r ;

Pye D�
�u1;r

L
tan�r

�
xe C u1 sin �e ;

P�e D u1
L

tan� � u1;r
L

tan�r ;

P�e D u2 � u2;r :

(49.21)

Let us introduce the following new state variables
8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

z1 D xe ;

z2 D ye ;

z3 D tan �e ;

z4 D tan� � cos �e tan�r
Lcos3�e

C k2ye ; .k2 > 0/ :

We note that for any �r 2 .��=2; �=2/, the mapping
.xe; ye; �e; �/ 7�! z defines a diffeomorphism between
R2 � .��=2; �=2/2 and R4. Introduce now the new
control variables

8̂
ˆ̂̂<
ˆ̂̂̂
:

w1 D u1 cos �e � u1;r ;

w2 D Pz4 D k2 Pye C
�
3 tan�

cos �e
� 2 tan�r

�
sin �e
Lcos3�e

P�e
� u2;r
Lcos2�rcos2�e

C u2
Lcos2�cos3�e

:

(49.22)

One shows that .u1; u2/ 7�! .w1;w2/ defines a change
of variables for �e, �, and �r, inside the interval
.��=2; �=2/. These changes of state and control vari-
ables transform the system (49.21) into

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

Pz1 D
�u1;r

L
tan�r

�
z2 Cw1 ;

Pz2 D�
�u1;r

L
tan�r

�
z1 C u1;rz3 Cw1z3 ;

Pz3 D�k2u1;rz2 C u1;rz4

Cw1



z4 � k2z2 C .1C z23/

tan�r
L

�
;

Pz4 D w2 :

(49.23)

From here, one can deduce that the control law w1

and w2 defined as

8̂
ˆ̂<
ˆ̂̂:

w1 D�k1ju1;rj
�
�
z1 C z3

k2



z4 C .1C z23/

tan�r
L

��
;

w2 D�k3u1;rz3 � k4ju1;rjz4 ;
(49.24)

with k1;2;3;4 denoting positive numbers, makes the ori-
gin of system (49.23) globally asymptotically stable
provided essentially that u1;r does not tend to zero as t
tends to infinity.

Simulation Results
The simulation shown on Fig. 49.8 and VIDEO 181

illustrates this control scheme. The gain parameters ki
have been chosen as .k1; k2; k3; k4/D .1; 1;3; 3/. The
initial configuration of the reference vehicle (i. e., at
tD 0), which is represented in Fig. 49.8a by dashed
lines, is .xr; yr; �r/.0/D .0;0; 0/. The reference con-
trol ur is defined by (49.25). The initial configuration
of the controlled robot, represented in the figure by
plain lines, is .x; y; �/.0/D .0;�1:5; 0/. The config-
urations at time tD 10, 20, and 30, are also rep-
resented on the figure. Due to the fast convergence
of the tracking error to zero (see the time evolution
of the components xe; ye; �e of the tracking error in
Fig. 49.8b), one can basically consider that the con-
figurations of both vehicles coincide after time tD
10.

ur.t/D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

.1; 0/T ; if t 2 Œ0; 10� ;
f�1; 0:5 cosŒ2�.t� 10/=5�gT ;
if t 2 Œ10; 20� ;
.1; 0/T ; if t 2 Œ20; 30� :

(49.25)

49.4.3 Path Following
with Orientation Control

We reconsider the path-following problem with the ref-
erence point P now located on the actuated wheels axle,
at the mid-distance of the wheels. The objective is to
synthesize a control law which allows the vehicle to fol-
low the path in a stable manner, independently of the
sign of the longitudinal velocity.

Unicycle Case
We have seen in Sect. 49.4.1 how to transform kine-
matic equations with respect to a Frénet frame into the

http://handbookofrobotics.org/view-chapter/49/videodetails/181
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three-dimensional chained system

8̂
<
:̂

Pz1 D v1 ;

Pz2 D v1z3 ;

Pz3 D v2 :

(49.26)

Recall that .z1; z2; z3/D .s;d; .1� dc.s// tan �e/ and
that v1 D u1=.1� dc.s// cos �e. The objective is to de-
termine a control law which asymptotically stabilizes
.dD 0; �e D 0/ and also ensures that the constraint on
the distance d to the path (i. e., jdc.s/j< 1) is satisfied
along the trajectories of the controlled system. For the
control law, a first possibility consists in considering
a proportional feedback like

v2 D�v1k2z2 � jv1jk3z3 ; .k2; k3 > 0/ : (49.27)

It is straightforward to verify that the origin of the
closed-loop subsystem

(
Pz2 D v1z3 ;

Pz3 D�v1k2z2 � jv1jk3z3
(49.28)

is asymptotically stable when v1 is constant, either pos-
itive or negative. Since u1 (not v1) is the intensity of
the vehicle’s longitudinal velocity, one would rather
establish stability conditions which depend on u1. As
detailed in [49.2], the control law (49.27) in fact makes
the origin of system (49.28) asymptotically stable un-
der the main condition that u1 does not tend to zero a t
tends to infinity. Note that the sign of u1 now does not
need to be constant. As for the constraint jdc.s/j< 1, it
is satisfied along any solution to the controlled system
provided that

z22.0/C
1

k2
z23.0/ <

1

c2max
;

with cmax Dmaxsjc.s/j.
From a practical point of view it can be useful to

complement the control action with an integral term.
More precisely, let us define a variable z0 by Pz0 D v1z2
with z0.0/D 0. The control (49.27) can be modified as
follows

v2 D�jv1jk0z0 � v1k2z2 � jv1jk3z3 ;

D�jv1jk0
tZ

0

v1z2 � v1k2z2 � jv1jk3z3 ;

.k0; k2; k3 > 0; k0 < k2k3/ (49.29)

leading to similar stability results as before. The con-
straint jdc.s/j< 1 is now satisfied along any solution to

the controlled system provided that

z22.0/C
1

k2 � k0
k3

z23.0/ <
1

c2max
:

Generalization
One of the assets of this type of approach, besides
the simplicity of the control law and little demanding
conditions of stability associated with it, is that it can
be generalized in a straightforward manner to car-like
vehicles and unicycle-type vehicles with trailers. The
result is summarized hereafter by considering an n-
dimensional chained system

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Pz1 D v1 ;

Pz2 D v1z3 ;
:::

Pzn�1 D v1zn ;

Pzn D v2 ;

(49.30)
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with n� 3. Its proof is a direct extension of the one in
the three-dimensional case. The dimension nD 4 corre-
sponds to the car case (Sect. 49.4.1). As for a unicycle-
type vehicle with N trailers, one has nD NC 3. Recall
also that, in all cases, z2 represents the distance d
between the path and the point P located at the mid-
distance of the rear wheels of the last vehicle. The
control objective is then to ensure the convergence of
z2; : : : ; zn to zero. A solution to this problem, which ex-
tends the solution (49.27) proposed for the unicycle, is
given by

v2 D�v1
nX

iD2

sign.v1/
nC1�ikizi : (49.31)

where the control gains k2; : : : ; kn are chosen such that
the polynomial

sn�1C kns
n�2C kn�1s

n�3C : : :C k3sC k2

is Hurwitz stable. Satisfaction of the constraint
jdc.s/j< 1 along any solution to the controlled sys-
tem can also be guaranteed, upon a condition on
.z2.0/; � � � ; zn.0// specified in [49.2]. The possibility of
adding an integral correction term in (49.31) is also ad-
dressed in [49.2].

Simulation Results
The simulation results reported in Fig. 49.9 and

VIDEO 181 illustrate how this control scheme per-
forms for a car-like vehicle. The reference curve is the
circle of radius equal to four, centered at the origin. The
robot’s longitudinal velocity u1 is defined by u1 D 1
for t 2 Œ0; 5�, and u1 D�1 for t > 5. The control gains
have been chosen as .k2; k3; k4/D .1; 3; 3/. The mo-
tion of the car-like robot in the plane is represented in
Fig. 49.9a, and its configuration at times tD 0, 5, and 25
are also depicted in the figure. The time evolution of the
variables z2; z3; z4 (defined at the end of Sect. 49.4.1)
is represented in Fig. 49.9b. One can observe that the
(discontinuous) change of the longitudinal velocity u1
at tD 5 does not affect the convergence of these vari-
ables to zero.

49.4.4 Asymptotic Stabilization
of Fixed Postures

We now consider the problem of asymptotic stabiliza-
tion of a fixed desired (reference) posture (i. e., position
and orientation) for the robot chassis. This problem
may be seen as a limit case of the trajectory track-
ing problem. However, none of the feedback controllers
proposed previously in this chapter provides a solu-
tion to this problem. From the automatic control point

of view, the asymptotic stabilization of fixed postures
is very different from the problems of path following
and trajectory tracking with nonzero longitudinal ve-
locity, much in the same way as a human driver knows,
from experience, that parking a car at a precise loca-
tion involves techniques and skills different from those
exercised when cruising on a road. In particular, it can-
not be solved by any classical control method for linear
systems (or based on linearization). Technically, the
underlying general problem is the one of asymptotic
stabilization of equilibria of controllable driftless sys-
tems with less control inputs than state variables. This
problem has motivated numerous studies during the last
decade of the last century, from many authors and with
various angles of attack, and it has remained a sub-
ject of active research at the beginning of this century.
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Fig.49.9a,b Path following along a circle. (a) Cartesian
motion; (b) coordinates z2;3;4 versus time

http://handbookofrobotics.org/view-chapter/49/videodetails/181
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The variety of candidate solutions proposed until now,
the mathematical technicalities associated with several
of them, together with unsolved difficulties and limita-
tions, particularly (but not only) in terms of robustness
(an issue on which we will return), prevent us from
attempting to cover the subject exhaustively. Instead,
we have opted for a somewhat informal exposition of
approaches which have been considered, with the illus-
tration of a few control solutions, without going into
technical and mathematical details.

A central aspect of the problem, which triggered
much of the subsequent research on the control of non-
holonomic systems, is that asymptotic stabilization of
equilibria (or fixed points) cannot be achieved by using
continuous feedbacks which depend on the state only
(i. e., continuous pure-state feedbacks). This is a conse-
quence of an important result due to Brockett in 1983.
The original result by Brockett concerned differentiable
feedbacks; it has later been extended to the larger set of
feedbacks which are only continuous.

Theorem 49.1 (Brockett [49.3])
Consider a control system

PxD f .x;u/ .x 2Rn;u 2Rm/ ;

with f a differentiable function and .x; u/D .0;0/ an
equilibrium of this system. A necessary condition for
the existence of a continuous feedback control u.x/
which renders the origin of the closed-loop system

PxD f .x; u.x//

asymptotically stable is the local surjectivity of the ap-
plication .x; u/ 7�! f .x;u/. More precisely, the image
by f of any neighborhood˝ of .0; 0/ in RnCm must be
a neighborhood of 0 in Rn.

This result implies that the equilibria of many con-
trollable (nonlinear) systems are not asymptotically
stabilizable by continuous pure-state feedbacks. All
nonholonomic WMRs belong to this category of sys-
tems. This will be shown in the case of a unicycle-type
vehicle; the proof for the other mobile robots is simi-
lar. Let us thus consider a unicycle-type vehicle, whose
kinematic equations (49.4) can be written as PxD f .x;u/
with xD .x1; x2; x3/T, uD .u1; u2/T, and f .x;u/D
.u1 cos x3; u1 sin x3; u2/T, and let us show that f is not
locally onto in the neighborhood of .x;u/D .0;0/. To
this purpose, take a vector inR3 of the form .0; ı; 0/T. It
is obvious that the equation f .x; u/D .0; ı; 0/T does not
have a solution in the neighborhood of .x;u/D .0;0/
since the first equation, namely u1 cos x3 D 0, implies
that u1 D 0, so that the second equation cannot have
a solution if ı is different from zero.

It is also obvious that the linear approximation
about the equilibrium .x;u/D .0; 0/ of the unicycle
kinematic equations is not controllable. If it were, it
would be possible to (locally) asymptotically stabilize
this equilibrium with a linear (thus continuous) state
feedback.

Therefore, by application of the above theorem,
a unicycle-type mobile robot (like other nonholonomic
robots) cannot be asymptotically stabilized at a desired
posture (position/orientation) by using a continuous
pure-state feedback. This impossibility has motivated
the development of other control strategies in order to
solve the problem. Three major types of controls have
been considered:

1. Continuous time-varying feedbacks, which, besides
from depending on the state x, depend also on the
exogenous time variable (i. e., u.x; t/ instead of u.x/
for classical feedbacks).

2. Discontinuous feedbacks, in the classical form u.x/,
except that the function u is not continuous at the
equilibrium that one wishes to stabilize.

3. Hybrid discrete/continuous feedbacks. Although
this class of feedbacks is not defined as precisely as
the other two sets of controls, it is mostly composed
of time-varying feedbacks, either continuous or dis-
continuous, such that the part of the control which
depends upon the state is only updated periodically,
e.g., u.t/D NuŒx.kT/; t� for any t 2 ŒkT; .kC 1/T�,
with T denoting a constant period, and k 2N.

We focus hereafter on continuous time-varying feed-
backs. Examples of hybrid discrete/continuous feed-
backs for unicycle and car-like vehicles are provided in
[49.2, Sect 34.4.4], together with associated simulation
results. As for discontinuous feedbacks, they involve
difficult questions (existence of solutions, mathemati-
cal meaning of these solutions, etc.) which complicate
their analysis and for which complete answers are not
available. Moreover, for most of the discontinuous con-
trol strategies described in the literature, the property of
stability in the sense of Lyapunov is either not granted
or remains an open issue.

The use of time-varying feedbacks for the asymp-
totic stabilization of a fixed desired equilibrium, for
a nonholonomic WMR, in order to circumvent the
obstruction pointed out by Brockett’s Theorem, was
first proposed in [49.4]. Since then, very general re-
sults about the stabilization of nonlinear systems by
means of time-varying feedbacks have been obtained.
For instance, it has been proved that any controllable
driftless system can have any of its equilibria asymp-
totically stabilized with a control of this type [49.5].
This includes the kinematic models of the nonholo-
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nomic mobile robots here considered. We will illustrate
this approach in the case of unicycle-type and car-like
mobile robots modeled by three- and four-dimensional
chained systems, respectively. In order to consider the
three-dimensional case, let us come back on the results
obtained in Sect. 49.4.3 for path following. The control
law (49.27), i. e., v2 D�v1k2z2�jv1jk3z3 applied to the
system

8̂
<
:̂

Pz1 D v1 ;

Pz2 D v1z3 ;

Pz3 D v2 ;

renders the function

V.z/ WD 1

2
.z22C

1

k2
z23/

nonincreasing along any trajectory of the controlled
system, i. e.,

PV D�k3
k2
jv1jz23 ;

and ensures the convergence of z2 and z3 to zero if, for
instance, v1 does not tend to zero as t tends to infinity.
For example, if v1.t/D sin t, z2 and z3 tend to zero, and

z1.t/D z1.0/C
tZ

0

v1.s/dsD z1.0/C
tZ

0

sin sds

D z1.0/C 1� cos t ;

so that z1.t/ oscillates around the mean value z1.0/C
1. To reduce these oscillations, one can multiply v1 by
a factor which depends on the current state. Take, for
example, v1.z; t/D k.z2; z3/k sin t, that we complement
with a stabilizing term like �k1z1 with k1 > 0, i. e.,

v1.z; t/D�k1z1 Ck.z2; z3/k sin t :
The feedback control so obtained is time-varying and
asymptotically stabilizing.

Proposition 49.2
The continuous time-varying feedback
(
v1.z; t/D�k1z1 C˛k.z2; z3/k sin t ;
v2.z; t/D�v1.z; t/k2z2 � jv1.z; t/jk3z3 ;

(49.32)

with ˛; k1;2;3 > 0, renders the origin of the 3-D chained
system globally asymptotically stable [49.6].

The above proposition can be extended to chained sys-
tems of arbitrary dimension [49.6]. For the case nD 4,
which corresponds to the car-like robot, one has the fol-
lowing result.

Proposition 49.3
The continuous time-varying feedback

8̂
<
:̂

v1.z; t/D�k1z1 C ˛k.z2; z3; z4/k sin t ;
v2.z; t/D�jv1.z; t/jk2z2 � v1.z; t/k3z3
�jv1.z; t/jk4z4 ;

(49.33)

with ˛; k1;2;3;4 > 0 chosen such that the polynomial
s3 C k4s2 C k3sC k2 is Hurwitz stable, renders the ori-
gin of the 4-D chained system globally asymptotically
stable [49.6].

Figure 49.10 below illustrates the previous re-
sult. For this simulation, the parameters ˛; k1;2;3;4 in
the feedback law (49.33) have been chosen as ˛ D 3
and k1;2;3;4 D .1:2; 10;18; 17/. Figure 49.10a shows the
motion of the car-like robot in the plane. The initial
configuration, at time t D 0, is depicted in plain lines,
whereas the desired configuration is shown in dashed
lines. The time evolution of the variables x, y, and �
(i. e., the position and orientation variables correspond-
ing to the model (49.5)) is shown in Fig. 49.10b.

A shortcoming of this type of control, very clear
from this simulation, is that the system’s state con-
verges to zero quite slowly. One can show that the
rate of convergence is only polynomial, i. e., it is com-
mensurable with t�˛ (for some ˛ 2 .0; 1/) for most
of the trajectories of the controlled system. This slow
rate of convergence is related to the fact that the con-
trol function is Lipschitz-continuous with respect to x.
It is a characteristics of systems the linear approxi-
mation of which is not stabilizable. Indeed, it can be
shown that exponential stability (in the classical sense
of linear systems) of an equilibrium point of a nonlinear
system cannot be obtained with a Lipschitz-continuous
feedback when the system’s linear approximation at
that point is not stabilizable ([49.2, Prop. 34.11] for
a precise statement and details). The need of better per-
formance and efficiency, has triggered the development
of stabilizing time-varying feedbacks which are contin-
uous, but not Lipschitz-continuous. Examples of such
feedbacks, yielding uniform exponential convergence,
are given in the following propositions for chained sys-
tems of dimension three and four, respectively.

Proposition 49.4
Let ˛; k1;2;3 > 0 denote scalars such that the polynomial
p.s/D s2 C k3sC k2 is Hurwitz stable. For any integers
p; q 2N�, let 	p;q denote the function defined onR2 by

8Nz2 D .z2; z3/ 2R2; 	p;q.Nz2/

D
�
jz2j

p
qC1 C jz3j

p
q

� 1
p
:
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Then, there exists q0 > 1 such that, for any q� q0 and
p> qC 2, the continuous state feedback

8̂
ˆ̂<
ˆ̂̂:

v1.z; t/D�k1.z1 sin t� jz1j/ sin t
C˛	p;q.Nz2/ sin t
v2.z; t/D�v1.z; t/k2 z2

	2p;q.Nz2/
� jv1.z; t/jk3 z3

	p;q.Nz2/
(49.34)

renders the origin of the three-dimensional chained
system globally asymptotically stable, with a uniform
exponential rate of convergence [49.7].

The parenthood of the controls (49.32) and (49.34) is
noticeable. One can also verify that the control (49.34)
is well defined (by continuity) at Nz2 D 0. More precisely,
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Fig.49.10a,b Asymptotic stabilization with a Lipschitz-
continuous controller. (a) Cartesian motion; (b) error co-
ordinates versus time

the ratios

z2
	2p;q.Nz2/

and
z3

	p;q.Nz2/ ;

which are obviously well defined when Nz2 ¤ 0, tend to
zero when Nz2 tends to zero. This guarantees the conti-
nuity of the control law.

The property of exponential convergence pointed
out in the above result calls for some remarks. Indeed,
this property does not exactly correspond to the clas-
sical exponential convergence property associated with
stable linear systems. In this latter case, exponential
convergence means that for some constant K, � , and
along any solution to the controlled system, one has

kz.t/k 	 Kkz.t0/ke��.t�t0/

This corresponds to the common notion of exponential
stability. In the present case, this inequality becomes

	Œz.t/�	 K	Œz.t0/�e��.t�t0/

for some function 	, defined for example by

	.z/D jz1j C 	p;q.z2; z3/ ;

with 	p;q as specified in Proposition 49.4. Although the
function 	 shares common features with the Euclidean
norm of the state vector (it is definite positive and it
tends to infinity when kzk tends to infinity), it is not
equivalent to this norm. Of course, this does not change
the fact that each component zi of z converges to zero
exponentially. However, the transient behavior is differ-
ent because one only has

jzi.t/j 	 Kkz.t0/k˛e��.t�t0/ ;

with ˛ < 1, instead of

jzi.t/j 	 Kkz.t0/ke��.t�t0/ :

In the case of the four-dimensional chained system,
one can establish the following result, which is similar
to Proposition 49.4.

Proposition 49.5
Let ˛; k1; k2; k3; k4 > 0 be chosen such that the polyno-
mial p.s/D s3 C k4s2 C k3sC k2 is Hurwitz stable. For
any integers p; q 2N�, let 	p;q denote the function de-
fined on R3 by

	p;q.Nz2/D
�
jz2j

p
qC2 Cjz3j

p
qC1 Cjz4j

p
q

� 1
p

with Nz2 D .z2; z3; z4/ 2R3. Then, there exists q0 > 1
such that, for any q � q0 and p> qC 2, the continuous
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state feedback

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

v1.z; t/D�k1.z1 sin t� jz1j/ sin t
C˛	p;q.Nz2/ sin t ;
v2.z; t/D�jv1.z; t/jk2 z2

	3p;q.Nz2/
� v1.z; t/k3

z3
	2p;q.Nz2/

�jv1.z; t/jk4 z4
	p;q.Nz2/ ;

(49.35)

renders the origin of the 4-D chained system globally
asymptotically stable, with a uniform exponential rate
of convergence [49.7].

The performance of the control law (49.35) is illustrated
by the simulation results shown in Fig. 49.11. The con-
trol parameters have been chosen as follows: ˛ D 0:6,
k1;2;3;4 D .1:6;10; 18;17/, qD 2, pD 5. The compar-
ison with the simulation results of Fig. 49.10 shows
a clear gain in performance.

49.4.5 Limitations Inherent to the Control
of Nonholonomic Systems

Let us first mention some problems associated with
the nonlinear time-varying feedbacks just presented. An
ever important issue, when studying feedback control,
is robustness. Indeed, if it were not for the sake of ro-
bustness, feedback control would lose much of its value
and interest with respect to open-loop control solutions.
There are various robustness issues. One of them con-
cerns the sensitivity to modeling errors. For instance, in
the case of a unicycle-type robot whose kinematic equa-
tions are in the form PxD u1b1.x/C u2b2.x/, one would
like to knowwhether a feedback law which stabilizes an
equilibrium of this system also stabilizes this equilib-
rium for the neighbor system PxD u1Œb1.x/C "g1.x/�C
u2Œb2.x/C "g2.x/�, with g1 and g2 denoting continu-
ous applications, and " a parameter which quantifies
the modeling error. This type of error can account, for
example, for a small uncertainty concerning the orien-
tation of the actuated wheels axle with respect to the
chassis, which results in a bias in the measurement of
this orientation. One can show that time-varying control
laws like (49.34) are not robust with respect to this type
of error in the sense that, for certain functions g1 and g2,
and for " arbitrarily small, the system’s solutions end up
oscillating in the neighborhood of the origin, instead of
converging to the origin. In other words, both the prop-
erties of stability of the origin and of convergence to
this point can be jeopardized by arbitrarily small mod-
eling errors, even in the absence of measurement noise.
In view of these problems, one is brought to question

the existence of fast (exponential) stabilizers endowed
with robustness properties similar to those of stabiliz-
ing linear feedbacks for linear systems. The answer is
that, to our knowledge, no such control solution (ei-
ther continuous or discontinuous) has ever been found.
More than likely such a solution does not exist for non-
holonomic systems. Robustness of the stability property
against modeling errors, and control discretization and
delays, has been proved in some cases, but this could
only be achieved with Lipschitz-continuous feedbacks
which, as we have seen, yield slow convergence. The
classical compromise between robustness and perfor-
mance thus seems much more acute than in the case of
stabilizable linear systems (or nonlinear systems whose
linear approximation is stabilizable).

A second issue is the proven nonexistence of a uni-
versal feedback controller capable of stabilizing any
feasible reference state trajectory asymptotically [49.8].
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Fig.49.11a,b Asymptotic stabilization with a continuous
(non-Lipschitz) time-varying feedback. (a) Cartesian mo-
tion; (b) error coordinates versus time
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This is another notable difference with the linear case.
Indeed, given a controllable linear system PxDAxC
Bu, the feedback controller uD urCK.x� xr/, with K
a gain matrix such thatACBK is Hurwitz stable, expo-
nentially stabilizes any feasible reference trajectory xr
(solution to the system) associated with the control in-
put ur. The nonexistence of such a controller, in the
case of nonholonomic mobile robots, is related to the
conditions upon the longitudinal velocity stated in pre-
vious propositions concerning trajectory stabilization.
This basically indicates that such conditions cannot be
removed entirely: whatever the chosen feedback con-
troller, there always exists a feasible reference trajec-
tory that this feedback cannot asymptotically stabilize.
Note that this limitation persists when considering non-
standard feedbacks (such as, e.g., time-varying periodic
feedbacks capable of asymptotically stabilizing refer-
ence trajectories which are reduced to a single point).
Moreover, it has clear practical consequences because
there are applications (automatic tracking of a human-
driven car, for instance) for which the reference trajec-
tory, and thus its properties, are not known in advance
(is the leading car going to keep moving or stop?) so
that one cannot easily decide on which controller to
use. Switching between various controllers is a possi-
ble strategy, which has been studied by some authors
and may give satisfactory results in many situations.
However, since implementing a predefined switching
strategy between two controllers sums up to designing
a third controller, this does not solve the core of the
problem nor grant any certitude of success.

A third issue, which is not specific to nonholonomic
systems, but has seldom been addressed in the nonlin-
ear control literature, concerns the problem of tracking
nonfeasible trajectories (i. e., trajectories which are not
solutions to the system’s equations). Since exact track-
ing is not possible, by the definition of a nonfeasible
trajectory, the control objective is then to ensure that
the tracking errors shrink to, and ever after never ex-
ceed, certain nonzero thresholds. The fact that these
thresholds can theoretically be arbitrarily small in the
case of nonholonomic systems, if the amplitude of the
velocity control inputs is not limited, makes this prob-
lem particularly relevant for these systems. This can
be termed as a practical stabilization objective which,
although slightly less ambitious than the objective of
asymptotic stabilization considered in previous sec-
tions, opens up both the control design problem and
the range of applications significantly. For instance, it
allows one to address the problem of tracking an om-
nidirectional vehicle with a unicycle-type, or a car-like,
vehicle. In the context of planning a trajectory with ob-
stacle avoidance, transforming a nonfeasible trajectory
into a feasible approximation for a certain mobile robot

can be performed by applying a practical stabilizer
to a model of this robot and by numerical integra-
tion of the system’s closed-loop equations. Also, if one
reformulates the former question about the existence
of a universal stabilizer, with the objective of asymp-
totic stabilization now replaced by the one of practical
stabilization, then the answer becomes positive: such
a stabilizer exists and, moreover, the reference trajec-
tories do not even have to be feasible.

49.4.6 Practical Stabilization
of Arbitrary Trajectories

A possible approach for the design of practical stabi-
lizers in the case of controllable driftless systems is
described in [49.9]. Some of its basic principles, here
adapted to the specific examples of unicycle-type and
car-like mobile robots, are recalled next.

Let us introduce some matrix notation that will be
used in this section.

R.�/D
�
cos � � sin �
sin � cos �

�
; SD

�
0 �1
1 0

�

NR.�/D
�
R.�/ 0
0 1

�
:

Unicycle Case
With the above notation, the kinematic model (49.4) can
be written as

PgD NR.�/Cu ; (49.36)

with gD .x; y; �/0 and

CD
0
@
1 0
0 0
0 1

1
A :

Let us now consider a smooth function

f W ˛ 7�! f .˛/D
0
@
fx.˛/
fy.˛/
f� .˛/

1
A ;

with ˛ 2 S1 DR=2�Z (i. e., ˛ is an angle variable), and
define

Ng WD
0
@
Nx
Ny
N�

1
A WD g� NR .� � f� .˛// f .˛/

D
0
@
�
x
y

�
�R.� � f� .˛//

�
fx.˛/
fy.˛/

�

� � f� .˛/

1
A : (49.37)
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Note that Ng can be viewed as the situation of
a frame NFm.˛/ the origin of which has components

�R.�f� .˛//
�
fx.˛/
fy.˛/

�

in the frame Fm. In term of differential geometry, Ng
is the product of g by the inverse f .˛/�1 of f .˛/, in
the sense of the Lie group operations in SE.2/. Hence,
NFm.˛/ is all the closer toFm as the components of f .˛/
are small. For any smooth time function t 7�! ˛.t/, and
along any solution to system (49.36), the time derivative
of Ng is given by

PNgD NR. N�/ Nu ; (49.38)

with

NuDA.˛/
�
NR.f� .˛//� @f

@˛
.˛/
��Cu

P̨
�
; (49.39)

and

A.˛/D
0
@I2 �S

�
fx.˛/
fy.˛/

�

0 1

1
A : (49.40)

From (49.38) and (49.39), one can view P̨ as a comple-
mentary control input that can be used to monitor the
motion of the frame NFm.˛/. More precisely, NFm.˛/ can
be viewed as an omnidirectional frame provided that Nu
can be rendered equal to any vector ofR3, i. e., provided
that the mapping .u; P̨ / 7�! Nu is onto. Let us determine
when this condition is satisfied. Equation (49.39) can
also be written as

NuDA.˛/H.˛/
�
u
P̨
�
; (49.41)

with

H.˛/D

0
BB@
cos f� .˛/ 0 � @fx

@˛
.˛/

sin f� .˛/ 0 � @fy
@˛
.˛/

0 1 �@f�
@˛
.˛/

1
CCA : (49.42)

Since A.˛/ is invertible, NFm.˛/ is omnidirectional if
and only if the matrix H.˛/ is also invertible. A func-
tion f which satisfies this property for any ˛ 2 S1 is
called a transverse function [49.10]. The issue of the
existence of such functions has been treated in the
much more general context of the transverse function

approach [49.9, 10]. In the present case, a family of
transverse functions is given by

f .˛/D

0
B@

" sin˛

"2�
sin 2˛

4
arctan."� cos˛/

1
CA with "; � > 0 :

(49.43)

Indeed, with this function one can verify that, for
any ˛ 2 S1,

detH.˛/D�"
2�

2
cos.arctan."� cos˛// < 0 :

Note that the components of f uniformly tend to zero
as " tends to zero, so that the associated omnidirectional
frame NFm.˛/ can be made arbitrarily close to Fm by
choosing " small (but different from zero).

Now, let

t 7�! gr.t/D Œxr.t/; yr.t/; �r.t/�T

denote a smooth, but otherwise arbitrary, reference
trajectory. It is not difficult to derive from (49.38)
a feedback law Nuwhich asymptotically stabilizes Ng at gr.
A possible choice is given by

NuD NR.� N�/ŒPgr � k.Ng� gr/� ; (49.44)

which implies that

.PNg� Pgr/D�k.Ng� gr/

and therefore that Ng� gr D 0 is an exponentially stable
equilibrium of the above equation for any k > 0. Then,
it follows from (49.37) that

lim
t!C1

˚
g.t/� gr.t/� NRŒ�r.t/�f Œ˛.t/�


D 0 :

(49.45)

The norm of the tracking error kg� grk is thus ulti-
mately bounded by the norm of f .˛/ which, in view
of (49.43), can be made arbitrarily small via the choice
of ". It is in this sense that practical stabilization is
achieved. The control u for the unicycle-like robot is
then calculated by inverting the relation (49.41) and us-
ing the expression (49.44) of Nu.

While it can be tempting to use very small val-
ues of " for the transverse function f in order to
obtain a good tracking precision, one must be aware
of the limits of this strategy. Indeed, when " tends to
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zero, the matrix H.˛/ defined by (49.42) becomes ill-
conditioned, and its determinant tends to zero. This
implies, by (49.41), that the robot’s velocities u1 and
u2 may become very large. In particular, when the ref-
erence trajectory gr is not feasible, many manoeuvres
are likely to occur. Note that this difficulty is intrinsic
to the robot’s nonholonomy and that it cannot be cir-
cumvented (think about the problem of parking a car
in a very narrow parking place). For this reason, trying
to impose very accurate tracking of nonfeasible tra-
jectories is not necessarily a good option in practice.
On the other hand, when the trajectory is feasible, ma-
noeuvres are not needed to achieve accurate tracking,
so that smaller values of " can be used in this case.
This clearly leads to a dilemma when the reference tra-
jectory is not known in advance and its properties in
term of feasibility can vary with time. A control strat-
egy which addresses this issue, based on the use of
transverse functions whose magnitude can be adapted
online, is proposed in [49.11]. Experimental validations
of the present approach on a unicycle-like robot can also
be found in [49.12].

Car Case
The control approach presented above can be extended
to car-like vehicles (and also to the trailer case). Again,
the idea is to associate with the robot’s frame Fm an
omnidirectional companion frame NFm.˛/ which can be
maintained arbitrarily close to Fm via the choice of
some design parameters. Let us show how this can be
done for a car-like vehicle. To simplify the forthcoming
equations, let us rewrite system (49.5) as

8̂
ˆ̂<
ˆ̂̂:

PxD u1 cos � ;

PyD u1 sin � ;
P� D u1� ;
P� D u� ;

with � D .tan�/=L and u� D u2.1C tan2�/=L. This
system can also be written as (compare with (49.36))

(
PgD NR.�/C.�/u1 ;
P� D u� ;

(49.46)

with gD .x; y; �/T and C.�/D .1; 0; �/T. Let us now
consider a smooth function

f W ˛ 7�! f .˛/D
�
fg.˛/
f�.˛/

�
D

0
BB@
fx.˛/
fy.˛/
f� .˛/
f�.˛/

1
CCA ;

with ˛ 2 S1 � S1 (i. e., ˛ D .˛1; ˛2/), and define (com-
pare with (49.37))

Ng WD
0
@
Nx
Ny
N�

1
A WD g� NR.� � f� .˛//fg.˛/

D
0
@
�
x
y

�
�R.� � f� .˛//

�
fx.˛/
fy.˛/

�

� � f� .˛/

1
A ; (49.47)

which, as in the unicycle case, can be viewed as the
situation of some companion frame NFm.˛/. By differ-
entiating Ng along any smooth time function t 7�! ˛.t/
and any solution to system (49.46), one can verify that
(49.38) is still satisfied, except that Nu is now given by

NuD A.˛/
�
NRŒf� .˛/�� @fg

@˛1
.˛/� @fg

@˛2
.˛/
�

�

0
B@
C.�/u1

P̨1
P̨2

1
CA (49.48)

rather than by (49.39) (with A.˛/ still defined by
(49.40)). Using the fact that

C.�/u1 D C.f�.˛//u1CfC.�/�CŒf�.˛/�gu1

D

0
B@

1

0

f�.˛/

1
CA u1 C

0
B@

0

0

� � f�.˛/

1
CA u1 ;

(49.48) can also be written as

NuD A.˛/H.˛/

0
@
u1
P̨1
P̨2

1
ACA.˛/

0
@

0
0

u1Œ� � f�.˛/�

1
A ;

(49.49)

with

H.˛/D

0
BB@
cos f� .˛/ � @fx

@˛1
.˛/ � @fx

@˛2
.˛/

sin f� .˛/ � @fy
@˛1

.˛/ � @fy
@˛2

.˛/

f�.˛/ � @f�
@˛1

.˛/ � @f�
@˛2

.˛/

1
CCA :

(49.50)

By setting

u� D Pf�.˛/� k.� � f�.˛/ ; (49.51)



Part
E
|49.4

1254 Part E Moving in the Environment

with k > 0, it follows from (49.46) that � � f�.˛/ expo-
nentially converges to zero. Hence, after some transient
phase whose duration is commensurable with 1=k, � �
f�.˛/
 0, and (49.49) reduces to

NuDA.˛/H.˛/

0
@
u1
P̨1
P̨2

1
A : (49.52)

Provided that the function f is such that H.˛/ is
always invertible, this latter relation means that the
frame NFm.˛/ associated with Ng is omnidirectional. Any
function f for which this property is satisfied is called
a transverse function. Once it has been determined, one
can proceed as in the unicycle case to asymptotically
stabilize an arbitrary reference trajectory gr for Ng, for
example, by defining Nu as in (49.44). The control u1 for
the car is then obtained by inverting relation (49.52).
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Fig.49.12a,b Practical stabilization of an arbitrary trajec-
tory by the transverse function approach. (a) Cartesian
motion; (b) error coordinates versus time

The following lemma specifies a family of transverse
functions for the car case.

Lemma 49.1
For any " > 0 and any �1; �2; �3 such that �1; �2; �3 > 0
and 6�2�3 > 8�3 C �1�2, the function f defined by

f .˛/D

0
BB@

Nf1.˛/Nf4.˛/
arctan. Nf3.˛//Nf2.˛/cos3f3.˛/

1
CCA

with

Nf W S1� S1 �!R4

given by

Nf .˛/D
0
BBBBBBBB@

".sin˛1 C �2 sin˛2/
"�1 cos ˛1

"2
�
�1 sin 2˛1

4
� �3 cos˛2

�

"3

 
�1

sin2˛1 cos˛1
6

� �2�3 sin 2˛2
4

� �3 sin˛1 cos˛2
!

1
CCCCCCCCA
;

satisfies the transversality condition detH.˛/¤ 08˛,
with H.˛/ defined by (49.50) [49.13].

The simulation results reported in Fig. 49.12 il-
lustrate the application of this control approach for
a car-like robot. The reference trajectory is defined by
the initial condition gr.0/D 0 and its time derivative

Pgr.t/D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

.0; 0; 0/T if t 2 Œ0; 30�

.1; 0; 0/T if t 2 Œ30; 38�

.0; 0:3; 0/T if t 2 Œ38; 53�

.�1; 0; 0/T if t 2 Œ53; 61�

.0; 0; 0:2/T if t 2 Œ61; 80�

:

This corresponds to a fixed situation when t 2 Œ0; 30�,
three sequences of pure translational motion when t 2
Œ30; 61�, and a pure rotational motion when t 2 Œ61; 80�.
Let us remark that this trajectory is not feasible for the
car-like robot when t 2 Œ38; 53�, since it corresponds to
a lateral translation in the direction of the unit vec-
tor jr of the frame Fr associated with gr, nor when
t 2 Œ61; 80�, since a rear-drive car cannot perform pure
rotational motion. The initial configuration of the car-
like robot, at tD 0, is g.0/D .0; 1:5; 0/, and the initial
steering wheel angle is �.0/D 0.
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In Fig. 49.12a, the robot is drawn with a solid line
at several time instants, whereas the chassis of the ref-
erence vehicle is shown as a dashed line at the same
time instants. The figure also shows the trajectory of
the point located at the mid-distance of the robot’s
rear wheels. Figure 49.12b shows the time evolution
of the tracking error expressed in the reference frame
(i. e., .xe; ye/ as defined by (49.16), and �e D � � �r). It
follows from (49.45) that, after the transient phase asso-
ciated with the exponential convergence of Ng to zero, the
ultimate bound for jxej, jyej, and j�ej is upper-bounded
by the maximum amplitude of the functions fx, fy, and
f� , respectively. For this simulation, the control param-

eters of the transverse function f of Lemma 49.1 have
been chosen as follows: "D 0:17, �1;2;3 D .12;2; 20/.
With these values, one can verify that jfxj, jfyj, and jf� j
are bounded by 0:51, 0:11, and 0:6, respectively. This is
consistent with the time evolution of the tracking error
observed in the figure. As pointed out for the unicycle
case, tracking errors could be diminished by decreasing
the value of ", but this would involve larger values of the
control inputs and also more frequent manoeuvres, es-
pecially on the time intervals Œ38; 53� and Œ61; 80� when
the reference trajectory is not feasible. Additional sim-
ulation and experimental results on this approach are
illustrated by VIDEO 182 and VIDEO 243 .

49.5 Path Following in the Case of Nonideal Wheel-Ground Contact

The kinematic models used in the previous sections
are derived under the classical rolling-without-sliding
assumption for the vehicle’s wheels. This assump-
tion is satisfied with a good degree of accuracy for
many applications both indoor and outdoor (e.g., on-
road). In some cases, however, sliding can be sig-
nificant. This happens for example when a vehicle
operates on natural terrain with poor grip conditions
(grass, earth) and when the vehicle’s speed is sig-
nificant and/or the terrain is not perfectly horizon-
tal. In these cases, the control laws presented in the
previous sections may not give full satisfaction. We
show in this section that these control laws can still
be used successfully, provided that sliding is taken
into account at the modelling level and estimated on-
line via a dedicated observer. For simplicity, only the
path following problem is addressed, but the tech-
niques here presented can be extended to other control
problems.

x iO

j

y

L

vR

vFβR

βF

φ

θ
PR

PF

Fig. 49.13 Car-like vehicle in the presence of sliding

49.5.1 Extended Control Models
in the Presence of Sliding

Extended Kinematic Model
Consider the two-wheels schematic representation of
a car-like vehicle on Fig. 49.13. The angles ˇR and ˇF
are introduced in order to represent the sliding of the
rear and front wheels respectively. More precisely, de-
noting the centres of the rear and front wheels as PR
and PF respectively, ˇR is the angle between the vec-
tor PRPF and the velocity vector vR of PR, whereas ˇF
represents the angle between the steering direction and
the velocity vector vF of PF. The kinematic modeling of
Sect. 49.2 is easily extended to the present case [49.14],
resulting in the following model

8̂
ˆ̂̂<
ˆ̂̂̂
:

PxD u1 cos.� CˇR/

PyD u1 sin.� CˇR/
P� D u1 cos.ˇR/

tan.�CˇF/� tan.ˇR/

LP� D u2

;

(49.53)

with u1 the (signed) intensity of the vector vR. Note that
these equations reduce to (49.5) when ˇF D ˇR D 0.

Kinematic Model in a Frénet Frame
In the context of path following, a kinematic model with
reference to a Frénet frame moving along the desired
path is obtained via a straightforward adaptation of the
pure-rolling case discussed in Sect. 49.2.3. Defining the
distance between the vehicle and the desired path C
as the distance d between the point PR and this path
(Fig. 49.5), the equations of this model are readily de-

http://handbookofrobotics.org/view-chapter/49/videodetails/182
http://handbookofrobotics.org/view-chapter/49/videodetails/243
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duced from (49.53) (compare with (49.13))

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

PsD u1
cos.�eCˇR/

1� d c.s/
PdD u1 sin.�eCˇR/

P�e D u1 Œcos.ˇR/�1��2�
P� D u2

; (49.54)

with �e the angle between the vehicle’s body
axis PRPF and the tangent to the desired path
evaluated at the projection of the point PR on
this path, c.s/ the path curvature at the pro-
jected point, �1 D .tan.�CˇF/� tan.ˇR//=L and �2 D
.c.s/ cos.�e CˇR//=.1� d c.s//.

Dynamic Model of Sliding Angles
The kinematic model (49.53) can be used for control
design once it is completed by a model of the dynamics
of the sliding angles ˇR and ˇF. Such a model can be
obtained from Newton’s law and a model of tire/ground
interactions. A few notation (Fig. 49.14 for details) and
assumptions are introduced for this purpose:

� The vehicle’s mass is denoted as m and its moment
of inertia with respect to the (body-fixed) vertical
axis is denoted as Iz. The vehicle’s center of mass G
is located on the segment joining PR to PF, at a dis-
tance LR from PR and LF from PF.� The longitudinal dynamics is neglected. More pre-
cisely, it is assumed that the traction force applied
to the vehicle, in relation to the monitoring of lon-
gitudinal tire/ground contact forces, is controlled
independently of the vehicle’s lateral dynamics and
that, as a result of this control, the longitudinal ve-
locity of the vehicle expressed in body frame, i. e.,
u1 cosˇr, varies slowly so that its time-derivative

x iO

j

y

L

GβR

LR

LF

FR

FF

βF

φ

θ
PR

PF

Fig. 49.14 Lateral forces applying to a car-like vehicle

can be neglected in the calculus of the lateral
dynamics.� Lateral tire/ground contact forces, that are orthogo-
nal to the wheels planes, are denoted as FR and FF

respectively.� The lateral component of the gravity force is de-
noted as FG. This force applies at G and its mag-
nitude is mg sin˛ with ˛ denoting the terrain slope
angle in the lateral direction.

Application of Newton’s law yields [49.15], after
projection in the direction orthogonal to vR,

P̌
R D 1

mu1

h
.FR Cmg sin˛/ cosˇR

CFF cos.ˇR��/�mLR R� cosˇR
i
� P�

with FF and FR the (signed) intensity of the lateral
forces FF and FR and

R� D 1

Iz
.LFFF cos� � LRFR/ (49.55)

From (49.53)

tan.�CˇF/D tanˇR � L P�
u1 cosˇR

:

Differentiating this equation with respect to time and
using the assumption that u1 cosˇR is constant yields

P̌
F D cos2.�CˇF/

 P̌
R

cos2 ˇR
�L

R�
u1 cosˇR

!
� P� :

The dynamics of the sliding angles is thus given by

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

P̌
R D 1

mu1

h
.FR Cmg sin˛/ cosˇR

CFF cos.ˇR��/�mLR R� cosˇR
i
� P� ;

P̌
F D cos2.�CˇF/

 P̌
R

cos2 ˇR
�L

R�
u1 cosˇR

!
� P� :

(49.56)

Replacing the vehicle’s angular acceleration R� by its
expression (49.55), and P�; P� by (49.53), one obtains ex-
pressions of the sliding angles dynamics in terms of �,
˛, u1, u2, FR, and FF.

Tire/Ground Interaction Models
for Lateral Forces Computation

In view of (49.56), knowledge of the lateral ground
forces FR and FF is needed to calculate the evolu-
tion of the sliding angles and the vehicle’s motion. In
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this respect, a model of tire/ground interactions is use-
ful, in particular for simulation purposes. The Coulomb
model, although very popular, does not allow one to
describe the complexity of tire/ground interactions in
a large operating domain. For this reason, other con-
tact models have been proposed in the literature. For
instance, the Dahl [49.16] and LuGre [49.17] models,
eventhough they are not dedicated to tire/ground con-
tact description, give a relationship between contact
force and sliding velocity with a small number of pa-
rameters. They are used to describe a vehicle’s dynam-
ics in [49.18]. Of particular interest is the celebrated
tire/ground contact model of Pacejka et al. [49.19], of
which several versions depending on the application
have been derived. A convenientmodel for mobile robot
simulation and analysis is the so-called magic formula
proposed in [49.20]. Alike other contact models, this
formula expresses the lateral ground force in term of
the sliding angle. It is defined as follows,

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

F� D D sin



c arctan.BŒ1�E�/ˇ� C E

B
arctan.Bˇ�/

�

DD a1.F�

z /
2C a2F�

z

ED a6.F�

z /
2C a7F�

z C a8

BD a3 sin.a4 arctan.a5F�

z //

cD
;

(49.57)

with � 2 fF;Rg used to denote either the front (F) or
Rear (R) wheel, and F�

z the corresponding tire load
here defined as L�

L m. The parameters ai, i 2 Œ1; : : : ; 8�
and c are representative of the grip conditions and tire
properties (pressure, contact patches). Table 49.1 shows
typical values of these parameters for a vehicle moving
on wet grass at a velocity of 2m=s (Sect. 49.5.4 fur-
ther on). Fig. 49.15 depicts the corresponding relation
between the front lateral force FF and the front sliding
angle ˇF. This relationship is symmetric with respect

Table 49.1 Parameters used for dynamic modelling

Coefficients Values
a1 �25
a2 500
a3 1000
a4 2
a5 1
a6 0
a7 �0:35
a8 5
c 1.6
L D LF CLR 1:3 D 0:6C 0:7
m 380
Iz 300

to the origin, is quasi linear for small angles, has an ex-
tremum near˙�10ı, and involves a saturation for large
sliding angles. The linear part of the function is often
sufficient to account for slow to moderately fast motion
in the case of good grip conditions, whereas its non-
linear part becomes important when the vehicle moves
on natural ground or at high speed with possibly large
sliding angles.

Tire/ground contact models are necessary to de-
scribe the sliding angles’ dynamics with some accuracy
and are useful to evaluate the performance of control
laws in simulation. The main drawback of these mod-
els is the large number of involved parameters and
the difficulty to evaluate appropriate values in prac-
tical applications, since such values heavily depend
on imprecisely known ground characteristics which,
furthermore, may rapidly change along the vehicle’s
trajectory. For these reasons, previously evoked mod-
els may not be best suited for control design. In many
cases, rather than trying to exploit a complete model in-
volving unreliable and rapidly varying parameters it is
preferable to use cruder models associated with an on-
line estimation procedure. The control design proposed
further on follows this latter avenue.

49.5.2 On-Line Estimation of Sliding Angles

As already mentionned, some knowledge of the sliding
angles ˇF and ˇR is useful to precisely control the lat-
eral distance d between the vehicle and the desired path.
Since direct measurement of these angles via the use of
dedicated sensors is quite difficult in practice, an alter-
native consists in designing an observer that produces
on-line estimates of the sliding angles based on the
measurement of the relative vehicle/path position and
orientation. The underlying implicit (crude) model used

–40 –30 –20 –10 0 10 20 30 40

Lateral force (N)

Sideslip angle (°)

1000

500

0

–500

–1000

Fig. 49.15 Relationship between lateral force and sliding angle ob-
tained using Pacejka Model
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for the design of this observer is that the sliding angles
do not change rapidly, as can be anticipated in common
situations like driving along a road with a slowly vary-
ing curvature or following a straight line across a field
with a constant slope. A solution of this type, exploiting
also the vehicle’s kinematic model (49.54), is proposed
next.

Define � D .d; �e/T, ˇ D .ˇF; ˇR/
T, and consider

the function f defined by

f .�; ˇ; �; c.s//D
0
@

sin.�2 Cˇ2/
cos.ˇ2/

tan.�Cˇ1/� tan.ˇ2/

L
� c.s/ cos.�2Cˇ2/

1� �1c.s/

1
A :

From (49.54),

P� D u1f .�;ˇ; �; c.s// : (49.58)

Define an observer of the form
( PO� D u1f .�; Ǒ; �; c.s//C˛� ;
PǑ D ˛ˇ :

(49.59)

The estimation error . Q�; Q̌/T D .� � O�; ˇ� Ǒ/T satisfies

( PQ� D u1Œf .�; ˇ; �; c.s//� f .�; Ǒ; �; c.s//��˛� ;
PQ̌ D �˛ˇ C P̌ :

(49.60)

The objective is to define the terms ˛� and ˛ˇ so as
to ensure the asymptotic stability of the origin of the
above estimation error system when ˇ is constant, i. e.,
when P̌ D 0, and thus the asymptotic convergence of
the estimate Ǒ to ˇ in this case. Furthermore, if ˇ varies
slowly the estimation error should remain small.

Proposition 49.6
Let

8̂
<
:̂

˛� D ju1jK1
Q�

˛ˇ D K2u1



@f

@̌
.�; Ǒ; �; c.s//

�T
Q�

(49.61)

with K1 a 2�2 positive definite matrix andK2 a positive
scalar. Assume that ˇ is constant and that

i) The variables u1; �; �; c.s/;1� dc.s/ are bounded,
differentiable, and their time-derivatives are
bounded.

ii) There exists � > 0 such that

j�Cˇ1j; jˇ2j; j�2Cˇ2j 	 �=2� � :

iii) The function u1 is persistently exciting in the sense
that there exist two constants T; ı > 0 such that

8t;
tCTZ

t

ju1.s/j ds� ı :

Then, the origin of system (49.60) is locally expo-
nentially stable.

Sketch of Proof : From (49.61), the estimation error dy-
namics (49.60) can be written as

8̂
<̂
ˆ̂:

PQ� D u1



@f

@̌
.�; Ǒ; �; c.s// Q̌ CO2. Q̌/

�
� ju1jK1

Q� ;

PQ̌ D �K2u1



@f

@̌
.�; Ǒ; �; c.s//

�T
Q� ;

(49.62)

where O2. Q̌/ denotes a second-order term in Q̌ in
a neighborhood of Q̌ D 0. Note that this term also de-
pends on �; �, c.s/ and 1�dc.s/. The linearized system
associated with system (49.62) is thus given by

8̂
<̂
ˆ̂:

PQ� D u1
@f

@̌
.�; ˇ; �; c.s// Q̌ � ju1jK1

Q� ;

PQ̌ D �K2u1



@f

@̌
.�; ˇ; �; c.s//

�T
Q� :

(49.63)

Consider the candidate Lyapunov function V defined by

V. Q�; Q̌/D K2j Q�j2 Cj Q̌j2 :
One verifies that the time-derivative of V along the so-
lutions of system (49.63) satisfies

PV D�ju1jK2
Q�TK1

Q� :
Since K1 is positive definite and K2 is positive, V
is decreasing. This ensures the stability of the origin
. Q�; Q̌/D 0. Using assumptions i) and ii) and the fact
that the matrix @f =@̌ .�; ˇ; �; c.s// is invertible one can
show, that the origin of system (49.63) is asymptotically
stable. Assumption iii) implies that the origin is in fact
exponentially stable. Using assumptions i) and ii) again,
one shows that the origin of the original (nonlinear) sys-
tem (49.62) is locally exponentially stable. �

Proposition 49.6 calls for a few remarks. Although
convergence of the estimation errors is proved in the
case of constant sliding angles only, the observer can
still provide a good estimate of ˇ if P̌ is small. For
fast variations of ˇ, estimation based on a dynamic
model and IMU measurements (inertial measurement
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unit) will usually provide better results [49.21]. Satis-
faction of assumptions i) and ii) is strongly related to the
choice of the controller used to determine the steering
wheel angular velocity u2 in (49.54). In this respect, let
us recall that the separation principle, which allows one
to design independently a feedback controller and an
observer for a linear system with a guarantee of stabil-
ity of the coupled system, is not systematically satisfied
for nonlinear systems.

49.5.3 Feedback Laws for Path Following

The kinematic model (49.54) can be transformed into
a chained system. This is a direct extension of the
results of Sect. 49.4.1.More precisely, the change of co-
ordinates and control variables .s; d; �e; �; u1; u2/ 7�!
.z1; z2; z3; z4; v1; v2/ defined by

.z1; z2; z3; z4/D�
s; d; Œ1� dc.s/� tan.�e CˇR/;
� c.s/Œ1� dc.s/�

�
1C 2tan2.�e CˇR/

	

� d
@c

@s
tan.�eCˇR/

CŒ1� dc.s/�2
tan.�CˇF/� tanˇR

L

1C tan2.�eCˇR/
cos.�eCˇR/

�
;

.v1; v2/D .Pz1; Pz4/
transforms the model (49.54) of a car-like vehicle into
a 4-D chained system.

Based on this transformation, Sect. 49.4 provides
a feedback control solution v2 to the path following
problem. Since the relation between v2 and the origi-
nal control variable u2 involves the sliding angles ˇF
and ˇR, u2 can be computed from the outputs Ǒ

F; ǑR of
the observer proposed in the previous section.

In practice, preexisting low-level control loops may
use the steering angle � itself, rather than its time-
derivative, as a control input. In this case the expression
for the desired steering angle can be obtained by iden-
tifying the expression of P�e in (49.54) with the one in
(49.13), where u2 is the feedback law deduced from the
(chained-form) control law (49.27) of a unicycle-like
robot. Further assuming that c.s/ is constant, one ob-
tains the following expression

�ref D arctan

"
tan. ǑR/

C L

cos. ǑR/

 
c.s/ cos Q�2

�
C A cos3 Q�2

�2

!#
� Ǒ

F

(49.64)

with

8̂
<
:̂

Q�2 D �e C Ǒ
R

� D 1� c.s/ d

AD�k2d� k3 � sign.u1/ tan Q�2 C c.s/� tan2 Q�2 :
(49.65)

49.5.4 Path Following Illustrations
in Low Grip Conditions

Simulation Results
The simulation results presented next have been ob-
tained by using the kinematic and dynamic models
(49.54) and (49.56) respectively, with the set of pa-
rameters for the tire/ground interaction specified in
Table 49.1. The reference path, depicted on Fig. 49.16
in black plain line, is composed of two straight lines
connected by a circular path with a radius of 13m.
The simulated grip conditions generate sliding along
the circular part of the path. The transitions between
this circular part and the straight lines yield transient
errors due to the curvature discontinuity. The vehicle’s
velocity is 3m=s.

The steering velocity u2 is computed according to
the simple proportional feedback law

u2 D�k�.� ��ref/

with �ref defined by (49.64) and the control gain k� D
12 (settling time of 250ms). The other control gains
in (49.64) are defined as .k2; k3/D .0:09;0:6/, yield-
ing a settling distance of 12m without overshoot. First,
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Fig. 49.16 Reference path and trajectories in Cartesian
plane
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Fig. 49.17 Lateral tracking error (d)

the control law is applied with . ǑF; ǑR/D .0; 0/ (i. e.,
without considering sliding). The results are shown
in blue on Figs. 49.16 and 49.17. Then, the control
law is applied with Ǒ

F and Ǒ
R obtained via the ob-

server (49.59)–(49.61), using for K1 a diagonal matrix
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Fig.49.19a–c Path following with sliding effects for an autonomous off-road robot: (a) Reference trajectory in 3-D
frame (b) Robot during autonomous tracking (c) Tracking errors (dashed: without sliding compensation, dash-dotted:
with sliding estimation and compensation)
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Fig. 49.18 Comparison of estimated and actual sliding
angles

with elements equal to 10 and 20 and the gain K2 D 10.
The results are shown in red. Fig. 49.17 clearly illus-
trates the reduction of lateral error resulting from the
sliding angles estimation.
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Performance of the proposed observer is illustrated
on Fig. 49.18 with the true sliding angles (i. e., obtained
from the simulated dynamics) in plain lines and the es-
timated angles in dashed lines. One can verify that the
sliding angles are correctly estimated. In practice, using
an observer allows one to also compensate for vari-
ous unmodeled dynamics resulting, for instance, from
imprecise knowledge of the vehicle’s geometry (the dis-
tance L, for example) or from an unknown offset on the
steering angle.

Experimental Results
Full scale experiments on natural terrain with the car-
like vehicle of Fig. 49.19 are reported next and in

VIDEO 435 . This mobile robot is equipped with a real
time kinematics global positioning system (RTK-GPS)
producing a ˙2 cm accurate absolute position mea-
surement. The GPS antenna is located straight above
the control point PR. The reference path, consisting of
a straight line perpendicular to the slope direction, has
been previously recorded during a manual driving. The
top left of Fig. 49.19 shows the recorded coordinates in
x-y plane, and the z axis represents the absolute value
of the lateral slope angle ˛. This angle progressively
reaches the value of 10ı at the curvilinear abscissa 27m,
and it subsequently rapidly increases up to about 18ı.

As for the simulation results reported previ-
ously, the feedback control (49.64) was first applied
with

Ǒ
F D Ǒ

R D 0

(i. e., without taking sliding into account), then with
Ǒ
F; ǑR given by the observer. In both cases, control

gains equal to these used in simulation have been used,
i. e., .k2; k3/D .0:09; 0:6/. The vehicle’s longitudinal
velocity during experiments was 3m=s. The bottom
part of Fig. 49.19 shows the tracking error along the
path with the blue dashed line corresponding to using
.ˇF; ˇR/D .0;0/ in the control law, and the red dashed-
dotted line corresponding to the use of sliding angles
estimated values.

These experimental results confirm the simulation
ones reported before. The improvement in tracking
accuracy resulting from the use of estimated sliding
angles in the control law is clearly illustrated: the lat-
eral error remains small (smaller than 0:25m) all the
time and it becomes negligible as soon as the ter-
rain’s slope is alsmost constant (beyond the curvilinear
abcissa 30m). This is consistent with the observer’s sta-
bility and convergence analysis when the sliding angles
are assumed constant.

49.6 Complementary Issues and Bibliographical Guide

49.6.1 General Trailer Systems

Most of the control design approaches here presented
and illustrated for unicycle-like and car-like vehicles
can be extended to the case of trains of vehicles com-
posed of trailers hitched to a leading vehicle. In par-
ticular, the methods of Sect. 49.4 which are specific to
nonholonomic systems can be extended to this case,
provided that the kinematic equations of motion of
the system can be transformed (at least semiglobally)
into a chained system [49.6]. This basically requires
that the hitch point of each trailer is located on the
rear-wheel axle of the preceding vehicle [49.22]. For
instance, the transformation to the chained form is not
possible when there are two (or more) successive trail-
ers with off-axle hitch points [49.23]. So-called general
trailer systems (with off-axle hitch points) raise diffi-
cult control design issues, and the literature devoted
to them is sparse. For this reason, and also because
these systems are not met in applications as frequently
as simpler vehicles, control methods specifically devel-
oped for them are not reported here. Nonetheless, a few

related references are given next. The path-following
problem has been considered in, e.g., [49.24] for a sys-
tem with two trailers and, more generally, in [49.25,
Chap. 3] and [49.26] for an arbitrary number of trailers.
To our knowledge, the problem of stabilizing nonsta-
tionary reference trajectories has not been addressed
for these systems (except in the single trailer case for
which the system can be transformed into the chained
form [49.23, 27]). In fact, the explicit calculation of
feasible trajectories joining a given configuration to an-
other is already a very difficult problem, even in the
absence of obstacles. As for the asymptotic stabilization
of fixed configurations, the problem can (in theory) be
solved by using existing general methods developed for
the larger class of controllable driftless systems. How-
ever, the calculations associated with these methods
quickly become intractable when the number of trail-
ers increases. More specific and simpler ones have been
proposed in [49.28], for an arbitrary number of trail-
ers and the asymptotic stabilization of a reduced set of
configurations, and in [49.29], in the case of two trailers
and arbitrary fixed configurations.

http://handbookofrobotics.org/view-chapter/49/videodetails/435
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49.6.2 Sensor-Based Motion Control

The control laws described in the present chapter,
and their calculation, involve the online measurement,
eventually complemented by the online estimation, of
variables depending on the position of the vehicles in
their environment.Measures can be acquired via the use
of various sensors (odometry, GPS, proximetry, vision,
etc.). Usually, various treatments are applied to raw
sensory data prior to computing the control variables
themselves. For instance, noise filtering and state esti-
mation are such basic operations, well documented in
the automatic-control literature. Among all sensors, vi-
sion sensors play a particularly important role in robotic
applications, due to the richness and versatility of the
information which they provide. The combination of vi-
sual data with feedback control is often referred to as
visual servoing. In Chap. 34, a certain number of visual
servoing tasks are addressed, mostly in the context of
manipulation and/or under the assumption that realiz-
ing the robot task is equivalent to controlling the pose of
a camera mounted on an omnidirectional manipulator.
In a certain number of cases, the concepts and methods
described in this chapter can be adapted, without much
effort, to the context of mobile robots. These cases ba-
sically correspond to the control methods adapted from
robotic manipulation which are described in Sect. 49.3
of the present chapter. For instance, automatic driving
via the control of the visually estimated lateral distance
between a robotic vehicle and the side of a road, or
car-platooning by controlling the frontal and lateral dis-
tances to a leading vehicle, can be addressed with the
control techniques reported in Chap. 34. The reason is
that it is possible to simply recast these techniques in
the form of the control laws proposed in Sect. 49.3.
However, there are also vision-based applications for
nonholonomic mobile robots which cannot be solved
by applying classical visual-servoing techniques. This
is the case, for instance, of the task objectives addressed
in Sect. 49.4, an example of which is the stabilization
of the complete posture (i. e., position and orientation)
of a nonholonomic vehicle at a desired one. Vision-
based control problems of this type have been addressed
in [49.11, 30].

49.6.3 Sliding Effects
and Other Dynamical Issues

Results of Sect. 49.5 can be viewed as a first step to
addressing dynamical issues associated with sliding ef-
fects. The kinematic control models (49.53)–(49.54)
can be extended to other wheeled vehicles ([49.31]
for the mobile robot classification proposed by [49.32]
and [49.33] for a trailer system). On-line estimation of

sliding angles via an observer can also be achieved by
exploiting the dynamics of these angles and making use
of complementary measurements (from an IMU for ex-
ample). A result in this direction is proposed in [49.21]
where a model of sliding angle dynamics is used at the
observer level, thus yielding a much more reactive esti-
mation of these angles. Note that the kinematic control
law of Sect. 49.5 may still be used in this case. When
prior knowledge of the reference path is available, a pre-
dictive control strategy may also be adopted to reduce
transient error effects associated with slow steering an-
gle dynamics.

Various risks related to the vehicle’s integrity when
operating at high speed, like e.g., swing around or roll-
over, were not addressed in this chapter. In [49.34]
these issues are treated at the path planning level.
Knowledge of the robot’s dynamics can also be used
to relate control inputs to a metrics measuring the im-
portance of such risks in order to introduce constraints
at the control level [49.35]. A multimodels approach
(kinematic and dynamic) can be used to translate sta-
bility aspects into control constraints, for instance by
defining a maximal admissible longitudinal velocity.
A predictive control strategy may also help to limit
the risk of roll-over, of steering saturation, or of swing
around [49.36]. Finally, it is possible to take advantage
of additional actuators, as in the case of four indepen-
dent actuated wheels [49.37], or by using inclination
actuators [49.38].

49.6.4 Bibliographical Guide

A few former surveys on the control of WMRs have
been published. Let us mention [49.39–41], which con-
tain chapters on the modeling and control issues. A de-
tailed classification of kinematic and dynamic models
for the different types of WMR structures, on which
Chap. 24 is based, is provided in [49.32]. The use of
the chain form to represent WMR equations has been
proposed in [49.42], then generalized in [49.22].

Path following may have been the first mobile robot
control problem addressed by researchers in robotics.
Among the pioneering works, let us cite [49.43, 44].
Several results presented in the present chapter are
based on [49.6, 45].

The problem of tracking admissible trajectories for
unicycle-type and car-like vehicles is treated in the
books [49.39–41], and also in numerous conference
and journal papers. Several authors have addressed this
problem by applying dynamic feedback linearization
techniques. In this respect, one can consult [49.46–48],
and [49.39, Chap. 8], for instance.

Numerous papers on the asymptotic stabilization
of fixed configurations have been published. Among

http://dx.doi.org/10.1007/978-3-319-32552-1_34
http://dx.doi.org/10.1007/978-3-319-32552-1_34
http://dx.doi.org/10.1007/978-3-319-32552-1_24
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them, [49.49] provides an early overview of feed-
back control techniques elaborated for this purpose,
and also a list of references. The first result present-
ing a time-varying feedback solution to this problem,
in the case of a unicycle-type vehicle, is in [49.4].
The conference paper [49.50] provides a survey on
time-varying feedback stabilization, in the more gen-
eral context of nonlinear control systems. More spe-
cific results, like Propositions 49.2 and 49.4, are given
in [49.6, 7]. Other early results on the design of
smooth time-varying feedbacks can be found in [49.51,
52], for example. Concerning continuous (but not
Lipschitz-continuous) time-varying feedbacks yield-
ing exponential convergence, one can consult [49.53].
Designs of hybrid discrete/continuous fixed-point sta-

bilizers can be found in [49.54–57], for instance.
Discontinuous control design techniques are not ad-
dressed in the present chapter, but the interested
reader will find examples of such feedbacks in [49.58,
59].

To our knowledge, the control approach presented
in Sect. 49.4.6, which is based on the concept of
transverse functions [49.9, 10], is the first attempt to
address the problem of tracking arbitrary trajectories
(i. e., not necessarily feasible for the controlled robot).
Implementation issues and experimental results for this
approach can be found in [49.11, 12]. An overview of
trajectory tracking problems for wheeled mobile robots,
with a detailed case study of car-like systems, is pre-
sented in [49.13].

Video-References

VIDEO 181 Tracking of an admissible trajectory with a car-like vehicle
available from http://handbookofrobotics.org/view-chapter/49/videodetails/181

VIDEO 182 Tracking of arbitrary trajectories with a truck-like vehicle
available from http://handbookofrobotics.org/view-chapter/49/videodetails/182

VIDEO 243 Tracking of an omnidirectional frame with a unicycle-like robot
available from http://handbookofrobotics.org/view-chapter/49/videodetails/243

VIDEO 435 Mobile robot control in off-road condition and under high dynamics
available from http://handbookofrobotics.org/view-chapter/49/videodetails/435
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