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32. 3-D Vision for Navigation
and Grasping

Danica Kragic, Kostas Daniilidis

In this chapter, we describe algorithms for
three-dimensional (3-D) vision that help robots
accomplish navigation and grasping. To model
cameras, we start with the basics of perspective
projection and distortion due to lenses. This pro-
jection from a 3-D world to a two-dimensional
(2-D) image can be inverted only by using infor-
mation from the world or multiple 2-D views. If we
know the 3-D model of an object or the location
of 3-D landmarks, we can solve the pose estima-
tion problem from one view. When two views are
available, we can compute the 3-D motion and
triangulate to reconstruct the world up to a scale
factor. When multiple views are given either as
sparse viewpoints or a continuous incoming video,
then the robot path can be computer and point
tracks can yield a sparse 3-D representation of the
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world. In order to grasp objects, we can estimate
3-D pose of the end effector or 3-D coordinates of
the graspable points on the object.

With the rapid progress and cost reduction in digital
imaging, cameras became the standard and probably the
cheapest sensor on a robot. Unlike positioning (global
positioning system – GPS), inertial (IMU), and dis-
tance sensors (sonar, laser, infrared) cameras produce
the highest bandwidth of data. Exploiting information
useful for a robot from such a bit stream is less explicit
than in case of GPS or a laser scanner but semanti-
cally richer. In the years since the first edition of the
handbook, we had significant advances in hardware
and algorithms. RGB-D sensors like the Primesense
Kinect enabled a new generation of full model re-
construction systems [32.1] with an arbitrary camera
motion. Google’s project Tango [32.2] established the
state of the art in visual odometry using the latest fu-
sion methods between visual and inertial data ([32.3]
and VIDEO 120 ). 3-D modeling became a commod-
ity software (see, for example, 123D Catch App from

Autodesk) and the widely used open source Bundler
([32.4] VIDEO 121 ) has been possible by advances in
wide baseline matching and bundle adjustment. Meth-
ods for wide baseline matching have been proposed
for several variations of pose and structure from mo-
tion [32.5]. Last, the problem of local minima for non-
minimal overconstrained solvers has been addressed by
a group of method using Branch and Bound global
optimization of a sum of fractions subject to convex
constraints [32.6] or an L1-norm of the error func-
tion [32.7].
Let us consider the two main robot perception domains:
navigation and grasping. Assume for example the sce-
nario that a robot vehicle is given the task of going
from place A to place B given as instruction only inter-
mediate visual landmarks and/or GPS waypoints. The
robot starts at A and has to decide where is a driv-
able path. Such a decision can be accomplished through

http://handbookofrobotics.org/view-chapter/32
http://handbookofrobotics.org/view-chapter/32/videodetails/120
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the detection of obstacles from at least two images by
estimating a depth or occupancy map with a stereo al-
gorithm. While driving, the robot wants to estimate its
trajectory which can be accomplished with a matching
and structure from motion algorithm. The result of the
trajectory can be used to build a lay out of the environ-
ment through dens matching and triangulation which
in turn can be used as a reference for a subsequent
pose estimation. At each time instance the robot has to
parse the surrounding environment for risks like pedes-
trians, or for objects it is searching for like a trash-can.
It has to become aware of loop closing or a reentry if
the robot has been kidnaped or blind for a while. This
can be accomplished through object and scene recogni-

tion yielding the what and where of objects around the
robot. In an extreme scenario, a vehicle can be left to
explore a city and build a semantic 3-D map as well as
a trajectory of all places it visited, the ultimate visual
simultaneous localization and semantic mapping prob-
lem. In the case of grasping, the robot detects an object
given a learnt representation, and subsequently, it has
to estimate the pose of the object and in some cases its
shape by triangulation. When a camera is not mounted
on an end-effector, the absolute orientation between the
hand the object has to be found.

In the next section we will present the geometric
foundations for 3-D vision and in the last section we
describe approaches for grasping.

32.1 Geometric Vision

Let us start by introducing the projection of the world
to an image plane. Assume that a point in the world
.X; Y;Z/ has coordinates .Xci;Yci;Zci/ with respect to
the coordinate system of a camera ci related to each
other by the following transformation

0
@
Xci

Yci
Zci

1
ADRi

0
@
X
Y
Z

1
ACTi ; (32.1)

where Ri is a rotation matrix whose columns are the
world axes with respect to the camera. The translation
vector Ti is starting from the origin of the camera and
ending at the origin of the world coordinate system.
The rotation matrix is orthogonal RTRD 1 with deter-
minant one. We assume that the center of projection is
the origin of the coordinate system and that the optical
axis is the Zci axis of the camera. If we assume that the
image plane is the plane Zci D 1 then the image coordi-
nates .xi; yi/ read

xi D Xci

Zci
; yi D Yci

Zci
: (32.2)

In practice, what we measure are the pixel coordinates
.ui; vi/ in the image which are related to image coordi-
nates .xi; yi/ with the affine transformation

ui D f˛xiCˇyi C cu ; vi D fyi C cv ; (32.3)

where f is the distance of the image plane to the
projection center measured in pixels. It is also called fo-
cal length, because they are considered approximately
equal. The aspect ratio ˛ is a scaling induced by
nonsquare sensor cells or different sampling rates hor-
izontally and vertically. The skew factor ˇ accounts

for a shearing induced by a nonperfectly frontal image
plane. The image center cu; cv is the point of intersec-
tion of the image plane with the optical axis called the
image center. These five parameters are called intrinsic
parameters and the process of recovering them is called
intrinsic calibration. Upon recovering them we can talk
about a calibrated system and we can work with the im-
age coordinates .xi; yi/ instead of the pixel coordinates
.ui; vi/. In many vision systems in particular on mobile
robots, wide-angle lenses introduce a radial distortion
around the image center which can be modelled poly-
nomially

xdisti D xi.1C k1rC k2r
2C k3r

3C : : :/

ydisti D yi.1C k1rC k2r
2C k3r

3C : : :/

where r2 D x2i C y2i ;

where we temporarily assumed that the image cen-
ter is at (0,0). The image coordinates .xi; yi/ in
((32.3)) have to be replaced with the distorted coordi-
nates .xdist; ydist/.

32.1.1 Calibration

Recovering the intrinsic parameters when we can make
multiple views of a reference pattern like a checker
board without variation of the intrinsic parameters
has become a standard procedure using tools like the
MATLAB calibration toolbox or Zhang’s OpenCV cal-
ibration function [32.8]. When intrinsics like the focal
length vary during operation and viewing reference pat-
terns is not practically feasible, we rely on the state
of the art method by Pollefeys et al. [32.9, 10]. When
all intrinsic are unknown on the Kruppa equations and
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several stratified self-calibration approaches [32.11, 12]
which require at least three views. Apart radial dis-
tortion, the projection relations shown above can be
summarized in matrix form. By denoting

ui D .ui; vi; 1/

and

XD .X; Y;Z; 1/

we obtain

�iui DKi
�
Ri Ti

�
XD PX ; (32.4)

where �i D Zci is the depth of point X in camera coordi-
nates and P is the 3� 4 projection matrix. The depth �i

which can be eliminated to obtain two equations relat-
ing the world to the pixel coordinates.

32.1.2 Pose Estimation or PnP

When we have landmarks in the world with known
positions X and we can measure their projections, the
problem of recovering the unknown rotation and trans-
lation in the calibrated case is called pose estimation
or the Prespective-n-Point problem (PnP). Of course,
it presumes the identification of the world points in
the image. In robotics, the pose estimation is a vari-
ant of the localization problem in a known environment.
When grasping objects of known shape PnP yields the
target pose for an end-effector module the grasping
point positions. We assume that a camera is cali-
brated and that measurements of N points are given in
world coordinates XjD1::N and calibrated image coor-
dinates xjD1::N . Let us assume two scene points and
denote the known angle between their projections x1
and x2 as ı12 (Fig. 32.1). Let us denote the squared dis-
tance kXi �Xjk2 with d2ij and the lengths of Xj with d2j .
Then cosine law reads

d2i C d2j � 2didj cos ıij D d2ij : (32.5)

If we can recover di and dj the rest will be an absolute
orientation problem

djxj D RXj CT (32.6)

to recover translation and rotation between camera and
world coordinate system.

Minimal Solution
The cosine law has two unknowns d1 and d2 so with
three points we should be able to solve for the pose es-
timation problem. Indeed, three points yield a system of

three quadratic equations in three unknowns, so it will
have a maximum of eight solutions.

We follow here the analysis of the classic solution
in [32.13] and set d2 D ud1 and d3 D vd1 and solve all
three equations for d1

d21 D
d223

u2 C v 2 � 2uv cos ı23
;

d21 D
d213

1C v 2 � 2v cos ı13
;

d21 D
d212

u2 C 1� 2u cos ı12
;

which is equivalent to two quadratic equations in u
and v

d212.1C v 2 � 2v cos ı13/

D d213.u
2C 1� 2u cos ı12/ ; (32.7)

d213.u
2 C v 2 � 2uv cos ı23/

D d223.1C v 2 � 2v cos ı13/ : (32.8)

Solving (32.8) for u2 and substituting in (32.7) allows
solving E1 for u because u appears linearly. Substitut-
ing u back in (32.8) yields a quartic in v which can
have as many as four real roots. For each v we obtain
two roots for u through any of the quadratic equations
yielding a maximum of eight solutions [32.13, 14]. Pop-
ular pose estimation algorithms are based either on an
iterative method [32.15, 16] or linear versions using
auxiliary unknowns of higher dimension [32.17, 18].

A more recent method [32.19] for nworld points ex-
presses 3-D points as the barycentric coordinates with

d1

d3

δ23
δ13

d13

d23

d12

d2

Fig. 32.1 Pose estimation problem: A camera seeing 3
points at unknown distances d1, d2, and d3 with known
angles between the rays and known point distances
d12; d13; d23
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respect to four virtual control points

Xi D
4X

jD1

˛ijCj ; where
4X

jD1

˛ij D 1 :

A rigid transformation to the camera coordinate system
leaves the barycentric coordinates invariant and a per-
spective projection yields

�ixi D
4X

jD1

˛ij
�
Xci;Yci; Zci

�T
:

Eliminating �i yields two linear equations for each
point

4X
jD1

˛ijCxcj D ˛ijxiCzcj

4X
jD1

˛ijCycj D ˛ijyiCzcj

with the coordinate triples of the control points in the
camera frame being the 12 unknowns. This is a lin-
ear homogeneous system with the solution being the
nullspace of a 2n� 12 matrix. The unknown control
points are found up to a scale factor which is easily fixed
because we know the inter point distances. The pose is
found from absolute orientation between control points
in the camera and the world frame. This yields a very
efficient solution for n� 6 points but leaves you with
the initial choice of the control points as a factor affect-
ing the solution.

In case that n� 4 points lie on a plane we can
compute the homography H between the world and the
camera plane [32.8]. Assuming Z D 0 is the world plane
the homography reads

0
@
u
v
w

1
A
 K

�
r1 r2 T

�
„ ƒ‚ …

H

0
@
X
Y
W

1
A ;

where r1;2 are the first two columns of the rotation ma-
trix and 
 denotes the projective equivalence, namely,
for any two points p and p0 in the projective plane p
 p0

iff pD �p0 for real �¤ 0. Hence the first two columns
of K�1H

K�1H D �
h0

1 h0

2 h0

3

�

have to be orthogonal. We seek thus an orthogonal ma-
trix R that is the closest to

�
h0

1 h0

2 h0

1� h0

2

�

argmin
R2SO.3/

kR� �h0

1 h0

2 h0

1 � h0

2

� k2F :

If the singular value decomposition (SVD) of

�
h0

1 h0

2 h0

1 � h0

2

�D USVT ;

then the solution is [32.20]

RD U

0
@
1 0 0
0 1 0
0 0 det.UVT/

1
AVT : (32.9)

The diagonal matrix is a projection from the orthogonal
group O.3/ to the special orthogonal group SO.3/.

Last, we present a method [32.21] for n points that
computes all local minima of the over constrained PnP
problem. This involves solving the first derivatives ex-
plicitly with respect to the pose unknowns. To achieve
this, following observation allows the elimination of the
depths � and the translation. Rigid transformation �xD
RXCT can be written for n points as a linear system
for �jD1::n and the translation T

0
B@
x1 �I

: : :
:::

xn �I

1
CA

0
BBB@

�1
:::

�n

T

1
CCCAD

0
B@
RX1
:::

RXn

1
CA :

We can solve for the unknown depths-translation vector
and back substitute it into a least squares minimization
problem with respect to rotation parameters. It turns out
that if we use the three Rodriguez parameters as ro-
tation parametrization the necessary conditions for an
extremum (vanishing derivatives) turn out to be three
cubic equations [32.21]. Last we would like to point out
to the reader that a nonlinear function of the rotation
matrix can also be solved as an optimization problem
on the Lie-group SO(3) [32.22–24] for the case of line
correspondences.

32.1.3 Triangulation

When we know both the intrinsics and extrinsics or
their summarization in matrix P and we measure a point
we cannot recover its depth from just one camera posi-
tion. Assuming that we have the projection of the same
point X in two cameras

�1u1 D P1

�
X
1

�
;

�2u2 D P2

�
X
1

�
; (32.10)

with known projection matrices P1 and P2 we can re-
cover the position X in space, a process well known
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as triangulation. Observe that we can achieve triangula-
tion without decomposing the projection matrices into
intrinsic and extrinsic parameters, we neeed though to
remove the distortion in order to write them as above.

Having correspondences of the same point in two
cameras with known projection matrices Pl and Pr we
can solve the two projection equations for the world
point X. It is worth noting that each point provides two
independent equations so that triangulation becomes
an overconstrained problem for two views. This is not
a contradiction since two rays do not intersect in gen-
eral in space unless they satisfy the epipolar constraint
as presented in the next paragraph. The following ma-
trix in the left hand side has in general rank 4 unless
the epipolar constraint is satisfied in which case it has
rank 3.

0
BB@
xPl.3; W/�Pl.1; W/
yPl.3; W/�Pl.2; W/
xPr.3; W/�Pr.1; W/
yPr.3; W/�Pr.2; W/

1
CCA

0
BB@
X
Y
Z
1

1
CCAD 0 ; (32.11)

where P.i; W/ means the i-th row of matrix P.
Obviously, the homogeneous system above can be

transformed into an inhomogeneous linear system with
unknowns .X; Y;Z/. Otherwise it can be solved by find-
ing the vector closest to the null-space of the 4� 4
matrix above using SVD. A thorough treatment of tri-
angulation is the classic [32.25].

32.1.4 Moving Stereo

Imagine now that a rigid stereo system consisting of
cameras cl (left) and cr (right)

uli 
 PlXi ; (32.12)

uri 
 PrXi ; (32.13)

is attached to a moving robot and observe this system at
two time instances

X0 D R1X1 CT1 ; (32.14)

whereX0 are point coordinates with respect to the world
coordinate system, usually assumed aligned with one of
the camera instances, and X1 are the coordinates of the
same point with respect to the camera rig, after a mo-
tion .R1;T1/. To estimate the motion of the rig, we
have to solve two correspondence problems, first, be-
tween left and right image, and second, between left
(or right) at the first time instance and left (or right, re-
spectively) at the second time instance. The left to right
correspondence enable the solution of the triangulation
problem at each time instance. Motion can be obtained

then by solving equations (32.14) for .R1;T1/, a prob-
lem called absolute orientation. Alternatively one can
avoid the second triangulation and solve the pose es-
timation problem between triangulated points in 3-D
and points in the left image only. The most popular vi-
sual odometry system today is libviso [32.26] and is
based on a moving stereo rig ( VIDEO 122 ).

Absolute Orientation
The treatment for moving stereo will be short and the
reader is referred to a similar treatment in the chapter
about range sensing. We assume that correspondences
between two time instances have been established based
on tracking in the images so that we can formulate equa-
tions of the form

X2 DRX1 CT :

The standard way [32.20, 27] to solve this problem is
to eliminate the translation by subtracting the centroids
yielding

X2 �X2 D R.X1 �X1/ :

We need at least three points in total to obtain at least
two noncollinear mean-free X� NX vectors. If we con-
catenate the mean free vectors for n points into an n� 3
matrix A1;2 we can formulate the following minimiza-
tion of the Frobenius norm

min
R2SO.3/

kA2 �RA1kF ;

which is known as the Procrustes problem. It can be
shown [32.20] that the solution is obtained through
SVD as in (32.9) where U, V are obtained from the sin-
gular value decomposition

A2A
T
1 D USVT :

Solutions are usually obtained with RANSAC by sam-
pling triples of points and verification with the Pro-
crustes method.

32.1.5 Structure from Motion

Relax now the assumption that projection matrices are
known and remain with measuring and matching cor-
responding points u1 and u2. This is the well known
structure from motion problem or more precisely struc-
ture and 3-D-motion from 2-D motion. In photogram-
metry, it is well known as relative orientation problem.
Even after eliminating the �’s from equations (32.12)

http://handbookofrobotics.org/view-chapter/32/videodetails/122
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or by writing them in projective equivalence form

u1 
 P1

�
X
1

�
;

u2 
 P2

�
X
1

�
; (32.15)

we realize that we if .X;P1;P2/ is a solution than
.HX;P1H�1;P2H�1/ is a solution, too, where H an in-
vertible 4�4 real matrix or in other words a collineation
in P 3. Even if we align the world coordinate system
with the coordinate system of the first camera, which
practice is common

u1 

�
I 0

�
X ;

u2 
 P2X ; (32.16)

we remain with the same ambiguity where H is of the
form

H


0
BB@

1 0 0 0
0 1 0 0
0 0 1 0
h41 h42 h43 h44

1
CCA ; (32.17)

with h44 ¤ 0. This ambiguity is possible when the
projection matrices are arbitrary rank 3 real matrices
without any constraint on their elements. If we assume
that we have calibrated our cameras then the projection
matrices depend only on displacements

u1 

�
I 0

�
X ;

u2 

�
R T

�
X ; (32.18)

and the only remaining ambiguity is the scale ambi-
guity where H looks like an identity matrix except
h44 D s¤ 1 being the scale factor. In other words if
.R;T;X/ is a solution then .R; sT; 1=sX/ is a solu-
tion, too. These remarks generalize in multiple views.
Because, in robotics the .R;T/ matrices correspond
to location and X to mapping of the environment, the
problem has the more proper term SLAM: Simultane-
ous localization and mapping. However, because the
term SLAM has been used with a variety of sensors
like sonar and laser range scanners, the term monoc-
ular SLAM is better suited to describe structure from
motion from multiple views [32.28].

Epipolar Geometry
This is probably one of the most studied problems in
computer vision. We constrain ourselves to the cali-
brated case which is most relevant to robotics appli-
cations. The necessary and sufficient condition for the

intersection of the two rays Rx1 and x2 is that the two
rays are coplanar with the baseline T

xT2 .T�Rx1/D 0 ; (32.19)

which is the epipolar constraint (Fig. 32.2). To avoid the
scale ambiguity we assume that T is a unit vector. We
proceed by summarizing the unknowns into one matrix

ED OTR (32.20)

where OT is the 3� 3 skew-symmetric matrix to the vec-
tor T. The E matrix is called the essential matrix. The
epipolar constraint reads then

xT2Ex1 D 0 ; (32.21)

which is the equation of a line in the x2 plane with co-
efficients Ex1 or a coefficient of a line in the x1 plane
with coefficients ETx2. These lines are called epipo-
lar and form pencils whose centers are the epipoles e1
and e2, in the first and second image plane respectively.
The epipoles are the intersections of the baseline with
the two image planes, hence e2 
 T and e1 
�RTT.
Looking at the equations of the epipolar lines we can
immediately infer that ETe1 D 0 and Ee2 D 0.

The set of all essential matrices

E D
n
E 2 R3�3 j EDbTR;

where T 2 S2 and R 2 SO(3)


has been characterized as a manifold of dimension
5 [32.29]. It has been proven [32.30] that

Proposition 32.1
A matrix E 2R3�3 is essential if and only if it has two
singular values equal to each other and third singular
value equal zero.

RX1

Rx1 x2

X2

T

Fig. 32.2 A point is perspectively projected to calibrated
image vectors Rx1 and x2 which are coplanar with base-
line T



3-D Vision for Navigation and Grasping 32.1 Geometric Vision 817
Part

C
|32.1

We present here Nister’s method [32.31] for recovering
an essential matrix from five point correspondences and
which gained in popularity because of its suitability for
RANSAC methods.

Minimal Case
We expand the epipolar constraint in terms of homoge-
neous coordinates x1 D .x1; y1; z1/ and x2 D .x2; y2; z2/
(when the points are not at infinity zi D 1) and obtain

�
x1xT2 y1xT2 z1xT3

�
Es D 0 ; (32.22)

where Es is the raw by raw stacked version of ma-
trix E. When we use only five point correspondences
the resulting linear homogeneous system will have as
a solution any vector in the four dimensional kernel of
the data matrix

Es D �1u1 C�2u2 C�3u3 C�4u4 : (32.23)

At this point we want the matrix E resulting from Es to
be an essential matrix satisfying Proposition 32.1. It has
been proven [32.30] that

Proposition 32.2
A matrix E 2 R3�3 is essential if and only if

EETED 1

2
trace.EET/E : (32.24)

Though the det.E/D 0 constraint can be inferred from
(32.24) we are still going to use it together with (32.24)
to obtain ten cubic equations in the elements of E.
As described in [32.31], one can obtain a tenth de-
gree polynomial in �4. The number of real roots of
this polynomial are computed with a Sturm sequence.
There is no proof beyond physical plausibility of the
existence of at least one solution that a real root will ex-
ist at all. Several alternative 5-point solvers have been
proposed since Nister’s paper [32.32–35] and an exten-
sive list including code has been established by Pajdla’s
group [32.36].

Assuming that we have recovered an essential
matrix from point correspondences, the next task is
to recover an orthogonal matrix R and a unit vec-
tor translation T from the essential matrix. If ED
Udiag.�; �; 0/VT, there are four solutions for the pair
.bT;R/

.bT1;R1/D .URz;C�=2˙UT;URT
z;C�=2V

T/ ;

.bT2;R2/D .URz;��=2˙UT;URT
z;��=2V

T/ ;

.bT1;R2/D .URz;C�=2˙UT;URT
z;��=2V

T/ ;

.bT2;R1/D .URz;��=2˙UT;URT
z;C�=2V

T/ ;

where Rz denotes rotation around the z-axis. The four
solutions can be split into two two-fold ambiguities:

� Mirror ambiguity: If T is a solution, then�T is a so-
lution, too. There is no way to disambiguate from
the epipolar constraint: xT2 ..�T/�Rx1/D 0.� Twisted pair ambiguity: If R is a solution, then
also RT;�R is a solution. The first image is twisted
around the baseline 180 degrees.

These ambiguities are resolved by checking if
depths of triangulated points are positive.

Critical Ambiguities
The approach with five point correspondences has a fi-
nite number of feasible (feasible means that they may
produce multiple interpretations of structures in front
of the camera) solutions when the points in the scene lie
on a plane (a two fold ambiguity) [32.37] or when the
points on the scene and the camera centers lie on a dou-
ble sheet hyperboloid with the additional constraint that
the camera centers lie symmetrically to the main gen-
erator of the hyperboloid [32.38]. These are inherent
ambiguities which hold for any number of point cor-
respondences when one seeks a solution for an exact
essential matrix.

When someone is solving the linear least squares
system for the essential matrix, a planar scene as well
as the case of all points and the camera centers lying
on a quadric causes a rank deficiency of the system and
thus infinite solutions for E.

Beyond the ambiguous situations, there is a con-
siderable amount of literature regarding instabilities
in the two view problem. In particularly, it has been
shown [32.37, 39, 40] that a small field of view and in-
sufficient depth variation can cause an indeterminacy
in the estimation of the angle between translation and
optical axis. An additional small rotation can cause
a confounding between translation and rotation [32.41].
Moreover, it has been shown, that there exist local min-
ima close to the global minimum that can fool any
iterative scheme [32.42, 43].

3-Point SfM
Minimal solutions based on 5 points are still too slow to
be used on mobile platforms where additional informa-
tion like a reference gravity vector might be obtained
from an IMU. We present here a recent solution using
a reference direction and only 3 points [32.44].

We are given three image correspondences from
calibrated cameras, and a single directional correspon-
dence like the gravity vector or a vanishing point. This
problem is equivalent to finding the translation vec-
tor t and a rotation angle � around an arbitrary rotation
axis.
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Let us choose the arbitrary rotation axis to be e2 D
Œ0; 1; 0�T. After taking the directional constraint into ac-
count, from the initial five parameters in the essential
matrix, we now only have to estimate three. We can use
the axis-angle parameterization of a rotation matrix to
rewrite the essential matrix constraint as follows

p2iT QEp1 D 0 ; (32.25)

where

QEDbQt.IC sin �be2 C .1� cos �/be22/ ;

and QtD .x; y; 1/.
Each image point correspondence gives us one such

equation, for a total of three equations in three un-
knowns (elements of t and � ). To create a polynomial
system, we set sD sin � and cD cos � , and add the
trigonometric constraint s2 C c2 � 1D 0, for a total of
four equations in four unknowns. In order to reduce the
number of unknowns, we choose the direction of the
epipole by assuming that the translation vector Qt has the
form Œx; y; 1�>. This means that for each Qt that we re-
cover, �Qt will also need to be considered as a possible
solution.

Once we substitute for QE in (32.25), the result-
ing system of polynomial equations has the following
form

ai1xsC ai2xcC ai3ysC ai4yc

C ai5x� ai2sC ai1cC ai6 D 0 (32.26)

for iD 1; ::; 3, and the equation

s2 C c2 � 1D 0 : (32.27)

This polynomial system can be solved in closed form
and has up to four solutions. The total number of pos-
sible pose matrices arising from our formulation is
therefore at most 8, when we take into account the fact
that we have to consider the sign ambiguity in transla-
tion.

32.1.6 Multiple Views SfM

Whenwe talk about simultaneous localization andmap-
ping we obviously mean over a longer period of time.
The question is how do we integrate additional frames
in our 3-D motion estimation (localization) process.

To exploit multiple frames we introduce rank con-
straints [32.45]. We assume that the world coordinate
system coincides with the coordinate system of the first
frame and that a scene point is projected to xi in the i-th

frame and that its depth with respect to the 1st frame
is �1

�ixi D Ri.�1x1/CTi : (32.28)

Taking the cross product with xi and writing it for n
frames yields a homogeneous system

0
B@
bx2R2x1 bx2T2

:::
:::

bxnRnx1 bx2Tn

1
CA
�
�1

1

�
D 0 ; (32.29)

that has the depth of a point in the first frame as an
unknown. The 3n� 2 multiple view matrix has to have
rank one [32.46], a constraint that infers both the epipo-
lar and the trifocal equations. The least squares solution
for the depth can easily be derived as

�1 D�
Pn

iD1.xi �Ti/
T.xi �Rix1/

kxi �Rix1k2 : (32.30)

Given a depth for each point we can solve for motion
by rearranging the multiple views constraint (32.29) as

0
BB@
�1
1x

1T
1 ˝ Ox1i Ox1i
:::

:::

�n
1x

nT
1 ˝ Oxni Oxni

1
CCA
�
Rstacked
i
Ti

�
D 0 ; (32.31)

where xni is the n-th image point in the i-th frame
and Ri;Ti is the motion from 1st to the i-th frame
and Rstacked

i is the 12� 1 vector of stacked elements of
the rotation matrix Ri. Suppose that k is the 12� 1 ker-
nel (or closest kernel in a least squares sense) of the
3n� 12 matrix in the left hand side obtained through
singular value decomposition and let us call A the 3�3
matrix obtained from the first 9 elements of k and a the
vector of elements 10�12. To obtain a rotation matrix
we follow the SVD steps in the solution of absolute ori-
entation (32.14) to find the closest orthogonal matrix to
an arbitrary invertible matrix.

Bundle Adjustment
On top of such an approach, a bundle adjust-
ment [32.47] minimizes the sum of all deviations be-
tween image coordinates and the backprojections of the
points to be reconstructed.

argmin
Rf ;Tf ;Xp

�TC�1� ;

minimized with respect to all 6.F� 1/ motions and
3N � 1 structure unknowns, where � is the vector con-
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taining all errors

�fp D
 
xfp �

Rf
11Xp CRf

12YpCRf
13Zp CTx

Rf
31Xp CRf

32Yp CRf
33Zp C Tz

yfp �
Rf
21Xp CRf

22Yp CRf
23Zp C Ty

Rf
31Xp CRf

32Yp CRf
33Zp C Tz

!

and C is the error covariance matrix. We will continue
with the assumption that CD I.

Call the objective function˚.u/D �.u/T�.u/with u
the vector of unknowns. Given a starting value for the
vector of unknowns u we iterate with steps �u by lo-
cally fitting a quadratic function to ˚.u/

˚.uC�u/D ˚.u/C�uTr˚.u/C 1

2
�uTH.u/�u ;

where r˚ is the gradient and H is the Hessian of ˚ .
The minimum of this local quadratic is at �u satisfying

HıuD�r˚.u/ :

If ˚.u/D �.u/T�.u/ then

r˚ D 2
X
i

�i.u/r�i.u/
T D J.u/T� ;

where the Jacobian J consists of elements

Jij D @�i

@uj
;

and the Hessian reads

HD 2
X
i

�
r�i.u/r�i.u/

TC �i.u/
@2�i

@u2

�

D 2

 
J.u/TJ.u/C

X
i

�i.u/
@2�i

@u2

!

 2J.u/TJ.u/

by omitting quadratic terms inside the Hessian. This
yields the Gauss–Newton iteration

.JTJ/�uD JT� ;

involving the inversion of a .6FC3N�7/�.6FC3N�
7/ matrix. Bundle adjustment is about the art of invert-
ing efficiently .JTJ/.

Let us split the unknown vector u into uD .a; b/ fol-
lowing [32.48] obtaining

� 6F� 6 motion unknowns a,� 3P� 1 structure unknonws b,

and we will explain this case better if we assume two
motion unknowns a1 and a2 corresponding to 2 frames,
and 3 unknown points b1; b2; b3.

For keeping symmetry in writing we do not deal
here with the global reference and the global scale am-
biguity.

The Jacobian for 2 frames and 3 points has 6 pairs
of rows (one pair for each image projection) and 15
columns/unknowns

JD @�

@.a; b/
D

0
BBBBBBBBBBB@

A1
1 0
0 A2

1
A1

2 0
0 A2

2
A1

3 0
0 A2

3„ ƒ‚ …
motion

B1
1 0 0

B2
1 0 0
0 B1

2 0
0 B2

2 0
0 0 B1

3
0 0 B2

3„ ƒ‚ …
structure

1
CCCCCCCCCCCA

;

with A matrices being 2� 6 and B matrices being 2� 3
being Jacobians of the error �fi of the projection of the i-
th point in the f -th frame. We observe now a pattern
emerging in JTJ

JTJD

0
BBBB@

U1 0 W1
1 W1

2 W1
3

0 U2 W2
1 W2

2 W3
3

:: :: V1 0 0
:: :: 0 V2 0
:: :: 0 0 V3

1
CCCCA
;

with the block diagonals for motion and structure sepa-
rated. Let us rewrite the basic iteration .JTJ/�uD JT�
as

�
U W
WT V

��
�a
�b

�
D
�
�0

a
�0

b

�
;

and premultiply with

�
I WV�1

0 I

��
U W
WT V

��
�a
�b

�

D
�
I WV�1

0 I

��
�0

a
�0

b

�

We find out that motion parameters can be updated sep-
arately by inverting a 6F� 6F matrix

.U�WV�1WT/�aD �0

a�WV�1�0

b :

Each 3-D point can be updated separately by inverting
a 3� 3 matrix V

V�bD �0

b �WT�a
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It is worth mentioning that bundle adjustment though
extremely slow captures the correlation between motion
estimates and structure (3-D points) estimates which is
artificially hidden in the iterative scheme in (32.29).

The largest scale motion estimation and registration
of views has been performed by Teller et al. [32.49]
with a decoupled computation first of relative rotations

and finally of relative translations. The above multiple
view SfM techniques can also be applied in a sliding
window mode in time. Davison et al. [32.28] showed
the first real-time recursive approach by decoupling the
direction of the viewing rays from the depth unknowns.
For other recursive approaches the reader is referred to
the corresponding SLAM chapter.

32.2 3-D Vision for Grasping

In this section we will move from the basic geometry
required for grasping to the main 3-D vision challenges
associated with the limited knowledge we might have
about the shape of the object as well as the actual selec-
tion of 3-D grasping poses.

Naturally, object grasping and manipulation is
closely related to general scene understanding and
problems such as object detection, recognition, catego-
rization and pose estimation. Taking all the above, there
are very few approaches that address all the problems
in a single system. One example, reported in [32.50],
addresses the problem of enabling transfer of grasp
knowledge between object categories, defined using
both their physical properties and functionality. This is
a challenging problem given that a number of objects
with similar physical properties afford different tasks.
An example can be a screwdriver and a carrot that are
structurally alike, but only the former can be used as
a tool, or a ball and an orange where only the latter af-
fords eating (Fig. 32.3).

In relation to object grasping in particular, there are
methods that assume that full 3-D model of the object
is available and concentrate on grasp synthesis solely.
In addition, many of the approaches conduct experi-
ments in a simulated environment without working with
real sensory data. However, the knowledge generated in
simulation can also be applied later onto sensory data.
Another group of approaches considers grasp synthe-
sis on real sensory data directly, dealing with problems
such as noise, occlusions and missing data.

If the object to be grasped is known, there are ap-
proaches that store a database of grasp hypotheses,
generated either in simulation or through experiments
in a real setting. Most of the approaches assume that

Tool-use Eating Playing Pouring

Fig. 32.3 Examples of physically
similar objects that afford different
tasks

a 3-D mesh of the object is available and the challenge
is then to automatically generate a set of feasible grasp
hypotheses. This involves sampling the infinite space of
possible hand configurations and ranking the resulting
grasps according to some quality metric.

To simplify the process, a common approach is
to approximate object’s shape with a constellation of
primitives such as spheres, cones, cylinders, boxes or
superquadrics [32.51–55]. The purpose of using shape
primitives is to reduce the number of candidate grasps
and thus prune the search space for finding the optimal
set of grasp hypotheses.

One example, shown in Fig. 32.4 and reported
in [32.52], decomposes a point cloud from a stereo cam-
era into a constellation of boxes. Grasp planning is per-
formed directly on the boxes which reduces the number
of potential grasps. El-Khoury and Sahbani [32.56]
distinguish between graspable and nongraspable parts
of an object where each part is represented by fit-
ting a superquadric to the point cloud data. Pelossof
et al. [32.57] approximate an object with a single su-
perquadric and use a Support Vector Machines based
approach to search for the grasp that maximizes the
grasp quality. Boularias et al. [32.58] model an object
as a Markov random field (MRF) in which the nodes
are points from the point cloud and edges are spanned
between the six nearest neighbors of a point. A node
in the MRF carries either one of the two labels: a good
or a bad grasp location. Detry et al.[32.59] model the
object as a constellation of local multimodal contour
descriptors. The set of associated grasp hypotheses is
modeled as a nonparametric density function in the
space of six-dimensional (6-D) gripper poses, referred
to as a bootstrap density. Papazov et al. [32.60] demon-
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Fig. 32.4 Generation of grasp candidates through ob-
ject shape approximation and decomposition from (af-
ter [32.52])

Hand-over Pouring Tool-use

Glass

Knife

Hammer

Fig. 32.5 Ranking of approach vectors on different objects
given a specific task. The brighter an area the higher the
rank. The darker an area, the lower the rank (after [32.62])

strates 3-D object recognition and pose estimation in
a grasping scenario considering cluttered scenes. Weisz
and Allen [32.61] proposes a metric suitable for predict-
ing grasp stability under pose uncertainty.

There are several approaches that deal specifically
with incomplete point clouds. Marton et al. [32.63]
exploit symmetry by fitting a curve to a cross sec-
tion of the point cloud. Rao et al. [32.64] concen-
trates of depth segmentation and sample grasp points
from the surface of a segmented object using sur-
face normals. Bohg et al. [32.65] presents a related
approach that reconstructs full object shape assuming

planar symmetry and generates grasps based on the
global shape of the object. Bone et al. [32.66] makes
no prior assumption about the shape of the object
and apply shape carving for generating a parallel-jaw
gripper grasps. Hsiao et al. [32.67] employs heuris-
tics for generating grasp hypotheses dependent on the
shape of the point cloud. Recent work in [32.68]
identifies regions that afford force closure grasps by
evaluating local curvature of the objects to create an
initial opposing grasp with two or three fingers, de-
pendent on the relative size of the object with re-
spect to the hand. Richtsfeld and Vincze [32.69] uses
a stereo-camera setup to generate a 3-D representa-
tion of a scene with several objects and then gen-
erates various top grasps on object candidates. Mal-
donado et al. [32.70] use time-of-flight range data,
model objects using 3-D Gaussians and rely on fin-
ger torque information during grasping to monitor the
grasp execution. Stückler et al. [32.71] generate grasp
hypotheses based on eigenvectors of the object’s foot-
prints that are generated by projecting the 3-D object
point cloud onto the supporting surface. The work
of [32.72] presents a system for general scene under-
standing used for grasp planning and execution. The
system uses a bottom-up grouping approach where con-
tour and surface structures are used as the basis for
grasp planning. The work builds upon previous work
presented in [32.73].

Most of the recent work concentrates on grasp
generalization either by observing human grasping or
through off- and on-line learning directly on the robot.
Kroemer et al. [32.74] demonstrates generalization ca-
pabilities using a pouring task scenario. The goal of
the approach is to find a part of the object that is most
likely to afford the demonstrated action. The learning
method is based on the kernel logistic regression. Her-
zog et al. [32.75] stores a set of local templates of object
that a human is interacting with. If a local part of an
object segmented online is similar to a template in the
database, the associated grasp hypothesis is executed.
Song et al. [32.62] approach the problem of inferring
a full grasp configuration in relation to a specific task
the object is intended for. As in [32.76], the joint dis-
tribution over various grasping variables is modeled as
a Bayesian network. Additional variables like task, ob-
ject category and task constraints are introduced. The
structure of this model is learned given a large number
of grasp examples generated in a simulator and anno-
tated with grasp quality metrics as well as suitability for
a specific task. The learned quality of grasps on specific
objects given a task is visualized in Fig. 32.5.
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32.3 Conclusion and Further Reading
As main additional sources of reading, we recommend
the textbooks by Hartley and Zisserman [32.12], Ma
et al. [32.46], Faugeras [32.77], and Faugeras and Lu-
ong [32.11]. The reader is referred to Chap. 5 for
fundamentals of estimation, to Chap. 35 for sensor fu-
sion, to Chap. 34 for visual servoing, to Chap. 31 for
range sensing, to Chap. 45 for 3-D models of the world,
and to Chap. 46 for SLAM.

3-D vision is a rapidly advancing field and
in this chapter we have covered only geomet-

ric approaches based on RGB cameras. Although
depth sensors will become ubiquitous indoors and
might be outdoors as well, RGB cameras re-
main formidable because of the higher number and
larger diversity of features that can be matched
and used for pose estimation and 3-D-modelling.
Long range sensing can still be covered from mo-
tion with large translation while active sensors are
constrained in terms of energy reflected from the
environment.

Video-References

VIDEO 120 Google’s project Tango
available from http://handbookofrobotics.org/view-chapter/32/videodetails/120

VIDEO 121 Finding paths through the world’s photos
available from http://handbookofrobotics.org/view-chapter/32/videodetails/121

VIDEO 122 LIBVISO: Visual odometry for intelligent vehicles
available from http://handbookofrobotics.org/view-chapter/32/videodetails/122

VIDEO 123 Parallel tracking and mapping for small AR workspaces (PTAM)
available from http://handbookofrobotics.org/view-chapter/32/videodetails/123

VIDEO 124 DTAM: Dense tracking and mapping in real-time
available from http://handbookofrobotics.org/view-chapter/32/videodetails/124

VIDEO 125 3-D models from 2-D video – automatically
available from http://handbookofrobotics.org/view-chapter/32/videodetails/125
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