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Preface

This book includes selected papers that have been presented or discussed in the
following conferences held in 2014: the 3rd International Conference Dynamics
Games and Science III—DGS III, the 1st Hellenic-Portuguese Meeting on Mathe-
matical Economics, AUEB, Athens, Greece, and XV Jornadas Latinoamericanas de
Teoría Económica (JOLATE), Guanajuato, México.

The 3rd International Conference Dynamics Games and Science III—DGS III,
on the occasion of the 50th birthday of Alberto A. Pinto, aims to bring together
world top researchers and practitioners. DGS III represents an opportunity for
MSc and PhD students and researchers to meet other specialists in their fields of
knowledge and to discuss and develop new frameworks and ideas to further improve
knowledge and science. DGS I was realized in 2008 at the University of Minho, in
honor of Mauricio Peixoto and David Rand, and DGS II was realized in 2013 at the
Calouste Gulbenkian Foundation, Lisbon.

The main purpose of the Hellenic-Portuguese Meeting on Mathematical Eco-
nomics is to bring together researchers and students into a unique event to discuss
and foster the spread of mathematical methods for game theory and economics in
different countries particularly Portugal, Greece, and Spain. This meeting is orga-
nized every year and takes place in these countries looking to develop contacts and
networks with Latin American researchers and students in the area of mathematical
economics and game theory.

JOLATE is an annual meeting of the Latin American Association of Economics
(ALTE). The main objective of ALTE is to provide a framework to promote and
spread mathematical methods and research results in economic theory in Latin
America. ALTE is involved in supporting activities related to economic theory
at very different levels such as basic research, application, and education. The
association has built up a Latin American network including universities and
research centers in Argentina, Brazil, Chile, Colombia, Mexico, and Uruguay.

ALTE organizes the JOLATE meeting, a scientific conference that annually joins
an increasing number of researchers and practitioners of mathematical economics
methods, to contribute to the diffusion of their work and to the development of
interactions between them to encourage potential future joint collaborations as well.
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viii Preface

JOLATE meetings have taken place in many different places in Latin American.
The Universidad Nacional del Sur in Bahia Blanca, Argentina, organized the first
one in 1999. Since then, other host universities were Universidad Nacional de San
Luis (Argentina), Universidad de la República (Uruguay), Universidad Autónoma
San Luis Potosí (México), Universidad de Chile (Chile), Instituto de Matemática
Pura y Aplicada (IMPA, Brasil), Universidad EAFIT (Colombia), Universidad
de los Andes (Colombia), and Centro de Investigaciones Matemáticas (CIMAT,
México).

With this volume, the editors not only contribute to the advancement of research
in these areas but also inspire other scholars around the globe to collaborate and
research in these vibrant, emerging topics.

San Luis, Argentina Alejandro Neme
Jorge Oviedo



Acknowledgments

The editors of this volume would like to thank all authors for their contributions
which reflect the diversity of areas within mathematical economics developed, par-
ticularly, in Latin America and southern Europe. We also recognize the invaluable
work of the reviewers whose comments and suggestions have largely benefited the
edition of this volume.

We thank Robinson Nelson dos Santos, Associate Editor, Mathematics, Springer-
Verlag, São Paulo, and Susan Westendorf, Project Coordinator, Springer Nature, for
invaluable suggestions and advice and for assistance throughout this project.

Alberto Adrego Pinto would like to thank LIAAD INESC TEC and to acknowl-
edge the financial support received by the ERDF (European Regional Development
Fund) through the Operational Programme Competitiveness and International-
ization (COMPETE 2020) within project “POCI-01-0145-FEDER-006961” and
by the national funds through the FCT (Fundação para a Ciência e a Tec-
nologia) (Portuguese Foundation for Science and Technology) as part of project
UID/EEA/50014/2013 and within project “Dynamics, optimization and modelling”
with reference PTDC/MAT-NAN/6890/2014. Alberto Adrego Pinto also acknowl-
edges the financial support received through the Special Visiting Researcher Pro-
gram [Bolsa Pesquisador Visitante Especial (PVE)] “Dynamics, Games and Appli-
cations” with reference 401068/2014-5 (call: MEC/MCTI/CAPES/CNPQ/FAPS),
at IMPA, Brazil.

Elvio Accinelli acknowledges the financial support received through the project
“Trends in Mathematical Economics Dynamics and Game Theory with Applications
to the Economy,” supported by the special program of CONACYT (México)
“Estancias Sabática en el extranjero,” with reference 264820, and through the
project “Imitación, Bienestar, Crecimiento y Trampas de Pobreza,” CONACYT with
reference 167004.

Carlos Hervés-Beloso acknowledges the support by ECOBAS (Xunta de Galicia.
Project AGRUP2015/08).

A. N. Yannacopoulos would like to thank Athens University of Economics and
Business for its support of the meetings when they took place in Greece, as well as
all the participants, who have honored us with their contributions to the meetings
and this volume.

ix



Contents

1 Breaking the Circular Flow: A Dynamic Programming
Approach to Schumpeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Martin Shubik and William D. Sudderth

2 A Review in Campaigns: Going Positive and Negative . . . . . . . . . . . . . . . . . 35
Grisel Ayllón Aragón

3 On Lattice and DA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
David Cantala

4 Externalities, Optimal Subsidy and Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Enrique R. Casares and Horacio Sobarzo

5 The Fractal Nature of Bitcoin: Evidence from Wavelet
Power Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Rafael Delfin-Vidal and Guillermo Romero-Meléndez

6 Computing Greeks for Lévy Models: The Fourier
Transform Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Federico De Olivera and Ernesto Mordecki

7 Marginal Pricing and Marginal Cost Pricing Equilibria
in Economies with Externalities and Infinitely Many Commodities . . 123
Matías Fuentes

8 On Optimal Growth Under Uncertainty: Some Examples. . . . . . . . . . . . . 147
Adriana Gama-Velázquez

9 Fundamental Principles of Modeling in Macroeconomics . . . . . . . . . . . . . 163
Samuel Gil Martín

xi



xii Contents

10 Additional Properties of the Owen Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Oliver Juarez-Romero, William Olvera-Lopez,
and Francisco Sanchez-Sanchez

11 The Gödelian Foundations of Self-Reference, the Liar
and Incompleteness: Arms Race in Complex Strategic Innovation . . . 217
Sheri Markose

12 Revenue Sharing in European Football Leagues:
A Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Bodil Olai Hansen and Mich Tvede

13 Weakened Transitive Rationality: Invariance of Numerical
Representations of Preferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Leobardo Plata

14 Symmetrical Core and Shapley Value of an Information
Transferal Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Patricia Lucia Galdeano and Luis Guillermo Quintas

15 Marginal Contributions in Games with Externalities . . . . . . . . . . . . . . . . . . 299
Joss Sánchez-Pérez

16 Approximation of Optimal Stopping Problems and
Variational Inequalities Involving Multiple Scales in
Economics and Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Andrianos E. Tsekrekos and Athanasios N. Yannacopoulos

17 Modelling the Uruguayan Debt Through Gaussians Models . . . . . . . . . . 331
Ernesto Mordecki and Andrés Sosa

18 A Q-Learning Approach for Investment Decisions . . . . . . . . . . . . . . . . . . . . . 347
Martín Varela, Omar Viera, and Franco Robledo

19 Relative Entropy Criterion and CAPM-Like Pricing . . . . . . . . . . . . . . . . . . 369
Stylianos Z. Xanthopoulos

Erratum to: The Gödelian Foundations of Self-Reference,
the Liar and Incompleteness: Arms Race in
Complex Strategic Innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381



List of Contributors

Grisel Ayllón Aragón Tecnologico de Monterrey, Mexico City, Mexico

David Cantala El Colegio de Mexico, Mexico City, Mexico

Enrique R. Casares Departamento de Economia, Universidad Autonoma
Metropolitana Unidad Azcapotzalco, Mexico City, Mexico

Rafael Delfin-Vidal Departamento de Actuaría, Física y Matemáticas, Universi-
dad de las Américas Puebla, Puebla, Mexico

Matías Fuentes Escuela de Economía y Negocios, Centro de Investigación en
Economía Teórica y Matemática Aplicada, Universidad Nacional de San Martín,
Buenos Aires, Argentina

Patricia Lucia Galdeano Facultad de Ciencias Físico Matemáticas y Naturales,
Departamento de Matematicas, Universidad Nacional de San Luis, San Luis,
Argentina

Adriana Gama-Velázquez El Colegio de México, Mexico City, Mexico

Bodil Olai Hansen Department of Economics, CBS, Frederiksberg, Denmark

Oliver Juarez-Romero CIMAT, Guanajuato, Gto., Mexico

Sheri Markose Economics Department, University of Essex, Colchester, UK

Samuel Gil Martin Facultad de Economia, Universidad Autónoma de San Luis
Potosí, San Luis Potosi, Mexico

Ernesto Mordecki Mathematics Center, School of Sciences, Universidad de la
República, Montevideo, Uruguay

Federico de Olivera Mathematics Center, School of Sciences, Universidad de la
República, Montevideo, Uruguay

Departmento de Matemática, Federico Garcia Lorca entre Pastori y Goya, CeRP del
Sur, Atlántida, Uruguay

xiii



xiv List of Contributors

William Olvera-Lopez CIMAT, Jalisco S/N, Valenciana, C. P. 36240 Guanajuato,
Guanajuato, Gto, México

San Luis Potosí, SLP, Mexico

Leobardo Plata UASLP, San Luis Potosí, SLP, Mexico

Luis Guillermo Quintas Facultad de Ciencias Físico Matemáticas y Naturales,
Departamento de Matematicas, Universidad Nacional de San Luis, San Luis,
Argentina

Departamento de Matematicas, IMASL (UNSL-CONICET), Universidad Nacional
de San Luis, San Luis, Argentina

Franco Robledo Facultad de Ingeniería, Universidad de la República, Montevideo,
Uruguay

Guillermo Romero-Meléndez Departamento de Actuaría, Física y Matemáticas,
Universidad de las Américas Puebla, Puebla, Mexico

Joss Sánchez-Pérez Facultad de Economía, UASLP, San Luis Potosí, Mexico

Facultad de Economía, UASLP, Av. Pintores s/n, Col. B. del Estado, San Luis Potosí,
Mexico

Francisco Sanchez-Sanchez CIMAT, Guanajuato, Gto., Mexico

Martin Shubik Department of Economics, Yale University, New Haven, CT, USA

Horacio Sobarzo El Colegio de Mexico, Centro de Estudios Economicos, Mexico
City, Mexico

Andrés Sosa Mathematics Center, School of Sciences, Universidad de la
República, Montevideo, Uruguay

William D. Sudderth School of Statistics, University of Minnesota, Minneapolis,
MN, USA

Andrianos E. Tsekrekos Department of Accounting and Finance, School of
Business, Athens University of Economics and Finance, Athens, Greece

Mich Tvede Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK

Martín Varela Facultad de Ingeniería, Universidad de la República, Montevideo,
Uruguay

Omar Viera Facultad de Ingeniería, Universidad de la República, Montevideo,
Uruguay

Stylianos Z. Xanthopoulos Department of Mathematics, University of the
Aegean, Karlovassi Samos, Greece

Athanasios N. Yannacopoulos Department of Statistics, School of Information
Sciences and Technology, Athens University of Economics and Business, Athens,
Greece



Chapter 1
Breaking the Circular Flow: A Dynamic
Programming Approach to Schumpeter

Martin Shubik and William D. Sudderth

Abstract Starting with a simple Robinson Crusoe economy, then adding in
sequence one, then many random variables, we consider the effect of an innovation
in the means of production. We then consider a many-agent economy that utilizes
money. The success of the innovation for Crusoe depends on the availability of
physical goods, his decisions, and chance. The success of innovation in a money-
utilizing, many-person economy depends on financing and the locus of financial
control, as well as the amount of resources invested and on one or more random
events. The coordination and guidance problems posed by the latter are orders of
magnitude more difficult than the former. Utilizing a parallel dynamic programming
approach, we present models for which the insights of Schumpeter are consistent
with the observations of general equilibrium but involve a complex vista of a
dynamic economy with finance and incomplete markets and a recognition of
the coordination problems irrelevant to general equilibrium theory. Our simple
mathematical models illustrate the breaking of the circular flow of income. Here
we concentrate on the case where there is only one opportunity for innovation
and consider the conditions for the emergence of a new equilibrium. When
innovation may take place at any period, the outcome to any individual becomes
path dependent. History counts and financial guidance is critical. We limit our
modeling of the financial structure to a central bank.

Keywords Cost innovation • Schumpeter • Circular flow • Strategic market
games

JEL Classification: C73, D24, G32
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2 M. Shubik and W.D. Sudderth

1.1 Context and Circular Flow

We construct simple models that achieve a formal mathematization of a fundamental
insight that Schumpeter had over a 100 years ago on the need to break the circular
flow of finance required in a closed economy in equilibrium when there is the
possibility of innovation. Our concern is to be able to illustrate the relationship
between real assets and money and debt, noting also that the aspects of banking
and who controls the financing become significant at even the most basic level of
theory. This requires investigating the nature of the cash flows and how the amount
of money, credit, and prices change even in greatly simplified models of innovation.

A literature search indicates that “the breaking of the circular flow” has been
hardly treated in Anglo-American theorizing. Yet we believe it to be of considerable
significance in both the reconciliation of the Schumpeterian approach to Walrasian
economics and in going beyond Walrasian equilibrium to develop a basic theory of
dynamics.

The work on Schumpeterian theory done primarily in Italy presents somewhat
richer models, highly complementary with those here (cf. Dosi et al. 1988, 2013;
Caiaini et al. 2013). They use simulation methods and a macroeconomic approach
showing the relationship with both Keynes (1936) and Minsky (1986).

The success or failure of an innovation in production is here modeled as a random
event with the probability of success being a function of the amount of real resources
invested in an attempt to innovate.

1.1.1 The Evolution of Control

We begin with a study of Robinson Crusoe, who as a solitary individual does not
need finance.1 His optimization problem has constraints imposed by real resources
and his production technology. A mass economy faces problems in coordination
far beyond those of Crusoe. The introduction of a fiat money provides a means of
exchange where much of the control of issue is in the hands of the government and
a private banking system.

In a mass market, Crusoe’s optimization is replaced with a similar type of
optimization for a small family firm, but with more financial constraints imposed
by money and prices and constraints created by the presence of many individuals
and possibly more commodities available in the markets.

1Although he may find accounting useful as an aide memoire, and with a stretch of the imagination,
could set up a virtual market to calculate virtual prices for himself.
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By fixing default rules and monetary issue rules, a government can bound the
price system from below and above in an economy utilizing fiat money. In general,
the price levels in a system with uncertainty cannot be uniquely specified.2

1.1.2 The Circular Flow and Equilibrium

In a modern economy, much of economic activity calls for the use of money and
credit, both for decentralization and control. Money, credit, and financial institutions
provide the link between statics and equilibrium and dynamics and disequilibrium.3

General equilibrium deals precisely with equilibrium states. In spite of its
elegance and abstraction, as was noted by Koopmans (1977), general equilibrium
theory is preinstitutional. Because the economic world is highly complex and
multivariate, radical simplification is called for in the mathematization of the
models studied. When process models of general equilibrium are mathematically
formulated, even the convergence to equilibrium from positions out of equilibrium
in simple dynamic models may be difficult to establish. In contrast, the literature
on innovation is always process oriented. There are several simulations of these
processes, but the predominant approach to understanding innovation is via the
essay, often bolstered with empirical studies analyzed statistically.

Although originally written over a 100 years ago, Schumpeter’s work on
The Theory of Economic Development (Schumpeter 1934) provided an insightful
description (in essay form) of a plausible dynamic process involving the interaction
of the financial and physical processes of the economy intermixed with the
sociopsychological factors of optimism and pessimism. No formal mathematical
model was developed. Many years later, Schumpeter (1939) produced two volumes
on Business Cycles attempting to fit several centuries of innovation into Juglar,
Kitchin, and Kondriateff cycles. These provide an encyclopedic tour of innovations
but little new light on cycles.

In the last 20–30 years, there has been a surge in the writing on innovation, as is
evinced in the works of Nelson and Winter (1982), Dosi et al. (1988), Nelson (1996),
Lamoreaux and Sokoloff (2007), Baumol (2002), Bechtel et al. (1996) and many
others. Beyond these works, an understanding of the analogy between economic
innovation and biological mutation is growing.

2Prices will depend on details of initial conditions and asset structure as well as default and issue
conditions.
3A work which is in considerable agreement in spirit but different in technique is that of Godely and
Lavoie (2007) heavily devoted to a balance sheet and transaction flow model of the monetary and
financial control system of a modern economy. This work utilizes simulations and is far closer to
applied macroeconomic problems. It also stresses Kaldor’s concern with the tendency of economic
theorizing to gloss over the difficulties inherent in differentiating stocks from flows.
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1.1.3 Types of Innovation

The study of innovation cannot be approached monolithically. There are at least four
distinct types of innovation, namely:

• radically new product innovation;
• engineering variation of current product;
• distribution, network, information, and communication innovation;
• organization, cost reduction, or other process innovation influencing efficiency.

In terms of uncertainty, they are highly different. The most difficult to handle by
conventional economic analysis are radical product and network innovations. Both
the production procedures and the demand acceptance are unknown. The subjective
probabilities for success, if any, may be cooked up by stretched analogy with other
products and networks that have succeeded or failed and only can be quantified for
the purpose of the construction of imaginary or pro forma financial statements used
to persuade potential investors.

More or less standard product variation fits reasonably well into the current
theory of oligopolistic competition. The large firms selling, say, refrigerators have
products that are close to being identical. It is the job of marketing and the
production engineers to have a spice shelf full of technically known modifications
or additions that can help to differentiate the product. Costs and demand can be
reasonably estimated for such innovations. Innovation can also fit into a modified
model of a competitive market, as has been shown by Boldrin and Levine (2008).
The cost innovation discussed here can be considered in competitive markets,
especially when one takes into account that the appropriation by others of new ideas,
industrial secrets, and expertise is by no means instantaneous.

By far, the most prevalent form of innovation in most modern economies
is process innovation involving organization and frequently reducing costs of
production by orders of magnitude. New inventions call for expensive prototypes.
Even if the market for the new product is clearly present, over the first few years,
especially with mass market possibilities, there is a considerable focus on unit cost
reduction. The prototype is highly expensive, and the first batch for sale, though
cheaper than the prototype, is usually produced at nowhere near the intended cost.

1.1.4 Property Rights, Information, and Appropriation

Drive for show, but putt for dough.
Old golf saying

The modeling and analysis of innovation are replete with difficulties. In much
of the mythology of purely competitive markets, adjustments usually take place
immediately. In fact, in a dynamic system, profits are made by innovators having the
lead ahead of the myriads of time lags in the diffusion of information and expertise.
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The time it takes for an industrial secret to leak and the delays and barriers caused
by legal, accounting, and tax considerations are considerable.

Virtually everything is permeable at some point. Thus, patent protection must be
looked at as a time delay device and other barriers to entry as delay devices. Law
cases are often brought merely as time delay instruments.

In Crusoe’s world, none of these details exist.

1.2 How to Finance Innovation

In a modern economy, there are many different ways in which innovation is
financed. They depend on many empirical details concerning the nature of the
money and credit, transactions costs, knowledge, liquidity, evaluation ability,
attitude toward risk, laws, taxation, and other factors. In a complex economy such as
that of the United States, many different specialists may be involved. They include
inventors, their families and friends, entrepreneurs, venture capitalists, large and
small firms, bankers, and the government.

Among the many ways to finance, we note five forms of financing. They are
financing by:

• The owners with their own and family resources
• The owners utilizing a capitalist or an investment banker
• The firm utilizing retained earnings
• The firm using a capital market
• The firm borrowing from (and/or subsidized by) government

In current United States practice, much financing for cost innovation is either
self-financed by the firm’s management and/or owners or an arrangement between
a firm and its financiers. Government may encourage innovation and may subsidize
the firms rather than be a direct investor.

Crusoe is not bothered with these institutional details. For him, innovation
involves physical goods and his ideas and ability, not finance or complex ownership
and expertise conditions.

1.3 Models with Cost Innovation

Assume that the probability of the success of an improvement in the efficiency of
production (which in a monetary economy can be interpreted as a cost reduction)
and its size can be estimated reasonably well. To be specific, we suppose that from
the initial production function f for Crusoe, a new improved production function,
say g, is obtained with probability �.k/ after a successful innovation. Here the
probability �.k/ of the improvement is an increasing function of the resources
k invested in innovation. With probability 1 � �.k/, the innovation fails and the
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production function is unchanged. (For a given investment, the improvement may
be two-dimensional, there being a trade-off between the size of the improvement
and its probability of success for a given investment. For simplicity, we consider
the one-dimensional cross section where the improved function g is given and the
function �.k/ is the probability of success.) We assume that �.0/ D 0 so that an
investment of zero corresponds to no attempt at innovation.

In our models, we assume that at the start of the game there is the opportunity
for innovation. In essence, the first move is a strategic decision to take or reject a
gamble to try to improve efficiency. The innovation is modeled as a random event
whose value depends on the size of investment.

1.4 Robinson Crusoe in a Nonmonetary Economy

Consider the simple very well-known model in which a single agent produces a
good for his personal consumption. Suppose the agent begins with q � 0 units
of the good, puts i units into production, and consumes the remaining x D q � i
thereby receiving u.q� i/ in utility. The agent begins the next period with f .i/ units
of the good, and the game continues. (Both the utility function u and the production
function f are assumed to be concave, nondecreasing on Œ0;1/ with f .0/ D 0.) The
value of the game V.q/ to Robinson Crusoe is the supremum over all strategies of
the payoff function

1X

nD1
ˇn�1u.xn/;

where xn is the amount of the good consumed in period n and ˇ 2 .0; 1/ is a discount
factor. For this model without the possibility of innovation, the value function V
satisfies the Bellman equation

V.q/ D sup
0�i�q

Œu.q � i/C ˇV.f .i//�:

Assume that there is a unique positive input i1 such that f 0.i1/ D 1=ˇ. (This is
certainly the case if, as is often assumed, f is strictly concave, f 0.0/ D 1, and
limi!1 f 0.i/ D 0.)

Theorem 1 (Karatzas et al. (2006)). If the initial value of the good is q1, then an
optimal strategy is to input i1 in every period. Consequently,

V.q1/ D 1

1 � ˇ � u.q1 � i1/:

Thus, the stationary equilibrium in Crusoe’s economy has an amount q1 of goods
produced and an amount x D q1 � i1 consumed in every period.
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1.4.1 Innovation by Robinson Crusoe

Assume now that our single agent with goods q is allowed to input i for production
and invest j in innovation, where 0 � i � q; 0 � j � q� i. The agent consumes the
remainder q� i� j. The innovation is successful with probability �.j/ resulting in an
improved production function g, where g.q/ � f .q/ for all q with strict inequality
for some q. The innovation fails, and the production function is unchanged with
probability 1 � �.j/. Let V1 be the value function for the game with production
function f without innovation as in the previous section, and let V2 be the value
function for the game with the improved production function g. Then the value
function V of the game with innovation satisfies

V.q/ D sup
0�i�q
0�j�q�i

Œu.q � i � j/C ˇf�.j/V2.f .i//C .1 � �.j//V1.f .i//g�:

Let  .i; j/ be the function of i and j occurring inside the supremum. For an
interior optimum, we must have the Euler equations:

@ 

@i
D @ 

@j
D 0:

To find a solution to Crusoe’s innovation problem, we must calculate the values
of V1 and V2 where the quantity of goods is the amount f .i/ yet to be determined.
Theorem 1 only gives an expression for the value at one equilibrium point, which is
different for the two production functions f and g.

1.4.2 A Risk-Neutral Crusoe

If the agent is risk neutral, then, when there is no innovation, there is a simple
description of the optimal strategy at every value of q.

Theorem 2. Assume that u.x/ D x for all x. Then an optimal strategy is to input q
if q � i1 and to input i1 if q > i1. For q � i1, the value of the game is

V.q/ D q � i1 C ˇ

1 � ˇ � .q1 � i1/:

Proof. A player with goods q > q0 � 0 can always consume q � q0 and then play
from q0. Hence,

V.q/ � q � q0 C V.q0/:
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Consider now q � i1 and a strategy that inputs i < q. The best possible return
from such a strategy is

q � iC ˇV.f .i//:

But an input of q gives a best return of

ˇV.f .q// �ˇ � Œf .q/� f .i/C V.f .i//�

�ˇ � Œf 0.q/.q� i/C V.f .i//�

� q � iC ˇ � V.f .i//

since f 0.q/ � f 0.i1/ D 1=ˇ. So it is optimal to input q when q � i1.
Now suppose that q > i1. Since u0 D 1, the Euler equation reduces to f 0.i/ D 1=ˇ

or i D i1. The appropriate transversality condition is trivially satisfied since qn D q1
for all n � 2. It is easy to check that the strategy is interior and therefore optimal.

Consider next the innovation problem of the previous section for our risk-neutral
agent with u.x/ D x.

Assume that f 0.i1/ D 1=ˇ D g0.i2/ where 0 < i1 < i2 <1. Then by Theorem 2,
V 01.q/ D V 02.q/ D 1 for q � i2. Thus, if f .i/ � i2, we have

@ 

@i
.i; j/ D �1C ˇf�.j/f 0.i/C .1 � �.j//f 0.i/g

D �1C ˇf 0.i/;
@ 

@j
.i; j/ D �1C ˇ� 0.j/fV2.f .i// � V1.f .i//g :

Hence, in this case, the solutions to the Euler equations are

i� D .f 0/�1.1=ˇ/ D i1 and j� D .� 0/�1.1=ˇŒV2.f .i�// � V1.f .i
�//�/:

To illustrate the solution, we calculate it below for a very simple example.

1.4.2.1 A Numerical Example

Assume that the initial production function is f .i/ D 2pi and � D 0:1 so that, after
a successful innovation, the production function is g.i/ D 2:2

p
i. Set ˇ D 0:95.

Solve

f 0.i1/ D 1=ˇ and g0.i2/ D 1=ˇ
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to get

i1 D 0:9025; i2 D 1:092

and

q1 D f .i1/ D 1:9; q2 D g.i2/ D 2:299:

For q � i2 > i1, it follows from Theorem 2 that

V2.q/� V1.q/ D i1 � i2
1 � ˇ C

ˇ

1 � ˇ .q2 � q1/ D 3:791:

Assume now that the probability of successful innovation from investing j is
�.j/ D j=.1C j/. As noted above, the first Euler equation has the solution i� D i1 D
0:9025 so that f .i�/ D f .i1/ D q1 D 1:9. Since 1:9 > i2 > i1,

V2.f .i
�// � V1.f .i

�// D 3:791

and the solution to the second Euler equation is j� D .� 0/�1Œ1=.0:95/.3:791/� D
0:8977. Thus, �.j�/ D 0:8977=1:8977D 0:473 is the probability that the innovation
is successful.

We can use the formula from Theorem 2 to calculate

V2.f .i
�// D V2.1:9/ D 23:741;

and

V1.f .i
�// D V1.1:9/ D 19:95:

These values together with the values for i� and j� can be substituted in the formula
for the value of the game with innovation to get V.q/ D qC 18:86 for q � i�. The
value of the game without innovation can also be calculated as V1.q/ D qC 18:05,
which shows that it is slightly worth innovating in this instance.

1.4.3 A Risk-Averse Robinson Crusoe with Proportional
Production

Many of the interesting features of investment call for the consideration of risk-
averse individuals. In general, it is not possible to achieve the easy adjustment
to a stationary state that exists with a risk-neutral Robinson Crusoe. However,
analytic solutions are available when the utility function has constant elasticity and
production is directly proportional to the input.
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We take u.x/ D log x and f .i/ D ˛i, where ˛ is a positive constant. [The full
class of constant elasticity utilities is considered in a nice article of Levhari and
Srinivasan (1969).] Thus, the Bellman equation is

V.q/ D sup
0�i�q

Œlog.q � i/C ˇV.˛i/�:

The Euler equation for an interior solution i D i.q/ takes the form

1

q � i.q/
D ˇ˛

˛i.q/� i.˛i.q//
:

The solution is i.q/ D ˇq and does not depend on ˛. Thus, the optimal plan is for
Crusoe to input ˇq for production whenever he holds q units of the good. Under this
plan, Crusoe’s successive positions are

q1 D q; q2 D .˛ˇ/q; : : : ; qn D .˛ˇ/n�1q; : : : ;

and the optimal return is

V.q/ D
1X

nD1
ˇn�1 log.qn � ˇqn/ D

1X

nD1
ˇn�1 log..˛ˇ/n�1.1 � ˇ/q/:

Using properties of the log function and geometric series, we can rewrite the
return as

V.q/ D log q

1 � ˇ C
log.1 � ˇ/
1 � ˇ C ˇ

.1 � ˇ/2 Œlog˛ C logˇ�:

1.4.3.1 Innovation by a Risk-Averse Robinson Crusoe

Consider now the situation of an agent who begins with the utility u.x/ D log x
and production function f .i/ D ˛i as in the previous section and contemplates the
possibility of an innovation leading to an improved production function g.i/ D .1C
�/˛i.

Let V1 and V2 be the original value function, and that after a successful
innovation, then the value function V1.q/ is given by the formula of the previous
section and V2.q/ is given by the same formula with the constant ˛ multiplied by
1C � . Thus,

V2.q/ D V1.q/C ˇ

.1 � ˇ/2 log.1C �/;
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and the final term above represents the value to Crusoe of having the improved
production function. The value function V for the game with innovation can now be
written as

V.q/ D sup
0�i�q
0�j�q�i

Œlog.q� i � j/C ˇf�.j/V2.˛i/C .1 � �.j//V1.˛i/g�

D sup
0�i�q
0�j�q�i

�
log.q � i� j/C ˇ

�
V1.˛i/C �.j/ ˇ

.1 � ˇ/2 log.1C �/
��
:

The Euler equations for an interior solution i D i.q/; j D j.q/ can be obtained
by letting  .i; j/ be the function inside the supremum and setting its two partial
derivatives equal to zero. Here is the result:

1

q � i� j
D ˇ

.1 � ˇ/
1

i
D ˇ2

.1 � ˇ/2 log.1C �/� 0.j/:

The first equation can be solved for i to get

i D ˇ.q � j/:

This expression for i can then be substituted back in to obtain

� 0.j/ D 1 � ˇ
ˇ2 log.1C �/ �

1

q � j
:

This equation can be solved explicitly if, as in Sect. 1.4.2.1, �.j/ D j=.jC 1/. In this
case, the equation above for j becomes a quadratic. Using ˇ D 0:95; � D 0:1 as in
Sect. 1.4.2.1 and setting q D 2, the positive root of this quadratic equation is j� D
0:57, and, for this value, the chance of a successful innovation is 0:57=1:57D 0:36.

1.4.4 Innovation Over Many Periods

We close with observations on two more models where Crusoe may have repeated
attempts at innovation until success. The first is a direct extension of the model
solved above. The difference is that, after a failed attempt at innovation, Crusoe
is free to try again if he has the resources to do so. Another extension of the basic
model of individual innovation would permit multiple attempts at further innovation
even after a success.
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1.4.5 Lessons from Crusoe’s Innovation

From a viewpoint of economics, the Crusoe models have been simple; but layering
on the complexities starting with the first nonmonetary individualistic models points
to the transition from a simple pure technology and preference-driven real goods
control problem to a related but far greater control problem in an enterprise economy
with money.

The specific observations from Crusoe’s economy are:

1. The one-person growth model has been well known for many years along with its
equilibrium properties. That the system will converge to an equilibrium if initial
conditions are not in equilibrium is well known. However, the duration of the
transient length to equilibrium may be of any length, and this duration is highly
dependent on parametric details. Any evaluation of the success of innovation
depends on this transient.

2. The only way innovation may take place is by Crusoe voluntarily giving up the
use of his own physical assets. This contrasts with the forced savings scenarios
available in a monetary economy.

3. The problem of the separation between ownership and control does not appear in
Crusoe’s world. It arises in a multiperson economy.

4. In spite of being amenable to dynamic programming or continuous-time meth-
ods, these mathematical techniques are limited in being able to compute solu-
tions. Simulation and computational techniques are called for.

1.5 Finance and Innovation

The specific “value added” to the topics of innovation, guidance, control, and
ownership attempted here is to bridge the conceptual and mathematical gaps
between general equilibrium theory and Schumpeter’s writings on innovation. In
the past 20–30 years, there have been considerable writing and empirical work
on innovation and the economic and behavioral questions that it raises. See, for
example, Lamoreaux and Sokoloff (2007), Day et al. (1993), Nelson (1996), Nelson
and Winter (1982), Shubik (2010), and in particular the essay of Day (1993). The
work here is aimed at being complementary with these but aimed specifically at
trying to characterize mathematically via a dynamic programming formulation of
strategic market games, the monetary aspects of innovation eventually including
ownership, financial control, and coordination features of a market economy.
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1.5.1 Physical and Financial Assets, Innovation,
and Equilibrium

We now examine some of the problems of the interaction between ownership and
control for a small firm that acts as a pricetaker in a large monetary economy. We
consider models with many independent agents whose actions determine prices.

There are two features of the investment decision in a monetary economy we
deal with and contrast with their Crusoe counterparts.4 They are:

1. Equilibrium in a closed monetary economy prior to the knowledge that innova-
tion is feasible;

2. Innovation in a closed monetary economy with only short-term assets investigat-
ing the need for the expansion of money and credit.

The first topic has been dealt with previously in Karatzas et al. (2006) and Shubik
and Sudderth (2011). As with Crusoe, some sufficiently tractable examples are
provided that can be solved analytically.

A topic of interest for further research would be the study of the effect of repeated
innovation on the distribution of firm size and investment.

1.6 The Closed Economy as a Sensing, Evaluating,
and Control Mechanism

Prior to considering the formal closed models with innovation, several general items
that supply context are covered.

1.6.1 Individual or Representative Agents?

When there is no uncertainty, models utilizing representative agents and models
with independent agents solved for type-symmetric noncooperative equilibria give
the same equilibrium results. When there is any exogenous uncertainty present, this
is no longer generally true. With independent agents, uncertainty is not necessarily
correlated. However, with a representative agent, uncertainty is implicitly correlated
for all members of the class. In our models, agents can act independently, but
the only randomness occurs at the first stage with the probability of a successful
innovation. Kirman (1992) provides a perceptive discussion of the dangers in using

4We have also dealt elsewhere (Shubik and Sudderth (2011)) with equilibrium in an open
monetary economy with innovation. An open economy model ignores detailed feedbacks to small
individuals. It serves to study partial equilibrium possibilities.
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representative agents. We agree with his observations and stress that the assumptions
concerning the correlation of behavior among individuals are extremely strong and
must only be utilized in an ad hoc manner with care and specific justification.

1.6.2 On Money, Credit, Banks, and Central Banks

In institutional fact, the definition and measurement of the money supply is difficult
at best. The distinctions between money and credit are not always clear. Here we
utilize a ruthless simplification in order to highlight the distinction between money
and credit and to be able to stress economic control. Consider money to be paper
gold or some form of blue chip in which payments are made. Credit is a contract
between two entities A and B, in which individual A delivers money at period n1 in
return for an IOU or a promise from B to repay an amount of money to A at period
n2. An individual may be a natural person or a legal person such as a firm, a bill
broker, a bank, a credit-granting clearing house, or a central bank.

We may consider two ways to vary the money supply. The first and simpler is
that the central bank is permitted to print it. Another way to vary the money supply
is to accept the IOU notes of commercial banks as money. Say they are red chips, in
contrast with the central bank’s blue chips. They are accepted in payment on a 1:1
basis with blue chips. A reserve ratio controls the amount a bank can issue; thus, for
any k units of red chips issued, a bank must hold one unit of blue chips.5

As we wish to maintain as high a level of simplification as possible in order
to illustrate the breaking of the circular flow, we select the simpler structure. The
banking system is considered as one and called the central bank. It has funds above
its reserves6 that it can lend and it can pay interest on deposits.7

1.7 The Separation of Management and Ownership

The next level of complexity above the single type of agent utilizes two types of
agents: managers of the firms and stockholder-owners. (In the first model below,
there is also a class of saver agents who subsist on the returns from their bank
deposits.) The economy can be interpreted as a fully defined game of strategy where

5The justification for the acceptance of reserve ratio banking is in the dynamics along with
acceptance of fiat [see, for example, Bak et al. (1999)].
6Central bank reserves in a fiat money economy are a creation of law and possibly economic
theology. Mathematically, they are just societal rules of the game or an algorithm stating how the
central bank can create money. They specify its strategy set. In actuality, the strategy set is also
bounded by political pressures.
7In general, central banks do not accept deposits from natural persons, but for modeling simplicity
here we permit them to do so.
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there is a finite measure of firms and of stockholder-owners whose overall actions
will influence prices. By assuming that we limit the solution to a type-symmetric
noncooperative equilibrium, all agents of each type, even though independent, will
employ a strategy common to their type.

1.8 A Closed Economy Prior to Innovation: The Circular
Flow of Money Illustrated

The model presented in this section is based on the work of Karatzas et al. (2006)
without innovation. It will be extended in the next section to a model with innovation
in order to consider the disequilibrium aspects of innovation on the money supply.
Our stress so far has been on nonmonetary models of Crusoe as an innovator. From
here on, the emphasis is on simple closed economies or macroeconomic models.

The underlying model is that of a “cash-in-advance”8 market economy with a
continuum of firms � 2 J D Œ0; 1� that produce goods, all of which must be put up
for sale and a continuum of stockholder agents ˛ 2 I D Œ0; 1� who own the firms
and purchase these goods for consumption. The agents hold cash and bid for goods
in each of a countable number of periods n D 1; 2; : : :. The firms hold no cash9 and
must borrow from a single outside bank to purchase goods as input for production
in every period. The bank is modeled as a strategic dummy that accepts deposits
and offers loans at a fixed interest rate �. In addition to the owner agents, there may
be a continuum of saver agents � 2 K D Œ0; 1�, each of whom holds cash, bids in
every period to buy goods for consumption, and subsists entirely on his/her savings.
These agents can be thought of as retirees or private capitalists.10

The firms are in general corporate, they do not own themselves. They have (at
some ultimate level) natural person stockholders who are also consumers. Directly
or indirectly, they depend on at least four sets of decisionmakers for debt (and
some equity or options) financing. They are the passive savers, the financiers,
the commercial banks, and the central bank. Without having to elaborate further,
it should be evident that in any dynamic setting, the coordination problem is
considerable. In the mathematical model below, we grossly simplify the financial

8The term “cash-in-advance” is misleading when combined with a finite grid size where no
attention is given to how long the time interval is meant to be. The key item of importance is
the recognition that individuals form prices. They are only given prior prices, and how these are
to be utilized is a matter of behavioral specification.
9This reflects the payment of the 100 % dividend, the timing of which is irrelevant in a perfect
credit rating competitive economy.
10In a less Draconian abstraction, the difference between retirees and capitalists is not merely age,
but expertise. The role of competent financing as a perception and evaluating device cannot be
overstressed.
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sector, ignoring the financiers, collapsing the commercial banks and central bank
into one, and having the passive savers save in the aggregate bank, while the firms
borrow only from this bank.

The firms in this first closed model have no opportunity to innovate and carry no
long-term debt. Each firm � begins every period n with goods q �n that are to be
sold in the market. The total amount of goods offered for sale is defined by

Qn D
Z

q�n d�: (1.1)

Each firm � also borrows cash b �n from a central bank, with 0 � b �n �
.pnq

�
n /=.1 C �/ , where pn is the price of the good in period n and � > 0 is the

interest rate. There is no demand function in this model, and the prices are formed
endogenously as will be explained below.

The firm spends the cash b�n to purchase the amount of goods i�n D b�n=pn as
input for production and begins the next period with an amount of goods

q �nC1 D f .i�n /:

Here f .�/ is a production function, which satisfies the usual assumptions. During
period n, each firm � earns the (net) profit

��n D pnq
�
n � .1C �/b�n ;

since it must pay back its (short-term) loan with interest. The goal of the firm is to
maximize its total discounted profits11

1X

nD1

�
1

1C �
�n�1

� ��n :

In a given period n, the total profits generated by all the firms are

˘n D
Z
� �
n d� :

The profits ˘n are distributed to the owner agents in equal shares at the end of the
period.

The owner agents are now considered. A typical owner agent ˛ holds money
m˛n at the beginning of each period n. The agent bids an amount of money a˛n with
0 � a˛n � m˛n C ˘n=.1 C �/, which buys him an amount x˛n D a˛n=pn of goods

11In institutional fact, a large firm has a considerable constituency of customers, employees, the
government, and others, as well as the owners.
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for immediate consumption. Any extra money an owner agent has is deposited and
earns interest at rate �. The agent begins the next period with cash

m˛nC1 D .1C �/
�
m˛n � a˛n

	C˘n :

Each agent ˛ seeks to maximize his total discounted utility

1X

nD1
ˇn�1u.x˛n / ;

where u is a concave increasing utility function and 0 < ˇ < 1 is a given discount
factor.

Also considered is a typical saver agent � , who holds m�n in cash at the start of
period n. The saver bids an amount c�n of cash with 0 � c�n � m�n , which buys him
a quantity y�n D c�n=pn of goods, and starts the next period with

m�nC1 D .1C �/ �m�n � c�n
	

in cash. If v.�/ is his utility function, with the same properties as u.�/ , the saver
agent’s objective is to maximize the total discounted utility

1X

nD1
ˇn�1 v.y�n /:

The total amounts of money bid in period n by the owner agents, the firms, and
the saver agents are

An D
Z

a˛n d˛ ; Bn D
Z

b �n d� and 	n D
Z

c�n d�;

respectively. The price pn is formed as the total bid over the total production

pn D An C Bn C 	n

Qn
:

An equilibrium is constructed as follows. Suppose that all owner agents begin
with cash MA

1 D mA > 0, all saver agents begin with cash M	
1 D m	 � 0, and all

firms begin with goods Q1 D q > 0. Thus, the total amount of cash M1 D MA
1CM	

1

across agents is equal to

m D mA C m	 ;

and the proportion of money held by the saver agents is


 D m	

m
D m	

mA C m	
; with 0 � 
 < 1:

Suppose that the bids of the agents and firms are



18 M. Shubik and W.D. Sudderth

a1 D am; b1 D bm; c1 D cm;

that is, proportional to the total amount of cash, so that the price is also proportional
to this amount:

p1 D p.m/ D .aC bC c/m

q
:

Then the profit of each firm is

˘1 D p1q � .1C �/b1 D .aC c � �b/m;

the cash of each owner agent at the beginning of the next period is

MA
2 D .1C �/ �mA � am

	C˘1;

and the cash held by each saver agent is

M	
2 D .1C �/ �m	 � cm

	
:

Thus, the total amount of cash held by all agents at the beginning of the next period is

M2 D MA
2 CM	

2 D .1C � � �.aC bC c//m D �m;

where we have set

� D 1C � � �.aC bC c/:

Define

r D .1C �/.1 � ˇ/
�

: (1.2)

The following theorem was established in Karatzas et al. (2006).

Theorem 3. Suppose that there exists i� with f 0.i�/ D .1 C �/=ˇ . Then there is
an equilibrium for which, in every period: each firm inputs i�, produces q� D f .i�/,
and bids the amount bn D b�Mn ; each owner agent bids an D a�Mn ; and each
saver agent bids cn D c�Mn . Here

a� C b� C c� D r ; b� D r

q�
� i� ; c� D .1 � ˇ/
 (1.3)

and Mn D MA
n CM	

n is the amount of cash held across agents in period n .
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Furthermore, in each period n every owner agent consumes the amount x� D
.1� �


1C� /q
�� i� , every saver agent consumes the amount y� D . �


1C� /q
� , whereas

every firm makes ��Mn in profits, with �� D r � .1C �/b�.
It is shown in Karatzas et al. (2006) that, in the equilibrium of Theorem 3,

the consumption and total discounted utility of the owner agents are decreasing
functions of �. Such agents prefer as low an interest rate as possible. Similarly,
the firms also prefer an interest rate as close to zero as possible, in order to
maximize their profits. But the situation of the saver agents is subtler: under certain
configurations of the various parameters of the model (discount factor, production
function, utility function), they prefer as high an interest rate as possible, whereas
under other configurations, they settle on an interest rate �� 2 .0;1/ that uniquely
maximizes their welfare.

We note that the presence of bank deposits at a positive rate of interest enables
the creation of a group of individuals who live off the earnings of their money. Thus,
even in this simple model, a conflict arises over setting the interest rate with the firms
and entrepreneurs pressing the central bank for a lower rate and the pensioners for
a higher rate.

Let

�� D 1C � � �.a� C b� C c�/:

Then money and prices inflate (or deflate) at rate �� in the equilibrium of Theorem 3.
We also have a� C b� C c� D r, so that the Fisher equation �� D ˇ.1C �/ holds.

Remark 1. By setting 
 D 0 in Theorem 3, we obtain an economy with only
producer firms and owner-consumer agents.12 We similarly dispense with saver
agents in the models below. This will be useful in illustrating the basic problems
with the circular flow and money supply with innovation in a simple context. Also,
we take � D ˇ.1C �/ D 1 so that there is no inflation.

1.9 Innovation in an Asset-Poor Economy: Breaking
the Circular Flow

As in the previous models, we aggregate all goods in the model of this section
into a single perishable consumable that is utilized in consumption or production
or consumed in innovation. There is no capital stock, such as steel mills. There
is no “fat” in the economy; resources for innovation must come directly out of
consumption resources.

12Of course, the proportion 
 has to be strictly less than one; for otherwise, there is no one to
engage in productive activity, own the firms, or receive their profits, and the model unravels.
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1.9.1 The Meaning of an Asset-Poor Economy

In actuality, a modern economy is rich in real durable assets with a time profile
of durables of many ages that are consumed only in production, not consumption.
Gross domestic product may be split into consumption and investment. If we
consider around 70% in consumption, then we note that at market prices, the
value of real assets such as steel mills, automobile factories, houses, automobiles,
machinery, land, and other consumer durables are priced probably between 5 and
10 times the value of consumption.13 None of these items are meaningfully placed
directly in the utility functions of the individuals. Furthermore, it is the services of
consumer durables that are ultimately valued and not the durables themselves. This
is even truer of items such as steel mills. In the models considered so far, we have not
indicated that the presence of this large mass of assets owned by individuals may be
such that the loss or exchange of a small percentage of these assets while pursuing
innovation will hardly change the consumption of the owners of large amounts of
real assets.

In a poor country, the amount of available assets relative to consumption will be
much smaller than in a rich one. We consider in this section the extreme simplifying
case where innovation must come directly out of consumption. This makes it easier
to be specific about the breaking of the circular flow of capital and the match
between real assets and money.

In essence, innovation is nothing other than the execution of an idea for a
new process to rearrange and employ existing assets in a different manner.14 It
is a breaking of equilibrium that in a rich country calls for an alternative use for
productive assets but does not directly cut down heavily on current consumption.
In contrast, in an asset-poor economy, an immediate sacrifice in consumption is
called for.

1.9.2 Innovation in an Asset-Poor Economy

We consider a model with a class of identical manufacturers; a class of identical,
individual consumers, who also own the firms; and an outside or central bank.

There are several possible models that depend on who is in control of the firm
and who finances the innovation. Here we assume the managers are in control,
the owners are passive, and the central bank is willing to create new money to
make investment loans. Many variants are found in a modern economy; however,

13These are crude approximations based on the Statistical Abstract of the United States for GNP,
amount and age of capital, and Cobb–Douglass production.
14Bankruptcy in a basic way is similar to innovation in the sense that it involves a nonequilibrium
redeployment of assets.
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the model selected serves adequately to illustrate the problems with financing and
innovation and decrease in purchasing power of the owner-consumers brought about
by the creation of new credit.

1.9.2.1 A Model with Managerial Control and Central Bank Lending

As in the model of Sect. 1.8, there is a continuum of firms � 2 J D Œ0; 1�. Each
firm � begins each period n with goods in process q�n to be sold in the market and
borrows cash b�n from the central bank to purchase goods i�n D b�n=pn as input for
production. Each firm � begins in period 1 with no long-term debt, but may borrow
an amount of money c� from the bank to purchase goods j� D c�=p1 to be used
in innovation. The interest on this long-term debt must be paid in every period, and
the short-term loan b�n must be paid back with interest at the end of each period
n. In general, the long-term rate �� might differ from the short-term rate, but it is
sufficient and simpler to assume that they are equal to a common value � > 0. In
order that a firm be able to meet its debt obligations, the bid b�n is restricted to lie in
the interval Œ0; .Opnq�n � c��/=.1C �/�, where Opn is the bank’s estimate of the price
pn in period n. (In a rational expectations equilibrium, Opn D pn.) The bank may also
impose an upper limit E on the long-term loan c� .

As in the model of Sect. 1.5.1, all firms begin in period 1 with the same
production function f1, and thus, a firm � will begin period 2 with goods q�2 D f1.i

�
1 /.

However, a successful innovation results in the improved production function f2.
Thus, in periods after the first, there are two types of firms—those of type 1 that
failed in the attempt at innovation and continue with production function f1 and the
type 2 firms that succeeded and have f2.

The (net) profit ��n of a firm � in period n is the income from its sales in the
period minus its interest payments:

��n D pnq
�
n � .1C �/b�n � �c�:

Each firm � seeks to maximize its total discounted profits:

1X

nD1

�
1

1C �
�n�1

� ��n :

The total profit in period n of all the firms is the integral

˘n D
Z
��n d�

and is paid to the consumer-owners in equal shares at the end of the period, as is
explained below.
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Because we again look for a type-symmetric equilibrium, we assume that all
firms begin period 1 with the same quantity q1 > 0 of goods, and we often omit the
superscript � below. When all firms begin in the same state, make the same bids b1
and c, and earn the same profit �1 D p1q1� .1C�/b1��c, the total profit and total
goods in period 1 simplify to

˘1 D
Z
�1 d� D �1; Q1 D

Z
q1 d� D q1:

Suppose W.q1/ is the overall value of the game to a firm. Let W1.q2; c/ be the
value to a firm beginning period 2 with goods q2 after a failed investment of c, and let
W2.q2; c/ be the corresponding value after a successful investment. Let �.c=p1/ D
�.j/ be the probability of success when c=p1 D j is invested in innovation. Then the
value functions satisfy the following optimality equations:

W.q/ D sup
0�b� Opq��c

1C�

0�c�E

�
pq � .1C �/b � �cC 1

1C � �
��
1 � �

�
c

p

��

�W1

�
f1

�
b

p

�
; c

�
C �

�
c

p

�
�W2

�
f1

�
b

p

�
; c

���
; (1.4)

where

Wk .q; c/ D sup
0�b� Opq��c

.1C�/

�
pq � b.1C �/ � �cC 1

1C � �Wk.fk.b=p/; c/

�
(1.5)

for k D 1; 2.
For simplicity, we have suppressed super- and subscripts above and will often do

so below as well. In both (1.4) and (1.5), the notation Op is for the bank’s estimate
of the price for goods in the period, whereas p denotes the price actually formed as
will be explained below.

In every period n � 2 after the first, there will be two types of firms, those called
type 1 which have failed in the attempt at innovation and must continue with the
production function f1 and those called type 2 which have succeeded and henceforth
have the improved production function f2. There will be a fraction � D �.c=p1/ of
firms of type 2 and N� D 1 � � D 1 � �.c=p1/ of type 1 in all periods after the first.

In seeking a type-symmetric solution, we will assume that at the beginning of
periods n � 2, all firms of type 1 (respectively type 2) will hold the same quantity
of goods q1n (respectively q2n) and earn the same profit �1n (respectively, �2n) in the
period. Thus, the total profit and totals goods in period n are given by

˘n D N��1n C ��2n; Qn D N�q1n C �q2n:
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In addition to the firms, there is also a continuum of consumer-stockholder agents
˛ 2 I D Œ0; 1�. Each agent ˛ begins every period n with cash m˛n and bids a˛n 2
Œ0;m˛n � to purchase goods a˛n=pn for immediate consumption. The agent deposits the
excess cash m˛n � a˛n in the bank and gets back .1C �/.m˛n � a˛n / at the end of the
period.

The accounting profit Dn of the bank in period n consists of its earnings from the
loans made to the firms less the interest paid on the deposits of the owners. Thus,

Dn D � �
�Z

b�n d� C c �
Z
.m˛n � a˛n / d˛

�
: (1.6)

For this model, we assume that the profit of the bank, like that of the firms, is paid to
the owners in equal shares at the end of the period. (This assumption and a possible
alternative are discussed in Sect. 1.9.2.3.) Thus, an owner agent ˛ begins period
nC 1 with cash

m˛nC1 D .1C �/.m˛n � a˛n /C˘n C Dn: (1.7)

The value function V for an owner satisfies

V.m/ D sup
0�a�m

�
u

�
a

p

�
C ˇV..1C �/.m � a/C DC˘/

�
; (1.8)

where u is a concave, nondecreasing utility function and we have again suppressed
super- and subscripts.

The price pn in each period n is formed as the ratio of the total cash bid in the
goods market to the total amount of goods for sale. In the type-symmetric case, the
prices are given by

p1 D a1 C b1 C c

q1
; pn D an C N�b1n C �b2n

N�q1n C �q2n
; n � 2:

If m1 D m, then by (1.7)

m2 D .1C �/.m � a1/C˘1 C D1

D .1C �/.m � a1/C p1q1 � .1C �/b1 � �cC � � Œb1 C c � .m � a1/�:

Now p1q1 D a1 C b1 C c. Substitute this into the previous equation, and simplify
the result to see that m2 D mC c. A similar calculation shows that mn D mC c for
all n � 2. Thus, in this model, the money supply has an initial increase because of
the long-term loan in the first period and then remains constant.
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1.9.2.2 Stationary Equilibrium and the Question of Convergence

A stationary equilibrium for the economy of the previous section is an equilibrium
in which bids, prices, and the quantities of goods and money remain constant.
The economy experiences a shock due to innovation in the first period after which
there is always a fixed fraction N� of type 1 firms and � of type 2 firms. We cannot
expect to have a stationary equilibrium until sometime after the first period. Under
some additional regularity assumptions, there does exist a type-symmetric stationary
equilibrium for the economy as it is configured after the initial shock.

Assume now that the production functions f1; f2 and the utility function u are
strictly concave and continuously differentiable and that the production functions
satisfy the condition:

fk.0/ D 0; f 0k.0/ D1; lim
x!1 f 0k.x/ D 0; k D 1; 2:

Suppose as above that there is a fraction N� of type 1 firms having production
function f1 and holding goods q1, a fraction � of type 2 firms having production
function f2 and holding goods q2, and a continuum of consumer-owner agents ˛ 2
Œ0; 1� each with cash m.

Consider the Bellman equation (1.5), and, for k D 1; 2, let

 k.bk/ D pqk � .1C �/bk � �cC 1

1C �Wk.fk.bk=p/; Qp/:

Recall that Qqk D fk.bk=p/, so  k.bk/ is the expression inside the supremum in (1.5).
Standard arguments show that

@Wk

@qk
.qk; p/ D p:

Consequently, the Euler equations take the form

 0k.bk/ D �.1C �/C
1

1C � �
1

p
� f 0k.bk=p/ � Qp D 0

This holds if and only if

f 0k.bk=p/ D .1C �/2 �
p

Qp : (1.9)

In stationary equilibrium, there will be a fixed price p for goods so that p D Qp and

f 0k.bk=p/ D .1C �/2; k D 1; 2:

The input of every type k firms is in every period i�k D .f 0k/�1..1C �/2/ with output
q�k D fk.i�k /.
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The Euler equation for a consumer-owner takes the form

1

p
u0
�
a

p

�
D ˇ.1C �/

Qp u0
� Qa
Qp
�
D 1

Qpu
0
� Qa
Qp
�
; (1.10)

where ˇ.1 C �/ D 1 by assumption and Qa and Qp are the agent’s bid and the price
in the next period. But in stationary equilibrium, a D Qa and p D Qp. So the only
condition on the optimal bid a� is that 0 � a� � m.

Let Q� D N�q�1 C �q�2 be the total production when firms of type k input i�k for
k D 1; 2. Now in order to purchase i�k , firms of type k must bid b�k D pi�k . Thus, the
price must satisfy

p D a� C N�b�1 C �b�2
N�q�1 C �q�2

D a� C N�pi�1 C �pi�2
N�q�1 C �q�2

;

or equivalently

a�

p
D N�.q�1 � i�1 /C �.q�2 � i�2 /;

which means that the owner agents consume all the goods produced by the firms
that are not used by the firms as input for production of goods for the next period.

Let p D m=Q� so that

b�k D pi�k D
m

Q�
� i�k ; k D 1; 2

and

a� D m

Q�
� ŒN�.q�1 � i�1 /C �.q�2 � i�2 /� < m:

Observe also that, for k D 1; 2,

q�k D fk.i
�
k / D

Z i�k

0

f 0k.x/ dx � f 0k.i�k / � i�k D .1C �/2 � i�k > .1C �/ � i�k :

Thus, the quantities q�k �.1C�/i�k ; k D 1; 2 are strictly positive. Now the conditions
on the bids b�k that

b�k �
pq�k � �c
1C �

can be rewritten as

�c � pq�k � .1C �/b�k D
m

Q�
� .q�k � .1C �/i�k /:
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By assumption, the long-term debt c cannot exceed the boundE. Thus, the inequality
above will hold if

E

m
� q�k � .1C �/i�k

�Q�
:

Theorem 4. If the ratio E=m is sufficiently small, then there is a stationary
equilibrium such that, in every period, each firm of type k inputs i�k , produces
q�k D fk.i�k /, and bids b�k D m

Q�

� i�k ; each owner-consumer agent bids a� D
m
Q�

ŒN�.q�1 � i�1 /C �.q�2 � i�2 /�. Furthermore, in every period, every owner-consumer
agent consumes the amount of goods N�.q�1 � i�1 /C �.q�2 � i�2 /, and every firm of type
k makes the profit ��k D m

Q�

� .q�k � .1C �/i�k / � �c.
Proof. The bids a� and b�k ; k D 1; 2 satisfy their Euler equations, and the
appropriate transversality condition is trivial because, by stationarity, the payoffs
are the same in every period.

We suspect that there is a theorem showing that, possibly under some additional
conditions, there is convergence to stationary equilibrium for this simple model.
However, even if this is true, convergence may be slow, and a general analytic
solution to the model with innovation seems unlikely. Some simple examples for
which convergence is fast are in Sect. 1.9.3.

1.9.2.3 The Modeling of Central Bank Profits

In the model of Sect. 1.9.2.1, it is assumed that the amount �c of long-term interest
is part of the accounting profit Dn [defined in (1.6)] of the central bank and is paid
in each period to the consumer-owner agents [see (1.7)]. This is one of several fairly
natural models each with different financial, economic, and political implications.
One possibility is to neutralize the money as it comes in, leaving a deflationary trend
in place. Other alternatives are for the bank to subsidize some groups of agents
with this income or spend it to buy resources (such as foreign aid subsidies for
purchases in the economy, or the destruction of government purchases of resources
for a foreign war). As many institutional variants can be defined, the choice among
them depends on the questions to be answered and their empirical relevance.

In order to define the minimal viable model, we have collapsed five banking
functions into a single institution. They are:

1. Financing circulating capital or goods in process,
2. Accepting consumer savings,
3. Making short-term consumer loans,
4. Making long-term investment banking loans,
5. Varying the money supply.
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Here we have chosen a model with only three types of agents: the firms, the
consumer-owners, and a banking system. This seems to be the minimal number
necessary to build a playable game that illustrates the phenomenon of breaking the
circular flow of capital.

1.9.3 Two Simple Examples

In this section, equilibria are calculated for two very simple examples. In both
examples, the production functions f1 and f2 are defined as follows:

f1.i/ D
(
2i; 0 � i � 1;
2; 1 < i;

and

f2.i/ D
(
4i; 0 � i � 1=2;
2; 1=2 < i:

Note that the maximum production level is 2 for both production functions, but
that f2 is more efficient and attains the maximum with an input of 1/2, whereas f1
requires an input of 1. For both examples, we assume that � D �� D 0:05 and take
ˇ D 1=1:05.

The first example treats a consumer-producer who labors in isolation to produce
goods for his personal consumption and has the opportunity to innovate. The second
example contrasts the first with the situation in a monetary economy with many
firms and owner-consumers.

1.9.3.1 Robinson Crusoe Revisited

Consider first the situation of Robinson Crusoe equipped with the production
function f1 and without the opportunity to innovate. Suppose that Crusoe begins with
a quantity of goods q > 0, selects an amount i; 0 � i � q to put into production,
and consumes the remaining q � i resulting in a utility of u.q � i/. He then begins
the next period with goods Qq D f1.i/ and continues the game.

Let V1.q/ be the value of this one-person game to Crusoe. As in Sect. 1.4, V1
satisfies the Bellman equation:

V1.q/ D sup
0�i�q

Œu.q � i/C ˇV1.f1.i//�:
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For simplicity, we assume that Crusoe is risk neutral with utility function
u.q/ D q. It is not then difficult to check that a stationary equilibrium has q D 2

and i D 1 at every stage of the game. Thus,

V1.2/ D
1X

nD1
ˇn�1u.1/ D u.1/

1 � ˇ D
1

1 � 1=1:05 D 21:

Similarly, if Crusoe begins with the production function f2, a stationary equilib-
rium has q D 2 and i D 1=2 with value

V2.2/ D
1X

nD1
ˇn�1u.2� 1=2/ D 3=2

1 � 1=1:05 D 31:5:

Next, assume that Crusoe begins with q D 2 and the production function f1,
but has the opportunity to invest a portion of his goods in an attempt at innovation.
Suppose further that the opportunity to innovate can be represented by a binary
lottery ticket that can be obtained by utilizing j D 1=2 units of input material. The
ticket is such that with probability 1=2 the innovation succeeds and Crusoe has the
production function f2 thereafter, but also with probability 1=2 it fails and Crusoe
must continue with f1. Let V D V.2/ be the value of this new game.

Now Crusoe can reject the investment opportunity and continue with his original
production function f1 thereby earning V1.2/ D 21 or make the investment and
receive in expectation

sup
0�i�1:5

�
u.1:5 � i/C ˇ

�
1

2
V1.f1.i//C 1

2
V2.f1.i//

��
:

The optimal choice for the input is again i D 1, and the quantity above equals

u.1=2/C 1

1:05

�
1

2
V1.2/C 1

2
V2.2/

�
D 1

2
C 1

2:1
f21C 31:5g D 25:5:

Since 25:5 > 21, it pays the nonmonetary Crusoe to innovate. A smaller value
for the discount factor ˇ, say ˇ D 0:8, would go against innovation.

1.9.3.2 A Simple Monetary Economy

The following is an example of the model with many firms and consumer-owners
that was presented abstractly in Sect. 1.9.2. The resource base per capita is the same
as in the previous example, but consumers now find themselves in an economy that
uses fiat money.

Let m D 1 be the amount of money held initially by the consumers, and suppose
that the firms begin with goods q D 2 and the production function f1. Assume first



1 Breaking the Circular Flow: A Dynamic Programming Approach to Schumpeter 29

that the firms do not attempt to innovate. The optimal input for the firms is 1 unit of
goods. Thus, if the price of goods is p, the firms borrow and then bid b D p thereby
obtaining i D b=p D 1 as input in order to produce Qq D f1.1/ D 2 for the next
period. The (short-term) loan to the firms is financed by the deposit of m� a D b of
the owner-consumers. So the owners bid a D m � b D m � p and

p D aC b

q
D m � pC p

q
D m

q
D 1

2
:

The economy is in stationary equilibrium, and each period the firms earn the profit

� D pq � .1C �/b D 1

2
� 2 � 1:05 � 1

2
D 0:475

with a total discounted return of

W1.2/ D
1X

nD1

�
1

1C �
�n�1

� � D 9:975: (1.11)

The consumers, like Crusoe in the previous example, are assumed to be risk neutral
with utility function u.q/ D q. In each period, they receive in utility u.a=p/ D
u.1/ D 1 with a total discounted utility of

V1.1/ D
1X

nD1
ˇn�1u.1/ D 21: (1.12)

Now suppose that the firms have the opportunity to innovate. The physical
aspects of the economy will be the same as for Crusoe in the previous example,
but prices and money will now play a role.

By investing 1/2 unit of goods, each firm can, independently of the others,
purchase a lottery that with probability 1/2 results in the improved production
function f2 for the firm. But, also with probability 1/2, the attempt fails thus
causing the firm to continue with f1. The question for the managers of the firms
is whether they can improve upon the return achievable without making the attempt
at innovation.

To answer this question, assume that the firms do purchase the lottery. Suppose
that the price of goods in the first period is p. The firms will need to bid b C c D
p C p=2 D 1:5p in order to purchase 1 unit of goods as input for production and
1/2 unit for the innovation attempt. The short-term loan of b D p is again financed
by the consumer-owners who bid a and deposit m� a D b D p as before. However,
the bid c D p=2 is financed by a long-term bank loan which must be repaid over
the infinite future in payments of �c in every period. The price of goods in the first
period is then

p D aC bC c

q
D m � pC p=2C p

2
D 1C p=2

2
:
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So the price is p D 2=3, and b D 2=3; a D 1 � p D 1=3 D c. The firms earn in the
first period the profit

� D pq� .1C �/b � �c D 2

3
� 2 � 1:05 � 2

3
� 0:05 � 1

3
D 0:6167:

The owner-consumers receive in the first period

u.a=p/ D a=p D 1=3

2=3
D 1=2:

In all subsequent periods, the unsuccessful firms called type 1 with production
function f1 bid b1 D p in order to input 1 unit of goods, while the successful firms
called type 2 with production function f2 bid b2 D p=2 in order to input 1/2. As
before, these short-term loans are financed by the owner-consumers, who now hold
cash mC c D 1C 1=3 D 4=3. So they deposit

4=3� a D 1

2
b1 C 1

2
b2 D 3

4
p:

Hence, the price in periods after the first satisfies

p D aC 1
2
b1 C 1

2
b2

q
D

4
3
� 3

4
pC 3

4
p

2
D 2=3;

that is, the price equals 2/3 in every period. (One should not expect constant prices
in general. This example was constructed to make for a simple analysis.) Notice
that because of the constant price and the constant derivative u0 D 1, the Euler
equation (1.9) is satisfied at every stage.

In periods after the first, the type 1 firms have the profit

�1 D pq � .1C �/b1 � �c D 2

3
� 2 � 1:05 � 2

3
� 0:05 � 1

3
D 0:6167;

type 2 firms make

�2 D pq � .1C �/b2 � �c D 2

3
� 2 � 1:05 � 1

3
� 0:05 � 1

3
D 0:9667;

and owner-consumers receive

u.a=p/ D a=p D 5=6

2=3
D 5=4:
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The total expected value to a firm is

W D W.2/ D � C 1

1C �

(
1

2

1X

nD1

�
1

1C �
�n�1

�1 C 1

2

1X

nD1

�
1

1C �
�n�1

�2

)

D 0:6167C 1

1:05

�
1

2
� 21 � :6167C 1

2
� 21 � 0:9667

�
D 16:4507:

Since 16:4507 > 9:975, the innovation lottery is good for the firms. (The increase
in profits is, in part, due to the inflated price of goods.)

The total expected utility for an owner-consumer is

1=2C ˇ
1X

nD1
ˇn�1 � 5

4
D 25:5;

which is greater than 21. So the lottery is good for consumers also.

1.10 Summary Remarks

The simple models of this essay serve to reflect mathematically the meaning of
Schumpeter’s breaking of the circular flow of capital in a closed economy and to
illustrate the nature of the cash flows in innovation. In the models here the funds for
innovation come from a central bank. Historically, both private and public resources
have been involved in innovation.

We believe that mathematical models are, at best, of highly limited scope in
applications of the social sciences to everyday life, but they are critical in the
arduous task of providing a sound logical structure to help in understanding the
dynamics of an economy within any society. Our approach here has attempted to
provide some of the insight we need to be able to recognize that there is a unified
approach that encompasses economic theory from Cournot, Jevons, Walras, and
many others to Schumpeter, Keynes, and their successors. This involves at least
six steps of increasing complexity and diversity:

1. General equilibrium theory presents a timeless, preinstitutional, parameter-free
basic abstraction of the conditions required for the existence of an efficient price
system where individual optimization requires no more information than the
existence of these prices.

2. The intellectual cost of general equilibrium was to cut out dynamics. An
intermediate step between general equilibrium and full dynamics can be taken
by concentrating on minimal process models of an economy provided with a
context that includes initial conditions and a law of motion for the dynamics that
depends on the actions of the agents and random events. In the simple models
studied here, the only randomness occurs at the first stage of play. Such games
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are sufficiently simple with minimal information conditions (one information set
per player) that the behavioral assumption of Nash noncooperative behavior, or
in this simple instance, rational expectations, merits consideration.15

3. Once the models suggested above are considered for two or more time periods,
the proliferation of special cases, information conditions, and parametric require-
ments become astronomical. Ad hoc building of the rules of the game can in
general be justified, but the behavioral conditions as to what constitutes a solution
become critical as was noted in Kirman’s relevant critique (Kirman 1992).

4. Dynamic programming methods have been applied by Bewley (1982) to explore
the inventory theory properties of the storage of money under uncertainty, then
by Lucas (1996) and associates, promoting direct application of low-dimensional
rational expectations, primarily representation models to macroeconomics. Sim-
ilar methods have been used by Karatzas et al. (2006), Karatzas et al. (1994),
Thompson and Shubik (1959) and others to help provide a modeling basis
for microeconomics dynamics and testable experimental games (Angerer et al.
2010).

5. The limitations of low-dimensional rational expectations are so painfully clear
that as we attempt to draw nearer to the application of multistage models to
industrial organization and macroeconomic application, the need to resort to
simulation, gaming, and explicitly ad hoc structural and behavioral assumptions
becomes critical as is manifested in the work of Dosi et al. (2013) and others.
Ad hoc studies of specific markets and interacting groups of firms are called for
when there is no substitute for knowing the business and structural and behavioral
assumptions are specifically laid out.

6. There is no royal road to economic dynamics, but a careful deconstruction
of the assumptions about structure and behavior concentrating on context and
obedience to the sociopolitical environment and the laws of physics takes us
closer to being able to reconcile elegant economic abstractions with a mutating,
organic, almost biological growth that reflects socio-politico-economic actuality.
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Chapter 2
A Review in Campaigns: Going Positive
and Negative

Grisel Ayllón Aragón

Abstract In this review, we go through the negative campaign literature to highlight
the importance of economic inclusion in the topic. Psychology and political science
have been studying the phenomena for the last 20 years; however, economic models
have not achieved the goal of interpreting and forecasting the strategical behavior
of candidates. Voting models can be classified in two: spatial and probabilistic
models. Most of the work done consider the possibility of doing either positive
or negative campaign, but not both. We look forward to awake curiosity and
better understanding of the subject, starting with a discussion of the definition of
a “negative campaign.”

Keywords Campaigns • Negative campaign • Political economy • Spatial •
Probabilistic models • Incentives campaigns • Incentives • Spatial competition •
Probabilistic voting • Voting • Negative messages • Positive messages • Credi-
bility

2.1 Introduction

Political campaigns have changed in the past two decades, not only by the means
of communication but in the type of messages sent to voters. Commonly, political
economy has taken the fact that a campaign is useful to send messages about the
policy the candidate would apply if going into office. The most striking, and at the
same time, the simplest result we have, is Down’s model (1957) where the candidate
which announces the policy closest to the median voter’s best option will win the
election. This result turns out like this, as we assume single-peak preferences of each
voter, that is, all voters have an ideal policy within a known policy’s space, and any
alternative will decrease his welfare as it goes away from their best personal policy
option. The immediate consequence of this model is the prediction that radical

G.A. Aragón (�)
Tecnologico de Monterrey, Campus Ciudad de Mexico, Calle del Puente 222, Col. Ejidos de
Huipulco, C.P. 14380, Mexico City, Mexico
e-mail: grisel.ayllon@itesm.mx

© Springer International Publishing Switzerland 2016
A.A. Pinto et al. (eds.), Trends in Mathematical Economics,
DOI 10.1007/978-3-319-32543-9_2

35

mailto:grisel.ayllon@itesm.mx


36 G.A. Aragón

candidates will never win and that, in the long run, all political parties will converge
their promises to the median voter’s ideal policy.

We could go deeper into the means by which candidates communicate with the
possible voters, but in this review, we are interested in describing the modeling
about the type of messages that they send in a campaign. Empirical works have
shown that spots, announcements, or any kind of advertisement is no longer done
with the objective of promoting a specific characteristic of the candidate. Messages
concerning about their opponents have increased; however, it is too risky to say that
we are dealing with an increment in negative campaigning. There is no consensus
among economists about the definition of a “negative campaign.” In fact, it might
be that the case where campaigning focuses on messages about the contenders on
the lack of personal abilities, results obtained in a sphere different from the issues
discussed in the campaign, or on the real position of the policies in debate on
the current campaign. In any case, the negative messages are directed to harm the
desirability and credibility of the candidates.

Not only in the USA has the expenditure in campaigns increased in the last years
but it is a worldwide phenomenon. In the 1996 US presidential elections, 6% of
the expenditure in Clinton’s campaign was for negative advertising versus a 70%
of negative campaign conducted by Bob Dole. UNDP has run surveys in different
Latin–American countries to evaluate the level of negative campaigning and the
impact of mass media in voters. It was shown that, in Mexico, 11% of the spots were
conducting a negative message for the opponent candidate in the 2006s presidential
elections, and the messages increased as the campaign got closer to an end. Martínez
and Aguilar (2013) highlighted that time is a crucial aspect in the campaigns, as the
length of it can create spaces to impact at a larger scale into swinger voters. Hence,
it is a fact that candidates not only expose their political position to the voters, but
they also talk about the opposition. This information is transmitted to voters, so they
can create their expectations about the true position of the candidates.

The definition itself of negative campaigning differs from author to author.
Harrington and Hess (1996) bound the definition of advertisement directed to
change the perception of a candidate’s ideology. Mattes (2007) defines it as the
set of actions encouraged by political actors who talk about one’s opponent through
the character or valence dimension. The classification of the messages might be
subject to the criteria of the researcher, and we do not find clear parameters to
distinguish one from the other. There is an emerging type of negative campaign
called contrasting campaign. This is a subclass of negative campaigns, whose
principal strategy is to reveal or say something contrasting what a candidate has
said of himself and what it has been really doing. This type of campaign is having
a great impact in countries where explicit defamation and injury is forbidden in
the campaign, such as in Mexico.1 In the 2006 Mexican presidential elections the
winner candidate Felipe Calderón was 8% behind López Obrador 1 month before

1The electoral law (Código Federal de Instituciones y Procedimientos Electorales) forbids any kind
of negative campaign. Its Article 38 says: “Abstain from any expression involving diatribe, libel,
slander, libel, defamation, or demeaning to the citizens, public institutions or other political parties
and their candidates, particularly during election campaigns and political propaganda that is used
in an electoral period.”
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elections. Calderón started a campaign2 where he affirmed that Obrador was a
“danger” to Mexico, as he promised to reduce expenses and create economic growth
but instead had duplicated the debt in Mexico City, where he was the governor.
Another spot first shows how Obrador is asking for tolerance; afterward he appears
in another image contemptuously calling the current president. Felipe Calderón
pronounced about the “true” policies that Obrador would implement if running into
office versus what he promised to achieve. Even though Calderon did not give any
further proofs about his statements, he achieved to win the presidential election. This
campaign lasted 180 days, long enough to have an impact in the voters’ intention.
However, legislation has changed and campaigns last 95 days nowadays and any
attempt of defamation is punished. The effects of this new law have not been yet so
clear. At least, in the last presidential election, the winner candidate had since the
beginning a clear advantage and he was not beaten.

This review is intended to go over the different views and approaches done
about negative campaigns. There exists a vast literature in negative campaigning in
psychology and political science but not in economics. Few formal models introduce
the concept of a negative campaign, and the existing literature has some drawbacks.
We are going to present a brief view of the first two sciences about the theme, and
then we will go through the main papers done in the economics field.

2.2 Negative Campaigns in Different Fields

Psychology studies give three arguments for the existence of negative campaigning:
(1) it stimulates attention to and awareness of the campaign, (2) campaigns may
arouse anxiety which stimulates interest, and (3) negative campaign might be a sign
of a close race, which is directly related with the marginal utility of going to vote in
some cases. People are very aware of negative information; they attend to it more,
think about it more, and remember it better, and it is more powerful in shaping our
impressions of things (Hodges 1974). These authors argue that emotions are more
important than beliefs in predicting voting choice. However, they are aware that
there is fragmented evidence suggestion in the degree of effectiveness in the type
of messages that candidates send. However, the mainstream in psychology proposes
that a negative message is received deeper in the voters’ minds than a positive one.
Skowronski et al. (1989) showed that given equal amounts of positive and negative
messages about the characteristics of a person, the overall impression formed is
skewed toward the negative, and Richey et al. (1967) argued that negative data are
more persistent over time. Some of these authors have done experiments to prove

2Calderón posted 60 h of such TV spots in the last phase of the campaign and sent 40 million
e-mails with messages contrasting the promises of his contender. A deep analysis about such
election processes is due to the political scientist Sergio Aguayo [see Aguayo (2010)].
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how a negative message is more effective than any other; however, they do not prove
how it impacts the voting intention. With the lack of a control group, these findings
are descriptive but intriguing and motivating to model the candidates’ strategies.

Political science has focused in the study of the type of messages, frequency,
and possible causation of the phenomena. They have done a very tough job
of quantification of the spots, tweets, and any kind of political advertisement.
They have discussed the effectiveness of sending a negative signal, in terms of
voting. They assume that candidates choose the campaign strategy they believe
will give them the best chance to win (Bartels 1993); however, they do not model
or demonstrate how the incentive mechanism would work. For them, candidates
who expect to lose may attack harder the reputation of its contender, as they
have “nothing to lose.” Stevens (2009) reconsiders the validity of empirical and
theoretical research on negative campaigning through advertising, since he states
that most studies have only evaluated the role of volume of negative ads as beneficial
for voters. He asserts that proportion is also important since voters can be exposed
to a large volume of ads, but they can be relatively more exposed to a certain ad
so that relative exposure or proportion can have different and offsetting effects. The
rationale behind his thesis implies that the current evidence might be inconclusive
and ambiguous in terms of the nature of negative campaigns.

2.3 Modeling Negative Campaigns: An Economic Approach

The economic literature has focused mainly in the signaling of the position of the
candidates’ ideal policies; however, there are not so many models that have captured
the strategical point of view of the candidates, where they can have different types
of alternatives in their strategies’ space. Most part of the models are games where
candidates can send only one kind of messages to convince the voters. Political
economy literature has developed two different approaches: spatial and probabilistic
voting models. In the following paragraphs, we are going to number and state the
main idea of some of them.

Polborn et al. (2006) develop a model in which candidates can either send
a positive or a negative message to the voters. The candidates have unknown
qualities that will be signaled by the decision between doing positive or negative
campaigning; however, they cannot do both. Soubeyran (2009) provides sufficient
conditions for the existence and uniqueness of a symmetric Nash equilibrium where
candidates have as strategies: to attack and to defend. He considers that each
candidate has a transformation function which allows them to overcome the attacks
and turn them into a positive effect in the probability of winning. His main question,
further from being how to win when you can do negative campaign, is how these
campaigns affect voter turnout. Aragonés et al. (2007) analyze the conditions under
which candidates’ reputations may affect voters’ beliefs over what policy will be
implemented by the winning candidate of an election. They use a dynamic game
where candidates can promise a policy different from their ideal point even though
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the true ideal policies are observable. Rational voters will believe the promises
which will be implemented in the future as long as the reputation has value for
the candidates. Callander et al. (2007) provide a model where candidates are willing
to lie about their policy’s intentions creating an effect on other candidates’ behavior,
changing the nature of political campaigns.

Harrington and Hess (1996) consider that political campaigning is not as simple
since candidates may sometimes want to reveal the position of the rival and
vice versa. For them, the allocation of resources between positive and negative
campaigning is crucial for candidates, since engaging in each type of campaign
is costly. The model consists of a one-shot game of spatial competition; candidates
have two dimensions: issue and valence. At the initial phase of the game, voters have
initial perceptions of candidates’ personal and policy attributes, and candidates must
allocate resources of any of these. They restrict the concept of advertising only to
the ideology space, that is, only actions related to the candidate’s issues. They show
that candidates who are weak on the character dimension (personal attributes) will
be the ones who will engage into negative campaigning, while stronger candidates
on the valence dimension will engage into a rather positive campaign. Chakrabarti
(2007) extends the model developed by Harrington and Hess by including negative
campaigning through the valence dimension as well as on the issue dimension. The
effect of introducing valence advertising would mean that candidates denigrate or
criticize the opponent on the character attributes. When a candidate’s valence index
is relatively high, the type of campaign the candidate will engage in will be based
on valence issues, whereas if the valence index is low, the candidate will conduct
an ideological or issue campaign. Mattes (2007) defines negative campaigning as
actions encouraged by political actors who talk about one’s opponent through the
valence dimension. Each candidate inherits initial positions on both ideology and
valence; they compete by revealing the location of one candidate on only one
dimension. Voters decide depending on prior information about the candidates and
also on information given by each candidate during the campaign phase. The main
proposition of the model is that a candidate will engage in negative campaigning
if the voters value candidates on a valence basis dimension. These models are
embraced in a Hotelling–Downs framework, where the median voter will be the
pivotal one. They are not so interested in modeling how they get to an “ideal” policy,
but how they impact the vote intention or how they make face to it.

Skapedras et al. (1995) explored the incentives candidates have to engage
in negative campaign. They show that, with a two-candidate election, the front
runner will tend to skew his messages in a positive way. And in a three-candidate
competitions, they recognize two features: (1) when there is a candidate with a very
low support, he will only have a positive campaign; (2) the negative campaign will
only be directed to the strong candidates.

Another kind of economic models to study elections is based on probabilistic
voting models. A basic assumption in these models is that voters are uninformed,
and it is not clear who the pivotal voter is. Brueckner et al. (2013) develop a
probabilistic voting model with negative campaigning that extends the evidence
of other spatial competition models like those of Harrington and Hess (1996) and
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Chakrabarti (2007). According to them, probabilistic voting models allow stochastic
outcomes from voters’ decisions due to a valence effect which affects all other voters
making this model preferable to the classical framework. Under this model, the best
strategy a candidate can undertake is to locate near the median of voter’s preferred
policy position without bearing in mind where the opposition is located. Candidates
must decide two variables: stated position and the level of expenditure in negative
campaign seeking to maximize their expected utility function (the probability of
winning times the benefit of holding office minus the cost of ideological divergence).
For them, centrist candidates will engage in negative campaigning regardless of
the nature of their ideological positions (fixed or chosen), whereas more extreme
candidates devote their resources on positive campaign spending.

2.4 Final Remarks

The use of game theory to model the campaigns has faced different difficulties and
ambiguous results. It is a fact that candidates do not engage only in one type of
campaign. However, the definition of negative campaigning is still not so clear. This
can be harmful for the empirical works which try to test the theoretical models.
However, using the concept of contrast campaign can be of a great use. If we do
not need to classify the type of message sent but only quantify if the message
corresponds to his own characteristics of their contenders’, then it will be easier
to test the theoretical framework.

Different efforts have been done to explain the increasing volume in negative
advertisement. Some authors have focused in the difference between attacking in
a valence level or the ideological position. Beyond this issue, economists should
set a base model to identify the mechanism and the decision variables. Afterward,
a second question could be the dimension in which campaigns are more effective.
Furthermore, if a candidate is attacked, the final objective is one: harming credibility
to have less share of the mass of voters.

Instead of talking of a negative campaign in terms of saying a non-desirable
characteristic of the contender, we could look at the promises and pronouncements
that candidates announce to convince voters. Promises are all the messages done
to promote themselves and inform the voters about their policy intentions. Pro-
nouncements are those messages sent to voters about the policy intentions of the
contenders. We cannot separate these decision variables: they create a reputation
effect in the sender as well as in the contender. The threat of losing reputation,
hence, credibility for the next period, can help to elicit the true policy’s positions of
the candidates. Candidate’s promises are their real policies if the opportunity cost is
high enough. Therefore, the existence of pronouncements can be a tool to prevent
the candidates to promise the implementation of the median voter’s ideal policy.

Another natural question is not only who makes and how much negative
campaign, but does it work?
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Chapter 3
On Lattice and DA

David Cantala

Abstract We present an application where, in a matching market, Preferences of
one side of the market evolve all along the process of the sequential version of
the deferred acceptance (DA) algorithm, producing an agenda-dependent and stable
outcome. We also provide an example where agents stable matching within the
set of achievable matchings. The motivation for this application is simply to show
that the original DA algorithm is more versatile than suggested by Hatfield and
Milgrom(2005).

Keywords Deferred acceptance • Matching with contracts

3.1 Introduction

We present an application where, in a matching market, preferences of one side of
the market evolve all along the process of the sequential version of the deferred
acceptance (DA) algorithm, producing an agenda-dependent and stable outcome.
We also provide an example where agents of the offering side of the market do
not agree on which is the best/worst stable matching within the set of achievable
matchings. The motivation for this application is simply to show that the original
DA algorithm is more versatile than suggested by Hatfield and Milgrom (2005).

Gale and Shapley (1962) introduce the marriage game and the DA algorithm.
They consider a model where there are two sets of players, girls on the one hand
and boys on the other hand; girls have preferences over boys, and vice versa. The
problem consists in matching girls with boys—one girl with one boy—at a stable
assignment. Stability is a natural normative criteria: a matching is stable if partners
are acceptable to one another; moreover whenever a girl (boy) prefers a boy (girl)
to her (his) match, he (she) prefers his (her) mate to her (him). They establish a first
theorem: such a matching always exists since the DA algorithm always produces a
stable matching.
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The principles of the DA algorithm are the following:

1. fix the side of the market, girls or boys, which makes offers;
2. at each step of the algorithm, single agents on the offering side of the market

make offers to the favorite prospect to whom she did no make an offer yet;
3. agents on the accepting side consider her/his mate and the new proposals, and

tentatively accept her/his favorite prospect;
4. the process generates a sequence of tentative matchings, where agents on the

receiving side never regret to have turn down an offer. It ends when all agents
on the offering side either are matched or have made offer to all acceptable
prospects.

Roth and Sotomayor (1990) extend the problem to a setting where one side of
the market, firms, can hire many agents on the other side of the market, workers,
who can work for at most one firm. Thus, firms have preferences defined over
subsets of agents. They define the substitutability condition, which captures the idea
that the individual quality of workers contributes more to the value of a group of
workers than their complementarity. If preferences of firms are substitutable, again,
the existence results obtained for one-to-one markets naturally extend to the many-
to-one settings.

Gale and Shapley (1962) also establish that, whenever there are many stable
matchings, the opposition of interests between both sides of the market is sharp:
one matching is the girls best/boys worst stable matching; another one is the girls
worst/boys best stable matching. We call this result Theorem 2. It naturally triggers a
branch in the literature, pioneered by Knuth (1976), dedicated to the study of lattice
structures in matching markets. All these papers, however, use preference orders
in their definition of lattices. Blair (1988) establishes the lattice structure under
substitutability but with unnatural least upper and lower bounds. Other references on
the lattice structure in many-to-one and many-to-many markets and more restricted
preferences are Baiou and Balinski (2000), Alkan (1999, 2001, 2002), Alkan and
Gale (2003), Martínez et al. (2001), Echenique and Oviedo (2004, 2006), Fleiner
(2003).

Hatfield and Milgrom (2005) introduce the matching with contracts model
so as to underline analogies between many-to-one matching markets, the labor
market studied in Kelso and Crawford (1982), and package biddings from Milgrom
(2004) and Cramton et al. (2006) The strategy followed by the authors consists in
introducing a two-part model.

First, they introduce contracts, which are either doctor-hospital pairs or firm-
worker-wage triplets. We formalize the former case and recall the main ingredients
of their model1: the set of doctors is D, and the set of hospitals is H. The set of
contracts is X, X � D � H. A contract x 2 X is bilateral xD 2 D, xH 2 H. The
preferences of a doctor d is �d, its associated chosen set Cd.X0/. The preferences of

1A reader unfamiliar to the model might read first Hatfield and Milgrom (2005), Hatfiel and Kojima
(2008) and Aygün and Sönmez (2013).
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any hospital h over subset of doctors is �h; the chosen set of hospital h is Cd.X0/;
aggregating for all doctors, we get CD.X0/ D [d2DCd.X0/. The rejected set is
RD.X0/ D X0 � CD.X0/. Similarly for hospitals we define CH.X0/ D [h2HCh.X0/
and RH.X0/ D X0 � CH.X0/.
A set of contracts X0 is a stable allocation if:

1. CD.X0/ D CH.X0/ D X0 and
2. there exists no hospital h and set of contracts X00 ¤ CH.X0/ such that

X00 D Ch.X
0 [ X00/ 	 CD.X

0 [ X00/.

Hatfield and Milgrom (2005) show the following : if .XD;XH/ 	 X2 is a solution to
the system of equations

XD D X � RH.XH/

and

XH D X � RD.XD/,

then XH \ XD is a stable set of contracts and XH \ XD D CD.XD/ D CH.XH/.
Conversely, for any stable collection of contracts X0, there exists some pair .XD;XH/

satisfying the system of equations such that X0 D XH \ XD.
Second, they define an order � over X � X. This order does not depend on

preferences; specifically the order is

�
.XD;XH/ �

�
X0D;X0H

		, �
XD 
 X0DandXH 	 X0H

	
.

Adapted to the matching with contract environment, the DA is generalized by
iterating the following function F W X � X ! X � X

F1.X0/ D X � RH.X0/
F2.X0/ D X � RD.X0/

F.XD;XH/ D .F1.XH/;F2.F1.XH/// :

The operator is isotone on the lattice .X � X;�/, which is why, by Tarski´s
fixed-point theorem, the process converges to a fixed point: that is, a stable contract.
Depending on the initial set of contracts, the fixed point might be in particular the
smallest or the highest fixed point in the lattice.

The approach is claimed to be more general than the one by Gale and Shapley
(1962) in the sense that the order used by Hatfield and Milgrom (2005) relies
on inclusion of sets, rather than preference orders. When agents prefer choosing
on larger sets, one recovers the result previously mentioned, Theorem 2, that an
outcome matching is the favorite stable matchings for one side of the market is the
worst one for the other side of the market is recovered as a particular case.
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The argument about the further generality of the matching with contract
approach, however, is not fair. Certainly Theorem 2 is a particular case of matching
with contracts, but it is also a particular result among DA applications. As we show
in the next section, the DA also operates in environments where agents on one side
of the market do not agree on which is the best/worst achievable stable matching
given the primitives of the model. Our approach complements Echenique (2012)
who challenges the generality of matching with contracts approach by considering
a problem where wage is part of the description of a contract and showing that
bargaining over contracts is equivalent to bargaining over wages, when contracts
are substitutes.

3.2 The Leader–Follower Model

Think of a decentralized settings where offers are emitted sequentially and doctors’
employment record affects their value/productivity: having worked for hospitals
which are leaders in their field brings valuable experience and information that
follower hospitals wish to acquire. To capture this real-life feature, we model a
matching market where offers are emitted sequentially and index by t D 0, 1, 2, 3,
. . . the tentative matchings entailed by the DA algorithm.

We assume that hospitals are ordered on a leadership ladder: the lower the i, the
index of an hospital, the more her leadership, h1 being the absolute leader and hH
being the absolute follower. Thus, preferences of hospitals over doctors evolve with
tentative matchings until they take a hiring decision over doctors, i.e., until they
accept or reject an offer from the doctors.

We denote�0h the preferences of firm h at t D 0. For all doctors d, let itd be index
of the hospital with lower index that accepted her offer until t and ihd this index when
hospital h receives an offer from d. Let Yt

h be the subset of doctors that have made
an offer to hospital h before t and Nt

h the subset of doctors that did not do any offer.
Preferences of hospital hi follow a leader–follower pattern if, for any period t:

Case 1 d1, d2 2 Nt
hi

d1 �t
hi d2,

(
it�1d1

< it�1d2
if it�1d1

< i or
d1 �0hi d2 if (it�1d1

> i and it�1d2
> i) or it�1d1

D it�1d2
< i.

Case 2 d1 2 Yt
hi

, d2 2 Nt
hi

d1 �t
hi d2,

(
ihid1 < it�1d2

if ihid1 < i or
d1 �0hi d2 if (ihid1 > i and it�1d2

> i) or ihid1 D it�1d2
< i.

Case 3 d1 2 Nt
hi

, d2 2 Yt
hi
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d1 �t
hi
d2,

(
it�1d1

< ihid2 if it�1d1
< i or

d1 �0hi d2 if (it�1d1
> i and ihid2 > i) or it�1d1

D ihid2 < i.

Case 4 d1, d2 2 Yt
hi

d1 �t
hi
d2, d1 �t�1

hi
d2.

We assume that hospitals’ preferences over single doctors follow a leader–
follower pattern and that preferences of hospitals over subsets of workers are
responsive to preferences over individual doctors: the preferences�h are responsive
if for all doctors d, d0 and subsets of doctors s 2 Dnfd; d0g we have that:

1. s [ fdg %h s[ fd0g if and only if d %h d0, and
2. s [ fdg �i s if and only if d �i ¿.

We denote by q D .q1; : : : ; qH/ the vector of quotas associated to each hospital
and Ch.S;�h; qi/, the subset of S [ f¿g of cardinality at most qi preferred by hi as
for �hi . We adapt now the DA to this setting.

The deferred acceptance algorithm with evolving preferences (DAEP)
Consider a market .D;H; q;�0;P/, 
0 is the empty matching, set t D 1.
Main iteration
Pick randomly one unmatched doctor d, who makes an offer to h, her top

alternative as for �t�1
d within the set of hospitals to which she did not make any

offer.
If d belongs to Ch.
t�1[fdg;�t�1

h ; qi/, d is matched to h at
t; if any, the doctors
in 
t�1 who do not belong to Ch.
t�1 [ fdg;�t�1

h ; qi/ are unmatched at 
t, other
assignments are unaffected.

Preferences of doctors are updated by all hospitals.
If there are no unmatched doctors or all unmatched doctors have emitted all

acceptable offers, the tentative matching is the outcome matching, else, follow the
main iteration.

Let � be the order in which doctors have been selected to make offers. Our main
theorem states that the outcome matching of the DAEP is stable.

Theorem 3. Consider a market .D;H; q;�0;P/; if hospitals report preferences
which follow a leader–follower pattern, for any order � in which doctors have been
selected to make offers, the outcome matching of DAEP is stable.

Proof. The outcome matching is individually rational since doctors only make
offers to acceptable hospitals and hospitals accept subset of doctor belonging to
their choice, thus individually rational when it is accepted, and no individual doctor
becomes unacceptable once it is considered acceptable.

We observe that the respective ranking of doctors that did not make offer to any
hospital h only improves with respect to doctors who already made an offer to h;
thus if a doctor is rejected by an hospital at iteration t, her respective position with
respect to those doctors accepted by h at t does not vary afterwards and possibly
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decreases with respect to doctors who still did not make an offer to h at t. Thus,
since preferences of hospitals are responsive, no hospital never regrets to have fired
a doctor, which guarantees the fact that the offer process stops and the stability of
the outcome matching. The argument is true for all orders � . ut

An alternative proof consists in establishing that the DAEP outcome is the
outcome of the DA algorithm or of the generalized DA (Hatfield and Milgrom 2005)
applied to preferences of hospitals at the last stage of DAEP; we opt for the previous
one to show that the DA principles apply to a model with evolving preferences.

Interestingly, the outcome matching of DAEP depends on the order in which
doctors make offers to hospitals, as shown in Example 1.

Example 1. The set of hospitals is H D fh1; h2; h3g, the set of doctors is D D
fd1; d2; d3g, quota is 1 for all three hospitals, and preferences of hospitals at date 0
and doctors are

�o
h1
�o

h2
�o

h3
d1 d3 d2
d2 d2 d3
d3 d1 d1

and

�d1 �d2 �d3

h1 h1 h1
h2 h3 h3
h3 h2 h2

:

At the beginning of the algorithm, i0d1 D i0d2 D i0d3 D ¿ D Y0h1 D Y0h2 D Y0h3 and
N0h1 D N0h2 D N0h3 D D.

Order 1

Step 1 Suppose d1 is picked; she makes an offer to h1, which is accepted; thus


1 D
�
d1 d2 d3 ¿ ¿
h1 ¿ ¿ h2 h3

�
,

i0d1 D 1, i0d2 D i0d3 D ¿,

�1h1 �1h2 �1h3
d1 d1 d1
d2 d3 d2
d3 d2 d3

.

Step 2 Suppose d2 is picked; she makes an offer to h1, which is rejected; thus

2 D 
1, �2D�1.

Step 3 Suppose d2 is picked; she makes an offer to h3, which is accepted; thus


3 D
�
d1 d2 d3 ¿
h1 h3 ¿ h2

�
,
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i0d1 D 1, i0d2 D 3, i0d3 D ¿,

�3h1 �3h2 �3h3
d1 d1 d1
d2 d3 d2
d3 d2 d3

:

Step 4 Suppose d3 is picked; she makes an offer to h1, which is rejected; thus

4 D 
3, �4D�3.

Step 5 Suppose d3 is picked; she makes an offer to h3, which is rejected; thus

5 D 
4, �5D�4.

Step 6 Suppose d3 is picked; she makes an offer to h2, which is accepted; the
outcome matching is


order1 D
�
d1 d2 d3
h1 h3 h2

�
.

Order 2

Step 1 Suppose d3 is picked; she makes an offer to h1, which is accepted; thus


1 D
�
d1 d2 d3 ¿ ¿
h3 ¿ ¿ h1 h2

�
,

i0d3 D 1, i0d1 D i0d2 D ¿,

�1h1 �1h2 �1h3
d1 d3 d3
d2 d1 d1
d3 d2 d2

.

Step 2 Suppose d1 is picked; she makes an offer to h1, which is accepted; thus


1 D
�
d1 d2 d3 ¿ ¿
h1 ¿ ¿ h3 h2

�
,

i0d1 D i0d3 D 1, i0d2 D ¿,

�1h1 �1h2 �1h3
d1 d1 d1
d2 d3 d3
d3 d2 d2

.

Step 3 Suppose d3 is picked; she makes an offer to h3, which is accepted; thus


3 D f d1 d2 d3 ¿
h1 ¿ h3 h2

g,

i0d1 D i0d3 D 1, i0d2 D ¿, �3D�2 .

Step 4 Suppose d2 is picked; she makes an offer to h1, which is rejected; thus

4 D 
3, �4D�3.
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Step 5 Suppose d2 is picked; she makes an offer to h3, which is rejected; thus

5 D 
4, �5D�4.

Step 6 Suppose d3 is picked; she makes an offer to h2, which is accepted; the
outcome matching is


order2 D
�
d1 d2 d3
h1 h2 h3

�
.

ut

3.3 Concluding Remarks

Thus, given the primitives of the model, the outcome matching of the DAEP
mechanism depends on the order in which doctors are picked to make offers. More
interestingly in Example1, 
order1 and 
order2 are the only two achievable matchings
for any possible order. It happens that neither all doctors prefer 
order1 to 
order2, nor
the reverse. In this specific sense, the set of stable matching has no upper nor lower
bounds for doctors. The existence of such matchings, thus, is not a perquisite for the
DA to properly operate in such settings. It is also easy to see that the mechanism is
manipulable for the side of the market that makes offers.
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Chapter 4
Externalities, Optimal Subsidy and Growth

Enrique R. Casares and Horacio Sobarzo

Abstract The experiences of East Asian countries (China is an example of this)
have brought the role of subsidies in promoting economic growth back into the
public discussion. Hence, we study the relationship between subsidies and economic
growth with a multi-sector endogenous growth model. The economy has two
sectors, manufacturing and nonmanufacturing. The manufacturing (learning) sector
is the only sector that generates domestic technological knowledge through learning
by doing. This knowledge is used in the nonmanufacturing (non-learning) sector.
We find the planner’s solution in order to obtain the optimal subsidy for the market
economy. We study how the economy responds, in the steady state, when the
government establishes the optimal rate of investment subsidy in the manufacturing
sector. Thus, the proportion of labor in the manufacturing sector, the relative price
of the nonmanufacturing good and the ratio of consumption to nonmanufacturing
capital are higher, and the ratio of nonmanufacturing to manufacturing capital is
lower. Therefore, the market economy has a higher growth rate.

Keywords Two-sector model • Manufacturing sector • Learning by doing •
Market economy • Command economy • Optimal subsidy • Endogenous growth

4.1 Introduction

There has been a long debate in the economic literature over whether governments
can play an important role in helping the market to internalize externalities that
may be important for developing a nascent industry (by subsidizing industries).
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The experiences of East Asian countries (China is an outstanding example of
this) have brought the role of subsidies in promoting economic growth back into
the public discussion (see Haley and Haley 2013; Stiglitz and Greenwald 2014).1

The theory of endogenous growth with learning externalities has pointed out the
positive impact of subsidies on economic growth. Therefore, in this paper, we
study the relationship between subsidies and economic growth with a multi-sector
dynamic general equilibrium approach.

Consequently, we develop an endogenous growth model with two sectors,
manufacturing (learning) and nonmanufacturing (non-learning), with two types of
capital. The economy is closed.2 We assume that the manufacturing (learning)
sector is the only sector that generates domestic technological knowledge through
learning by doing. The knowledge produced in the manufacturing sector is available
to the nonmanufacturing (non-learning) sector. Thus, the model has two learning
externalities. Therefore, the manufacturing sector drives the market economy to a
sustained positive growth rate. We assume that the two goods are consumed and
accumulated. The government taxes households with a lump-sum tax to finance
an investment subsidy in the manufacturing sector. Households own both types of
capital. The main objective of this paper is to obtain the optimal subsidy in the
steady state. Our model is related to models with two types of physical capital
and externalities. Thus, Brock and Turnovsky (1994) and Turnovsky (1996) develop
models with two types of physical capital. In particular, Korinek and Serven (2010)
develop an endogenous growth model where the tradable sector generates higher
learning externalities than the non-tradable sector.

First, we present a market economy with zero subsidies. With the aim of identi-
fying the optimal subsidy, we find the planner’s solution where both externalities
are internalized. Thus, with the optimal solution, we obtain the optimal rate of
investment subsidy to the manufacturing sector in the market economy. Next,
we study how the economy responds, in the steady state, when the government
establishes the optimal rate of investment subsidy in the manufacturing sector.
Thus, when the subsidy is increased, the manufacturing sector is encouraged, and
the proportion of labor in the manufacturing sector increases initially. Likewise,
investment in the manufacturing sector expands, and investment in the nonmanufac-
turing sector falls. Consequently, the ratio of nonmanufacturing to manufacturing

1The Chinese government, for instance, has been subsidizing the shipbuilding industry (and all the
suppliers of this industry) and in this way generating large sources of domestic employment. These
subsidies translate also to the transportation costs for the manufacturing goods that China exports.
This could help to explain how a subsidy can be effective in both ways, first, by creating domestic
jobs and, second, by helping to export goods to compete in international markets (see Haley and
Haley 2013). Stiglitz and Greenwald (2014) recommend encouraging the industrial sector (as in
East Asia).
2The economy also can be interpreted as open but without capital mobility (trade balance is zero
at all time) where the manufacturing sector would correspond to the tradable (learning) sector and
the nonmanufacturing sector to the non-tradable (non-learning) sector. In this interpretation, the
relative price of the nonmanufacturing good is also understood as the real exchange rate.
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capital decreases slowly. Given that the price of the nonmanufacturing good is
determined by supply and demand, the relative price of the nonmanufacturing good
decreases initially. This produces an additional initial increase in the proportion of
labor in the manufacturing sector. However, the level of the relative price of the
nonmanufacturing good is higher in the optimal steady state. Moreover, as total
wealth increases, the ratio of consumption to nonmanufacturing capital increases,
as well. We suggest that the optimal rate of investment subsidy increases in the
transition.

In summary, in the optimal solution, the proportion of labor in the manufacturing
sector is higher, the ratio of nonmanufacturing to manufacturing capital is lower, the
relative price of the nonmanufacturing good is higher, and the ratio of consumption
to nonmanufacturing capital is higher. Therefore, since the manufacturing sector is
the leader in technological terms, the optimal subsidy produces a higher long-run
growth rate in the market economy. We remember that in exogenous growth models
(the long-run growth rate of the economy is determined by exogenous technical
progress), an increase in the subsidy rate has a level effect, that is, the income level
of the economy increases in the long run; in endogenous growth models (the long-
run growth rate of the economy is determined internally by the model), a rise in the
subsidy rate has a growth effect, that is, the growth rate of the economy increases in
the long run.

Thus, we have generalized in an economy with two learning externalities, two
capital goods, and endogenous growth, the basic conclusion of the learning-by-
doing literature that the first best response of the government is to establish an
investment subsidy in the learning sector. Thus, the optimal policy is to encourage
the sources of the learning process, the manufacturing sector (see Clemhout and
Wan 1970; Bardhan 1971; Succar 1987; Boldrin and Schienkman 1988; Young
1991; Rauch 1992; Aizenman and Lee 2010). Therefore, the results of the impact
of the subsidy on the relative price and the allocation of labor between sectors and
growth that we have obtained are not present in the literature and contribute to a
better understanding of the relationship between subsidies and economic growth.
However, whether subsidies are permitted or not, or whether governments have the
ability to deal appropriately with externalities or not, it still remains to be discussed
as to what extent these subsidy processes can be carried out in a democratic country,
that is, how a government can justify subsidizing one particular sector. These
questions belong to the arena of political economy.

In Sect. 4.2, we develop a model of a competitive market economy, and we find
the steady-state solution. In Sect. 4.3, we discuss the planner’s solution, and we
conclude that the optimal growth rate is higher than that achieved in the market
economy. In Sect. 4.4, we deduce the optimal rate of investment subsidy to the
manufacturing sector. In Sect. 4.5, we present our conclusions.
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4.2 The Competitive Market Economy

In this section, we develop a dynamic general equilibrium model of a com-
petitive market economy.3 There are two production sectors: the manufacturing
(learning) and nonmanufacturing (non-learning) sectors. There are a large number of
competitive manufacturing and nonmanufacturing firms with the same production
function. The manufacturing good and the nonmanufacturing good are produced,
accumulated, and consumed. The output in each sector is produced through physical
capital, labor, and technological knowledge. The total labor supply is constant.
Labor is freely mobile between the two sectors. The representative household
maximizes the present value of a utility function. The consumption basket is formed
by the manufacturing and nonmanufacturing goods. The government collects taxes
and gives subsidies.

4.2.1 The Manufacturing Sector

We assume that the production function of the manufacturing (learning) firm i
(i D 1; : : : ;N, where N is large) is Cobb–Douglas:

YMi D AMiK
˛
Mi
L1�˛Mi

E1

where YMi is the output of the manufacturing firm i; AMi is a positive parameter of
efficiency; KMi is the stock of physical capital accumulated of the manufacturing
good in the manufacturing firm i; LMi is the labor employed in the manufacturing
firm i; ˛ and 1� ˛ are the shares of KMi and LMi , respectively, with 0 < ˛ < 1; and
E1 is a learning externality.

3We have used a general equilibrium approach in previous research. Thus, in a static general
equilibrium model with scale economies and imperfect competition in the Mexican industry,
Sobarzo (1994) evaluates the effects that an eventual free-trade agreement between Mexico,
Canada, and the United States would have on the Mexican economy. Also, with a static model,
Sobarzo (2000) shows the interaction between trade and tax reform in Mexico. The general
conclusion is that changes in value-added tax and public pricing policy do not have strong effects
on trade performance and, more generally, on reallocation of resources. Moreover, Casares (2004)
develops an export sector-led endogenous growth model with two learning externalities. First,
he shows theoretically that when the tariff rate is reduced, the labor factor flows to the export
sector, the capital accumulation increases in this sector, and the growth rate of the economy rises.
Second, using data of the Mexican manufacturing sector, 1988–2000 (before and after NAFTA),
he concludes that the highly exporter manufacturing sector behaved as predicted by the model.
Also, Casares (2007) develops an endogenous growth model with two sectors, manufacturing
and nonmanufacturing. The manufacturing sector is the source of productivity growth. The main
conclusion is that when productivity increases in the manufacturing sector, the fraction of labor
employed in the manufacturing sector follows an inverted V curve as the documented pattern of
development for the share of manufacturing employment.
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Let KM be the aggregate stock of physical capital accumulated of the manufactur-
ing good. Domestic technological knowledge is created through learning by doing in
the manufacturing sector, so knowledge is a by-product of investment (Arrow 1962).
Since knowledge is a public good, there are spillover effects of knowledge across
manufacturing firms. Therefore, E1 is the external effect of KM in the production
function of the manufacturing firm i. In order to generate endogenous growth, we
assume E1 D K1�˛M (Romer 1986, 1989).

Given that all the manufacturing firms make the same choice, we obtain the
aggregate production function of the manufacturing sector:

YM D AMK
˛
ML

1�˛
M



K1�˛M

�
(4.1)

where YM is the aggregate output in the manufacturing sector, AM is the aggregate
positive parameter of efficiency, and LM is the aggregate labor employed in the
sector. We assume that KM is used only in the manufacturing sector.

Considering that the rate of depreciation of KM is zero and that the price of the
manufacturing good is the numéraire, the rental price of KM is RM D r, where r
is the interest rate. As we will see, the optimal government policy is to establish
an investment subsidy in the manufacturing sector. Thus, we introduce a rate of
investment subsidy, 
, where 0 < 
 < 1. Taking the externality as given, the
manufacturing firms maximize profit �M D AMK˛ML

1�˛
M



K1�˛M

� � wMLM � RM.1�

/KM , where wM is the wage rate in the sector. The first-order conditions are:

wM D AMK
˛
M .1 � ˛/ L�˛M



K1�˛M

� D AMKM .1 � ˛/ L�˛M (4.2)

RM .1 � 
/ D r .1 � 
/ D AM˛K
˛�1
M L1�˛M



K1�˛M

� D AM˛L
1�˛
M (4.3)

Equation (4.2) states that the wage rate is equal to the value of the marginal product
of LM . Equation (4.3) states that the interest rate, net of subsidy, is equal to the
marginal product of KM .

4.2.2 The Nonmanufacturing Sector

We assume that the production function of the nonmanufacturing (non-learning)
firm i is Cobb–Douglas:

YNi D ANiK
ˇ
Ni
L1�ˇNi

E2

where YNi is the output of the nonmanufacturing firm i; ANi is a positive parameter of
efficiency; KNi is the stock of physical capital accumulated of the nonmanufacturing
good in the nonmanufacturing firm i; LNi is labor employed in the nonmanufacturing
firm i; ˇ and 1 � ˇ are the shares of KNi and LNi , respectively, with 0 < ˇ < 1; and
E2 is a learning externality.
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Since there are spillover effects of knowledge between the sectors, E2 is
technological knowledge generated in the manufacturing sector, but used in the
nonmanufacturing sector. We consider that these interindustry benefits of knowledge
are purely external to the nonmanufacturing firm i. Thus, E2 is the external effect
of KM in the production function of the nonmanufacturing firm i. We assume
E2 D K1�ˇM .

Given that all the nonmanufacturing firms make the same choice, we obtain the
aggregate production function of the nonmanufacturing sector:

YN D ANK
ˇ
NL

1�ˇ
N

h
K1�ˇM

i
(4.4)

where YN is the aggregate output in the nonmanufacturing sector, AN is the
aggregate positive parameter of efficiency, KN is the aggregate stock of physical
capital accumulated of the nonmanufacturing good, and LN is the total labor
employed in the nonmanufacturing sector. We assume that KN is used only in the
nonmanufacturing sector.

We define pN as the relative price of the nonmanufacturing to the manufacturing
good. Considering that the rate of depreciation of KN is zero, the rental price of
KN is RN D pN.r � PpN=pN/, where PpN=pN is the growth rate of pN (capital gains
of KN). Taking the externality as given, the nonmanufacturing firms maximize profit
�N D pNANK

ˇ
NL

1�ˇ
N



K1�˛M

��wNLN�RNKN where wN is the wage rate in the sector.
The first-order conditions are:

wN D pNANK
ˇ
N .1 � ˇ/ L�ˇN

h
K1�ˇM

i
D pNANK

ˇ
NK

1�ˇ
M .1 � ˇ/ L�ˇN (4.5)

RN D pN.r � PpN=pN/ D pNANˇK
ˇ�1
N L1�ˇN



K1�ˇM

�

D pNANˇK
ˇ�1
N K1�ˇM L1�ˇN (4.6)

Equation (4.5) states that the wage rate is equal to the value of the marginal product
of LN . Equation (4.6) states that the rental price of KN is equal to the marginal
product of KN or the interest rate is equal to the marginal product of KN plus capital
gains.

4.2.3 The Government

The investment subsidy is financed through lump-sum taxes, T, to the households.
The government has a balanced government budget constraint:

T D 
RMKM (4.7)

where 
RMKM is the amount of investment subsidy in the manufacturing sector.
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4.2.4 The Representative Household

The household disposable income is the sum of labor income and interest on assets
less lump-sum taxes. This disposable income is allocated to consumption or saving.
Thus, the budget constraint of the representative household is:

wMLM C wNLN C RMKM C RNKN � T D CM C pNCN C IM C pNIN (4.8)

where wMLMC wNLN is wage income, RMKMCRNKN is capital income, CM is con-
sumption of the manufacturing good, CN is consumption of the nonmanufacturing
good, IM D PKM is the net investment in KM , and IN D PKN is the net investment inKN .
Next, we can define C (aggregate consumption) as a homothetic index of CM and
CN : C D DC�MC

1��
N , where D D ��� .1 � �/�.1��/ is a parameter and � and 1 � �

are the shares of CM and CN in the total expenditure on consumption, respectively,
with 0 < � < 1. The consumer price index, pC, is defined as pC D p1��N . Thus, the
total expenditure on consumption is:

pCC D CM C pNCN (4.9)

Households can borrow and lend in the debt market (zero net loans in the
aggregate). Also, we define A D KM C pNKN , where A are assets, and PA D
PKM C pN PKN C PpNKN . Using the previous concepts, the budget constraint, Eq. (4.8),
becomes:

wMLM C wNLN C rA � T D pCCC PA (4.10)

The decision problem of the representative household is to choose a path of
aggregate consumption that maximizes the present value of a utility function with
a constant elasticity of intertemporal substitution, � , and a constant subjective
discount factor, �, with � > 0, so:

maxU .0/ D
Z 1

0

C1�1=�

1 � 1=� e
��tdt

where C D DC�MC
1��
N , subject to the budget constraint, Eq. (4.10), and to the

solvency condition lim
t!1Ae�

R t
0 rvdv � 0.

The first-order conditions are:

P�A
�A
D � � r (4.11)

�A D C�1=�

pC
(4.12)

and lim
t!1�Ae

��tA D 0, where �A is the shadow price, as of time t, of A at time t.

Next, considering that pN varies with time, we take logarithms and time derivatives
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of the consumer price index and obtain:

PpC
pC
D .1 � �/ PpN

pN
(4.13)

Also, we take logarithms and time derivatives of Eq. (4.12) and obtain:

P�A
�A
D �

�
1

�

� PC
C
� PpC

pC
(4.14)

Substituting Eqs. (4.11) and (4.13) in (4.14), we obtain the dynamic allocation
condition for aggregate consumption:

PC
C
D �

�
r � .1 � �/ PpN

pN
� �

�
(4.15)

The optimal consumption basket of CM and CN results from static maximization
of the utility function DC�MC

1��
N subject to the total expenditure on consumption,

Eq. (4.9). The static first-order conditions are:

CM D �pCC (4.16)

CN D .1 � �/ pCC
pN

(4.17)

4.2.5 Equilibrium in Goods and Labor Markets

We can now proceed to obtain the resource constraint of the economy. Substituting
Eqs. (4.2), (4.3), (4.5)–(4.7) in the budget constraint of the representative household,
Eq. (4.8), we obtain:

YM C pNYN D CM C pNCN C IM C pNIN (4.18)

Equation (4.18) is the aggregate equilibrium condition for the goods market,
where the value of the total output, Y, is Y D YM C pNYN . Next, we define
the equilibrium condition for the nonmanufacturing good market. The relative
price of the nonmanufacturing good is flexible, ensuring that the supply of the
nonmanufacturing good is always equal to its demand:

YN D CN C IN (4.19)

With the equilibrium condition for the nonmanufacturing good market, we
can obtain the equilibrium condition for the manufacturing good market. Thus,
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Eq. (4.18) becomes:

YM D CM C IM (4.20)

The equilibrium condition in the labor market is:

LM C LN D L (4.21)

where L is the total labor supply and we assume that it is constant.

4.2.6 The Model in Stationary Variables

Given that C, KM , KN , YM , YN , and Y are growing at all times, to solve the model
we define the variables in terms of stationary variables. The characteristic of these
variables is that they remain constant in the steady state (see Barro and Sala-i-Martin
2004). Thus, we define the variables z D KN=KM and v D C=KN as stationary
variables. As L is constant, it is normalized to one. Thus, the equilibrium condition
in the labor market is n C .1 � n/ D 1, where n is the fraction of labor employed
in the manufacturing sector and .1 � n/ is the fraction of labor employed in the
nonmanufacturing sector. Given that n is constant in the steady state, we can use it
as another stationary variable. Therefore, we can rewrite the aggregate production
functions as:

YM D AMKMn
1�˛ (4.22)

YN D ANKMz
ˇ.1 � n/1�ˇ (4.23)

We can rewrite the first-order conditions (4.2), (4.3), (4.5), and (4.6) as:

wM D AMKM .1 � ˛/ n�˛ (4.24)

r .1 � 
/ D AM˛n
1�˛ (4.25)

wN D pNANKMz
ˇ .1 � ˇ/ .1 � n/�ˇ (4.26)

r � PpN
pN
D ANˇ.1 � n/1�ˇ

z1�ˇ
(4.27)

Equating the value of the marginal product of labor in both sectors, Eq. (4.24)
and (4.26), we find the static efficient allocation condition for labor between the
sectors:

AM .1 � ˛/ n�˛ D pNANz
ˇ .1 � ˇ/ .1 � n/�ˇ (4.28)
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With Eqs. (4.25) and (4.27), we obtain the dynamic arbitrage condition for the
two capital goods:

AM˛n1�˛

.1 � 
/ D
ANˇ.1 � n/1�ˇ

z1�ˇ
C PpN

pN
(4.29)

where the total private returns for both types of capital must be the same. Thus,
Eq. (4.29) states that the private marginal product of KM is equal to the private
marginal product of KN plus capital gains on KN . We assume that ˛ > ˇ, so the
manufacturing sector is more capital intensive than the nonmanufacturing sector.

Using Eqs. (4.15) and (4.25), we can define the growth rate of aggregate
consumption as:

PC
C
D �

�
AM˛n1�˛

.1 � 
/ � .1 � �/
PpN
pN
� �

�
(4.30)

where PC=C D gC is the growth rate of C. Alternatively, with Eqs. (4.15) and (4.27),
we can obtain the growth rate of aggregate consumption as:

PC
C
D �

"
ANˇ.1 � n/1�ˇ

z1�ˇ
C � PpN

pN
� �

#
(4.31)

Finally, we can rewrite the equilibrium conditions (4.19) and (4.20) in terms of
the stationary variables. Considering the production function of the manufacturing
sector, Eq. (4.22); the definition of v D C=KN , the level of CM , Eq. (4.16); and the
identity IM D PKM and that pC D p1��N , we can rewrite the equilibrium condition for
the market of the manufacturing good, Eq. (4.20), as:

PKM

KM
D AMn

1�˛ � �p1��N vz (4.32)

where PKM=KM D gKM is the growth rate ofKM . Also, with the production function of
the nonmanufacturing sector, Eq. (4.23); the level of CN , Eq. (4.17); and the identity
IN D PKN and that pC D p1��N , we can rewrite the equilibrium condition for the
market of the nonmanufacturing good, Eq. (4.19), as:

PKN

KN
D AN.1 � n/1�ˇ

z1�ˇ
� .1 � �/ v

p�N
(4.33)

where PKN=KN D gKN is the growth rate of KN .
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4.2.7 The Steady-State Solution in the Market Economy

We can obtain a system of three nonlinear equations in three variables, z, n, and v.
First, using the definition of z, the growth rate of z is Pz=z D PKN=KN � PKM=KM. Next,
we obtain the growth rates of KM and KN in terms of z, n, and v. From the efficient
allocation condition for labor market, Eq. (4.28), we obtain the level of pN in terms
of stationary variables:

pN D AM .1 � ˛/ .1 � n/ˇ

ANzˇ .1 � ˇ/ n˛ (4.34)

Given that pN depends on z, n, and its parameters, we have that pN is constant in the
steady state. Using Eq. (4.34), we can rewrite Eqs. (4.32) and (4.33) in the steady
state:

g�KM
D AMn

�.1�˛/ � �
"
AM .1 � ˛/ .1 � n�/ˇ

ANz�ˇ .1 � ˇ/ n�˛
#1��

v�z� (4.35)

g�KN
D AN.1 � n�/1�ˇ

z�.1�ˇ/
� .1 � �/

�
ANz�ˇ .1 � ˇ/ n�˛

AM .1 � ˛/ .1 � n�/ˇ

��
v� (4.36)

where the steady state levels are denoted with �. In the steady state, the growth rate
of z is zero, so g�KM

D g�KN
. Using Eqs. (4.35) and (4.36), we have:

AMn
�.1�˛/ � �

"
AM .1 � ˛/ .1 � n�/ˇ

ANz�ˇ .1 � ˇ/ n�˛
#1��

v�z�

D AN.1 � n�/1�ˇ

z�.1�ˇ/
� .1 � �/

�
ANz�ˇ .1 � ˇ/ n�˛

AM .1 � ˛/ .1 � n�/ˇ

��
v� (4.37)

We know that the growth rate of v is Pv=v D PC=C � PKN=KN . Given that
PpN=pN D 0, the growth rate of C, Eq. (4.30), in the steady state is:

g�C D �
"
AM˛n�.1�˛/

.1 � 
/ � �
#

(4.38)

alternatively, the growth rate of C, Eq. (4.31), in the steady state is:

g�C D �
"
ANˇ.1 � n�/1�ˇ

z�.1�ˇ/
� �

#
(4.39)
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In the steady state, the growth rate of v is zero, so g�C D g�KN
. With Eqs. (4.38)

and (4.36), we obtain:

�

"
AM˛n�.1�˛/

.1 � 
/ � �
#
D AN.1 � n�/1�ˇ

z�.1�ˇ/
� .1 � �/

�
ANz�ˇ .1 � ˇ/ n�˛

AM .1 � ˛/ .1 � n�/ˇ

��
v�

(4.40)

alternatively, with Eqs. (4.39) and (4.36), we have:

�

"
ANˇ.1� n�/1�ˇ

z�.1�ˇ/
� �

#
D AN.1 � n�/1�ˇ

z�.1�ˇ/
� .1 � �/

"
ANz�ˇ .1 � ˇ/ n�˛

AM .1 � ˛/ .1 � n�/ˇ

#�
v�

(4.41)

Given that PpN=pN D 0, the dynamic arbitrage condition for the two capital goods,
Eq. (4.29), is:

AM˛n�.1�˛/

.1 � 
/ D ANˇ.1 � n�/1�ˇ

z�.1�ˇ/
(4.42)

Therefore, we have obtained a system of three nonlinear equations, (4.37), (4.40)
or (4.41), and (4.42), in three variables, z, n, and v. Finally, given that PpN=pN D 0

and Pn D 0, we can show that the growth rate of Y, gY , is:

g�Y D
YM
Y

g�YM C
PNYN
Y

g�YN (4.43)

where YM=Y D 1=
˚
1 C 
p�NANz�ˇ

�
1 � n�

	1�ˇ
=AMn

�
�
1�˛
	��

is the share of YM in
the value of total output, pNYN=Y D 1=

˚

AMn�.1�˛/=.p�NANz�ˇ.1�n�/1�ˇ/

�C1� is
the share of pNYN in the value of total output, p�N is given by Eq. (4.34) in the steady
state, g�YM is the growth rate of YM , and g�YN is the growth rate of YN . With Eqs. (4.22)
and (4.23), we obtain in the steady state:

g� D g�Y D g�YM D g�YN D g�KM
D g�KN

D g�C (4.44)

so Y, YM , and YN grow at the same rate as KM , KN , and C. Thus, in the steady state,
the long-run growth rate is defined as g�.

We solve numerically the system of equations, (4.37), (4.40) or (4.41), and (4.42),
with fsolve/MATLAB. Roe et al. (2010) show numerical algorithms for the solution
of some multi-sector growth models. We use the following parameter values:
Valentinyi and Herrendorf (2008) show (US economy) that the tradable sector
(agriculture, manufactured consumption, and equipment investment) is more capital
intensive than the non-tradable sector (services and construction investment); thus,
˛ D 0:37 and ˇ D 0:32. We use � D 0:02 as in Barro and Sala-i-Martin (2004). We
set � D 0:4 (see Rabanal and Tuesta 2013). We give � D 0:2 (see Yogo 2004). As
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the magnitude of AM and AN depends on the unique characteristics of an economy,
they are set only for explanatory purposes as AM D 0:4 and AN D 0:4. For the
moment, we impose 
 D 0. We obtain that z� D 1:20, n� D 0:383, v� D 0:411,
p�N D 1:06, and g� D 0:012. Thus, the steady-state growth rate is 1:2% per annum.
In the next section, we develop and solve the command economy.

4.3 The Command Economy

Since there are two externalities, the market economy is inefficient. To identify
the optimal solution, we need to find the planner’s solution, that is, we need to
internalize the externalities. Given that in the command economy there are no
markets and prices, the social coordinator maximizes the present value of a constant
intertemporal elasticity of substitution utility function:

max U .0/ D
Z 1

0



DC�MC

1��
N

�1�1=�

1 � 1=� e�ptdt

subject to YM D CM C PKM and YN D CN C PKN where YM D AMKMn1�˛ and
YN D ANK

ˇ
NK

1�ˇ
M .1 � n/1�ˇ , which explicitly take into account the externalities

and the labor market equilibrium condition.
The Hamiltonian is:

H D
( �

DC�MC
1��
N

	1�1=�

1 � 1=� C �M


AMKMn

1�˛ � CM
�

C�N
h
ANK

ˇ
NK

1�ˇ
M .1 � n/1�ˇ � CN

i )
e��t

where �M and �N are the shadow prices as of time t and of an additional unit of KM

and KN at time t, respectively. The first-order conditions with respect to CM , CN , and
n are:



DC�MC

1��
N

��1=�
D�C��1M C1��N D �M (4.45)



DC�MC

1��
N

��1=�
DC�M .1 � �/C��N D �N (4.46)

AMKM .1 � ˛/ n�˛ D �N

�M

h
ANK

ˇ
NK

1�ˇ
M .1 � ˇ/ .1 � n/�ˇ

i
(4.47)
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The first-order conditions with respect to KM and KN are:

AMn
1�˛ C �N

�M

h
ANK

ˇ
N .1 � ˇ/K�ˇM .1 � n/1�ˇ

i
C
P�M
�M
D � (4.48)

ANˇK
ˇ�1
N K1�ˇM .1 � n/1�ˇ C

P�N
�N
D � (4.49)

with lim
t!1�Me

��tKM D 0 and lim
t!1�Ne

��tKN D 0.

Let pN D �N=�M , then we can define aggregate conditions (see Barro and Sala-
i-Martin 2004). Using z D KN=KM , Eq. (4.47) is the static efficient allocation

condition for labor: AM
�
1 � ˛	n�˛ D pNANzˇ

�
1 � ˇ	�1 � n

	�ˇ
. We see the

static efficient allocation condition for labor in the command economy is equal to
Eq. (4.28) in the market economy. Next, substituting �N D pN�M in Eq. (4.46) and
equating the result in Eq. (4.45), we obtain:

�

.1 � �/
CN

CM
D 1

pN
(4.50)

Equation (4.50) states that the marginal rate of substitution between CM and CN is
equal to the relative price. With Eq. (4.50) and pCC D CM C pNCN , where pC D
p1��N D .�N=�M/

1�� and PpC=pC D .1 � �/ PpN=pN , we obtain the levels of CM and
CN : CM D �pCC and CN D .1� �/ pCC=pN . Using Eq. (4.45), C D DC�MC

1��
N and

CM D �pCC, we obtain:

C�1=� D �MpC (4.51)

With Eq. (4.46), C D DC�MC
1��
N and CN D .1 � �/ pCC=pN , we find:

C�1=�p�N D �N (4.52)

Taking logarithms and time derivatives of Eq. (4.51), we obtain P�M=�M D
�.1=�/ PC=C � .1 � �/Pp=p. Using z D KN=KM and equating P�M=�M in Eq. (4.48),
we have:

PC
C
D �

�
AMn

1�˛ C pNANz
ˇ .1 � ˇ/ .1 � n/1�ˇ � .1 � �/ PpN

pN
� �

�
(4.53)

alternatively, taking logarithms and time derivatives of Eq. (4.52), we have
P�N=�N D � .1=�/ PC=C C � Pp=p. Using z D KN=KM and equating P�N=�N in
Eq. (4.49), we obtain:

PC
C
D �

�
ANˇz

ˇ�1.1 � n/1�ˇ C � PpN
pN
� �

�
(4.54)
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Equating Eqs. (4.53) and (4.54), we obtain the optimal dynamic arbitrage
condition for the two capital goods:

AMn
1�˛ C pNANz

ˇ .1 � ˇ/ .1 � n/1�ˇ D ANˇz
ˇ�1.1 � n/1�ˇ C PpN

pN
(4.55)

indicating that the total social return of KM is equal to the total social return of KN .
When the externalities are internalized, the total social return of KM is formed by the
social marginal product of KM in the manufacturing sector plus the social marginal
product of KM in the nonmanufacturing sector, all expressed relative to the price of
the manufacturing good. The total social return of KN is equal to the social marginal
product of KN plus capital gains. When we compare Eq. (4.55) with Eq. (4.29) with
zero subsidy and 0 < ˛ < 1, we conclude that the private return of KM , AM˛n1�˛
is lower than the total social return of KM , AMn1�˛ C pNANzˇ .1 � ˇ/ .1 � n/1�ˇ .
Thus, the market economy is under-accumulating, implying that the market econ-
omy has a lower growth rate than the optimal growth rate.

4.3.1 The Steady-State Solution in the Command Economy

Now, we solve the command economy in the steady state. We need to form a system
as we did for the case of the market economy. Using pN , Eq. (4.34), and YM D
CM C IM , the growth rate of KM (following the procedure of Sect. 4.2) is given by
Eq. (4.35). Using Eq. (4.34) and YN D CN C IN , the growth rate of KN is given by
Eq. (4.36). In the steady state, g�KM

D g�KN
, so we obtain:

AMn
�.1�˛/ � �

"
AM .1 � ˛/ .1 � n�/ˇ

ANz�ˇ .1� ˇ/ n�˛
#1��

v�z� (4.56)

D AN.1 � n�/1�ˇ

z�.1�ˇ/
� .1 � �/

�
ANz�ˇ .1 � ˇ/ n�˛

AM .1� ˛/ .1� n�/ˇ

��
v�

Next, we know that the growth rate of v is Pv=v D PC=C � PKN=KN . Given that
PpN=pN D 0, and using pN , Eq. (4.34), the growth rate of C, Eq. (4.53), in the steady
state is:

g�C D �
�
AMn

�.1�˛/ C AM .1 � ˛/ .1 � n�/
n�˛

� �
�

(4.57)

alternatively, with Eq. (4.54), we obtain:

g�C D �
h
ANˇz

�.ˇ�1/�1 � n�
	1�ˇ � �

i
(4.58)
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In the steady state, g�C D g�KN
, from Eqs. (4.57) and (4.36), we have:

�

�
AMn

�.1�˛/ C AM .1 � ˛/ .1 � n�/
n�˛

� �
�

(4.59)

D AN.1 � n�/1�ˇ

z�.1�ˇ/
� .1 � �/

�
ANz�ˇ .1 � ˇ/ n�˛

AM .1 � ˛/ .1 � n�/ˇ

��
v�

alternatively, with Eqs. (4.58) and (4.36):

�
h
ANˇz

�.ˇ�1/�1 � n�
	1�ˇ � �

i

D AN.1 � n�/1�ˇ

z�.1�ˇ/
� .1 � �/

�
ANz�ˇ .1 � ˇ/ n�˛

AM .1 � ˛/ .1 � n�/ˇ

��
v� (4.60)

Equating Eqs. (4.57) and (4.58), we obtain the dynamic arbitrage condition for the
two capital goods in the steady state:

AMn
�.1�˛/ C AM .1 � ˛/ .1 � n�/

n�˛
D ANˇz

�.ˇ�1/�1 � n�
	1�ˇ

(4.61)

We obtain a system of three nonlinear equations, (4.56), (4.59) or (4.60),
and (4.61), in three variables, z, n, and v, and parameters. Next, using the parameter
values of Sect. 4.2, we solve the dynamic system for the planned economy in the
steady state, obtaining z� D 0:091, n� D 0:464, v� D 2:83, p�N D 2:16, and
g� D 0:081. We can see that the steady-state optimal growth rate is 8:1% per
annum. When we compare the optimal steady-state growth rate with the steady-
state growth rate of the market economy, with 
 D 0, we deduce that there is
opportunity for improving the steady-state growth rate in the market economy. Thus,
the government can increase the steady-state growth rate. The correct policy to
achieve the optimal steady-state growth rate is through an investment subsidy in
the manufacturing sector.

4.4 The Optimal Investment Subsidy in the Market Economy

The objective of the government in a market economy is to maximize social welfare
and to reach the optimal growth rate. The optimal government policy is to establish
an investment subsidy in the manufacturing sector, stimulating the source of the
learning process.

Using the optimal steady-state solution and Eq. (4.38), the optimal investment
subsidy in the steady state is 
 D 0:785. Using this optimal investment subsidy,
we solve the system for z, n, and v in the steady state, Eqs. (4.37), (4.40) or (4.41),
and (4.42). We obtain z� D 0:091, n� D 0:464, v� D 2:83, p�N D 2:16, and
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g� D 0:081. Thus, the steady-state growth rate is 8:1% per annum. Note that all
these levels correspond to the optimal solution.

Now, we are ready to analyze how the variables of the economy respond to an
increase in the rate of investment subsidy. First, using Eqs. (4.28) and (4.42), we can
obtain a useful relationship in the steady state:

n� D 1

.1 � 
/ˇ=.˛�ˇ/
1

p�.1�ˇ/=.˛�ˇ/N

B (4.62)

where B D ŒAM˛=ANˇ�
ˇ=.˛�ˇ/ŒAM .1 � ˛/ =AN .1 � ˇ/�.1�ˇ/=.˛�ˇ/.

Next, we show the response of the variables when the government establishes
the optimal rate of investment subsidy. Considering that p�N is constant for the
moment and that ˛ > ˇ, we can see in Eq. (4.62) that when 
 increases, the
manufacturing sector is stimulated, and the proportion of labor in the manufac-
turing sector increases initially. Likewise, the incentive to invest (disinvest) in the
manufacturing (nonmanufacturing) sector increases (decreases). Consequently, the
level of z decreases slowly. Also, as the relative price of the nonmanufacturing good
is flexible, we can see in Eq. (4.34) that when n increases, the relative price decreases
initially. This movement of the relative price confirms the initial increase in n [see
Eq. (4.62)]. However, in the optimal steady state, the level of the relative price of
the nonmanufacturing good is higher. Moreover, given that total wealth increases,
the level of v increases. We suggest that 
 increases in the transition. Therefore,
in the optimal steady state, the level of z� decreases from 1.20 to 0.091, the
proportion of labor in the manufacturing sector increases from 0.383 to 0.464, v�
increases from 0.411 to 2.83, and p�N increases from 1.06 to 2.16. Therefore, as the
manufacturing sector is the leading sector in technological terms, the economy has
a higher growth rate. The growth rate increases from 1:2 to 8:1% per annum.

4.5 Conclusions

We have studied an economy with manufacturing and nonmanufacturing goods with
two externalities. The relative price of the nonmanufacturing good is endogenously
determined by supply and demand for the nonmanufacturing good. We have also
shown that the optimal growth rate is achieved with an investment subsidy in the
manufacturing sector.

We have studied how the economy responds when the government establishes
the optimal investment subsidy. When the rate of subsidy is increased, the manu-
facturing sector is stimulated. Thus, the proportion of labor in the manufacturing
sector increases, and the proportion of labor in the nonmanufacturing sector
decreases. Likewise, investment in the manufacturing sector increases, and invest-
ment decreases in the nonmanufacturing sector. Thus, the ratio of nonmanufacturing
to manufacturing capital decreases slowly. In addition, given that the relative price
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of the nonmanufacturing good is flexible, the relative price decreases initially. Also,
this relative price adjustment confirms the initial increase in the proportion of labor
in the manufacturing sector. Nevertheless, the relative price of the nonmanufacturing
good is higher in the optimal steady state. Also, given that total wealth increases,
the ratio of aggregate consumption to nonmanufacturing capital increases.

In summary, in the optimal solution, the proportion of labor in the manufacturing
sector, the relative price of the nonmanufacturing good, and the ratio of consumption
to nonmanufacturing capital are higher, and the ratio of nonmanufacturing to
manufacturing capital is lower. Therefore, as the manufacturing sector is leader in
technological terms, the market economy has a higher growth rate.

Thus, if the economy is technologically commanded by the manufacturing
sector and there is strong intra- and inter-learning by doing among firms and
sectors, the government should establish an optimal investment subsidy in the
manufacturing sector. Thus, this paper has presented in an overall manner a general
conclusion, concerning models with production externalities, two types of capital
and endogenous growth: that the optimal policy is to stimulate the sources of the
learning process (see Bardhan 1993). However, if subsidies are permitted or not,
or if governments have the ability to manage an economy with externalities or not,
there still remains another question that is not solved: how a government can justify
subsidizing a particular sector in a democratic society, since these practices certainly
have political costs.
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Chapter 5
The Fractal Nature of Bitcoin: Evidence from
Wavelet Power Spectra

Rafael Delfin-Vidal and Guillermo Romero-Meléndez

Abstract In this study, a continuous wavelet transform is performed on bitcoin’s
historical returns. Despite the asset’s novelty and high volatility, evidence from
the wavelet power spectra shows clear dominance of specific investment horizons
during periods of high volatility. Thanks to wavelet analysis, it is also possible to
observe the presence of fractal dynamics in the asset’s behavior. Wavelet analysis
is a method to decompose a time series into several layers of time scales, making
it possible to analyze how the local variance, or wavelet power, changes both in
the frequency and time domain. Although relatively new to finance and economic,
wavelet analysis represents a powerful tool that can be used to study how economic
phenomena operate at simultaneous time horizons, as well as aggregated processes
that are the result of several agents or variables with different term objectives.

Keywords Fractal market hypothesis • Bitcoin • Wavelet power spectrum •
Wolfram Mathematica • Economics and finance • Cryptocurrencies • Wavelet
analysis

5.1 Introduction

Bitcoin is a digital currency that relies on cryptographic technology to control its
creation and distribution. Just like banknotes or coins, transactions in bitcoin can
be performed directly between two individuals without the need of an intermediary.
However, bitcoins are not issued by any government or other legal entities; they are
produced by a large number of people running computers around the world, using
software that solves mathematical problems. It is the first example of a growing
category of money known as cryptocurrency.

Unlike fiat currencies, whose value is derived through regulation or law
and underwritten by the state, bitcoin’s technology has currency, platform, and
equity properties that make it extremely difficult to assess its intrinsic value
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(Weisenthal 2013). As a consequence, most of bitcoin’s value is based on a highly
volatile demand—what people are willing to pay and receive for them at any given
time. In April 2011, less than 1 year after the first transactions using bitcoins took
place, a single bitcoin (currency ticker BTC) was worth about $0.80. Three years
later, as of October 29, 2014, one bitcoin is now worth $348, having reached a
historical maximum value of $1132 in December 2013.

It is widely known that the bitcoin economy has experienced a recurring volatility
cycle over its short existence. As media coverage on the cryptocurrency increased,
this attracted new waves of investors pushing bitcoin’s price to unprecedented highs,
leading to an eventual crash of the BTC/USD exchange rate. Before reaching its
$1120 historical maximum in December 2013, bitcoin’s price rose 40-fold from
around $0.80 in April 2011 to more than $30 by June 2011 to then fall below $2
by November 2011 before stabilizing at around $5 in early 2012. After the initial
boom and bust, bitcoin’s price gradually stabilized between $4.30 and $5.48 during
the first half of 2012. In the second half of 2012, BTC prices climbed from $5.15 in
June to $13.59 by December 2012. This pattern repeated itself twice during 2013.
From $13.50 at the start of the year, bitcoin’s value soared to $237 in May and
then crashed to $68 later that same month. After the first volatility cycle in 2013,
BTC prices ranged between $68 and $130 until October 2013; then by the end of
November, bitcoin prices reached $1120. Finally, during the first half of 2014, the
USD/BTC exchange rate has steadily decreased to around $400–500.

The volatility pattern observed in BTC price behavior suggests three important
features in the asset’s price behavior. First, the uncharacteristically large price
changes in the USD/BTC exchange rate suggest that the frequency distribution of
BTC returns does not follow a normal distribution, i.e., extreme events that deviate
from the mean by five or more standard deviations have a greater probability of
occurrence than that predicted by the normal distribution.

Figure 5.1 shows the quantile–quantile plot for BTC historical returns and
illustrates the evidence of long tails and over-dispersion in the series, represented
by the blue thick line.

Second, clear clustering periods of high and low volatility in the BTC price data
suggest that while asset returns may be random, its periods of volatility are not. This
is illustrated in Fig. 5.2. The top graphic shows the autocorrelation of BTC returns,
suggesting no sign of serial correlation between returns. The bottom graphic shows
the correlation of BTC volatility, i.e., the second moment of the asset’s returns.

The second graphic in Fig. 5.2 shows a clear positive trend in the autocorrelation
of the asset’s volatility, a clear sign of long memory, or persistent behavior. Finally,
bitcoin price data exhibits evidence of scale invariance, or self-similar statistical
structures, at different price levels. For example, BTC returns follow the same
frequency distribution regardless of time scale, while bitcoin’s price volatility cycles
show the same behavior, independent of price level.

These features directly violate the fundamental assumptions of Gaussian distribu-
tion required by the established efficient market hypothesis (EMH), rendering most
financial modeling approaches unsuitable to study bitcoin price behavior. Moreover,
after decades of statistical analysis of price fluctuations across different markets,
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asset types, and time periods, there are a large number of studies documenting
the failure of EMH to mirror or model the empirical evidence of financial time
series (Mandelbrot 1963, 1997; Blackledge 2010). Despite the widespread use of
the Brownian motion and Gaussian distribution paradigms in financial economics,
a number of systematic statistical departures from the EMF have been identified
and are now widely acknowledged as “stylized facts” of financial time series (Rama
2001, 2005; Borland et al. 2005; Ehrentreich 2008; Dermietzel 2008).

Notably, the main stylized facts standing out in the literature include the three
prominent features of bitcoin’s volatility cycle previously mentioned: heavy tails
or non-normal distribution of returns, long memory effect in squared returns also
known as volatility clustering, and presence of fractal dynamics. Therefore, given
the strong deviations from the EMH framework readily observable in the BTC price
data, an alternative analytical framework is used to study financial data with likely
presence of non-normality, self-similarity, and persistent volatility.

The fractal market hypothesis (FMH) is a theoretical framework developed by
Peters. He proposes a more realistic market structure that places no statistical
requirements on the process; he explains why self-similar statistical structures exist
and how risk is shared and distributed among investors (Peters 1991a,b, 1994).
Under the FMH approach, market stability is maintained only when many investors
participate and they can cover a large number of investment horizons, thus ensuring
ample liquidity for trading (Peters 1994). Peters argues that after adjusting for scale
of investment horizon, all investors must share same risk levels, which explains
why the frequency of distribution of BTC returns exhibits self-similar behavior at
different scales (Peters 1994). According to the FMH, a market becomes unstable
when its self-similar structure breaks down, i.e., when investors with long-term
horizons either stop participating in the market or become short-term investors
themselves. When long-term fundamental information is no longer important or
unreliable, markets become unstable and are characterized by extreme high levels
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of short-term volatility. This approach explains the presence of periods of clustering
volatility in the BTC time series and the occurrence of extreme events that violate
the normality of the frequency distribution of bitcoin returns.

The FMH suggests that stable markets are characterized by equal representation
of all investment horizons in the market so that supply and demand are efficiently
cleared. When investors at one horizon (or group of horizons) become dominant,
the selling or buying signals of the investors at these horizons will not be met with a
corresponding order of the remaining horizons, and periods of high volatility might
occur. Thanks to time–frequency analysis, it is possible to investigate whether BTC



5 The Fractal Nature of Bitcoin: Evidence from Wavelet Power Spectra 77

returns follow the market dynamics established by the fractal market hypothesis
and its focus on liquidity and investment horizons. According to Kristoufek, after
performing a continuous wavelet transform to a time series and obtaining its wavelet
power spectra, it is possible detect the dominance of specific investment horizons
during periods of high volatility (Kristoufek 2013).

Wavelet analysis is a method to decompose a time series into time–frequency
space; it uses mathematical expansions that transform data from the time domain
into different layers of frequency levels. This makes possible to observe and analyze
data at different scales. Although this approach is relatively new to economics,
wavelets have been used in a wide range of fields, for example, for the analysis
of oceanic and atmospheric flow phenomena in geophysics (Torrence and Compo
1998), image processing for computer and image compression (Grapps 1995), as
well as in medicine for heart rate monitoring (Thurner et al. 1998) and for molecular
dynamics simulation and energy transfer in physics (McCowan 2007), just to name
a few. Among the most well-known applications of wavelet analysis are the FBI
algorithm for fingerprint data compression and the JPEG algorithm for image
compression (Grapps 1995; Li 2003).

5.1.1 Scope of This Manuscript

The main goal of this study is to provide empirical evidence supporting the fractal
market hypothesis. To do so, the BTC returns time series is analyzed to determine
the existence of dominance of short investment horizons during periods of high
market turbulence. This objective is accomplished using a continuous wavelet
transform analysis to obtain information about bitcoin’s price volatility across time
and different scales of investment horizons.

There are several reasons for the importance of this study. First, to date, this is
the only study using wavelet analysis to detect dominance of investment horizons
in BTC price returns. Second, the results of the continuous wavelet transform of
the time series show supporting evidence in favor of the fractal market hypothesis.
Third, the wavelet analysis performed suggests that while bitcoin’s price has been
characterized by high volatility, it follows the same market dynamics as other
currencies and equity markets (e.g., government bonds, stocks, and commodities).
Finally, the use of wavelet to analyze economic phenomena is relatively recent;
this work will show original contributions to the applications of wavelet analysis in
economics, finance, and cryptocurrencies.1

1This manuscript is based on the undergraduate thesis project of the first author (Delfin 2014) and
supervised by the second author.
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5.1.2 Organization of the Manuscript

The remainder of this work is organized as follows. The “Theoretical Framework”
section presents an overview of the Bitcoin payment system and an introduction
to wavelet analysis and its relation to FMH. The following section presents the
continuous wavelet transform methodology, results, and discussion. Then, the final
section concludes with a general discussion, future research subjects, and benefits
of wavelet analysis to the study of economic phenomena.

5.2 Theoretical Framework

This background section should provide an introductory understanding to the topics
presented in the following sections, although it is far from a complete examination
of the concepts covered in this study. Although the intersection of these subjects has
yet to gain wider recognition, studies on Bitcoin’s public ledger technology along
with wavelet analysis span several fields within economics and finance in general. It
is highly recommended to consult the sources referenced in this section should the
reader be interested in a more comprehensive understanding of the topics covered
in this work.

5.2.1 The Bitcoin Protocol

Bitcoin is a peer-to-peer payment system introduced as open-source software in
January 2009 by a computer programmer using the pseudonym Satoshi Nakamoto
(Nakamoto 2009). It is referred to as a cryptocurrency because it relies on
cryptographic principles to validate transaction in the system and ultimately control
the production of the currency itself. Each transaction in the system is recorded in a
public ledger, also known as the Bitcoin block chain, using the network’s own unit of
account, also called bitcoin.2 The block chain ledger is a database where transactions
are sequentially stored, and the file containing it is visible to all members on the
network.

Bitcoin’s block chain is a unique technology since it solves several problems
at once: it avoids forgery or counterfeiting, it also avoids the need for a trusted
intermediary, and it regulates the creation of new bitcoins in a controlled way

2According to the Bitcoin wiki website (https://en.bitcoin.it/wiki/Introduction#Capitalization_.2F_
Nomenclature), capitalization and nomenclature can be confusing since Bitcoin is both a currency
and a protocol. Bitcoin, singular with an uppercase letter B, will be used to label the protocol,
software, and community, and bitcoins, with a lowercase b, will be used to label units of the
currency.

https://en.bitcoin.it/wiki/Introduction#Capitalization_.2F_Nomenclature
https://en.bitcoin.it/wiki/Introduction#Capitalization_.2F_Nomenclature
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(Congresional Research Service 2013; Velde 2013). Since validation for each
transaction is a computationally intensive task, the Bitcoin protocol solves these
problems by rewarding those who devote computing power to validate transactions
with the privilege to create new bitcoins in a controlled way.

According to (Barber et al. 2012), there are several reasons why Bitcoin, despite
more than three decades of previous attempts at digital money by cryptography
researchers (see, e.g., Chaum 1983; Chaum et al. 1990; Szabo 2008), has witnessed
enormous success since its invention. Among the number of reasons are no
central point of trust, economic incentives to participate, predictable money supply,
divisibility and fungibility, transaction irreversibility, low transaction costs, and
readily available implementation.

Contrary to earlier implementations of e-cash, Bitcoin is a decentralized network
that lacks a central trusted entity. The network assumes that the majority of its
nodes are honest, and as mentioned earlier, the task of validating transactions for
dispute resolution and to avoid double spending is carried out by members on the
network dedicating computing power for those purposes. The absence of a central
point of trust guarantees that the currency cannot be subverted by any single entity—
government, bank, or authority—for its own benefit, and while this feature can be
used for illegal purposes, there are also numerous legitimate reasons for using this
technology.

Regarding the economic incentives for participation in the Bitcoin network, Kroll
et al. argue that if all parties act according to their incentives, the Bitcoin protocol
can be stable, meaning the system will continue to operate (Kroll et al. 2013). Since
the generation of new bitcoins is rewarded only to those individuals who devote
computing power to validate transactions, also known as bitcoin mining, this reward
ensures that users have clear economic incentives to invest unused computing power
in the network. In addition to rewards from dedicating computational cycles to
verify transactions, miners can charge small transaction fees for performing the said
validation. Finally, Barber et al. argue that the open-source nature of the project also
gives incentives for new applications within the protocol and the creation of a large
ecosystem of new businesses (Barber et al. 2012), for example, new applications that
add better anonymity measures or payment processing services that allow merchants
to receive payments in bitcoin and send money internationally at significant low
cost.

In addition to a predictable money supply, Barber et al. argue that the divisibility,
fungibility, and transaction irreversibility of Bitcoin give it an advantage over other
e-cash systems since the coins can be easily divided, up to eight decimal places,
and recombined which allows to create a large number of denominations, while
the irreversibility of transactions means that merchants concerned with credit card
fraud and charge-backs can conduct business with customers in countries with high
prevalence of credit card fraud. Moreover, thanks to its high divisibility, Bitcoin has
great potential as a platform for enabling micropayments, payments much smaller
than what the traditional financial system can handle (Barber et al. 2012).

After Nakamoto’s publication of the Bitcoin protocol in January 2009, the
homonymous currency remained a modest project undertaken by a small community
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of cryptographers during its first year. However, Nakamoto’s creation soon spread
beyond the initial community and took a life of his own. In October 2009, the
first USD/BTC exchange rates were published by New Liberty Standard (2009); $1
was valued at 1309.03 BTC. In May 2010, Laszlo Hanyecz, a Florida programmer,
conducted what is thought to be the first real-world bitcoin transaction, agreeing to
pay 10,000 bitcoins for two pizzas from Papa John’s worth around $25 at the time
(Mack 2013). Two months later in July 2010, bitcoin’s exchange value began a 10�
increase over a 5-day period, from about $0.008/BTC to $0.08/BTC. By November
of that year, bitcoin had reached a market capitalization of $1 million, while the
exchange rate was $0.50 for 1 bitcoin (Bitcoin 2014). The next important milestone
for the currency occurred in February 2011 when bitcoin reached parity with the US
dollar at the now defunct Japanese exchange MtGox.

During the spring of 2011 after several stories on the new cryptocurrency by
High-profile media outlets, one from Time (Brito 2011) and another one by Forbes
reporter Timothy Lee (Lee 2011) and also from popular design and technology blog
Gizmodo (Biddle 2011), the price of bitcoin skyrocketed from around 86 cents in
early April to $9 at the end of May. Additionally, on June 1, media outlet Gawker
published a story about the use of bitcoin in the online black market Silk Road
to buy drugs, weapons, and stolen personal information, thanks to the currency’s
pseudo-anonymous features Chen (2011a,b). One week later, bitcoin’s exchange
rate increased threefold from $9/BTC to $31/BTC.

As the price of bitcoin rose and stories of return on investment in the order of
thousands, mining became more popular. Now real-money stakes and the dramatic
price rise had attracted people who saw bitcoin as a commodity in which to
speculate. However, given the novelty of this asset and how its uncharacteristic
behavior clearly violates the fundamental assumptions of most financial modeling
approaches, an alternative analytical framework is used to study bitcoin price
behavior.

5.2.2 Wavelet Analysis and the Fractal Market Hypothesis

As mentioned in the introductory section, the FMH suggests that stable markets
are characterized by equal representation of all investment horizons, while market
volatility occurs when the selling or buying signals of a dominant investment
horizon are not met with a corresponding order from the remaining horizons.
However, simultaneous operation at different time horizons is not only restricted
to currency and equity markets. Aguiar-Conraria and Soares argue that many
economic processes are the result of actions of several agents who have different
time objectives, and therefore, many economic time series are an aggregation of
components operating on different frequencies (spanning milliseconds in high-
frequency trading to several decades for institutional investors) (Aguiar-Conraria
and Soares 2011). Moreover, Ramsey and Lampart argue that economists have long
acknowledged the importance of time scale, but only until recently, it had been
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difficult to decompose economic time series into time scale components (Ramsey
and Lampart 1997a). Central banks, for example, have different objectives in the
short and long run and therefore operate at different time scales.

The main advantage of using the continuous wavelet transform (referred as CWT
from now on) in economic time series is its ability to analyze how the wavelet power
of the underlying process changes in both the time and frequency domain. In terms
of financial economics, the wavelet power spectrum (WPS) is defined by Rua as the
contribution to the variance around each time and scale (Rua 2012). Formally, the
WPS is defined as the squared absolute value of the wavelet coefficients resulting
from the transform. According to FMH, a high-power spectrum is associated with
dominant investment horizons, i.e., the selling or buying signals of investors at the
dominant horizons are not being met with a corresponding order from the remaining
horizons, and periods of short-term volatility might occur. Therefore, high-power
spectrum values should be observed at low time scales (high frequencies) during
periods of high volatility.

5.2.3 Origins of Wavelet Analysis

In order to talk about wavelet analysis, it is necessary to talk about Fourier analysis
first since the former has various points of similarity and contrast with the later. The
Fourier transform is based on using a sum of sine and cosine functions of different
wavelengths to represent any other function. The Fourier transform of a time series

f .t/ is a function F.!/ in the frequency domain, F.!/ D
1R
�1

f .t/e�i!tdt, where ! is

the angular frequency and e�i!t D cos.!t/� i sin.!t/ according to Euler’s formula.
However, the Fourier transform does not allow the frequency content of the signal
to change over time, making it unsuitable for analyzing processes that have time-
varying features. This means that if a single frequency is present in a process but it
varies over time, the Fourier transform does not allow to identify when in time the
frequency component changes (Rua 2012).

To illustrate the shortcomings of the Fourier transform when reproducing signals
that have time-varying features, the following example is based on Wolfram’s
presentation on wavelet concepts (see Wolfram 2014a). Considering the stationary
process, s.t/ D cos.Œ2��20t/ C cos.Œ2��40t/. This process is composed of two
signals, one at 20Hz and another at 40Hz. When the Fourier transform of this data is
performed, two frequencies are correctly identified, at two times the frequency in the
x-axis, i.e., 40Hz and 80Hz, respectively (see Fig. 5.3). While the Fourier transform
provides frequency information, it lacks time information about these frequencies,
i.e., at what time did these frequencies occur and for how long? Considering now a
nonstationary process with three frequency components defined by

s.t/ D
8
<

:
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sin.Œ2��5t/ 2 � t � 4
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the Fourier transform correctly shows three peaks (Fig. 5.3) at the corresponding
frequencies (1, 5, and 10 Hz); however, the transform does not provide information
about the time-varying components of this process. According to McCowan, the
Fourier transform gives optimal results only when a single frequency is present
(McCowan 2007). When multiple frequencies are present in a process, the transform
may have difficulties separating noise or assigning accurate relative amplitudes for
each frequency.

A possible way to overcome the previous limitations is the short-time or
windowed Fourier transform, a Fourier-related transform used to obtain frequency
information of local sections of a signal as it changes over time. As its name
suggests, the Fourier transform is performed for short periods of time, sliding a
segment of length T across all the data. However, the windowed Fourier transform
(WFT) imposes the use of constant-length windows.

This restriction makes the WFT an inaccurate method for time–frequency
analysis since many high- and low-frequency components of the process or signal
will not fall within the frequency range of the window. Relatively small windows
will fail to detect frequencies whose wavelengths are larger than the size of the
window, while relatively large windows will decrease the temporal resolution
because larger intervals of signal are analyzed at once.

Torrence and Compo argue that for analyses where a predetermined scaling may
not be appropriate because of a wide range of dominant frequencies are present in
the process, a method of time–frequency localization that is scale independent, such
as wavelet analysis, should be employed (Torrence and Compo 1998).
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5.2.4 The Continuous Wavelet Transform

Just as the windowed Fourier transform, the aim of the continuous wavelet transform
(CWT) is to detect the frequency, or spectral, content of a signal and describe
how it changes over time. The CWT however uses a base function that can be
stretched and translated with a flexible resolution in both frequency and time,
making it possible to analyze nonstationary time series that contain many different
frequencies. Moreover, the CWT intrinsically adjusts the time resolution to the
frequency content. This means the analyzing window width will narrow when
focusing on high frequencies (short time periods) and widen when assessing low
frequencies (long time scales).

The CWT of a time series x(t) can be formally defined as Wx.�; s/ D1R
�1

x.t/ ��;s.t/dt, where � denotes the complex conjugate. Starting with a mother

wavelet  .t/, the CWT decomposes the time series x.t/ in terms of analyzing
wavelets  �;s.t/. The analyzing wavelets are obtained by scaling and translating

 .t/, which is defined as  �;s.t/ D .1=
pjsj/ .Œt � ��=s/, where s is the scale

and � the translation parameters. The wavelets can be stretched (if jsj > 1) or
compressed (if jsj < 1), while translating the wavelet means shifting their position
in time. Thanks to the CWT flexible resolution in both frequency and time, rapidly
changing feature can be captured at low scales, or wavelengths, whereas slow-
changing, or higher time scales, components can be detected with dilated analyzing
wavelets (Torrence and Compo 1998; Aguiar-Conraria and Soares 2011).

Mother wavelets must fulfill certain mathematical criteria in order to be con-
sidered analytical wavelets; in economics and finance, the Morlet wavelet is the
most widely used mother wavelet (Torrence and Compo 1998; Aguiar-Conraria
and Soares 2011; Rua 2012; Kristoufek 2013). The Morlet wavelet consists of a
complex sine wave modulated by a Gaussian envelope, and it is formally defined as:
 .t/ D ��1=4ei!0te�t2=2. The term !0 controls the nondimensional frequency, i.e.,
the number of oscillations within the Gaussian envelope, and is set equal to six to
satisfy the admissibility criteria as analytic wavelet (see Lee and Yamamoto 1994
and Adisson 2002 for a detailed analysis of wavelet admissibility criteria).

Figure 5.4 shows the Morlet wavelet, which unlike sines and cosines, it is
localized in both time and frequency.

5.2.5 Wavelet Power Spectrum and Other Definitions
in the Wavelet Domain

Once the CWT has been defined, we offer two definitions from the wavelet domain
to analyze an asset’s volatility as well as its local covariance with other assets
(see (Ranta 2010) for additional definitions regarding correlation and contagion
in the time–frequency domain). First, the wavelet power spectrum (WPS) can be
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defined as jWx.�; s/j2, i.e., the square of the absolute value of each coefficient
at each time and scale, and measures the local contribution to the variance of
the series. Second, the cross-wavelet transform (XWT) of two time series x.t/
and y.t/, with continuous wavelet transforms Wx.�; s/ and Wy.�; s/, is defined
as Wxy.�; s/ D Wx.�; s/ W�y .�; s/. The corresponding cross-wavelet spectrum is
defined as XWPxy D

ˇ̌
Wxy

ˇ̌
. According to Aguiar-Conraria and Soares, the cross-

wavelet power of two time series can be defined as the local covariance between
them in the time–frequency domain, giving the researcher a quantified indication
of the similarity of volatility between the time series (Aguiar-Conraria and Soares
2011).

5.3 Methods and Results

In this section the CWT will be implemented on the BTC historical returns time
series to provide evidence for the dominance of short investment horizons during
periods of high volatility. Additionally, since all the analysis in this study was
performed using the computational software Mathematica, the code used to perform
the computations will be used to provide the reader new tools for wavelet analysis.
The findings of this analysis will be discussed afterward.

5.3.1 Data

A time series for the price of bitcoin against the US dollar will be analyzed to find
their respective wavelet power spectrum. The oldest available date for bitcoin prices
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is July 17, 2010. The time series cover the oldest available BTC price until October
29, 2014.

The data used for this study was obtained from the data platform Qandl’s website,
a search engine for numerical data with access to a large collection of financial,
economic, and social datasets.

5.3.2 Method: Basic Wavelet Concepts

Performing a CWT in Mathematica can be done with very few commands. Before
the main analysis of this study, three examples will be presented to overview basic
wavelet transform concepts and their advantage over time or frequency analysis.

The first example is based on (Aguiar-Conraria and Soares 2011). Fifty years of
monthly data are generated according to the process:

y.t/ D sin

�
2�

p1
t

�
C sin

�
2�

p2
t

�
C �tI t D 1

12
;
2

12
; : : : ; 50

p1 D 10 and p2 D 5 for 20 � t � 30, and p2 D 3 otherwise. It can be seen that
this process is the sum of two periodic components: a 10-year cycle and 3-year cycle
that briefly change to a 5-year cycle during between the second and third decades.
Although Fig. 5.5 shows the process y.t/ in the time domain, it is not possible to
clearly observe any of the cyclic dynamics of the series.

Figure 5.6 shows a visualization, also called wavelet scalogram, of the wavelet
power spectrum, jWx.�; s/j2, of the y.t/ process. The wavelet scalogram function-
ality in Mathematica plots the absolute value of the wavelet transform coefficients
at each time and scale. In Fig. 5.6, the wavelet scalogram is able to capture the

-1

1

10 20 30 40 50

2

3

Fig. 5.5 Time series y.t/
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three cyclic dynamics of the time series. The time dimension is represented in
the horizontal axis, while the vertical axis represents the scales, or frequencies,
analyzed. The wavelet power is represented by color, ranging from blue for low
power to red for high wavelet power. The lower region in red from Fig. 5.6 shows
the 10-year cycle of the time series, while the light-green regions in the middle
section of the graphic show how the second component of y.t/ transitions from a 3-
year cycle to a 5-year cycle between the second and third decades. Since the series
is given in monthly data, the second and third decades fall within observations 240–
360 on the horizontal axis.

The following two examples are based on Wolfram’s presentations on wavelet
concepts and applications (Wolfram 2014a,b). The next example of this section
focuses on a CWT of a nonstationary process composed of multiple frequencies.
Four different frequencies will be operating at different instances in time. The series
f .t/ will be generated by the process:

f .t/ D

8
ˆ̂<

ˆ̂:

cos.Œ2��10t/ 0 � t � 1=4
cos.Œ2��25t/ 1=4 < t � 1=2
cos.Œ2��50t/ 1=2 < t � 3=4

cos.Œ2��100t/ 3=4 < t � 1

9
>>=

>>;

The plot of process f .t/ is shown in Fig. 5.7; the four distinct frequencies can
be clearly observed as t increases. Figure 5.8 shows each frequency composing the
process operating at different frequency bands; as t advances, the bands move up the
wavelet scalogram, indicating the time series is operating at increasing frequencies.

The third and final example of this section is used to illustrate how discontinu-
ities, or in economic terms structural changes and regime shifts, can be identified
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using wavelet analysis, considering a process h.t/ determined by a simple cosine
function. Overlapping the cosine function, an extreme event of small duration occurs
at time t; hence, the process is defined as: h.t/ D cos.Œ2��2t/C2e�105.Œ1=3��t/2 . After
performing a CWT on the series h.t/, the wavelet scalogram can provide a clear
picture of the process’ behavior in the time–frequency domain. Figure 5.9 shows
the wavelet power of the series at various frequencies or scales. The left indexes on
the vertical are associated with each scale, while the right indexes represent the voice
per scale. At large scales (low frequencies), the wavelet scalogram is able to capture
the signal from the cosine function, but as we move upward to lower scales (higher
frequencies), the extreme and short-lived event can be localized in both frequency
and time.

5.3.3 Wavelet Transform of Bitcoin’s Returns

Once the basic concepts of wavelet analysis in the Mathematica platform have been
established, the BTC returns time series will be decomposed using the CWT. The



88 R. Delfin-Vidal and G. Romero-Meléndez

-1.0

-0.5

0.5

100 200 300 400 500

0.2 0.4 0.6 0.8 1.0
Time

[7,1]

[6,1]

[5,1]

[4,1]

[3,1]

[2,1]

[1,1]

{Oet.,Voices}

1.0

Fig. 5.9 WPS of a cosine signal overlapped by an extreme and short-lived anomaly

first steps are importing bitcoin historical prices to Mathematica, defining the time
series for bitcoin returns, and creating a list with the data. The following three lines
of code perform each step, respectively:

btcprice=Import[“C: n nUsers n n . . .n nBTCAVERAGE-USD.xlsx”,{“Data”,1,
{All},2}];
returns[x_]:=Log[(btcprice[[x+1]]/btcprice[[x]])];
btcreturns=Array[returns,(Length[btcprice])-1];
After the BTC returns data is defined, a CWT can be applied with the following

command: cwt=ContinuousWaveletTransform[btcreturns,MorletWavelet[],{9,10}].
The CWT command gives the wavelet transform of btcreturns, using the complex
MorletWavelet[], and decomposes the data into nine octaves, or scales, and ten
subsequent voices, or samples for each scale. The scales chosen for the wavelet
transform are defined as fractional powers of two, sj D s0 2j=vocI j D 0; 1; : : : ; JI
and J D oct �voc, where s0 is the smallest resolvable scale and J determines the total
number of layers in which the signal will be decomposed, i.e., J D #octaves�#voices.
Additionally, the smallest resolvable scale s0 is computed automatically as the
inverse of Fourier wavelet length of the wavelet (Wolfram 2014c). For the CWT
of the BTC returns time series, the smallest resolvable scale computed is 0:86
days or about 20 h; therefore, the scales and samples per scale will be computed
as sj D 0:86 � 2j=90I j D 0; 1; : : : ; 90.

By default, Mathematica computes the number of scales used in each transform
as Log2.N=2/, where N is the length of the time series, while the default value for
the number of voices per octave is four. Computing Log2.N=2/, where N D 1547

for the BTC returns time series, results in 9:59. Mathematica correctly computes the
number of scales to be used in the wavelet transform; however, the number of scales
was explicitly indicated in the CWT command in order to specify the number of
voices per scale as well. The more voices per scale are used in the CWT, the better
the time–frequency resolution; hence, it was increased to ten from the default value
of four.

Mathematica evaluates the CWT command and the output continuous wavelet
data object (CWDo) in the form ffoct1; voc1g ! coef1; : : : ; coefng, with N wavelet
coefficients coefi corresponding to focti; vocig}. The CWDo also contains additional
information that can be later accessed and manipulated. For example, each octave
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and voice pair is associated with a certain scale; these can be accessed using the
property “Scales”:

cwt[“Scales”]
ff1; 1g ! 0:925992;

f1; 2g ! 0:992453;

: : : ;

f5; 1g ! 14:8159;

f5; 2g ! 15:8793;

: : : ;

f9; 9g ! 412:735;

f9; 10g ! 442:358g

5.3.4 Wavelet Power Spectrum of Bitcoin’s Returns

As mentioned in previous sections, the scalogram is a visual method to represent the
absolute value of each coefficient, or wavelet power. The wavelet scalogram displays
three axes: the horizontal axis represents time, the vertical axis the time scales or
frequencies, and the transform’s coefficient values. The coefficient values are plotted
as rows of colorized rectangles whose color corresponds to the magnitude of each
coefficient. Figure 5.10 shows three graphics. The middle graphic shows the wavelet
scalogram for the bitcoin returns CWT. The top graphic shows the historical BTC
returns, and the bottom graphic is a plot of the historical observed volatility.

The regions with significant wavelet powers against the null hypothesis of a
white noise (AR[1] process) are denoted by orange and yellow colors. According to
Torrence and Compo and Aguiar-Conraria and Soares, the use of CWT for finite-
length series will suffer from border distortions at the beginning and end of the
wavelet power spectrum because the wavelet function will be defined beyond the
limits of the time series (Torrence and Compo 1998; Aguiar-Conraria and Soares
2011). The cone of influence (COI) is the region in the time–frequency plane where
border distortions become important and in Fig. 5.10 by the region above the white
contour line. The COI can be defined as the set of all observations t included in the
effective support of the wavelet at a given position and scale. This set is defined
by jt � � j � sB where � is the translation parameter of the analyzing wavelets
 �;s.t/ D .1=

pjsj/ .Œt � ��=s/, s is the scale parameter, and Œ�B;B� is the effective
support of the daughter wavelets, i.e., the initial and final values of the time series
Œ1; 1548�.

As mentioned at the beginning of this section, the scalogram displays the wavelet
transform in three dimensions: time, frequency, and wavelet power. Figure 5.11
shows a three-dimensional representation of the BTC returns power spectrum.

Several features can be observed in the previous two figures. First, the highest
wavelet power regions (colored in red, orange, and yellow) are associated with
periods of highest volatility. This can be confirmed with the top and bottom graphics
of Fig. 5.10, where returns and volatility are, respectively, plotted. Second, for most
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Fig. 5.10 Wavelet power spectrum of bitcoin returns

of the analyzed period, no investment horizon, or scale power, dominates the series.
However, the wavelet scalogram correctly captures the biggest price movements in
bitcoin: the 40-fold increase around mid-2011 from around $0.80 to more than $30,
a low-variance period during 2012, and the two price bubbles from 2013 during
May and late November. Third, during the periods of high volatility, the BTC
power spectrum shows clear dominance of short investment horizons. Moreover,
these dominant investment horizons are located within the 3.5- to 7-day band, and
during the price increase in May 2013, dominant investment horizons can also be
observed in the 7- to 14-day band. Larger investment horizons (lower frequencies)
only show moderate wavelet power. However, since the cryptocurrency was created
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little less than 6 years ago, it is not possible to draw significant conclusions for large
investment horizons.

Finally, the results presented in Fig. 5.10 support the thesis of Peters of dominant
investment horizons during periods of turbulence and provide further evidence in
favor of FMH’s prediction of market stability only under equal representation of
all investment horizons (Peters 1991a,b, 1994). According to the FMH, a market
becomes unstable when its self-similar structure breaks down. This can happen for
a number of reasons, if investors with long-term horizons stop participating in the
market, become short-term investors themselves, or when long-term fundamental
information is no longer important or unreliable. Given the novel nature of Bitcoin,
the large price swings and low liquidity of cryptocurrencies in general might make
clearer the fractal dynamics of these markets.

Indeed, after closer examination of the wavelet scalogram, it is possible to
magnify certain regions of the time–frequency plane to observe the presence of
fractal dynamics in the series. The following section will present evidence of
bitcoin’s self-similar behavior in the time–frequency plane.

5.3.5 Self-Similarity in Bitcoin Returns

Contrary to their mathematical counterparts, real-life fractal processes exhibit self-
similar behavior over a finite range of scales. Bitcoin returns time series however
exhibit fractal properties over a sufficiently large range of scales to allow wavelet
transform analysis to examine the process. Since a process with fractal behavior
displays self-similar structures regardless of scale, wavelet analysis is adequately
suited to detect these properties. The basic principle for studying fractal processes
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with wavelet transform is that since the signal is self-similar at any scale, the wavelet
coefficients of the transform too will be self-similar, and this can be observed
plotting the power spectrum of the signal or series.

In order to show the self-similarity of BTC returns in the time–frequency domain,
first only the real values of each wavelet coefficient are taken:

Rcwt D ReplacePartŒcwt; 1! ReŒcwtŒŒ1����
Once the real part of the wavelet transform is defined, the wavelet scalogram is

plotted and shown in Fig. 5.12. Self-similar curves in the time–frequency plane are
visible at first glance. The fractal pattern is present throughout the series, irrespective
of scale or wavelet power.

Figures 5.13a, b, c, d are magnifications of Fig. 5.12 at varying scales. The top
left chart depicts scales 1–4 and the top right figure scales 4–7, while the bottom left
chart shows scales 5–8 and the bottom right chart scales 7–10. Specific scales can
be plotted as follows:

c1=WaveletScalogram[Rcwt,{1 j 2 j 3 j 4,_}];
c2=WaveletScalogram[Rcwt,{4 j 5 j 6 j 7,_}];
c3=WaveletScalogram[Rcwt,{5 j 6 j 7 j 8,_}];
c4=WaveletScalogram[Rcwt,{7 j 8 j 9 j 10,_}];
Grid[{{c1,c2},{c3,c4}}]

5.4 Conclusion

Concluding remarks are presented in this section. The contribution of wavelet
analysis to the fractal market hypothesis and the economic sciences in general are
discussed, as well as the future possible areas of research using time–frequency
analysis.



5 The Fractal Nature of Bitcoin: Evidence from Wavelet Power Spectra 93

Fig. 5.13 Self-similar behavior of Bitcoin price returns at scales: 1-4 (top left), 4-7 (top right), 5-8
(bottom left) and 7-10 (bottom right)

5.4.1 Fractal Market Hypothesis: Evidence from Wavelet
Power Spectrum

In spite of the novelty of the Bitcoin protocol and the uncharacteristically high
volatility of the homonymous currency, the predictions made by the fractal market
hypothesis correctly capture the asset’s behavior. Thanks to the ability of wavelet
analysis to decompose a time series into different scales, it is possible to observe
the dominance of short investment horizons during periods of price volatility. The
theoretical framework developed by Peters takes into account heterogeneous agents
who operate at simultaneous time horizons and react to market information with
respect to their investment horizon; therefore, it is possible to account for the statis-
tical departures to the efficient market hypothesis observed in the cryptocurrency’s
returns (Peters 1991a,b, 1994).

Additionally, the use of wavelet analysis allowed to observe the presence of
self-similar dynamics in the time series through the wavelet power spectrum. This
methodology has also been used to detect fractal properties in a wide range of
natural phenomena, from fluid turbulence to DNA sequences and breathing rate
variability (Adisson 2002).
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5.4.2 Wavelet Analysis in Economics and Finance

Many authors argue the importance of multiscale relationships in economics and
finance (In and Kim 2012; Aguiar-Conraria and Soares 2011; Ramsey and Lampart
1997a). In financial terms, market dynamics are affected by investment horizons
that range from high-frequency trading to individual stockbrokers, hedge funds,
multinational corporations, pension funds, and government debt. However, despite
the wide range of investment horizons operating in the market, most economic
analyses have relied on only two scales, short and long run. The use of time–
frequency analysis is being rapidly adopted in economics to study how a process
operates across a wide range of time scales. Wavelet analysis has been used to
investigate the multiscale relationship between the stock and futures markets over
various time horizons, the interest rate swap market in the time–frequency domain,
long memory in rates and volatility of LIBOR, and the relationship between stock
returns and risk factors at various time scales (In and Kim 2012).

Ramsey and Lampart list many benefits of incorporating wavelet analysis to
the discipline, for example, estimators for novel situations, greater estimation
efficiency, robustness of modeling error, reduction of biased estimations, and, most
importantly, discovering new insights into the properties of economic phenomena.
For example, they mention previous studies using wavelet analysis, or time scale
decomposition, to study the term structure of interest rates, the distinction between
permanent and transitory shocks, or the relationship by time scale of money and
income, and expenditure and income (Ramsey 2002; Ramsey and Lampart 1997b,
1998a,b).

In their studies of money, income, and expenditure in the time–frequency
domain, Ramsey and Lampart found evidence of complex behavior in the relation-
ships between these variables (Ramsey and Lampart 1998a,b). The authors found
that the delays observed between variables are a function of time and scale, contrary
to the accepted assumption that delays between variables are fixed. This provides
opportunities for future research examining the underlying mechanisms of the time-
varying delays. Ramsey speculates that the “timing” of actions by economics agents
can explain time-varying delays and provides as an example a 2001 push by auto-
manufacturers to lower the purchase price on cars (Ramsey 2002). The author argues
the automakers’ decision had two effects. First, undoubtedly, increased quantity was
demanded in reaction to an implicit price decline, but it also shortened the delay
between income and expenditure.

Wavelet analysis can also be used to study structural change and regime shifts, for
example, to model the impact of minimum wage and tax legislation and innovation.
Aggregate time series can be decomposed into long-term structural components,
medium-term seasonal components, and short-term random components. This
approach can allow to characterize a robust system at high scales that also permits
fluctuations that are not entirely random and shorter time scales. As it was shown
in Fig. 5.6, wavelet analysis allows for the study of transitional changes that were
previously impossible to observe thanks to wavelet’s ability to capture hidden
dynamics.
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Ramsey also points to the analysis of term structure of interest rates as a field
where wavelet applications should provide extensive and deep insights since the
role of the horizon of the decision-maker on market outcomes is so clearly indicated
(Ramsey 2002). Kiermeier, for example, analyzes the risk factors of the European
term structure of interest rates and finds good forecasting results, with up to 1 month
of significant forecasts even during times of financial market distress (Kiermeier
2014).

Time–frequency analysis also allows for new developments on forecasting. By
decomposing a time series into its global and local aspects, specific forecasting
techniques can be applied to each scale of the time series.

5.4.3 Future Research

The results presented in this study indicate new areas for both empirical and theoret-
ical research, for example, how agents operate at several scales simultaneously, both
at the individual and aggregate level, or what are the long- and short-term structural
components underlying cryptocurrencies and their relationship to other economic
variables in the time–frequency domain. The application of wavelet analysis to
economics and finance is still in its infancy when compared with other fields.
However, the wavelet literature in economics is rapidly growing and expanding
to other areas in the fields. While most of wavelet analysis has fallen into three
broad categories (macroeconomics, volatility and asset pricing, and forecasting and
spectral analysis), this new approach can provide not only novel techniques but also
new insights in many fields of economics.
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Chapter 6
Computing Greeks for Lévy Models:
The Fourier Transform Approach

Federico De Olivera and Ernesto Mordecki

Abstract We review the computation of Greeks for exponential Lévy models
extending Lewis formula for the option value. This gives accurate approximations
using fast Fourier transform. We present an exhaustive development of Greeks for
call options. We provide error estimation in for all Greeks in the Black–Scholes
model (where Greeks can be exactly computed) and consider other models used in
the literature, such as the Merton and variance gamma models.

Keywords Exponential Lévy models • Option pricing • Lévy processes
• Derivatives • Greeks • Lewis pricing formula • Black Scholes • Merton
model • Variance gamma model

6.1 Introduction

We consider a Lévy process X D fXtgt�0 defined on a probability space .˝;F ;Q/;
a financial market model with two assets; a deterministic savings account
B D fBtgt�0, given by

Bt D B0e
rt;

with r � 0 and B0 > 0; and a stock S D fStgt�0, given by

St D S0e
rtCXt ; (6.1)
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with S0 > 0, where X D fXtgt�0 is a Lévy process. When the process X has
continuous paths, we obtain the classical Black–Scholes model (Merton 1973). For
general reference on the subject, we refer to Kyprianou (2006) or Cont and Tankov
(2004).

The aim of this paper is the computation of the price partial derivatives of a
European option with general payoff with respect to any parameter of interest. These
derivatives are usually named as “Greeks,” and consequently, we use the term Greek
to refer to any price partial derivative of the option (of any order and with respect
to any parameter). Our approach departs from the subtle observation by Cont and
Tankov (see Cont and Tankov 2004, p. 365):

Contrary to the classical Black–Scholes case, in exponential-Lévy models there
are no explicit formulae for call option prices, because the probability density of
a Lévy process is typically not known in closed form. However, the characteristic
function of this density can be expressed in terms of elemen- elementary functions
for the majority of Lévy processes discussed in the literature. This has led to
the development of Fourier-based option pricing methods for exponential-Lévy
models. In these methods, one needs to evaluate one Fourier transform numerically
but since they simultaneously give option prices for a range of strikes and the
Fourier transform can be efficiently computed using the FFT algorithm, the overall
complexity of the algorithm per option price is comparable to that of evaluating the
Black–Scholes formula.

In other words, in the need of computation of a range of option prices, from a
practical point of view, the Lewis formula works as a closed formula, as it can be
implemented and computed with approximately the same precision and in the same
time as the Black–Scholes formula.

Some papers have addressed this problem. Eberlein et al. Eberlein et al. (2009)
obtained a formula similar to the Lewis one and derived delta (�) and gamma
(	 ), the price partial derivatives with respect to the initial value St of first and
second order, for a European payoff function. The assumptions are similar to the
ones we require. Takahashi and Yamazaki (2008) also obtain these Greeks in the
case of call options, based on the Carr and Madan approach. The advantage of
the Lewis formula is that it gives option prices for general European payoffs,
while the Carr–Madan only price European vanilla options or some other type of
strike-dependent options. It must be said that the Carr–Madan formula is applicable
for general processes, not necessarily Lévy, but, as we are interested in the Lévy
process, we heavily rely on Lewis’ approach, being the main difference with the
analysis in Lee (2004). Other works deal with the problem of Greek computation
for more general payoff functions, including path-dependent options [e.g., see
Boyarchenko and Levendorskií (2009), Chen and Glasserman (2007), Glasserman
and Liu (2007), Glasserman and Liu (2008), Jeannin and Pistorius (2010) and
Kienitz (2008)]. These works are based on different techniques, such as simulation
or finite differences introducing a method error that has to be analyzed, whereas our
approach does not.

In the present paper, we obtain closed formulas for Greeks based on the Lewis
formula that computes efficiently and with arbitrary precision [as exposed in Cont
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and Tankov (2004)], for arbitrary payoff European options in the Lévy models with
respect to any parameter and arbitrary order. As an example, we analyze the case of
call options.

6.2 Greeks for General European Options in Exponential
Lévy Models

Denote by Q the risk-neutral pricing measure, i.e.,

E eX1 D 1; (6.2)

where E denotes expectation under Q. Furthermore, by the Lévy–Khintchine
theorem, we obtain that E eizXt D et�.z/, where the characteristic exponent is

�.z/ D �iz.1 � iz/
�2

2
C
Z

R

�
eizy � 1 � iz.ey � 1/	
.dy/; (6.3)

with � � 0 as the standard deviation of the Gaussian part of the Lévy process and 

its jump measure.

Regarding the payoff, following Lewis (2001), denote s D ln ST and consider a
payoff w.s/ and its Fourier transform Ow.z/ D R1

�1 exp.isx/w.x/dx: For instance, if
K is a strike price, the call option payoff and its respective transform are

w.s/ D .es � K/C; Ow D �K
izC1

z2 � iz
.=.z/ > 1/: (6.4)

Then, the Lewis formula (Lewis 2001) for the European options, valued at time t,
and denoting � D T � t the time to maturity, is:

Vt D e�r�

2�

Z

ivCR

e�iz.ln.St/Cr�/e��.�z/ Ow.z/dz; (6.5)

where z 2 SV D fu C ivW u 2 Rg and v must be chosen depending on the payoff
function (Lewis 2001). In this context, it is simple to obtain some general formulas
for the Greeks.

In order to differentiate under the integral sign, we present the following classical
result.

Lemma 1. Let � 	 R an interval and I D iv C R. Let h W I � � ! C and
g W I ! C such that

• h.�; �/g.�/ is integrable for all � 2 � and g is integrable.
• h.z; �/ is differentiable in � for all z 2 I and @h

@�
is bounded.
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Then,
R
I h.x; �/g.x/dx is differentiable and

@

@�

Z

I
h.x; �/g.x/dx D

Z

I

@h.x; �/

@�
g.x/dx 8� 2 �:

Proof. We observe that
ˇ̌
ˇ @h.z;�/g.z/@�

ˇ̌
ˇ � Cjg.z/j for all z 2 I , � 2 �. The result is

obtained from Theorem 2.27 in Folland (1999).

In consequence, in the rest of the paper, we will always assume that the
conditions in Lemma 1 are satisfied for the real part of the integrand because the
price imaginary part integrate is zero.

6.2.1 First-Order Greeks

We introduce the auxiliary function

#.z/ D e�iz.ln.St/Cr�/e��.�z/ Ow.z/:
Departing from (6.5) and (6.3), by differentiation under the integral sign, we obtain

�t D@Vt

@St
D � 1

St

e�r�

2�

Z

ivCR

iz#.z/dz;

�t D
@Vt

@r
D �� e

�r�

2�

Z

ivCR

.1C iz/#.z/dz;

Vt D@Vt

@�
D �� e

�r�

2�

Z

ivCR

iz.1C iz/#.z/dz;

�t D@Vt

@�
D e�r�

2�

Z

ivCR

.�.�z/ � .1C iz/r/ #.z/dz:

Usually, the Lévy models used in the literature depend on a set of parameters that
specify the jump measure. Therefore, we denote 
.dy/ D 
� .dy/ and�.z/ D ��.z/;
then

@Vt

@�
D � e

�r�

2�

Z

ivCR

@��.�z/
@�

#.z/dz:

6.2.2 Second-Order Greeks

Similarly, we obtain

	t D@
2Vt

@S2t
D 1

S2t

e�r�

2�

Z

ivCR

iz.1C iz/#.z/dz;
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Vannat D @2Vt

@�@St
D �� 1

St

e�r�

2�

Z

ivCR

z2.1C iz/#.z/dz;

Vommat D@
2Vt

@�2
D � e

�r�

2�

Z

ivCR

�
1C ��2iz.1C iz/

	
iz.izC 1/#.z/dz;

Charmt D @2Vt

@St@�
D � 1

St

e�r�

2�

Z

ivCR

iz .�.�z/ � .1C iz/r/ #.z/dz;

Vetat D @2Vt

@�@�
D � e

�r�

2�

Z

ivCR

iz.1C iz/ .��.�z/ � .izC 1/r� C 1/ #.z/dz;

Verat D @
2Vt

@�@r
D ��2� e

�r�

2�

Z

ivCR

iz.izC 1/2#.z/dz:

Other derivatives can be obtained analogously. In the next section, we will focus
in the case of call options. This allows to obtain more explicit formulas.

6.3 Greeks for Call Options in Exponential Lévy Models

In order to exploit the particular payoff function, we exhaustively develop the
Greeks for call options. The put option corresponding formulas can be obtained
immediately via put-call parity. For other payoffs, the procedure to obtain the Greeks
is analogous.

When the strike K is fixed, x D ln.K=St/� r� is variable in terms of St, r, and � .
Then, we must consider this for the computation of Greeks�, 	 , �, and others.

Lemma 2. Let X� be a Lévy process with triplet .�; �; 
/ and characteristic
exponent �.z/ such that �.�i/ D 0 and

R
jyj>1 e

vy
.dy/ < 1 with v � 0. Then,
if z 2 iv C R,

j�J.�z/j � .jzj2 C jzj/e
v

2

Z

jyj�1
y2
.dy/C 2

Z

jyj>1
.evy C 1/
.dy/

and

j�.�z/j � .jzj2 C jzj/

ev

2

Z

jyj�1
y2
.dy/C �2

2

�
C 2

Z

jyj>1
.evy C 1/
.dy/;

(6.6)

where �J.z/ D
R
R

�
eizy � 1 � iz.ey � 1/	 
.dy/.

Proof. Let I.z/ D R
R

�
eizy � 1 � izy1fjyj�1g

	

.dy/. Applying Taylor’s expansion

with Lagrange error form at point y D 0, there exists � y with j� yj � jyj such that
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eizy � 1� izy1fjyj�1g Dizy1fjyj>1g � z2y2
eiz�y

2

D� z2y2
eiz�y

2
1fjyj�1g C

�
izy � z2y2

eiz�y

2

�
1fjyj>1g

D� z2y2
eiz�y

2
1fjyj�1g C .eizy � 1/1fjyj>1g:

Then

jI.�z/j �
Z

R

ˇ̌
ˇ̌�z2y2 e

�iz� y
2

1fjyj�1g C .e�izy � 1/1fjyj>1g
ˇ̌
ˇ̌ 
.dy/

�jzj2
Z

jyj�1
ev� y

2
y2
.dy/C

Z

jyj>1
.evy C 1/
.dy/

�jzj2 e
v

2

Z

jyj�1
y2
.dy/C

Z

jyj>1
.evy C 1/
.dy/: (6.7)

Using (6.7), we have

j�J.�z/j DjI.�z/C izI.�i/j

�.jzj2 C jzj/e
v

2

Z

jyj�1
y2
.dy/C 2

Z

jyj>1
.evy C 1/
.dy/:

For the continuous part, let �C.�z/ D .iz � z2/ �
2

2
; thus,

j�.�z/j �j�C.�z/j C j�J.�z/j

�.jzj2 C jzj/
�
ev

2

Z

jyj�1
y2
.dy/C �2

2

�
C 2

Z

jyj>1
.evy C 1/
.dy/:

Lemma 3. Let fX�g��0 be a Lévy process with triplet .�; �; 
/ and characteristic
exponent �.z/, such that �.�i/ D 0 and EŒevX� � <1 with v > 0.

1. If
R
ivCR
jzj�1je��.�z/jdz <1, then

P.X� > x/ D� 1

2�

Z

ivCR

eizx

iz
e��.�z/dz; (6.8)

E.eX�1fX�>xg/ D�
1

2�

Z

ivCR

e.1Ciz/x

1C iz
e��.�z/dz: (6.9)

2. If

Z

ivCR

jzne��.�z/jdz <1; for some n D 0; 1; : : : ; (6.10)
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then X� has a density of class Cn and

@nf .x/

@xn
D 1

2�

Z

ivCR

.iz/neizxe��.�z/dz:

Proof. For a call option, the Fourier transform of the payoff function is Ow.z/ D
eiz.ln.St/Cr�Cx/

iz.1Ciz/ . Then from the option value (6.5), we have, with x D log.K=St/� r� ,

Ct.x/ D St
ex

2�

Z

ivCR

eizxe��.�z/

iz.izC 1/ dz: (6.11)

Then, being x 2 Œ˛; ˇ� and C1 D max˛�x�ˇ e.1�v/x,
ˇ̌
ˇ̌@e

.1Ciz/xe��.�z/Œiz.izC 1/��1
@x

ˇ̌
ˇ̌ � C1jz�1jje��.�z/j 2 L1.iv C R/;

and by Theorem 2.27 in Folland (1999), we can differentiate under the integral sign.
Therefore, with St D 1,

P.X� > x/ D� e�x
@

@x

Z 1

x
.es � ex/F.ds/

D� e�x
@Ct.x/

@x
D � 1

2�

Z

ivCR

eizx

iz
e��.�z/dz:

On the other hand, with St D 1,

E.eX�1fX�>xg/ D
Z 1

x
esF.ds/ D �ex @

@x

Z 1

x
.es�x � 1/F.ds/

D� ex
@e�xCt.x/

@x
D Ct.x/� @Ct.x/

@x

D 1

2�

Z

ivCR

e.1Ciz/x

iz.1C iz/
e��.�z/dz� 1

2�

Z

ivCR

e.1Ciz/x

iz
e��.�z/dz

D� 1

2�

Z

ivCR

e.1Ciz/x

1C iz
e��.�z/dz:

For the second part, observe in (6.8) that if x 2 Œ˛; ˇ� and C2 D max˛�x�ˇ e�vx,
ˇ̌
ˇ̌
ˇ
@nC1 eizxiz e

��.�z/

@xnC1

ˇ̌
ˇ̌
ˇ � C2jzjnje��.�z/j 2 L1.iv C R/:

The result is obtained from Theorem 2.27 in Folland (1999).
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We conclude the preliminaries of this section with some notations. As (6.2)
holds, the relation d QQ D eXT d Q defines a probability measure QQ, known as the
dual martingale measure. A call option price with payoff (6.4), and log-forward
moneyness1 x D ln.K=S0/� r� , can be computed by

Ct.x/ D St

 QQ.X� > x/� ex Q.X� > x/

�
:

Furthermore, if Xt has a density ft.x/ under Q, i.e., if condition (6.10) holds with
n D 0, its density under QQ is Qft.s/ D esft.s/. In order to obtain Greeks in terms of
the risk-neutral measure, we replace P by Q in (6.8), and consequently (6.9), (6.10),
and (6.11) are related to the probability measure Q.

6.3.1 First-Order Greeks for Call Options

In this section, we do not assume general requirements. We specify the requirements
in each case.

6.3.1.1 Delta

Assume that
R
ivCR
jzj�1je��.�z/jdz <1 and St 2 ŒA;B�. From (6.11), we obtain

�L
t D

@Ct.x.St//

@St

D @

@St
St
1

2�

Z

ivCR

e.1Ciz/x.St/

iz.1C iz/
e��.�z/dz

D 1

2�

Z

ivCR

e.1Ciz/x

iz.1C iz/
e��.�z/dz� 1

2�

Z

ivCR

e.1Ciz/x

iz
e��.�z/dz

D� 1

2�

Z

ivCR

e.1Ciz/x

1C iz
e��.�z/dz D QQ.X� > x/:

6.3.1.2 Rho

Denote now x D ln.K=St/ � r� , that depends on the interest rate r. Assume thatR
ivCR
jzj�1je��.�z/jdz <1 and r 2 ŒR1;R2�. Then

1This seems to be the standard definition, although in Cont and Tankov (2004) it is defined as the
opposite quantity.
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�Lt D
@Ct.x.r//

@r
D St

1

2�

Z

ivCR

�� e
.1Ciz/x

iz
e��.�z/dz D �Stex Q.X� > x/:

6.3.1.3 Vega

In Black–Scholes, vega shows the change in variance of the log price. In exp-Lévy
models, the derivative of Ct.x/ w.r.t. � does not give exactly the same information.
We assume that X� has density f [see (6.10)] and z 2 iv C R. Let

h.z; �/ De� iz.1Ciz/ �
2

2 ; g.z/ DeizxC�
R
R
.eizy�1�iz.ey�1//
.dy/

iz.1C iz/
:

Thus, @
@�
h.z; �/ is bounded. On the other hand,

R
ivCR
jg.z/jdz < 1 because

jE.e�i.ivCs/J� /j � E.evJ� / < 1, where J� is the jump part of X� . By Lemma 1,
we can differentiate under the integral sign. Then,

V L
t D

@Ct.x/

@�
D St

ex

2�

Z

ivCR

eizxe��� .�z/

iz.izC 1/ �� iz.1C iz/dz

DSt��exf� .x/:

In order to complete the information provided by vega, we can calculate the
derivative with respect to the jump intensity, when this intensity is finite, i.e., when

.dy/ D �G.dy/ for a probability distribution G, and assume the existence of a
density (6.10). Denote

h.z; �/ D e��
R
R.e�izy�1Ciz.ey�1//G.dy/

�
R
R
.e�izy � 1C iz.ey � 1//G.dy/ ;

g.z/ De.izC1/xe� iz.1Ciz/ �
2

2

iz.izC 1/ �

Z

R

�
e�izy � 1C iz.ey � 1/	G.dy/;

where @h.z;�/
@�

is bounded and from Lemma 2
R
ivCR
jg.z/jdz <1; then by Lemma 1,

we obtain

@Ct.x/

@�
D @

@�
St
1

2�

Z

ivCR

e.izC1/xe��.�z/

iz.izC 1/ dz

D�St 1
2�

Z

ivCR

e.izC1/xe��.�z/

iz.izC 1/ � J.�z/dz;
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with � J.�z/ D
R
R

�
e�izy � 1C iz.ey � 1/	G.dy/. Using Fubini’s theorem, we

obtain

@�Ct.x/

@�
D @

@�
St
1

2�

Z

ivCR

e.izC1/xe��.�z/

iz.izC 1/ dz

D�St 1
2�

Z

ivCR

e.izC1/xe��.�z/

iz.izC 1/
Z

R

�
e�izy � 1C iz.ey � 1/	G.dy/dz

D�St
�Z

R

�
ey
ex�y

2�

Z

ivCR

eiz.x�y/
e��.�z/

iz.1C iz/
dz

� ex

2�

Z

ivCR

eizx
e��.�z/

iz.1C iz/
dz

C.ey � 1/ e
x

2�

Z

ivCR

eizx
e��.�z/

1C iz
dz

�
G.dy/

�

D�
�Z

R



eyCt.x � y/ � Ct.x/ � St.e

y � 1/ QQ.X� > x/
�
G.dy/

�
:

The use of Fubini’s theorem is justified by (6.7) and the additional hypothesisR
ivCR
je��.�z/jdz <1.

6.3.1.4 Theta

Assume condition (6.10) holds with n D 2, and let

h.z; �/ D e.izC1/x� e��.�z/; g.z/ D 1

iz.1C iz/
:

Then,
R
ivCR
jg.z/jdz <1; moreover, from (6.6) and

R
ivCR
jz2e��.�z/jdz <1,

@h.z; �/

@�
De.izC1/x� e��.�z/



� r.1C iz/C �.�z/

�

is bounded, and by Lemma 1,

�L
t D

@�Ct.x� /

@�
D @

@�
St
1

2�

Z

ivCR

e.izC1/x� e��.�z/

iz.izC 1/ dz

DSt 1
2�

Z

ivCR

e.izC1/x� e��.�z/

iz.1C iz/



�.�z/� r.1C iz/

�
dz:

Using Fubini’s theorem, we obtain
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�L
t DSt

1

2�

Z

ivCR

e.izC1/x� e��.�z/

iz.1C iz/



�.�z/ � r.1C iz/

�
dz

DSt
h
� r

2�

Z

ivCR

e.izC1/x� e��.�z/

iz
dz

C 1

2�

Z

ivCR

e.izC1/x� e��.�z/

iz.izC 1/


iz.1C iz/

�2

2

C
Z

R

�
e�izy � 1C iz.ey � 1/	 
.dy/

�
dz
i

DSt
h
rex� Q.X� > x� /C �2

2
ex� f� .x� /

C
Z

R



ey
ex�y

2�

Z

ivCR

eiz.x�y/
e��.�z/

iz.1C iz/
dz � ex

2�

Z

ivCR

eizx
e��.�z/

iz.1C iz/
dz

C.ey � 1/ e
x

2�

Z

ivCR

eizx
e��.�z/

1C iz
dz
�

.dy/

i

DSt
h
rex� Q.X� > x� /C �2

2
ex� f� .x� /

i

C
Z

R



eyCt.x� � y/� Ct.x� / � St.e

y � 1/ QQ.X� > x� /
�

.dy/:

The use of Fubini’s theorem is justified by (6.7) and the additional hypothesisR
ivCR
jz2e��.�z/jdz <1.

6.3.2 Second-Order Greeks for Call Options

6.3.2.1 Gamma

Once delta is obtained, we must only differentiate again with respect to St, to obtain
gamma. We assume that X� has density f and St 2 ŒA;B�, then

	 L
t D

@2Ct.x.St//

@S2t
D @ QQ.X� > x.St//

@St
D 1

St
Qf .x/ D ex

St
f .x/:

6.3.2.2 Vanna

We assume that
R
ivCR
jze��.�z/jdz <1 and 0 < ˙1 � � � ˙2, then

@2Ct.x/

@�@St
D@V

L
t

@St
D ��ex.St/ft.x.St//� ��ex.St/



ft.x.St//C f 0t .x.St//

�

D� ��exf 0� .x/:
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6.3.2.3 Vomma

We assume that
R
ivCR
jz2e��.�z/jdz < 1 and 0 < ˙1 � � � ˙2, let z 2 iv C R,

and denote

h.z; �/ D z2e� iz.1Ciz/ �
2

2 ; g.z/ D eizxC�
R
R
.eizy�1�iz.ey�1//
.dy/

z2
:

Thus, @h.z;�/
@�

is bounded, and
R
ivCR
jg.z/jdz < 1; because jE.e�izJ� /j �

E.evJ� / < 1, where J� is the jump part of X� . By Lemma 1, we can differentiate
under the integral sign

@2Ct.x/

@�2
D@V

L
t

@�
D St�e

xf� .x/C St��
ex

2�

Z

ivCR

eizxe��.�z/��.iz � z2/dz

DSt�ex


f� .x/C ��2

�
f 0� .x/C f 00� .x/

	 �
:

6.3.2.4 Charm

Assume that (6.10) holds for n D 3, take z 2 iv C R, and let

h.z; �/ D ze.izC1/x� e��.�z/; g.z/ D 1

z.1C iz/
:

Then,
R
ivCR
jg.x/jdx <1, and by Lemma 2,

@h.z; �/

@�
Dze.izC1/x� e��.�z/



� r.1C iz/C �.�z/

�

is bounded. By Lemma 1,

@2Ct.x/

@�@St
D@
QQ.X� > x� /

@�
D @

@�

�1
2�

Z

ivCR

e.izC1/x�
e��.�z/

1C iz
dz

D 1

2�

Z

ivCR

e.izC1/x�
e��.�z/

1C iz



r.1C iz/� �.�z/

�
dz: (6.12)

Using Fubini’s theorem, we obtain

@2Ct.x/

@�@St
D 1

2�

Z

ivCR

e.izC1/x�
e��.�z/

1C iz



r.1C iz/� �.�z/

�
dz

Drex� f� .x� / � �
2

2
ex� f 0� .x� /



6 Computing Greeks for Lévy Models: The Fourier Transform Approach 111

�
Z

R

h
ey
ex��y

2�

Z

ivCR

eiz.x��y/
e��.�z/

1C iz
dz � ex�

2�

Z

ivCR

eizx�
e��.�z/

1C iz
dz

C .ey � 1/
n ex�
2�

Z

ivCR

eizx� e��.�z/dz

� e
x�

2�

Z

ivCR

eizx�
e��.�z/

1C iz
dz
oi

.dy/

D� rex� f� .x� /C �2

2
ex� f 0� .x� /

C
Z

R

h
� ey QQ.X� > x� � y/C QQ.X� > x� /

C.ey � 1/˚exf� .x/C QQ.X� > x� /
�i

.dy/

Drex� f� .x� / � �
2

2
ex� f 0� .x� /

�
Z

R

h
ey

 QQ.X� > x� /� QQ.X� > x� � y/

�

C.ey � 1/ex� f� .x� /
i

.dy/: (6.13)

The use of Fubini’s theorem is justified by (6.7) and the additional hypothesisR
ivCR
jz3e��.�z/jdz <1.

6.3.2.5 Veta

We assume that
R
ivCR
jz4e��.�z/jdz < 1. Similar to Charmt, we assume that � 2

ŒT1;T2� and z 2 iv C R and denote

h.z; �/ D z2e.izC1/x� e��.�z/; g.z/ D 1

z2
:

Then,
R
ivCR
jg.z/jdz <1, and by Lemma 2,

@h.z; �/

@�
Dz2e.izC1/x� e��.�z/



� r.1C iz/C �.�z/

�

is bounded. By Lemma 1, we can differentiate under the integral sign,

@2Ct.xr/

@�@�
D@V

L
t

@�
D @St��ex� f� .x� /

@�
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DSt�
h
ex� f� .x� /� r�ex� f� .x� /C �ex�

2�

Z

ivCR

@

@�
eizx� e��.�z/dz

i

DSt�
h
ex� f� .x� /� r�ex� f� .x� /

C�e
x�

2�

Z

ivCR

eizx� e��.�z/


�.�z/ � riz

�
dz
i
: (6.14)

Using Fubini’s theorem, we obtain

@2Ct.xr/

@�@�
DSt�

h
ex� f� .x� / � r�ex� f� .x� /

C�e
x�

2�

Z

ivCR

eizx� e��.�z/


�.�z/ � riz

�
dz

DSt�ex�
h
f� .x� / � r�

�
f� .x� /C f 0� .x� /

	

C �

2�

Z

ivCR

eizx� e��.�z/
˚�2

2
.iz � z2/

C
Z

R

�
e�izy � 1C iz.ey � 1/	
.dy/�dz

i

DSt�ex�
h
f� .x� / � r�

�
f� .x� /C f 0� .x� /

	C � �
2

2

�
f 0� .x� /C f 00� .�/

	

C�
Z

R



f� .x� � y/ � f� .x� /C .ey � 1/f 0� .x� /

�

.dy/

i
: (6.15)

The use of Fubini’s theorem is justified by (6.7) and the additional hypothesisR
ivCR
jz4e��.�z/jdz <1.

6.3.2.6 Vera

Assuming that
R
ivCR
jze��.�z/jdz <1 and 0 < ˙1 � � � ˙2,

@2Ct.xr/

@�@r
D@V

L
t

@r
D St��e

xr


� � f� .xr/� � f 0� .xr/

�

D� St�
2�exr



f� .xr/C f 0� .xr/

�
:



6 Computing Greeks for Lévy Models: The Fourier Transform Approach 113

6.3.3 Third-Order Greeks for Call Options

6.3.3.1 Color

We assume that
R
ivCR
jz4e��.�z/jdz <1, � 2 ŒT1;T2�. Let z 2 iv C R and

h.z; �/ Dz2e.izC1/x� e��.�z/

g.z/ D 1
z2
:

Then,
R
ivCR
jg.x/jdx <1, and by Lemma 2,

@h.z; �/

@�
Dz2e.izC1/x� e��.�z/



� r.1C iz/C �.�z/

�

is bounded. By Lemma 1, we can differentiate under the integral sign.
Thus,

@3Ct.x/

@S2t @�
D@	

L
t

@�
D 1

St2�

Z

ivCR

e.izC1/x� e��.�z/


� r.izC 1/C �.�z/

�
dz:

(6.16)

Using Fubini’s theorem, we obtain

@3Ct.x/

@S2t @�
D 1

St2�

Z

ivCR

e.izC1/x� e��.�z/


� r.izC 1/C �.�z/

�
dz

Dex

St

h
� r
�
f .x/C f 0.x/

	C �2

2

�
f 0.x/C f 00.x/

	

C 1

2�

Z

ivCR

eizxe��.�z/
Z

R

e�izy � 1C iz.ey � 1/
.dy/dz
i

D� ex

St

h
r


f� .x/C f 0� .x/

�
� �

2

2



f 0� .x/C f 00� .x/

�

C
Z

R



f� .x/� f� .x � y/� .ey � 1/f 0� .x/

�

.dy/

i
: (6.17)

Fubini is justified by (6.7) and the hypothesis
R
ivCR
jz4e��.�z/jdz <1.

6.3.3.2 Speed

Assuming that
R
ivCR
jze��.�z/jdz <1,
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@3Ct.xr/

@S3t
D@	

L
t

@St
D

ex.St/


� 1

St
f� .x.St//� 1

St
f 0� .x.St//

�
St � ex.St/f� .x.St//

S2t

D� ex

S2t



2f� .x/C f 0� .x/

�
:

6.3.3.3 Ultima

We assume that
R
ivCR
jz6e��.�z/jdz < 1. First, we calculate @f

.n/
� .x/
@�

for n D 0; 1; 2.
For 0 < ˙1 � � � ˙2 and z 2 iv C R, we denote

hn.z; �/ D .iz/nC2e��.�z/; g.z/ D �e
izx

z2
:

Thus,
R
ivCR
jg.z/jdz < 1 and @hn.z;�/

@�
is bounded for n D 0; 1; 2. By Lemma 1, we

can differentiate under the integral sign. Then,

@nf� .x/

@�
D @

@�

1

2�

Z

ivCR

.iz/neizxe��.�z/dz

D�� 1

2�

Z

ivCR

Œ.iz/nC1 � .iz/nC2�eizxe��.�z/dz

D��


f .nC1/� .x/C f .nC2/� .x/

�
: (6.18)

Now, we have

@3Ct.x/

@�3
D
@St�ex



f� .x/C ��2

�
f 0� .x/C f 00� .x/

	 �

@�

DSt�2�ex


3
�
f 0� .x/C f 00� .x/

	C ��2 �f 00� .x/C 2f 000� .x/C f .iv/� .x/
	 �
:

6.3.3.4 Zomma

We assume that
R
ivCR
jz2e��.�z/jdz <1 and 0 < ˙1 � � � ˙2. Then,

@3Ct.xr/

@S2t @�
D@VannaLt

@St
D @��ex.St/f 0� .x.St//

@St

D� ��e
x

St



f 0� .x/C f 00� .x/

�
:
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6.4 Examples

6.4.1 The Black–Scholes Model

If we assume that the Gaussian distribution and density are exactly computed in
R software, we can compare the Greeks for Black–Scholes model using Lewis
representation. To approximate the Fourier transform, we cut the integral between
�A=2 and A=2 and take a uniform partition of Œ�A=2;A=2� of size N:

Z

R

eizxg.z/dz �
Z A=2

�A=2
eizxg.z/dz � A

N

N�1X

kD0
wke

izkxg.zk/;

where zk D �A
2
C k A

N�1 and wk are weights that correspond to the integration
numerical rule.

Table 6.1 shows the `1-errors in the Black–Scholes model via Lewis represen-
tation and fast Fourier transform using St D 1, r D 0:05, T D 1, � D 0:1, A D 300,
and N D 222. Denoting by GL the value for the Greek given by our Lévy formula,
and by G the direct computation, the `1-errors are

`1-error.GL/ D max
x2Œ�0:7;0:7�

jGL � Gj; (6.19)

for x D ln.K=St/� r� .

Table 6.1 `
1

-errors in the
Black–Scholes model via
Lewis representation and fast
Fourier transform using
St D 1, r D 0:05, T D 1,
� D 0:1, A D 300, and
N D 222

Greek Expression `
1

-error

Call C D SE.eX� � ex/C 1.2e-07

Delta @SC.x/ 2.4e-07

Rho @rCt.x/ 1.9e-07

Vega @�C.x/ 9.5e-08

Theta @�C.x/ 1.2e-08

Gamma @2SSC.x/ 9.5e-07

Vanna @2�SC.x/ 6.3e-07

Vomma @2��C.x/ 7.5e-07

Charm @2S�C.x/ 6.8e-08

Veta @2��C.x/ 8.9e-08

Vera @2�rC.x/ 5.8e-07

Color @3SS�C.x/ 5.6e-07

Speed @3SSSC.x/ 6.3e-06

Ultima @3���C.x/ 1.2e-05

Zomma @3SS�C.x/ 9.5e-06
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6.4.2 The Merton Model

In this section, we show some results for the Merton model. The Merton model
has four parameters .�; 
J ; � J; �/ where � is the diffusion parameter, � is the jump
intensity, and 
J and � J are the mean and standard deviation of the jump which are
Gaussianly distributed. The characteristic function for the Merton model is

E.eizXT / D exp

�
iz
h�2

2
� ��e
JC �2J

2 � 1	
i
C z2

�2

2
C ��eiz
J�z2 �

2
J
2 � 1	

�
:

(6.20)

All Greeks for At The Money (K D S0e�rT ) are shown in Table 6.2 following
Sect. 6.3. To evaluate errors, we compute first a reasonable value GL and then
increase the precision with the corresponding time cost, to obtain G, that we assume
is the true value, and apply (6.19). Hence, we took A D 500, N D 220 and A D 500,
N D 222; the error is in all Greeks lower than 10�5. In Fig. 6.1, the curves are
shown in terms of x D ln.K=S0/ � rT for all Greeks with the comparison of the
Black–Scholes model with volatility equal to implied volatility At The Money.

The characteristic function in this case is (6.20). To compute sensitivities w.r.t.

J , � J , and �, we only need to differentiate the characteristic exponent with respect
to these parameters:

@�.�z/
@
j

D�iz
h
e
JC�2J=2 � e�iz
J�z2�2J=2

i
;

Table 6.2 Greeks in Merton model with: S0 D 1, r D 0:05, x D 0,
T D 1, � D 0:1, 
J D �0:005, � J D 0:1, � D 1

AD 500, N D 220 A D 500, N D 221 Error

Call C 0.0547129 0.0547129 2.6e-08

Delta @SC 0.5273560 0.5273562 2.5e-07

Rho @rC 0.4726431 0.4726433 2.2e-07

Vega @�C 0.3077754 0.3077755 1.5e-07

Theta @�C 0.0524286 0.0524286 2.5e-08

Gamma @2SSC 3.0777536 3.0777550 1.5e-06

Vanna @2�SC 0.1538877 0.1538878 7.3e-08

Vomma @2��C 0.9091776 0.9091780 4.3e-07

Charm @2S�C 0.1682859 0.1682860 8.1e-08

Veta @2��C 0.1222075 0.1222076 5.8e-08

Vera @2�rC �0.1538877 �0.1538878 7.3e-08

Color @3SS�C 1.8556786 1.8556795 8.8e-07

Speed @3SSSC �4.6166303 �4.6166325 2.2e-06

Ultima @3���C �11.5390901 �11.5390956 5.5e-06

Zomma @3SS�C �21.6857596 �21.6857699 1.0e-05



6 Computing Greeks for Lévy Models: The Fourier Transform Approach 117

Fig. 6.1 Greeks in terms of x D ln.K=S0/ � rT for the Merton model with parameters equal
to Table 6.2 (continuous line). Discontinuous line: Black–Scholes model with volatility equal to
implied volatility in x D 0 (� imp.0/ � 0:137)

@�.�z/
@� j

D�� J

h
ize
JC�2J=2 � z2e�iz
J�z2�2J=2

i
;

@�.�z/
@�j

Diz
h
e
JC�2J=2 � 1

i
C e�iz
J�z2�2J=2 � 1;
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and for � D 
J ; �J ; �;

@C� .x/

@�
D�St e

x

2�

Z

ivCR

eizx
e��� .�z/

iz.1C iz/

@��.�z/
@�

dz:

The differentiation under the integral sign is justified as above.
Using the same parameters presented in Table 6.2, we obtain the sensitivities for

ATM given in Table 6.3.
In Fig. 6.2, we show the Greeks in terms of x D ln.K=S0/ � rT.
In Kienitz (2008) are shown some results for a digital option in the Merton model,

which were obtained by applying finite difference approximations to the formula
for the option prices in Madan et al. (1998). Now we will deduce delta, gamma, and
vega for a digital option, and thus, we will compare the results.

A digital option has a payoff given by

1fS��K>0g D 1fX��x>0g:

Using Lewis representation, the value for a digital option is given by (6.8) (with Q
instead of P). If (6.10) holds with n D 0 and n D 1, respectively, differentiation
leads to:

@D.x/

@St
D 1

S�
f� .x/; (6.21)

Table 6.3 Sensitivities for the Merton model with: S0 D 1, r D 0:05,
x D 0, T D 1, � D 0:1, 
J D �0:005, � J D 0:1, � D 1

A D 500, N D 220 A D 1000, N D 222 Error


J -Sensitivity 0.006703850 0.006703855 4.7e-09

� J -Sensitivity 0.239001059 0.239001230 1.7e-07

�-Sensitivity 0.013407701 0.013407711 9.6e-09
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Fig. 6.2 Sensitivities in terms of x D ln.K=S0/� rT for the Merton model with parameters equal
to Table 6.3
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Table 6.4 Digital option and greeks in the Merton model with: ı D 0:01,
S0 D 100, K D 100, T D 1, r D 0:07, � D 0:2, 
J D 0:05, � J D 0:15,
and � D 0:5

D D-Delta D-Gamma D-Vega

N D 220 0.531269863 0.016610445 -0.000280032 -0.560064360

N D 222 0.531270245 0.016610457 -0.000280032 -0.560064763

Error 3.8e-07 1.2e-08 2.0e-10 4.0e-07

Table 6.5 Greeks and �-sensitivity for variance gamma model with .�; 
; �/ D
.0:2; 1;�0:15/, r D 0:05, T D 1, S0 D K D 100 (x D �0:05)

Call Delta Gamma @Call
@�

N D 220, ı D 0:01 11.26689113 0.72818427 0.01427437 23.04334371

N D 222, ı D 0:01 11.26689919 0.72818479 0.01427438 23.04336021

err< 8.1e-06 5.2e-07 1.0e-08 1.6e-05

@2D.x/

@S2t
D� 1

S2�



f� .x/C f 0� .x/

�
; (6.22)

@D.x/

@�
D� ��



f� .x/C f 0� .x/

�
: (6.23)

In (6.23), differentiation under the integral sign is similar to (6.18).
Then, our results via FFT are shown in Table 6.4. In Kienitz (2008), these

values are (by finite difference): DD 0:531270, D-DeltaD 0:016610, D-GammaD
�2:800324 � 10�4, D-VegaD �0:560070. To obtain a given strike, we define
ı D 2� N�1

NA .

6.4.3 The Variance Gamma Model

In this section, we will compare some results from the literature. As an example, in
Glasserman and Liu (2007), some results are shown for the variance gamma model
with parameters .�; 
; �/ where the characteristic function is:

EŒeizXT � D exp

�
T




h
iz ln

�
1 � �
 � �

2


2

	 � ln
�
1 � iz�
 C z2�2


2

	i�
:

To obtain a given strike, we define ı D 2� N�1
NA . Thus, in Table 6.5, we

present two results for N D 220 and N D 222 with ı D 0:01. The error shows
the convergence of the complex integral. In Glasserman and Liu (2007), these
results are obtained by applying finite difference approximations to the formula
for the option prices in Madan et al. (1998), callD 11:2669, deltaD 0:7282, and
�-derivative D 23:0434, and in general with the LRM method, the error is worse
than 10�2:
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6.5 Conclusions

Greeks are an important input for market makers in risk management. A lot of
options are path dependent and they do not have an explicit formula. However,
for the European options in the exponential Lévy models, we have the Lewis
formula, which allows us to obtain closed formulas for Greeks, many of which
are only density dependent; others require integration. In general, all Greeks can
be approximated with high accuracy because they are a simple integral, similar to
the Black–Scholes model.

A large number of papers are dedicated to obtain Greeks for more complex
payoff functions. However, in order to estimate the accuracy of their methods, Greek
approximations are computed through the finite difference technique.

For a fix strike K, we consider x D ln.K=St/ � r� , with � D T � � the time to
maturity. Thus, the Greeks for call options can be calculated through Table 6.6.

We observe that if the density of X� is known, then many of the Greeks can be
exactly obtained. Some examples of these are normal inverse Gaussian, variance
gamma, generalized hyperbolic, Meixner, and others.

Table 6.6 Greeks in exponential Lévy models in terms of x D ln.K=S/�
r�

First order

Delta @CS.x/ D QQ.X� > x/

Rho @Cr.x/ D �Sex Q.X� > x/

Vega @C� .x/ D S��exf� .x/

If 
 D �N
 @C�.x/ D �
h Z

R



eyC.x� y/� C.x/

�S.ey � 1/ QQ.X� > x/
�
G.dy/

i

Theta @C� .x/ D S
h
rex Q.X� > x/C �2

2
exf� .x/

i
C �

�
@C�.x/

Second order

Gamma @2CSS.x/ D S�1exf� .x/

Vanna @2C�S.x/ D ���exf 0

� .x/

Vomma @2C�� .x/ D S�ex


f� .x/C ��2 �f 0

� .x/C f 00

� .x/
	 �

Charm @2CS� .x/ D see (6.12) and (6.13)

Veta @2C�� .x/ D see (6.14) and (6.15)

Vera @2C�r.x/ D �S�2�ex


f� .x/C f 0

� .x/
�

Third order

Color @3CSS� .x/ D see (6.16) and (6.17)

Speed @3CSSS.x/ D �S�2ex


2f� .x/C f 0

� .x/
�

Ultima @3C��� .x/ D S�2�ex


3
�
f 0

� .x/C f 00

� .x/
	

C��2 �f 00

� .x/C 2f 000

� .x/C f iv� .x/
	 �

Zomma @3CSS� .x/ D ���S�1ex


f 0

� .x/C f 00

� .x/
�
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Chapter 7
Marginal Pricing and Marginal Cost Pricing
Equilibria in Economies with Externalities
and Infinitely Many Commodities

Matías Fuentes

Abstract This paper considers a general equilibrium model of an economy in
which some firms may exhibit various types of non-convexities in production, there
are external effects among agents and the commodity space is infinite dimensional.
The consumption sets, the preferences of the consumers and the production
possibilities are represented by correspondences in order to take into account the
external effects. The firms are instructed to follow the marginal pricing rule from
which we obtain an existence theorem. Then, the existence of a marginal cost pricing
equilibrium is proved by adding additional assumptions. The simultaneous presence
of externalities and infinitely many commodities are sources of technical difficulties
when attempting to generalize previous existence results in the literature.

Keywords General equilibrium • Marginal pricing rules • Externalities •
Increasing returns • Infinitely many commodities • Correspondences

JEL Classification: D50.

7.1 Introduction

It is well known that the presence of increasing returns in production constitutes
a particular case of market failure that leads us to use an alternative criteria for
producer behaviour rather than profit maximization. From the outset, beginning with
Hotelling (1938), it has been argued that when the firms exhibit increasing returns to
scale, prices should be proportional to marginal costs. This is the so-called marginal
cost pricing rule. Hotelling also paid attention to the fact that in some cases, a firm
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or even an industry which adopts marginal cost pricing will run at a loss if there
are high fixed costs. The deficit must then be financed from income taxes. Indeed,
Hotelling argued that general government revenues should be applied to cover fixed
costs of electric power plants, waterworks, railroad, and other industries in which
the fixed costs are large, so as to reduce to the level of marginal cost the prices
charged for the services and products of these industries.

There also exists another notion, that of marginal pricing rule. When the
production set is smooth, this mechanism means that prices should be proportional
to the gradient of the transformation functional, i.e. the producer fulfils the first-
order necessary condition for profit maximization. Both the marginal pricing and
the marginal cost pricing rules are closely related in such a way that they are treated
as equivalents in most papers in the literature. However, as pointed out by Guesnerie
(1990), they are often not equivalents at all and can often be very misleading.
Bonnisseau and Cornet (1990a,b) investigated the link between both notions of
equilibrium. To do this, the authors needed to introduce both the cost function
and the iso-output set which required them to distinguish a priori between inputs
and outputs and to propose additional assumptions. Accordingly, robust results are
obtained relating both notions of equilibria.

Despite many criticisms, the marginal (cost) pricing doctrine is in force today.
A rigorous and general proof of such doctrine was first offered by Guesnerie
(1975) but only for economies with certain kinds of non-convex technologies.
Indeed, Guesnerie considered the polar of the cone of interior displacements of the
mathematicians A. Dubovickii and A. Miljurin to formalize the notion of marginal
cost pricing when the production sets are non-convex. The problem with this
approach comes when the production set has “inward kinks” since in this case, the
normal to such a cone is only the null vector. If there is only one firm in the economy,
then this problem will never arise if we simply assume that the boundary of the
production set is smooth as in Mantel (1979) and Beato (1982). However, in a model
with many firms, even if we assume that each firm has a smooth technology, the
aggregate production set may exhibit inward kinks as Beato and Mas-Colell (1985)
have shown. To avoid this difficulty, Cornet (1990) introduced in the economic
literature the use of the Clarke tangent and normal cones of the mathematician F.
Clarke to represent (through Clarke normal cone) the marginal (cost) pricing rule.
This cone is always convex and coincides with the profit maximization behaviour
(and with the cone of interior displacements) when the technologies are convex.

For economies with finitely many commodities, there are quite robust results
concerning existence of marginal pricing equilibria (for a survey, we refer to Brown
1991). In contrast, for economies with infinitely many commodities, although there
is a large literature on competitive equilibria (for a survey, we refer to Mas-Colell
and Zame 1991), there are few results concerning marginal pricing or marginal cost
pricing equilibria. Shannon (1996) stated the first proof of marginal cost pricing
equilibrium in an infinite dimensional setting. She considered a private ownership
economy with a finite number of consumers and only one firm. The production
possibility frontier was assumed to be smooth. In the existence proof, she used the
Leray-Schauder degree theory. Later, Bonnisseau (2002) generalized the results of
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Shannon to the case of many firms with non-smooth production sets. He had to
introduce a new and larger normal cone since the Clarke´s cone does not have
sufficient continuity properties in infinite-dimensional spaces. So far, there are no
new results concerning marginal (cost) pricing equilibria with an infinite quantity of
goods.

Furthermore, externalities constitute another basic market failure in the sense
that when external effects are present, competitive equilibria are not Pareto optimal.
Although it has been shown that if a competitive market exists for the externality,
then optimality results (Villar 1997), this is not always the case. Take, for example,
the case of an external effect produced by one individual on another. Here, price-
taking behaviour is unrealistic. Moreover, by definition, the presence of external
effects requires incorporating into the model the actions of other agents.

There is a large and growing literature on general equilibrium models with
externalities. Laffont (1976, 1977), Laffont and Laroque (1972) and Bonnisseau
(1997), among others, consider the very general case in which the action of any
agent may affect the decisions on consumption and production, as well as the
preferences, of the rest of the agents. In all cases, it is assumed that consumers
have a non-cooperative behaviour in the sense that they maximize their preferences
under their budget constraints taking the prices and the environment as given.
More recently, this approach has been objected on the grounds that price-taking
assumptions inherent in the notion of competitive equilibrium are incompatible with
the presence of agents who have market power-as all agents typically do when the
total number of agents is finite (Noguchi and Zame 2006). Consequently, there is
also an important literature on competitive equilibria in exchange economies with
externalities and a continuum of consumers (see also, Balder 2008 and Cornet and
Topuzu 2005).

Another aspect of the external effects is that sometimes the presence of external-
ities leads to non-convexities in the underlying production processes (Mas-Colell
et al. 1995, p. 375). Hence, models were proposed for combining both externalities
and increasing returns. Given what was stated above on marginal pricing rule, we
choose between these models, the one of Bonnisseau and Médecin (2001) where the
authors develop a new marginal pricing rule with external factors. This is so because
the pricing rule defined by means of Clarke´s normal cone to the production set for a
fixed environment does not have sufficient continuity properties. As a consequence,
the pricing rule thus obtained is less precise since the new cone is larger than the
former.

The purpose of this article is to provide an existence theorem with an arbitrary
number of non-convex producers and externalities in an infinite dimensional setting.
Infinite-dimensional commodity spaces arise naturally when we consider economic
activity over an infinite time horizon, or with uncertainty about the states of
the world, or when there are an infinite variety of commodity differentiation.
For the sake of technical simplicity, we assume that every production set has a
smooth boundary. Consequently, apart from this assumption, our existence result
encompasses all the other existence results of marginal pricing equilibria in the
literature.



126 M. Fuentes

As in Bonnisseau and Cornet (1990a,b), we show the relation between marginal
pricing and marginal cost pricing equilibria. The model is not a direct extension of
that of Bonnisseau and Cornet (1990a) since the presence of externalities does not
allow us to claim that if a production plan belongs to a production set, the one with
positive outputs also belongs to this set. We can say the same about consumers: if
a consumption stream belongs to a consumption set restricted by an externality, we
cannot claim that the same consumption stream belongs to a consumption set when
the externality has changed by including non-negative outputs. Another important
difference is that in the proof of marginal cost pricing equilibrium, they construct
an argument which relies on a property of the gradient of the cost function that does
not work in functional gradients. These drawbacks lead us to consider production
vectors with non-negative outputs. An additional assumption on prices (which is
weaker than what can generally be seen in the literature) allows us to obtain
equilibrium production vectors with this property. So it is shown that a marginal
pricing equilibrium is a marginal cost pricing equilibrium.

In the proof of the theorems, we roughly follow the method developed by Bewley
(1972). The majority of the papers on general equilibrium with infinitely many
commodities rely crucially on the First Welfare Theorem, which fails for marginal
pricing and marginal cost pricing equilibria (see Guesnerie 1975). In addition to the
two major drawbacks cited above, there are other technical difficulties such as those
in Fuentes (2011). We take care of these problems in Sects. 7.4.2 and 7.6.1 in the
same way we did in that paper.

The pricing rule in Fuentes (2011) encompasses general pricing rules. Neverthe-
less, we remove both bounded losses and continuity on pricing rule assumptions
together with strong lower hemi-continuity in the truncated production correspon-
dence.

Since we are interested in the relationship between non-convexities, marginal
pricing and externalities in an infinite-dimensional setting, we do not follow the
“continuum agents approach”. It is well known that when there is an atomless
measure space of agents, there are convexifying effects on preferences and tech-
nologies (Aumann 1966; Rustichini and Yannelis 1991), so we do not consider this
possibility.

The paper proceeds as follows. Section 7.2 presents the model and the notation
to deal with externalities, increasing returns and marginal pricing equilibrium with
infinitely many commodities. Section 7.3 is devoted to the basic assumptions. In
Sect. 7.4, we first define the finite-dimensional auxiliary economies, and we posit
additional assumptions in order to deal with problems arising in the model. In
Sect. 7.5, we state the marginal pricing equilibrium theorem. Section 7.6 is devoted
to the proof of the existence result. In Sect. 7.7, we state the marginal cost pricing
equilibrium theorem and give additional assumptions and definitions. Lengthy or
tedious proofs are contained in the appendix.
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7.2 The Model

We consider an economy with m consumers labelled by subscript i D 1; : : : ;m and n
producers, labelled by subscript j D 1; : : : ; n. The (infinite-dimensional) commodity
space is represented by the space of essentially bounded, real-valued, measurable
functions on a � -finite positive measure space .M;M ; 
/. In the following, we

denote by L the space L1 .M;M ; 
/.1 Each element z D


.xi/

m
iD1 ;

�
yj
	n
jD1
�

is an

environment or externality.
Each consumer i has a consumption set and a preference relation which depends

upon the actions of the other economic agents. Formally, the consumption set is
represented by a correspondence Xi from LmCn to LC. For the environment z 2
LmCn, Xi .z/ 	 LC is the set of possible consumption plans of the i-th consumer. We
denote by %i;z the (complete, reflexive, transitive and binary) preference relation
which is influenced by the actions of all economic agents.

The production set of the j-th producer is defined by a correspondence Yj from
LmCn to L. Yj .z/ is the set of all feasible production plans for the j-th firm when the
actions of the economic agents are given by z.

A price system is a continuous linear mapping on L. If L is endowed with the
norm topology, the set of prices is L� D ba .M;M ; 
/, the space of bounded
additive set functions on .M;M / absolutely continuous with respect to 
. Thus,
the value of a commodity bundle x 2 L1 is

R
M xd� (Dunford and Schwarz 1958).

If some price vector p belongs to L1 .M;M ; 
/ 2 	 ba .M;M ; 
/, then it is
economically meaningful since for every x 2 L, p .x/ D R

m2M p .m/ x .m/ d
 .m/
which is the natural generalization of the value of a commodity bundle concept
in finite-dimensional spaces. The equilibrium prices can be chosen in the simplex
S D f� 2 baC.M;M ; 
/ W �.�M/ D 1g, where �M is the function equal to 1 for
every m in M.

The weak-star topology � .L1;L1/ D �1 is the weakest topology for which
the topological dual of L is L1. We denote by

Q
Ls �
1 the product topology on the

product space Ls. � .L; ba/ and � .ba;L/ D �ba are the weak and the weak-star
topologies, respectively, on L and ba. Let A W Ls 7! L be a correspondence. We say
that A is

�Q
Ls �
1; �1

	
-closed if it has a closed graph for the product of weak-star

topologies. Let S be any topology on Ls. The net .u˛/ 2 Ls is said to S -converge

1L
1
.M;M ; 
/ is the set of equivalence classes of all 
-essentially bounded, M -measurable

functions on M. Let x be an element of L
1
.M;M ; 
/, then x � 0 if x.m/ � 0 
-a:e. (almost

everywhere); x > 0 if x � 0 and x ¤ 0, and x >> 0 if x.m/ > 0 
-a.e. Hence, if x; xK
2 L

1
.M;M ; 
/, then x � xK (respectively, x > xK; x >> xK) if x� xK� 0 (respectively, x� xK> 0;

x � xK >> 0). L
C
D fx 2 L W x � 0g is the positive cone of L, and L

CC
D fx 2 L W x > 0g

is the strict positive cone or the quasi-interior of L. Let A and B be subsets of L. The difference
of A and B is defined by A n B D fx W x 2 A and x … Bg. The open ball of centre x and radius
" is B .x; "/ D fx0 2 L W kx0 � xk

1

< "g, while the closed ball of centre x and radius " is
B .x; "/ D fx0 2 L W kx0 � xk

1

� "g.
2L1.M;M ; 
/ is classes of all M -measurable functions f on M such that

R
m2M jf .m/j d
 .m/

<1.
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to u if .u˛/ converges for the topology S . We denote by T the norm topology on L.
The correspondence A is said to be

�Q
Ls �
1;T

	
-lower hemi-continuous (for short

l.h.c.) if for every net .z˛/ in Ls which
Q

Ls �
1-converges to z and a 2 A .z/, there is

a net .a˛/ such that a˛ 2 A .z˛/ for all ˛ and a˛ T -converges to a. Let !i 2 LC be
the initial endowment of the i-th agent and ! DPm

iD1 ! i the total initial endowment
of the economy. Let ri W R1Cn 7! R be the wealth function of the i-th consumer.

ri


� .!i/ ;

�
�
�
yj
		n

jD1
�

is his wealth whenever � 2 S and
�
yj
	n
jD1 2

Qn
jD1 Yj .z/. A

special case of this structure is ri


� .! i/ ;

�
�
�
yj
		n

jD1
�
D � .! i/ CPn

jD1 � ijyj for

� ij � 0 and
Pm

iD1 � ij D 1, which holds for a private ownership economy.
We now assume that the graph of every production correspondence is smooth.

Assumption P (Smoothness). For all j

(i) For every z 2 LmCn, Yj .z/ D
˚
y 2 L W fj .y; z/ � 0

�
3 and @1Yj .z/ D˚

y 2 L W fj .y; z/ D 0
�

where fj is a transformation functional from L � LmCn

into R.
(ii) fj is �1 �QLmCn �1-continuous on L � LmCn

(iii) For every z 2 LmCn, fj .�; z/ is Fréchet Differentiable, and if fj .y; z/ � 0 and
y0 � y, fj .y0; z/ � 0 (free disposal)

(iv) r1fj .y; z/4 2 L C1 .M;M ; 
/ n f0g if fj .y; z/ D 0 and fj .0; z/ D 0
(v) r1fj is

�
�1 �QLmCn �1

	
-continuous on L�LmCn, that is, for all y 2 @1Yj .z/,

for all " > 0, there exists a weak* open neighbourhood of .y; z/, U .y; z/, in
L � LmCn such that r1fj .y0; z0/ 2 B

�r1fj .y; z/ ; "
	

for all .y0; z0/ 2 U .y; z/

Note that while non-convexities are allowed on the firms, they must be smooth
ones (Assumptions P(i), P(ii) and P(iii)). However, no smoothness assumption is
made in the aggregate production set Y .z/ DPn

jD1 Yj .z/, which would be far from
being innocuous as Beato and Mas-Colell (1985) have shown. Assumption P(iii)
also incorporates the free disposal condition. As for Assumption P(iv), we point
out that NYj.z/

�
yj
	 	 baC .M;M ; 
/ for all yj 2 @1Yj .z/. Indeed, let x 2 LC.

For all t 2 .0; "/, fj .yC tx; z/ � 0 by Assumption P(i) and P(iii). Consequently,

r1fj
�
yj; z

	
.x/ D lim

t#0
fj.yjCtx;z/

t � 0: Thus, Assumption P(iv) only requires that prices

be economically meaningful. Assumption P(v) says that fj is continuously (Fréchet)
differentiable on L�LmCn. This is a technical requirement for getting nice continuity
properties in prices.

3We say that a production vector y is weakly efficient if and only if y 2 @
1
Y .z/. This is equivalent

to say that
�fyg C intL

C

	 \ Y .z/ D ;. A stronger concept is that of efficiency. We say that a
production vector y is efficient if and only if

�fyg C L
C

	\ Y .z/ D ;.
4r1fj .y; z/ denotes the gradient vector of fj with respect to y in the sense of Fréchet, that is,

r1fj
�
yj; z

	
.x/ D lim

t!0

fj.yjCtx;z/�fj.yj ;z/
t for all x 2 L, and the convergence is uniform with respect

to x in bounded sets.
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Remark 1. We point out that Assumptions P(i) and P(ii) imply that if


y˛j

�
2

@1Yj .z˛/ for all ˛ and


y˛j ; z

˛
�
�1 � QLs �

1�converges to
�
yj; z

	
, then yj 2

@1Yj .z/.

Proposition 1. Suppose that Assumption P holds. Then, Yj W LmCn 7! L is a�Q
LmCn �1; �1

	
-closed and a

�Q
LmCn �1;T

	
-l.h.c correspondence.

Proof. See Appendix

The smoothness assumptions allow us to introduce the marginal pricing rule for
the j-th producer at y 2 @1Yj .z/ ; as the closed half-line of outward normal vectors
to Yj .z/ at yj, which also are in S, that is, NYj.z/

�
yj
	\S D ˚�r1fj .y; z/ W � � 0

�\S.
Indeed, for a given z 2 Z; NYj.z/

�
yj
	 D ˚�r1fj .y; z/ W � � 0

�
since f is continuously

differentiable on L � LmCn, r1f .y; z/ 2 LC1 n f0g and f .y; z/ D 0 for all y 2
@1Yj .z/ (Clarke 1983, Theorem 2.4.7, Corollary 2). Note that for all j and all yj 2
@1Yj .z/, NYj.z/

�
yj
	 \ S ¤ ;, since NYj.z/

�
yj
	 	 L 1C n f0g.

We characterize the economy by E D


.Xi;%i;z; ri/

m
iD1 ;

�
Yj
	n
jD1 ; .! i/

m
iD1
�
:

Before giving the definition of equilibrium, we need to introduce some useful
definitions at first. The set of weakly efficient allocations is

Z D ˚z 2 LmCn W 8i xi 2 Xi .z/ ;8j yj 2 @1Yj .z/
�
.

We also define the set of weakly efficient attainable allocations corresponding to
a given total initial endowment ! 2 L

A.!/ D fz 2 Z WPm
iD1 xi �

Pn
jD1 yj C !g.

Finally, the set of production equilibria is

PE D
n
.�; z/ 2 S � Z W � 2Tn

jD1 NYj.z/
�
yj
	 \ S

o
.

We now formally define our notion of equilibrium.

Definition 1. A marginal pricing equilibrium of the economy E is an element

.Nz; N�/ D



.Nxi/miD1 ;

�Nyj
	n
jD1
�
; N�/ in Z � S such that:

a. For all i, Nxi is %i;Nz-maximal in
n
xi 2 Xi .Nz/ W N� .xi/ � ri



N� .! i/ ;

� N� �Nyj
		n

jD1
�o

b. For all j, N� 2 NYj.z/
�
yj
	 \ S and yj 2 @1Yj .z/

c.
Pm

iD1 Nxi D
Pn

jD1 Nyj C !
Condition a. says that for a given price N� , and a given externality z, each

consumer maximizes his preference relation under his budget constraint. Condition
b. says that for a given externality z and for the same price vector N� , every producer
satisfies his first-order necessary condition for profit maximization. Condition c.
says that the demand is equal to the supply.
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If we replace in the above definition, condition c. by condition c’:
Pm

iD1 Nxi �Pn
jD1 Nyj C ! and N� �Pm

iD1 Nxi
	 D N�


Pn
jD1 Nyj C !

�
, then we have the definition of

WA-equilibrium.5

Remark 2. If Yj is a convex-valued correspondence which satisfies Assumption P,
then NYj.z/

�
yj
	 \ S D ˚

� 2 S W � �yj
	 � � .y/ ;8 y 2 Yj .z/

�
. Consequently, for

a private ownership economy with convex-valued correspondences, the marginal
pricing equilibria are equivalent to the notion of walrasian equilibria (see Clarke
1983, Proposition 2.4.4).

We end this section with the following proposition:

Proposition 2. Let .	;�/ be a directed set. Let .z˛; �˛/.	;�/ be a net of Z�S, such
that

8
ˆ̂<

ˆ̂:

.z˛; �˛/! .Nz; N�/ for the product topology
Q

LmCn �1 � �ba

�˛ 2 NYj.z˛/



y˛j

�
\ S for all ˛ 2 	


�˛


y˛j

��

˛2	 converges

Then lim�˛


y˛j

�
� N� �Nyj

	
. If lim�˛



y˛j

�
D N� �Nyj

	
, then � 2 NYj.z/

�
yj
	 \ S.

The proof of this proposition is given in the Appendix. This result claims that the
Clarke´s normal cone (with external factors) has sufficient continuity properties in
the space L when the individual production set has a smooth boundary.

7.3 Other Basic Assumptions

We now posit the following assumptions:

Assumption (C). For every i

(i) Xi is a
�Q

LmCn �1; �1
	
-closed correspondence with convex values and

containing 0.
(ii) For every z 2 LmCn, for every xi in Xi .z/, there exists x in Xi .z/ such that

xi 
i;z x, and for every xi; x0i 2 Xi .z/
2, for every t 2 .0; 1/, if xi 
i;z x0i, then

xi 
i;z txi C .1 � t/x0i:
(iii) The set 	i =

n�
z; xi; x0i

	 2 LmCnC2 W �xi; x0i
	 2 Xi .z/

2 ; xi -i;z x0i
o

is a
Q

LmCn

�1-closed subset of LmCnC2.
(iv) The wealth function ri is continuous on R1Cn and strictly increasing in the

second variable. Furthermore,
Pm

iD1 ri


� .! i/ ;

�
�
�
yj
		n

jD1
�
D �.!/ C

Pn
jD1 �

�
yj
	
.

5See Guesnerie (1975).
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Assumption (B). For every !0 � !, the set
A.!0; z/ D f�yj

	n
jD1 2

Qn
jD1 @1Yj .z/ WPn

jD1 yj C !0 2 LCg is norm bounded.

Assumption (WSA). (Weak Survival) For all .�; z; �/ 2 PE � RC, if
�
yj
	n
jD1 2

A .! C ��M; z/, then

�

Pn

jD1 yj C ! C ��M
�
> 0.

Assumption (R). For all .�; z/ 2 PE, if z 2 A .!/, then

ri


� .! i/ ;

�
�
�
yj
		n

jD1
�
> 0.

Assumption (C) is the natural generalization of the assumptions of Bonnisseau
and Médecin (2001) to an infinite-dimensional context (see Fuentes 2011). Assump-
tion (B) is essential for the existence of an equilibrium. It means that for every
!0 � !, the set of weakly efficient attainable production plans is relatively weakly
compact, from which it follows that so is A.!0/.

When the same price is offered by the producers, according to NYj.z/
�
yj
	 \ S,

Assumption WSA implies that the global wealth of the economy is strictly greater
than the subsistence level. Assumption R states that the revenue functions are a way
to redistribute the total wealth among the consumers and the individual revenues are
above the survival level for each consumer when the global wealth is large enough
to allow such redistribution. We point out that when Yj .z/ is a convex subset of L
for every j and every z 2 LmCn, ! 2 intLC and 0 2 Yj .z/, both assumptions (WSA)
and (R) are satisfied.

Remark. Most papers in general equilibrium theory with infinite commodity spaces
make use of a well-known assumption called properness since Mas-Colell (1986).
This condition informally means that there is a commodity bundle v which is so
desirable that the marginal rate of substitution of any other commodity for v is
bounded away from zero. Properness was introduced to deal with the consequences
of the emptiness of the (norm) interior of the positive cone, namely, the fact that
price equilibrium functional � may be identically zero. We point out that the list
of spaces for which the positive orthant has empty interior includes several Banach
spaces with some few exceptions such as the space L1 .M;M ; 
/. That is why we
do not need to impose any properness assumption.

7.4 Subeconomies

7.4.1 Construction of Finite-Dimensional Economies

Let F be a finite-dimensional subspace of L containing both �M and .! i/
m
iD1. We

denote by F the family of such subspaces F directed under set inclusion. For every
F 2 F , we define its positive cone by FC D F \ LC and its interior by intFC D
F \ intLC which is not empty since �M belongs to intLC. Hence, it defines an order
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which allows us to endow each F with an euclidean structure such that k �M kD 1

and
n
�
?F
M

o
\FC D f0g, where �?F

M denotes the orthogonal space to �M . Hence, the

dual space of F is F itself,6 and we denote by pF the inner product
˝
pF; �˛

F
.

The truncated consumption correspondence for the commodity space F is given
by XF

i W FmCn 7! FC and defined by XF
i

�
zF
	 D Xi

�
zF
	 \ FC. Analogously, the

truncated production correspondence YF
j W FmCn 7! F is defined by YF

j

�
zF
	 D

Yj
�
zF
	 \ F, and, by the definition of Yj, one easily checks that YF

j

�
zF
	 D˚

yF 2 F W fj
�
yF; zF

	 � 0� and @YF
j

�
zF
	 D ˚

y 2 F W fj .y; z/ D 0
� D @1Yj

�
zF
	 \ F.

Hence, ZF 	 Z.
Let SF D ˚

pF 2 F0C W
˝
pF; �M

˛
F
D 1�, where F0C denotes the positive polar cone

of FC. rFi is the revenue of the i-th consumer induced by ri in the truncated economy.
The relation %F

i;zF
is the preorder induced on XF

i

�
zF
	

by %. We then denote the

subeconomies by E F D




XF
i ;%F

i;zF
; rFi

�m
iD1 ;



YF
j

�n
jD1 ; .!i/

m
iD1
�

for all F 2 F .

We point out that for all F 2 F , for all zF 2 FmCn and for all i and j, XF
i

�
zF
	

and YF
j

�
zF
	

are non-empty subsets of F because of the Assumptions C(i) and P(iv)
together with the fact that F is a subspace of L. We also remark that for all F 2 F

and all
�
yj; z

	 2 FmCnC1, NF
YF
j .z/

�
yj
	 \ SF D

�
�r1fj .y; z/ˇ̌ˇF0

C

W � � 0
�
\ SF. The

set of production equilibria and of weakly efficient attainable allocations in E F are,
respectively,

PEF D
n
.pF; zF/ 2 SF � ZF W pF 2

\n

jD1 N
F
YF
j .z/

�
yj
	o

and

AF .!/ D
8
<

:z
F 2 ZF W

mX

iD1
xFi �

nX

jD1
yFj C !

9
=

; 	 A .!/ :

7.4.2 Bewley´s Limiting Technique and Additional
Assumptions

In the paper of Bonnisseau and Médecin (2001), the consumption set is represented
by a correspondence that is l.h.c. As noted in Fuentes (2011), if we assume that the
correspondence Xi is l.h.c. for all i, the restriction to a finite-dimensional subspace
may not be l.h.c. Hence, Bonnisseau and Médecin´s theorem (smooth case) does
not apply, and, thus, we cannot follow the Bewley´s approach. One solution is to
assume that for all i, the restriction of Xi to a finite-dimensional subspace is l.h.c.

6F and F�, the topological dual of F, are isomorphic (See MacLane and Garret 1999, Theorem 9,
p. 357).
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Assumption C(v). For all i
(v) There is a finite-dimensional subspace NF 2 F , such that for any finite-

dimensional subspace F 2 F such that NF 	 F, the correspondence XF
i is l.h.c.

on FmCn.
Another problem in assuming that the correspondence Xi is l.h.c. for all i, relies

in the fact that even if there is an equilibrium in each subeconomy E F , we cannot

prove that a limit point



.Nxi/miD1 ;

�Nyj
	n
jD1
�
; N�
�

is an equilibrium vector in the

original infinite-dimensional economy. Specifically, in the Claims 3 and 4 in the
proof of Theorem 1 below, it can be seen that the lower hemi-continuity of Xi is not

enough to prove that, for all i, if xi %i;Nz Nxi, then N� .xi/ � ri


N� .!i/ ;

� N� �Nyj
		n

jD1
�

.

Consequently, we cannot use the limiting argument of the Bewley type. One solution
is to establish the following assumption:

Assumption C(vi). For all i
The correspondence Xi is

�Q
LmCn �1; f

	
-l.h.c. on LmCn, that is, if z˛Q

LmCn �1�converges to z in LmCn and x 2 Xi .z/, there exists a finite-dimensional
subspace PF such that there is a net .x˛/ 	 x C PF with x˛ 2 Xi .z˛/ for all ˛ and
x˛ �! x.

We point out that PF may depend on x 2 Xi .z/ and the net .z˛/. We also note
that the above Assumption implies that the correspondenceXi is

�Q
LmCn�1 �1;T

	
-

l.h.c. since the net .x˛/ T �converges to x due to the fact that it belongs to an affine
finite-dimensional subspace.

When the boundary of the production set is smooth, such as in our case,
if the production correspondence is l.h.c., then so is its restriction to a finite-
dimensional subspace (see Remark 3 in the Appendix). Then, contrary to what is
stated in Fuentes (2011), we do not need an additional assumption for the restricted
production correspondences.

There are two remaining problems in the application of the Bewley technique.
First, even if the original economy is supposed to satisfy the Weak Survival
Assumption, this may not be true for the subeconomies. Secondly, even if the
original economy is supposed to satisfy the Local Non-Satiation Assumption,
we cannot say this is true in the subeconomies. Consequently, Theorem 3.1 of
Bonnisseau and Médecin (2001) cannot be applied to E F . As we shall show later, if
the commodity space F is large enough, then the economy satisfies weaker versions
of Assumptions (WSA) and (LNS).

7.5 Existence of Marginal Pricing Equilibria

Now, we are ready to state the following result:

Theorem 1. Under Assumptions (C), (P), (B), (WSA) and (R), the economy E D

.Xi;%i;z; ri/

m
iD1 ;

�
Yj
	n
jD1 ; .!i/

m
iD1
�
has a marginal pricing equilibrium.
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To compare this result with the literature, we first remark that it generalizes the
one given in Shannon (1996) for the case without externalities and one producer
and the one in Bonnisseau and Cornet (1990a) for the case with commodity space
Rl. It also extends the main result of Bonnisseau (2002) under the particular
circumstance of smooth production sets. In Fuentes (2011), the behaviour of the
firms is defined through a general pricing rule. Nevertheless, the existence result
uses a bounded losses assumption which is not necessary with the marginal pricing
rule. Furthermore, we can suppress Assumption (PR) on the continuity of pricing
rules (by Proposition 2 in this paper) and Assumption P(v) on the lower hemi-
continuity of YF

j (See Remark 3 in the Appendix).

7.6 Proof of the Theorem

7.6.1 Equilibria in the Subeconomies

The results of this section follow the guidelines of Bonnisseau’s proof of Propo-
sition 2 (Bonnisseau 2002). The differences between our results and those of the
author are due to the intrinsic differences between the finite-dimensional model
without externalities (Bonnisseau and Cornet 1990a) and the one with external
factors (Bonnisseau and Médecin 2001). We can observe that every subeconomy
E F satisfies Assumptions (P), (B), (R) and (C) (except LNS) of Theorem 3.1
of Bonnisseau and Médecin (2001). As we remarked at the end of Sect. 7.4,
Assumptions (LNS) and (WSA) are not necessarily fulfilled by E F. The following
lemma shows that each subeconomy satisfies weak versions of the survival and the
local non-satiation of the preferences if F is large enough. Before stating the above
result, we need to introduce the elements for its treatment. Let � > 0 be a real
number. Since A .! C ��M; z/ is norm bounded by Assumption (B), there exists
(Schaefer and Wolf 1999, p. 25) a > 0 such that a > 2�, A .! C ��M; z/ 	 B

�
0; a

2

	n

and A .! C ��M/ 	 B
�
0; a

2

	mCn
. Let r > 2a such that f! C ��Mg C B .0; na/ 	

B .0; r/. Let N� be a real number such that N� � 2nr C k!k : We point out that N�
satisfies Lemma 4.2 of Bonnisseau and Médecin (2001) in our model.

Lemma 1. Under Assumptions (C), (P), (B), (WSA) and (R), there exists a subspace
OF 2 F such that for all F 2 F , if OF 	 F, then the subeconomy E F satisfies:

(WSAF): For all
�
pF; zF; �F

	 2 PE F � 
0; N��, if


yFj

�n
jD1 2 AF

�
! C �F�M; zF

	
,

then
D
pF;

Pn
jD1 yFj C !C �F�M

E

F
> 0.

(LNSF): For all

��
xFi
	m
iD1 ;



yFj

�n
jD1

�
2 AF .!/, and for all " > 0, there exists

�
x0Fi
	m
iD1 2

Qm
iD1

�
XF
i

�
zF
	\ B

�
xFi ; "

		
, such that x0Fi �F

i;zF
xFi for all i.
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The proof of this lemma parallels the one given in Fuentes (2011). Just replace
Assumption P by Remark 1 and Proposition 1 and Assumption PR by Proposition 2.

We recall that Bonnisseau and Médecin defined a new cone for the marginal
pricing rule when there are external effects. Indeed, if we use the Clarke´s normal
cone (with externalities), the equilibrium may not exist due to the presence of
discontinuities. However, if the individual production set is smooth, their cone
coincides with the Clarke´s cone.7 The proposition below establishes that at least
one equilibrium exists in the subeconomies.

Proposition 3. Let NF and OF be the subspaces coming from Assumption C(v) and
Lemma 1, respectively. Under Assumptions (C), (P), (B), (WSA) and (R), if we have
NF 	 F; and OF 	 F, then the subeconomy E F has an equilibrium

�
zF; pF

	 2 ZF�SF.
Proof. We remark that in the proof of Bonnisseau and Médecin (2001), the authors
use Assumption (WSA) in Lemmas 4.2 (3) and 4.4 and in Claim 4.3. We also note
that in the proof they fix belongs a parameter t > 0 (p. 283). We replace it by � as
given in paragraph before Lemma 1. For Lemma 4.2 (3) and Claim 4.3, Survival
Assumption is applied only for production plans which satisfy that

Pn
jD1yj C ! C

��M � 0 with � � �. Since � < N� from the definition of r, we have that condition
(WSAF) of Lemma 7 is enough to conclude. For Lemma 4.4, we shall prove that
(WSAF) is enough to use the deformation lemma. We now introduce the Bonnisseau
and Médecin (2001)´s fundamental mathematical expressions we shall need. Let
�Fj W �?F

M � FmCn 7�! R�
sj; z

	 7�! �Fj
�
sj; z

	

�F
j

�
sj; z

	 D sj � �Fj
�
sj; z

	
�M 2 @YF

j .z/
XF .z/ DPm

iD1 XF
i .z/C FC D FC

YF
0 .z/ D �XF .z/
�F0 W �?F

M � FmCn 7�! R�
sj; z

	 7�! �F0
�
sj; z

	

�F
0

�
sj; z

	 D sj � �F0
�
sj; z

	
�M 2 @ .�FC/

�F

�
sj
	n
jD1 ; z

�
DPn

jD1 �
F
j

�
sj; z

	C �F0


�Pn

jD1 sj � proj
�

?F
M
!; z

�
� h!; �MiF

�F

�
sj
	n
jD1 ; z

�
D
8
<

:
�
pj � p

	n
jD1 j

pj 2 NYj.z/



�F

j

�
sj; z

	
; z
�
; j D 1; : : : ; n

p 2 N
�F

C

�
�F
0

�
�Pn

jD1 sj � proj
�

?F
M
!; z

��
\ SF

9
=

;

MF
� .z/ D

n
�
sj
	n
jD1
�
2


�
?F
M

�n WPn
jD1 �F

j

�
sj; z

	C ! C ��M 2 FC
o

for every

z 2 ZF
D

GMF
� D

n
�
sj
	n
jD1 ; z

�
2


�
?F
M

�n � ZF
D W
Pn

jD1 �F
j

�
sj; z

	C ! C ��M 2 FC
o

GMF
�;˛ D

n
�
sj
	n
jD1 ; z

�
2


�
?F
M

�n � ZF
D W � � �F


�
sj
	n
jD1 ; z

�
� ˛

o

˛ D max
n
�F

�
sj
	n
jD1 ; z

�
W

�
sj
	n
jD1 ; z

�
2


B
F
.0; 2a/\ ˚�?FM

��n � ZF
D

o

7Bonnisseau and Médecin 2001, p. 277



136 M. Fuentes

where, B
F
.0; a/ D B .0; a/\F, DF WD B

F


0; �

�m�BF
.0; r/n and ZF

D WD ZF \DF .

For �Fj and �F0 ,
Pn

jD1 �F
j

�
sj; z

	C!C��M � 0 if and only if �F

�
sj
	n
jD1 ; z

�
� �

(Lemma 4.3). The authors apply a deformation lemma for which it must prove
that the conditions of the lemma are satisfied. One of these conditions (the

one which uses Survival Assumption) requires that 0 … �F

�
sj
	n
jD1 ; z

�
for all


�
sj
	n
jD1 ; z

�
2 GMF

�;˛ . If it is not, then (see the proof of Lemma 4.4) there

exists

�
sj
	n
jD1 ; z

�
2


�
?F
M

�n � ZF
D such that � � �F


�
sj
	n
jD1 ; z

�
� ˛ and

p 2 N�F
C



�F
0



�Pn

jD1 sj � proj
�

?F
M
!; z

��
\ S such that p 2 \n

jD1NYF
j .z/

.y/ \ SF.

By the above result,
Pn

jD1 �F
j

�
sj; z

	 C ! C ˛�M � 0, and it can be proved

that p

Pn

jD1 �F
j

�
sj; z

	C ! C ˛�M
�
D 0 contradicting Survival Assumption since



�F

j

�
sj; z

	�n
jD1 2 AF.! C ˛�M; z/. Therefore, Assumption (WSAF) is enough to

conclude if one proves that ˛ � 2nrC k!k.
Since �F

j

�
sj; z

	 2 @YF
j .z/, �

F
j

�
sj; z

	 … intFC (otherwise, 0 … @YF
j .z/).

Consequently, for " > 0, there exists � 2 B


�F

j

�
sj; z

	
; "
�
\ .FŸFC/ and M0 	 M

such that 
 .M0/ ¤ 0 and �F
j

�
sj; z

	
.m/ D sj .m/ � �Fj

�
sj; z

	 � " < � .m/ � 0

for all m 2 M0. Hence, one deduces that �Fj
�
sj; z

	
> � ��sj

�� � ". In the same
way, �F

j

�
sj; z

	 … int .�FC/ (otherwise, �F
j

�
sj; z

	 … @YF
j .z/). Hence, for " > 0,

B


�F

j

�
sj; z

	
; "
�
\ .FŸ .�FC// ¤ ;, from which one deduces that �Fj

�
sj; z

	
<

��sj
�� C ": Consequently, � ��sj

�� � " < �Fj
�
sj; z

	
<
��sj
�� C ". Since the inequality

is true for all " > 0, one has
ˇ̌
�Fj
�
sj; z

	ˇ̌ � ��sj
�� for all j. On the other hand, for

�F
0 .u; z/ 2 @ .�FC/, one easily checks that

ˇ̌
�F0 .u; z/

ˇ̌ � kuk since �FC is convex.

Let

�
sj
	n
jD1 ; z

�
2


B
F
.0; 2a/\ ˚�?FM

��n � ZF
D. From the above remarks and

the fact that
ˇ̌
ˇproj

�
?F
M
!
ˇ̌
ˇ � k!k, it follows that �F


�
sj
	n
jD1 ; z

�
� 4na C k!k <

2nrC k!k � �; which in turn implies that ˛ � 2nrC k!k.
For the Local Non-Satiation Assumption, we remark that it is used in Bonnisseau

and Médecin (2001) only in Claim 4.6 where zF 2 AF .!/. Consequently, condition
(LNSF) of Lemma 1 is enough to conclude, and the proof of the Proposition 3 is
complete.

7.6.2 The Limit Point

Let

���
xFi
	m
iD1 ;



yFj

�n
jD1

�
; pF

�

F2F
be the net of equilibria of the subeconomies

�
E F
	
F2F given by Proposition 3. From the definition of NF

YF
j .z/

�
yj
	 \ SF, there
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exist price vectors


�F

j

�n
jD1 2

Qn
jD1 NYj.zF/



yFj

�
\S such that pF D �F

jjF for all j.

Hence, we obtain the net

��
xFi
	m
iD1 ;



yFj

�n
jD1 ;



�F
j

�n
jD1

�

F2F
. Proposition 3 implies

that

��
xFi
	m
iD1 ;



yFj

�n
jD1

�

F2F
2 A .!/, which is norm bounded by Assumption

(B). Hence, from the Banach-Alaoglu theorem, it remains in a
Q

LmCn �1�compact

subset of LmCn. Furthermore, the net


�F

j

�

F2F belongs to S which is �ba-compact.

Consequently, there exists a subnet


xF.t/i

�
;


yF.t/j

�
;


�

F.t/
j

��

t2.T;�/ which
Q

LmCn �1 � �ba�converges to
�
.Nxi/ ;

�Nyj
	
;
� N� j
		

. This also implies that the subnets of real numbers�D
pF.t/; yF.t/j

E

F.t/

�
D


�
F.t/
j



yF.t/j

��
and

�D
pF.t/; xF.t/i

E

F.t/

�
D


�

F.t/
j



xF.t/i

��
are bounded so that they can be supposed to

converge.
We now prove that at least one limit point exists which in turn is a marginal

pricing equilibrium of the economy E .

Claim 1. N�1 D N�2 D : : : D N�n > 0

Proof. We first prove that N�1 D N�2 D : : : D N�n � 0: Let x 2 L. There exists
F 2 F such that x 2 F. There exists t0 2 T such that F 	 F .t/ for all t > t0.
As pF.t/ D �

F.t/
jjF.t/ for all j; we have that, for all t > t0,

˝
pF.t/; x

˛
F.t/
D �

F.t/
j .x/ for

all j. Without loss of generality, we denote the limit of
˝
pF.t/; x

˛
F.t/

by N� .x/. Hence,

lim�F.t/
j .x/ D N� .x/ for all j. Since baC .M;M ; 
/ is closed, we have the first part

of the Claim. Since �F.t/
j .�M/ D 1 for all j and t 2 T, we have that N� .�M/ D 1.

Therefore, the proof is complete.

Claim 2.


.Nxi/miD1 ;

�Nyj
	n
jD1
�
2 Qm

iD1 Xi .Nz/ � Qn
jD1 @1Yj .Nz/ and

Pm
iD1 Nxi DPn

jD1 Nyj C !

Proof.

�

xF.t/i

�m
iD1 ;



yF.t/j

�n
jD1

�
2 ZF.t/. Since

�
zF.t/

	
t2.T;�/

Q
LmCn �1�converges

to Nz ; we get Nz D


.Nxi/miD1 ;

�Nyj
	n
jD1
�
2 Qm

iD1 Xi .Nz/ �Qn
jD1 @1Yj .Nz/ by Assumption

C(i) and Proposition 1. Since
Pm

iD1 x
F.t/
i DPn

jD1 y
F.t/
j C! for all t 2 T, one obtainsPm

iD1 Nxi D
Pn

jD1 Nyj C !.

Claim 3. For all i, if xi %i;Nz Nxi, then N� .xi/ � ri

�
N� .! i/ ; lim



�
F.t/
j



yF.t/j

��n
jD1

�
.

Proof. See Fuentes (2011).
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Claim 4. For all i, N� .xi/ D ri


N� .!i/ ;

� N� �Nyj
		n

jD1
�

and for all j, N� �Nyj
	 D

lim�
F.t/
j



yF.t/j

�
:

Proof. By Proposition 2, we have lim�F.t/
j



yF.t/j

�
� N� j

�Nyj
	

for all j. The rest of the

proof is identical to the proof of Step 6 of Fuentes (2011).

From Claims 2 and 4 together with Proposition 2, one obtains Nz 2 Z, N� 2Tn
jD1 NYj.z/

�
yj
	 \ S and

Pm
iD1 Nxi D

Pn
jD1 Nyj C !. It only remains to show that

condition a. of Definition 1. is satisfied.

Claim 5. For all i, Nxi is a greater element for %i;Nz in the budget setn
xi 2 Xi .Nz/ W N� .xi/ � ri . N� .!i/ ;

� N� �Nyj
		n

jD1 /
o
.

Proof. We have to show that for every agent i, if xi �i;Nz Nxi, then N� .xi/ > N� .Nxi/.
From Claims 3 and 4, one has N� .xi/ � N� .Nxi/. Suppose N� .xi/ D N� .Nxi/. From

Claims 3, 4 and Assumptions (WSA) and (R), N� .Nxi/ D ri


N� .!i/ ;

� N� �Nyj
		n

jD1
�
>

0. For all t 2 .0; 1/, we have N� .txi/ < N� .xi/ D N� .Nxi/. For t close enough to 1,
txi 2 Xi .Nz/ and, since preferences are continuous, txi �i;Nz Nxi. From Claim 4, we get
N� .txi/ � N� .Nxi/, a contradiction with the above inequality.

7.7 Existence of Marginal Cost Pricing Equilibria

An equilibrium as defined in Definition 1 is called marginal cost pricing equilibrium
in Shannon (1996) and many other papers. The terminology has been adopted
because it is suggestive even though it is not always correct as indicated earlier
by Guesnerie (1990). Indeed, N� 2 NYj.z/

�
yj
	

implies that N� is proportional to the
marginal cost only if the set of input combinations for producing a given level of
output is convex. Marginal cost pricing equilibrium also means that every producer
minimizes its costs. Bonnisseau and Cornet (1990a,b) investigated and established a
formal link between the marginal pricing rule and the one of marginal cost pricing in
the finite-dimensional case. We are now interested in having a marginal cost pricing
equilibrium for an economy with externalities and infinitely many commodities. We
must introduce both the notions of iso-output set and cost functional, for which we
have to distinguish a priori between inputs and outputs. Although we follow the
approach of Bonnisseau and Cornet (1990a), there appear significant drawbacks in
using their technique in our economy as we shall see later.

Let Ij and Oj be partitions of the set M for the j-th producer, such that M D Ij[Oj

and Ij \ Oj D ;. We define the following subspaces of L.
LI

j D fu 2 L W u .m/ D 0 
 � a:e: if m … Ij g
LO

j D fu 2 L W u .m/ D 0 
 � a:e: if m … Ojg
For every yj 2 L; we denote proj

LI
j

�
yj
	

as yIj . Note that yIj 2 LI
j

since
proj

LI
j

�
yj
	

is measurable. The same applies for yOj D proj
LO

j

�
yj
	
.



7 Marginal Pricing and Marginal Cost Pricing Equilibria in Economies... 139

We now define the iso-output set: for all .r; b; z/ 2


LI

j
��
C � LO

j � LmCn, we let

Yj .b; z/ D
˚�yIj 2 L W there exists yj 2 Yj .z/ , yj D yOj C yIj and yOj D b

�
:

For all .r; b; z/ 2


LI

j
��
C�L

Oj �LmCn, we define the cost functional cj as follows:

cj .r; b; z/ D inf
˚
r .a/ W a 2 Yj .b; z/

�

if Yj .b; z/ ¤ ;.

For every .r; b; z/ 2


LI

j
��
C � LO

j � LmCn, we denote by rOcj .r; b; z/ the

(Fréchet) gradient vector of cj with respect to b. Thus, for every x in LO
j
,

rOcj .r; b; z/ .x/ D lim
t!0

cj.r;bCtx;z/�cj.r;b;z/
t , and hence, rOcj .r; b; z/ 2



LO

j
��

.

As in Bonnisseau and Cornet (1990a), we separate between the first n � 1
producers and the n�th one which maximizes his profit. For the n � 1 first ones,
we posit the following assumption:

Assumption C(vi) (P’). For z 2 LmCn

(i) There exists a partition of the set M into two non-empty subsets Ij and Oj such
that 


�
Ij
	 ¤ ; and 


�
Oj
	 ¤ ;. For every yj 2 Yj .z/, yj .m/ D yIj .m/ � 0 if

m 2 Ij. Furthermore, there exists Qyj 2 Yj .z/ such that yOj � QyOj and Qyj .m/ D
QyOj .m/ � 0 if m 2 Oj .

(ii) The set Yj .b; z/ is convex

(iii) The set ˝j D
n
b 2 LO

j W Yj .b; z/ ¤ ;
o

is �1
LO

j�open.

(iv) For every r 2


LI

j
��
C, the cost functional cj .r; �; z/ is T

LO
j�differentiable

on ˝j.

For the nth producer, we let

Assumption C(vi) (P”). The correspondence Yn W LmCn 7�! L is convex valued.
We remark that in an economy without externalities and with Rl as commodity

space, the above assumptions are the same as those in Bonnisseau and Cornet
(1990a). We refer to that paper for an economic interpretation. We note that every
yj 2 Yj .z/ has a unique representation yj D yIj C yOj since LIj \ LO

j D f0g.
For every � 2 L�C, we denote by � Ij (�Oj ) the restriction of � to LI

j
(LO

j
). We

now can give a precise definition of marginal cost pricing equilibrium.

Definition 2. A marginal cost pricing equilibrium of the economy E is an element

.Oz; O�/=



.Oxi/miD1 ;

�Oyj
	n
jD1
�
; O�/ in Z � S such that
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a. For all i, Oxi is %i;Oz-maximal in
n
xi 2 Xi .Oz/ W O� .xi/ � ri



O� .!i/ ;

� O� �Oyj
		n

jD1
�o

b0: For all j D 1; : : : n � 1, O� Ij .�OyIj / D cj . O� Ij ; OyOj ; Oz/ (cost minimization), OyOj � 0
(output condition) and O�Oj D rOcj . O� Ij ; OyOj ; Oz/ (marginal cost pricing). For j D
n, O� .Oyn/ � O� .y/ for all y 2 Yn .Oz/ (profit maximization)

c0:
Pm

iD1 Oxi �
Pn

jD1 Oyj C ! and O�

Pm

iD1 Oxi �
Pn

jD1 Oyj � !
�
D 0

One easily checks that Condition c. of Definition 1 implies Condition c’. above.
Condition b’ says that at equilibrium every producer minimizes his cost, prices equal
marginal cost and resultant production vectors are non-negative.

Lemma 2. Let us assume that P and P’ hold. Let p 2 LCn f0g, let yj D yIj C
yOj 2 @1Yj .z/ such that p .�yIj/ D cj .pIj ; yOj ; z/ and pOj � 5Ojcj .pIj ; yOj ; z/. Then
p 2 NYj.z/

�
yj
	
.

Proof. The proof is a direct transcription of the proof of Lemma 2 (a) in Bonnisseau
and Cornet (1990a) since, in this point, there are not relevant differences when
considering externalities and infinitely many commodities.

The next proposition is the key argument of the proof of Theorem 2.

Proposition 4. Let .z; �/ be a MPE of E such that yOj D yC
Oj for all j. Then .z; �/

is a MCPE of E if Assumptions P, P 0 and P 00 hold.

The proof of this proposition is given in the Appendix. This shows the rela-
tionship between the two notions of marginal pricing equilibrium and marginal
cost pricing equilibrium under the particular circumstance that, at marginal pricing
equilibrium, all outputs are non-negative. We remark that in the paper of Bonnisseau
and Cornet (1990a), they show the relationship between the two notions of
equilibrium also in the case yOj ¤ yCOj. We refer to the Appendix for more details on
this subject.

A sufficient condition for yOj D yCOj is that the price system is (punctually) strictly
positive.

Lemma 3. Let z 2 LmCn, let Yj W LmCn 7! L be a correspondence satisfying
Assumption P and P’(i). Let yj 2 @1Yj .z/ such that r1fj

�
yj; z

	 2 LCC1 . Then,
yOj D yCOj.

Proof. Suppose that yOj ¤ yCOj. Hence, y0j D yIj C yC
Oj > yj D yIj C

yOj and y0j 2 @1Yj .z/ by Assumptions P’(i) and free disposal. Consequently,

r1fj
�
yj; z

	 

yj � y0j

�
< 0 since r1fj

�
yj; z

	
is in the quasi-interior of LC1 . Since

r1fj is
�
�1 �QLmCn �1

	
-continuous by Assumption P, there exists an �1�open

neighbourhood U
�
yj
	

of yj, such that r1fj


y00j ; z

� 

yj � y0j

�
< 0 for all y00 2 U

�
yj
	
.

Let y�j D �y0j C .1 � �/ yj such that � > 0. For all � 2 .0; 1/, y0j > y�j > yj,
so that y�j 2 @1Yj .z/ I and for � close enough to 0, y�j 2 U

�
yj
	
. Consequently,

r1fj


y�j ; z

� 

yj � y0j

�
< 0 which implies that



yj � y0j

�
2 int

h
r1fj



y�j ; z

�io D
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intTYj.z/


y�j

�
(Clarke 1983, Theorem 2.4.7). Since the set of vectors hypertangent

to Yj .z/ at yj is non-empty,


yj � y0j

�
is hypertangent to Yj .z/ at yj (Clarke

1983, Theorem 2.4.8). Consequently, y�j C "


yj � y0j

�
C "a�M 2 Yj .z/ for all

" > 0 small enough and a suitably chosen a > 0. Let us take " < �, then

y�j C "


yj � y0j

�
2 intYj .z/. Since y�j C "



yj � y0j

�
D .� � "/ y0j C .1 � � C "/ yj,

one has that y�j C "


yj � y0j

�
> yj a contradiction.

Actually, the above proof shows a stronger result than the statement of the
lemma: yj is efficient. We remark that the proof parallels that of Proposition 2 in
Bonnisseau and Créttez (2007) for the finite-dimensional case. The only difference
is that we use Theorem 2.4.8 of Clarke (1983) instead of Theorem 2.5.8 of Clarke´s
book.

We posit an additional assumption before stating the main result of this section.

Assumption SPP (Strictly Positive Prices). For all j, if .z; �/ 2 A .!/ �
\n

jD1NYj.z/
�
yj
	 \ S, then r1fj

�
yj; z

	 2 L CC1 .

From Assumption P(iv), r1fj
�
yj; z

	 2 LC1 for all yj 2 @1Yj .z/. Hence,
Assumption SPP only requires that the common price vector � , which is given by
the marginal pricing rule of each producer, be strictly positive when the allocation
is feasible and weakly efficient. Assumption SPP is weaker than Assumption P(4)
in Shannon (1996) where it is required that r1fj

�
yj; z

	 2 L CC1 for all yj 2 Yj .z/.

Theorem 2. Under Assumptions (C), (P), (P’), (P”), (WSA), (R) and (SPP), the

economy E D �
.Xi;%i;z; ri/

m
iD1 ;

�
Yj
	n
jD1 ; .!i/

m
iD1
�
has a marginal cost pricing

equilibrium.

Proof. The proof follows immediately from Theorem 1, Assumption SPP and
Proposition 4.
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Appendix

Proof of Proposition 1

Before proving Proposition 1, we show that, given Assumption P, for every z 2 LmCn

and every j, intYj .z/8 D Yj .z/. Let y belong to Yj .z/. If y belongs to intYj .z/, then y
belongs to intYj .z/. If y belongs to @1Yj .z/, then for all " > 0, y � "

2
�M belongs to

intYj .z/ by free disposal. Consequently, B .y; "/ \ intYj .z/ ¤ ¿ for all " > 0, and
thus, y belongs to intYj .z/:

We now prove that the correspondence Yj W LmCn 7! L is
�Q

LmCn �1;T
	
-

l.h.c. From the above result and Lemma 14.21 in Aliprantis and Border (1994), it
is enough to prove that intYj W LmCn 7! L is

�Q
LmCn �1;T

	
-l.h.c. Let y 2 intYj .z/

and let z˛ be a net which
Q

LmCn �1�converges to z. Since fj is �1 �QLmCn �1-
continuous, there exists ˛0 2 	 such that ˛ > ˛0 implies fj .y; z˛/ < 0. Hence, there
exists a net y˛ .D y/ 2 intYj .z˛/ for all ˛ and y˛ ! y:

The weak* closeness of Yj is immediate from Assumption P(ii).

Remark 3. Given Assumption P, if the correspondence Yj is convex valued, then
intYj .z/ D Yj .z/ without free disposal requirement (Schaefer and Wolf 1999, p. 38,
1.3). On the other hand, we can repeat the argument made above to show that the
correspondence YF

j W FmCn 7! F is l.h.c.

Proof of Proposition 2

We omit the index j in order to simplify the notation. We first state the following
Lemma:

Lemma 4. For a given z 2 LmCn, let TY.z/ .y/ be the Clarke tangent cone of Y .z/
at y. Let v 2 TY.z/ .y/ and ı > 0. There exist weak* open neighbourhoods of z
and y, Wz and Wy, respectively, such that for all " > 0, for all z 2 Wz and for all
y 2 Wy \ B .y; "/ ; v C y � y � ı�M 2 TY.z/ .y/.

Proof. Given z 2 Z; we have to prove that r1f .y; z/ .v C y � y � ı�M/ �
0. Let 0 < ˛ <

ır1f .y;z/.�M/
2.kvkC"Cı/ : From Assumption P(v), there exists aQ

LmCnC1 �1�open neighbourhood of .z; y/ ; Uz � Uy; such that for all .z; y/ 2
Uz � Uy, jr1f .y; z/� r1f .y; z/j < ˛. Let us consider the following �1�open
neighbourhood of y;

Vy D
�
y 2 L W jr1f .y; z/ .y � y/j < ır1f .y; z/ .�M/

2

�

8For z 2 L, intYj .z/ D ˚
y 2 L W fj .y; z/ < 0�.
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Let Wy D Uy \ Vy, Wz D Uz and " > 0: For all .y; z/ 2 Wy \ B .y; "/ �Wz,

r1f .y; z/ .v C y� y � ı�M/ D .r1f .y; z/ � r1f .y; z// .v C y� y � ı�M/
Cr1f .y; z/ .v C y � y � ı�M/
< ˛ .kvk C "C ı/

C r1f .y; z/ .v/Cr1f .y; z/ .y � y/ � ır1f .y; z/ .�M/

<
ır1f .y; z/ .�M/

2
Cr1f .y; z/ .v/

Cır1f .y; z/ .�M/
2

� ır1f .y; z/ .�M/
D r1f .y; z/ .v/ � 0

We now proceed to the proof of Proposition 2. Let .z˛; �˛/.	;�/ be a net of Z�S,Q
LmCn �1 � �ba�converging to .z; �/. Let v 2 TY.z/ .y/ and ı > 0. There exist

" > 0 and ˛0 2 	 such that for all ˛ > ˛0; y˛ 2 B .0; "/. We note that ky˛ � yk <
"C kyk D "0. Hence, for all ˛ > ˛0; y˛ 2 B .y; "0/. From the above lemma, there
exist weak*-open neighbourhoods of z and y, Wz and Wy, respectively, such that for
"0 > 0 and all ˛ > ˛0, .y˛; z˛/ 2 Wy \ B .y; "0/ � Wz and v C y � y˛ � ı�M 2
TY.z˛/ .y˛/.

Since �˛ 2 NY.z˛/ .y˛/, �˛ .v C y � y˛ � ı�M/ � 0 for all ˛ > ˛0. Passing
to the limit, we obtain � .v/ C � .y/ � lim

˛
�˛ .y˛/ � ı � 0. Since 0 2 TY.z/ .y/,

� .y/ � lim
˛
�˛ .y˛/C ı, and since this inequality holds true for all ı > 0, we have

� .y/ � lim
˛
�˛ .y˛/.

Let v 2 TY.z/ .y/ : If lim
˛
�˛ .y˛/ D � .y/ ; then � .v/ � 0. Consequently,

� 2 NY.z/ .y/\ S since �˛ 2 S for all ˛.

Proof of Proposition 4

We first state and prove the following lemma, which is used in the proof of
Proposition 4. To simplify, we suppress index j.

Lemma 5. Let pI 2
�
LI
	�
C ; then there exists OpI 2 L�C such that OpI .x/ D pI

�
xI
	
if

x … LO and OpI .x/ D 0 if x 2 LO.

Proof. Let pI 2
�
LI
	�
C. By a classical extension theorem, there exists a functional

QpI 2 L�C, and hence, a measure QvI 2 baC .M;M ; 
/ such that QpI .x/ DR
m2M x .m/ d QvI .m/ and pI .x/ D QpI .x/ for all x 2 LI , since L� and ba .M;M ; 
/ are

isometrically isomorphic (Dunford and Schwarz 1958). We now define the measure
OvI as:

OvI .A/ D
� QvI

�
AI
	

if A   O
0 otherwise

.
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One easily checks that OvI 2 baC .M;M ; 
/ which is identified with a functional
OpI 2 L�C. Take x … LO. There exists M0 	 I such that 
 .M0/ ¤ 0 and xI .m/ ¤ 0 for
all m 2 M0. Consequently, OpI .x/ D OpI

�
xI
	 C OpI

�
xO
	 D R

m2M xI .m/ d OvI .m/ CR
m2M xO .m/ d OvI .m/ D

R
m2I x

I .m/ d OvI .m/ D
R
m2I x

I .m/ d QvI .m/ D QpI
�
xI
	 D

pI
�
xI
	
: If x 2 LO, OpI .x/ D

R
m2M xO .m/ d OvI .m/ D 0.

Remark 4. The above lemma can be rewritten in terms of the subspace
�
LO
	�

as

follows: for every pO 2
�
LO
	�
C ; there exists a functional OpO 2 L�C such that OpO .x/ D

pO
�
xO
	

if x … LI and OpO .x/ D 0 if x 2 LI .

First, we claim that for all t > 0, �yIj does not belong to the relative interior
of Yj .yOj C t�Oj ; z/. Otherwise, yj 2 intYj .z/. We also note that for all t > 0,
the relative interior of Yj .yOj C t�Oj ; z/ is non-empty. Finally, since for all t > 0,
Yj .yOj C t�Oj ; z/ is convex,[t>0intYj .yOj C t�Oj ; z/ is open, non-empty and convex
(Schaefer and Wolf 1999, p. 38, 1.2).

Since �yIj … [t>0intYj .yOj C t�Oj ; z/, there exists a continuous linear functional

pIj 2


LI

j
��
C such that pIj .�yIj/ � pIj .a/8a 2 [t>0intYj .yOj C t�Oj ; z/,9 whence

pIj .�yIj / � pIj .a
0/ for all a0 2 [t>0 Yj .yOjC t�Oj ; z/. Consequently, pIj .�yIj / D

cj .pIj ; yOj C t�Oj ; z/ since �yIj 2 Yj .yOj C t�Oj ; z/ for all t > 0. By the above
lemma, we can extend the functional pIj to an element of L�C—denoted by pIj as

well—such that pIj .�/ D 0 for all � 2 LO
j
. Let pOj D 5Ojcj .pIj ; yOj ; z/ 2



LO

j

C
��

.

We also extend pOj to L�C—denoted by pOj as well—such that pOj .�/ D 0 for all

� 2 LI
j
. Consequently, by Lemma 2, pj D pIj C pOj 2 NYj .z/

�
yj
	
. Since, .z; �/ is

a marginal pricing equilibrium, � D �pj for some � > 0. Hence, � Ij D �pIj and
�Oj D �pOj D � 5Oj cj .pIj ; yOj ; z/ D 5Ojcj .�pIj ; yOj ; z/ D 5Ojcj .� Ij ; yOj ; z/.
Consequently, � Ij .�yIj/ D cj .� Ij ; yOj ; z/ and � D � Ij C 5Ojcj .� Ij ; yOj ; z/ 2
NYj.z/

�
yj
	
. Hence, conditions a., b’. and c’. of Definition 2 are satisfied.

Remark. We point out that Bonnisseau and Cornet show that if .z; �/ is a marginal
pricing equilibrium, then there exists a vector

�
wj
	n
jD1 2 Ln (our notation) defined as

wj D yIjCyCOj , such that


.xi/

m
iD1 ;

�
wj
	n
jD1 ; �

�
is a marginal cost pricing equilibrium.

A significant difference between our approach and theirs is that in their case,

.xi/

m
iD1 ;

�
wj
	n
jD1
�
2 ˘m

iD1Xi � ˘ n
jD1Yj, while in ours, if z 2 Z,



.xi/

m
iD1 ;

�
wj
	n
jD1
�

may not be in˘m
iD1Xi




.xi/

m
iD1 ;

�
wj
	n
jD1
��
�˘ n

jD1Yj



.xi/

m
iD1 ;

�
wj
	n
jD1
��

since the

sets are not comparable. This justifies Assumption SPP.

9Let us suppose that pIj .�yIj / � pIj .a/ for all a 2 [t>0intYj
�
yOj C t�Oj ; z

	
. For any t > 0 and a

sufficiently large ˛ > 0, we have �yIj C ˛�Ij 2 intYj
�
yOj C t�Oj ; z

	
by free disposal condition.

Hence, pIj .�yIj / � pIj
��yIj C ˛�Ij

	
, a contradiction.
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Another important difference with the above paper is that, even if


.xi/

m
iD1 ,

�
wj
	n
jD1
�

belongs to ˘m
iD1Xi



.xi/

m
iD1 ;

�
zj
	n
jD1
�
� ˘ n

jD1Yj



.xi/

m
iD1 ;

�
zj
	n
jD1
��

, we

cannot prove that 5Ojcj .� Ij ; yOj ; z/ D 5Ojcj
�
� Ij ; y

C
Oj ; z/ as they did, since

the argument they constructed does not work in Fréchet derivatives in infinite-
dimensional spaces. Consequently, in the present context, 5Ojcj .� Ij ; yOj ; z/ D
5Ojcj

�
� Ij ; y

C
Oj ; z

	
whenever yOj D yC

Oj which also justifies the Assumption SPP.
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Chapter 8
On Optimal Growth Under Uncertainty: Some
Examples

Adriana Gama-Velázquez

Abstract The one-sector model of optimal growth with uncertainty in the
production has been thoroughly characterized in a general way. In particular, it has
been shown that the stochastic production function can be replaced by a transition
probability that maps inputs into random outputs. Such replacement is relevant since
it relaxes the sufficient conditions to obtain desirable conditions on the solutions
to the model. Nonetheless, the model with the stochastic production represented
by a transition probability lacks of examples that lead to closed-form solutions.
This paper provides a revision on how to rewrite the model, its advantages, and
three novel examples with explicit solutions to the optimal consumption policy and
value function. These three examples assume a logarithmic utility function for every
period and change the (explicit) distribution of the random production process. In
the three cases, a linear optimal policy of the consumption is obtained. Examples
like these allow us to do more economic analysis on applications that attain such
forms, such as comparative statics.

Keywords Optimal growth • Uncertainty • Stochastic technology • Transition
probability • Second-order stochastic dominance • Bellman equation • Optimal
consumption policy • Value function

8.1 Introduction

In the 1960s, important deterministic models of optimal growth were developed,
for instance, by Cass (1965) and Koopmans (1965). Big part of the importance of
such models relies on the existence and stability results of the optimal consumption
policies. Nonetheless, the robustness of these deterministic models is threatened by
any perturbation such as unexpected macroeconomic shocks. Deterministic models
always predict monotonic optimal sequences of capital stocks, but in reality, optimal
sequences of capital stocks are non-monotonic due to such macroeconomic shocks.
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Since some applications cannot be explained by deterministic models, authors like
Mirrlees (1965),1 Mirman (1971, 1972, 1973), Brock and Mirman (1972, 1973),
Amir (1997), and Li (1988) introduce uncertainty via the production function. In
this way, the spectrum of problems that can be explained through optimal growth
models, now with uncertainty, is broaden. Similarly, with the incorporation of
models with uncertainty, it is possible to test the robustness of the results obtained in
deterministic models. In other words, the inclusion of uncertainty in the production
process helps to better understand fluctuations in the economy.

Specifically, Brock and Mirman (1972) and Amir (1997) consider the problem
where the decision-maker maximizes her expected utility function in an infinite
horizon subject to a given technology that dictates how much output will be
available the next period. The reason why the utility is uncertain this time is
that the production process is stochastic, which differentiates these models from
deterministic models of optimal growth. This means that the available output for
the next period depends not only on the available input left by the planner in the
current period, like in deterministic models, but it is also affected by a random shock
represented by a random variable, which can be interpreted as an economic shock.

The authors prove that under particular but not stringent assumptions, which are
summarized in the next section, the optimal consumption is a unique policy that
leads to a desirable value function; specifically, the latter is monotonic, concave,
and differentiable. Thus, the solution of the dynamic problem is characterized in a
general and convenient way, without having to know precisely the functional forms
of the primitives. This characterization is desirable in any growth model, hence its
importance; nonetheless, the literature in economic growth with uncertainty lacks
of particular examples with closed-form solutions that illustrate the general results
in the existing models. This paper intends to fill this gap by providing examples that
illustrate such results. For this purpose, a relevant literature review on the model is
first presented, in order to contextualize the problems and clarify the notation.

In deterministic models, several examples with particular utility and production
functions that lead to closed-form solutions are provided; thus, this paper wants to
reach a counterpart for the uncertainty case. In particular, the primary goal of this
study is to find conditions on the utility function and on the transition probability of
the random output such that explicit solutions can be found.

The following section provides the reader with a standardized version of the
model under study, as well as with the main results existing in the current literature
concerning this paper. Section 8.3 presents the novel results of this paper: three
examples with a particular utility form (logarithmic) and three different transition
probabilities describing the random outcome that lead to explicit solutions of the
optimal consumption policy. Section 8.4 presents a final discussion of the results,
and the Appendix shows the details for their obtention.

1As cited by Brock and Mirman (1972).
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8.2 The Model

The model studied in this paper was widely characterized by Brock and Mirman
(1972), and it is described in this section. Brock and Mirman (1972) take the well-
known models in economic growth of Cass (1965) and Koopmans (1965) and
generalize them by adding a stochastic nature to the production process. These
models are generalized in a similar way, by Mirrlees (1965) and Mirman (1971,
1972, 1973). In particular, the growth model with uncertainty under study considers
a decision-maker who maximizes her expected utility for infinitely many periods
subject to a stochastic production function. In other words, the decision-maker faces
a dynamic problem over an infinite horizon with uncertainty in the production. In
this model, the output does not depend only in the current input of the agent like in
the Cass–Koopmans model; now, the output is random and depends on the available
input and a random shock represented by a random variable.

Specifically, the aim of the model studied in this paper is to characterize the
optimal consumption policy and value function of the agent that solves the following
problem

supE
1X

tD0
ıtu.ct/ subject to xtC1 D f .xt � ct; r/ and 0 � ct � xt; t D 0; 1; : : : ;

(8.1)

for a given initial capital stock x0 � 0. The variables xt and ct stand for capital stock
and consumption in period t, respectively, u is the utility function of the agent in
any given period, r is a random shock, and ı 2 Œ0; 1/ is the agent’s discount factor.
Since the planner faces a stochastic production for the next period, she maximizes
her expected utility over her lifetime, which is represented by E in the setting of the
problem.

Brock and Mirman (1972) provide conditions such that the optimal consumption
policy that solves problem (8.1) is well behaved. In other words, such that the
solution to the dynamic problem satisfies desirable conditions analogous to those of
the optimal growth model under certainty. Specifically, under their conditions, the
optimal consumption policy is unique and the marginal propensities of consumption
lie between zero and one. In addition, the value function is concave, monotonic, and
differentiable.

Such conditions are summarized as follows. The utility function in any period,
u, satisfies the standard assumptions, that is, u0 > 0, u00 < 0, and u0.0/ D 1 (to
guarantee an interior solution). The key assumptions in Brock and Mirman (1972)
are those imposed on the stochastic technology. It has to be strictly increasing
and concave for every level of input and for every possible realization of the
random variable or shock in the production. Formally, the random output is given
by a production function f that satisfies the properties in Definition 1, which is a
generalization of Brock and Mirman (1972) conditions, and it is due to Amir (1997).
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The simplifying notation, which does not require a subindex t, is as follows:
y � 0 represents the input for a given period,2 and x0 � 0 is the random output for
the next period.

Definition 1. x0 and y are related by

x0 D f .y; r/; (8.2)

where r is a random variable with support Œ˛; ˇ� 	 Œ0;1/, and f satisfies:

i) f .�; r/ is strictly increasing for every r 2 Œ˛; ˇ�;
ii) f .�; r/ is strictly concave for every r 2 Œ˛; ˇ�;

iii) there exists Ny > 0 such that f .y; r/ < y if y > Ny for every r 2 Œ˛; ˇ�.

Intuitively, Definition 1 requires the production function to have decreasing
returns to scale in a global sense, i.e., for all levels of input and for all random
shocks. This is a direct consequence of asking strict concavity of f for all the
possible inputs and shocks [part ii)]. Such condition on the returns to scale may be
too restrictive since some production processes present decreasing returns to scale
in average but local increasing returns to scale, i.e., for some level of inputs and
shocks. To broaden the scope of Brock and Mirman (1972) approach, Amir (1997)
relaxes Definition 1 and obtains the same results. First, Amir (1997) represents the
technology in a slightly different way. Instead of using a function f , the author does
it through a transition probability that takes the current input and maps it into the
distribution of the next period’s output. Hence, the agent’s problem now looks like
problem (8.3).

supE
1X

tD0
ıtu.ct/ subject to xtC1 � q.�jxt � ct/ and 0 � ct � xt; t D 0; 1; : : : ;

(8.3)

where all the variables are defined as before and q denotes the transition probability
that maps the investment level .xt � ct/ into the random output for the next period.

Next, using second-order stochastic dominance, the assumptions of concavity
and monotonicity in Definition 1 are imposed on the integral of the output
distribution instead of on the distribution itself. Such conditions on the stochastic
production are formally specified in Definition 2.

Definition 2. x0 and y are related by

x0 � q.�jy/ (8.4)

2Hence, y D x � c, where x is the capital stock and c stands for consumption, both for the given
period.
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where q is a transition probability from Œ0;1/ and the associated distribution
function, F, satisfies:

i)
R a
0
F.tjy/dt is decreasing in y for every a � 0;

ii)
R a
0
F.tjy/dt is convex in y for every a � 0;

iii) there is a function h W Œ0;1/ ! Œ0;1/ such that h.0/ D 0, h.Ny/ D Ny, and
h.y/ < y if y > Ny, for some Ny > 0, and E.x0jy/ D R1

0
tdF.tjy/ � h.y/ for every

y � 0.

Notice that the representation of the future (and stochastic) output in both
Definitions 1 and 2 is equivalent in the sense that they provide information on
the distribution of the future output given the current input. Moreover, Amir
(1997) formalizes this argument by showing that a representation of the stochastic
production in Eq. (8.2) can be also represented in terms of Eq. (8.4) and vice versa.

Amir (1997) also shows that Definition 1 is stronger than Definition 2, since
each part of the former implies its respective part in the latter. Hence, Definitions 1
and 2 can be used indistinctly when studying a particular problem, but Definition 2
broadens the set of applications that we can characterize without knowing the
primitives. In the first definition, monotonicity and concavity are imposed on the
production function for every level of output and for every realization of the random
variable or shock. In the second one, monotonicity and concavity are imposed on the
integrals of the distribution of the random outcome, which means that the random
output has to be monotonic and concave only in average but can be non-monotonic
or non-concave for some levels of inputs or realizations of the random shock. In
other words, increasing returns of the technology are locally acceptable as long as
in average, the returns are decreasing. This assumption is more realistic than asking
for decreasing returns in a global sense.

Thus, Amir (1997) replaces Definition 1 by Definition 2, which is weaker, and
shows that the growth model under study still has a unique solution with marginal
propensities of consumption between zero and one and value function concave,
monotonic, and differentiable.

Long and Plosser (1983) present an example in the many-sector optimal growth
model with uncertainty in the production with closed-form solutions. In particular,
such uncertainty is expressed through the production function, like in problem (8.1),
but no specific transition probability is provided.3 Hence, a counterpart for prob-
lem (8.3) wants to be found, i.e., specific primitives of the problem (utility function
and transition probability) that lead to closed-form solutions.

The following section presents three examples with a logarithmic utility function
and three different transition probabilities that allow us to find explicit solutions to

3In the example of Long and Plosser (1983), the agent chooses n goods plus leisure time in order
to maximize her expected utility subject to her time constraint and production possibilities. Her
utility function is additively separable and logarithmic in every choice variable. The technology is
Cobb–Douglas, except that at every period, it is multiplied by a positive random shock that follows
a time-homogeneous Markov process.
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the dynamic model. Such applications with explicit solutions allow us to do more
analysis on them, for instance, to do comparative statics with respect to the relevant
parameters.

8.3 Examples

The one-sector model of optimal growth with certainty literature exhibits plenty of
specific applications where it is possible to find closed-form solutions. The same
does not happen in the literature of the model with uncertainty in the production,
in particular, when such uncertainty is represented by a transition probability. This
section pretends to fill such gap by providing three specific illustrations of the model
with explicit solutions.

In the deterministic case, Amir et al. (1991) state that the logarithmic utility
function, u.c/ D ln c, leads to an explicit optimal consumption policy that is linear
in the state variable, when the production process follows the Cobb–Douglas form
f .x/ D x˛ , where ˛ > 1, c is the consumption, and x is the input or state variable.
Similarly, one gets optimal policies that are linear in the stock when the utility
function is Cobb–Douglas or exponential, u.c/ D cˇ or u.c/ D �e�c, respectively,
and the production function is linear, with ˇ > 0.

We now turn to the stochastic case. The following examples assume that the
utility function of the agent is logarithmic, which satisfies the standard desirable
conditions on a utility function (strictly increasing and strict concavity), and
combine it with three different stochastic technologies that lead to linear optimal
policies of consumption.

The notation is consistent with that of Sect. 8.2. Hence, c, x, and r represent con-
sumption, available output, and the random shock in the current period, respectively;
x0 represents the available output for the next period. Recall that the latter depends on
how much of the good remained from the previous period, x�c, and a random shock,
r; thus, x0 is the random stock or random outcome for the next period. In the frame
of this growth model, the stock x � c is interpreted as the savings of the consumer,
which in this case are affected by an economic shock. In other fields, like the ones
that study the extraction of resources, x�c is interpreted as the available stock for the
next period; the random shock helps in modeling stochastic reproduction of natural
resources or animals, such as the reproduction of fish.

Example 1. Consider an agent that maximizes her expected utility over an infinite
number of periods. The utility function of the agent, u, is logarithmic for every
period, u.c/ D ln c, and the random output for the next period is given randomly by

x0 D .x � c/=r;
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where r is a random variable uniformly distributed between zero and one. Thus, the
associated cumulative distribution function (cdf) for the future production is4

F.tjx � c/ D
(
1 � x�c

t if 0 � x � c � t;

0; otherwise.

Notice that 0 � x � c holds by the setting of the problem.
The Bellman equation of this problem is

V.x/ D max
0�c�x ln cC ı

Z 1

x�c
V.t/dF.tjx � c/;

which becomes

V.x/ D max
0�c�x ln cC ı.x � c/

Z 1

x�c
V.t/

t2
dt (8.5)

after substituting the transition probability represented by F.
Since the utility function of the agent is logarithmic, it is natural to think that the

value function takes the same functional form. Making this guess and following the
standard method to solve dynamic problems, we find the solution to this problem;
the details are in the Appendix. The optimal consumption policy, c.x/, is linear in
the capital stock and is given by

c.x/ D .1� ı/x;

and the value function V.x/ is, as we guessed, logarithmic

V.x/ D A ln xC B;

where

A D 1

1 � ı and B D ln.1 � ı/
1 � ı C ı.1C ln ı/

.1 � ı/2 :

The explicit solution to this problem allows us to do some comparative statics.
For instance, we can analyze how consumption changes when the agent is more
patient, i.e., when the discount factor is bigger. Notice that such change is negative,
@c.x/=@ı D �x < 0; hence, a more patient planner will consume less in the first
period. Since she is more patient, she will save more input for future periods. �

4To compute the cdf, notice that F.tjx � c/ D Prob .x0 � tjx� c/ D Prob
�
x�c
r � t

	 D
Prob

�
r � x�c

t

	
. The first equality follows by definition of cdf; the second one, by substituting

x0 D .x � c/=r; and the last one, by rearranging terms. Finally, its explicit form is obtained using
the fact that the random variable r is uniformly distributed between zero and one.



154 A. Gama-Velázquez

Given the results of the first example, we can suspect that a random shock with
linear probability density function (pdf) together with a logarithmic utility function
leads to closed-form solutions. Example 2 solves the one-sector optimal growth
model with such specifications.

Example 2. Let us continue working with u.c/ D ln c and the random output given
by x0 D .x� c/=r, like in Example 1. This time, suppose that r is a random variable
with pdf given by f .r/ D 2r � 1.0 � r � 1/. Following the same steps as in
Example 1, the corresponding transition probability represented by F is now

F.tjx � c/ D
(
1 � � x�ct

	2
if 0 � x � c � t;

0; otherwise.

The specific Bellman equation of this problem, after substituting the transition
probability, becomes

V.x/ D max
0�c�x ln cC 2ı.x � c/2

Z 1

x�c
V.t/

t3
dt: (8.6)

Since the utility function is logarithmic, we again guess that V.x/ D A ln xC B;
then, the optimal consumption policy coincides with that in Example 1. See the
Appendix for the details. The value function differs from that of the previous
example because the random outcome is different and so is its expected value.
Specifically, the solution is given by the optimal consumption

c.x/ D .1 � ı/x
and value function

V.x/ D A ln xC B;

with

A D 1

1 � ı and B D ln.1 � ı/
1 � ı C ı.1=2C ln ı/

.1 � ı/2 :

Notice that the value of the parameter A coincides with that in Example 1, but
not the parameter B, which explains the difference between the value functions of
the examples. In particular, the value function of Example 2 is lower with respect to
that in Example 1 by ı

2.1�ı/2 .
The comparative static result in Example 1 still holds given that the optimal

consumptions coincide. �

In general, an explicit solution of the dynamic model can be achieved whenever
the utility function of the planner is logarithmic and the pdf of the shock that affects
the future production is linear, i.e., whenever the pdf in Example 2 is given by f .r/ D
nr � 1.0 � r � 1/, where n is a natural number. The last example formalizes this
result.
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Example 3. Consider an expected utility maximizer agent whose utility function in
every period is logarithmic, u.c/ D ln c; there is an infinite number of periods. Such
agent faces the random output x0 D .x� c/=r, where r is a random variable with pdf
f .r/ D nr � 1.0 � r � 1/ and n is a natural number. Under this generalization, the
transition probability function becomes

F.tjx � c/ D
(
1 � n

2

�
x�c
t

	2
; if 0 � x � c � t;

0; otherwise.

and the Bellman equation,

V.x/ D max
0�c�x ln cC nı.x � c/2

Z 1

x�c
V.t/

t3
dt: (8.7)

Guessing the value function V.x/ D A ln x C B, we get that the optimal
consumption policy is (see the Appendix for the details)

c.x/ D .2 � nı/

2
x;

and the value function is as guessed above with

A D 2

2� nı
and BD 2

2� nı

�
nı

2.2� nı/
� 2

2� nı
ln 2C ln.2� nı/C nı

2� nı
ln.nı/

�
:

Finally, notice that the comparative statics in Examples 1 and 2 can be general-
ized. The change of the optimal consumption with respect to the discount factor
is negative, @c.x/=@ı D �nx=2 < 0 (recall that n is a natural number), i.e., a
more patient consumer (larger ı) will consume less today in order to save more
for tomorrow, because she values more her future consumption. �

8.4 Conclusions

In this paper, we study the one-sector model of optimal growth with an infinite
number of periods and stochastic production. This is a model where the planner
maximizes her expected utility, since her output for the next period is unknown.
Specifically, in the current period, the planner saves some input to produce output
for the next period, but such production is affected by an exogenous and random
shock, which can be interpreted as a macroeconomic or a natural shock. A common
application of these models with stochastic production is the extraction of resources,
where the reproduction of the natural resources is stochastic, for instance, the
reproduction of fish.
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Works like Brock and Mirman (1972) and Amir (1997) provide sufficient
conditions on the primitives of the model under study, to obtain desirable solutions,
in particular, to get a unique optimal consumption policy with marginal propensities
of consumption between zero and one, as well as a concave, monotonic, and
differentiable value function. It is natural to ask what particular characteristics on
the transition probability defining the random production and on the utility function
lead to explicit optimal policies, so that more research can be done on the behavior
of these explicit results. Nonetheless, there is a lack of examples with specific
transition probabilities that map inputs into random outputs that this paper tries to
fill. The opposite happens in the deterministic literature, where many examples with
closed-formed solutions have been written; thus, a counterpart to the deterministic
model is presented in this work.

This paper offers three novel examples. In all of them, the planner maximizes
her expected utility over an infinite horizon, and her utility is logarithmic in
every period. Her available outcome for the next period is equal to the savings of
the current period affected by a random shock; hence, the production process is
stochastic. In particular, this uncertainty is mathematically expressed by the savings
divided by a random variable, which takes three different distributions, one for every
example.

In the first example, the random variable affecting the production is uniformly
distributed; in the second one, its pdf is given by f .r/ D 2r � 1.0 � r � 1/. The
third and last example is a generalization of the second one; the pdf of the random
variable is f .r/ D nr � 1.0 � r � 1/, where n is a natural number.

The first two examples lead to the same optimal policy, which is linear in the
current capital stock x. This optimal policy is decreasing in the discount factor,
which is an expected result given that a decision-maker who is more patient will
be willing to consume less in the first period in order to consume more in the future.
The value functions in such examples are logarithmic, and they differ only by the
constant. In the second case, the value function is lower by ı

2.1�ı/2 .
The second example suggests that a random variable with linear pdf leads to

linear solutions whenever the utility function is logarithmic in every period; thus, the
problem is solved for a more general linear pdf (detailed before). Again, the optimal
policy is linear in the capital stock and decreasing with respect to the discount factor;
the value function is still logarithmic.

Appendix

Solution to Example 1

Since the utility function of the agent is logarithmic in every period, a good guess
for the value function is that it is logarithmic as well. That is, V.x/ D A ln x C B;
hence, we substitute this guess into Eq. (8.5) and solve for the optimal policy, and
if we are able to find values for the constants A and B consistent with our guess, we
have a solution. This solving method is standard in dynamic programming.
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Specifically, following the steps described above, we get that the Bellman
equation of this problem is

V.x/ D max
0�c�x ln cC ı.x � c/

Z 1

x�c
A ln tC B

t2
dt: (8.8)

Let us solve the integral first, starting by distributing it

Z 1

x�c
A ln tC B

t2
dt D A

Z 1

x�c
ln t

t2
dtC B

Z 1

x�c
1

t2
dtI (8.9)

integrating by parts, we get

Z 1

x�c
ln t

t2
dt D ln.x � c/

x � c
C
Z 1

x�c
1

t2
dt: (8.10)

Notice that, as will be explained below, the following equalities hold
R1
x�c

A ln tCB
t2

dt D A ln.x�c/
x�c C .AC B/

R1
x�c

1
t2
dt

D A ln.x�c/
x�c C .AC B/ 1

x�c
D .ln.x�c/C1/ACB

x�c I
the first equality follows from substituting identity (8.10) into (8.9); the second one,
by integrating the second term in the right hand side of the first equality; and the last
one, by reducing the expression algebraically.

Hence, substituting the last equality in Eq. (8.8), the Bellman equation becomes

V.x/ D max
0�c�x ln cC ıŒ.ln.x � c/C 1/AC B�; (8.11)

with first-order condition

1

c.x/
� ıA

x � c.x/
D 0;

which leads the optimal policy for consumption and value function, respectively

c.x/ D x

1C ıA and V.x/ D ln

�
x

1C ıA
�
C ı

��
ln

�
ıAx

1C ıA
�
C 1

�
AC B

�
:

Notice that the latter is obtained by plugging the optimal consumption policy
in (8.11) and can be simplified into

V.x/ D .1C ıA/ ln x � .1C ıA/ ln.1C ıA/C ıA.1C ln ıA/C ıB: (8.12)

To obtain the explicit values of the parametersA and B and complete our solution,
we equalize the value function obtained in Eq. (8.12) with our guess. Specifically,
we equalize the coefficients in our equations and solve for A and B. This means that



158 A. Gama-Velázquez

A D .1C ıA/ and B D �.1C ıA/ ln.1C ıA/C ıA.1C ln ıA/C ıB. Solving this
system of two equations and two variables, we get

A D 1

1 � ı and B D ln.1 � ı/
1 � ı C ı.1C ln ı/

.1 � ı/2 :

Hence, we have a linear optimal policy in the capital stock given by

c.x/ D .1 � ı/x

and value function

V.x/ D A ln xC B;

with A and B defined above. �

Solution to Example 2

To solve this problem, we proceed in a similar way as in Example 1, starting with our
logarithmic guess of the value function, V.x/ D A ln xC B. Based on this guess and
the distribution of the random production, we get the following Bellman equation
[by substituting the guess in Eq. (8.6)]

V.x/ D max
0�c�x ln cC 2ı.x � c/2

Z 1

x�c
A ln tC B

t3
dt: (8.13)

The integral in Eq. (8.13) can be expressed as follows

Z 1

x�c
A ln tC B

t3
dt D A

Z 1

x�c
ln t

t3
dtC B

Z 1

x�c
1

t3
dtI (8.14)

integrating by parts, we have

Z 1

x�c
ln t

t3
dt D ln.x � c/

2.x � c/2
C 1

2

Z 1

x�c
1

t3
dt: (8.15)

Then,
R1
x�c

A ln tCB
t3

dt D A ln.x�c/
2.x�c/2 C

�
A
2
C B

	 R1
x�c

1
t3
dt

D A ln.x�c/
2.x�c/2 C

�
AC2B
4

	
1

.x�c/2
D .2 ln.x�c/C1/AC2B

4.x�c/2 :

The first equality follows from substituting Eq. (8.15) in (8.14); the second one,
by solving the integral; and the third one, by reducing algebraically.
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Substituting the last expression in Eq. (8.13), we get the following Bellman
equation

V.x/ D max
0�c�x ln cC 1

2
ıŒ.2 ln.x � c/C 1/AC 2B�;

with first-order condition

1

c.x/
� ıA

x � c.x/
D 0:

Then, the optimal consumption in the current period and the value function are,
respectively,

c.x/ D x

1C ıA and V.x/ D ln

�
x

1C ıA
�
C 1

2
ı

��
2 ln

�
ıxA

1C ıA
�
C 1

�
AC 2B

�
:

We are looking for parameters A and B such that V.x/ D A ln x C B; given the
previous result, we are looking for A and B such that

A ln xC B D ln

�
x

1C ıA
�
C 1

2
ı

��
2 ln

�
ıxA

1C ıA
�
C 1

�
AC 2B

�
;

which can be simplified into

A ln xC B D .1C ıA/ ln x � .1C ıA/ ln.1C ıA/C ıA
�

ln ıAC 1

2

�
C ıB:

The previous equality implies that A D 1
1�ı and B D ln.1�ı/

1�ı C ı.1=2Cln ı/
.1�ı/2 :

Notice that the optimal consumption policy is the same for both Examples 1
and 2. Nonetheless, the value function is smaller in the current Example by

ı
2.1�ı/2 . �

Solution to Example 3

To solve this problem, we follow the methodology in Examples 1 and 2; hence,
we now skip some technical details. After guessing that the value function is
logarithmic, V.x/ D A ln xC B, substituting it into the Bellman equation (8.7) and
solving for the integral, we get

V.x/ D max
0�c�x ln cC n

4
ı Œ.2 ln.x � c/C 1/AC 2B� ; (8.16)
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with the corresponding first-order condition

1

c.x/
� n

2

ıA

x � c.x/
D 0:

From the previous equation, we get that the optimal consumption is

c.x/ D 2x

2C nıA
I

and by (8.16), the value function becomes

V.x/ D ln

�
2x

2C nıA

�
C n

4
ı

��
2 ln

�
nıAx

2C nıA

�
C 1

�
AC 2B

�
:

Recall that V.x/ D A ln xC B (from our initial guess); hence, equalizing the last
two identities and doing the algebra, we get

A D 2

2� nı
and BD 2

2� nı

�
nı

2.2� nı/
� 2

2� nı
ln 2C ln.2� nı/C nı

2� nı
ln.nı/

�
:

Then, the solution can be reduced to

c.x/ D .2 � nı/

2
x and V.x/ D A ln xC B;

with A and B defined above. �
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Chapter 9
Fundamental Principles of Modeling
in Macroeconomics

Samuel Gil Martín

Abstract Modern macroeconomic research has been increasingly concerned with
its capability of establishing sound positive and normative conclusions in uncertain
environments. The Lucas’ critique imposes the requirement to do so from solid
microeconomic principles which alter in a significant way the overall notion of
fundamental value behind any convincing theory. The necessity to bring these
general issues to dynamic settings to test alternative hypotheses introduces new tools
of analysis which are required to understand the current literature, both theoretical
and empirical. In this article we explore the notion of fundamental taken as given
the level of total resources and show how it extends when different degrees of
uncertainty are introduced.

Keywords Stationarity • Risk • Uncertainty • Recursive utility

9.1 Introduction

The Lucas’ critique has brought about a consensus about the necessity to found
macroeconomics on sound microeconomic principles. The paths of the main
aggregates such as inflation, employment, and asset pricing cannot be accounted
for unless the driving interests of the economic actions are properly set. For such
purpose, the additive expected utility representation of preferences has been the
conventional cornerstone of theoretical research. Implicitly, this elegant, parsimo-
nious, and versatile representation construction has emerged from a requirement of
consistency and rationality of expectations. However, the theory faces somewhat
serious difficulties and drawbacks when confronted with data and experimental
evidence. The Allais (1953) paradox, obtained by revealed preference, could be
resolved by a relatively simple transformation of the original model. The Ellsberg
(1961) paradox puts forward a meaningful difference between different orders of
uncertainty from a behavioral standpoint. While Ramsey and Savage propose that
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personal decisions subject to uncertain outcomes reveal subjective likelihoods of
events, the Ellsberg paradox shows that this is not indeed a representative case. The
positive and normative implications are likely to be more drastic than those related
to the Allais’ paradox, as long as the existence of an incontrovertible model is called
into question.

Welfare theorems establish conditions of efficiency and separation of the logic of
market efficiency and distribution. Specifically, the first welfare theorem imposes
the requirement of market completeness to achieve an efficient outcome which
permits economic agents full insurance against idiosyncratic risk. By transforming
the original model by a multiplicative stochastic discount factor, this outcome may
be expressed as a risk-neutral pricing measure. The efficient market hypothesis
states that asset prices are fully informative: they cannot possibly embed any
forecastable component because their fluctuations are purely random.

Unfortunately, there are some facts that can hardly be reconciled with some
empirical evidence. Financial markets have experienced over the last 30 years a
tremendous increase in the bulk of data available that has made it possible to
test the theories developed under the umbrella of the dynamic stochastic general
equilibrium paradigm. The equity premium puzzle (Mehra and Prescott, 1985), as
well as many others that highlight possible and substantial drawbacks in the standard
macroeconomic theory, has built upon standard models that make use of the rational
expectations hypothesis.1 As long as the role of financial markets is to provide liquid
assets to allocate and monitor capital, efficiency requires production of information
that ultimately shall be reflected in prices. Information technology has remarkably
reduced transaction costs, including information costs and data storage. In addition,
during the period 1960–2012, the share of the financial industry to GDP in the
USA has more than doubled, from 2.5 to 5.5 %, having grown six times faster than
GDP in the last 30 years (Boi et al. 2012). The TFP has also suffered important
alterations during the last 30 years, breaking a long period of stability. Both facts
are most probably behind the polarization of wealth observed worldwide over a
whole generation.

Tables 9.1 and 9.2 capture a tension observed between some indices of prosperity
and poverty that synthetize the extent of these paradoxes. The development of
macroeconomic theory in recent years is seemingly bound to be dealing with issues
related with complexities of this sort. However, and because of the same reasons, the
main questions which gave rise to the birth of economics remain open or have been
reformulated: the difficulties to explain the capacity of a community to generate
wealth and abundance are essentially associated to its ability to formulate a theory
of value generated by agents’ decisions susceptible to be confronted with data.

1See Brunnermeier (2001) and Easley and O’Hara (2003) among many surveys available in the
literature.
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Table 9.1 Figures of population change and income are measured in
annual rates, and life expectancy is measured in years

0–1000 1000–1800 1800–2000 2000–2011

Population 0.02 0.17 0.86 1.36

Income per capita �0.00 0.00 1.07 2.23

Life expectancy 28–24 24–26 26–66 67.2 (2009)

Source: Maddison (2001) and own

Table 9.2 Consumption
measured in terms of
exosomatic energy
(approximation) per person
and day

Fire Agriculture 1900 2000

2 4 14 30–40

Source: Common and Stagl (2005)
and Gómez Romero (2010)

Table 9.1 shows that growth is an astonishingly contemporary phenomenon, but
at the same time, it is well known that total factor productivity (TFP) is not driven
by accumulation of physical factors.

On the contrary, Table 9.2 gives an opposite view of this piece of evidence. The
necessary consumption of subsistence (2000–2500kcal per capita and day approx)
is known as endosomatic consumption and is shared by any living being on this
planet according to their biological needs. Consumption, as measured in units of
exosomatic primary energy, consists of those goods that are obtained by means of
technologies, from the use of fire onward, that allow a transformation of energy, raw
materials, and information from the environment into final goods.

This chapter revisits and provides a conceptualization of economic actions that
give rise to fundamental implications in the theory of value. In doing so, we explore
some methods of analysis aimed to embed preferences in a general macroeconomic
theory described by complexity and an extraordinary number of different kinds of
interactions. In this way, this essay aims to provide a further debate on whether
and how likely the circular flow of income is able or not to generate welfare and
production under increasingly uncertain and interrelated contexts. The difficulties
found extensively in the literature observationally equivalence can be restated
conversely, namely, problems to distinguish fundamentals from frictional value
driven by strategic and informational spillovers.

The rest of this work is organized as follows. Sections 9.2 and 9.3 deal
with standard representations of preferences and some of their extensions within
the probabilistically sophisticated paradigm. Section 9.4 introduces the notion of
Knightian uncertainty and gives a hint of some of its macroeconomic implications.
Section 9.5 extends these concepts to a dynamic framework. In Sect. 9.6 it is pro-
vided an empirical application that explores the boundaries of the macroeconomic
research, allowing a generalization of the concept of stationarity. We suggest that
different alternative specification of the Brownian motion, while obeying the basic
stationarity conditions, can potentially affect the fundamental components of value.
Section 9.7 concludes.



166 S. Gil Martín

9.2 Decision Under Risk

9.2.1 The Economic Space

Macroeconomic models are formulated in terms of an underlying state of the
world. An economic model requires an accurate specification of (1) agents and
their preferences defined over a set of admissible economic actions, (2) resources
which are available for the society as a whole, and (3) a characterization of the
market setting. While the economic fundamentals are defined by the parameters of
preferences and resources, some models emphasize the effects of market frictions
on resource allocation. Let us start this section by making precise the meaning of
the state of an economy.

The economic world, in all its complexity, is represented at the most abstract
and general level by a standard probability space .˝;F ;P/. An element ! of !
gives a full description of the economy. Overall, agents living in uncertain models
need not know the true value of !; in other words they are not expected to think
of a complete account of the world before making a decision. Static theories are
constructed by identifying the universe ˝ with a fixed metric state space S. Time
can be introduced by defining an analogue space .T;B/, where the time set T 	 R

is either an interval of (continuous models) or a discrete subset set, and B is its Borel
sigma algebra. A dynamic model is constructed by means of the standard product
space .S � T;F ˝B/. Very often the model is closed through an exponential
discounting, though it is not a necessary requirement. We will deal with dynamic
models in Sect. 9.5, and it is the case that many of the major insights can be obtained
by considering finite space states.

An element s 2 S comprises those specific indicators which are relevant
to characterize the performance of the circular flow of income. A model is a
probability measure on the measurable space .S;F /. F is a standard sigma
algebra of events, that is, a family of subsets of S closed by numerable unions,
intersections, and pairwise complements. Its elements are called measurable sets or
events. Any economy is populated by agents whose preferences are order relations
over a stipulated set of feasible actions. An information structure is given by
those information sets of agents who takes active part of the economic life. For
instance, in perfectly competitive environments, one expects that the price system
alone conveys enough information as to coordinate an efficient market outcome. In
general, an action is a measurable map c W S ! C , where C stands for a convex
set of consequences. We will thoroughly assume that S and C are Polish spaces, in
order to guarantee convenient regularity conditions of choice under high degrees of
uncertainty.

The size of the action space will depend essentially on the operative constraints
of the economy and those that affect the decision-maker (DM) itself. In a purely
deterministic consumption model, S is a singleton, and households’ actions, c 2 C ,
reduce to the choice of an element of the consumption space. Under the usual
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conditions of existence and smoothness, an ordinal preference relation can be
represented by a smooth utility function u on C . This index will survive in more
sophisticated environments as a fundamental building block in macroeconomics.

In stochastic settings, every act is a measurable function c W S ! C that
generates a partition (equivalence class) on the phase state S, denoted by a family
of subsets c�1 .x/ 	 S; x 2 C . Measurability implies that this family is a subsigma
algebra of F or equivalently a closed family of events closed under arbitrary unions,
intersections, and complementaries containing the empty set and ˝ . Measurable
mappings can be approximated as a limit of a sequence of simple functions, that is,
acts giving rise to finite partitions of events. Formally, a simple act has the form

c D
nX

sD1
1c�1.xs/ .s/ � xs; (9.1)

where xs 2 C is a constant act which equals the outcome in state c�1 .xs/, 1A
is the indicator function defined for any event, and n is an integer. A cardinal
representation of preferences % is a continuous functional V W A ! R, such that
c % c0 , V .c/ � V .c0/ (see Appendix A).

The Bayesian theory of decision-making has been widespread applied both to
rational expectation equilibrium models and to game theoretical approaches. The
Bayesian paradigm presumes the existence of a single P W F ! Œ0; 1� associated
to our original measurable space. In this case, .˝;F ;P/ constitutes a probability
space. Each act c may be unambiguously identified with a distribution � WD P ı
c�1. Probabilistically sophisticated environments of this kind make it possible the
association of a DM’s feasible set with a (convex) subset of the space of distributions
over the course of actions. We denote this set as˘ .C /, which in mathematical terms
is the dual space of A . Its elements are commonly referred to as lotteries. Since
E1c�1.xs/ D � s D P .xs/, in finite settings a lottery can be represented as a vector of
payoffs together with its corresponding vector of probabilities. Accordingly, (9.1)
can be written c D .xI�/.

9.2.2 Expected Utility Theory

When the consequences of individual actions are uncertain, the phase state S cannot
be longer defined by a single element. The first attempt to axiomatize decision-
making under risk imposes individuals a single model (probability measure) of
reference: Von Neumann and Morgenstern (1944) provide a representation of
preferences by means of a linear functional, unique up to affine transformations
of the utility index u, of this general form:

V .c/ D Eu .c/ D
Z

u .c/ dP: (9.2)
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In particular, when S is finite, and considering (9.1),

V .c/ D Eu .c/ D Eu

 
nX

sD1
1c�1.xs/ � xs

!
D

nX

sD1
E1fcDxsg � u .xs/ D

nX

sD1
� s � u .xs/ :

From (9.2) it follows that U .ıx/ D u .x/, so riskless decision-making becomes a
particular case of decision under risk.

In many macroeconomic models, it is convenient to confine the set of con-
sequences C to a subset of the real line. Most data are encoded in aggregate
terms, and empirical applications need to justify a methodology based entirely
on macroeconomic variables. The VNM preferences represented in (9.2) is a first
step in approaching theory to data. It will be often convenient to rewrite (9.2) in
units of this aggregator: assuming that u is strictly increasing, and making use
of the invariance of the utility functional to increasing transformations, we can
rewrite (9.2) in terms of the certainty equivalent associated to a consumption lottery

mP .c/ WD u�1EPu .c/ D u�1 .V .c// (9.3)

Savage (1954) have addressed much of the criticisms launched at the EU theory
by pointing toward the cognitive roots of the probability distribution P. Savage
postulated an order relation on the space of events (F ) according to its likelihood
of occurrence. This approach gives rise to a weaker version of the expected utility
theory, known as subjective expected utility theory (SEU).

9.2.3 A Static LQ Model

The linear quadratic (LQ) model offers the main insights introduced so far. Consider
a quadratic one-period utility u W Rd � R

d0 
 A � S ! R, which depends on a
variable of control, say c 2 A D R

d that can alter the behavior of the state X 2 S:

u .c;X/ D �1
2
c0c � X0˚X: (9.4)

The cost matrix ˚ is a definite positive and without loss of generality, a symmetric
matrix. We may interpret this problem as an attempt to achieve the maximum
target with the possibly minimum energy input X. The following decomposition is
standard in macroeconomic theory and asset pricing when it comes to bringing these
insights into a dynamic economy. Assume that X D Xc has finite second moments:
let ac and �� 0 be, respectively, its expectation and covariance matrix; then the state
variable X can be (a.s.) uniquely expressed as

X D Xc D aC HcC �B: (9.5)
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a 2 R
n;H 2 R

n˝d; and� 2 R
n˝` ¤ 0 are parameters, and B is a standard Gaussian

random noise valued in R
`; each of its components are interpreted as a risk factors

that synthetize all the information contained in the probability space .˝;F ;P/, in
terms of a reference model P. The optimal rule for the maximization problem

V .c/ D max
c2Rd

Eu .c;Xc/

subject to (9.5) can be obtained by direct substitution; straightforward computations
yield the optimal plan for our benchmark model:

c D �Id C H0˚H
	�1

H0˚a: (9.6)

Let u D u .c;Xc/ and note that it is quadratic in B and c

� 2u D c0
�
Id C H0˚H

	
cC 2 .aC �B/0 ˚HcC .aC �B/0˚ .aC �B/

D a0˚aC b .c;B/C 2a0˚� C B0� 0˚�B; (9.7)

where

b D b .c;B/ D c0
�
Id C H0˚H

	
cC .aC �B/0 ˚HcC a0�˚B: (9.8)

Consider the utility index ' with a constant coefficient of absolute risk aversion ˛.
The certainty equivalent associated with ', as defined in (9.3), can be written as
follows:

m .c/ WD �˛�1 lnEe�˛u.c;Xc/: (9.9)

Let us define

A WD Is C ˛� 0˚� D V�V 0; (9.10)

where V is the orthogonal matrix (V�1 D V 0 because A is symmetric) formed row-
wise by its eigenvectors. � is the diagonal matrix composed by the eigenvalues,
repeated according to its degree of multiplicity, and they are clearly strictly greater
than one. Then one can write the CE explicitly, by using Eqs. (9.7)–(9.10):

˛m .c/ D � ln .2�/�
1
2

Z 1

�1
e�

˛
2
.a0˚aCb.c;B/C˛B0� 0˚�B/� kBk

2

2 dB

D ˛

2
a0˚a � ln .2�/�

1
2

Z 1

�1
e�

1
2
.˛b.c;B/CB0AB/dB: (9.11)

The exponential term of the integrand is a polynomial with a quadratic component
which depends on a symmetric definitive positive matrix. By analogy to the one-
dimensional case [see Backus et al. (2004, Appendix 9)], one may apply a change
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of variable of the form w D V�1=2V 0BC ˛� D A1=2BC ˛� , making it possible2 to
avoid the crossed terms and write the CE in closed form:

˛b .c;B/C B0AB D ˛ˇ .c/C kwk2 :
This relation combined with (9.8) yields

ˇ D ˛ k�k2 C c0
�
Id C H0˚H

	
cC a0˚Hc

� D A�
1
2 � 0 .aC Hc/

This permits us to write

ˇ .c/ D ˇ0 C ˇ01cC c0�c; (9.12)

so that the parameters of the model have been restated according to

� D Id C H0
�
˚ C ˛2�A�1� 0	H (9.13a)

ˇ0 D a0�A�1� 0a; ˇ1 D H0
�
In C ˛2�A�1� 0

	
a (9.13b)

w D A1=2BC A�1=2� 0 .aC Hc/ :

Next we can solve the second integral of (9.11):

Z 1

1
e�

1
2
.˛a0�BCB0AB/dB D det .A/�

1
2 e�

1
2 ˇ.c/

Z 1

�1
e�

kwk

2

2 dw:

Note by (9.10) that det .A/ D det .�/ and let ˇ1 � 0, with equality if ˛˙ D 0n,
stand for the natural logarithm of such determinant. Thus, by virtue of (9.11)–(9.13),
we find that the CE is equivalent (affine) to ˇ .c/

m .c/ D �1
2

�
det .�/C a0˚aC ˇ .c/	 : (9.14)

By maxm .c/ or ˇ .c/, it is immediate to recover the optimal decision rule:

c D ��1� D 
Id C H0
�
˚ C ˛2�A�1� 0	H��1H0 �In C ˛2�A�1� 0

	
a: (9.15)

This solution coincides with the SEU model when ˛� D 0, namely, when there is
either no risk or the DM is neutral in the face of it.

2The factor ˛ on the right hand of the last equality has been introduced to simplify slightly the
computations.
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9.2.4 Information Structure

Fundamentals may lack to provide a good characterization of the behavior of an
economic system when information is privately held due to strategic externalities.
There is a vast number of examples covered in the literature where the presence
of transaction costs and asymmetric information transforms trading within the
marketplace into a game. There are many empirical findings that detect a predictable
component in both the short-run and the long-run movements of asset prices. In
particular, the latter effects may help to explain the relevant role of variables such as
information, liquidity (the costs associated to immediate execution of investment),
and uncertainty in the macroeconomic realm (Easley and O’Hara 2003).

Savage (1954) and Anscombe and Aumann (1963) provided an axiomatization
in which individuals face horse (second order) lotteries that can be compounded,
in agreement with the independent axiom proper of EU decision-making (see the
Appendix). This behavior is at odds with a bulk of experimental evidence of
ambiguity aversion, even under the extreme case where inside information reveals
virtually nothing, e.g., a coin (Ellsberg 1961). We have seen that a decision with
first-order uncertainty (risk) can be conceptualized by identifying the admissible set
of actions with the space of probability measures over consequences, A or ˘ .C /.
We can view this operation as one endowed of a cognitive nature [see, for instance,
Brunnermeier (2001, Chap. 1)]. Indeed the information set F can be viewed as
a partition over the phase space ˝ , denoted by Œ��, which satisfies the following
conditions for each ! 2 ˝:

Axiom (Axiom of Truth). ! 2 Œ!�
Axiom (Axiom of Introspection). !0 2 Œ!�, Œ!0� D Œ!�

The first condition is clear; introspection can be positive ()) or negative (().
By positive introspection individuals rule out the existence of a state of the world3;
thus, z 2 Œ!0� \ Œ!�c whenever !0 2 Œ!�. For instance, assume the axiom of truth
holds and let !o mean that we are able to forecast the lack of any macroeconomic
shock—demand or supply sided, within a given lapse of time, say a quarter. On the
contrary, let



!d
�[Œ!s�, denote that we are able to forecast a shock of either category

within the same period, where the superscripts d and s stand for demand and supply,
respectively. Assume



!d
� D Œ!s�, that is, the impossibility of discernment between

the two sources of noise. By positive introspection we are able to discard from Œ!o�

any state of the world included in


!d
�

so long as Œ!s� and Œ!o� are disjoint subsets.
Let now Œ!r�mean that we are currently going through a recession and Œ!�� D f!�g
that such event has a permanent component. This fatal event can be ruled out from
Œ!� by negative introspection.

A converse argument allows one to relate an arbitrary partition to a knowledge
operator, defined as K .G/ WD f! W Œ!� 2 Gg. One does not need to impose any

3The superscript c denoted the complementary of a set.
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axiom on the underlying information structure Œ�� of K in order to obtain the
following properties whose interpretation is obvious:

K1 K .˝/ D ˝
K2 Monotonicity K .G/ 	 K .H/ if G 	 H
K1 K .G/\K .H/ D K .G \H/

Axiom of truth can be restated as K .A/ 	 A. Positive (negative) introspection
may be stated, in terms of the knowledge operator, as knowing what one does (not)
know, respectively, K 	 K 2 and K c 	 K ıK c.

With the axioms of truth and introspection, a partition and its corresponding
knowledge operator uniquely define a sigma algebra F .

9.3 Alternative Explanations to Expected Utility

SDGE models impose, by dealing with expected utility, implausible parameter
constraints on individual patterns of behavior, once confronted against experimen-
tal evidence. In the next sections, we will explore alternative specifications of
preferences that give rise to substantial changes in the concept of fundamentals
and thereby in the theory of value as a whole. Furthermore, theoretical progress
is subject to an observational equivalence issue. Recall that in probabilistically
sophisticated models, by virtue of (9.1), an economic act may be identified with
a pair of vectors .xI�/ that describe outcomes and probabilities.

9.3.1 Probabilistically Sophisticated Models

The Allais’ paradox (1953) can be illustrated in the following example: consider the
lotteries

c1 D 1fcD1g c2 D :33 � 1fcD1C"g C :66 � 1fcD0g C :01 � 1fcD0g
c01 D :34 �fcD1g C:66 � 1fcD0g c02 D :33 � 1fcD1C"g C :67 � 1fcD0g:

Since the utility index is unaltered by scaling and translation, we lose no generality
putting u .0/ D 0 and u .1/ D 1. Allais reported that, for " D 1=24, individuals
would majoritarily decide c1 � c2 and c02 � c01. However, this fact contradicts SEU,
because U .c1/ > U .c2/ means 1 > :33 � u .1C "/ C :66; equivalently, U

�
c01
	 D

:34 > :33 � u .1C "/ D U
�
c02
	
. The interpretation of this result is based on the fact

that, on facing uncertain choices, a DM tends to put more weight on bad outcomes
than they do on good outcomes.

A possible way to accommodate this piece of evidence consists of substituting
the axiom of independence by the so-called axiom of betweenness; for c; c0 2
˘ .C / ; 9� 2 .0; 1/:
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Axiom (BET Betweenness). c � c0 ) c � .c; c0/� � c0.

This axiom grants that the family of convex linear combinations of any two given
lotteries is ordered according with its two extremes. Weighting utility (WU) and
rank-dependent preferences (RDP) are classes of preferences that accommodate the
behavior patterns observed by Allais. WU makes use of the following axiom instead
of independence:

Axiom (w-SUB Weak Substitution). a � b ) 9c 2 ˘ .C / ; 9˛ D ˛ .�/ ; � 2
.0; 1/ W .a; c/˛ � .b; c/�.
Clearly IND is a particular case of w-SUS when ˛ D �. A key attribute of this axiom
is the imposed independence between ˛ and c. The SEU theory implies that if the
axioms ORD, w-SUB, and continuity (a weakest version of continuity applies for
the discrete case) hold, a twisted representation of preferences is possible, namely,

V .c/ D
Z

u .c/ � .c/ dP DW
Z

u .c/ dP� ; (9.16)

where

P� .A/ WD
R
1A� .c/ dPR
� .c/ dP

RDP operates through the following class of transformations of the reference model:

Z
u .c/ dg .P/ ; (9.17)

where g W Œ0; 1� ! Œ0; 1� is a continuous and strictly increasing transformation of
full range.

A major problem with these specifications is that they both violate the first-order
criterion of stochastic dominance. For example, consider two numbers y � x and
x; y 2 u .A/ D Œ0; 1� and set � .1 � �/ C � .�/ < � .1/ D 1. Clearly, ıy first
order dominates stochastically (FOSD) to the binary lottery .x; y/�. When x and
y are close enough, y < � .1 � �/ y C � .�/ x. Any violation of the domination
principle poses similar problems to those involved in nontransitive preferences: if
an individual with continuous preference relation happens to display a cycle a %
b % c % a, it would be profitable to offer her c in exchange for a, after which she
can be offered the alternative b in exchange for a � ", with " > 0 (Machina 1982).
Seemingly, intransitivity would seem to be at odds with continuity of preferences
before (Quiggin 1982) reconciled transitivity with FOSD. Different modification
and weighting functions have been proposed in the literature: see, for instance, Chew
(1983, 1989), Dekkel (1986), and Fishburn (1989). Kahneman and Tversky (1992)
proposed a cumulative prospect theory to avoid the violation of first-order stochastic
dominance.
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Fishburn proposed a unifying theory that comprises continuous preference
relations characterized by the axiom BET. To this aim, this author defined a
bilinear utility functional � W A � A ! R, defined on a convex set of feasible
alternatives A 	 ˘ .C /. This utility functional satisfies the skew-symmetric
condition � .p; q/ D �� .q; p/. Preference representation stems from the relation
p � q , � .p; q/ > 0, in such a way that it is possible to relax the transitivity
assumption.

9.3.2 The Aggregator

Chew-Dekel preferences provide a generalization of expected utility that accommo-
dates the Allais’ paradox in line with the considerations made in the last subsection.
Their model is established by means of a risk aggregator f W R2 
 C � R ! R,
which satisfies the following fixed-point requirement:

m D Ef .c;m/ (9.18)

Epstein and Zin (1989) show that the special case f .c;m/ D u .c/Cm is equivalent
to the axiom of betweenness. It is commonly assumed that f satisfies the following
properties:

a. sure consequences correspond to their own certainty equivalent: f .c; c/ D c;
b. first-order stochastic dominance: f is increasing in its first argument
c. risk aversion: f is concave in its first argument.

The next property is technical and gives rise to parsimonious settings:

d. linear homogeneity.

Properly speaking, only the two first conditions define a certainty equivalent. Risk
aversion is usually stated to guarantee the second-order conditions of optimality
that guarantee the existence of equilibria. However, specific contexts have been
reported where economic agents would be prone to seeking risk or ambiguity (Heath
and Tversky 1991). The fourth hypothesis is technical and is stated for the sake
of analytical convenience: with the assumption of homogeneity, the SEU model
reduces to

f .c;m/ D m

�
1

˛



 c

m

�˛ � 1
�
C 1

�
(9.19)

with an explicit certainty equivalent that can be straightforwardly recovered
from (9.18)

m .c/ D .Ec˛/1=˛ (9.20)



9 Fundamental Principles of Modelling in Macroeconomics 175

Chew and Dekel proposed the following extension of the EU, known as weighted
utility (WU)

f .c;m/ D m

�
1

˛

�
 c

m

�˛Cˇ � 1
�
C 1

�
;

which gives

m .c/ D �Ec˛Cˇ	1=˛ : (9.21)

This relation is easily interpreted if we apply the change of measure

dP WD cˇ

Ecˇ
dP

and rearrange so as to obtain (9.20): under the transformed model by a multiplicative
factor known as the Radon-Nikodym derivative of the twisted model P with respect
to P:

mP .c/ D


EPc˛

�1=˛
:

Under this version, individuals primarily focus on the impact of bad outcomes and
allocate them a greater weight than EU does. Similar extensions have been provided
in the literature, such as rank-dependent preferences as mentioned in the previous
subsection. Alternative kinds of exotic behavior can be explained in parsimonious
settings, such as disappointment aversion and, in dynamic settings, habits [see
Backus et al. (2004)]. Both have the potential to act as macroeconomic propagation
mechanisms with a considerable macroeconomic impact.

Disappointment aversion utility (DAU) extends SEU so that its corresponding
aggregator g takes the form

g .c;m/ D f .c;m/C ı

˛

�
c˛m1�˛ �m

	
1fc<mg;

where f is the SEU aggregator given in (9.19). With ı D 0, g D f . If ı > 0, the DM
places more weight to those events worse than the CE. One can prove to satisfy the
relation (9.21) with (Backus et al, 2004)

P D 1C ı1fc<mg
1C ıEP1fc<mg

P:

In other words, both models are observationally equivalent.
Macroeconomic theory most commonly deals with finite variance distributions.

Random variables with finite second moments
R
X2dP <1 are naturally endowed

with a norm which endows the space of mean square integrable random variables
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with the properties of a Hilbert space, usually denoted as L2 .˝;F ;P/. These
variables admit a decomposition, used extensively in the sequel, of the form X D
aC�B, where B is a random variable with zero mean and unitary variance. The free
parameters a and � stand, respectively, for the mean and standard deviation. With
these notions at hand, we are able to provide an insightful small-risk approximation
for m .c/ for the Gaussian case.

Example 1 (Certainty Equivalent with Gaussian Returns with a CRRA Utility Index
(Backus et al. 2004)). Consider a risky payoff c log-normally distributed, so log c D

C �" with " � N .0; 1/. As a particular case of the LQ model of Sect. 9.3.3, we
deduce this well-known expression for the mean value of c:

Ec D e
C
�2

2 :

If the utility index has exponent˛ D 1�� , where � is the parameter of risk aversion,
the SEU certainty equivalent can be written as

mSEU .c/ D e
C
.1��/�2

2 :

The risk premium of c, defined as the ratio between Ec and m .c/ expressed in logs,
will be proportional, under the stated assumptions, to the Arrow-Pratt coefficient of
risk aversion and the standard deviation:

%SEU WD log
Ec

mSEU .c/
D 1

2
��2:

In the WU model, a similar operational method of calculus can be applied to
compute the certainty equivalent which yields

mWU .c/ D e
C
.1�� 0/�2

2 ; %SEU D 1

2
� 0�2; with � 0 D � C 2ˇ:

Neither of these models has a linear term in the quadratic form that defines the
log of the certainty equivalent, contrary to the DAU case. The techniques involved
to compute the CE are similar to those involved in the Black and Scholes (1973)
formula. Let ˚ be the standard Gaussian distribution and



mDAU .c/

�˛ D e˛
C

.1��/˛2�2

2 C ı
�
e˛
C

.1��/˛2�2

2 ˚

�
lnm� 
� ˛�2

�

�
� ˚

�
lnm� 


�

��

%SEU D 1

2
� 0�2; with � 0 D � C 2ˇ:

In all the three preference models described above, it is relatively easy to test the
sensitivity to small risks. Consider the CE of the outcome c D 1 C ", where
the small-risk " is a random variable with null expectation and positive standard
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deviation � . By obtaining second-order approximations and taking expectations, it
is straightforward to estimate the certainty equivalents relative to these three models
for Q = SEU,WU,DAU:

mQ .c/ ' 1 � %Q:
A remarkable feature of DAU preferences is that it places proportionally greater risk
aversion to small risks than it places to large risks, although this trend can be easily
reversed under a further generalization. These equations make it possible to make
simple estimates of the equity premium.

9.3.3 Differentiability

Machina (1982) suggests an interesting local interpretation of SEU preferences with
no need to resort to independence. Let D D A �A the space of directions of the
form v D c0 � c. To define the Frechet derivative, D must be endowed with a
norm. The weak topology, the minimal topology such that the maps f ! R

fdP are
continuous, is a most natural framework of analysis. An alternative for a norm is
given by kvk WD R

d jvj. A utility functional V .c/ is Frechet differentiable if there
exists a linear functional D .cI �/ on D , which satisfies the following equality:

ıV .c/ WD V .cC v/ � V .c/ D D .cI v/C o .kvk/ : (9.22)

The Riesz’s representation theorem assures the existence of a mapping J W A �
D ! R, such that D .c; v/ D � R J .c; v/ dP. Let u .x; �/ WD J Œ.�1; x� ; ��. By way
of substitution in (9.22), and proceeding with integration by parts, we obtain the
following relation4:

ıV .c/ D
Z

u .�; c/ d
 C o .k
k/ : (9.23)

This equation says that the marginal utility along the trajectory along v equals the
expected value of the difference in utility cC v and c.

Example 2 (Example of Local Quadratic Utility Functional (Machina 1982,
p. 295)).

V .c/ D
Z

R .�; c/ dPC 1=2
�Z

�dP

�2

induces local utility index u .x; c/ D EPR .x; c/ C 1=2


EP� .x; c/

�2
, and a local

utility.

4See Machina (1982, p. 294 and Appendix 1).
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Let � .t/ WD P .c .t//. To compare local and global behaviors, Machina utilizes
the notion of paths v .tI s/ WD c .t/ � c .s/, whose norm is differentiable in the
parameter t 2 Œ0; 1�. Let v .t/ WD V .c .t//. Taking into account (9.23) and the fact
that o0 .0/ D 0,

v0 .t/ D d

dt

Z
u .�; c .s// dv .�I t/ :

Total variation will be determined by the fundamental theorem of calculus:

�U WD v .1/� v .0/ D
Z 1

0

d

dt

Z
u .�; p .s// dp .�; t/ ds:

This expression states that global behavior equals the sum of each marginal
displacement of preferences along the path.5 While RDP theory is not generally
Frechet differentiable, the most part of the analysis of the Sect. 9.3.3 can be
exploited through the Gateaux derivative. We say that V is Gateaux differentiable in
p along the direction ı 2 D

DV .c; ı/ D lim
h!0C

V .cC ı/� V .c/

h
D
Z

u .�; c/ dı:

If DV .c; ı/ is well defined for each admissible ı, we say that u .x; c/ is the Gateaux
derivative in c.

9.4 Knightian Uncertainty

SEU, Chew-Dekel preferences, DAU, and the related research on behavioral
economics covered in Sect. 9.3 are built upon probabilistically sophisticated models,
namely, models with a unique admissible scenario P. A major critique of this
approach is that agents are given more information than an econometrician facing
misspecification issues (Sargent 2001, Hansen, 2007). In the spirit of early literature
initiated by Keynes (1921) and Knight (1921), the Ellsberg’s paradox (1961) went
one step further than Allais’ in that agents reveal concerns for model robustness;
in other words, people are concerned about the consequences of ignoring the true
model. Uncertainty is made of social interactions which, as opposed to risk, convey
alternative scenarios.

Extensions of SEU require a representation of the utility functional by means of
a nonlinear operator. In general terms, we will consider two broad classes of models
which have been conveniently axiomatized. These two classes of models include

5See Karni and Schmeidler (1991, Sects. 5 and 7).
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most of the extensions known to expected utility. The Ellsberg’s paradox can be
illustrated through a DM faced with a choice problem where one ball is to be drawn
from an urn containing three balls, one of which is unambiguously red, while the
others may be black or white. The following bets are experimentally confronted
to a population DM with the aim to reveal their preferences: here S D fR;B;Ng
denote, respectively, the states for each color. Actions cannot be possibly described
by lotteries, since there is one for each possible model P 2P .

c1 D 1R c2 D 1B
c01 D 1R\N D c1 C 1N c02 D 1B\N D c2 C 1N :

According to the sure-thing principle, the preference relation should be invariant if
there is no change in the course of action. However, the majority revealed c1 � c2
and c02 � c01. One of the most immediate and remarkable effects of this paradox
consists of the expansion of the size of the space state so as to include the epistemic
reality. Those beauty contests that arise through a myriad of transactions sensitive to
market microstructures and strategic interactions can be included in the phase state
and therefore in the fundamental components of asset value.

Reasoning by analogy to risky choice, acts of order n can be defined as elements
of Sn D ˘ n .C / n˘ n�1 .C /. These acts represent beliefs (second order) as well as
beliefs about what the other agents’ beliefs. Under the hypothesis that X is a Polish
space, it can be shown that ˘ n .X/ is itself Polish. This construction involves no
major technical difficulties once the state Sn is embedded with the vague topology,
i.e., the coarsest topology making the functionals 
 ! R

gd
 continuous for any
continuous g. For each Sn, we consider the Borel � -algebra Gn generated by the
vague topology and define n-th order acts as the Gn-measurable mappings6 c W Sn !
C 	 R. We will denote the set of n-th order acts as An DM .Sn;C / of measurable
maps from Sn to the space of consequences and the set of admissible actions by
A WD Sn�0An.

9.4.1 Smooth Preferences

Klibanoff et al. (2005), 2007 have axiomatized smooth preferences with second-
order uncertainty. Thimme and Völkert (2012) have generalized this setting to
arbitrary orders of uncertainty: let Pc�1 DW p 2 Sn; n > 0 be stand for a n-th order
belief. With the notation introduced above, we can define the n-th order certainty
equivalent mn W Sn ! R as follows:

mn .p/ D u�1n
�Z

Sn�1

undp

�
; (9.24)

6The inclusion of the set of consequences in the real line may be interpreted as measured in terms
of numéraire units.
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The certainty equivalent corresponding to

m .c/ D lim
n!1m
n

n

�� � �m
22
�
m
11 .c/

		
(9.25)

whenever such limit exists. Conditions of existence of expression (9.25) are the
standard conditions of measurability if we impose a finite degree of uncertainty or
exponential decay.

Second-order uncertainty is commonly referred to as ambiguity. It may be
interpreted as a fundamental component of the epistemic reality. In this case, KMM
show that decision-maker is ambiguity averse (lover) when the function u2 ı u�11
concave (convex); if such a function is linear, then lotteries can be compounded and
preferences are ambiguity neutral (SEU). Note that under homothetic preferences,
u2 ı u�11 .x/ D x˛2=˛1 . This implies that ambiguity aversion implies that the Arrow-
Pratt coefficient of risk aversion corresponding to utility index u2 .1 � ˛2/ is greater
than that of u1.

Example 3. Assume consequences lie in the unitary interval C D Œ0; 1�, and
consider binary actions c .S/ D f"; 1g. First-order beliefs can be represented in
this simple case by the probability of success p D P .c D 1/. Under homothetic
preferences,

un .c/ D c1��n � 1
1 � �n

:

It is convenient to normalize u01 ."/ D 0 and u0n .1/ D 1, by imposing the translation
u0n D un C 1. In this case, it is clear that

" D .1 � ˛/ 1�˛˛ ! e�1 as 1 � ˛ WD �1 ! 1:

This fact implies mp
1 .c; p/ D p

1
˛ .

Assume the agent is able to compound all uncertainty of order three or higher.
Second-order beliefs are characterized by a density ' .p/. If p is uniformly
distributed and ˇ WD 1 � ˛2, then

V .c/ D m .c/ˇ D
Z 1

0

p1=˛dp D ˛

1C ˛ :

9.4.2 Variational Preferences

Maccheroni et al. (2006); (MMR henceforth) have provided an axiomatic basis of
a class of preferences that comprise the multiple prior preferences (MPP) of Gilboa
and Schmeidler (1992) and robust control theory (RCT) as particular cases. This
class of preferences admits this representation, unique after affine normalization of



9 Fundamental Principles of Modelling in Macroeconomics 181

the utility indices u and h,

V .c/ D min
P2˘

Z
u .c/ dPC �h .P/ ; (9.26)

where h W ˘ .S/ ! R is a convex functional which in addition is lower
semicontinuous and grounded, i.e., inf h D 0. It is given by the following integral
representation:

h .P/ D sup
c2A

�
u .m .c// �

Z
u .c/ dP

�
: (9.27)

MPP corresponds to the special case where P 	 ˘ is a convex subset of priors, and

h .P/ D ıP .P/ D
�
0 if P 2P

1 otherwise

The size of P measures the concerns for robust misspecification. This special
characterization conveys a maxmin interpretation of a malevolent nature that plays a
zero-sum game against the DM in a dynamically consistent way (see Appendices B
and C):

V .c/ D min
P2P

Z
u .c/ dP (9.28)

A special and important case corresponds to Schmeidler (1989) CEU preferences,
when

P D Core .
/ D fP 2 ˘ W P � 
g

for a given capacity7 
. The utility functional is in this case expressed by means of
a Choquet integral defined as

V .c/ D min
P2Core.
/

Z
u .c/ dP D

Z
u .c/ d
: (9.29)

Example 4 (RDP Preferences Quiggin (1982)). Let z WD u .c/ %2 CEU, � a
permutation and 	� D

˚
z W z�.1/ � � � � � z�.n/

�
is convex cone. Each � .i/ induces

an equivalence class through the set of acts u�1 .	s/. Let

�s D 

 

s[

iD1
� .i/

!
� 


 
s�1[

iD1
� .i/

!
:

7A capacity is a positive, increasing, and nonadditive function 
 W F ! Œ0; 1�. The condition of
nonadditivity makes the difference between a probability measure and a capacity.
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Note that
P
�s D 1. In this case, (9.21) can be expressed as

V .c/ D V z D
Z

zd
 D
nX

sD1
u
�
c�.s/

	
� s 8z 2 	�:

Accordingly, a belief system can be characterized by the convex hull of the system
of measures (see Appendix C): @V .0/ D co fPs W s 2 ˙g. Concavity of V is an
equivalent condition of supermodularity8 of 
. In such a case, Core .
/ D Core .V /,
finding an interesting link with the Shapley characterization in the theory of
cooperative games.

9.4.3 Robust Control

Robust control theory corresponds to the particular case of variational prefer-
ences (9.26) where the functional h equals the index of relative entropy

R .PkQ/ WD EQ lnQ=P: (9.30)

R measures the distance between two probability measures; here Q is interpreted
as the DM’s reference model. When � D 1, the model reduces to SEU. This
model appeared in many applications well before the MMR axiomatization, within
the general domain of engineering and operational research. The DM acts as if he
were involved in a zero-sum game, played against a malevolent nature whose size
is measured according to the degree of ambiguity aversion.

Consider the LQ model of Sect. 9.2 and allow distortions of a given model
of reference P given by a law of motion (9.5). A set of feasible scenarios which
captures the DM’s concerns of misspecification is assumed to be described by a
parameter � 2 �, valued in R

n.

X D Xc D aC HcC � .BC �/ : (9.31)

The optimal plan is obtained by altering the mean proportionally to � as compared
to (9.6):

c� D �Id C H0˚H
	�1

H0˚ .aC ��/ : (9.32)

Let u D u .c;Xc/ and write

� 2u D a0˚aC b
�
c;B�

	C 2a0˚�B� C B�
0
� 0˚�B� ; (9.33)

8A function 
 W 2S ! R is said to be supermodular if for any subsets A;B � S, we have 
 .A/C

 .B/ � 
 .A[ B/C 
 .A\ B/.
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where the noise relative to the altered model is transformed into B� WD B C �

and b
�
c;B�

	
was defined in Eq. (9.8) that corresponds to the following objective

function:

min
�2Rn

Eu .c/C 1=2�� 0�:

The agent is faced with an evil nature (much of it belongs to a societary realm
indeed) which is to choose the worst possible scenario � . By definition, EQB� D 0,
and the objective function corresponds with the entropy ambiguity index (9.30). Let
y WD aC �B rearrange (9.10):

�2u D c0
�
Id C H0˚H

	
cC .yC ��/0 ˚ .yC ��/

by taking derivatives with respect � and equaling to zero, one obtains

� D � �� 0˚�	�1 � 0˚y:

Next consider the utility index ' with a constant coefficient of absolute risk
aversion ˛. The certainty equivalent associated with ', as defined in (9.3), can be
expressed in the following way:

m� .c/ WD �˛�1 lnE�e�˛u.c/ (9.34)

This certainty equivalent can be expressed as ˇ .c/ as defined in Eqs. (9.12)–(9.13).
Substituting into (9.34) one finds that when ˛ D ��1, both approaches coincide. In
other words, the parameter � expresses a fundamental attribute of preferences as it
controls for the magnitude of the DM’s opponent. The connection between concerns
for robustness and risk sensitivity may be observed by approximating the certainty
equivalent of an exponential utility under the LQ model.

9.5 Time

The insights developed in the previous sections can be extended within a dynamic
framework under the general label of recursive preferences. The universal set˝ has
been identified with a phase state S which in general is a Polish space. However,
in numerous applications, this set is assumed to be finite, apparently without much
loss of generality. The general method of analysis consists of applying the logic
of construction developed in static settings to a dynamic model endowed with a
generalized space state, ST , made up of sample paths. The Skorohod topology9 is a

9See, for instance, Jacod and Shiryaev (2003).
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cornerstone to derive the asymptotic properties of general stochastic processes. In
continuous time, it is the space of all right continuous with left limit paths. These
functions are commonly known as the acronym càdlàg for their initials in French.

A simple and insightful example is given by the tree

T1 D f˙1gf0g DW B D 1fBD1g C 1fBD�1g
as a representation of the probability space .S;F ;P/, where states take the two
possible values B 2 S D f˙1g and F D 2S. An obvious reference model P is given
by p WD P .f˙1g/ D 1=2 so that EPB D 0 and the state B has unitary variance.
B can thus be interpreted in terms of pure noise suffered in a given lapse of time,
say 1 year. The exponent in the first defining equality of T1 illustrates that we can
construct a dynamic model T endowed with a general time set T (containing 0
as its initial point) by using T1 as a generator. Rescale our original binary model
by a factor h D 1=n, where n is, without loss of generality, an integer, in such a
way that the null expectation and unitary standard deviation are preserved under n
autoconvolutions when increments are independent. Accordingly, define the family
of approximations

Bh;1 D h1=2B � � � � � h1=2B D Bh � � � � � Bh:

The central limit theorem states that asymptotically, as h > 0 tends to zero,
Bh converges in probability to a standard normal distribution. This logic can be
extended to more arbitrary time sets f0; 1; � � �Tg, giving rise to a Brownian motion
(BM) Bt D limh#0 Bh;t.

The election of the binomial tree T1 as the generator of the Brownian motion
is immaterial because this process acts as a general class of basin attractors
of more general distributions with finite variance that is within the Euclidean
space L2 .˝;F ;P/. The BM satisfies the conditions of stationarity and permits a
parsimonious integral representation of dynamic process that can be thought of as
generated by static models defined by states of the form X D aC�B, as in Eq. (9.5).
The constants a and � equal, respectively, the expected value and the variance of X.
Alternatively, we may be interested in multiplicative decompositions of the form
Y D eX . By virtue of the central limit theorem, the Gaussian example becomes
fundamental cornerstone within the class of stationary processes with finite second
moments L2 .˝;F ;P/. The boundaries of macroeconomic research are constructed
under this paradigm.

9.5.1 The Koopmans’ Aggregator

Koopmans (1960) formalized the concept of dynamically consistent preferences by
means of a representation which can be viewed as the dynamical counterpart of the
static aggregator defined in Sect. 9.3.1, which is derived trivially as the outcome of
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a stationary path with a constant continuation value. In general, for a discrete-time
model with 0 � t � T � 1, we have

Vt WD V
�
ct
	 WD f

�
u .ct/ ;V

�
ctC1

		
; (9.35)

where f .�/ stands for the dynamic aggregator, and preferences are defined over
consumption paths ct D fcngTnDt. Expression (9.35) generalizes the linear version
Vt D u .ct/ C ˇVtC1, widely applied in macroeconomic applications, associated
with the time-additive utility

Vt D
TX

nDt

ˇtu .cn/ ; 0 � T � 1: (9.36)

The aggregator defined in (9.35) is imposed under a condition of stationary
preferences that allow a preference representation based on a contemporaneous
utility index. This decomposition is clearly nonunique, since preferences remain
unchanged under any strictly increasing transformation of the continuation value:
let g be any such transformation, so that we can rewrite the continuation value as
QV D g .V/ and (9.36) as

QVt D Qf
�
ut; QVtC1

	 D g


f
�
ut; g

�1 � QVtC1
		�
: (9.37)

When c is scalar and preferences are monotonic, we can measure utility in terms of
the consumption index through the transformation QV D u�1 .V/.

Patterns of intertemporal preference are captured in the aggregator: it is straight-
forward to see that the marginal rate of substitution between periods t and tC 1 (the
stochastic discount factor, abbreviated SDF) is given by

MRSt
tC1 D

f2;tf1;tC1
f1;t

: (9.38)

The derivative with respect of the second argument of the continuation value
at time t; f2;t , is the discount factor, which, as deduced form (9.37), is invariant
under increasing transformations. For instance, in the standard model (9.36), the
SDF (9.38) equals, in the linear case,

Mt
h D

ˇhu0 .ctCh/

u0 .ct/
: (9.39)

Two extensions of this kind of intertemporal preferences can be found in the
literature. Uzawa (1968) offered a continuous version of the linear case f .u; v/ D
u � � .u/ v with risk, so that the corresponding utility functional adopts the von
Neumann-Morgenstern representation

V
�
ct
	 D Et

�Z 1

t
e�

R s
t �.c� /d�u .cs/ dsjFt

�
; (9.40)
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where ct W RC ! C belongs to the set of admissible consumption streams as of time
t and Ft stands for the information set dated at t. The approximation is made clear
if we put ˇh D e��h. The discrete model with a time window h � 0 becomes

VtCh � Vt D hut C
�
e��h � 1	Vt;

where ut stands for current utility. Taking limits as h approaches zero gives us the
dynamic equation PV D f .u;V/ WD u � �V .

The second extension takes into account the Koopmans’ axiomatization which
leads to the aggregator representation: let -t denote preferences over ct. These are
the three conditions needed to derive (9.35):

Axiom (History Independence). -t do not depend on cs; s < t.

Axiom (Future Independence). -t do not depend on cs; s > t

Axiom (Stationarity). For any t;-tWD-�.

Epstein and Zin (1989) relax the axiom of future independence, giving rise to
an aggregator lacking a current utility index of the form V 0 D f .c;U/, which is
necessarily equivalent to (9.35) formulation when ct is scalar.

9.5.2 Random Settings

Expression (9.40) involves a conditional expectation. It is natural to assume that
news arrive as time goes by, so we need to be more accurate on this issue. Dynamic
random settings are usually formulated by endowing .˝;F / with a filtration F D
.Ft W t 2 T/ to model the process of information updating as new public events as
well as idiosyncratic signals are realized. In continuous time, F is typically made
up of a right continuous sequence10 of increasing sigma algebras Ft. Once a model
P is introduced in the analysis, an additional technical hypothesis states that the
set of null sets of F is contained in F0 and thus in every Ft. A decision tree is
represented by a tree T D ˝ D ST , which is generally characterized by a set of
nodes related themselves by ordered pairs (edges) uniquely defined. Without loss of
generality, we fix an initial condition at X0 D x 2 S. We consider that the tree ends
at a stopping time11 � W ˝ ! T which can possibly be infinite.

If S and T are finite sets, a probability model boils down to a multinomial tree.
In this case, given preferences, resources, and the market conditions, a model is a
probability measure P defined over the whole set of terminal nodes or trajectories
� 2 ST . Extensions to continuous versions of this model of either S or T can be

10In discrete settings, the right continuity assumption holds trivially.
11For it to be a stopping time, it needs to be progressively measurable, that is, Ft-measurable at
each t 2 T.
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applied with additional regularity conditions. The dynamic structure of the model
imposes a natural filtration of information made up of a sequence of increasingly
finer �-algebras F D .Ft/. This object suffices to complete the description of
random systems defined in the previous subsection. Formally, such description is
established by means of a filtered space .˝;F ;F;P/. Pt W Ft ! Œ0; 1� is obtained
by using the Bayesian updating rule: associate to each path a � its history of length
t, � t 2 Ft. If P .� t/ > 0, we can define a stochastic process of conditional
probabilities

Pt .�/ D P .� jFt/ D P .�/

P .� t/
: (9.41)

The conditional expectation of a stochastic process Xt is a stochastic process defined
as the projection of Xt on the subspace of random variables generated by .˝;Ft;P/.
In symbols, for any t � 0 and h > 0, we define

EtXtCh D EPtXtCh:

The projection property is known as the law of iterated expectations and implies
that alternatively, if we impose the terminal condition P D P1, we can recover
a model from a prespecified set of conditional probabilities: for any finite interval
Œ0; t�, establish a finite partition of lengths hs, possibly unitary and possibly random
and progressively measurable stopping times: let the end points of this partition be
denoted by ts > 0. Put t D tk,

Pt�hk .�/ D
P .�/

P .� t�hk /
;

if Pt
h stands for the h-period ahead forecast that allows us to write the forward

equation as follows:

Pt WD P .�/

P .� ts/
D P .�/

P .� t�hk/
� � � P .�

tsC1 /

P .� ts/
DW Pt�hk

hk
� � �Pts

hsC1
� � �P0h1 D

kY

sD1
Pts�1
hs
:

(9.42)

This equality corresponds with a Markov property (semigroup structure) when the
family 
 .�/ WD Pt

h does not depend on t. Otherwise the process would follow
trivially the Markov property by including the time in the state space. By doing
so, we can rewrite the last expression without the reference point, included in the
space state if necessary, so

Pt D
kY

sD1
Phs (9.43)
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This forward equation has as a counterpart established in terms of the state space
and makes use of the standard decomposition between a predictable and a pure
stochastic part. The Kolmogorov extension theorem (e.g., Oksendal 2003) grants the
existence of a continuous stochastic process that embeds the family of probability
distributions described in (9.43), as long as it is invariant under permutations. The
predictable component at equals the conditional expectation at t of the expected
change of the state, namely,

�Xt D at .Xt/C � t .Xt/ "t; X0 D x (9.44)

where Xt belongs to S and "t is a noise term. The function at is called the drift
parameter and represents the local mean, whereas � t is a parameter of scale. We
assume that Ft D � ."t/ where "t is the history of shocks as of date t. The following
axioms define stationarity of the model allowing parsimonious representations
that often work as operative restrictions necessary to match theory and data in a
meaningful way.

Axiom (S1 Independence). E ."tjFt�1/ D 0.
Axiom (S2 Stationarity). "t’s are identically distributed.

Equation (9.44) admits backward integral solution of the form

Xt D xC
tX

jD0
aj
�
Xj
	C � j

�
Xj
	
"j: (9.45)

Expressions (9.43)–(9.45) are equivalent representations. The following example is
a particular case that has become standard far beyond economic applications.

Example 5 (ARIMA .p; d; q/). This family of linear processes can be represented as

˚ .L/�dYt D 
C � .L/ � t"t; (9.46a)

˚ .L/ D
pX

iD0
� iL

i; � .L/ D
qX

jD1
�jL

j (9.46b)

with t D 0; 1; 2; : : : where .p; d; q/ are positive integers and "t is a standard noise
term iid distributed which is factorized by a scale factor � t. Under conditions of
stationarity and invertibility, (resp.) the polynomials ˚ and � have roots outside
the (closed) unitary circle. To avoid trivial computations, we can assume that both
characteristic polynomials have no common roots. Invertibility means that we can
express (9.46) as

Xt D �dYt D 


˚ .1/
C
1X

iD0
� i� t�i"t�i; (9.47)
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which is a special case of (9.46) if P0 D 1fxg. The solution can be restated: let
�t WD �t,

Xt D �txC .1 � �t/ 


˚ .1/
C

tX

iD1
� i� t�i"t�i: (9.48)

This equation states the law of motion of the process starting at x, and its ex ante
convergence toward the stationary state given by limt!1 EXt D 
=˚ .1/. The term
Mt DPt

iD0 � i"t�i satisfies trivially the martingale property

E .MtjFt�1/ D Mt�1:

The martingale term in (9.48) is a purely stochastic additive term that encodes the
permanent changes to the system.

Alternatively, we can express (9.48) by successive increments12: put a D ˚ .1/

and write

Xt D xC
t�1X

iD0
�Xi D xC

t�1X

iD0
.
 � aXi C � i"i/ D xC t
 � a

t�1X

iD0
Xi C

t�1X

iD0
� i"i:

(9.49)
This solution can also be written in continuous time, as noted earlier. The deter-
ministic version captures, as one might expect, the drift-driven component of the
general model:

PX D �bX C 
; (9.50a)

X0 D x: (9.50b)

This system has a solution which coincides with the terms of (9.49) excluding the
martingale. Abusing slightly of notation, define � .t/ D e�bt, so that the integral
solution to the dynamic system (9.50) can be expressed as

X .t/D � .t/ xC .1� � .t// 

b
D xC .1� � .t//

�



b
� x

�
D xC

Z t

0

.�bX .s/C 
/ ds:

The first equality is the general solution of the dynamic system and the second
equality follows from rearrangement. The third equality states the fundamental
theorem of calculus. The last integral can be solved so that

X .t/ D xC t
 � b
Z t

0

X .s/ ds: (9.51)

12Note the relation �Xt D Xt � Xt�1 D �dYt ��dYt�1 D �dC1Yt.
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The equivalence between (9.49) and (9.51) is made apparent through the relation 1�
a D e�b. Introduce a variable time window 0 < h � 1, and define the corresponding
increments by ıhXt WD XtCh � Xt, so that the scaled system (9.51) becomes

ıhXt D
�
e�bh � 1	Xt C 
h: (9.52)

Now dividing this expression by h and taking limits as h! 0, we recover (9.50). In
the next section, we will see that those processes that admit decompositions between
a forecastable element and a martingale correspond roughly speaking to the broadest
family of integrable processes known as semimartingales. As it turns out, the noise
term "t;h D BtCh�Bt D ıhBt that should be added to the system (9.52) has variance h
so that the sum of h�1 copies of independent random variables has unitary variance13

as required.
AR models of higher order can be resolved keeping in mind these considerations.

For instance, let Xt follow an AR(2) process so that we can write the characteristic
polynomial ˚ .L/ in terms of its roots �1; �2 2 C, which obeys the stationarity
condition j�ij > 0 [see Samorodintsky and Taqqu (1994)]

˚ .L/ D
2X

iD0
�iL

i D .�1�2/�1 .L � �1/ .L � �2/

and

˚ .L/�1 D �1�2

�1 � �2

 
��11

1 � ��11 L
� ��12
1 � ��12 L

!
DW

1X

nD0
�nL

n:

This expression allows us to recover the coefficients of the Taylor expansion of
˚ .L/�1:

�n D
�1�2

�1 � �2


��n�11 � ��n�12

�
:

When ˚ has complex conjugate roots of the form �e˙i
, it can be seen that

�n D ��n
sin .nC 1/


sin

:

13For instance, suppose that time units (t) are measured in years, so 1-day window corresponds to
h D 1=365.
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9.5.3 Recursive Utility

In order to illustrate how ambiguity can be embedded in a dynamic framework,
consider that this economy is populated by a representative agent (Guidolin and
Rinaldi 2013, Sect. 2.4) whose discount rate is zero and with a risk-neutral utility
index, so that

V .c/ D min
P2P EPc:

If this basic structure of the environment is a common knowledge, the natural setup
at t D 2, P D P2 assigns a uniform probability of 1=4 to each of the four terminal
nodes. A model is thus fully described by the conditional probability in period 1,
according with the Bayes’ rule (9.39). The whole structure of the model can be
comprised in a parameter of autocorrelation �, with j�j � 1, if we assume

P1 .�/ D P1 .X1;X2/ D 1

2
.1C �/ 1fX1DX2g C

1

2
.1� �/ 1fX1¤X2g:

Consider an asset 1fX2D1g which pays one unit of consumption in the state
X2 D 1. Note that this asset can be built by a trivial combination of two Arrow-
Debreu contingent assets. It can be seen (Backus et al. 2004) that recursive
and ex ante valuation differs, in contrast with the standard consumption CAPM
with dynamically consistent preferences (no trade theorems) under dynamically
consistent preferences provided that there exists a full range of contingent claim
commodities. Heuristically, intertemporal preferences are ordering relations which
do not depend on t (we provide a more formal definition in the next subsection).
Assume that � t differs from � t0only from a given random time � . Dynamically
consistent preferences satisfy � %� � 0 , � %t � for any t � � . Dynamic
consistency is closely related to consequentialism

Axiom (Consequentialism). � %t �
0 ) � %s �

0 t � s 8�; � 0 2 Ft.

Axioms of independence, constrained to˘ .S/ and consequentialism, are equivalent
conditions of dynamic consistency. Therefore, under ambiguity, dynamic consis-
tency appears to be a quite restrictive assumption. In addition, independence and
continuity imply consequentialism and dynamic consistency [Karni and Schmeidler
(1991)], a result that links both axioms within a general Bayesian framework.

A remarkable feature of random setups is that the continuation value associated to
an arbitrary act behaves as a stochastic process. Since the widest class of integrable
process is semimartingales, it is natural to construct models within this family of
decomposable processes. Further stationarity constraint restrictions will allow to
consider tractable representations capable of providing with empirical conclusions.

Based on these considerations, Epstein and Zin (1989) deal with recursive
representations of preferences expressed in terms of the certainty equivalent of the
one-period ahead continuation value. Let Vt D Vc

t and write the certainty equivalent
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of Sect. 9.2.3 as m .Vt/. Let Pt D PjFt and mt WD mPt

Vt D f .ct;mt .VtC1// : (9.53)

This formulation generalizes SEU preferences while keeping the hypothesis of
dynamic consistency. The aggregator f combines current utility stemming from
consumption and the CE corresponding to the continuation value. A particular
case is provided by the CES aggregator with a constant elasticity of substitution
� D .1 � ˛/�1:

V .c;m/ D .c˛ C ˇm˛/1=˛ ; (9.54)

where 0 � ˇ < 1
�
00 � 1	 is the discount factor. Expected utility corresponds

to the certainty equivalent mt D u�1Etu and a linear aggregator (9.36): Vt D ut C
ˇEtVtC1. This equality can be solved forward giving rise to the well-known time-
additive specification (see also representation 9.40):

Vt D Et

1X

nDt

ˇnu .cn/ ; (9.55)

sometimes it is convenient to express value in terms of consumption units, as
mentioned in Sect. 9.3. In the isoelastic case (9.54), the certainty equivalent obeys
the equality

mt .c/ D .Etc
˛/
1=˛

Vt WD u�1 .Ut/ D .ut C ˇEtUtC1/1=˛ D .ut C ˇ .mt .VtC1//˛/
1
˛ D

 
c˛t C Et

1X

nDtC1
ˇnc˛n

!1=˛
D
 
Et

1X

nDt

ˇnc˛n

!1=˛
:

An alternative fundamental model was provided by Kreps and Porteus (1978) and
extended by Epstein and Zin in dynamic contexts (1989). The certainty equivalent
mt D u�1Etu remains unchanged, and the aggregator, measured in consumption
units, takes the form

V .c;m/ D �c˛ C ˇmı	1=˛ ;

which has been introduced in Sect. 9.3.2 [see also Eq. (9.21)].
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9.6 Extensions

Before concluding, we explore three further generalizations: an introduction to
continuous-time frameworks, the notion of discounting, and finally, stationarity with
an empirical application to financial markets.

9.6.1 The State in Continuous Time

Analogous decompositions to those considered on previous sections can be consid-
ered in continuous time as well. The BM describes the pure stochastic component
of the process. Discrete models can be encoded in continuous-time settings, and
conversely, continuous-time models can be constructed from simpler settings via the
concept of generator that we have introduced in Sect. 9.5. Stochastic processes of
interest are Ft-measurable random vectors evolving over time. The condition of Ft-
measurability defines the optional or progressively measurable stochastic processes.
The functions at; and� t are measurable and satisfy two technical conditions that
grant existence of a continuous representation (h # 0) of Eq. (9.44): contraction and
lack of explosion times, which under the Markov property can be stated as a single
one, in terms of the existence of a positive constant D such that

ja .x/� a .y/j C j� .x/ � � .y/j � D jx � yj : (9.56)

By identifying B with B1, static models can be extended to a dynamic framework
whose phase state evolves according to

dXt D atdtC � tdBt: (9.57)

X0 D x 2 S; given:

This equation can be stated for vector processes of multiple dimensions. In the
general case, Xt D .X1;t; : : : ;Xd;t/ and Bt D .B1;t; : : : ;Bs;t/ are characterized by
two predictable processes: at D at .X/, valued in R

d, is known as drift, and it may
be interpreted as the local direction of change or the transient component in the flow
of the system. The volatility is captured by � t D � t .Xt/.

The backward solution of this equation admits the Ito representation

Xt D xC
Z t

0

asdsC
Z t

0

� sdBs: (9.58)

This formula highlights a generic observer’s ability to split the process into a
forecastable and a pure stochastic component which are the second and last elements
of the right hand side of (9.58). Another general interpretation is that of a system
subject to a random flow, such as a river.
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9.6.2 Continuous-Time and Endogenous Discounting

The generalization of the ideas presented so far to a continuous model requires an
adequate accommodation of the control space. The set of admissible acts A is a
closed subset of a Banach separable (Lattice) space. Let preferences be defined over
the set of admissible consumption paths t 7! ct whose continuation value Vt D Vc

t
is given, at any date t 2 Œ0;T�,

Vt D Et

Z T

t
e�

R s
t �� d�u .cs; �s/ ds; (9.59)

for a feasible discount factor �. The most remarkable fact of these preferences
is the separability of the utility index with respect to the cumulative factor. This
property defines Vt as recursive utility, which is a special case of variational utility,
not necessarily characterized by non-separable indices. Geoffard (1996) shows that
the linear preference aggregator defined is the Legendre transform of the function u,
that is, Df .c; �/ D Du�1 .c; �/ and

f .c;m/ D sup
�
fu .c; �/C �mg :

The first-order condition of this equation u� D m defines implicitly a solution � D
� .c;m/ and admits a recursive formulation of the continuation value in terms of the
drift:

lim
h#0

VtCh � Vt

h
D �f .ct;Vt/ : (9.60)

The extension to uncertain decisions is immediate. Consider the standard discrete-
time model (h D 1); for each time length h D 1=n > 0, we can define the family of
CE mh;t. Under the rescaled model, the phase state is assumed to evolve according
to an extended version of (9.45):

Xt D xC
ntX

jD0
aj
�
Xj
	C � j

�
Xj
	
"j: (9.61)

Assuming (local) differentiability one can compute, from (9.53) and assuming
mh;t .Vt/ D Vt,

d

dh
mh;t .VtCh/

ˇ̌
ˇ̌
hD0
D lim

"#0
mh;t .VtCh/ � Vt

h
D �f .ct;Vt/ : (9.62)

The aggregator expresses the forecastable component of the continuation value.
The unpredictable component imposes further conditions in the noise structure in
order to apply standard decompositions in a Hilbert (Euclidean) space of the form
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L2 .˝;F ;P/. The common practice among scholars is to restrict the action space
to the family of square integrable processes under the norm k�k defined in the act
space A , that is,

E
Z T

0

kctk2 <1:

The following assumption is very much connected with the differential analysis
made in Sect. 2.5.

As in Epstein and Duffie (1992), the Gateaux derivative of the CE at V in the
direction z with compact support is assumed to exist:

Dm .V; z/ D lim
h#0

m .V C hz/ �m .V/

h
:

The CE is said to be smooth at certainty if for any x 2 R, there exists a twice
continuously differentiable real-valued function K .x; �/ such that

DmP .1x; z/ D
Z

K .x; y/ dPz .y/ D EPK .x; z/ :

where Pz .A/ D P .z–A/. K .x; �/ is known as the local gradient of the CE m. By
definition, DmP

�
1x; 1y

	 D y, which implies K .x; y/ D y and14 Ky .x; �/ D 1. For the
expected utility representation, assume u to be twice differentiable, m D u�1Eu and
by direct calculations (Epstein and Duffie, 1992), find

K .x; y/ D u .x/

u0 .y/
:

Assume the noise is generated by a BM, so that Ft D � .Bt/. Suppose the existence
of an economic agent who faces an optimization problem along the interval Œ0;T�
with zero terminal condition. It is natural to suppose that the utility process follows
a diffusion of the form

dVt D �
tdtC � tdBt (9.63)

with a terminal condition15 VT D 0. From (9.62), the intertemporal aggregator
measures the local expected variation of the CE at Vt in its own direction of change,
namely,

14The subindex in K stands for partial derivatives.
15Imposing alternative terminal conditions such as VT D UT .XT / for some given function UT

does not change the argument. Neither does it so to assume that T is a stopping time T W ˝ !
Œ0;1�. The extension to an infinite control problem needs further regularity conditions discussed
in Appendix C of Duffie, Epstein (1992), written by Skiadis.
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�f ct D �f
�
ct;V

c
t

	 D Dm

�
Vc
t ;

d

dh

�
Vc
tChjFt

	ˇ̌ˇ̌
hD0

�
:

Using continuity of m, we can interchange the defining limits of the two derivatives
that appear in the right hand side of the last equation. Let

˙t WD � t�
0
t D

d

dt
ŒV�t

by applying and equaling coefficients in the Ito Lemma, one finds


c
t D 
t

�
Vc
t

	 D f ct C
1

2
A
�
Vc
t

	
˙ c

t (9.64)

A .x/ WD Ky .x; x/ stands for the variance multiplier of the certainty equivalent.
Backward integration of (9.63) gives, for any t 2 Œ0;T�,

E .VT jFt/ D Vt C E

�Z T

t

sdsjFt

�
:

The terminal condition allows a forward representation of the continuation value

Vt D �E
�Z T

t

sdsjFt

�
:

9.6.3 Stationarity

We have discussed so far the forecastable component of the continuation value,
and other economic processes, and introduced some keys to analyze its properties.
This exercise is relevant insofar as it captures one of the fundamental elements of
value. Nothing instead has been said about the characterization of the pure stochastic
component of processes. Before concluding, let us observe that the noise structure
implied by the BM, which is by nature continuous, can be completed by adding
an exogenous discontinuous structure described by a Poisson distribution.16 Both
classes of distributions are stable by convolution (sum of random variables), and
both have finite variance.

There is another class of stable distribututions, which display fat tails and
consequently do not have a convergent variance when the number of events
spanning the whole sample space diverges to infinite. In order to avoid technical
complications, we can deal with integrable process, so they have a finite mean
and the concept of martingale is preserved. This concept is very useful because

16See, for instance, Hansen (2012).
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of its connection with that of permanent shock, which is essential to discuss asset
pricing. This means that we can extend the space of processes to L˛ .˝;F ;P/ for
1 � ˛ � 2.

Self-similar processes are invariant in distribution under a homothetic scaling
of space and time (Samorodintsky and Taqqu 1994, Chap. 7). The interest of this
kind of processes relies on their practical ability to deal with complex relations. In
particular, it is possible to extend the central limit theorems and thereby the concept
of stationarity in models displaying long-range correlations as observed in financial
markets as well as in a vast array of complex systems.

A process Xt is said to be self-similar with index H > 0 if for any a > 0, the
finite-dimensional distributions of the process Xat and that of aH coincide. Examples
of self-similar processes are the Brownian motion (H D 1=2) and the ˛-Lévy-stable
motion (H D 1=˛ > 1=2). Both process can be represented by a random measure X
defined over the Borel space .T;BT / that satisfies

Xt D
Z t

0

X .ds/ D X Œ0; t� (9.65)

at any date t. More general stable and self-similar processes can be constructed by
means of representations of the form

Xt D
Z 1

�1
g˛;H;t .s/X .ds/ :

As an example, Fig. 9.1 depicts some members of the family of functions gt .s/ D
ln jt � xjCln jxj, for different values of t, which gives rise to the log-fractional stable
motion.

Fig. 9.1 Stationarity and long memory. Source: own
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Parameters ˛ and H stand, respectively, for the coefficients of stability and
similarity. A Fractional Brownian Motion (FBM), is a Gaussian process BH;t with
zero mean. Fractional white noise is defined to be BH;tCk�BH;t (if H D 1=2 the noise
reduces to iid white noise). Fractional white noise exhibits long-range memory;
that is, as the lags k tend to infinity, the asymptotic behavior of the autocorrelation
structure of the process is given by

E .�BH;tCh�BH;tjFt/ D 2H .2H � 1/ k2.H�1/

whose variance and covariance are given by

EB2H;t D t2H

EBH;tBH;s D 1=2


t2H C t2H � jt � sj2H

�

Processes with lower H have a greater volatility than those processes with a
higher H.

The fractional differenced ARIMA processes with parameters .p; d; q/ or equiv-
alently, FARIMA processes take the general form

� .L/ .1 � L/d Xt D � .L/ "t; jdj < 1=2

Gil Martin and Rege (2010) fit

Yt D .1 � L/d Xt D � .L/�1 � .L/ "t:

A power series expansion of the fractional operator gives

.1 � L/d D 1 � dLC d .d � 1/
2Š

L2 C d .d � 1/ .d � 1/
3Š

C � � �

The autocorrelation function of a FARIMA .0; d; 0/ process tends to

	 .1 � d/

	 .d/
jtj2d�1

for large n. The stationarity condition jdj < 1=2 provides a relationship between
the differencing parameter d and the long-memory parameter � which allows one to
infer the lack of long-range memory in when d D 0.

Gil Martin and Rege (2010) have used two approaches to investigate the presence
of long-range dependence in the daily returns of the Portuguese index PSI20
(1992–2010). Our analysis found an estimate for the Husrst exponent greater than
one half, suggesting the presence of long-range dependence in the stock prices.
This suggests that Portuguese financial markets do not allocate investment funds
efficiently and that they generate endogenously critical phenomena (persistence).
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The quadratic trend produces higher values of the Hurst exponent, although they
may not be an appropriate fit, as concluded after an alternative semi-parametric
approach corroborates our preliminary results.

The bulk of applied research about long-term dependence has not yet shed
sufficient light on their underlying causes. In addition, to the eye, short-memory
processes appear to be hardly distinguishable from a white noise. A fractal or a
multi-fractal series suggests the action of interacting systems generating positive
feedbacks. This problem is recurrent in macroeconomics, especially since the 1980s,
where systemic interactions between aggregate supply and demand called for new
tools of analysis. During ‘normal’ periods in which those systems operate rather
independently, the ‘low-scale’ information that becomes operative is that giving
rise to short memory. Suddenly, when signs of distress occur, high-range waves
of information will eventually dominate the markets, and time series displays long-
term dependence. Financial markets then collide with the real side of the economy,
as new propagation mechanisms trigger, producing unknown events prior to the
process of revulsion.

Figure 9.2 shows the movement of the Hurst exponent 3500 days with a 1-day
moving window under both linear and quadratic trends to estimate the exponent.
Both settings exhibit similar behavior. The Hurst exponent based on the quadratic
trend lies above 0.5 implying an unequivocal presence of long-memory asset returns
which does not seem compatible with any specification of noise based solely on
Brownian motions.

9.7 Conclusion

The requirement of sound microeconomic principles imposes a revision of concepts
that affects substantially the notion of economic action itself, once ambiguity is
accounted for. The development and evolution of macroeconomic theory ultimately
continue, and it will certainly continue to be entirely determined by events that take
place within the flow of circular income. Overall, this flow glues together those
processes which intervene actively in the procurement of human and social needs.
Economic interactions are generated endogenously and, under given conditions,
they can drive the course of actions. Under plausible circumstances, the epistemic
realm is suggested to enlarge the space state over which fundamentals are defined.

One of the most relevant developments of modern history has been the transna-
tional economic development fueled by the division of labor and the subsequent
increase in the average income. This process has not been engined neither by
primary sources of energy or matter nor by the intensive use of human labor, or
at least data shows us that this need not be the case. On the other hand, the evidence
shows the presence of high-order ambiguity which highlights a price system unable
to internalize production costs. In addition, the intertemporal distribution of income
is the link between production and consumption. Evidence shows that consumption
distribution, as measured in units of primary energy (see Sect. 9.1), is highly
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unequally distributed, at a geographical as well as an individual level, and there is
also evidence of a higher tan unitary income elasticity of appropriation of primary
energy. This problem, known as the Jevons’ paradox, seems at odds with the
observation that the intensity of physical factors does not explain growth unless
we are willing to introduce additional variables in standard SDGE models. This
work provides insights as long as the reduced state space S must be expanded
so as to include an epistemic realm which is captured by the original universe
defined at the beginning of Sect. 9.2. Let the economic and financial system be
denoted, respectively, by the symbols e; f 2 ˝ . The circular flow of income can
be expressed as a net of relations (transactions): CFI � e � f . Let X D .A;Z/,
where A stands for technology, a given set of transformation techniques of resources
(raw materials, primary energy, and information) Z D .M;E; ˚/. H is the entropy
and establishes a recognition of the role of the second law of thermodynamics in
the production activity with negative external effects. Potentially, however, there is
extensive evidence in support of positive externalities of information, at least within

Fig. 9.2 Distribution of daily returns PSI20 (31/12/1992–12/8/2010). Source: Gil Martín and
Rege (2010)
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Fig. 9.3 Hurst exponent various durations 1-day moving window. Source: Gil Martín and Rege
(2010)

the space of possible scenarios of sustainable growth. The right panel represents the
flow of final goods and services. The process between production and consumption
determines the dynamics of wealth distribution. The price system is bounded below
and above by the ideal extreme cases of perfect competition (PC) and monopoly
(mono). While facts support the view that production, the initial part of the economic
system, is mostly dependent on flows of information rather than the intensive use
of production factors, this does not seem to be the case when it comes to the final
part of the flow, namely, consumption. This observation suggests that if it were not
the case, some of the complexities observed in the economic realm would not have
a considerable impact on allocation of resources, assets, and prices.

Appendix A The Expected Utility Theory: Axiomatization

Let a; b; c 2 A convex and � 2 Œ0; 1� and denote for simplicity the compounded act
.a; b/� WD �aC .1 � �/ b. Assume a preference relation % on A such that
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Axiom (ORD Partial Order). %: complete, nondegenerate, and transitive.

Axiom (IND Independence). a % b, .a; c/� % .b; c/� for any 0 � � � 1.
Axiom (IND* Certainty Independence). IND restricted to the class c D ıx; x 2 C .

Partial order allows to classify a set of lotteries in equivalence classes. Transi-
tivity avoids cyclic decisions that may give rise, for instance, when customers and
sellers hold asymmetric information about the product quality. The independence
axiom allows the compounding of lotteries. To avoid unbounded functionals, a sort
of continuity must be imposed which will depend on the underlying topology of the
set of consequences. The Archimedean property is the weakest version of continuity
as it does not require any topological structure on C .

Axiom (ARC Archimedean Property). a � b � c ) 9�;
 2 .0; 1/ W .a; c/� �
b � .a; c/
.
Axiom (MIX Mixed Continuity). f� 2 Œ0; 1� W .a; b/� % cg ; f� 2 Œ0; 1� W c % .a; b/�g
are closed sets.

Axiom (w-CON Weak Continuity). fg W f % gg and fg W g % f g are closed sets.
Axioms ORD and ARC grant the existence of a utility functional V that represents
preferences. IND is the essential hypothesis that guarantees the expectation rep-
resentation (9.2). The functional V is a cardinal measure, which implies that the
index u is unique up to affine transformations: scaling and translations do not alter
the primitive order relation. Such is the meaning of uniqueness in results that follow.

Proposition 1 (VNM). Let % denote a binary relation of preferences over a convex
subset of a linear space C that satisfies the axioms ORD and IND:

a. ARC grants the existence of a unique linear functional V defined on A that
represents %.

b. In addition, w-CON holds if and only if V .c/ D R u .c/ dP.
c. If C is a discrete set, MIX, V .c/ D R

u .c/ dP D P
�su .xs/, where � s D

P .c D xs/.

Appendix B Axiomatic Formulation of Preferences
Under Uncertainty

Assuming convexity conveys more generality than betweenness, as proven in
experimental analysis.

Axiom (CONV Convexity). c � c0) .c; g/� % c; 0 < � < 1.

Ghirardato et al. (2004) show that a necessary and sufficient condition for a unique
linear representation reduces to the axiom of invariant biseparate preferences (IBP).
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Consider a monotone sequence of measurable sets asymptotically null Bn # ;, and
x; y; z 2 C , with x % z:

Axiom (CONm Monotonic Continuity). 8y 2 X9n W x % .y; z/Bn
.

A nondegenerate class of preferences is said to be IBP if it obeys the axioms ORD,
CONm, IND*,MON’ .f � g) f % g/.

Proposition 2. %2 IBP, V .c/ D L u .c/, whereL is a linear functional.

The term biseparable highlights a separation principle between beliefs and tastes
(IND*). It implies the binary relation preferencias y creencias (IND*) and conveys
the following implication: if 
 is a capacity 
 .A/ � L .1A/, with A 2 F , then17

L .x; y/A D u .x/ 
 .A/C u .y/ .1 � 
 .A// ; 8x; y 2 C :

This capacity resumes attitude toward ambiguity—our ignorance of the context.
There exists evidence of different patterns of behavior in the face of uncertainty
environments (i.e., ambiguity seekers) compatible with CEU. IND means a neutral
attitude, while CONV displays hedging.

CEU assumes comononotonic independencia ICO, which is a condition restricted
to the class of actions whose underlying preferences are preserved by˝ . Following
Ghirardato et al. (2004), we can state the following result:

Proposition 3. Let %2 IBP

a. CEU % obeys ICO if and only if V .c/ D R
u .c/ d
, where the integral is of

Choquet (Schmeidler 1989).
b. Minmax % obeys CONV if and only if there exists a unique weak* compact

and convex set of P such that V .c/ D min
˚R

udP W P 2P
�
. (Gilboa and

Schmeidler 1992)

Bewley (1986) introduced the maximal closed set under the axiom of indepen-
dence. This set defines from the primitive relation a monotonic preorder monotonic
%� that obeys the sure-thing principle. Let P the class of probability measures in
.S;F /, such that

R
u .c/ dP represents %�. P can be proven to be weak* compact

and convex. Let A� maximal set of acts such that %� is a complete order. Given
two preference relations over A , we say that %�1 reveals more ambiguity than
%�2 if %�1	%�2 . Therefore,18 A�1 	 A�2 and P1 
 P2. Hold when there exist
c1; c2 2 C ; x1; x2 2 C I�; �0 2 Œ0; 1� such that .f ; x/� �� .g; x/�0 . Accordingly, an
equivalence relation f � g in A . Let Œc� be such class associated to c. By Lemma 8
in Ghirardato et al. (2004), C 	 Œx� DW K. This set is made up of the so-called
crisp acts; it is the maximal element which satisfies the independence axiom19: its

17The only difference between a probability measure and a capacity is that the latter does not
require additivity.
18Ghirardato et al. (2004, Propositions 5 and 6).
19Ghirardato et al. (2004, Proposition 10).



204 S. Gil Martín

elements, not necessarily constant, cannot be combined to hedge. In addition, the
following representation holds20:

Proposition 4. %2 IBP if and only if there exist a function u W X ! R and a
function a W Aj �! Œ0; 1� such that the utility functional takes the form

V .c/ D a .Œc�/min
P2C

Z
u .c/ dPC .1 � a .Œc�//max

P2C

Z
u .c/ dP:

Note that the maxmin theories ˛-MEU and SEU are special cases of this functional,
with a .Œf �/ being naturally interpreted as an index of ambiguity aversion.

Appendix C The Core of Preferences

In Sect. 9.3.2 we have observed a relation between V D V u and P (tastes
and beliefs) through the Gateaux derivative. The equality DV D P admits an
interpretation in terms of the shadow value P .ds/ that measures the welfare gains
associated to such state. However, there is no unique P when the derivative does not
exist. Concavity of V ensures that the superdifferential is well defined, though. The
core can be obtained by evaluating the superdifferential at 0, that is, Core .V .c// D
Core

�
P ı c�1	 D @V .0/. The local Lipschitzian property satisfied by V allows one

to utilize an alternative notion of derivative.21 Let DV .z; �/ stand for the directional
derivative of V along the admissible (measurable) direction � 3 � W ˝ ! R. The
Clarke derivative at c is defined to be the set

@V .c/ D
�
P W

Z
�dP � DV .c; �/ ;8� 2 �

�
;

The Clarke derivative is deeply connected to the notion of core of a given
functional V :

Core .V / D
�
P W

Z
xdP � V .x/8x 2 u .C /

�
:

CEU representation coincides with the core of 
 in Proposition 2.a, namely,
Core .V / D Core .
/. Proposition 15 in Ghirardato et al. (2004) shows that
%2 IBP implies @V .0/ D C (see Proposition 2.b). Let the anticore be defined as

20Ghirardato et al. (2004, Proposition 11).
21A function F is Lipschitz when jF .x/� F .y/j � ˇ kx� yk with ˇ > 0. Here k�k is the sup-
norm or an equivalent one. A function is locally Lipschitz when for each point of its domain, there
exists a neighborhood which satisfies the Lipschitz condition. It can be (easily) proven that, under
SEU, L is Lipschitz with ˇ D 1.
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Anti .V / D Core .�V /: the main properties of the core are stated in the following
proposition22:

Proposition 5 (Properties of the Core).

a. If V is linear, Core .V /[ Anti .V / 	 @H .0/
b. V is linear iff Core .V / _Anti .V / D ;
c. V is concave iff Core .V / D @H .0/
If the number of states is finite (n), then it is possible to write @H .0/ D
co frH .z/ W z 2 ˚g, where � 	 u .A/ 	 R

n is the domain of differentiability of V .
In this case, there exists a numerable systems of cones of nonempty closure 	s

containing u .A /. The functionals known in the literature are linear when restricted
to each 	s. Therefore, we can define for each 	s a probability Ps. It follows
@H .0/ D co fPsg.
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Chapter 10
Additional Properties of the Owen Value

Oliver Juarez-Romero, William Olvera-Lopez, and Francisco
Sanchez-Sanchez

Abstract In this work we present two properties of coalitional values for games
with coalitional structure. The main goal of the paper is to prove that the Owen
value satisfies these properties, which are related to a gain game and a lost game.
The satisfaction of these properties provides a greater stability for this value because
it is immune to a possible manipulation given by these games.

Keywords Cooperative games • Coalitional structures • Owen value • Shapley
value • Stability • Manipulability • Gain and lost games

10.1 Introduction

The organization of agents in coalitional structures is an important fact in many
real-world contexts, such as the formation of cartels, trading blocks among nation
states, research joint ventures, and political parties. These situations can be mod-
eled through transferable utility games, in which the players are partitioned into
coalitions for the purpose of bargaining. All players in the same coalition agree
before the game that any cooperation with other players will only by carried out
collectively. Given a coalitional structure, the bargaining occurs between coalitions
and between players in the same coalition. The main idea is that coalitions play
among themselves as individual players in a game among coalitions and then, the
profit obtained by each coalition is distributed among its members. Owen (1977)
studied the allocation that arises from applying the Shapley value (Shapley (1953))
twice: first, in a game among coalitions and then in a game inside each coalition.
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In this paper we study a kind of stability of the Owen value. Given a game with
coalitional structure and a coalitional value, we build two games called the gain
and the lost games by association, respectively. These games model the changes in
the payoffs when new coalitional structures arise by manipulation of the coalitional
value. The main result establishes that if the coalitional value is the Owen value,
manipulating does not help: the payoffs that the players receive in the gain and the
lost games by association are the same as in the original game. A similar property
was studied by Hamiache (2001).

This article is organized as follows: Sect. 10.2 provides the notation that we use
in the rest of the document. On Sect. 10.3, we show that the Owen value is immune
to the manipulation given in the gain and lost games by association.

10.2 Notation and Preliminaries

Let N D f1; : : : ; ng be a finite set of agents. A cooperative game with transferable
utility (TU-game) is a pair .N; �/ where � W 2N ! R is a characteristic function
defined on the power set of N satisfying �.Ø/ D 0. An element i of N is called
a player, every nonempty subset S of N a coalition, and N the grand coalition.
The real number �.S/ is called the worth of coalition S. �.S/ is interpreted as the
total payoff that the coalition S can obtain for its members. Let GN be the set of all
cooperative TU-games with players set N. A payoff vector x 2 R

n of � 2 GN is
a vector giving a payoff xi to any player i 2 N. A solution on GN is a map ' that
assigns to each � 2 GN a payoff vector '.�/ 2 R

n. A player i 2 N is a null player
in .N; �/ 2 GN if for every S � N such that S 3 i we have that �.S/ D �.S n fig/.
Two players i; j 2 N are symmetric in .N; �/ 2 GN if for every S � N such that
i 2 S we have that �.S/ D ��.�S/, where �.S/ D ��1.S/, ��.T/ D �.�.T// for
all T � N and � 2 Sn 1 is a permutation such that �.i/ D j.

A very well-known solution on GN is the Shapley value. The Shapley value can
be defined by orders as follows:

Shi.N; �/ D 1

j Sn j
X

�2Sn



�.P�i [ fig/� �.P�i /

�
; for all i 2 N;

where P�i denotes the set of all predecessors of i in � , that is, P�i D fj 2 N W �.j/ <
�.i/g. For further information about the Shapley value, please refer Shapley (1953).

For all finite set N, a coalitional structure over N is a partition of N, i.e.,
B D fB1; : : :Bmg is a coalitional structure if it satisfies that

S
1�k�m Bk D N and

Bk
T

Bl D ; when k ¤ l. We assume that Bk ¤ ; for all k. The sets Bk 2 B are
called unions or blocks. There are two trivial coalitional structures. The first one,
which we denote by BN , where only the grand coalition is formed, that is, BN D fNg,

1Sn is the group of permutations of N.
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and the second one is the coalitional structure where each union is a singleton and
it is denoted by Bn, that is, Bn D ff1g; f2g; : : : ; fngg. We denote by B.N/ the set
of all coalitional structures over N. A TU-game .N; �/ with coalitional structure
B 2 B.N/, is denoted by .B; �/. Let CSGN denote the family of all TU-games with
coalitional structure with player set N.

For every game .B; �/ 2 CSGN , with B D fB1; : : :Bmg, the quotient game is the
TU-game .M; �B/ 2 GM where M D f1; 2; : : : ;mg and �B.T/ D �.

S
i2T Bi/ for

all T � M. .M; �B/ is the TU-game induced by .B; �/ considering the coalitions of
B as players. Notice that for the trivial coalitional structure Bn, we have .M; �B/ �
.N; �/. For all fk; lg � M, we say that Bk and Bl are symmetric in .B; v/ if k and l are
symmetric in the TU-game .M; �B/. For all k 2 M, we say that Bk is a null coalition
if k is a null player in the quotient game .M; �B/.

Given B 2 B.N/, for all k 2 M and all S � Bk, we denote by B jS the new
coalitional structure defined on .[j¤kBj/[S which appears when the complementary
of S in Bk leaves the game, that is,

B jSD fB1; : : : ;Bk�1; S;BkC1; : : : ;Bmg:
A coalitional value is a function ˆ that assigns to each .B; �/ 2 CSGN a payoff

vector ˆ.B; �/ 2 R
n. One of the most important coalitional values is the Owen

value (Owen (1977)). Given .B; �/ 2 CSGN and k 2 M, for all S � Bk, we denote
NS D BknS. Owen (1977) defined a game .M; �BjS/ that describes what would happen
in the quotient game if union Bk was replaced by S, i.e.,

�BjS.T/ D �.[j2TBj n NS/; for all T � M:

Next, he defines an internal game .Bk; �k/ by setting �k.S/ D Shk.M; �BjS/ for
all S � Bk. Thus, �k.S/ is the payoff to S in �BjS . The Owen value of the game .B; �/
is the payoff vector Ow.B; v/ 2 R

n defined by

Owi.B; �/ D Shi.Bk; �k/; for all k 2 M and for all i 2 Bk:

This procedure has the next interpretation: First, the union k plays the quotient
game .M; �B/ among the unions; then, the payoff obtained is shared among its
members by playing the internal game .Bk; �k/. In both levels of bargaining, the
payoffs are obtained using the Shapley value.

The Owen value satisfies the quotient game property: that is,
X

i2Bk

Owi.B; �/ D Shk.M; �B/; for all k 2 M:

Notice that for the trivial coalition structures BN and Bn,

Ow.BN ; �/ D Ow.Bn; �/ D Sh.N; �/:
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The Owen value can be defined by orders. Let B be a coalitional structure over
N and � 2 Sn. We say that � is admissible respect to B if for all fi; j; kg � N and
l 2 M such that fi; kg � Bl, if �.i/ < �.j/ < �.k/, then j 2 Bl. In other words, �
is admissible respect to B if players in the same group of B appear successively in
� . We denote by A.B;N/ the set of all admissible orders (on N) respect to B. The
Owen value is given by the formula

Owi.B; �/ D 1

j A.B;N/ j
X

�2A.B;N/



�.P�i [ fig/� �.P�i /

�
; for all i 2 N;

(10.1)

where P�i denotes the set of all predecessors of i in � , that is, P�i D fj 2 N W �.j/ <
�.i/g.

Now, we present the axioms that characterize the Owen value on CSGN . Let ˆ
be a coalitional value. We define

ˆ.B; �/ŒS� D
X

i2S
ˆi.B; �/; for all S � N:

(1) Efficiency: For all .B; �/ 2 CSGN , ˆ.B; �/ŒN� D �.N/:
(2) Additivity: For all .B; �/; .B0; !/ 2 CSGN , with B D B0, ˆ.B; � C !/ D

ˆ.B; �/Cˆ.B; !/.
(3) Intracoalitional symmetry: For all .B; �/ 2 CSGN , all k 2 M and every fi; jg �

Bk, if i and j are symmetric players in .N; �/, then ˆi.B; �/ D ˆj.B; �/.
(4) Coalitional symmetry: For all .B; �/ 2 CSGN and all fk; lg � M, if Bk and Bl are

symmetric players in .B; �/, then ˆ.B; �/ŒBk� D ˆ.B; �/ŒBl�.
(5) Null player axiom: For all .B; �/ 2 CSGN and all i 2 N, if i is a null player in

.N; �/, then ˆi.B; �/ D 0.

Theorem 1 (Owen 1977). A value ˆ on CSGN satisfies efficiency, additivity,
intracoalitional symmetry, coalitional symmetry, and null player axiom if and only
if ˆ is the Owen value.

For more details regarding the Owen value, see Owen (1977).

10.3 Additional Properties

In this section, we consider that .B; �/ and ˆ are given and fixed. Given S � N, we
assume that the members of S decide to play jointly and to leave the coalitions that
they belong. Let B0.S/ be the coalitional structure induced by this behavior of the
members of S, i.e.,

B0.S/ D fB01;B02; � � � ;B0m; Sg; where B0k D BknS; for all Bk 2 B:
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We define .N; � �̂ / where the characteristic function � �̂ is given by

� �̂ .S/ D ˆ.B0.S/; �/ŒS�; for all S � N:

This game is called the gain game by association because for all S � N, � �̂ .S/
represent the amount obtain by S when the members of S decide to form one
collaborative unit, leaving their original coalitions.

Now, we define the TU-game .N; v˘̂/, where v˘̂ is given by

v˘̂.S/ D
X

BkWBk\S¤;

h
ˆ.B; v/ŒBk� �ˆ.B0.S/; v/ŒB0k�

i
; for all S � N:

So, v˘̂.S/ represents the change in the payoffs of the groupsBk such that Bk\S ¤
; given some event that caused the formation of the new coalitional structure B0.S/.
By this reason, .N; v'̆ / is called the lost game by association.

Lemma 1. Let .B; �/ 2 CSGN be a game with coalitional structure B. Then

Ow.B; � Ŏw/ŒBk� D Ow.B; �/ŒBk� D Ow.B; ��Ow/ŒBk�; for all k 2 M:

Proof. We will prove the left identity because for proving the right identity,
we can use similar arguments. From the quotient game property, we have that
Ow.B; �/ŒBk� D Shk.M; �B/. Then, calculating the worth of each Bk 2 B in the
game .N; � Ŏw/, we can see that

� Ŏw.Bk/ D Ow.B; �/ŒBk�:

We define .M; �B
Ow/, where

�B
Ow.T/ D

X

t2T
� Ŏw.Bt/; for all T � M:

Because the game .M; vBOw/ is additive, we have that

Ow.B; � Ŏw/ŒBk� D Shk.M; �
B
Ow/ D Ow.B; �/ŒBk�:

Now, we are going to present the main result of the paper:

Theorem 2. For all TU-game .N; v/ with coalitional structure B and for all i 2 N,
we have that

Owi.B; �Ŏw/ D Owi.B; �/ D Owi.B; �
�
Ow/:

Proof. Again, we will prove the left identity, because for proving the right identity,
we can use similar arguments. We will prove that the result is valid for games in
which B D Bn. For doing that, we will use the expression of the Owen value given
in (10.1).
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So, the Owen value for i 2 N in the game .B;w'̆ / is given by

Owi.B; �Ŏw/ D
1

j A.B;N/ j
X

�2A.B;N/



�Ŏw.P

�
i [ fig/� � Ŏw.P

�
i /
�
:

It is easy to check that

�Ŏw.P
�
i [ fig/ D

X

j2P�i [fig
Owj.B; �/ and � Ŏw.P

�
i / D

X

j2P�i
Owj.B; �/:

Thus,

� Ŏw.P
�
i [ fig/� � Ŏw.P

�
i / D Owi.B; �/;

and

Owi.B; � Ŏw/ D Owi.B; �/:

Now we will prove that the result is valid when B D BN . In this case we can see
that

� Ŏw.P
�
i [ fig/ D �.N/ �Ow.B00; �/ŒBrnfig�;

and

� Ŏw.P
�
i / D �.N/ �Ow.B0; �/ŒBr�;

where B00 D ffP�i [ figg; fBrnfiggg and B0 D ffP�i g; fBrgg with Br D NnP�i .
Given that

Ow.B00; �/ŒBrnfig� D �.Brnfig/C �.N/ � �.Brnfig/� �.P�i [ fig/
2

;

Ow.B0; �/ŒBr� D �.Br/C �.N/� �.Br/ � �.P�i /
2

;

then

� Ŏw.P
�
i [ fig/� � Ŏw.P

�
i / D

�.Br/ � �.Brnfig/C �.P�i [ fig/� �.P�i /
2

:

In this case it is easy to check that there is � 0 2 A.B;N/ such that P�
0

i [ fig D
NnfP�i g D Br and P�i D NnfP� 0

i [ figg D Brnfig. Thus, we conclude that
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Owi.B; �Ŏw/ D
1

jA.B;N/j
X

A.B;N/

�
�.Br/ � �.Brnfig/

2
C v.P�i [ fig/� �.P�i /

2

�

D Owi.B; �/:

In general m � 2 and, when there is at least a coalition Bk 2 B such that jBkj � 2,
we will use the Lemma 1.

It is well known that the Owen value satisfies the axiom of balanced contributions
within coalitions (Calvo et al. (1996)). That is, for any i; j 2 Bk 2 B, we have that

Owi.B; v/ �Owi.B n fjg; �/ D Owj.B; �/ �Owj.B n fig; �/:
Adding over all players j 2 Bk n fig in the last expression, we have that

jBk � 1jOwi.B; �/ D
X

j2Bknfig
Owj.B; �/ �

X

j2Bknfig
Owj.B n fig; �/

C
X

j2Bknfig
Owi.B n fjg; �/;

which can be written as follows:

jBkj Owi.B; �/ D Ow.B; �/ŒBk��Ow.B n fig; �/ŒBk n fig�C
X

j2Bknfig
Owi.B n fjg; �/:

(10.5)

In the rest of the proof, we will use mathematical induction. Consider the case
where jBkj D 2. Then, we have that Bk D fi; jg and thus

B n fjg D fB1; : : : ;Bk�1;B�k ;BkC1; : : : ;Bmg
where B�k D fig. By using the Lemma 1, in Eq. (10.5) we have

2 Owi.B; �/ D Ow.B; �/ŒBk�� Ow.B n fig; �/ŒBk n fig�C Ow.B n fjg; �/ŒB�k �;
D Ow.B; �Ŏw/ŒBk�� Ow.B n fig; � Ŏw/ŒBk n fig�C Ow.B n fjg; � Ŏw/ŒB

�
k �;

D 2 Owi.B; �Ŏw/;

thus

Owi.B; �/ D Owi.B; � Ŏw/:

Suppose that the theorem is valid for coalitions Bk 2 B such that jBkj D s. We
will prove that it is valid when jBkj D sC 1. For doing that, we rewrite Eq. (10.5)
where jBkj D sC 1. So

.sC1/Owi.B; �/ D Ow.B; �/ŒBk��Ow.Bnfig; �/ŒBknfig�C
X

j2Bknfig
Owi.Bnfjg; �/:
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The sum of the above equation involves the Owen value for i 2 Bk. By induction
hypothesis, it is equal to the Owen value in the TU-game .N;w'̆ /, and applying
Lemma 1, we have

.sC 1/ Owi.B; �/ D Ow.B; �/ŒBk� �Ow.B n fig; �/ŒBk n fig�C Ow.B n fjg; �/ŒB�k �;
D .sC 1/ Owi.B; �Ŏw/:

Then, we conclude that

Owi.B; �/ D Owi.B; � Ŏw/:

The fact that the Owen value holds Theorem 2 can be seen as stability, because
this value is immune to the manipulation that the games �Ŏw and ��Ow mean.
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Chapter 11
The Gödelian Foundations of Self-Reference,
the Liar and Incompleteness: Arms Race
in Complex Strategic Innovation

Sheri Markose

Abstract Self-referential calculations of oppositional or contrarian structures and
the necessity to innovate to outsmart hostile agents in an arms race are ubiquitous
in socio-economic systems, immunology and evolutionary biology. However, such
phenomena with strategic innovation, which entails novel actions beyond listable
sets, are outside the ambit of extant game theory. How can strategic innovation with
novel actions be a Nash equilibrium of a game? Based on the only known Gödel-
Turing-Post (GTP) axiomatic framework on meta-analyses of offline simulations
that involve recursive operations on encoded information, we show that mutually
mentalising agents capable of such offline simulations can “think outside the box”
and embark on an arms race in novelty or surprises. A key logical ingredient of this
is the self-referential encoding of a proposition on mutual negation or opposition,
often referred to as the Gödel sentence. The only recursive best response function
of a two-person game with an oppositional structure that can implement strategic
innovation in a lock-step formation of an arms race is the productive function of the
Emil Post set theoretic proof of the Gödel incompleteness result.
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11.1 Introduction

The 2007 Global Financial Crisis has prompted calls to re-examine the foundations
of traditional economic models, and many funding organisations1 have encouraged
that economic interactions be analysed using nonclassical economic modelling
involving reflexivity and complexity. Reflexivity refers to the capacity to make self-
referential mappings, and it is understood that interactions in social systems pose
problems of epistemic undecidability and those of radical uncertainty regarding
the complex nature of collective outcomes. The foremost feature of complexity of
socio-economic interactions that has made it hard for economics science to make
progress arises from the fact that large swathes of observed phenomena, viz., socio-
economic proteanism in which myriad novel objects and technologies are produced
in what appears to be an unceasing strategic arms race, is outside the ambit of extant
formalised mathematical models in economics.

The foundational problems in economics stem from at least three sources. The
first of these was noted by Binmore (1987), who seminally raised the ‘spectre
of Gödel’ (Binmore 1987) in the context of game theory which attempts to
restrict the scope of strategic behaviour to a system that is logically closed and
complete. In game theory, there are strategy mappings to a fixed action set and
indeterminism extends only to randomisations between given actions. Binmore
states that in outlawing strategic indeterminism or novelty production, the question
that is pertinent here is the centre piece of Gödel (1931): ‘what of the Liar?’

The pragmatic import of the question, ‘what of the Liar?’, for game theory is as
follows: when faced by a hostile agent who will falsify or negate one’s actions if
he could deduce what they are, can one rationally play an action that is known or
can be formally deduced, both of which will be called ‘transparent’, or does one
innovate and ‘surprise’ the opposition? Secondly, compounding the first omission
noted by Binmore (1987) on the assumption of a completeness paradigm in which
game theory is couched, and what has been reiterated by many, is the impossibility
to produce novelty or surprises in a Nash equilibrium, let alone the structure of an
arms race in strategic innovation. Bhatt and Camerer (2005) succinctly state this:
“in a Nash equilibrium nobody is surprised about what others actually do, or what
others believe, because strategies and beliefs are synchronised, presumably due to
introspection, communication or learning”. What is missing in this statement is the
category of mutual belief and expectation of surprise and the characterisation of a
Nash equilibrium in which players logically expect that they will need to surprise

1These include the EC FP 7 calls, the Horizon 20–20 Global Systems Science initiatives and the
UK Economic and Social Research Council (ESRC) endeavours at the Oxford Symposium of
2012 and the 2014 Essex Diversity in Macroeconomics conference. The latter aimed at breaking
up the monoculture in mainstream economics by bringing together developments from at least
three new branches of economics. These include, agent-based computational, complexity and
behavioural economics. The aim of the highly interdisciplinary studies of computational and digital
technologies, complexity sciences and neurophysiology of the brain is to address erstwhile gaps
and controversies in the micro- and macroscopic aspects of socio-economic interactions.
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and be surprised. As will be shown, there is nothing inherent to a Nash equilibrium
in which the strategic necessity of a surprise cannot be formulated. Indeed novelty
and surprise become a logical necessity to avoid inconsistency.

Finally, the consequence of the extant mathematical paradigm of economics
is that it cannot formally model the category of radical uncertainty in terms of
Gödel undecidability, incompleteness and non-computability arising endogenously
from strategic innovations from mutually mentalising agents of a very tall order of
computational intelligence. Following the provenance of Gödel (1931), in what is
called the Wolfram–Chomsky schema (see Wolfram 1984; Casti 1994; Albin 1998;
Markose 2005), the sine qua non of a complex adaptive system (CAS) is identified
with Type IV structure changing innovation based undecidable dynamics associated
with the interaction of agents having computational capabilities first identified in
Gödel (1931).

The remarkable significance of the Gödel incompleteness theorem is that to date
there is only one mathematical exit route from known listable sets in order for agents
to construct novel objects that fall outside of these sets. Hence, I will argue it is
important, both in the discussions of the neurophysiology of social coordination and
proteanism and also for the missing formalism in economics for Type IV dynamics,
to delineate the key ingredients of the Gödel paradigm. Type IV dynamics take the
co-evolutionary form of a Red Queen2 type arms race in innovation. Regulator-
regulatee arms race (no different from a parasite host dynamics in immunology)
involves monitoring and production of countervailing new measures (comparable to
the production of antibodies) by authorities in response to regulatee deviations from
rules due to outright opposition or perverse incentives in place. However, while there
has been much disquiet on foundational issues in economics, the need for the Gödel
paradigm has not yet been signposted in any substantive way.

As noted by Markose (2005), almost all accounts of dynamics in economic
interactions, even by those who espouse the ‘complexity vision’ (Colander 2000),
eschew the Gödel provenance of proteanism with Type IV arms races in novelty
production as the hallmark of complex adaptive systems.3 Despite the long-
standing legacy of Schumpeter (1942), Baumol (2002, 2004), who has extensively
discussed and documented the role of the relentless Red Queen type strategic
arms race in innovation by firms of products and processes in capitalism, claims

2The Red Queen, the character in Lewis Carol’s Alice Through the Looking Glass, who signifies the
need “to run faster and faster to stay in the same square” has become emblematic of the outcome of
competitive co-evolution for evolutionary biologists in that no competitor gains absolute ground;
see Markose (2005).
3Even though Durlauf (2012) notes that economics as a science is still evolving, he does not think
it needs any substantive ‘paradigm’ shifts or new foundational studies to understand and model
economic systems as complex adaptive systems. Of the issues on non-linearity, heterogeneity
and interconnectedness that Durlauf (2012) considers, the latter two, along with the use of agent-
based simulation models, are relatively new approaches in the literature (see Tesfatsion and Judd
2006). In the UK, there are no more than a dozen economists who pursue these nonmainstream
approaches.
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Fig. 11.1 Taxonomy of uncertainty: Asymmetry of information and radical uncertainty from
novelty production

that this is not addressed in mainstream economics. Recently, renewed efforts are
being made to come to terms with arms races in novelty production, especially
in the monetary and financial system (see Haldane 2012). These have wrought
structural transformations4 that many regard to be exogenous to macroeconomics
and hence as noted by Axelrod (2003) widespread system failure has followed from
having ignored competitive co-evolution. The practice of modelling innovation as
exogenous white noise, especially in the area of macroeconomics, has led Goodhart
(1999) in his Keynes Lecture to state that: One of the central problems is that
uncertainty is far more insidious and pervasive than represented by additive error
terms in standard models.

In the schema given in Fig. 11.1 above of how uncertainty is modelled in
mainstream economics, useful delineations start from what is mutually known by
self and others, yielding different classes of asymmetric information. However,
radical uncertainty which can be modelled as Gödelian points of departure from
known listable sets of actions is not what is considered by those who purport to
model Knightian uncertainty.

The objective of this paper is to give the developments in mathematical logic
pioneered by Gödel (1931), Turing (1937) and Post (1944) (GTP logic from here on)
that underpin a complex adaptive system and to demonstrate how this can inform a
two-person game in which Type IV novelty and surprises will emerge as in an arms
race. There are four key formal components outlined below, which will be dealt with
in the paper.

(i) Agents/players have the capacity to operate on encoded information. The
GTP theory of computation, also called recursion function theory, provides
the only known formalism for operations on encoded information represented
by integers, n 2 @, also known as Gödel numbers. These operations are

4One of the more prescient of macroeconomists, William White, has recently stated “it seems to
me that nobody on the regulatory (and macroeconomics) side has really got to grips with the reality
of this constant innovation” (Financial Times, June 25, 2014).
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strictly syntactic ones that entail instructions utilising strings of symbols to
achieve encoded outputs from inputs in a finite number of steps in terms of an
algorithm or program. The power of recursion to reuse code in concatenations
and recombinations is considered by many (see Beinhocker (2011))5 to be a
key building block of evolution and human technological progress.6

(ii) Agents utilise a framework well known as Gödel metamathematics (see Rogers
1967) which implements a 1-1 mapping between internal offline meta-analysis
made by agents and their respective external machine executions. The offline
operations, referred to as simulations, is based on encoded information of
online external machine executions, both of which can be done on ‘mecha-
nisms’ involving any substrata ranging from intracellular biology to silicon
chips. This capacity of meta-representation without which CAS properties do
not emerge yields the notion of a universal Turing machine (UTM) which can
take encoded information of other machines and replicate them. Remarkably,
UTMs can run codes involving themselves, which is the basis of self-reference.
If codes of functions are not already given, then successful simulations require
discovering fixed points of executable action functions. This involves the use of
the Second Recursion Theorem. The significance of this for human cognition
lies in the recent discovery of the mirror neuron system by the Parma group
(Gallese et al. 1996; Rizzolatti et al. 1996, which can be regarded as one of
the most important scientific discoveries of the late twentieth century. Gallese
and Sinigaglia (2011) have characterised the MNS as a neuronal platform
for conducting offline embodied simulations for action prediction in the other
based on a parallel set of neurons that fire during actual action execution by
one-self.7 While Gallese and others use this as an analogy, it will be shown
that the two-place Gödel substitution function in Gödel metamathematics
can provide the mathematical wherewithal for processing action prediction
regarding the other as an offline exercise. Nash equilibria will be found on
the diagonal array of the fixed point mappings of action execution functions
(strategy functions) using the Second Recursion Theorem.

(iii) It is well known that the Liar in Gödel logic can be viewed as the hostile agent
or the contrarian who will falsify or negate one’s actions if he can deduce
what they are. Also the Liar, following the provenance of the Cretan Liar,8

5Arthur (1993) argues for the need to take a computational perspective to model complexity.
6Sayama (2008) suggests that routine programs called quines appended to the end of other
programs to read, copy and ‘print’ are important building blocks in self-replication algorithms.
7The neurons that fire with actual action execution are called canonical neurons, Arbib and Fagg
(1998), and represent online machine executions in the GTP logic.
8Since antiquity, it has been known that self-refuting statements generate paradoxes as in the
Cretan Liar proposition: this is false. Gödel’s analogue of the Liar proposition is the undecidable
proposition. The latter, denoted as A, has the following structure: A$	 j� .A/. That is, A says of
itself that it is not provable .	 j�/. However, unlike the Cretan Liar, there is no paradox in Gödel’s
undecidable proposition as it can be proved that this is so. Any attempt to prove the proposition A
results in a contradiction with both A and	 A, its negation being provable in the system. Simmons
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refers to a self-referential statement of negation which results in an undecidable
truth predicate. In the Gödel framework, which is known to have transformed
the problem from that of truth to one of computation, we have an encoding
of a fixed point of a recursive mapping which entails the negation of a self-
regarding code, often referred to as the Gödel sentence. In the context of a
game, as will be shown, the Gödel sentence encodes a non-computable fixed
point involving a contrarian/Liar strategy and hence is a recording of a mutual
recording of hostility or opposition. Ben-Jacob (1998) has suggested a similar
interpretation of the Gödel sentence as a record of threats to a code at the level
of the genome.9 Again, in a remarkable set of experiments by Scott Kelso and
his group (see Tognoli et al. (2007)), recording of neurophysiological markers
of anti-coordination that arises from actions that need to be different/opposite
from what is predicted of another indicates that these are also part of the human
mirror neuron system. This is an important piece of evidence for the Gödel
framework to be relevant as an analogue of cognitive incompleteness.10

(iv) The logical consequences of (i)–(iii) can be represented by so-called creative
and productive sets using the set theoretic proof by Post (1944) of Gödel
incompleteness (see also Smullyan 1961; Cutland 1980). The Post (1944)
productive function implements points at which agents exit a given listable
set, referred to as a recursively enumerable set that can be enumerated by
any Turing machine including another negating or oppositional UTM, within
a structure of an arms race in novelty production or ‘surprises’. To rigorously
define the set of novel objects, it is useful to consider the set of all potential
technologies as the outputs of a total computable function that always stops and
yields some output on any encoded input. This set denoted by < is countably
infinite, and there is no systematic way of ‘searching’ or listing this set. Some
finite subset of this set entails known technologies and can represent a given
listable action set A of traditional game theory. A novelty or a surprise is
an encoded object in the set (< � A), i.e. outside of set A that is already
known to exist. The remarkable achievement of GTP mathematical logic is
that there is only one exit route from a set like A, viz., with the incorporation

(1993, p. 29) has noted how with the Cantor diagonal lemma (which was used to prove that the
power set of a set has greater cardinality than a set) we begin to have so-called ‘good’ uses of
self-refuting structures that result in theorems rather than paradoxes.
9It is beyond the scope of this paper to discuss certain anti-machine views of Ben-Jacob (1998)
which makes claims for semantic knowledge that goes beyond sub-personal syntactic expression
of the Gödel sentence.
10F.A. Hayek is the first economist to have discussed the implications for economics that arise
from the problems of non-computability that he called the limits of constructive reason and on the
possibility that the brain manifests Gödel incompleteness (Hayek 1952, 1967). Hayek seminally
redirected the discussion on the limits of deductive inference from Humean scepticism to the
Gödel logic of incompleteness (Markose 2002, 2005) and indeed brought this to my attention
by instructing me to read his book on the Sensory Order (1952). However, Hayek’s own account
of this did not go beyond the Cantor diagonal lemma (see footnote 9), which led him to a view on
cognitive incompleteness that there is much knowledge that cannot be formally enumerated.
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of the Liar or contrarian strategy function, denoted by f+, which has a non-
computable fixed point encapsulated in the Gödel sentence. Thereafter, any
non-trivial computable function of the Gödel sentence is the so-called Post
productive function, Post (1941), that determines the logical necessity for
surprise mappings into the set (< � A). As the productive function in logic
implements novelty and surprise, it will be denoted as f Š.

The significance of the mathematical logic of GTP is that any system incorporat-
ing such capacity for offline simulation will imply incompleteness or the capacity
to produce new objects outside of a given set that can be enumerated by any,
including the negating or oppositional UTM. The first intriguing corollary that this
framework signifies is that (syntactic) recognition of hostile agents requires the
highest level of computational intelligence (which Steven Wolfram (2002) claims
is already ubiquitous even in the humble virus) and consequently, in the absence
of contrarian agents or oppositional structures, there is no logical need to innovate
or surprise. Finally, neither the formalism regarding the Liar nor the arms race in
novelty is familiar to economists as fixed points of recursive functions in diagonal
constructions such as in the Second Recursion Theorem. It should be noted, once
an oppositional structure to an encoded action arises, the Liar can bring about the
failure of the other party only out of (Nash) equilibrium when the identity of the
Liar is not known or the formal structure of the game involving the Liar is not
acknowledged. The arms race in novelty follows in a Nash equilibrium when both
agents coexist. Hence, interestingly once opposition is in place, if innovation is not
adopted, then expect to be ‘negated’ by the hostile agent, viz., innovate or die.

Though important, it is beyond the scope of this paper to give a fuller account
of human and biological proteanism11 and to give more evidence from the recent
discovery of the mirror neuron system, which gives cellular neurophysiological
evidence for common coding and offline simulation for action prediction among
conspecifics. I will confine my literature review to papers that have used recursion
function theory in game theory.

A number of game theory papers such as Albin (1982), Anderlini (1990),
Anderlini and Sabourian (1995), Canning (1992), Nachbar and Zame (1996),
which use recursion function theory, focus exclusively on defining the problem of
indeterminacy associated with self-refuting decision structures. It is interesting to
note that these game theory papers discuss neither the significance nor the possibility
of innovation and surprise strategies arranged in a structure of an arms race. The
problems here arise for two main reasons. These papers appear not to utilise the
major methodological triumph of Gödel (1931), which is the meta-analysis that
produces fully definable meta-propositions, in an ever extendable sequence. In terms
of the Post (1944) productive functions, these provide recursive mappings from self-
refuting fixed points to the outside of given recursively enumerable sets in order to
avoid logical inconsistency. Hence, the aphorism that sufficiently rich formal sys-

11Byrne and Whiten (1999) have presented extensive evidence on the development of the
Machiavellian Brain.
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tems cannot be both consistent and complete. Secondly, the characterisation of Nash
equilibria as fixed points of recursive functions seems not to be specified as such. It
was in the seminal paper of Spear (1989) that the Second Recursion Theorem was
introduced to formalise the problem of computing rational expectations equilibria
as fixed points. Though Spear (1989) does not explicitly depict a game, it will
be shown that without the proper formalism of defining fixed points of recursive
functions, the Nash equilibria of a game which requires the identification of the
meta-representations of mutual best response functions in a two-place diagonal
alignment, one could be forced into different ‘resolutions’ of classic oppositional
problems.12

The rest of the paper is organised as follows. Section 11.2 sets up the math-
ematical preliminaries for a recursive function approach to analyse a two-person
finite game. Computability constraints are imposed on decision procedures and
implementable action rules. This leads to a framework well known as Gödel
metamathematics (see Rogers 1967) which implements a 1-1 mapping between
internal offline recordings made by players with their respective external online
calculations.

In Sect. 11.3, this enables us to exploit a variant of the Second Recursion
Theorem used by Spear (1989) to establish the fixed points of recursive functions
which are Nash equilibria strategy functions of a two-person game. In Sect. 11.4,
this framework for determining fixed points is used to reformulate the original
Binmore (1987) notion of surprise strategies in a Nash equilibrium in terms of the
computability or not of fixed points of best response functions of the players. Here,
the structure of opposition arising from the Liar strategy is also analysed. The first
significant point is that the Liar can win only out of equilibrium when the identity
of the Liar is not known or the formal structure of the game involving the Liar is not
acknowledged. The second and more famous result is that when there is mutual or
common knowledge of the Liar, we are at Gödel’s non-computable fixed point where
there is recursive indeterminacy of the action-reaction functions of the agents. In the
final section, we prove that the only best response function in the Nash equilibrium

12Koppl and Rosser (2002) attempt to characterise the Nash equilibrium of the zero sum game
that depicts the machinations of a well-known oppositional game involving Holmes and Moriarty
using recursive function theory. Moriarty, who seeks the demise of Holmes, has to be in proximity
with him, while Holmes needs to elude Moriarty. They conclude as follows: ‘We can see that there
are best-reply functions, f .x/, such that f .x/ ¤ x; 8 x. That is, there are best-reply functions
without a fixed point. (A fixed point is defined by the condition that f .x/ D x.)’. It will be shown
that Gödel meta-representational system has no problem ‘referring’ to the fixed point of the best
response function that seeks to negate or deceive as in the Holmes-Moriarty game. The important
point here, therefore, is not that one or the other player has to find a best response function that
does not have a fixed point, but that the fixed point of an important class of best response functions
is not computable, and this undecidability is fully encoded from within the meta-representational
system of the players.
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with the Liar is the productive function implementing the surprise strategy or an
innovation outside extant action sets. The productive set displays a structure of an
arms race in innovation and hence grows in a nonanticipating way.

11.2 Recursion Function Theory and Gödel Incompleteness:
An Introduction

Gödel (1931) pioneered the framework of analysis called metamathematics perti-
nent to self-referential structures where he obtains epochal results on the sort of
statements an internal observer can make as a meta-theorist if he is constrained to
be very precise in what he can know and how he can make inferences. Thus, as
highlighted by Binmore (1987), the significance of using the Gödel meta-analysis
to establish incompleteness or non-computability results for formalised decision
problems and game theory stems precisely because this can be proven to arise not
from incorrect or inconsistent reasoning or calculation but rather to avoid strategic
irrationality and logical contradiction. To this end instrumentally rational players
are accorded the full powers of an idealised computing machine in the calculation
of what are effectively self-referential mappings for the determination of Nash
equilibrium strategies. Following from the Church-Turing thesis, the computability
constraint on decision procedures implies that these are computable functions that
can only entail finitely describable set of instructions in the computation. Likewise,
all information is in codifiable form.

Again by a method introduced by Gödel (1931) called Gödel numbering, all
objects of a formalisable system describable on the basis of a countable alphabet
are put into 1-1 mapping with the set of natural numbers referred to as their Gödel
numbers (g.ns, for short). Thus, computable functions can be indexed by the g.n of
their finitely describable program. Impossibility results on computation, therefore,
become the only constraints on what rational/optimising players cannot calculate
given the same information on the encoded primitives on the game.

11.2.1 Some Preliminaries on Computable Functions

By the Church-Turing thesis, computable functions are number theoretic functions,
f W @ ! @, where @ is the set of all integers.13 Each computable function is
identified by the index or g.n of the program that computes it when operating on an

13The first limitative result on functions computable by T.Ms is that at most there can only be a
countable number of these with the cardinality of @ being denoted by @0, while from Cantor we
know that the set of all number theoretic functions have cardinality of 2@0 . Hence, not all number
theoretic functions are computable (see Cutland 1980).
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input and producing an output if the function is defined or the calculation terminates
at this point. Following a well-known notational convention, we state this for a
single valued computable function as follows

f .x/ Š �a.x/ D q: (11.1)

That is, the value of a computable function f .x/ when computed using the
program/TM with index a is equal to an integer �a.x/ D q, if �a.x/ is defined
or halts (denoted as �a.x/ #) or the function f .x/ is undefined (�) when �a.x/ does
not halt (denoted as �a.x/ "). The domain of the function f .x/ denoted by Dom �a
or Wa is such that,

Dom �a D Wa D fxj�a.x/ #W TMa.x/ haltsg: (11.2)

Note, the range of the function f .x/ is denoted by Ea.

Definition 1. Computable functions that are defined on the full domain of @ are
called total computable functions. Partial computable functions are those functions
that are defined only on some subset of @.

Related to (11.2) is the notion of sets whose members can be enumerated by an
algorithm or a TM.

Definition 2. A set which is the null set or the domain or the range of a
recursive/computable function is a recursively enumerable set. Sets that cannot be
enumerated by T.Ms are not recursive enumerable.

The one feature of computation theory that is crucial to game theory where
players have to simulate the decision procedure of other players is the notion of
the universal Turing machine (UTM).

Definition 3. The UTM is a partial computable function, defined as ‰.a; x/, which
uses the index a of the TM whose behaviour it has to simulate. By what is called
the Parameter or Iteration Theorem, there is a total computable function u(a) which
determines the index of the UTM such that

‰.a; x/ D �u.a/.x/ Š �a.x/: (11.3)

Equation (11.3) says that the UTM, on the left-hand side of (11.3) on input x,
will halt and output what the TMa on the right-hand side does when the latter halts
and otherwise both are undefined.

Of particular significance are Turing machines that use their own code/g.n as
inputs in their calculation. We will refer to these as self-referential calculations.

Definition 4. The set denoted by C is the set of g.ns of all TMs that halt when
operating on their own g.ns or alternatively C contains the g.ns of those recursively
enumerable sets that contain their own codes (see Cutland 1980, p. 123; Rogers
1967, p. 62).

C D fxj�x.x/ #W TMx.x/ haltsI x 2 Wxg: (11.4)
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The set C	, which is the complement of set C is defined as:

C	 D fxj�x.x/ "W TMx.x/ does not haltI x … Wxg: (11.5)

Theorem 1. The set C	 is not recursively enumerable.

In the proof that C	 is not recursively enumerable, viz., there is no computable
function that will enumerate it, Cantor’s diagonalisation method is used.14

11.2.2 Post (1944) Set Theoretic Representation of Gödel
Incompleteness

As indicated in the introduction, we will now state the formal character of systems
capable of the endogenous production of novelty or surprises in terms of the notion
of creative and productive sets first defined by Emil Post (1944).

Definition 5. A creative set Q is a recursively enumerable set whose compliment,
Q	, is a productive set. The set Q	 is productive if there exists a recursively
enumerable set Wx disjoint from Q (viz., Wx 	 Q	) and there is a total computable
function f .x/ which belongs to Q	 � Wx. f .x/ 2 Q	 � Wx is referred to as
the productive function and is a ‘witness’ to the fact that Q	 is not recursively
enumerable. Any effective enumeration of Q	 will fail to list f .x/, Cutland (1980,
pp. 134–136).

Lemma 1. Set C in (11.4) is a simple example of a creative set. The productive
function f .i/ D i is the identity function.

By the definition of C if any number i 2 C $ i 2 Wi by the definition of C.
Hence, for f .i/ D i if f .i/ 2 C$ i 2 Wi. If Wi is disjoint from C, then f .i/ … C[Wi.
If i 2 Wi, then i 2 C and Wi will not be disjoint from C.

Smullyan (1961, p. 58) claims that the construction of two recursively insep-
arable disjoint subsets such as that for C and C	 with Wi disjoint from any
subset of C plays a fundamental role in modern approaches to incompleteness and
undecidability. The inseparability of two recursively enumerable disjoint number
sets, A and B (A 	 C and B 	 C	), arises from the property that any recursive
reductions of these sets, respectively, denoted as A0 and B0, will imply that the Gödel
number for the productive function for A

0	 lies outside of both A0 and B0 and will be
a constructive ‘witness’ for incompleteness. The following Lemma 2 will be used to
engineer a recursive reduction between sets such as A and B and the respective sets

14Assume that there is a computable function f D �y, whose domain Wy D C�. Now, if y 2 Wy,
then y 2 C� as we have assumed C� D Wy. But, by the definition of C� in (11.5) if y 2 Wy,
then y 2 C and not to C�. Alternatively, if y … Wy, y … C�, given the assumption that C� D Wy.
Then, again we have a contradiction, as since from (11.5) when y … Wy, y 2 C�. Thus, we have
to reject the assumption that for some computable function f D �y and that its domain Wy D C�.
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A0 and B0 to prove that the Nash equilibrium surprise strategy is none other than the
productive function, as in the case for the set A

0	.

Lemma 2. Consider two recursively enumerable disjoint number sets, A and B,
with A 	 C and B 	 C	 and let B D W�.n+/ of Lemma 1 with index �.n+/. Let the
recursive function h.i/ define the following many-1 reduction of A to A0: If i 2 A,
then h.i/ 2 A0 and for j ¤ i, if j 2 B, then h.j/ 2 B0. Hence, A D h�1.A0/ and
B D h�1.B0/ D W�.n+/. As W�.n+/ 	 C	 and f .�.n+// is a productive function of
C	 with g.n �.n+/ … C [W�.n+/, it also serves as the productive function for A	.
Likewise, g.h.f .�.n+// is the productive function for A

0	 and with B0 D W� 0.n+/

the g:n.g.h.f .�.n+/// … A0 [W� 0.n+/.

The proof is as follows.15 As A and B are disjoint and B 	 C	 with f being
an identity function, �.n+/ cannot belong to either A or B as this will imply that
�.n+/ 2 W�.n+/. If �.n+/ 2 A, then as A 	 C, �.n+/ 2 W�.n+/ and W�.n+/ 	 C,
which entails a contradiction. Hence, �.n+/ … A and �.n+/ … A [ W�.n+/. This
also implies that A	 is not recursively enumerable and that A	 is productive. The
recursive reduction function h will guarantee that as A	 is productive, so is A

0	. The
non-trivial productive function g.h.f .�.n+// for A0	 in Lemma 2 which is not an
identity function as in Lemma 1 will also be shown to arise from the surprise best
response function in the Nash equilibrium of the two-person oppositional game.

Figure 11.2 illustrates the Post (1944) set theoretic representation of Gödel
Incompleteness Result. The prototypical creative set is the set C in (11.4) which
contains self-referential calculations that converge. They will be shown to corre-
spond to computable fixed points. Contrarian propositions of the latter, on account of
consistency of the system, belong to a set disjoint from C and hence though a subset
of the complement of C, viz., C	 in (11.5), its membership can be enumerated
and also shown to be a set on which Turing machines can be logically deduced
to be incapable of halting.16 Thus, there is a recursively enumerable subset of C	,

15This is analogous to the proof in Smullyan (1961, p. 96, Chap. V, Proposition 2).
16If sentences in a formal system, denoted as FS, are provable and have the status of being theorems
(proof being defined as the operation of a Turing machine that halts), then their negations are
refutable in that it is known that they belong to the domain on which Turing machines will not halt
when attempting their proofs. If a FS is complete, then the set of all sentences satisfies the condition
that FS D TUR, where T and R, respectively, are the set of provable and refutable sentences. FS is
consistent if T and R are disjoint. The subset of R that is recursively enumerable are negations of
those propositions that are known to be provable. The set FS is said to be incomplete if TUR � FS.
The Gödel (1931) incompleteness result and the set theoretic proof of this by Post (1944) provide
a constructive proof of a sentence denoted as u such that u 2 FS and u does not belong to TUR.
The sentence u is undecidable and is the ‘witness’ that FS is incomplete.
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Fig. 11.2 Post (1944) set theoretic representation of Gödel incompleteness in the domain outside
disjoint recursively enumerable sets (see Definition 5)

and it represents self-refuting fixed points that are fully enumerable in the system.
Any total computable function of these, which defines the productive function can
only map into the domain for novelty17 in Fig. 11.2 outside both these recursively
enumerable disjoint sets. We propose to show that f .x/ the productive function in
Definition 5 which provides a ‘witness’ for the incompleteness of the formal system
also corresponds to the best response surprise function in the Nash equilibrium of a
game.

11.2.3 Meta-Representational System (MTS) and Simulation
Theory for a Two-Person Game

This section sets out how a MTS organises encoded information involving the self
and other. This interactive situation is best characterised by a two-person game.
The primitives of the game, can be interpreted as one in which both cooperation
and opposition arise such as in a regulatory/policy game or a parasite-host game, is
codified as follows.

G D f.p; g/; .Ap;Ag/; s 2 Sg: (11.6)

17Markose (2004) identifies this to be the domain of complex dynamics and the emergence of
novelty proposed by Wolfram (1984), Casti (1994) and Langton (1992).
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Here, .p; g/ denote the respective g.ns of the objective functions, to be specified,
of players, p, the private sector/regulatee and g, government/regulator. The action
sets denoted by Ai are finite and countable with ail 2 Ai, i 2 .p; g/ being the g.n of
an action of player i and l D 0; 1; 2; : : : ;L. An element s 2 S denotes a finite vector
of state variables and other archival information, and S is a finite and countable set.
The action set A D Ap[Ag represents the known technologies. In order to highlight
the fundamental recursive nature of actions as technologies and the potential for
new technologies, the class of best response strategy functions will be defined as a
set of total computable functions.

Definition 6. The best response strategy functions fi, i 2 .p; g/ that are total
computable functions can belong to one of the following classes:

fi D
2

4
f 1i D 1.Unit Function/ � Rule Abiding

f+i � Rule Breaking=Liar
f Ši � Surprise

(11.7)

such that the g.ns of fi are contained in set <,

< D fm j fi D �m; �m is total computableg: (11.8)

The set < which is the set of all total computable functions is not recursively
enumerable. The proof of this is standard; see Cutland (1980). The total computabil-
ity of best response functions fi D �m, m 2 < in (11.7)–(11.8) yields the notion
of constructible/effective action rules such that a finitely codifiable description of
some (institutional) procedure which is defined for all mutually exclusive states of
the world is obtained.

As will be clear, (11.8) draws attention to issues on how innovative
actions/institutions can be constructed from existing action sets. The remarkable
nature of the set < is that potentially there is countable infinite number of ways in
which ‘new’ institutions can be constructed from extant action set A. The task is
to show the conditions under which it is mutually deducible that the best response
function fi, i 2 .p; g/ satisfies Post’s productive function and is a surprise strategy,
fi D f Ši D �m, such that m 2 < � A. Only such innovations will be accorded with
the status of strategic innovations. The trigger for the surprise strategy involves the
identification of the negation or Liar strategy f+i . These total computable strategy
functions with the exception of the unit function in (11.7) will be shown to generate
dynamics in the system.

A major implication of imposing computability constraints on all aspects of the
game is that all meta-information with regard to the outcomes of the game for any
given set of state variables, s 2 S, can be effectively organised by the so-called
prediction function ��.x;y/.s/ in an infinite matrix„ of the enumeration of all partial
computable functions. This is given in Fig. 11.2 (see Cutland 1980, p. 208). The
tuple .x; y/ identifies the row and column of this matrix „ whose rows are denoted
as „j, i D 0; 1; 2; : : :.



11 The Gödelian Foundations of Self-Reference, the Liar: : : 231

Ξ0 φσ(0,0) φσ(0,1) φσ(0,2) φσ(0,3) . . . φσ(0,x) . . .
Ξ1 φσ(1,0) φσ(1,1) φσ(1,2) φσ(1,3) . . . φσ(1,x) . . .

Ξ2 φσ(2,0) φσ(2,1) φσ(2,2) φσ(2,3) . . . φσ(2,x) . . .

Ξx φσ(x,0) φσ(x,1) φσ(x,2) φσ(x,3) . . . φσ(x,x) . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Fig. 11.3 Meta-information on outcomes and dynamics for two-person games : matrix „

The function ��.x;y/.s/ if defined at a given state s and �.x; y/ yields

��.x;y/.s/ D q: (11.9)

Here, q in some code, determines the outcome of the decision problem of the
game and q 2 E�x . Note, �.x; y/ is the index of the program for this function �
that produces the outputs of the strategic decision problem of the two-person game.
The tuple also identifies a point on the matrix „ in Fig. 11.3. The conditions under
which the output of the prediction function for each .x; y/ point in the above matrix
is defined are given in the following Theorem (Fig. 11.3).

Theorem 2. The representational system is a 1-1 mapping between meta-
information in matrix „ in Fig. 11.3 and executable computations such that the
conditions under which the prediction function which determines the output of the
game for each .x; y/ point is defined as follows:

��.x;y/.s/ Š ��x.y/.s/ D q; iff �x.y/ # : (11.10)

Here, the total computable function �.x; y/ modelled along the lines of Gödel’s
two-place substitution function18 (see Rogers 1967, pp. 202–204) has the feature
that it names or ‘signifies’ in the meta-system „, the points in the game that
correspond to the different executed calculations on the right-hand side of (11.10)
as we substitute different values for .x; y/ for a given state s. The g.ns representing
�.x; y/ can always be obtained whether or not the partial recursive function on the
right-hand side of (11.10) which executes programs halts or not.

Proof. See Rogers (1967).
By the necessary condition in (11.10) if the function �x.y/ on the right-hand

side (RHS) executing the internal calculation is defined, we say the prediction
function ��.x;y/ in the meta-system on the (LHS) producing the output of the game

18This approach economises on formalism and enables us to highlight and exploit the Fixed Point
Theorems of recursive function theory to determine Nash equilibrium outcomes more readily than
has been the case in, for instance, in Anderlini (1990) and Canning (1992).
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is computable and the outcome q of the game at that point is predictable. Likewise,
the ‘only if’ condition in (11.10) implies that meta-statements that are valid on
the predictability of the outcomes of the game at any .x; y/ must give the correct
inference on whether program executions on the right-hand side terminate. In view
of the discovery of the mirror neuron system, as indicated in the introduction
and discussed further in Markose (2015), the set-up in (11.10) formalises the
relationship between the mirror as a meta-system on the LHS of (11.10) which
records all ‘successful’ machine executions on the RHS of (11.10). The latter relates
to the canonical system involving online activity, while the LHS of (11.10) denotes
the offline simulations and the synchrony implied in (11.10) can integrate self and
the other as actor and observer.

Definition 7 A Mirror System. The two-place notation of the meta-system �.x; y/
can be used to define second-order encodings of the following kind:

(a) When player i has to determine her own best response function, the first place
entry x in �.x; y/ refers to what the player i does (viz., the g.n of best response
function fi) given that player j plays a strategy that is consistent with player i’s
belief denoted by y of what player j believes player i has done. Note this is the
self-referential second-order belief in Bhatt and Camerer (2005) that is linked
with player i’s choice of action.

(b) All Nash equilibria and other relevant fixed points of the game satisfying what
has been referred to as consistent alignment of beliefs (CAB, for short, Osborne
and Rubinstein 1994) have to be elements, �.x; x/, along the diagonal array of
this matrix. Note, �.x; y/ which are off-diagonal entries in matrix„ violate the
CAB condition.

Note, �.x; x/ diagonal points in the meta-system „ assume perfect mutual
mirroring. GTP meta-analyses are operations on Gödel numbers yielding simulated
or virtual experience of the actual phenomena but in principle bypasses the online
executions which involve canonical or motor activity. In other words, all permissible
inferences are obtained in short hand from encoded information. Likewise, on
account of the ‘only if’ condition in Theorem 2, many interesting aspects of the Nash
equilibria of computable games can be established only with reference to the meta-
analyses and information in the matrix „ in Fig. 11.3, with no explicit reference to
physical executions of programs.

An out-of-equilibrium belief state will be defined here which represents off-
diagonal terms in matrix„. This corresponds to the case (a) in Definition 7 when a
false state of belief is attributed regarding either player’s best response function fi,
i 2 .p; g/.
Definition 8 Deceit and False Belief. Denoting by x+ the negation of x brought
about by best response function f+i or f+j defined in (11.7), we have �.x+; x/ in the
two-place meta-representation of the game by say p. In case (a) in Definition 7, this
represents the case when player p knows that he has negated action with g.n x and
attributes to player g the false belief that player p is playing x.
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Both logically and neurophysiologically (see Markose 2015), this out-of-
equilibrium situation involving false beliefs has great significance.

It will be shown how total computable functions for the best response function fi,
i D p; g in a two-person game when applied to the diagonal array of the matrix
„ can dynamically move it to a specific row in matrix „. The Fixed Point or
Second Recursion Theorem states that there exists an index n of a program/set of
instructions that computes f .n/ and then applies f .n/ so that both n and f .n/ are
instructions for the computation of the same recursive function, f , and if the fixed
point is computable, the same outcome q is predicted by the operation of the two
programs.

Theorem 3. Fixed Point or Second Recursion Theorem (Cutland 1980, p. 200)
Let f be a total unary computable function, then there exists a number n such that

�f .n/ D �n: (11.11)

Note, f .n/ ¤ n being codes for different programs, but they identify the
same function and both sides of equation will yield an identical output if f has a
computable fixed point.

From a perspective of the dynamics implied by (11.11), the property that any
computable function f has an identifiable fixed point follows from the fact that a
function representing an encoded set of instructions when applied to the diagonal
array of matrix„ in Fig. 11.3 belongs to some row of the matrix„, say v, such that
the vC1th element in the vth row, � f .� .v;v//, and the vC1th element in the diagonal
array of „ coincide, yielding

�f .�.v;v// D ��.v;v/: (11.12)

This is demonstrated as follows by the vC1th element of the vth row of matrix„:

„v � f .�.0;0// � f .�.1;1// � f .�.2;2// : : : : � f .�.v;v// D ��.v;v/ ::� f .�.x;x// : : : : (11.13)

A major advantage of this framework is that the determination of Nash equi-
librium strategies involves the use of total computable best response functions
.fp; fg/ which can be shown to operate directly on points such as �.x; x/ to effect
computable transformations of the system from one row to another of matrix „
with special reference to its diagonal array; see Fig. 11.3. Theorem 3 is used in the
determination of the fixed points for the total computable functions best response
function fi, i D p; g. When one player applies his best response fi, Nash equilibria
require that both players identify the same prediction function as producing the
output of the game under conditions of consistent alignment of beliefs (that avoids
false beliefs given in Definition 8).

� fi�.v;v/.s/ D ��.v;v/.s/; i 2 .p; g/: (11.14)
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11.3 Nash Equilibria : When Does One Surprise
the Opposition?

11.3.1 Total Computable Best Response Functions
and Optimal Strategy Functions

The optimisation algorithms entailed in achieving best responses in the game arise
from the objective functions of players.

Definition 8. The objective functions of players are computable functions …i, i 2
.p; g/ defined over the partial recursive outcome functions specified in (11.10) and
the strategy functions specified in (11.7)

Arg Max
bi2Bi

…i.��.bi;bi/.s//; i 2 .p; g/: (11.15)

The choice set Bi contains the g.ns of strategy functions. The Nash equilibrium
strategies .ˇE

g ; ˇ
E
p / with g.ns denoted by .bEp ; b

E
g / entail up to two subroutines

or iterations, to be specified below. In principle, the strategy functions .ˇg; ˇp/

are universal Turing machines that simulate optimal strategies of the players that
satisfy (11.15) and involve the total computable best response functions .fp; fg/
which incorporate elements from the respective action sets A D .Ap;Ag/ and given
mutual second-order self-referential beliefs of one another’s optimal strategy. In
the Nash equilibrium best response calculus, the first subroutine denoted by g.n
b1 simulates the other player’s optimisation calculus to determine mutual optimal
actions. The problem is that actions can in general be implemented by any total
computable best response function, fi D �m, m 2 <, i 2 .p; g/ in (11.8).

In standard rational choice models of game theory, the optimisation calculus
(with Godel number z) in the choice of best response restricts choice to given action
sets. Hence, starting from some point �.x; x/, the strategy functions map from a
relevant tuple that encodes meta-information of the game into given action sets

ˇi.fi�.x; x/; z; s;A/! Ai and fi D �m; m 2 A; i 2 .p; g/: (11.16)

Unless this is the case, as the set < is not recursively enumerable, there is in
general no computable decision procedure that enables a player to determine the
other player’s best response function. However, in principle, a strategic decision
procedure .ˇg; ˇp/ for choice of best response, fi D �m, m 2 <, i 2 .p; g/, can map
into <� A, implying that an innovative action not previously in given action sets is
used.

ˇi.fi�.x; x/; z; s;A/! <�A and fi D f Ši D �m; m 2 <�A; i 2 .p; g/: (11.17)
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The question is which fixed point �.x; x/, fully deducible in the metamathe-
matics, will trigger such Nash equilibrium surprise strategies, (ˇEŠ

g ; ˇ
EŠ
p ), with g.ns

denoted by (bEŠp ; b
EŠ
g )?

It has been noted in passing by Anderlini and Sabourian (1995, p. 1351), based
on the work of Holland (1975), that heterogeneity in forms does not arise primarily
by random mutation but by algorithmic recombinations that operate on existing
patterns. However, a number of preconceptions from traditional game theory
such as the “givenness” of actions sets prevent Anderlini and Sabourian (1995)
from positing that players who as in (11.17), equipped with the wherewithal for
algorithmic recombinations of existing actions, do indeed innovate from strategic
necessity rather than by random mutation. Indeed, it is the very function of the
Gödel meta-framework to ensure that no move in the game made by rational and
calculating players can entail an unpredictable/surprise response function from set
<�A unless players can mutually infer by strictly codifiable deductive means from
�.x; x/ that (11.17) is a logical implication of the optimal strategy at the point
in the game. In other words, the necessity of an innovative/surprise strategy as a
best response and that an algorithmic decision procedure is impossible at this point
are fully codifiable propositions in the meta-analysis of the game. While it will be
shown what specific structure of opposition logically and strategically necessitates
surprise strategies in the Nash equilibrium of the game, in keeping with the set
theoretic formulation of novelty production in Fig. 11.2, the corresponding creative
and productive disjoint subsets of the strategy sets have also to be developed.

11.3.2 Fixed Point/Second Recursion Theorem: The Base
Point

The meta-analysis in the determination of Nash equilibrium strategies (ˇE
p ; ˇ

E
g ) with

g.ns (bEp ; b
E
g ) will be undertaken here. In the classic matching pennies game format,

the optimal outcomes for the government/regulator arise when the regulatee/private
sector is rule abiding or coordinating. Calculations start at this so-called base point
which is the fixed point of fg which has to be arrived at by player p in (11.18):

� fg�.ba;ba/.s/ D ��.ba;ba/.s/ D q: (11.18)

Here, ba is the g.n of the strategy fg that selects the optimal action a from set A
in (11.16) when g is put in for the index i. In the two-place notation in �.ba; ba/ on
the RHS of (11.18), the first ba is the code of the program from (11.16) as adopted
by p to simulate the optimal policy rule a, and the second place ba denotes that
p believes that g believes and acts on the basis that the p is rule abiding and has
left the policy rule a unchanged. The prediction functions in (11.18) ��.ba;ba/.s/
are computable, and outcomes of the policy rule a are predictable and q is the
desired outcome that g wants in state variables when applying this policy rule a.
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It is convenient to assume that policy rule a is optimal for g if the private sector
is rule abiding. By rule abiding is meant that p will leave the system unchanged in
terms of the row ba of matrix „ in Fig. 11.3. However, the predictable outcome q
may involve asset prices or quantity positions, which may attract profitable arbitrage
in the form of the Liar strategy against it furnishes the conditions under which a
transparent/predictable rule will fail to be a Nash equilibrium strategy.

11.3.3 The Liar/Rule Breaker Strategy: The Logic
of Opposition

For player p, for the given .a; s/ it may be optimal for p to apply the Liar strategy,
f+p �.ba; ba/, with code b+a . Formally, the Liar strategy has the following generic
structure. For any state s when the rule a applies,

� f+p �.ba;ba/.s/ D q	; q	 … E�ba $ ��.ba;ba/.s/ D q; q 2 E�ba : (11.19)

For all s when policy rule a does not apply,

f+p D 0 W Do Nothing: (11.20)

The Liar can successfully subvert with certainty in [LHS of (11.19)] if and only
if ($) the policy rule a has predictable outcomes [RHS of (11.19)] and f+p itself is
total computable. Thus, f+p D �m, m 2 Ap, must include a codified description of
an action rule if undertaken by the Liar can subvert the predictable outcomes of the
policy rule a. Formally, if q is predicted, then the application of f+p to �.ba; ba/ is
equivalent to the condition of deliberate deceit in Definition 8(a), and the g.n of this
strategy is �.b+a ; ba/. That is, p has negated ba and he knows that g harbours a false
belief about him, that p is rule abiding with ba. This out-of-equilibrium �.b+a ; ba/
point in the game is off diagonal in terms of the matrix „ and will bring about an
outcome q	 … E�ba which belongs to a set disjoint from the set that contains the
desired output of rule a for all s for which rule a applies, viz., E�ba \E�b+a D ;. The
outcomes .q	; q/ can be zero sum, but in general we refer to property q	 … E�ba
in (11.19) as being oppositional or subversive.

Thus, we come to the point as to why agents who precipitate the Wolfram–
Chomsky Type IV dynamics with innovation have to have powers of self-referential
calculation. As discussed, in a Nash equilibrium, p has to remove any attribution of
false belief to g about p’s identity as the Liar.

Theorem 4 Non-computable Fixed Point. The prediction function indexed by the
fixed point of the Liar/rule breaker best response function f+p in (11.21) is not
computable and corresponds to the famous Gödel sentence for the game.

� f+p �.b+a ;b
+
a /
.s/ D ��.b+a ;b+a /.s/: (11.21)
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The non-computability of the fixed point follows from the property that the
output of the game at this point cannot be predicted in the meta-system. Proof is
standard and rests on premise that formal system is consistent. Assume that the
fixed point of the recursive function f+p in (11.21) is computable, then if the R.H.S
of (11.21) produces the output q and the L.H.S by the definition of the Liar strategy
produces output q	. Hence, if (11.21) is computable, we have q D q	 which is a
contradiction. Though the conditions of the out-of-equilibrium success of the Liar
are spelt out in (11.19) and are computable, in many fast moving co-evolutionary
systems, predictable strategies such as ba or b+a may not be observed, and instead
only the arms race in novelty given in the next section is what persists such that both
players coexist.19

11.3.4 Surprise Nash Equilibria

There is no paradox in stating that as both players can prove the non-computability
of (11.21), they will be able to mutually deduce that the only Nash equilibrium
strategies for both players that is consistent with meta-information in the fixed
point in (11.21) is one that involves strategies that elude prediction from within the
system. On substituting the fixed point �.b+a ; b

+
a / in (11.21) for �.x; x/ in (11.17),

g’s Nash equilibrium strategy ˇE
q with g.n bEq implemented by an appropriate total

computable function such as in (11.8) must be such that

ˇE
g .fg�.b

+
a ; b

+
a /; z; s;A/! <� A and fg D f EŠg D �m; m 2 < � A: (11.22)

That is, f EŠg implements an innovation and bEg Š is the g.n of the surprise strategy
function in (11.22), hence �.bEg Š; b

E
g Š/ is the fixed point of f EŠg .

Likewise, for player p, f EŠp implements an innovation in (11.23) and bEp Š is the g.n
of the surprise strategy function, viz., �.bEp Š; b

E
p Š/ the fixed point of f Ep Š. Thus,

ˇE
p .fp�.b

+
a ; b

+
a /; z; s;A/! <� A and fp D f EŠp D �m; m 2 < � A: (11.23)

The intuition here is that from the non-computable fixed point with the Liar,
the total computable best response function implementing the Nash equilibrium
strategies can only map as above into domains of the action and strategy sets of
the players that cannot be algorithmically enumerated in advance.

Using Theorem 4, Definition 5 and Lemma 2, we will now prove the incom-
pleteness results for the strategy sets of the players from the Liar/rule breaking

19In Markose (2015), it is suggested that using environments suitable for neurophysiological
experiments of such a game, it is interesting to identify the juncture at which a player p knows
his best payoffs come from the out-of-equilibrium configuration wherein the other player g has to
be kept in a state of false belief �.b+a ; ba/ given in Definition 7.
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strategy. Analysis will be done for p’s strategy set Bp as the strategy functions ˇp
and ˇg, respectively, can be shown to implement a reduction, as in Lemma 2, of the
prototypical creative set C in (11.4).

Corresponding to those .agl; s/ tuples, agl 2 Ag of g’s base point optimal strategy
for which p’s best response fp is to be rule abiding, viz., fp D 1, the g.ns of these
optimal strategies for p, b1p 2 Bp result in computable fixed points. Here, in the
case when p is rule abiding, b1 indicates the subroutine 1, which is sufficient for
the determination of the Nash equilibrium strategy. This set denoted by ˇCp which
contains all of g’s actions for which p is rule abiding can be generated by recursive
methodology. Thus,

ˇ1p D fb1pj�bp1.b
1
p/ # for all .agl; s/; agl 2 Ag; fp D 1g: (11.24)

Using logic in (11.19), (11.20), a set ˇ+p can be recursively generated so that
it contains the g.ns of p’s strategies for when it is optimal for p to use the Liar
best response function f+p to those .agl; s/ tuples, agl 2 Ag of g’s action set.
By Theorem 4, this is a set of p’s strategies that can be proven to result in non-
computable fixed points. Hence,

ˇ+p D fb1pj�bp1.b
1
p/ " for all .agl; s/; agl 2 Ag; fp D f+p g: (11.25)

For the same .agl; s/ tuple, agl 2 Ag constituting g’s base point optimal strategy,
p’s optimal strategy b1p cannot belong to both ˇCp and ˇ+p . Thus, logical consistency

of the meta-analysis requires ˇCp \ ˇ+p D ;, and these are recursively enumerable

disjoint sets as required by Lemma 2. It is convenient to index them as ˇ1p D W�1l
and

ˇ+p D W�+n
where n denotes a sequence of elements in the sets with the nth element

of W�+n
referring to �.b+a ; b

+
a / in (11.21). As the set ˇ+p contains known strategies

b1p that imply the negation of g’s objectives, denoted generically as q in (11.19),
for p and g to achieve their, respective, desired objectives of q+ and q, in a Nash
equilibrium, these can only be done by implementing surprise strategies that map
outside of set A. The second iteration or subroutine of the Nash equilibrium strategy
denoted as b2 implements a consistent recursive reduction of the sets ˇ1p to ˇCp and

as in Lemma 2, ˇ+p is mapped into the complement set of ˇCp which is denoted as

ˇC	p :

ˇC	p D fx j �x.x/ "; x 2 Bpg: (11.26)

Hence, the incompleteness of p’s Nash equilibrium strategy set Bp that arises
from the agency of the Liar strategy requires the proof that ˇC	p is productive as in
Definition 5 and Lemma 2.

Following the steps in Lemma 2, bEŠp D g:n.b2.fp.�+n // D bŠn is the g.n for
the productive function defined by the Nash equilibrium surprise strategy function
f EŠp implementing an innovation in (11.23). Hence, the subroutine denoted by b2
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bp
E! =bn

!=g.n (b2( fp ( n )))

p
+

!
n

W

p
+~

Fig. 11.4 The incompleteness of p’s strategy set Bp: surprise strategy .g:n/

implements the recursive reduction from ˇ+p D W�+n
to a recursively enumerable

set W�Šn
indexed by �Šn. The incompleteness of p’s Nash equilibrium strategy set is

given in Fig. 11.4.

Theorem 5: Productive Function and Surprise Nash Equilibrium. (i) By con-
struction of the recursive reduction using b2 on ˇ+p D W�+n

, bEŠp D bŠn D
g:n.b2.fp.�+n /// is g.n of the Nash equilibrium total computable best response
function f EŠp , which implements an innovation as in (11.23) and is productive

function of the set ˇC	p such that bŠn 2 ˇC	p � W�Šn
and bŠn … ˇCp [ W�Šn

as

shown in Fig. 11.4. Here, W�Šn
is a recursively enumerable subset of ˇC	p , and

p’s Nash equilibrium strategy set Bp is incomplete.
(ii) Once the surprise Nash equilibrium strategy has been implemented by p with

g.n bŠn, the growth of the strategy set can be proven to take the following
nonanticipating form and is shown in Fig. 11.5:

W�ŠnC1
D W�1n

[ fbŠn D g:n.b2.fp.�
+
n ///g (11.27)

Proof. The proof of (i) follows from Lemma 2. Proof of (ii) requires showing that
surprise strategy functions have g.ns bŠn that can only be added on to the extant
productive set W�Šn

and cannot belong to W�Šn
itself. As given in Lemma 2, ˇ+p D

W�+n
D .b2/�1.W�Šn

/, implying that �Šn D g:n.b2.�+n //. Hence, for any n, if bŠn 2
W�Šn

will imply that �+n 2 W�+n
and hence lead to a conclusion that the fixed point

�.b+a ; b
+
a / in (11.21) is computable.

The significance of Theorem 5 is that the surprise strategy is fully definable as
a meta-proposition and is paradox free as the surprise strategy is indeed a pure
innovation in the strategy set Bp and outside of sets ˇCp [W�Šn

that can be enumerated
by recursive calculation and information in G; see Fig. 11.5. It is precisely the
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!, ....
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Fig. 11.5 Arms race in surprises/innovations: growth of the productive strategy set

absence of logical inconsistency and strategic irrationality in the meta-proposition
on the surprise strategy that sustains the consistent alignment of beliefs condition
of a Nash equilibrium with surprises. Thus, as already observed, for human players
utilising ideal reasoning provided by Gödel meta-analysis, the set< of best response
functions in (11.8) should provide an inexhaustible source of surprise or innovative
strategies. However, by the same token, by Theorem 5, there is no algorithmic
way by which the prediction function with the index �.bEp Š; b

E
p Š/ at the surprise

equilibrium can produce an output q though both players can mutually identify that
�.bEp Š; b

E
p Š/ is the fixed point of the surprise Nash equilibrium best response function

f Ep . Indeed, �.bEp Š; b
E
p Š/ says that this is so self-referentially. In a nutshell ‘innovate or

die’ describes this Nash equilibrium in which neither party can unilaterally deviate
without drastically impairing their prospects. The Gödel numbers bŠ0; b

Š
1; b

Š
3; : : : ; b

Š
n

in Fig. 11.5 can be interpreted to be the g.ns of the ‘antibodies’ produced in the
oppositional encounters.

Theorem 5 and Fig. 11.5 on the surprise strategy in a Nash equilibrium of a game
formally correspond to the set theoretic proof of Gödel’s undecidable proposition in
miniature, Cutland (1980). We have succeeded in showing the formal equivalence
between the Nash equilibrium with surprise or novelty in Fig. 11.4 and the phase
transition in dynamical systems theory that characterises the endogenous production
of novelty as in Fig. 11.2. Following from part (ii) of Theorem 5 and as seen in
Fig. 11.5, once players are locked in an oppositional structure, the strategy set of
each player will grow utilising the formalism of an arms race in novelty.
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11.4 Concluding Remarks

The paper has given a unifying framework using recursion function theory and
the vehicle of the Second Recursion Theorem to explain how the Gödelian
foundations of non-computability that arises from self-refuting structures have
far-reaching implications for some of the fundamental issues involving complex
strategic behaviour in economic systems. The reaction function that systematically
falsifies forecasts or subverts predictable outcomes of rules is the Liar strategy.
Logicians and some decision theorists have long known of the problem of epistemic
indeterminacy posed by the Liar (see Koons 1992; Simmons 1993). Brian Arthur
(1994) has intuitively outlined how unique computable forecast rules cannot exist
when games have contrarian- or minority-type payoff functions as in a stock market
game when players get the best payoffs when they are contrarian vis-á-vis what the
majority do.

For any rule that satisfies the formal conditions on the right-hand side of (11.19),
especially if it involves predictable outcomes for asset prices or quantity positions,
a Liar strategy against it furnishes us with conditions under which a transpar-
ent/predictable rule will fail to be a Nash equilibrium strategy. The agent applying
the transparent/predictable rule can have his desired objectives contravened by the
Liar. No rational agent can be assumed to operate such a predictable rule, and
no institution based on it will survive unless one of the following occurs: the
rule is attenuated, the Liar is eliminated or the agents resort to an arms race in
innovations.20

This paper has indicated that Gödel metamathematics that underpin offline
simulations and incompleteness are at the heart of both social coordination and
human proteanism. The discussions suggest that the capacity for syntactical encod-
ing of a mutual state of hostility, negation or deceit, viz., the embedding of the
Gödel sentence, is what is logically necessary for novelty-producing behaviours.
The deeply contextual points of exit and innovation, which follow in lock step,
have been demonstrated in Theorem 5. The exit routes are guided by the encoded
information on specific hostile interactions. The radical uncertainty associated with
the Gödel exit points, as noted in Markose (2004, 2005), does not correspond
to white noise that economists typically use to model innovations and surprise.
Thus, the explication of the logical foundations of novelty production in a strategic
setting suggests many rich lines of investigation. These include empirical neuro-
physiological experiments for evidence of the capacity of the mirror neuron system

20It is beyond the scope of this paper to discuss why a complexity perspective on radical uncertainty
has a bearing on the long tradition of liberal jurisprudence associated with Kant (1781) and
Hayek (1960) that universalisable rules of just society are end neutral and have no predictable
consequences that are person, place or time specific. It can be conjectured, along the lines of the
famous dictum of Hirschman (1991) that certain rules that aim to achieve specific ends in society
may lead to futility, perversity and jeopardy that culminates in system failure as a result of gaming
and protean agents. Likewise, absenting predictability of outcomes is the basis of a no arbitrage
equilibrium in many economic models.
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to do offline simulations that can produce social coordination, anti-coordination
and innovation. The urgency for studies on the logical and neurophysiological
foundations of complex Type IV dynamics in the Wolfram–Chomsky schema arises
from the fact that extant mathematical models in economics of strategic behaviour
cannot account for protean behaviour which is ubiquitous in socio-economic and
biological systems. These foundational studies are necessary to meet the renewed
call to arms for a complexity perspective in the aftermath of the 2007 financial crisis
as the continued black box approach to innovation and protean behaviours, that can
both enhance economies and destabilise them by regulatory arbitrage, proves to be
a stumbling block in the modelling and management of such complex systems.

Acknowledgements I’m grateful for the interest at the 2015 AUEB 12th Annual Summer School
in ideas relating to computability and complexity for economics. Discussions with AUEB Summer
School participants in July 2015 and encouragement from Thanos Yannacouplos have contributed
to this paper. Over the years, there have been discussions with Steve Spear, Peyton Young,
Aldo Rustichini, Ken Binmore, Arthur Robson, Kevin McCabe, Steven Durlauf, Shyam Sunder
and Vela Velupillai. The 2014 ESRC-funded Diversity in Macroeconomics Conference where I
had the chance to assemble Vittorio Gallese, Scot Kelso and Eshel Ben Jacob has helped me
to take this field to a new frontier. I have also benefitted from feedback from participants at
invited Graduate lectures at the following institutions/workshops: 2012 Kiel Institute of the World
Economy Summer School, 2010 Ruhr Bochum Economics Department invited Graduate lectures,
2009 Institute for Advanced Studies at Glasgow Workshop, 2002–2009 Lectures at the Centre
for Computational Finance and Economic Agents and presently the new MSc Computational
Economics, Financial Markets and Policy at the University of Essex.

References

Albin, P.: The metalogic of economic predictions, calculations and propositions. Math. Soc. Sci. 3,
329–358 (1982)

Albin, P.: In: Duncan F. (ed.) Barriers and Bounds to Rationality, Essays on Economic Complexity
and Dynamics in Interactive Systems. Princeton University Press, Princeton (1998)

Anderlini, L.: Some notes on Church’s thesis and the theory of games. Theory Decis. 29, 19–52
(1990)

Anderlini, L., Sabourian, H.: Cooperation and effective computability. Econometrica 63, 1337–
1369 (1995)

Arthur, W.B.: On the evolution of complexity. Working Paper, 93-11-070. Santa Fe Institute, Santa
Fe, NM (1993)

Arthur, W.B.: Inductive reasoning and bounded rationality. Am. Econ. Rev. (Pap. Proc.) 84, 406–
411 (1994)

Arbib, M., Fagg, A.: Modeling parietal-premotor interactions in primate control of grasping.
Neural Netw. 11, 1277–1303 (1998)

Axelrod, R.: Risk in Networked Information Systems, Mimeo. Gerald R. Ford School of Public
Policy, University of Michigan. (2003); Baumol, W.: The Free Market Innovation Machine.
Princeton University Press, Princeton (2002)

Baumol, W.: The Free Market Innovation Machine. Princeton University Press, Princeton (2002)
Baumol, W.: Red Queen games: arms races, rule of law and market economies. J. Evol. Econ.

14(2), 237–247 (2004)



11 The Gödelian Foundations of Self-Reference, the Liar: : : 243

Beinhocker, E.: Evolution as computation: integrating self-organization with generalized. J. Inst.
Econ. 7(3), 393–423 (2011)

Ben-Jacob, E.: Bacterial wisdom, Gödel’s theorem and creative genomic webs. Phys. A Stat. Mech.
Appl. 248(1), 57–76 (1998)

Bhatt, M., Camerer, C.: Self-referential thinking and equilibrium as states of mind in games: FMRI
evidence. Games Econ. Behav. 52, 424–459 (2005)

Binmore, K.: Modelling rational players: Part 1. J. Econ. Philos. 3, 179–214 (1987)
Byrne, R., Whiten, A.: (1999) Machiavellian Intelligence: Social Expertise and the Evolution of

Intellect in Monkeys, Apes, and Humans. Oxford University Press, Oxford (1988)
Canning, D.: Rationality, Computability and Nash equilibrium. Econometrica 60, 877–895 (1992)
Casti, J.: Complexification: Explaining a Paradoxical World Through the Science of Surprises.

London Harper Collins, London (1994)
Colander, D.: The Complexity Vision and the Teaching of Economics, Cheltenham (2000)
Cutland, N.J.: Computability: an introduction to recursive function theory, Cambridge University

Press. expectations, learning and convergence to rational expectations equilibrium. Am. Econ.
Rev. 72, 652–68 (1980)

Durlauf, S.: Complexity, economics and public policy. Pol. Philos. Econ. 11(1), 45–75 (2012)
Gallese, V., Sinigaglia, C.: What is so special about embodied simulation? Trends Cogn. Sci.

15(11), 515 (2011)
Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G.: Action recognition in the premotor cortex. Brain

119(2), 593–609 (1996). doi: 10.1093/brain/119.2.593. PMID 8800951
Gödel, K.: On Formally Undecidable Propositions of Principia Mathematica and Related Systems

[Translation in English in Gödel’s Theorem in Focus, ed. by S.G Shanker, 1988, Croom Helm]
(1931) Goodhart C.: Central Bankers and Uncertainty, Keynes Lecture to the Royal Academy.
Reprinted in the Bank of England Quarterly Bulletin, Feb, pp. 102–114 (1999)

Goodhart, C.: Central Bankers and Uncertainty, Keynes Lecture to the Royal Academy. Reprinted
in the Bank of England Quarterly Bulletin, Feb, pp. 102–114 (1999)

Haldane, A.: Financial arms races, speech delivered at the institute for new economic thinking,
Berlin, 14 April 2012

Hayek, F.A.: The Sensory Order. The University of Chicago Press, Chicago (1952)
Hayek, F.A.: The Constitution of Liberty. University of Chicago Press, Chicago (1960)
Hayek, F.A.: The Theory of Complex Phenomena. Studies in Philosophy, Politics, and Economics.

The University of Chicago Press, Chicago (1967)
Hirschman, A.O.: The Rhetoric of Reaction: Perversity, Futility, Jeopardy. The Belknap Press of

Harvard University Press, Cambridge (1991)
Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)
Kant, I.: Critique of Pure Reason (1965). Translated by Norman Kemp Smith. St. Martin’s, New

York (1781)
Koons, R.: Paradoxes of Beliefs and Strategic Rationality. Cambridge University Press, Cambridge

(1992)
Koppl, R., Rosser B.: Everything i might say will already have passed through your mind.

Metroeconomica 53(4), 339–360 (2002)
Langton, C.: Life at the edge of chaos. In: Langton, G.C., Taylor, C., Doyne Farmer, J., Rasmussen,

S. (eds.) Artificial Life II (Sante Fe Institute Studies in the Sciences of Complexity, vol. 10).
Addison-Wesley, Reading (1992)

Markose, S.M.: The new evolutionary computational paradigm of complex adaptive systems: chal-
lenges and prospects for economics and finance. In: Chen, S.-H. (ed.) Genetic Algorithms and
Genetic Programming in Computational Finance, pp. 443–484. Kluwer Academic Publishers,
Boston (2002). Also Essex University Economics Department DP no. 552, July 2001

Markose, S.M.: Novelty in complex adaptive systems (CAS): a computational theory of actor
innovation. Phys. A Stat. Mech. Appl. 344, 41–49 (2004). Fuller details in University of Essex,
Economics Department. Discussion Paper No. 575, January 2004

Markose, S.M.: Computability and evolutionary complexity: markets as complex adaptive systems
(CAS). Econ. J. 115, F159–F192 (2005)

http://dx.doi.org/10.1093/brain/119.2.593. PMID 8800951


244 S. Markose

Markose, S.M.: Mirroring, Offline Simulation and Complex Strategic Interactions: Coordination,
Anti-Coordination and Innovation. University of Essex Mimeo, Essex (2015)

Nachbar, J.H., Zame,W.R.: Non-computable strategies and discounted repeated games. Econ.
Theory 8, 111–121 (1996)

Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)
Post, E.: Recursively enumerable sets of positive integers and their decision problems. Bull. Am.

Math. Soc. 50, 284–316 (1944)
Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recognition of motor

actions. Cogn. Brain Res. 3, 131–141 (1996)
Rogers, H.: Theory of Recursive Functions and Effective Computability. Mc Graw-Hill, New York

(1967)
Sayama, H.: Construction theory, self-replication, and the halting problem. Complexity (2008).

doi:10.1002/cplx
Schumpeter, J.A.: Capitalism, Socialism and Democracy, p. 139. Routledge, London (1994). ISBN

978-0-415-10762-4. (1942)
Simmons, K.: Universality of the Liar, Cambridge University Press, Cambridge (1993)
Smullyan, R.: Theory of Formal Systems. Princeton University Press, Princeton (1961)
Spear, S.: Learning rational expectations under computability constraints. Econometrica 57, 889–

910 (1989)
Tesfatsion, L., Judd, K.L. (eds.): Handbook of Computational Economics: Volume2, Agent-Based

Computational Economics. Handbooks in Economics Series, 904pp. Elsevier, North-Holland
Imprint, Amsterdam (2006)

Tognoli, E., Lagarde, J., de Guzman, G.C., Kelso, J.A.S.: The phi complex as a neuromarker of
human social coordination. Proc. Natl. Acad. Sci. USA 104(19), 8190–8195 (2007)

Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc.
Lond. Math. Soc. 2 42, 230–265 (1937)

Wolfram, S.: Cellular automata as models of complexity. Physica 10D, 1–35 (1984)
Wolfram, S: A New Kind of Science. Wolfram Media, Inc., Champaign (2002)

http://dx.doi.org/10.1002/cplx


Chapter 12
Revenue Sharing in European Football Leagues:
A Theoretical Analysis

Bodil Olai Hansen and Mich Tvede

Abstract In the present chapter, a general model of competition between clubs
in sports leagues with flexible supply of inputs is studied. There are externalities
between clubs because it takes more than one club to produce games and tour-
naments. It is assumed that the externalities take the form of complementarities.
Firstly, it is shown that revenue sharing leads to lower overall quality of sports
leagues. Secondly, it is shown that the optimal quality for the league is lower
(higher) than the quality in a league without revenue sharing in case of negative
(positive) externalities between clubs. Thirdly an example is used to illustrate the
findings.

Keywords Complementarity • Revenue sharing • Sports leagues • Supermodu-
larity • Competition in sports leagues • European vs. American sports leagues •
Level of talent • Profit maximization

JEL Classification: C72, D21, L83.

12.1 Introduction

In the present chapter, a model of competition between clubs in a European football
league is presented. Externalities are important in sports leagues because it takes
more than one club to produce as explained in Rottenberg (1956) and Neale
(1964). Indeed two clubs are needed for a game and several clubs are needed for a
tournament. The competitive balance is related to the relative distribution of quality
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across clubs and the aggregate level to the aggregate sum of talent in the sports
league. The value of a sports league depends on the competitive balance in as well
as the aggregate quality of the sports league: if the quality of clubs is balanced and
high, then the outcome of the competition in the sports league is more unpredictable
and games are more exciting to watch. However, since clubs are concerned with their
own performance rather than the performance of the sports league, there is no reason
to expect the distribution of quality between clubs to be sufficiently balanced or the
overall quality of the sports league to be sufficiently high to be welfare maximizing.

The presence of externalities in sports leagues implies that there are potential
gains from internalization. Suppose that the quality of a club is measured by the
level of talent in that club. On the one hand, if one additional unit of talent is
distributed between clubs such that the competitive balance is unchanged, then
the value of the sports league should increase because the competitive balance is
unchanged and the aggregate level of talent is increased. On the other hand, if one
additional unit of talent is distributed to the club with the highest level of talent,
then the change in the value of the league should be ambiguous, because the sports
league is less balanced but the aggregate level of talent is increased. Hence, there
are complementarities in value creation because the competitive balance matters.
Several instruments including different forms of revenue sharing of both matchday
revenues and revenues from sale of broadcast rights, regulation of wages including
salary caps and luxury taxes, and more recently Financial Fair Play introduced by
UEFA for European football can be seen as attempts to improve the competitive
balance.

There are several differences between American sports leagues such as MLB,
NBA, and NFL and European football leagues such as the Premier League in
UK, Primera Division in Spain, Serie A in Italy, and Bundesliga in Germany. One
difference is that American sports leagues are closed in the sense that there is no
relegation or promotion, while in European football leagues there is. Consequently
clubs close to relegation or promotion face more uncertainty about future income
than American clubs and other clubs in European football leagues. Another
difference is that in American sports leagues, the market for talent is closed in the
sense that the supply of talent is more or less fixed, while it is open in European
football leagues in the sense that the supply of talent in every league is flexible. On
the one hand, American sports leagues face little or no international competition
since there are no other leagues of compatible quality for these sports. Therefore
players are left with no alternatives to the American sports leagues. Consequently,
the supply of talent is essentially fixed. On the other hand, European football leagues
face fierce competition since the quality of the Premier League, Primera Division,
Serie A, and the Bundesliga is compatible. Therefore players can move between
different leagues. Consequently, the different leagues compete over talent making
the supply of talent variable in every league.

There has been quite some interest in analyzing the effects of revenue sharing,
salary caps, and luxury taxes. The focus has been on the competitive balance rather
than the overall quality of leagues. One reason being that the overall quality of
American sports leagues is fixed because the market for talent is closed. Another
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reason being that in a large part of the literature, revenues of clubs have been
modeled as depending on competitive balance and not on overall quality. See
Atkinson et al. (1988), Burg and Prinz (2005), Dietl and Lang (2008), Dietl
et al. (2010), Dobson and Goddard (2014), El-Hodiri and Quirk (1971), Fort
and Quirk (1995), Kesenne (2000a,b, 2007), Marburger (1997), Szymanski (2003,
2004, 2007), Szymanski and Kesenne (2004), Vrooman (1995, 2007), and Whitney
(2005). However, the overall quality is not fixed in European football leagues
because talent can be exported to and imported from other football leagues.
Consequently leaving out the overall quality of leagues in the modeling of revenues
of clubs makes the analysis less relevant for European football leagues. A couple of
recent exceptions are Dietl et al. (2009) and Dobson and Goddard (2014) where
revenues depend on both the competitive balance and the overall quality of the
league.

In the present we focus on the relation between revenue sharing and the overall
quality in European football leagues. See Atkinson et al. (1988), Burg and Prinz
(2005), Dietl and Lang (2008), Dietl et al. (2010), Dobson and Goddard (2014),
El-Hodiri and Quirk (1971), Fort and Quirk (1995), Kesenne (2000a), Marburger
(1997), Szymanski (2003, 2004), Szymanski (2004), Vrooman (1995, 2007), and
Whitney (2005) for more on revenue sharing. See Burg and Prinz (2005), Dietl
et al. (2009), Fort and Quirk (1995), and Kesenne (2000b) for more on salary caps.
See Marburger (1997) and Szymanski (2003, 2004) for more on luxury taxes.

We present a model of competition between clubs in European football leagues.
In the model: (1) the quality of a club is described by the level of talent in
the club; (2) the revenue of every club depends on the distribution of talent in
the sports league; (3) the cost of every club depends on its level of talent; and
(4) clubs maximize profits. Moreover, there are complementarities in revenues.
The analysis is based on complementarity and supermodularity; see Milgrom and
Shannon (1994) and Topkis (1998) for more on these notions.

Firstly the distribution of talent in sports leagues without revenue sharing is
compared with the distribution of talent in sports leagues with revenue sharing.
It is found that revenue sharing lowers the aggregate level of talent. Secondly
the distributions of talent in sports leagues without and with revenue sharing are
compared with the distribution of talent that maximizes the aggregate profit of the
sports leagues. It is found that if there are positive (negative) externalities between
every club and the rest of the league, then the level of talent in sports leagues without
redistribution is too low (high). Thirdly an example is used to illustrate the findings.
It may clarify to consider the example while reading the rest of the chapter.

12.2 Setup and Assumptions

Consider a sports league with a finite number n of clubs j 2 N D f1; : : : ; ng.
Clubs hire talent and compete. Every club is characterized by a revenue function
that depends on the level of talent in the club as well as the level of talent in the rest
of the league Rj W RC � R

n�1C ! R and a cost function that depends on the level of
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talent in the club Cj W RC ! R. For a level of talent tj in club j and a list of levels of
talent t�j D .t1; : : : ; tj�1; tjC1; : : : ; tn/ in the rest of the league, the profit of club j is
Rj.tj; t�j/ � Cj.tj/. With some abuse of notation, the revenue in club k is sometimes
written Rk.tj; t�j/ rather than Rk.tk; t�k/.

The following assumptions are supposed to be satisfied:

(A.1) Cj 2 C.RC;R/.
(A.2) Rj 2 C.RnC;R/.
(A.3) There is ˛j > 0 such that Rj.tj; t�j/ � Cj.tj/ � 0 for all tj � ˛j and t�j 2

R
n�1C .

(A.4) There is ˇj > 0 such that
P

k Rk.tj; t�j/ � Cj.tj/ � 0 for all tj � ˇj and
t�j 2 R

n�1C .

Assumptions (A.1) and (A.2) are natural. Assumption (A.3) implies that for every
club there is an upper limit on the level of talent for which its profit is positive.
Assumption (A.4) implies that for every club there is an upper limit on the level of
talent for which the aggregate revenue minus cost of the club is positive. Revenues
being bounded from above and costs tending to infinity as levels of talent tend
to infinity imply (A.3) and (A.4) are satisfied. Clearly the advantage of imposing
weak assumptions on revenue and cost functions is that results apply to all functions
satisfying these assumptions.

There are externalities between clubs because the revenue in every club depends
on the level of talent of the club as well as the level of talent in the rest of the league.
The form of the externalities is discussed in Sects. 12.4 and 12.5.

The competitive balance is related to the relative distribution of talent across
clubs .t1=

P
k tk; : : : ; tn=

P
k tk/ and the aggregate level to the sum of talent in the

league
P

k tk. Let4 	 R
nC be defined by

4 D f .w1; : : : ;wn/ 2 R
n�1C jPkwk D 1 g

be the set of possible relative distributions of talent. Then the map F W RnC n f0g !
4� RCC defined by

F.t1; : : : ; tn/ D
�

t1P
ktk
; : : : ;

tnP
ktk
;
P

ktk

�

mapping distributions of talent of to relative distributions of talent across the first
n� 1 clubs and the aggregate level of talent is a diffeomorphism. Indeed the inverse
of F is G W 4 �RCC ! R

nC n f0g defined by

G.w1; : : : ;wn;T/ D .w1T; : : : ;wnT/

mapping relative distributions of talent across the first n� 1 clubs and the aggregate
level of talent to distributions of talent. Therefore, it does not matter whether revenue
functions are considered to depend on distributions of talent .t1; : : : ; tn/ or relative
distributions of talent and the sum of talent .w1; : : : ;wn;T/. However, information
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is lost in case revenue functions depend on relative distributions of talent and
nothing else. In the present chapter revenue functions are considered to depend on
distributions of talent rather than relative distributions of talent and the sum of talent
making the assumptions on revenue functions simpler to interpret.

12.3 Equilibrium

The problem of club j is to choose a level of talent tj to maximize its profit given the
level of talent in the rest of the league t�j.

max
tj�0

Rj.tj; t�j/� Cj.tj/:

In equilibrium every club maximizes its profit given the level of talent in the rest
of the league. However, there is no market clearing for talent because as explained
in the introduction a club in one European football league is able to attract talent
from another club in another European football league.

Definition 1. An equilibrium is a list of levels of talents Nt D .Nt1; : : : ; Ntn/ such that
Ntj is a solution to the problem of club j given Nt�j.

The assumptions on revenue and cost functions are too weak to ensure existence
of equilibrium. Therefore consider the effect of increasing the level of talent in club
j on revenue of club j. Suppose that the higher the level of talent in the rest of the
league, the more the revenue of club j increases.

Increasing Differences in Revenue (IDR). For all pairs of lists of levels of talent
.t; u/, where uk � tk for every club k,

Rj.uj; u�j/ � Rj.tj; u�j/ � Rj.uj; t�j/� Rj.tj; t�j/

for every club j.

IDR implies that there are complementarities in the revenue of a club between its
level of talent and the levels of talent in other clubs. Suppose that revenue functions
are twice differentiable. Then

@2Rj.tj; t�j/
@tj@tk

� 0

for every j and k ¤ j implies IDR is satisfied.

Theorem 1. Assume IDR is satisfied. Then there is an equilibrium.

Proof. Firstly it is shown that the game .N ; .Tj; � j/j/, where Tj D RC is the
strategy set for choice of talent and � j W RnC ! R is defined by
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� j.tj; t�j/ D Rj.tj; t�j/ � Cj.tj/

is the payoff function, is a supermodular game. Secondly Theorem 4.2.1. in Topkis
(1998) on existence of equilibrium in supermodular games is applied.

The game .N ; .Tj; � j/j/ is supermodular: 1. Tj is a lattice; 2. � j satisfies IDR
because Rj satisfies IDR; and 3. � j is supermodular because all functions from RC
to RC are supermodular. For every t�j if tj is a solution to the problem of club
j, then tj � ˛j. Therefore the set of equilibria for the games .N ; .Tj; � j/j/ and
.N ; .Sj; � j/j/, where Sj D Œ0; ˛j�, coincide. According to Theorem 4.2.1. in Topkis
(1998), the game .N ; .Sj; � j/j/ has an equilibrium. Q.E.D.

In Theorem 1 it is shown that there is an equilibrium, but it is not shown that the
equilibrium is unique. However, as stated in Theorem 4.2.1 in Topkis (1998), the set
of equilibria is a lattice with a greatest equilibrium G 2 R

nC and a least equilibrium
L 2 R

nC. Therefore if Nt is an equilibrium, then Gj � Ntj � Lj for every j and if Nt and
Nt0 are equilibria, then .maxfNt1; Nt01g; : : : ;maxfNtn; Nt0ng/ and .minfNt1; Nt01g; : : : ;minfNtn; Nt0ng/
are equilibria too.

12.4 Revenue Sharing

In the present section, it is discussed how revenue sharing, where each club pays
a tax proportional with its revenue and receives a subsidy proportional with total
revenue of the league, influences equilibria.

Consider revenue sharing such that every club pays a share of its revenues and
receives a share of the collected revenues. Let � 2 Œ0; 1� be the degree of revenue
sharing, then the problem of club j is

max
tj�0

.1 � �/Rj.tj; t�j/C �

n

X

k

Rk.tk; t�k/� Cj.tj/:

If performance and revenue are positively correlated, then revenue sharing corre-
sponds to making subsidies negatively correlated with performance.

IDR is not enough to ensure existence of equilibrium for every level of revenue
sharing. Therefore consider the effect of increasing the level of talent in club j on
aggregate revenue of the league. Suppose that the higher the level of talent is in the
rest of the league, the more the aggregate revenue increases.

Increasing Differences in Aggregate Revenue (IDAR). For all pairs of lists of
levels of talent .t; u/, where uk � tk for every club k,

X

k

.Rk.uj; u�j/� Rk.tj; u�j// �
X

k

.Rk.uj; t�j/ � Rk.tj; t�j//

for every club j.

IDAR implies that there are complementarities in the aggregate revenue between
the levels of talent in the different clubs. Suppose revenue functions are twice
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differentiable. Then

X

j

@2Rj.tj; t�j/
@tk@t`

� 0

for every k and ` ¤ k implies IDAR is satisfied.

Theorem 2. Assume IDR and IDAR are satisfied. Then for every � 2 Œ0; 1�, there is
an equilibrium.

Proof. Firstly it is shown that the game .N ; .Tj; ��j /j/, where Tj D RC is the
strategy set, ��j W RnC ! R defined by

��j .tj; t�j/ D .1 � �/Rj.tj; t�j/C �

n

X

k

Rk.tj; t�j/� Cj.tj/

is the payoff function and � 2 Œ0; 1�, is a supermodular game. Secondly Theo-
rem 4.2.1. in Topkis (1998) on existence of equilibrium in supermodular games is
applied.

The game .N ; .Tj; ��j /j/ is supermodular: 1. Tj is a lattice; 2. ��j satisfies IDR
because Rj satisfies IDR and

P
k Rk satisfies IDAR; and 3. ��j is supermodular

because all functions from RC to RC are supermodular. For every t�j if tj is a
solution to the problem of club j, then tj � kj. Therefore the sets of equilibria
for the two games .N ; .Tj; ��j /j/ and .N ; .Sj; ��j /j/, where Sj D Œ0;maxf˛j; ˇjg�,
coincide. According to Theorem 4.2.1. in Topkis (1998), the game .N ; .Sj; ��j /j/
has an equilibrium. Q.E.D.

In order to address how the level of revenue sharing influences the level of talent,
compare the effect of increasing the level of talent in club j on revenue of club j
and the other clubs. Suppose that the change in revenue of club j is larger than the
average change in the revenue of the rest of the league.

Dominant Differences in Revenues (DDR). For all pairs of lists of levels of talent
.t; u/, where uk � tk for every club k,

Rj.uj; t�j/� Rj.tj; t�j/ � 1

n � 1
X

k¤j

.Rk.uj; t�j/ � Rk.tj; t�j//

for every j.

DDR implies that on average changes in levels of talent are more important
for clubs that change their levels of talent than for other clubs. Suppose revenue
functions are once differentiable. Then

@Rj.tj; t�j/
@tj

� 1

n � 1
X

k¤j

@Rk.tj; t�j/
@tj

for every j implies DDR is satisfied.
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Theorem 3. Assume IDR, IDAR, and DDR are satisfied. Then for every � 2 Œ0; 1�
there exist a greatest equilibrium G� 2 R

nC and a least equilibrium L� 2 R
nC in the

sense that G�j � Nt�j � L�j for all equilibria Nt� and every j. Moreover, the greatest and
the least equilibria are decreasing in � .

Proof. IDR and IDAR imply the profit function

��j .tj; t�j/ D .1 � �/� j.tj; t�j/C �

n

X

k

�k.tj; t�j/� Cj.tj/

of club j has increasing differences in .tj; t�j/ for every j and DDR implies that
the profit function of club j has increasing differences in .tj;��/ for every j.
Therefore Theorem 4.2.2. in Topkis (1998) on comparative statics of equilibria in
supermodular games can be applied to obtain Theorem 3. Q.E.D.

Theorem 3 implies the levels of talent are decreasing in the degree of revenue
sharing.

12.5 Aggregate Profit

Equilibria are typically inefficient because there are externalities between clubs. In
the present section the equilibrium outcome and the efficient outcome are compared.

The problem of the league is to choose a list of levels of talent such that the
aggregate profit is maximized

max
t1;:::;tn�0

X

j

.Rj.tj; t�j/� Cj.tj//:

Consider the pair of games .N ; .Tj; ��j /j/�2f0;1g where Tj D RC and

��j .tj; t�j/ D .1 � �/Rj.tj; t�j/C �
X

k

Rk.tj; t�j/� Cj.tj/:

For � D 0 the game is a league with clubs maximizing their own profits. For � D 1
if the aggregate profit

P
j.Rj.t/ � Cj.tj// is concave in the levels of talent t, then the

game is a league with clubs maximizing the aggregate profit of the league.
In Theorem 4 equilibria are shown to exist for the pair of games though equilibria

for the game with � D 0 are already shown to exist in Theorem 1.

Theorem 4. Assume that IDR and IDAR are satisfied. Consider the pair of games
.N ; .Tj; ��j /j/�2f0;1g where Tj D RC and

��j .tj; t�j/ D .1 � �/Rj.tj; t�j/C �
X

k

Rk.tj; t�j/� Cj.tj/:

Then both games have equilibria.
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Proof. The proof is identical to the proof of Theorem 2. Q.E.D.

The externality between club j and the rest of the league is positive (negative)
if an increase in the level of talent in the club j leads to an increase (decrease) in
the revenue of the rest of the league. Below in Theorem 5, the levels of talent in
equilibria of the two games are compared. Indeed it is shown that if the externality
between every club and the rest of the league is positive (negative), then the level of
talent is too low (high) in the league without revenue sharing compared to the level
of talent that maximizes the aggregate profit of the league.

Theorem 5. Assume that IDR, IDAR, and DDR are satisfied. Consider the pair of
games .N ; .Tj; ��j /j/�2f0;1g defined in Theorem 4. Then for both games, there exist

a greatest equilibrium G� 2 R
nC and a least equilibrium L� 2 R

nC in the sense that
G�j � Nt�j � L�j for all equilibria Nt� and every j.
• Suppose the externality between every club and the rest of the league is positive:

for every pair of lists of talent .t; u/, where uk � tk for every club k,

X

k¤j

.Rk.uj; t�j/� Rk.tj; t�j// � 0

for every club j. Then the greatest and least equilibria are increasing in �.
• Suppose the externality between every club and the rest of the league is negative:

for every pair of lists of talent .t; u/, where uk � tk for every club k,

X

k¤j

.Rk.uj; t�j/ � Rk.tj; t�j// � 0

for every club j. Then the greatest and least equilibria are decreasing in �.

Proof. The proof is identical to the proof of Theorem 3. Q.E.D.

12.6 Comparison of Equilibria

Theorem 3 and the first claim of Theorem 5 imply that if the externality between
every club and the rest of the league is positive, then revenue sharing works in the
wrong direction.

Corollary 1. Assume that IDR, IDAR, and DDR are satisfied. Suppose the exter-
nality between every club and the rest of the league is positive.

• The level of talent in equilibria with revenue sharing is lower than the level of
talent in equilibria without revenue sharing.

• The level of talent in equilibria without revenue sharing is lower than the level of
talent that maximizes the aggregate profit.
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Proof. The claims follow from Theorems 3 and 5. Q.E.D.

In case of a positive externality between every club and the rest of the league,
no revenue sharing � D 0 or perhaps even negative revenue sharing � < 0 appears
to be the right way to redistribute. If performance and revenue are correlated, then
negative revenue sharing corresponds to making subsidies positively correlated with
performance.

Theorem 3 and the second claim of Theorem 5 imply that if the externality
between every club and the rest of the league is negative, then revenue sharing works
in the right direction.

Corollary 2. Assume that IDR, IDAR, and DDR are satisfied. Suppose that the
externality between every club and the rest of the league is negative.

• The level of talent in equilibria with revenue sharing is lower than the level of
talent in equilibria without revenue sharing.

• The level of talent in equilibria without revenue sharing is higher than the level
of talent that maximizes the aggregate profit.

Proof. The claims follow from Theorems 3 and 5. Q.E.D.

In case of negative externality between every club and the rest of the league, a
positive degree of revenue sharing � > 0 appears to be the right way to redistribute.
However, complete revenue sharing (� D 1) results in too low levels of talent
provided that an increase in the level of talent in any club leads to an increase of
the aggregate revenue of the league.

Theorem 6. Assume that IDAR is satisfied. Suppose that for all pairs of lists of
levels of talent .t; u/, where uk � tk for every club k,

X

k

.Rk.uj; t�j/� Rk.tj; t�j// � 0:

for every club j. Then the level of talent in equilibria with complete revenue sharing
(� D 1) is lower than the level of talent that maximizes the aggregate profit.
Proof. Consider the pair of games .N ; .Tj; �



j /j/
2f0;1g where Tj D RC and

�


j .tj; t�j/ D

�
1 � n � 1

n



�X

k

Rk.tj; t�j/ � Cj.tj/:

For 
 D 0 the game is a game, where every club is concerned with the aggregate
revenue of the league, and for 
 D 1 the game is the game of the league
with complete revenue sharing (� D 1). IDAR implies that the payoff function
of club j has increasing differences in .tj; t�j/ for every j. The assumption thatP

k.Rk.uj; t�j/ � Rk.tj; t�j// � 0 for all lists of levels of talent t and every club j
and level of talent uj in club j with uj � tj implies that the payoff function of club
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j has increasing differences in .tj;�
/. Therefore, Theorem 4.2.2. in Topkis (1998)
on comparative statics of equilibria in supermodular games can be applied to obtain
Theorem 6. Q.E.D.

For every club if an increase of the level of talent leads to a decrease of the
aggregate revenue of the rest of league and an increase of the aggregate revenue
of the league, then the right degree of revenue sharing appears to be somewhere
between no revenue sharing and complete revenue sharing. Indeed the level of talent
is too high in a league without revenue sharing and too low in a league with complete
revenue sharing compared with the level of talent that maximizes the aggregate
profit of the league as shown in Theorems 3 and 6.

12.7 Sports Leagues with Fixed Supply of Talent

As explained in the introduction, the supply of talent is more or less fixed for
American sports leagues such as MLB, NBA, and NFL because there are no other
leagues of compatible quality. Therefore the markets for talent in American sports
leagues should be modeled differently than the markets for talent in European
football leagues. The market for talent should probably be characterized by a price
w > 0 for talent and an equilibrium condition for talent

P
k tk D T, where T is the

supply of talent, rather than cost functions. An equilibrium would be a list of levels
of talent and a price of talent such that every club maximizes its profit given the
level of talent in the rest of the league and the price of talent, and the market for
talent clears. Since the aggregate level of talent is fixed in American sports leagues,
only the competitive balance matters, while the aggregate level of talent is without
importance.

The results of the present chapter can be applied to American sports leagues
with some modifications. However, the qualitative results in Theorems 3, 5, and 6
and Corollaries 1 and 2 would relate the degree of revenue sharing and the price for
talent rather than the degree of revenue sharing and the level of talent. As an example
Theorem 4.2.2. in Topkis (1998) implies that the price for talent is decreasing in the
degree of revenue sharing. In NFL there is a tradition for salary caps such that clubs
maximize their profits subject to the constraint that their costs have to be equal to
or lower than the salary cap. As another example Theorem 4.2.2. in Topkis (1998)
implies that the price for talent is decreasing in the salary cap.

12.8 An Example

12.8.1 The Model

For a league with n clubs, the revenue Rj of club j has the form
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Rj.tj; t�j/ D aj C
X

k

bjk ln.tk/C cj ln.
P

ktk/

D aj C
X

k

bjk ln

�
tkP
`t`

�
C
 
X

k

bjk C cj

!
ln.
P

ktk/

where aj; bj1; : : : ; bjn; cj are constants. Clearly, the revenue of club j depends on
the competitive balance .t1=

P
k tk; : : : ; tn=

P
k tk/ and the aggregate level of talentP

k tk.
The natural logarithm in revenue functions has the undesired implication that

the revenues tend to minus infinity as the level of talent of one club tends to zero.
However, in order to ensure that revenue of club j converges to zero as tk converges
to zero for every k, revenue functions could be modified to

Rj.tj; t�j/ D aj C
X

k

bjk ln.tk C "/C cj ln.
P

ktk C n"/

where " > 0 and aj D �.Pk bjk C cj/ ln."/ � cj ln.n/.
Concerning properties of revenue functions, the derivative of the revenue of club

j with respect to the level of talent in club k is

@Rj.tj; t�j/
@tk

D bjk
tk
C cjP

`t`
:

If bjk > 0 (bjk < 0), then Rj is increasing (decreasing) in tk for tk sufficiently small
and

P
`¤k t` > 0. It is assumed that bjj > 0 for every j. If bjkC cj > 0 (bjkC cj < 0),

then Rj is increasing (decreasing) in tk for tk sufficiently large. Since the derivative
of the revenue Rj.˛tj; ˛t�j/ of club j with respect to ˛ is

@Rj.˛tj; ˛t�j/
@˛

D
P

kbjk C cj
˛

;

because Rj.˛tj; ˛t�j/ D Rj.tj; t�j/ C .Pkbjk C cj/ ln.˛/, the revenue is increasing
(decreasing) in the level of talent for

P
kbjk C cj > 0 (

P
kbjk C cj < 0).

Concerning the axioms about properties of revenue functions, club j satisfies IDR
if and only if

@2Rj.tj; t�j/
@tj@tk

D � cj
.
P

ktk/
2
� 0;

where k ¤ j, so club j satisfies IDR provided cj � 0. The league satisfies IDAR if
and only if

X

j

@2Rj.tj; t�j/
@tk@t`

D �
P

j cj

.
P

j tj/
2
� 0;
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where ` ¤ k, so the league satisfies IDAR provided
P

j cj � 0 so IDR implies
IDAR. The league satisfies DDR if and only if

@Rj.tj; t�j/
@tj

D bjj
tj
C cjP

k tk

� 1

n � 1

 P
k¤j bkj

tj
C
P

k¤j ckP
k tk

!

D 1

n � 1
X

k¤j

@Rk.tj; t�j/
@tj

so the league satisfies DDR provided .n � 1/bjj �Pk¤j bkj and .n � 1/.bjj C cj/ �P
k¤j.bkj C ck/ for every j. IDR, IDAR, and DDR are assumed to be satisfied in the

sequel.
For the sign of the externalities

X

k¤j

.Rk.uj; t�j/� Rk.tj; t�j//

D
X

k¤j

bkj.ln.uj/ � ln.tj//C
X

k¤j

ck.ln.ujCP`¤jt`/� ln.tjCP`¤jt`//:

Therefore, the externalities are positive provided
P

k¤j bkj � 0 and
P

k¤j.bkjCck/ �
0 for every j and negative provided

P
k¤j bkj � 0 and

P
k¤j.bkj C ck/ � 0 for every

j. For the effect of an increase in the level of talent in any club on the aggregate
revenue of the league considered in Theorem 6

X

k

.Rk.uj; t�j/� Rk.tj; t�j//

D
X

k

bkj.ln.uj/ � ln.tj//C
X

k

ck.ln.ujCP`¤jt`/� ln.tjCP`¤jt`//:

Hence, an increase in the level of talent in any club leads to an increase in aggregate
revenue of the league provided

P
k bkj � 0 and

P
k.bkj C ck/ � 0 for every j.

The cost function of club j is supposed to be Cj.tj/ D wtj, where w > 0 is
the price for one unit of talent. Hence, talent is bought and sold on a perfectly
competitive market.

12.8.2 Equilibria

Equilibria can be characterized as solutions to n equations with n unknowns.
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Observation 1. For equilibria:

• Nt D .Nt1; : : : ; Ntn/ is an equilibrium without revenue sharing if and only if Nt is a
solution to

Ntj D bjj
w
P

ktk � cj

X

k

tk

for every j
• Nt� is an equilibrium with revenue sharing if and only if Nt� is a solution to

t�j D
.1 � �/bjj C �

n

P
kbkj

w
P

kt
�
k � .1 � �/cj �

�

n

P
kck

X

k

t�k

for every j.
• t� is a solution to the problem of the league if and only if t� is a solution to

t�j D
P

k bkj
w
P

ktk �
P

k ck

X

k

tk

for every j.

Proof. The first-order condition to the problem of club j in a league without revenue
sharing is

bjj
tj
C cjP

k tk
� w D 0:

If tj is isolated in the first-order condition, then it becomes

tj D bjj
w
P

ktk � cj

X

k

tk:

The two other expressions are obtained by isolation of tj is isolated in first-order
condition for the problem of club j in a league with revenue sharing and the problem
of the league. Q.E.D.

From a practical point of view, an equilibrium is found in two steps: firstly the
aggregate level of talent is determined in

1 D
X

j

bjj
w
P

k tk � cj

for a league without revenue sharing, in

1 D
X

j

.1 � �/bjj C �

n

P
kbkj

w
P

k tk � .1 � �/cj C
�

n

P
kck
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for a league with revenue sharing, and in

1 D
P

j;k bjk

w
P

ktk �
P

k ck

for the problem of the league and secondly the equations in Observation 1 are used
to determine the level of talent in the clubs.

For a league without revenue sharing, there is an equilibrium if and only if either
there is a club j such that cj � 0 or for every j, cj < 0 and

X

j

bjj
cj

< �1:

Suppose that bjk > 0 for every j and k. Then the optimal distribution of talent for
club j is proportional with .bj1; : : : ; bjn/. For the problem of the league, there exists
a solution if and only if either

P
j cj � 0 or

P
j cj < 0 and

P
j;k bjkP
j cj

< �1:

Suppose that
P

j bjk > 0 for every k. Then the optimal distribution of talent for the
league is proportional to .

P
j bj1; : : : ;

P
j bjn/. Nonexistence is caused by revenue

functions not being defined for levels of talent being zero.

12.8.3 Equilibria in a League with Symmetrical Clubs

In order to focus on the relation between the degree of revenue sharing and the
aggregate level of talent, suppose that the clubs are symmetrical so there exist
parameters ˛, ˇown, ˇother, and � such that aj D ˛, bjj D ˇown, bjk D ˇother for
k ¤ j and cj D � for every j. Then the revenue function of club j is

Rj.tj; t�j/ D ˛ C ˇown ln.tj/C ˇother

X

k¤j

ln.tk/C � ln.
P

ktk/:

Clearly equilibria are symmetrical. Therefore by assumption, the competitive
balance is perfect independently of the degree of redistribution. However, the overall
quality of the league depends on the degree of redistribution.

Observation 2. For a league with symmetrical clubs:

• Nt is an equilibrium without revenue sharing if and only if

Ntj D ˇown

w
C �

nw

for every j.



260 B.O. Hansen and M. Tvede

• Nt� is an equilibrium with revenue sharing if and only if

Nt�j D
.n � .n � 1/�/ˇown C .n� 1/�ˇother

nw
C �

nw

for every j.
• t� is a solution to the problem of the league if and only if

t�j D
ˇown C .n � 1/ˇother

w
C �

w

for every j.

Proof. The claims of Observation 2 follow from Observation 1. Q.E.D.

If ˇown > ˇother > 0 > � , then IDR, IDAR, and DDR are satisfied. Moreover, if
ˇownC .n� 1/ˇotherC � > 0, then the levels of talent Ntj, Nt�j , and t�j in Observation 2
are positive.

The level of talent Nt�j is decreasing in the degree of revenue sharing as shown
in Theorem 3. The level of talent t�j in the solution to the problem of the league
is higher or lower than the level of talent Nt in the league without revenue sharing
depending on the externalities between clubs as shown in Corollaries 1 and 2. Indeed
t�j > Ntj if and only if nˇother C � > 0 and t�j < Ntj if and only if nˇother C � < 0.

The level of talent t�j in the solution to the problem of the league is n times higher
than the level of talent Nt�j in the league with complete revenue sharing. If t�j � Ntj or
equivalently nˇother C � � 0, then the level of talent is too low in the equilibrium
without revenue sharing, so revenue sharing works in the wrong direction as shown
in Theorem 6. If t�j < Ntj or equivalently nˇother C � < 0, then the level of talent
is too high in the equilibrium without revenue sharing, so revenue sharing works
in the right direction as shown in Theorem 6. The optimal level of revenue sharing
is found by solving the equation Nt�j D t�j with respect to � . The optimal degree of
revenue sharing is

�� D nˇother C �
�ˇown C ˇother

and for this degree of revenue sharing, the aggregate profit of the league is
maximized. Clearly the optimal degree of revenue sharing �� is negative for t�j > Ntj
and positive for t�j < Ntj.

12.9 Conclusion

In the present chapter, we have presented and studied a general model of competition
between clubs in sports leagues with flexible supply of inputs. The externalities
between clubs are assumed to take the form of complementarities. The focus has
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been on the relation between revenue sharing and the overall quality of sports
leagues. Our main findings are: the level of talent in every club is decreasing in the
degree of revenue sharing, and, the optimal degree of revenue sharing is negative
in case of positive externalities between every club and the rest of the league and
less than complete revenue sharing optimal in case of negative externalities between
every club and the rest of the league.

Our main findings rest on assumptions about properties of revenue functions,
namely, complementarity assumptions and externality assumptions. Clearly these
assumptions could be tested empirically to address the empirical relevancy of the
model.

Acknowledgements The authors wish to thank Elvio Accinelli and two anonymous referees for
constructive suggestions.
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Chapter 13
Weakened Transitive Rationality: Invariance
of Numerical Representations of Preferences

Leobardo Plata

Abstract The ordinal invariance of utility functions representing the same pref-
erence is a fundamental issue for solving decision problems using mathematical
techniques. As it is well known, this property holds when preferences are complete
preorders. However, it is not necessarily verified for numerical representations of
weaker concepts of preferences. Moreover, there are cases in which it is not possible
to build order-preserving maps between two different numerical representations
of the same preference. In this work, we characterize the classes of numerical
representations that preserve the order introduced by a given preference in a set
of alternatives.

Keywords Numerical representations of preferences • Invariance of numerical
representations • Utility correspondences • Weakened transitivity rationality
• Nontransitive preferences • Preference representation
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13.1 Introduction

The numerical representation of preferences is very useful tool for facing problems
of decision between different alternatives. This is a topic widely discussed in the
literature and a relevant issue. Once that a numerical representation of a preference
is obtained, it is possible to consider different mathematical approaches to solve
complex optimization programs that often are involved in the decision-making
processes. Of no less importance, but much less considered in the literature, is
the question to know when two different numerical representations of the same
preference can be related by means of a map that preserves order.
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The rational choice in a set of alternatives implies the existence of complete
and transitive preferences, i.e, complete preorders. The simultaneous verification of
these two conditions require transitivity of the strict preference and transitivity of the
indifference relationship. Since Armstrong (1950), the simultaneous fulfillment of
these two conditions has been questioned. Fundamentally, because many laboratory
experiments deny the transitivity in choice, this gap, between theory and empirical
evidence, has motivated the search of new axioms allowing for the weakening of
rationality as well as new conditions for the existence of numerical representations
of the weaker concepts of preferences now considered.

To overcome this gap, different authors have considered different approaches.
Several of them have considered weakening the assumption of transitivity of the
indifference, and others have avoided the assumption of completeness. For instance,
the more general concepts of semiorders and interval orders were introduced and
have been represented by means of pairs of numerical functions. See for instance,
Luce (1956), Scott and Suppes (1958), Jaminson and Lau (XXXX), Fishburn
(1970a), Fishburn (1970b), Fishburn (1973), Fishburn (1985), Suppes et al. (1989),
Bridges (1985), and Pirlot (1990). For partial orders, Fishburn (1970a) introduces
the concept of weak representation. The weakest condition required by a preference
supporting a rational behavior and allowing its numerical representation is the
acyclicity. The existence of a numerical representation for such preferences is intro-
duced in Bridges (1983) where the concept of weak representations of preferences
is considered. The utility correspondences were introduced in Herrero and Subiza
(1991) and Subiza (1994). These correspondences associate different alternatives
with different bounded sets of real numbers. These sets of numbers can have
nonempty intersection, only when they are representing indifferent alternatives. In
the case of strict preference, the intersection of the numerical sets corresponding
with different alternatives is necessarily empty, and the greater supremum represents
the most preferred alternative. More recent jobs are in Nakamura (2002), Oloriz
et al. (1998), Pirlot and Vinche (1997), Rodriguez-Palmero (1997), Candeal et al.
(2002), Fishburn (1999), Bridges and Mehta (1995), Fagin et al. (2006), and
Plata (2004), among others. Almost all of these works show existence results for
numerical preference representation. As we shall show, weakening the assumptions
of transitivity and completeness of preferences can give place to the existence of
different numerical representations not immediately linked.

The invariance of the numerical representations has been scarcely considered
in the literature. In this job, we characterize the maps which allow to transform a
numerical representation of a given preference in another of the same preference.
This is known as invariance analysis. We do this analysis for each preference
with weakened rationality. We show that ordinality measurement of numerical
representations disappears when we use weaker concepts of preference than com-
plete preorders. Moreover, there are cases in which it is impossible to build a
function that transforms a given numerical representation of a preference in another
representation of the same preference. We introduce the concept of similarity
between two numerical representations of the same preference. This means that
the partitions of the set of alternatives generated by the inverse image of this
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two different numerical representations are the same. The concept of similarity
allows us to partition the set of numerical representations of a preference in classes,
characterized by the existence of a function able to transform a representation in
another inside the same class of representations. We say that two representations in
the same case are analogous.

Although we are interested in the economic meaning of each preference with
weakened rationality, in this paper, we restrict ourselves to consider sets with
countable alternatives. This is done in order to avoid topological assumptions. To
introduce such considerations is necessary when we look for problems of invariance
and existence of numerical representations of preferences in economics. But doing
it now will lead us beyond our present purpose. Certainly, the topological structure
of the alternative set plays a relevant role in economics.

This paper is a first step in this direction, so we leave these considerations for
future works.

Section 13.2 is dedicated to define weakened rationality assumptions. The third
section presents the definitions of numerical representations and the existence
results for each one. Finally, the fourth section presents and proves our invariance
results.

13.2 Preferences Structures and Rationality Assumptions

Let X be a set of alternatives. The set X may have a multiplicity of structural
properties, a set of probabilities, or a Cartesian product, or a set of consumption.
A binary relation on X is a subset of X � X.

A preference relationship R on X is a complete and transitive binary relationship
defined on a set of alternatives X: In such case .X;R/ is a preordered set, for .x; y/ 2
R, we use denotation xRy: We denote xIy if xRy and yRx:

The relation R could denote is as good as, or is no more probable than, or is no
longer than, and so forth. The corresponding interpretation for I is indifferent to or
equally probable. If I is an equivalence relation (reflexive, symmetric, transitive),
then X=I is the set of classes of indifference determined by I in X:

The notation P to denote xRy, but not yRx;, is useful in order to denote the fact
that x is strictly preferred to y: The binary relation P denote strictly preferred to, or
strictly more probable, an so for. This relation establishes a partial order in the set
of alternatives.

The notation :xRy means that the relationship xRy does not hold.
Recall that P is:

• A partial order if P is transitive, i.e., xPz whenever xPy and yPz, and irreflexive
i.e., whenever xPx: Then the pair .X;P/ is a partially ordered set.

• A weak order if it is a partial order for which I is transitive.

The set of equivalence classes is ordered by the relationship aP�b if and only if xPy
for some x 2 a and y 2 b:
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A fundamental result for .X;P/ says that if the set of alternatives X is countable,
and P is a weak order on X; then there exists a utility function u W X ! R

representing the partial order, meaning that

xPy, u.x/ > u.y/ and xIy , u.x/ D u.y/: (13.1)

But this result is no longer true when the set of alternatives is uncountable. The
lexicographic preference over R2 is a classical example of the not existence of a
numerical representation. To obtain a similar result when X=I is uncountable, it
needs to be assumed also that in X=I, there is a countable subset that is order dense
in X=I: By definition, S 	 X is an order dense in .X;P/ if whenever x and y in
X=S, there is s 2 S such that xPsPy: Countable order denseness is often replaced
in economic discussions by a sufficient but non-necessary topological assumption
which implies that u can be defined to be continuous in the topology used for X:

The standard assumption is that R is complete and transitive in X. In this case,
we say that the structure of preferences is a complete preorder. The relation R can
be decomposed in two relationship, the strict part P and the indifference part I:

It follows that xPy if and only if xRy and :yRx: Given the assumed completeness
of R, we obtain that xIy if and only if :xPy and :yPx: If neither of the two
alternative is considered strictly preferred to the other, then they must be considered
as indifferent. This means that a pair of alternatives are considered indifferent in
two separate cases. In the first one, each alternative is as good as another. In the
second case, both alternatives are not comparable using the relationship P. In Plata
(2004), this difference is explained, and a result of representativeness for acyclic
preferences is proved. In the next definitions, we can find some of the most known
preference structures.

Definition 1. The preference structure .X;R/ is a complete preorder if it satis-
fies:

a) Completeness: 8x, 8y 2 X: xRy or yRx:
b) Transitivity: 8x; y; z 2 X: If xRy and yRz, then xRz:

These two requirements mean that (1) the individual has the ability to compare
any two alternatives and (2) the individual does not show cycles with respect to the
strict preferences. If such were the case, it would involve the inability to decide.

This axiom is very important for the decisiveness. There can only be indifference
cycles in I but not in the cycle relation P. Note that if an agent prefers x to y, y to z,
and z to x, she has no better alternative among the three.

Definition 2. The preference structure .X;R/ is P-acyclic if 8n 2 N and
8x1; x2; : : : ; xn 2 X and if x1Px2; x2Px3; : : : ; xn�1Pxn, then not xnPx1.

This condition prevents the existence of cycles under P; but not under R because
the condition xnPx1 does not avoid the possibility xnIx1:

It is very easy to see that in the case of finite X, the acyclicity is equivalent to
the existence of maximal elements in X. A z element X is R-maximal if there is no
another element of X that strictly preferred to z. In Sen (1970), A. Sen has shown
the following theorem:
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Theorem 1. Let .X;R/ be a preference structure with X, a finite set. There is a
R-maximal for each B � X if only if R is P-acyclic.

This result can be extended in a natural way to compact set in a topological space
when P satisfies a condition of continuity (see Fagin et al. 2006).

There are many structures where the transitivity of strict preference is preserved,
but intransitivity of indifference is verified. Suppose that coffee with n grams of
sugar and coffee with n � 1 grams of sugar are to me indifferent and so on. We
conclude that I am indifferent between coffee with 1 gram of sugar and coffee
without sugar. But this does not mean that I am indifferent between coffee with
n grams of sugar and the coffee without sugar.

In general, this is the case with semiorders and interval orders; the first one is a
special case of the second one.

Definition 3. We say that .X;R/ is an interval order if R is a pseudotransitive
binary relationship; this means that:8x; y; z;w 2 X: xPyRzPw �! xPw.

Note that if R is pseudotransitive, from xPy and yPz we cannot conclude that xPz:
For such a conclusion, we need to verify that yRz: Neither from xIy and yIz, we can
conclude xIz: Think in the case of coffee with sugar previously considered.

Definition 4. We say that .X;R/ is a semiorder if it is an interval order satisfying
additionally the following property 8x; y; z 2 X W xPy and yPz �! 8w 2
X; xPw or wPz.

When we have an interval order, X=I is not necessarily a set of classes of
indifference.

13.3 Numerical Representations

Here, we present numerical representation theorems for each one of the preference
structures in Sect. 13.2. References are provided. Definitions of the numerical
representation for each type of rationality is first provided.

A typical theorem for the existence of numerical representation for a given
structure .X;R/ with a rationality assumption given by ��� has the form:

Proposition. Let .X;R/ be a preference structure. Then .X;R/ satisfies ��� if and
only if there is a function u with domain X that represents the preference R.

13.3.1 Numerical Representation for Complete Preorders

Definition 5. u W X 7! R is a utility function for the complete preorder .X;R/ if

8x; y 2 X W xRy, u .x/ � u .y/ :
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A utility function measures the preference for each alternative. Then if u
represents R, then xPy if and only if u.x/ > u.y) and if x and y are indifferent if
and only if u.x/ D u.y/. This theorem formally establishes the classic measurement
of ordinal utility.

In what follows, we assume X countable. So, we do not need topological axioms
for the existence of numerical representations. Such is the claim of the following
theorem:

Theorem 2 (Cantor 1955; Debreu 1954). Let .X;P/ be a preordered set where X
is countable, and if P is a partial order on X; then there exists a utility function
u W X ! R representing the partial order.

In case where .X;R/ is a preference structure, but R is a partially ordered binary
relationship that is not necessarily a weak order, to obtain a representation theorem,
analogous to (2), we need to replace u by another quantitative representation or to
look for some additional properties for the preference structure.

13.3.2 Numerical Representation for Acyclic Preferences

The use of simple numbers appears insufficient for the representation of ordered
sets having a non-transitive indifference relation. In (Subiza 1994), a numerical
representation of preferences by means of correspondences (or set-valued real
function) is presented. Such representation provide a complete characterization of
acyclic preferences on countable sets.

Definition 6. 
 W X 7! R is a utility correspondence for .X;R/ if

a) 8x 2 X: 
 .x/ is a bounded nonempty set of real numbers.
b) xPy$ 
 .x/ \ 
 .y/ D ; and sup 
.x/ > sup 
.y/

Each alternative x 2 X is associated with a bounded set of real numbers. These
sets can be intersected when they are representing indifferent alternatives. In the
case of strict preference, intersection is empty, and the greater supremum represents
the most preferred alternative.

Theorem 3 (Subiza 1994). Let .X;R/ be a preference structure. Then .X;R/ is P-
acyclic if and only if there is 
 W X 7! R, utility correspondence for .X;R/.

13.3.3 Weak Representations for Acyclic Preferences
or Partial Orders

Every proposition claiming the existence of a representation for a preference
structure .X;R/ must assume that R is a weak order. It cannot hold when R is not
P-acyclic or is a partial order that is not also a weak order (i.e., I is not transitive).
In what follows, we shall discuss some alternatives for such assumption.
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Definition 7. Let .X;R/ be a preference structure. We say that u W X 7! R weakly
represents .X;R/ if 8x; y 2 X W xPy! u.x/ > u.y/:

Theorem 4. Let .X;R/ be a preference structure. Then .X;R/ is P-acyclic if and
only if there is u W X 7! R that weakly represents .X;R/:

13.3.4 Interval Orders and Semiorders

A small difference of evaluation between two alternatives can remain inadequate to
affirm a strict preference between them. This leads to the introduction of a positive
threshold number q in such a way that the alternative x is said to be preferred to the
alternative y if and only if the evaluation of x is greater than the evaluation of y plus
the threshold q: The most classical structure respecting such an idea is a semiorder.

Definition 8. Let .X;R/ be a preference structure. The pair of functions u; v W X 7!
R is an interval representation for .X;R/ if

� 8 x; y 2 X; xPy, u.x/ > v.y/
8 x 2 X v.x/ � u.x/:

For instance, we can consider v.x/ D u.x/ C q where q > 0, and so xPy ,
u.x/ > u.y/C q:

Theorem 5. Let .X;R/ a preference structure. Then .X;R/ is an interval order if
and only if there is an interval representation u; v W X 7! R for .X;R/.

Roughly speaking, when we have an interval representation then we can associate
for each x 2 X an interval I.x/ D Œu.x/; v.x/� such that xPy if and only if I.x/ \
I.y/ D ; and I.x/ is on the right of I.y/.

13.4 Invariance of Numerical Representations of Preferences

The invariance analysis aims to characterize the set of numerical representations
of the same preference structure .X;R/: This numerical representation is defined
in X: Each point in X has associated a numerical object. These objects can be
real numbers, intervals of real numbers, sets of real numbers, and vectors of real
numbers, among others. This of course depends on the type of rationality and the
type of numerical representation chosen.

It is well known that in the case of complete preorders, the utility function
is an ordinal measure of the preference. This means that if we have two utilities
representing the same complete preorder, they can be transformed into each other
by means of an increasing function from real numbers to real numbers. However,
this is not always possible in the rationality weakening. Sometimes it is not even
possible to find a function that transforms a numerical representation to another.
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Example 1 (Untransformable Numerical Representations). Suppose we have a
preference defined for a set with four alternatives; u and v are two numerical
representations of preference with the following property:

i; j 2 f1; 2; 3; 4g
u.xi/ ¤ u.xj/ if i ¤ j except i D 2; j D 3
v.xi/ ¤ v.xj/ if i ¤ j except i D 3; j D 4:

Under this situation, it is not possible to transform u into v using a function. See
first that there is not a function � such that

�.u.xi// D v.xi/ for i D 1; : : : ; 4:

The reason is as follows. We need u.x2/ D u.x3/ because of the first requirement
above. But the second requirement above implies v.x2/ ¤ v.x3/. So, �.u.x2// must
be different from �.u.x3//. But in such a case, � cannot be a function. In the same
way, we cannot transform v to u: The natural question is under what condition can
we transform a numerical representation in another by means of a function?

We can associate a partition of X with each numerical representation u. Two
alternatives of X are in the same class if they have the same image under u. Formally,
the relation � u is defined as x1 � u xj if and only if u.xi/ D u.xj/ is an
equivalence relation in X.

Definition 9. Let u; v be two numerical representations for the structure .X;R/. We
say that u is analogous to v if the partition of X induced by u is the same partition
that is induced by v. This means that X= � u D X= � v.

In the above example, representations u and v are not analogous.

Partition of X induced by u is ff1g; f2; 3g; f4gg:
Partition of X induced by v is ff1g; f2g; f3; 4gg:

Definition 10. Let u; v be two numerical representations for the structure .X;R/:
We say that u and v are transformable if and only if there are functions � and '
such that v D � ı u y u D ' ı v.

The next proposition show that the fact that u and v are analogous is equivalent
to transformability between u and v.

Theorem 6. Let .X;R/ be a preference structure. Let u and v be two numerical
representations for preference R. Then, u and v are transformable if and only if u is
analogous to v.

Proof. If u and v are not analogous, the partition of X induced by u is not the same
as the partition of X induced v. We have two cases, and they are not necessarily
mutually exclusive cases. (a) There exist xi and xj such that u.xi/ D u.xj/ but v.xi/ ¤
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v.xj/, or (b) there are xi and xj such that v.xi/ D v.xj/ but u.xi/ ¤ u.xj/: In the first
case, there is no function transforming u in v. In the second case, there is no function
transforming v in u. So u and v are not transformable.

Let us see the part of the proposition. In order to transform u in v, we need to
define � such that associates u.xi/ to v.xi/. This means that � D fhu.xi/; v.xi/i W xi 2
Xg. We note that this � is a function. Suppose that hu.xi/; v.xi/i 2 �;

˝
u.xj/; v.xj/

˛ 2
� and that u.xi/ D u.xj/, we want to obtain that v.xi/ D v.xj/. Because u.xi/ D
u.xj/, we have that xi � uxj. Using the hypothesis of u is analogous to v we have
that xi � v xj too. So, we have that v.xi/ D v.xj/. For transforming v in u, we
proceed similarly. ut

In what follows, we present the invariance analysis of numerical representations.
An invariance theorem for a preference structure .X;R/ assumes some rational
conditions on this structure and some mathematical conditions on the numerical
representations and shows necessary and sufficient conditions for the two represen-
tations to be analogous. This claim is generally equivalent with the existence of a
functional � verifying that v D � ı u.

13.4.1 Invariance of Utility Functions

Let u W X ! R be a utility function representing .X;R/:We denote by

u.X/ D rank u D fy 2 R W 9x 2 X; u.x/ D yg

the image of X under u. As it is easy to see, the next proposition holds:

Proposition 1. Let u W X 7! R be a utility function representing the complete
preorder .X;R/. Then v W X 7! R is a utility function for .X;R/ if and only if
there is a strictly increasing function � W u.X/ 7! R such that v D � ı u:

In Krantz et al. (1971), the reader can find an interesting discussion about the
reaction, measured in terms of utilities, of different agents to several stimulus.

13.4.2 Invariance of Utility Correspondences

We present first an example showing some utility correspondences for a very simple
acyclic preference. We will see some problems to achieve the transformation of a
utility correspondence in another.

Example 2 (Case of No Transformable Utility Correspondences). We consider the
P-acyclic preference structure given by

X D fx1; x2; x3g y R D fhx1; x2i ; hx1; x3ig:
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The following two utility correspondences represent the acyclic preference R,


.x1/ D f3g 
0.x1/ D f3g

.x2/ D f1=2; 2g 
0.x2/ D f1=2; 1g

.x3/ D f1=2; 1g 
0.x3/ D f1=2; 2g :

Both utility correspondences say that x1 is strictly preferred to x2 and that x1
is strictly preferred to x3. We can obtain 
0 from 
 using set transformations. The
identity is the unique function sending the union of rank.
/ in the union of rank.
0/.
However, this function does not help us to preserve the corresponding suprema:

sup 
.x2/ > sup 
.x3/ but not .sup 
0.x2/ > sup 
0.x3//:

Let us consider now the following pair of utility correspondences for .X;R/


.x1/ D .0; 1=2/[ .1=2; 1/[ .1; 2/[ f3g 
0.x1/ D f3g

 .x2/ D f1=2; 2g 
0 .x2/ D .0; 1=2�[ f1g

.x3/ D f1=2; 1g 
0.x3/ D f1=2g [ .1; 2� :

We note that there is not a “reasonable numerical transformation” indeed, even
a one to one numerical transformation that obtains 
0 from the union of the sets
formed by each 
.x/.

In order to obtain a utility correspondence from another, we need transformation
of sets satisfying some special requirements. We need the preservation of empty
intersections, when be needed. Additionally, there must be monotonicity among
suprema comparisons. Finally, bounded nonempty sets should be sent to bounded
nonempty sets.

Given a utility correspondence 
 W X 7! R, the range or image of 
 is the
collection of all real subsets 
.xi/ for each xi 2 X i.e.,

rank 
 	 2R:
rank 
 D f
.xi/jxi 2 Xg

The admissible transformations for
, which conserve invariance of the represen-
tation, are transformations of sets with domain in rank 
. We can denote this class
of set transformations by ‰uc.
/; the formal definition of this class is as follows.

Definition 11. Let � a correspondence such that � W rank
 7! 2R:

We say that � is the class ‰uc.
/ or � 2 ‰uc.
/ if the next two conditions
hold:

1. If A is a nonempty and bounded set of real numbers, then �.A/ is nonempty and
bounded set of real numbers.
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2. If xiPxj , 
.xi/ \ 
.xj/ D ; and
sup Ai > sup Aj $ �.Ai/ \ �.Aj/ D ; y sup �.Ai/ > sup �.Aj/

This definition requires preservation of empty intersections and preservation of
monotonicity of sups in the strict part of preference.

Theorem 7 (Invariance of Utility Correspondences). Let .X;R/ a P-acyclic
preference structure and 
 a utility correspondence for .X;R/. Then, 
0 is a
utility correspondence for .X;R/ and 
0 analogous to 
 if and only if there is a
transformation � W rank
 7! 2R belonging to ‰uc.
/ and such that for each xi 2 X,

0.xi/ D �.
.xi//.
Proof. H) Fix the utility correspondence
: Now we consider any other analogous
utility correspondences 
0 for .X;R/: Let � W rank
 ! 2R be a function such that
�.
.xi// D 
0.xi/8xi 2 X.

We shall show that � belongs to ‰uc.
/: It is clear that � transforms nonempty
and bounded sets in nonempty and bounded sets; this is by the definition of � and
the fact that 
 and 
0 are utility correspondences for .X;R/.

In order to show the second condition, we suppose that xiPxj , 
.xi/ D Ai and
that 
.xj/ D Aj. Because 
 and 
0 represent .X;R/, we have that

xiPxj $ 
.xi/ \ 
.xj/ D ; and sup
.xi/ > sup
.xj/

xiPxj$ 
0.xi/\ 
0.xj/ D ; and sup
0.xi/ > sup
0.xj/

then


.xi/ \ 
.xj/ D ; and sup
.xi/ > sup
.xj/

$ 
0.xi/\ 
0.xi/ D ; and sup
.xi/ > sup
0.xj/

by definition of �, this is equivalent to


.xi/\ 
.xj/ D ; and sup
.xi/ > sup
.xj/

$ �.
.xi//\ �.
.xj// D ; and sup�.
.xi// > sup�.
.xj//

so, we arrive � 2 ‰uc.
/.
(H Let � W rank 
 7! 2R a transformation of sets of the class � 2 ‰uc.
/ and

such that 
0.xi/ D �.
.xi//8xi 2 X.
We shall show that 
0 is a utility correspondence for .X;R/.
First, we note that for each xi, 
.xi/ is nonempty and bounded set, because 


is a utility correspondence for .X;R/. Since � 2 ‰uc.
/, we have that �.
.xi//
is nonempty and bounded. So, 
0.xi/ is nonempty and bounded for each xi
belonging to X.

Consider now that .xi; xj/ 2 X and suppose in addition that xiPxj.
Because 
 is a utility correspondence for .X;R/, then we have that 
.xi/ \


.xj/ D ; and sup 
.xi/ > sup 
.xj/: But � belongs to the class ‰uc.
/; this
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assertion is equivalent to �.
.xi//\�.
.xj// D ; and sup �.
.xi// > sup �.
.xj//.
But this is precisely 
0.xi/\ 
0.xj/ D ; y sup 
0.xi/ > sup 
0.xj/.

We have proved that 
0 is a utility correspondence for .X;R/ too. ut

13.4.3 Invariance for Weak Representations

The class of admissible transformations, for this case, is built from the next
definition.

Definition 12. Let .X;R/ be a preference structure, a function u W X 7! R and
� W rank u 7! R. We say that � is P-increasing in rank u if for each pair xi; xj 2 X:
If u .xi/ > u

�
xj
	

and xiPxj then � .u .xi// > �
�
u
�
xj
		

.

This definition says that � is increasing only when P “says the same.” The
class of transformation P-increasing includes, as a subset, the class of all increasing
transformations.

Example 3 (P-Increasing Transformations). Consider the same structure .X;R/
with X D fx1; x2; x3g and R D fhx1; x2i ; hx1; x3ig. Suppose u.x1/ D 7, u.x2/ D 6

y u.x3/ D 5, this is a weak representation for this structure. The following
transformations are P-increasing:

�.u.x1// D 3 �.u.x2// D 2 �.u.x3// D 1
 .u.x1// D 3  .u.x2// D 1  .u.x3// D 2:

Both transformations are forming new weak numerical representations for .X;R/:
But it is impossible to obtain one from the other using an increasing transformation.

Theorem 8 (Invariance of Weak Representations). Let .X;R/ be a preference
structure P-acyclic and u W X 7! R a weak representation for .X;R/. Then, v W X 7!
R is a weak representation .X;R/, and v is analogous to u if and only if there is
� W rank u 7! R such that � es P-increasing in rank u and such that v D � ı u.
Proof. H) Let u a weak representation for .X;R/. Let v any other analogous weak
representation for the structure .X;R/. Using these two numerical representations,
we define � W rank u 7! R such that �.u.xi// D v.xi/8xi 2 X.

We need to see that � is P-increasing in rank u. We take xi; xj in X such that xiPxj
and u.xi/ > u.xj/. Because v weakly represents the preference structure, we have
that v.xi/ > v.xj/ ), but this means that �.u.xi// > �.u.xj//. We concluded that �
is P-increasing in rank u.
(H Now we consider a function u W X 7! R weakly representing .X;R/ a

transformation �, P-increasing defined in rank u in such way that we build the
new function v.xi/ D �.u.xi// with domain X. We shall show that v is a weak
representation for .X;R/ too. In order to see this, suppose that xiPxj. Because u
weakly represents .X;R/, we have that u.xi/ > u.xj/. Because � is P-increasing
in rank u, we have then that �.u.xI// > �.u.xj//. But this means precisely that
v.xi/ > v.xj/. This concludes the proof. ut
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13.4.4 Invariance for Interval Orders and Semiorders

Finally, we consider now the invariance analysis for the interval order representa-
tions. We need to think this type of representations as a pair of functions .u; v/.
In order to transform one pair in another pair of functions, we use the following
definition.

Definition 13 (The Class of Transformations‰RI.u; v/).

.�; �/ 2 ‰RI.u; v/ if and only if � W rank u 7! R; � W rank v 7! R;

�.u.x// � �.v.x// 8x 2 X;

and if xPy ; then u.x/ > u.y/, �.u.x// > �.v.y//

Theorem 9 (Invariance of Interval Representations). Let .X;R/ be an interval
order structure of preferences. Let .u; v/ be an interval order representation for
.X;R/. Then .u0; v0/ is an interval order representation for .X;R/, u is analogous
to u0, and v is analogous to v0 if and only if there is a pair of transformations
.�; �/ 2 ‰RI.u; v/ such that for each x 2 X, .u0.x/; v0.x// D .�.u.x//; �.v.x///.
Proof. H) Consider that .u; v/ defines an interval representation for .X;R/: Let
.u0; v0/ be any other interval representation for the same structure of preferences.
We build � W rank u 7! R and � W rank v 7! R in such a way that for each
x 2 X : �.u.x// D u0.x/ and �.v.x// D v0.x/. We shall show that .�; �/ is an
element of the class ‰RI.u; v/. Because .u0; v0/ represents .X;R/, we have that
for each x 2 X, u0.x/ � v0.x/. This means, by the construction of � and � , that
�.u.x// � �.v.x// for each x 2 X. In order to verify the second condition, we
suppose xPy. By the representability of the pair .u; v/, this means that u.x/ > v.y/.
By the representability of the pair .u0; v0/, xPy is equivalent to u0.x/ > v0.y/ too.
So u.x/ > v.y/ , u0.x/ > v0.y/, but this means precisely that u.x/ > v.y/ ,
�.u.x// > �.v.y//. We have then that .�; �/ 2 ‰RI.u; v/.
(H Suppose that .�; �/ 2 ‰RI.u; v/ and that u0.x/ D �.u.x// and v0.x/ D

�.v.x//. We want to see that .u0; v0/ is an interval representation for .X;R/.
Because .�; �/ 2 ‰RI.u; v/ we have that �.u.x// � �.v.x//, this means that
v0.x/ > u0.x/8x 2 X. We suppose now that xPy. Because .u; v/ is an interval
representation, we have that xPy is equivalent to u.x/ > v.y/. This last is equivalent
to �.u.x// > �.v.y// because .�; �/ are admissible transformations for .u; v/. The
last inequality is equivalent to u0.x/ > v0.y/; we have then that xPy is equivalent to
u0.x/ > v0.y/. ut

13.5 By Way of Conclusion

In this paper, in order to avoid topological considerations, we have considered
only sets with a countable number of alternatives. Just to show that our work can
be, even under these limitations, relevant in economic theory, we refer to Debreu
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(1954) where it is shown that a continuous preference relation defined in a subset
of a separable normed space (and, with more generality, in a perfectly separable
space) has a utility representation. However, even in a convex subset of a non-
separable normed space (or more generally in any non-separable metric space), there
are continuous preference relation without utility representation (see Estévez and
Hervés 1995). For the case of non-separable spaces, the result by Monteiro (1987)
characterizes representability: a continuous preference relation in a path connected
set of alternative X has a continuous numerical representation, if and only if it is
countably bounded, i.e., there is some countable subset F of X such that for all
x 2 X, there exist y and z in F with y � x � z:

Acknowledgements I wish to thank Elvio Accinelli, Erubiel Ordaz, and two anonymous referees
for their helpful comments.
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Chapter 14
Symmetrical Core and Shapley Value
of an Information Transferal Game
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Abstract In this paper we study some properties and we characterize the Sym-
metrical Core. We analyze the relation of the Symmetrical Core with the Shapley
value of a game modeling information transferal in a cooperative environment. This
type of game was introduced by Galdeano et al. (Int Game Theor Rev 12(1):19–35,
2010) and it was also studied by Hou and Driessen (J Appl Math 2012:1–12, 2012).
It consists of an information market game involving identical firms and an innovator
having relevant information for the firms (e.g., a new technology).

We analyze how the symmetrical part of the Core varies according with the initial
information level of the firms and the value of the information. We also present
conditions in order that the Shapley value belongs to the Symmetrical Core. We
compare the cooperative outcomes with the noncooperative equilibrium of the game
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14.1 Introduction

Following the pioneer work by Arrow (1962), many studies on information markets
appeared in the literature, analyzing economic effects of patent licensing or pro-
tection (Taylor and Silberston 1973; Kamien and Tauman 1986; Katz and Shapiro
1986; Gilbert and Shapiro 1990; Muto 1993; Quintas 1995; Nakayama et al. 1991;
Wang 1998, 2002). More recently several studies have been done modeling the
interaction of an innovator and n firms in an industry (Poddar and Sinha 2004; Sen
and Tauman 2007; Tauman and Watanabe 2007; Schmidt 2008; Stamatopoulos and
Tauman 2008; Galdeano et al. 2010; Hou and Driessen 2012).

We follow the approach presented by Galdeano et al. (2010). Besides n firms with
identical characteristics, there exists an agent called the innovator, having relevant
information for the firms. The innovator is not going to use the information for
himself, but this information can be sold to the firms. Any firm that decides to
acquire the new information (e.g., a new technology) is supposed to make use of
the information. The n potential users of the information are the same before and
after the innovator offers the new technology. The problem is modeled as a .nC1/-
players cooperative game.

Galdeano et al. (2010) characterized the Shapley value of this game requiring
0-monotonicity. We now show that the game is also superadditive, we present a new
formulation for the Shapley value, and we give conditions in order that the Shapley
value belongs to the symmetrical part of the Core.

Hou and Driessen (2012) studied the nucleolus of this game. They also showed
the equivalence between the nonemptiness of the Symmetrical Core and one of each
conditions: supperadditivity, 0-monotonicity, or monotonicity.

In the present article, we present an explicit characterization of the Symmetrical
Core, and we analyze how it varies depending on the initial information level of the
firms and the value of the information. We also compare the cooperative outcomes
with the noncooperative equilibrium studied by Quintas (1995).

The paper is organized as follows: in Sect. 14.2 we describe the information
market and we define the corresponding game. In Sect. 14.3 we present some results
on the symmetrical part of the Core, and we give conditions for the Shapley value to
be in the symmetrical part of the Core. In Sect. 14.4 we study how the Symmetrical
Core varies when firms have more or less prior information. We analyze some limit
cases: when firms have full or no prior information and the variation of the value of
the information. In Sect. 14.5 we present some conclusions and possible extensions.

14.2 The Information Market

We consider a market with n firms (n � 2) and an innovator who possess a patent
or an information.
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The set of agents will be denoted by N D f1; 2; : : : ; nC 1g, where I D f1g (the
innovator) is the agent having a new information andU D f2; : : : ; nC 1g (the users)
are firms who could be willing to obtain the new information.

The n users or firms interact in the same market, producing or performing the
same activity with the same technology or the same information. Thus, all the users
have the same incentives for the acquisition of the new information or technology.
We will make the following assumptions about the problem we want to study:

S.1: The n information users are the same before and after the information holder
offers the new technology. This indicates that there are no exits or incoming
agents in the market.

S.2: All the players that acquire the new information make use of it.
S.3: In order to compute the utilities of the players, we use a conservative criteria,

assuming that the uninformed agents make the right choice.

S.1 and S.2 are natural assumptions. S.3 avoids dealing with externalities
(Macho-Stadler et al. 2006; De Clippel and Serrano 2008). As in several other
papers (Amer et al. 2008; Belenky 2002; Sandholm et al. 1999), we adopt a principle
of prudence: each coalition is assigned a utility corresponding to the worst possible
scenario.

We will take into account these conditions in order to define an .nC 1/- person
cooperative game.

14.2.1 The Cooperative Game

Definition 1. An .n C 1/-person game in characteristic function form is given by
.N; v/, where N D f1; 2; : : : ; nC 1g is the set of players, and v W 2N ! R is the
characteristic function.

Following Galdeano et al. (2010), we consider n firms with identical charac-
teristics (the users) and an agent called the innovator, having relevant information
for the firms. The innovator is not going to use the information for himself, but
this information can be sold to the firms. Any firm that decides to acquire the new
information (e.g., a new technology) is supposed to make use of the information.
The n potential users of the information are the same before and after the innovator
offers the new technology. The firms acquiring the information will be better than
before obtaining it, while their utilities are computed under a conservator point
of view, assuming that for any uninformed firm, the probability of making a right
decision can be described by a binomial probability distribution, being 0 � c � 1
the uniform probability of having success. We will first consider the case when
0 < c < 1, and we will then consider the cases c D 0 and c D 1 in Sect. 14.4.

The probability that k among s firms take the right decision is given by�s
k

	
ck.1� c/s�k, and hence, the expected aggregated utility of k firms having success

is k
�s
k

	
ck.1 � c/s�kak . Here ak � 0 represents the utility if k firms make a right
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decision. Throughout the paper, the utility function is monotonic decreasing because
when the number of firms taking a right decision increases, each firm receives a
lower utility level, i.e., akC1 � ak for all k � 1. We normalized it assuming that
a1 D 1.

Throughout the paper, the size (jSj, or cardinality) of any coalition S � N is
denoted by s, 0 � s � n C 1. In case coalition S contains the innovator, then
v.S/ D .s � 1/an because any member of S, different from the innovator, made a
right decision rewarding the expected utility an since the n � s uninformed firms
outside S are assumed to take a right decisions too.

Definition 2. The .nC 1/-person information market game .N; v/ in characteristic
function form is given by,

v.;/ D 0
v.S/ D .s � 1/ an if 1 2 S:
v.S/ D w.s/ DPs

jD0
j
�s
j

	
cj.1 � c/s�jan�sCj if 1 … S

for all S � N; S ¤ ; and s D jSj

(14.1)

14.2.1.1 Properties Fulfilled by the Characteristic Function v

A usual assumption is that the game is superadditive:

Definition 3. A game .N; v/ is superadditive if for all sets A � N and B � N with
A \ B D �, we have that v .A [ B/ � v .A/C v .B/.

In superadditive games, the players have incentives to form coalitions.

Definition 4. By a superadditive .n C 1/-person game in characteristic function
form, we mean a real-valued function v, defined on the subsets of N, satisfying
v.�/ D 0 and superadditivity.

We will consider a weaker version of the superadditivity property, which will be
fulfilled by the games we study here.

Definition 5. A game .N; v/ is zero-monotonic If, for all sets A � N and for all
i … A, we have that v .A [ fig/ � v .A/C v .fig/.

The following statements (Theorem 1, Proposition 1, Theorems 2 and 3) were
given in Galdeano et al. (2010) in order to prove that the game was zero-monotonic.
We will use them and we will now prove that the game is superadditive.

Theorem 1. If the innovator is not in the coalition S(1 … S) and he belongs to
T .1 2 T/ such that S \ T D �, then v .S [ T/ � v .S/C v .T/ if and only if

v .S/ � v .S [ f1g/ (14.2)
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Remark 1. The players in an uninformed coalition S � U have incentives to join
an informed coalition T � N, if the utility they obtain is less than they would
obtain buying the information. We do not need a restriction on the set T because by
assumption S.3, for the computation of the characteristic function v.T/, we assumed
that the uninformed agents outside the coalition take the right decision. Thus it is
always better for them to join the coalition.

It was analyzed the restrictions (14.2) depending on the number of agents in the
market and it was obtained the following results:

Proposition 1. If the innovator is not in the coalition S (1 … S) and he belongs to
T .1 2 T/ such that S \ T D �, then v .S [ T/ � v .S/C v .T/ if and only if

an � c.1 � c/n�2

1C c.1 � c/n�2
(14.3)

Remark 2. Without assuming a1 D 1, condition (14.3) takes the following form:

an
a1
� c.1 � c/n�2

1C c.1 � c/n�2
.

The following theorem shows that the function v is zero �monotonic

Theorem 2. For any coalition S and any user i … S W v .S [ fig/ � v .S/C v .fig/.
Now we show under what conditions the game is superadditive. We will first

prove the following lemma:

Lemma 1. If S � U and T D fig 2 UnS then

w.s/

s
� w.s [ fig/

sC 1
Proof. The proof easily follows by using Definition 2 and basic properties of
combinatoric numbers. �

We will complete the proof of the superadditivity condition:
For disjoint, nonempty coalitions S;T � Nn f1g, by Definition 2 and by

Lemma 1, we have that for 1 � s � n � 1 it holds
w.s/

s
� w.sC 1/

sC 1 then

v.fig/ D w.1/ � w.2/

2
� : : : � w.n/

n
D v.U/

n

We can assume without loss of generality 1 � s � t � sC t � n then

w.s/

s
� w.sC 1/

sC 1 � w.sC 2/
sC 2 � : : : � w.t/

t
� : : : � w.sC t/

sC t
(14.4)
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Therefore

w.sC t/

sC t
� w.s/

s
(14.5)

Theorem 3. v is superadditive if and only if an � c.1 � c/n�2

1C c.1 � c/n�2

Proof. By Proposition 1, if the innovator is not in the coalition S (1 … S) and he
belongs to T .1 2 T/ such that S \ T D �, then v .S [ T/ � v .S/ C v .T/ if and

only if an � c.1 � c/n�2

1C c.1 � c/n�2
.

Now we should analyze the supperadditivity for the case of two disjoint
nonempty coalitions S;T � Nn f1g. Using Lemma 1 and operating in (14.5), we

get w.s C t/ � .s C t/
w.t/

t
D sw.t/

t
C w.t/ and by (14.4) w.t/

t � w.s/
s then

w.sC t/ � w.s/C w.t/. Therefore v .S [ T/ � v .S/C v .T/. �

14.3 Cooperative Solutions of the Game

In this section we give the definition of the Core (Gillies 1953) and the Symmetrical
Core of the game. We analyze how the Symmetrical Core varies for different values
of c and ai. We also study conditions for the Shapley value (Shapley 1953) to be in
the Symmetrical Core.

14.3.1 The Symmetrical Core

Definition 6. An imputation or payoff distribution for the game .N; v/ is a vector
x D .x1; : : : ; xnC1/ satisfying

P
i2N

xi D v .N/ and xi � v .fig/ for each i 2 N.

The Core allocations are selected through efficiency and group rationality.
Besides the appealing motivation for the definition of Core allocations, we might
wonder if this set is nonempty. We will prove that for v given by (14.1), the Core is
nonempty.

Definition 7. The Core is the set

C.v/ D
(
.x1; x2; : : : ; xnC1/ W

X

i2N
xi D v .N/ and

X

i2S
xi � v.S/ for each S � N

)

The Core, however, is a set-valued solution concept which fails to satisfy the
symmetry property in that users of the same type receive identical payoffs according
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to Core allocations. By symmetry (Condition S.1) we have x2 D x3 D � � � D xnC1,
and then the Symmetrical Core allocations require equal payoffs to users, that is:

SymC.v/ D f.x1; x2; : : : ; xnC1/ 2 C.v/ W x2 D x3 D � � � D xnC1g

The following lemma gives a necessary condition in order that an imputation
belongs to the Symmetrical Core.

Lemma 2. Given a game .N; v/, with v defined by (14.1) and an fulfilling (14.3), if
.x1; x2; : : : ; x2/ 2 SymC.v/, then x2 D an � 1

n x1 with can � x2 � an.

Proof. If .x1; x2; : : : ; x2/ 2 SymC.v/ then x2 D x3 D � � � D xnC1 and
P
i2N

xi D v .N/.
Now using (14.1) we obtain

nan D x1 C nx2 D .x1 C sx2/C .n � s/x2 (14.6)

If 1 2 S we obtain

x1 C
X

i2Snf1g
xi D x1 C sx2 � san with jSj D sC 1 (14.7)

Now using (14.6) in (14.7), we obtain an � x2.
On the other hand, if 1 … S then we obtain can � x2 therefore can � x2 � an. �

Remark 3. This condition is not sufficient because, for example, if .x1; x2; : : : ; x2/ 2
SymC.v/, then 2x2 � v.f2; 3g/, that is to say, 2x2 � 2c.1 � c/an�1 C 2c2an. Now
we assume it fulfills that x2 D can, then ( 0 < c < 1/, we obtain an�1 < an which
contradicts the general conditions of the game (aj is decreasing).

Theorem 4. Given a game .N; v/, then

SymC.v/ D
n
.x1; x2; : : : ; x2/ 2 C.v/ W x1 D na.n/� nx2 ^ v.U/

n � x2 � v.N/
n

o
.

Proof. On one hand, if .x1; x2; : : : ; xnC1/ 2 SymC.v/, then x2 D x3 D � � � D xnC1
and .x1; x2; : : : ; xnC1/ 2 C.v/. Now using (14.1) we obtain a system with 2

�n
s

	

inequalities:

8
<

:
x2 � an � 1

s x1
x2 �Ps

jD0
j
s

�s
j

	
cj.1� c/s�jan�sCj

with s D 1; 2; : : : ; n (14.8)

We obtain the following equivalent system:

an �

Ps�1
jD0

j
s

�s
j

	
cj.1 � c/s�jan�sCj

1 � cs
; with s D 1; 2; : : : ; n
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In Galdeano et al. (2010), it was proven that the solution of this system in

an; an�1; : : : ; a2 is an � c.1 � c/n�2

1C c.1� c/n�2
.

Moreover for each s in (14.8), we have a lower bound for x2;
Ps

jD0
j
s

�s
j

	
cj.1 �

c/s�jan�sCj � x2.
To determine the largest of these lower bounds for x2, using Lemmas 1 and 2, we

have
can � v.S/

s � v.U/
n � x2 � an D v.N/

n with S � U, jSj D s and jUj D n. Then we
obtain

v.U/
n � x2 � an D v.N/

n and x1 D nan � nx2.
We now prove the reverse implication , i.e.,
on the other hand, if .x1; x2; : : : ; xnC1/ is such that x1 D na.n/ � nx2 ^ v.U/

n �
x2 � an, then x2 D x3 D � � � D xnC1, and using (14.1), we obtain

X

i2N
xi D nan D v .N/

If S � U then by Lemma 1, v.S/
s � v.U/

n , and x2 D x3 D � � � D xnC1, we have
v.S/ � sx2.

If S [ f1g � N then

P
i2S[f1g

xi D x1 C sx2 D .nan � nx2/C sx2 D nan C .s � n/ x2 : (14.9)

with s � n and x2 � an, then nanC.s � n/ x2 � nanC.s � n/ an D san. Using (14.1)
we obtain

X

i2S[f1g
xi � v.S [ f1g/

We have for all S � N W P
i2S

xi � v.S/.
Therefore we obtain that
SymC.v/ D

n
.x1; x2; : : : ; x2/ 2 C.v/ W x1 D na.n/ � nx2 ^ v.U/

n � x2 � v.N/
n D a.n/

o

�

Corollary 5. The Symmetrical Core and by extension the Core is nonempty.

Proof. It is easy to show that .x1; x2;::; x2/ D .0; an; ::; an/ 2 SymC.v/ and

nan � v.U/; v.U/n ; ::;

v.U/
n

�
2 SymC.v/. �

Remark 4. Thus, the imputation .0; an; ::; an/ D .0; v.N/n ; ::;
v.N/
n / 2 SymC.v/ is the

most appealing for the users because they get v.N/
n and the less appealing for the

innovator that obtains 0.
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The imputation


nan � v.U/; v.U/n ; ::;

v.U/
n

�
2 SymC.v/ is the less appealing for

the users because they get v.U/n and the most appealing to the innovator that obtains
nan � v.U/.

14.3.2 Shapley Value and Symmetrical Core

Definition 8. Given a game .N; v/, the Shapley value (Shapley 1953) is defined by
the following vector ' .v/ D �'1 .v/ ; : : : ; 'nC1 .v/

	
where

'i .v/ D
X

S
N -fig

sŠ .n � s/Š

.nC 1/Š Œv .S [ fig/� v .S/�

with jSj D s and jNj D nC 1.

In Galdeano et al. (2010), it was given a formulation of the Shapley value. Now
we present a more concise expression:

Theorem 6. Given a game .N; v/, with v defined by (14.1) fulfilling (14.3) and
0 < c < 1, then the Shapley value ' .v/ D �

'1 .v/ ; : : : ; 'nC1 .v/
	
is an imputation

for the game .N; v/ with

' i .v/ D '2 .v/ D '3 .v/ D � � � D 'nC1 .v/ D an
2
C 1

n.nC1/
nP

sD0
w.s/,

'1 .v/ D 1
2
v .N/ � 1

nC1
nP

sD0
v .s/ D 1

2
nan � 1

nC1
nP

sD0
w .s/ with s D jSj, 1 … S and

i ¤ 1.
The proof follows by splitting the sums considering informed and uninformed

coalitions, respectively.
The following lemma shows that the Shapley value fulfills the necessary

condition of the Symmetrical Core.

Lemma 3. If .'1 .v/ ; '2 .v/ ; : : : ; '2 .v// is as in Theorem 6, then 0 � '1 .v/ �
n .1� c/ an and c an � '2 .v/ � an.

The proof is similar to Lemma 2.
The following example shows that the Shapley value could be outside the

Symmetrical Core.

Example 1. For n D 2 the Symmetrical Core is in a line in R
3 given by

SymC.v/ D
8
<

:

x1 D 2a2 � 2x2
x2 D x2
x3 D x2

with c2a2 C c .1 � c/ � x2 � a2;
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The Shapley value is .'1 .v/ ; '2 .v/ ; '2 .v// 2 R
3, with

'1 .v/ D a2 � 1
3
ca2 � 2

3
cC 2

3
c2 � 2

3
c2a2:

'2 .v/ D
1

2
a2 C 1

6
ca2 C 1

3
c � 1

3
c2 C 1

3
c2a2

If c D 1
2

and a2 D 0:667, then .0 :277; 0:528 ; 0:528 / 2 SymC.v/.
If c D 1

2
and a2 D 0:369, then .0 :078; 0:328 ; 0:328 / … SymC.v/.

The following theorem gives necessary and sufficient conditions for the Shapley
value to be in the Symmetrical Core.

Theorem 7. The Shapley value is in the Symmetrical Core if v.U/ � 1
2
.nC 1/ anC

1
n

n�1P
sD1

v .s/ with s D jSj and 1 … S.

Proof. Let .'1 .v/ ; '2 .v/ ; : : : ; '2 .v// be a solution for the game .N; v/ given
by the Shapley value, and then by Theorem 4, the Shapley value will be in the
Symmetrical Core if

'1 .v/C n'2 .v/ D v.N/ D nan with
v.U/

n
� '2 .v/ � an

The Shapley value verifies:
nC1P
iD1

' i .v/ D '1 .v/C n'2 .v/ D v.N/. As '1 .v/ � 0,

then n'2 .v/ � v.N/. Thus '2 .v/ � v.N/
n D an.

Now we analyze when the following condition holds: v.U/n � '2 .v/.
By Theorem 6, '2 .v/ D an

2
C 1

n.nC1/
nP

sD0
v.s/. Then v.U/

n � '2 .v/ if and only if

v.U/

n
� an
2
C 1

n.nC 1/
nX

sD0
v.s/ (14.10)

Operating in (14.10) we obtain v.U/ � 1
2
.nC 1/ an C 1

n

n�1P
sD1

v .s/. �

Remark 5. If n D 2 then the Shapley value is in the Symmetrical Core if a2 �
4c

.4cC3/ .
As a2 � c

1Cc and 4c
.4cC3/ � c

1Cc , we have a critical zone c
1Cc � a2 <

4c
.4cC3/

where the Shapley value is not in the Symmetrical Core.
It is shown in the following graphic, where 4c

.4cC3/ (solid) and c
1Cc (dots).
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If n � 3 the Shapley value is in the Symmetrical Core if

an �
n
Pn�1

jD1
j.nj/c

j.1�c/n�j�1a.j/�
n�1P
sD2

Ps�1

jD1
j.sj/c

j.1�c/s�j�1a.n�sCj/

n�1P
sD0

h

n2�snC s.sC1/

2

�i
cn�1�s

Increasing n, the critical zone where the Shapley value is not in the Symmetrical
Core shrinks.

14.3.3 Cooperative and Noncooperative Model

The cooperative game studied in this paper was analyzed by Quintas (1995) from
a noncooperative point of view. It was observed that the innovator obtained a neat
profile by selling the information to the n firms. However the situation was not so
appealing for the buyers. The expected utility each one finally obtained after buying
the information was that one he would have obtained if he was the only uninformed
agent. Nevertheless they couldn’t ignore the existence of the information and they
should buy it.

The main result of the noncooperative study mentioned above states as follows:

Theorem 8. The price P that the innovator can ask to the n users such that all of
them acquire the information is determined by the unique Nash equilibrium of the
noncooperative game.

This price is P D .1 � c/an � ", with " � 0 arbitrarily small, and the payoff
n-tupla is

..1 � c/nan C n"; can C "; : : : ; can C "/
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and "! 0, then the payoff n-tupla is

..1 � c/nan; can; : : : ; can/

Let’s compare the expected utility given in Theorem 8 with the results presented
in our article.

Theorem 9. The Nash equilibrium payoff of the noncooperative game, P D
..1 � c/nan; can; : : : ; can/ verifies:

1) It is an imputation of the cooperative game .N; v/.
2) It does not belong to the Symmetrical Core.

Proof. 1) By the definition of v, we have v .fig/ D c an; v .f1g/ D 0, and v .N/ D
nan.
Then

P
i2N

xi D .1 � c/nan C ncan D nan and we obtain

X

i2N
xi D v .N/ (14.11)

If i D 1 then v .f1g/ D 0 � .1 � c/nan D x1, and if i ¤ 1 then v .fig/ D can D x2,
and we have

xi � v .fig/ for all i 2 N (14.12)

From (14.12) and (14.11) we conclude that P is an imputation for the game .N; v/.
Now we prove 2).
If P D ..1 � c/nan; can; : : : ; can/ 2 SymC.v/, then 2x2 � v.f2; 3g/, and we

obtain
2x2 � 2c.1 � c/an�1 C 2c2an. As 0 < c < 1 and x2 D can, then we obtain

an�1 < an. It is impossible, because aj increases. Then P … SymC.v/. �

Remark 6. In Galdeano et al. (2010), it was proved that ' i .v/ � can with i being
a user. By Lemma 2, the Symmetrical Core imputations for the users verify can �
xi � an. By Theorem 8, can is the equilibrium outcome for the users. Thus, we
conclude that the users are better off in the cooperative environment and an opposite
situation results for the innovator.

14.4 Limit Cases

In Theorem 6 it was given a characterization of the Shapley value and in Theorem 4,
it was presented a characterization of the Symmetrical Core, being 0 < c < 1 and

c.1� c/n�2

1C c.1� c/n�2
� an � an�1 � : : : a2 � 1.
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Now we analyze properties of some limit cases. These limit cases correspond to
completely uninformed users (c D 0) or completely informed users (c D 1). The

other extreme cases result when an D an�1 D � � � D a2 D c.1 � c/n�2

1C c.1 � c/n�2
and

an D an�1 D � � � D a2 D 1

14.4.1 Users with No Prior Information .c D 0/:
Big Boss Games

We will show that in this case the game .N; v/ is a Big Boss Game (Muto et al.
1988).

Definition 9. A monotonic game .N; v/ is called a Big Boss Game if there is one
player, denoted by i�, satisfying the following two conditions:

B1) v.S/ D 0 if i� … S and B2) v.N/ � v.S/ �
X

i2NnS
.v.N/ � v.N � fig// if

i� 2 S.

The Big Boss Games are denoted by BBGN .

B1 implies that one player i� is very powerful. Coalitions not containing i� cannot
get anything.

B2 implies that for every coalition not containing i�, its contribution to the
grand coalition is not less than the sum of the contributions of its players
to the grand coalitions. Hence, weak players may increase their influence by
forming coalitions. We also notice that a Big Boss Game v is superadditive
(Definition 3), because of the monotonicity of v and B1.

When c D 0, the characteristic function v W 2N ! R results

v.S/ D
�
.s � 1/ an if 1 2 S
0 if 1 … S

for all S � N and jSj D s (14.13)

Here player i� is the innovator i� D 1. As a consequence of (14.13), we have:

Theorem 10. Let .N; v/ be a game with v given by (14.13), then .N; v/ 2 BBGN.

Proof. We must prove that .N; v/ is monotonic, that is, v.S/ � v.T/ for all S � T
and jSj D s, jTj D t.

If 1 2 S then 1 2 T, and by (14.13) v.S/ D .s � 1/ an � .t � 1/ an D v.T/.
If 1 … S then we have two cases: 1 2 T or 1 … T, then:

i) 1 … S and 1 2 T , by (14.13) v.S/ D 0 � .t � 1/ an D v.T/.
ii) 1 … S and 1 … T, v.S/ D 0 D v.T/. Then .N; v/ is monotonic.

Now we must also prove that B1 and B2 hold.
Condition B1 immediately follows from (14.13).
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Let be 1 2 S and i ¤ 1; then by (14.13), we have
X

i2NnS
.v.N/ � v.N � fig// D

X

i2NnS
.nan � .n � 1/ an/ D

X

i2NnS
an D .nC 1 � s/ an

at the same time v.N/ � v.S/ D n an � .s � 1/ an D .nC 1 � s/ an thus

v.N/ � v.S/ D
X

i2NnS
.v.N/ � v.N � fig//:

Therefore B2 holds with equality. �

Now we compute the Shapley value and the Symmetrical Core.

Theorem 11. 1. The Shapley value for the users is given by ' i .v/ D 1
2
an for

i ¤ 1 and for the innovator is given by '1 .v/ D 1
2
v .N/ D nan

2
.

2. The Symmetrical Core is given by SymC.v/ D f.x1; x2; : : : ; x2/ W 0 � x2 � an
with x1 C nx2 D nang.

Proof. 1. Let be i ¤ 1. By Definition 6, splitting the sum between
informed and uninformed coalitions, and by (14.13) we have ' i .v/ DP
S
Nnfig

sŠ .n�s/Š
.nC1/Š Œv .S [ fig/ � v .S/� D

P
S
Nnfig
12S

sŠ .n�s/Š
.nC1/Š Œsan � .s � 1/ an�C

P
S
Nnfig
1…S

sŠ .n�s/Š
.nC1/Š 0 then

' i .v/ D
X

S
Nnfig
12S

sŠ .n � s/Š

.nC 1/Š an (14.14)

Now we analyze how many subsets S are in each sum of (14.14).
If S � N n fig, with 1 2 S, we count how many subsets of the type S n f1g �

N nf1; ig we have (the innovator is a fixed player in all the coalitions S we could
form), they are

�n�1
s�1
	
.

Then
�n�1
s�1
	 sŠ .n�s/Š
.nC1/Š D s

n.nC1/ , with jSj D s D 1; : : : ; n.
As the function v .S/ depends only on the cardinality s of the set S, we have

for i ¤ 1

' i .v/ D an

nX

sD1
12S

s

n.nC 1/ (14.15)

and
nP

sD1
s

n.nC 1/ D 1=2; thus, we have

' i .v/ D
1

2
an with i ¤ 1 (14.16)

Fix i D 1. As
nP

iD1
' i .v/ D v.N/. Then by (14.16) and by (14.13), we have

'1 .v/ D nan � n 1
2
an D n

2
an.
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Thus the Shapley value is

.'1 .v/ ; '2 .v/ ; : : : ; '2 .v// D
�
n

2
an;

1

2
an; : : : ;

1

2
an

�

2. The proof of this part is similar to Theorem 4. �

Corollary 12. 1. The Shapley value is in the Symmetrical Core and it is the
midpoint of the segment.

2. The payoff .nan; 0; : : : ; 0/ found in Quintas (1995) in the noncooperative game
is an extreme point in the Symmetrical Core.

14.4.2 Completely Informed Users .c D 1/

In the case c D 1, the characteristic function v W 2N ! R becomes

v.S/ D
�
.s � 1/ an if 1 2 S
san if 1 … S

for all S � N and jSj D s (14.17)

As an immediate consequence of (14.17), we have:

Theorem 13. 1. The Shapley value for the users is given by '2 .v/ D 1
nv .N/ D

an and '1 .v/ D 0
2. The Symmetrical Core is given by SymC.v/ D f.x1; x2; : : : ; x2/ W x1 D '1 .v/
D 0 ^ x2 D 'i .v/ D ang.

The proof is similar to the case c D 0 .

Remark 7. 1. In this case the Symmetrical Core is a single point set and it coincides
with the Shapley value.

2. From (14.17) the innovator is a dummy player. Thus the users have no incentives
to form coalitions with the innovator, but they do have incentives to form
coalitions among themselves because if i ¤ 1 then v.S/ D v.S [ f1g/ and
v.S/ < v.S [ fig/.

3. The users in this case have complete information and the payoff outcome
.0; an; : : : ; an/ coincides with the result obtained by Quintas (1995) in the
noncooperative game.

On the other hand, if we denote by SymC.v; c/ the Symmetrical Core corre-
sponds to value of c. It is easy to verify that:

Theorem 14. If 0 � c1 � c2 � : : : � cn � 1 then

SymC.v; 0/ � SymC.v; c1/ � SymC.v; c2/ � : : : � SymC.v; cn/ � SymC.v; 1/

Proof. It follows from the characterization of the Symmetrical Core in the general
case 0 < c < 1 and the cases c D 0 and c D 1. �



294 P.L. Galdeano and L.G. Quintas

14.4.3 Extreme Values of aj

Now for each c fixed, we analyze the Symmetrical Core and the Shapley value for
extreme values of aj. Namely, we analyze the cases an D 1 and an D an�1 D � � � D
a2 D c.1�c/n�2

1Cc.1�c/n�2 .

In the case an D 1, the characteristic function v W 2N ! R becomes

v.S/ D
�
.s� 1/ if 1 2 S
sc if 1 … S

for all S � N and jSj D s (14.18)

As an D 1 then aj D 1, for all j D 1; ::n.

Lemma 4. For v given by (14.18):

1. The Symmetrical Core is the segment given by: SymC.v/ D f.n.1 � x2/; x2; : : : ;
x2/ W c � x2 � 1g.

2. The Shapley value
�
1
2
n .1 � c/ ; cC1

2
; : : : cC1

2

	
is in the Symmetrical Core and it is

the midpoint of the segment.
3. The equilibrium payoff ..1 � c/n; c; : : : ; c/ found by Quintas (1995) for the

noncooperative game is an extreme point of the Symmetrical Core.

Proof. Let’s prove 1.
By (14.18) we have

v.N/ D n and v.U/ D nc (14.19)

Using (14.19), and Theorem 4, we have

SymC.v/ D f.n.1� x2/; x2; : : : ; x2/ W c � x2 � 1g
Now we prove 2.

The Shapley value for the users is given by

' i .v/ D
v .nC 1/
2n

C 1

n.nC 1/
nX

sD0
v.s/ (14.20)

By (14.18) we have

v .S/ D sc with 1 … S and jSj D s (14.21)

Using (14.21) , (14.19), and Theorem 6, we have ' i .v/ D v.nC1/
2n C 1

n.nC1/
nP

sD0
sc.

As
nP

sD0
s D n.nC1/

2
, it results

' i .v/ D
n

2n
C 1

n.nC 1/
n .nC 1/ c

2
D 1C c

2
(14.22)

As '1 .v/C n'i .v/ D v.N/, then '1 .v/ D nan � n'i .v/.
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Therefore by (14.19) and (14.22), we obtain '1 .v/ D n � n
�
1Cc
2

	 D n
�
1Cc
2

	
.

Then the Shapley value
�
1
2
n .1 � c/ ; cC1

2
; : : : cC1

2

	
is in the Symmetrical Core,

and it is the midpoint of the segment.
In order to prove 3, let’s consider the payoff of the noncooperative game

..1 � c/nan; can; : : : ; can/ and an D 1, then it becomes: ..1 � c/n; c; : : : ; c/. It’s
an extreme point of the Symmetrical Core. �

Now let’s analyze the case an D an�1D � � � D a2D c.1�c/n�2

1Cc.1�c/n�2

Lemma 5. If an D an�1D � � � D a2D c.1�c/n�2

1Cc.1�c/n�2 , then v.N/ D v.U/.
Proof. By (14.1) we have

v.U/ D
nX

jD1
j

 
n

j

!
cj.1 � c/n�jaj (14.23)

Using that an D an�1 D � � � D a2 D c.1�c/n�2

1Cc.1�c/n�2 , a1 D 1 and by (14.1), we have

v.U/ D
nX

jD1
j

 
n

j

!
cj.1�c/n�jaj D nc.1�c/n�1C

0

@
nX

jD2
j

 
n

j

!
cj.1 � c/n�j

1

A c .1 � c/n�2

1C c .1 � c/n�2

As we have
Pn

jD2
j
�n
j

	
cj.1 � c/n�j D nc

�
1 � .1 � c/n�1

	
then

v.U/ D nc.1� c/n�1 C �nc � nc.1� c/n�1
	 c .1 � c/n�2

1C c .1 � c/n�2
(14.24)

Operating in (14.24) we obtain v.U/ D n c.1�c/n�2

1Cc.1�c/n�2 , and by (14.1) v.N/ D nan,

then v.U/ D v.N/. �

Corollary 15. The Symmetrical Core is a single point set

SymC.v/ D
( 

0;
c .1 � c/n�2

1C c .1 � c/n�2
; : : : ;

c .1 � c/n�2

1C c .1 � c/n�2

!)

Remark 8. 1. The Shapley value is not in the Symmetrical Core.

2. The equilibrium payoff


.1 � c/n c.1�c/n�2

1Cc.1�c/n�2 ; c
c.1�c/n�2

1Cc.1�c/n�2 ; : : : ; c
c.1�c/n�2

1Cc.1�c/n�2

�

found by Quintas (1995) for the noncooperative game is not in the Symmetrical
Core.
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14.5 Conclusions

We studied several properties of the game modeling information transferal. We
computed the Symmetrical Core. We showed the Symmetrical Core (and also the
Core) is nonempty . We characterized the Symmetrical Core and we analyzed the
relation with the Shapley value. We showed examples of cases when the Shapley
value is not in the Symmetrical Core. We presented conditions for the Shapley value
to be in the Symmetrical Core.

We compared the cooperative outcomes with the noncooperative outcomes.
The Nash equilibrium found in Quintas (1995) in the noncooperative game is an
imputation for the game but in the general cases is not in the Symmetrical Core
(Theorem 9) .The Nash equilibrium gives the users a worse payoff than the Shapley
value and the Symmetrical Core allocations (Remark 6).

We also analyzed some limit cases.
In the case of users with no prior information, the game was a Big Boss Game

(Muto et al. 1988). The innovator had a huge power, and the payoff corresponding
to the noncooperative equilibrium found in Quintas (1995) in the noncooperative
game was an extreme point in the Symmetrical Core, giving the best outcome to the
innovator and no utilities to the users. The Shapley value was in the Symmetrical
Core. It is a segment of a line, being the Shapley value the midpoint of the segment.

In the case of fully informed users, the role of the innovator was irrelevant (it is
a “dummy” player), and the Symmetrical Core is a single point.

In these cases both the Shapley value and the noncooperative outcome were in
the Symmetrical Core.

Our approach was different from that introduced in the Bi-Form Games (Bran-
demburger and Stuart 2007), where it is considered a hybrid noncooperative-
cooperative model. Instead of that, we made a comparison of the outcomes in
noncooperative and cooperative scenarios because both models have a role to play
in understanding business strategy, and many times it is not known beforehand if the
game is going to be played with or without cooperation among the agents. As it was
expected, the users were better off in a cooperative environment, and we explicitly
compared the cooperative solution outcomes with the noncooperative equilibrium.
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Chapter 15
Marginal Contributions in Games
with Externalities

Joss Sánchez-Pérez

Abstract In this work we explore games with externalities, where our basic
approach is rooted in the concept of marginal contributions of players to coalitions.
We considered the general case where a player (in a coalition S) may join another
coalition after leaving S. We then show that the standard translation of Shapley’s
four axioms to games with externalities is not sufficient to obtain a unique value.
Finally, we provide an axiomatic characterization for the family of solutions for
games with externalities satisfying those axioms that traditionally are used to
characterize the Shapley value in the absence of externalities. In particular, we show
that every such solution is a linear combination of marginal contributions of players
and provide an interpretation as a bargaining process.

Keywords Marginal contributions • Cooperative games • Externalities • Shap-
ley value • Partitions

15.1 Introduction

One of the main purposes of cooperative game theory is to study how to divide the
joint profits among players when they cooperate together. A value for coalitional
games is a solution which provides an allocation for players’ payoffs. Shapley
(1953) suggests an axiomatic approach to this issue. In his characterization, the
axiom linearity, symmetry, efficiency, and the nullity property determine uniquely a
value. Young (1985) shows that the axioms of marginality, efficiency, and symmetry
also yield an axiomatic characterization of the Shapley value. The Shapley value

�Part of this chapter is based on the paper “A note on a class of solutions for games with
externalities generalizing the Shapley value” (2015).
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possesses many desirable properties and becomes one of the most famous solutions
for games with no externalities. Nevertheless, the Shapley value cannot give a
recommendation for the allocation of payoffs of players in the situation where
externalities across coalitions are present. Lucas and Thrall (1963) introduce games
with externalities, where the worth of a coalition is described conditional to how
outside members of the coalition form coalitions.

Based on the axioms which characterize the Shapley value for games with
no externalities, there are apparently many ways to extend it to games with
externalities. For instance, the first paper that proposed a value concept for these
was Myerson (1977) and then Bolger (1989) derived an efficient value which assigns
zero to null players and assigns nonnegative values to players in monotone simple
games. More recently, Albizuri et al. (2005), Macho-Stadler et al. (2007), De Clippel
and Serrano (2008), Hu and Yang (2010), and Grabisch and Funaki (2012) are
contributions to this line of research. All of them are in some way extensions of the
Shapley value for games with externalities, where a remarkable difference among
each other is the definition of a null player.

We take particular attention to the concept of null player in environments with
externalities. A natural requirement for a fair division scheme is that it remunerates
the players of a coalitional game taking into account their contribution to the surplus
generated via cooperation. Indeed, in Shapley’s axiomatization, the nullity axiom
requires that no share be allocated to players with zero contribution to any possible
coalition that could be created in the coalitional game. The key issue, then, is how
such contribution should be measured. Although not explicitly, Shapley’s nullity
axiom relies on the concept of marginal contribution, one of the fundamental notions
in economic theory.

In the cooperative game context, the marginal contribution of a player to a
coalition is the difference between the value of this coalition with and without the
player. It can be also understood as a loss incurred by the remaining players should
the player leave a given coalition. Considering this latter intuition, the Shapley value
can be formulated as the weighted average of players’ marginal contributions to all
coalitions. In games with no externalities, the marginal contribution of a particular
player is assigned deterministically as it does not play a role in what a player does
after leaving a coalition. This is, however, not the case in games with externalities,
where the definition of the marginal contribution becomes much more intricate.

When externalities are present, the worth of the coalition that a player has left
may be influenced by which coalition, if any, this player subsequently joins. In other
words, the choice of action after leaving a coalition may result in different values
of the player’s marginal contribution to it. The model we shall employ is that in
which the worth of a coalition S may vary with how the players not in S cooperate.
In the model, w.S;Q/ is the worth of S when the coalition structure is Q, S being
an element of Q. To define player i’s marginal contribution to coalition S—a trivial
task in the absence of externalities—it is now crucial to describe what happens after
i leaves S. We consider the general case where a player may join another coalition
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T (in Q) after leaving S. The total effect on S of i’s move is the difference w.S;Q/�
w .S�i; fS�i;TCig [ Q�S;�T /.1

In games with externalities, not only the definition of the marginal contribution
but also the axiomatization of the value becomes more involved. In this work
we show that the standard translation of Shapley’s four axioms to games with
externalities is not sufficient to obtain a unique value. We then provide an axiomatic
characterization for the family of solutions for games with externalities satisfying
those axioms that traditionally are used to characterize the Shapley value in the
absence of externalities. In particular, we show that every such solution is a linear
combination of marginal contributions of players and provide an interpretation as a
bargaining process.

The chapter is organized as follows. We first recall the main basic features of
games with externalities in the next section. In Sect. 15.3 we formally introduce
the concept of marginal contribution and axioms. A characterization of all linear,
symmetric, efficient, and null solutions is introduced in Sect. 15.4. In Sect. 15.5
we relate previous results with solutions in the literature. Finally, we discuss
relationships between different axiomatizations.

15.2 Basic Definitions and Notation

In this section we give some concepts and notations related to n-person games with
externalities (including the basic axioms that are considered in this work), as well
as a brief subsection of preliminaries related to integer partitions, since it is a key
subject in subsequent developments.

15.2.1 Games with Externalities

Let N D f1; 2; : : : ; ng be a fixed nonempty finite set, and let the members of N
be interpreted as players in some game situation. Given N, let CL be the set of all
coalitions (nonempty subsets) of N, CL D fS j S � N; S ¤ ¿g D 2Nnf¿g. Let PT
be the set of partitions of N, so

fS1; S2; : : : ; Smg 2 PT iff
m[
iD1 Si D N; Sj \ Sk D ¿ 8j ¤ k

By convention, f¿g 2 Q for every Q 2 PT and jQj will denote the number of
nonempty sets in Q. Also, let EC D f.S;Q/ j S 2 Q 2 PTg be the set of embedded
coalitions, that is, the set of coalitions together with specifications as to how the
other players are aligned. The embedded coalition .S;Q/ is called nontrivial if
S ¤ ¿.

1The precise definitions will be provided in Sect. 15.3.
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Definition 1. A game with externalities is a mapping

w W EC! R

with the property that w.¿;Q/ D 0 for every Q 2 PT. The set of games with
externalities with player set N is denoted by G, i.e.,

G D G.n/ D fw W EC! R j w.¿;Q/ D 0 8Q 2 PTg

The value w.S;Q/ represents the payoff of coalition S, given the coalition
structure Q forms. In this kind of games, the worth of some coalition depends
not only on what the players of such coalition can jointly obtain but also on the
way the other players are organized. We assume that, in any game situation, the
universal coalition N (embedded in fNg) will actually form, so that the players will
have w.N; fNg/ to divide among themselves. But we also anticipate that the actual
allocation of this worth will depend on all the other potential worths w.S;Q/, as they
influence the relative bargaining strengths of the players.

For Q 2 PT, S 2 Q, and i; k 2 N, we define Q�S D QnfSg, S�k D Snfkg, and
SCk D S [ fkg, and Qi denotes the member of Q where i belongs. Additionally,
we will denote the cardinality of a set by its corresponding lower-case letter, for
instance, n D jNj, s D jSj, q D jQj, and so on.

Given w1;w2 2 G and c 2 R, we define the sum w1Cw2 and the product cw1, in
G, in the usual form, i.e.,

.w1 C w2/.S;Q/ D w1.S;Q/C w2.S;Q/ and .cw1/.S;Q/ D cw1.S;Q/;

respectively. It is easy to verify that G is a vector space with these operations. For
example, the collection of games fu.S;Q/ j .S;Q/ 2 EC; S ¤ ¿g defined by

u.S;Q/.T;P/ D
�
1 if .T;P/ D .S;Q/
0 otherwise

constitutes a basis of the space of games with externalities. Notice that the
dimension of G equals the number of nontrivial embedded coalitions.

A solution is a function ' W G ! R
n. If ' is a solution and w 2 G, then we can

interpret 'i.w/ as the utility payoff which player i should expect from the game w.
Now, the group of permutations of N, Sn D f� W N ! N j � is bijectiveg, acts on

CL and on EC in the natural way, i.e., for � 2 Sn:

�.S/ D f�.i/ j i 2 Sg
�.S1; fS1; S2; : : : ; Slg/ D .�.S1/; f�.S1/; �.S2/; : : : ; �.Sl/g/

And also, Sn acts on the space of payoff vectors, Rn:

� .x1; x2; : : : ; xn/ D


x��1.1/; x��1.2/; : : : ; x��1.n/

�
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Definition 2. Let .S;Q/ 2 EC and i 2 S. Consider a partition Q0 obtained by
moving player i from S to some other (possible empty) member T ofQ. The mapping
˛iT W Q! Q0 defined by

˛iT.S/ D S�i
˛iT.T/ D TCi

˛iT.S0/ D S0 for S0 2 Q�S;�T

is called a move for player i. Notice that ˛iT.Q/ D fS�i;TCig [ Q�S;�T .

15.2.2 Integer Partitions

A partition of a nonnegative integer is a way of expressing it as the unordered sum
of other positive integers, and it is often written in tuple notation. Formally,

Definition 3. � D Œ�1; �2; : : : ; �l� is a partition of n (denoted as � ` n) if
�1; �2; : : : ; �l are positive integers and �1C�2C� � �C�l D n. Two partitions which
only differ in the order of their elements are considered to be the same partition.

The set of all partitions of n will be denoted by ….n/, and, if � ` n, j�j is the
number of elements of �.

For example, the partitions of n D 4 are Œ1; 1; 1; 1�, Œ2; 1; 1�, Œ2; 2�, Œ3; 1�,
and Œ4�. We will abbreviate this notation by dropping the commas, so Œ2; 1; 1�

becomes Œ211�.
If Q 2 PT, there is a unique partition �Q ` n, associated with Q, where the

elements of �Q are exactly the cardinalities of the elements of Q. In other words, if
Q D fS1; S2; : : : ; Smg 2 PT, then �Q D Œs1; s2; : : : ; sm�.

For a given � ` n, we represent by �
o

the set of numbers determined by the �i’s
and by m��j the multiplicity of �j in �. So, if � D Œ4; 4; 2; 1; 1; 1�, then �

o D f1; 2; 4g,
m�1 D 3, m�2 D 1, and m�4 D 2. By convention, m�0 D 1 for every � 2 ….n/.

Additionally, if Œ�1; �2; : : : ; �l� ` n, for l > k � 1, we define Œ�1; �2; : : : ; �l� �
Œ�1; �2; : : : ; �k� D Œ�kC1; �kC2; : : : ; �l�. For example, Œ4; 3; 2; 1; 1; 1� � Œ3; 1; 1� D
Œ4; 2; 1�.

If � 2 ….n/ and �0 2 ….m/, then we can form a partition �C�0 in….nCm/ by
combining all elements of such partitions. For example, Œ4; 3; 2; 1; 1; 1�C Œ3; 1; 1� D
Œ4; 3; 3; 2; 1; 1; 1; 1; 1�.

For � 2 ….n/ and z; r 2 �ı (r ¤ 1), we define �rz D � � Œr; z�C Œr � 1; zC 1�.
Finally, we need to define certain sets which are used in the sequel.

Definition 4. Let En be a set of pairs:

En D f.�; s/ j � 2 ….n/; s 2 �ınf1; ngg
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and similarly, define the set of triples:

Bn D f.�; s; t/ j � 2 ….n/nfŒn�g; s 2 �ı; t 2 .� � Œs�/ıg

Example 1. If n D 4, then

E4 D f.Œ211�; 2/; .Œ22�; 2/; .Œ31�; 3/g
and

B4 D f.Œ1111�; 1; 1/; .Œ211�; 1; 1/; .Œ211�; 1; 2/; .Œ211�; 2; 1/; .Œ22�; 2; 2/; .Œ31�; 1; 3/; .Œ31�; 3; 1/g

15.3 Marginal Contributions and Axioms

In this section we shall present the axioms that are asked solutions to satisfy in
the cooperative game theory framework. Reasonable requirements to impose on a
value are those underlying the construction of the Shapley value in the absence
of externalities, namely, the axioms of linearity, symmetry, efficiency, and nullity
axioms.

Axiom 1 (Linearity). The solution ' is linear if '.w1Cw2/ D '.w1/C'.w2/ and
'.cw1/ D c'.w1/, for all w1;w2 2 G, and c 2 R.

The axiom of linearity means that when a group of players shares the benefits (or
costs) stemming from two different issues, how much each player obtains does not
depend on whether they consider the two issues together or one by one. Hence, the
agenda does not affect the final outcome. Also, the sharing does not depend on the
unit used to measure the benefits.

Axiom 2 (Symmetry). The solution ' is said to be symmetric if and only if '.� �
w/ D � � '.w/ for every � 2 Sn and w 2 G, where the game � � w is defined as

.� � w/.S;Q/ D wŒ��1.S;Q/�

Symmetry means that player’s payoffs do not depend on their names. The payoff
of a player is only derived from his influence on the worth of the coalitions.

Axiom 3 (Efficiency). The solution ' is efficient if
P
i2N
' i.w/ D w.N; fNg/ for all

w 2 G.

We assume that the grand coalition forms and we leave issues of coalition
formation out of this paper. Efficiency then simply means that the value must
be feasible and exhaust all the benefits from cooperation, given that everyone
cooperates.
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Next, we turn to our discussion of marginal contributions in environments
with externalities, central in our work. For characteristic functions, the marginal
contribution of a player i within a coalition S is defined as the loss incurred by
the other members of S if i leaves the group. This number could depend on the
organization of the players not in S when there are externalities. It is natural,
therefore, to define the marginal contribution of a player within each embedded
coalition, and we consider the general case where a player may join another coalition
T after leaving S.

Formally, let i be a player, let .S;Q/ 2 EC such that S 3 i, and let T 2 Q�S. Then
the marginal contribution of i to .S;Q/ when i joins T is given by

MCi;.S;Q/;T.w/ D w.S;Q/� w .S�i; ˛iT.Q//

Definition 5. i 2 N is called a null player in the game w if

MCi;.S;Q/;T.w/ D 0

for each embedded coalition .S;Q/ such that i 2 S and each T 2 Q�S.2

Axiom 4 (Nullity). Let i 2 N and let w 2 G. If i is a null player in w, the'i.w/ D 0.
Notice that for a player to be a null player, it must be the case that he alone

receives zero for any organization of the other players and has no effect on the worth
of any coalition S. The nullity axiom only makes sure that a player with absolutely
no influence on the gains that any coalition can obtain should not receive nor pay
anything.

Shapley (1953) proved that these four axioms characterize a unique value in the
class of games with no externalities.3 If v denotes a game with no externalities
(where v W 2N ! R is a function that gives the worth of each coalition,
independently of the partition structure), then the Shapley value Sh is defined as

Shi.v/ D
X

fS
NWi…Sg

sŠ.n � s � 1/Š
nŠ

Œv.S [ fig/� v.S/�

for each player i 2 N and each characteristic function v.

2De Clippel and Serrano (2008) have called it null player in the strong sense. This definition of a
null player agrees with the definition presented in Bolger (1989) and Macho-Stadler et al. (2007),
and it is different than the one considered in Myerson (1977) and Albizuri et al. (2005).
3A game is with no externalities if and only if the payoff that the players in a coalition S can jointly
obtain if this coalition is formed is independent of the way the other players are organized. This
means that in a game with no externalities, the characteristic function satisfies w.S;Q/D w.S;Q0/

for any two partitions Q;Q0 2 PT and any coalition S which belongs both to Q and Q0 Hence, the
worth of a coalition S can be written without reference to the organization of the remaining players,
w.S/ WD w.S;Q/ for all Q 3 S, Q 2 PT.
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15.4 Axiomatic Characterization

The purpose of this section is to present a characterization for the whole class
of values satisfying the axioms discussed above. As mentioned before, the key
ingredient in the definition of the nullity axiom is the way we define the marginal
contribution of a player within each embedded coalition.

Example 2. For N D fi; j; kg, all possible marginal contributions of player i are

M1.w/ D w.N; fNg/ � w.fj; kg; ffig; fj; kgg/
M2.w/ D w.fi; jg; ffkg; fi; jgg/� w.fjg; ffjg; fi; kgg/
M3.w/ D w.fi; jg; ffkg; fi; jgg/� w.fjg; ffig; fjg; fkgg/
M4.w/ D w.fi; kg; ffjg; fi; kgg/� w.fkg; ffkg; fi; jgg/
M5.w/ D w.fi; kg; ffjg; fi; kgg/� w.fkg; ffig; fjg; fkgg/
M6.w/ D w.fig; ffig; fj; kgg/
M7.w/ D w.fig; ffig; fjg; fkgg/

For general games with externalities, there is no hope to get a uniqueness result
of a value with linearity, symmetry, efficiency, and nullity. To see this, consider the
following example.

Example 3. For N D fi; j; kg, three different values satisfy the axioms of linearity,
symmetry, efficiency, and nullity:

 i.w/ D
1

3
M1.w/C 1

6
M2.w/C 1

6
M4 C 1

3
M6.w/

 i.w/ D
1

3
M1.w/C 1

6
M3.w/C 1

6
M5 C 1

3
M7.w/

 i.w/ D
1

3
M1.w/C 1

9
M2.w/C 1

18
M3 C 1

9
M4.w/C 1

18
M5.w/C 2

9
M6.w/C 1

9
M7.w/

As the case of the Shapley value for games with no externalities, what we want to
do here is to characterize a family of values that are linear combinations of marginal
contributions.4 It turns out that such values are precisely those that satisfies the
axioms discussed in the previous section.

Now, we present the characterization for all linear, symmetric, efficient, and null
solutions, which establishes the main result of this work.

Theorem 1. The solution ' W G ! R
n satisfies linearity, symmetry, efficiency, and

nullity axioms if and only if it is of the form

4More precisely, the Shapley value for games with no externalities happens to be calculated as the
weighted average of marginal contributions of players to coalitions.
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'i.w/ D
w.N; fNg/

n
C

X

.�;s;t/2Bn

ˇ.�;s;t/

2

66666664

X

.S;Q/2EC
S3i;jSjDs
�QD�

X

T2Q
�S

jTjDt

tw.S;Q/�
X

.S;Q/2EC
S63i;jSjDs

�QD�;jQijDt

sw.S;Q/

3

77777775

(15.1)

for real numbers fˇ.�;s;t/ j .�; s; t/ 2 Bng such that

i)

ˇ.Œn�1;1�;n�1;1/ D
1

n.n � 1/ (15.2)

and
ii) for every .�; r/ 2 En

�
m�r � 1

	 h
rˇ.�;r;r/ � .r � 1/ˇ.�rr ;r�1;rC1/

i

C
X

z2�ı[f0g
z¤r

h
zm�z ˇ.�;r;z/ � .r � 1/m�z ˇ.�rz ;r�1;zC1/

i
D 0 (15.3)

Moreover, such representation is unique.

Proof. From Hernández-Lamoneda et al. (2009, Theorem 4),

'i.w/ D
w.N; fNg/

n
C

X

.�;s;t/2Bn

ˇ.�;s;t/

2
6666664

X

.S;Q/2EC
S3i;jSjDs
�QD�

X

T2Q
�S

jTjDt

tw.S;Q/�
X

.S;Q/2EC
S63i;jSjDs

�QD�;jQijDt

sw.S;Q/

3
7777775

is a linear, symmetric, and efficient solution for arbitrary constants fˇ.�;s;t/ j
.�; s; t/ 2 Bng. Suppose i 2 N is a null player in u.S;Q/ for every .S;Q/ 2 EC,
that is, u.S;Q/.R;P/ D u.S;Q/ .R�i; ˛iT.P// for each .R;P/ such that i 2 R and each
T 2 P�R.

Nullity implies

1.

0 D 'i.u.N;fNg// D
1

n
� .n � 1/ˇ.Œn�1;1�;n�1;1/
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Hence,

ˇ.Œn�1;1�;n�1;1/ D
1

n.n � 1/
2.

0 D ' i.u.S;Q// D
X

T2Q
�S

h
tˇ.�Q;s;t/ � .s � 1/ ˇ.�˛iT .Q/;s�1;tC1/

i
(15.4)

for every pair .S;Q/ such that s … f1; ng. Notice that the above relation yields
many repeated equations. In particular, relation (15.4) provides the same equation
for .S;Q/ and .S0;Q0/, if s D s0 and �Q D �Q0 . Thus, the number of distinct
equations derived from (15.4) coincides with the number of elements in En.
Now, for a fixed .S;Q/ such that s … f1; ng, it holds

X

T2Q
�S

tˇ.�Q;s;t/ D

8
ˆ̂<

ˆ̂:



m
�Q
s � 1

�
sˇ.�Q;s;s/ if t D s

P

z2�ı

Q[f0g
z¤s

zm
�Q
z ˇ.�Q;s;z/ if t ¤ s (15.5)

and

X

T2Q
�S

ˇ.�˛iT .Q/;s�1;tC1/ D

8
ˆ̂<

ˆ̂:



m
�Q
s � 1

�
ˇ..�Q/

s
s;s�1;sC1/ if t D s

P

z2�ı

Q[f0g
z¤s

m
�Q
z ˇ
.�Q/

s
z;s�1;zC1

� if t ¤ s (15.6)

The system (15.3) follows from the substitution of equalities (15.5) and (15.6) in
relation (15.4).

The converse is a straightforward computation in view of the equalities in the
first part of the proof.

Finally, to check uniqueness it is enough to prove that if

0 D w.N; fNg/
n

C
X

.�;s;t/2Bn

ˇ.�;s;t/

2

6666664

X

.S;Q/2EC
S3i;jSjDs
�QD�

X

T2Q
�S

jTjDt

tw.S;Q/�
X

.S;Q/2EC
S63i;jSjDs

�QD�;jQijDt

sw.S;Q/

3

7777775

(ˇ.�;s;t/’s satisfying conditions (15.2) and (15.3) for .�; r/ 2 En) for every game w
and for every player i, then every ˇ.�;s;t/ vanish.

Thus, for given .�; s; t/ 2 Bn, let S D f1; : : : ; sg and Q be any partition such that
S 2 Q and �Q D �. Also let T 2 Q such that jTj D t. Let w D u.S;Q/ and pick any
i 2 T. Then the above sum reduces to
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0 D ˇ.�;s;t/
�

Remark 1. The intuition behind the expression derived in Theorem 1 has an
interpretation as a bargaining process:

1. We allocate w.N;fNg/
n to each player.

2. For each .S;Q/ 2 EC and each T 2 QnfSg, we keep going with one transfer from
T to S:

i) Every player in S receives (from every player in T) the fraction ˇ.�Q;s;t/ of the
worth w.S;Q/:

tˇ.�Q;s;t/w.S;Q/

ii) Every player in T pays (to every player in S) a fraction ˇ.�Q;s;t/ of the worth
w.S;Q/:

sˇ.�Q ;s;t/w.S;Q/

3. Finally, these transfers must satisfy ˇ.Œn�1;1�;n�1;1/ D 1
n.n�1/ and

X

T2Q
�S

tˇ.�Q;s;t/ D
X

T2Q
�S

.s � 1/ ˇ.�˛iT .Q/;s�1;tC1/

for every .S;Q/ 2 EC such that S 3 i, s ¤ 1 and s ¤ n. Here, ˇ.�˛iT .Q/;s�1;tC1/
represents the fraction of the worth w .S�i; ˛iT.Q// that receives each player in
S�i from player i.

Remark 2. It is no difficult to show that any linear, symmetric, efficient, and null
solution can be written as a linear combination of marginal contributions:

'i.w/ D
X

.S;Q/2EC
S3i;s¤1

X

T2Q
�S

.s� 1/ ˇ.�˛iT .Q/ ;s�1;tC1/MCi;.S;Q/;T.w/C
X

.S;Q/2EC
S3i;sD1

X

T2Q
�S

tˇ.�Q;s;t/MCi;.S;Q/;T.w/

Example 4. As an illustration for N D fi; j; kg, any linear, symmetric, efficient, and
null solution is of the form (for player i)

'i.w/ D 1

3
M1.w/C ˇ.Œ21�;1;2/ ŒM2.w/CM4.w/C 2M6.w/�C ˇ.Œ111�;1;1/ ŒM3.w/CM5.w/C 2M7.w/�

For any choice of real numbers such that

ˇ.Œ111�;1;1/ C ˇ.Œ21�;1;2/ D
1

6
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Corollary 1. The space of all linear, symmetric, efficient, and null solutions in n
players has dimension jBnj � jEnj � 1.
Remark 3. The solutions we have characterized in Theorem 1 are extensions of the
Shapley value for games with no externalities, since our four axioms coincide with
the set of axioms that traditionally are used to characterize the Shapley value in the
absence of externalities. First, notice that the subset of G formed by the games w
such that w.S;Q/ D w.S/ 8.S;Q/ 2 EC can be identified with the set of games with
no externalities. So, every linear, symmetric, efficient, and null solution coincides
with the Shapley value for these games.

Example 5. In Example 4 we obtained an expression of any linear, symmetric,
efficient, and null solution (for n D 3). Applying such general solution to a game w
such that w.S;Q/ D w.S/ 8.S;Q/ 2 EC:

' i.w/ D
1

3
Œw.N/ � w.fj; kg/�
Cˇ.Œ21�;1;2/ Œw.fi; jg/� w.fjg/�
Cˇ.Œ111�;1;1/ Œw.fi; jg/� w.fjg/�
Cˇ.Œ21�;1;2/ Œw.fi; kg/ � w.fkg/�
Cˇ.Œ111�;1;1/ Œw.fi; kg/ � w.fkg/�
C2ˇ.Œ111�;1;1/w.fig/C 2ˇ.Œ21�;1;2/w.fig/

Finally, according to the condition ˇ.Œ111�;1;1/Cˇ.Œ21�;1;2/ D 1
6
, then 'i.w/ D Shi.w/.

15.5 Some Examples

In this section we briefly provide three examples of linear, symmetric, efficient, and
null solutions, as well as two values that fail to satisfy our nullity axiom.

15.5.1 Bolger Value

Bolger (1989) obtains a unique value characterized by our properties of linearity,
symmetry, efficiency, and nullity and an additional requirement based on the
behavior of the value in simple games (the worth of any coalition is either one or
zero). Now, consider an embedded coalition .S�i; ˛iT.Q// obtained from .S;Q/ by a
move for player i (from S to T 2 Q�S). Such a move is called a pivot move if S wins
with respect to .S;Q/ and S�i loses with respect to .S�i; ˛iT.Q//. The additional
property that Bolger introduced states that for simple games, a player i obtains the
same payoff in two games w1 and w2 if he has the same number of pivot moves in
both games.
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There is no closed-form expression for this value, but it must be of the form (15.1)
satisfying (15.2) and (15.3). As an example for N D fi; j; kg, the Bolger value for
player i is

 i.w/ D
1

3
M1.w/C 1

12
ŒM2.w/CM3.w/CM4.w/CM5.w/�C1

6
ŒM6.w/CM7.w/�

15.5.2 The Value of Macho-Stadler et al.

Macho-Stadler et al. (2007, Theorem 1) showed that any solution that satisfies our
version of nullity axiom, as well as the axioms of efficiency, linearity, and a strong
version of symmetry5 is a Shapley value of a characteristic function that is obtained
by performing averages of the partition function. They also characterized a unique
solution by adding an axiom of similar influence. Such a value is given by

 i.w/ D
X

.S;Q/2EC
i2S

.s � 1/Š …
T2QnfSg

.t � 1/Š
nŠ

w.S;Q/�
X

.S;Q/2EC
i…S

sŠ …
T2QnfSg

.t � 1/Š
.n � s/nŠ

w.S;Q/

Which we get when we choose ˇ.�;s;t/ D
.s�1/Š …

t2.��Œs�/ı
.t�1/Š

.n�s/nŠ .

15.5.3 Externality-Free Value

De Clippel and Serrano (2008) define an extension of the Shapley value to the class
of games with externalities as

 i.w/ D Shi.v/

for each i 2 N and each w 2 G, where Sh is the Shapley value operator for games
with no externalities and the characteristic function v is defined as follows:

v.S/ D w
�
S;
˚
S; fjgj2NnS

�	

for each S � N.

5However, their strong version of symmetry implies our symmetry axiom. It strengthens the
symmetry axiom by requiring that the payoff of a player should not change after permutations
in the set of players in NnS, for any embedded coalition structure .S;Q/.
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This solution satisfies the axioms of linearity, symmetry, efficiency, and nullity,
so it is of the form (15.1) where the ˇ.�;s;t/’s satisfies (15.2) and (15.3):

ˇ.�;s;t/ D
8
<

:
.s�1/Š.n�s�1/Š

nŠ if � 2 fŒm;
n�m‚ …„ ƒ

1; : : : ; 1�gn�1mD1; s D m and t D 1
0 otherwise

15.5.4 Myerson Value

Myerson (1977) proceeds axiomatically and proposes a value that extends the
well-known Shapley value (Shapley 1953), which is defined for games with no
externalities. The three axioms that uniquely characterize the Myerson’s extension
are linearity, symmetry, and a carrier axiom requiring that the surplus is shared only
among the members of the carrier. The carrier axiom implies both efficiency and a
nullity concept different from the one assumed in our analysis. The Myerson value
of a player is given by

 i.w/ D
X

.S;Q/2EC

.�1/q�1.q � 1/Š
0

@1
n
�

X

T2QnfSg;i…T

1

.q � 1/.n � t/

1

Aw.S;Q/

which we get with the parameters

ˇ.�;s;t/ D
.�1/j�j.j�j � 1/Š

s

0

@1
n
�

X

t2.��Œr;s�/ı
1

.j�j � 1/.n � t/

1

A

However, those parameters do not satisfy conditions (15.2) and (15.3).

15.5.5 The Value of Albizuri et al.

As a final example, Albizuri et al. (2005) obtain a unique value characterized
by the properties of linearity, symmetry, efficiency, oligarchy, and an additional
requirement of symmetry with respect to the embedded coalitions. They define the
value for a player as

 i.w/ D
X

.S;Q/2EC
i2S

.s� 1/Š.n� s/Š

nŠP.S;N/
w.S;Q/�

X

.S;Q/2EC
i2S

sŠ.n � s � 1/Š
nŠP.S;N/

w.S;Q/
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where P.S;N/ D jf.T;Q/ 2 EC j T D Sgj. In fact, they notice that P.S;N/ D p
.n�s/where p.k/ represents the number of partitions of any set K with cardinality k.

This solution is also of the form (15.1) and the corresponding parameters are
ˇ.�;s;t/ D .n�s�1/Š.s�1/Š

nŠ�p.n�s/ . Such parameters do not satisfy (15.2) and (15.3), since the
value fail to satisfy the nullity axiom.

15.6 Related Literature

First, two works proposed definitions of marginality6 (in terms of marginal contri-
butions) for games with externalities and proved uniqueness based on Shapley’s
standard axiomatization (Hu and Yang 2010; PhamDo and Norde 2007). Some
other authors used Young’s axiomatization: Bolger (1989) modified it by adding
an additional nullity axiom to derive his value and De Clippel and Serrano (2008) in
their analysis of externality-free value. These results for Young’s axiomatization
were generalized by Fujinaka (2004). He was the first to propose a general
formula for marginal contribution as the affine combination of elementary marginal
contributions. Fujinaka proved that Young’s axiomatization parameterized by any
weights implies a unique value.

Macho-Stadler et al. (2007) proposed the average approach, where the authors
provided a value using Shapley’s axioms together with strong symmetry and
similar influence. This latter axiom says that, if we exchange the values of two
embedded coalitions in which players i and j appear in the first one together and,
in the second one, as singletons, then their payoffs should not change. Although
axiomatization departed from marginality, the authors introduce a definition of
marginal contribution and note that value can be transformed as the weighted
average of player’s marginal contributions.

Myerson (1977) was the first to propose a new extension of the Shapley value to
games with externalities. He based his value on the concept of carrier. We say that a
set C is a carrier if the value of any embedded coalition is determined by a partition
of players from C. Now, Carrier implies that if C is a carrier, then the payoff of the
grand coalition is divided between players from C. Against this, Myerson showed
that there exists a unique value that satisfies symmetry, additivity, and carrier. As
the set of all players, N is clearly a carrier, and if i is a null player, then Nnfig is also
a carrier; we have that carrier implies both efficiency and the nullity axiom. This
means that Myerson’s value satisfies all four of Shapley’s axioms.

Other authors proposed values that are rather far from Shapley’s understanding
of fairness. Albizuri et al. (2005) argued that, in a game with externalities, a

6Originally provided by Young (1985) for games with no externalities. He formulated the
marginality principle as an axiom, that is, that the solution should pay the same to a player in two
games if his or her marginal contributions to coalitions are the same in both games. Marginality is
an idea with a strong tradition in economic theory.
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coalition should be evaluated by the set of values it has, regardless of which
partitions these values correspond to. The authors combined this principle, called
embedded coalition anonymity, with the oligarchy axiom (which can be understood
as the weakened Myerson axiom) and three of Shapley’s original axioms: efficiency,
additivity, and symmetry. The resulting value can be derived as the Shapley value for
a game without externalities calculated by assigning to every coalition an arithmetic
average of all its values in games with externalities.

Finally, in a stochastic process, players leave the grand coalition one by one.
Grabisch and Funaki (2012) formulate a different process. They take as a starting
point the partition containing singletons of all players and consider all possible
sequences of mergers which result in the grand coalition. That said, the contribution
of a player is evaluated as the effect that the player merging with other coalitions
makes on their values. If a player enters some coalition alone, he is rewarded with
the whole change of its value, i.e., with the marginal contribution; but if he is already
a part of a coalition that merges with another one, the authors argue that the change
of the value of the coalition they merge with should be divided equally between
him and other members of the coalition. This contradicts the nullity axiom, as a null
player is rewarded with a payoff even though the coalition without him would cause
the same impact on the merged coalition.

15.7 Conclusion

This paper has explored games with externalities. Our basic approach is rooted in
the concept of marginal contributions of players to coalitions. In problems involving
externalities, we considered the general case where a player (in a coalition S) may
join another coalition after leaving S.

The paper follows an axiomatic methodology and presumes that the grand
coalition has exogenously formed. Then the implications of linearity, symmetry,
efficiency, and nullity are explored, leading to two main results: the first one
establishes that the standard translation of Shapley’s four axioms to games with
externalities is not sufficient to obtain a unique value, and therefore, we provided an
axiomatic characterization for the family of solutions for games with externalities
satisfying those axioms that traditionally are used to characterize the Shapley value
in the absence of externalities. Additionally, we showed that every such solution can
be written as a linear combination of marginal contributions of players and provided
an interpretation as a bargaining process.

Based in the analysis presented in this work, one can consider additional
restrictions (or axioms) in order to obtain a uniqueness result. Finally, other
approaches to the concept of marginal contribution can be studied.
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Chapter 16
Approximation of Optimal Stopping Problems
and Variational Inequalities Involving Multiple
Scales in Economics and Finance

Andrianos E. Tsekrekos and Athanasios N. Yannacopoulos

Abstract Many interesting decision-making problems in economics and finance
can be expressed in terms of variational inequalities, whose well-developed theory
provides valuable answers and insights concerning optimal policies. In this chapter,
we first provide a brief introduction to the theory of variational inequalities
as applied to economic decision-making, before focusing on a particular class
(optimal stopping problems) where the underlying Markov process that introduces
the uncertainty in the setting presents evolution of multiple time scales. Such
problems lead to variational inequalities with fast-varying coefficients which require
techniques related to homogenisation theory. Our results establish how, for such
problems, approximate solutions to any order and (importantly) in almost closed
form can be obtained by a singular perturbation approach. Our example from the
waiting-to-invest literature in the last section demonstrates the applicability of the
results.

Keywords Economic decision-making • Variational inequalities • Optimal
stopping problems • Multi-scale volatility

16.1 Introduction

Many interesting problems in economic decision-making can be expressed in terms
of variational inequalities. The well-developed theory in this field provides a variety
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of analytical and numerical tools that allow one to treat these problems and obtain
valuable answers and insight concerning optimal economic policies.

However, there are certain problems for which, even though the analytical
framework is well understood, the actual treatment of the resulting variational
inequalities is not practical and require the use of specialised tools, motivated by the
nature of problems at hand. One such case is when the underlying process which
introduces the uncertainty in the model presents evolution of multiple time scales,
leading to variational inequalities with fast-varying coefficients.

Such problems are not easy to treat from the numerical point of view, on account
of various problems resulting from the fact that we need to resolve the solution at a
fine scale, and require techniques related to the theory of homogenisation (see, e.g.
Cioranescu and Donato 1999). It is interesting that the application of such methods
allows one to obtain approximate solutions to any order and, most importantly,
in almost closed form that lend themselves easily to comparative statics that are
important for the economic decision maker for policy purposes. It is the aim of the
present short presentation to provide a brief introduction to the theory of variational
inequalities as applied to economic decision-making (and in particular to optimal
stopping problems that are common in economics and finance) and introduce a
singular perturbation approach for the closed-form approximation of the solution
of such variational inequalities, for the particular class of models that exhibit multi-
scale (fast/slow) dynamics. This class of problems is motivated by ample empirical
evidence and has already been addressed in the literature within the context of
optimal control theory (e.g. Bardi and Cesaroni 2011), financial option pricing (e.g.
Fouque et al. 2011, and the references therein), among other areas.

In the section that follows, we start with a brief introduction to the theory
of variational inequalities, with optimal stopping problems from economics and
finance in mind, before addressing a wide variety of applied cases where the limiting
behaviour of the family of Markov processes that underlie the problem is of interest.
In such cases, the solutions to the corresponding family of stopping problems are
derived from variational inequalities in a weak sense, and the main result of the
section establishes the well posedness of such weak formulations.

However, although the existence of a solution, and hence of a stopping rule, is
guaranteed for every member of such family of problems, one may not claim the
same for the problem of the limiting behaviour of the value function and the stopping
rule. More stringent conditions are needed in order to answer this positively, and
in most cases asymptotic arguments related to homogenisation theory have to be
employed. Our main result in Sect. 16.3 addresses this issue for a particular class
of inequalities that are associated with optimal stopping problems under Markov
processes that evolve in different time scales, namely, a “slow” and a “fast” time
scale. The interest in such forms of Markov processes is motivated by ample
empirical evidence in favour of “fast”, mean-reverting stochastic volatility dynamics
for many asset classes (see, e.g. the empirical evidence in Alizadeh et al. 2002;
Hillebrand 2006, among others). In the concluding section, we demonstrate the
applicability of our main results, by extending the classic waiting-to-invest model
of McDonald and Siegel (1986), to a setting where the investment value follows a
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geometric Ornstein–Uhlenbeck process, with latent stochastic volatility that mean
reverts on a faster time scale than the underlying project value.

16.2 Optimal Stopping Problems in Economics and Finance

The general form of optimal stopping problems, as they frequently appear in
economics and finance, is the following: Consider a Markov process fX.t/gt with
infinitesimal generator L, taking values in an open subset D 	 R

d. In most
economic applications, X.t/ is considered to be the value of a particular asset or
project at time t. If the process is stopped (or exercised) at time t and X.t/ D x,
then it is usually assumed that the economic agent derives instantaneous utility or
pay-off e�rtU.x/, where U W Rd ! R is a utility or pay-off function. Since the
stopping/exercise time is subject to the agent’s discretion, it will be chosen so as to
maximise the expected present value of the pay-off. It is also usual to assume that
the agent has an infinite time horizon available to her in order to decide when to
exercise her discretion.

This setting is equivalent to the following optimisation problem

sup
�>0

E Œe�r�UŒX.�/�� DW V.x/; (16.1)

where the optimisation is performed over all stopping times � for the process X.t/,
which is conditioned such that X.0/ D x. The first stopping time �� for which
EŒe�r��

UŒX.��/�� D V.x/ is called the optimal stopping time, and the function V ,
defined as above, is called the value function. In most practical applications, we need
to specify the stopping rule in terms of a feedback strategy, i.e. define the stopping
time �� as the first time that the process X.t/ reaches a certain level, which is called
the optimal exercise boundary. In Eq. (16.1), r plays the role of the agent’s discount
rate, which is often taken equal to the risk-free interest rate whenever the agent is
risk neutral or whenever a replicating (spanning) argument related to the uncertainty
in X.t/ can be invoked.

Problems of the form in (16.1) have been studied extensively in the literature,
using either probabilistic methods based on the concept of the Snell envelope or
by variational inequality methods, which most of the time are better suited for
calculations. Typical examples include the well-studied problem of financial option
pricing (Black and Scholes 1973; Merton 1973, among others), optimal switching
problems (see, e.g. Duckworth and Zervos 2001; Brekke and Øksendal 1994) and
applications in optimal capacity choice (e.g. Pindyck 1988) and natural resource
investments (Brennan and Schwartz 1985) among others.

The variational inequality approach for problem (16.1) relies on the use of Itô’s
formula and the Markovian properties of the process.1 It can be shown that the value

1The application of the Itô’s formula in its standard sense requires smoothness of the value
function. It should be noted that the variational inequality approach can hold, even if the value
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function solves the variational inequality

LV.x/ � rV.x/ D 0; V.x/ < U.x/

LV.x/ � rV.x/ < 0; V.x/ D U.x/; (16.2)

which can be conveniently reformulated as

maxfLV.x/� rV.x/;U.x/� V.x/g D 0: (16.3)

The exercise boundary for this problem is defined as the set C D fx 2 R
d W V.x/ D

U.x/g, meaning that �� D inft>0fX.t/ 2 Cg. The above formulation shows that, at
least formally, the optimal stopping time is completely solved in terms of the value
function, which is characterised in terms of the variational inequality (16.2).

The characterisation of the treatment above as formal refers to the fact that in
most cases of interest, equation (16.2) does not have solutions of the required degree
of regularity for the formulation to hold in a classical sense. This leads to the need of
restating the variational inequalities in a weak sense or, more generally, in a viscosity
solution sense. Such weak formulations are well posed and lead to well-defined and
practical solutions for the corresponding economic problem.

In a variety of interesting economic problems, the Markov process which models
the value process depends upon a parameter, and the pricing often has to be
performed for the whole parametric family of value processes. Let us denote this
parameter by � and use the notation fX�.t/g for the whole family of processes for
any value of the parameter � and L� for the corresponding generator. This leads to a
whole family of variational inequalities

maxfL�V�.x/� rV�.x/;U�.x/ � V�.x/g D 0; � > 0; (16.4)

where the assumption is made that the utility function U may also depend on the
same parameter � (meaning that U is a function of the instantaneous position of
the process at time t, X�.t/ D x, as well as of the parameter �). In such cases, an
interesting problem that is often encountered is the behaviour of the whole family
of solutions at a relevant limit, e.g. as �! 0.

A few concrete examples of the above general formulation could be (a) the dis-
cretisation of the process X.t/, either in state space or in time, where � corresponds
to the level of discretisation, (b) parametric models of additional stochastic factors
(e.g. stochastic volatility, stochastic short rate, etc.) where � plays the role of a
particular parameter whose value � D 0 corresponds to some benchmark model [e.g.
the constant volatility and constant short rate Black–Scholes (Black and Scholes

function is not C2, in which case generalisations of Itô’s formula based on convexity properties
of value functions can be used (Itô–Meyer formula, see, e.g. Föllmer et al. 1995) or the concept
of viscosity solutions (see Fleming and Soner 2006). The treatment of such problems within the
present framework is in progress, but clearly beyond the scope of this work.
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1973) model] or (c) multi-scale stochastic volatility models (Fouque et al. 2003a)
that will also be treated in our example below.

A convenient formulation of the family of problems in (16.4) is as follows: Define
the set K� D fV 2 X W V.x/ � U�.x/; x a.e. 2 R

dg, where X is a conveniently
chosen function space (most usually a Sobolev space). For U� continuous, K� is a
closed, convex subset ofX. Consider any function � 2 Y, where Y is a set of smooth
functions, dense in X. We multiply the inequality by any such �, we integrate over
R

d, and, using the density, we obtain the so-called weak form which reads

hA�V�; � � V�i � 0; 8� 2 K�; (16.5)

where A� D �L� C rI, and by h�i we denote the duality pairing h�; i DR
D �.x/ .x/dx between X and its dual X�. We may simplify notation by using the

family of bilinear forms ˛� W X � X ! R, defined by ˛�.�;  / WD hA��;  i, to
express inequality (16.5) as

˛�.V�; � � V�/ � 0; 8� 2 K� (16.6)

We say that the bilinear form ˛� is continuous on X if there exists a constant c such
that ˛�.�;  / � ck�kXk kX and coercive on X if there exists a constant C > 0

such that ˛�.�; �/ � Ck�k2
X

.
The following guarantees the well posedness of the weak form in (16.5):

Proposition 16.2.1. Assume that for any � > 0, the family of bilinear forms ˛� W
X � X ! R is continuous and coercive. Then for any � > 0, there exists a unique
solution of the variational inequality (16.6).

Proof. The proof is based on an application of the Lax–Milgram–Lions–
Stampacchia theorem, which uses a fixed-point argument based on Banach’s
fixed-point theorem, along with the properties of the projection operator for closed,
convex subsets of Hilbert spaces (see Chipot 2012). In particular, let PK� W X! K�
be the projection operator from X to the closed convexK� , which is well known to be
a pseudo-contraction characterised by the variation inequality h��PK��;  �PK� i
for any  2 K� . Using the projection operator and fixing a � > 0, we may
express (16.6) in the equivalent form

V� D PK� .��A�V� C V�/: (16.7)

Consider the family of maps R� W K� ! K� , defined by R�. / D PK� .��A� C /
for every  2 K� , and note that (16.7) is equivalent to the existence of a fixed point
for the map R�. By continuity and coercivity, it is possible to show that for a proper
choice of �, the mapping R� is a contraction. Hence, by an application of the Banach
fixed-point theorem, we obtain the existence of a unique solution.

Furthermore, if ˛� is symmetric, the variational inequality (16.6) is equivalent to
the family of minimisation problems min�2K� J�.�/, where J�.�/ D 1

2
˛�.�; �/. �
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The assumptions of Proposition 16.2.1 are fairly natural and are valid for a wide
class of Markov processes, which are frequently encountered in applications. For
example, they hold if L� is the generator of an Itô process driven by an R

m Brownian
motion for a covariance matrix � , such that �� 0 is invertible, and for mild enough
drift or for a variety of Lévy processes (see, e.g. Øksendal and Sulem 2005; Peskir
and Shiryaev 2006, and the references therein).

While the above proposition provides the existence of a solution, and hence of a
stopping rule for every � in a quite general and easy way, we may not say the same
for the problem of the limiting behaviour of the value function and the stopping
rule as � goes to zero. This is understandable when one realises the connection of
the variational inequality (16.6) if ˛� is symmetric, with a family of minimisation
problems, and recalls that in general, when given a family of functionals, the
family of minimisers does not converge to the minimiser of the limit functional.
More detailed analysis is needed to guarantee such behaviour, and this leads us
to problems related to homogenisation theory (see Cioranescu and Donato 1999,
for an introduction). More stringent conditions are needed in order to answer this
problem positively, and in most cases asymptotic arguments have to be employed
in order to provide closed or semi-closed-form solutions for the solution of the
variational inequality as � ! 0. We will deal with this problem, for a particular
class of inequalities, in the section that follows.

16.3 A Class of Variational Inequalities Related
to Multi-scale Volatility Models

In many applications, the process X�.t/ can be split in two components, which
evolve in different time scales, a “slow” and a “fast” one. Let us denote by S and
Y the slow and fast component of X� , respectively, and assume that X� D .S;Y/ is
modelled by the Itô process

dSt D b.St;Yt/dtC f .St;Yt/dW
S
t ; S0 D s (16.8)

dYt D ı�2�.Yt/dtC ı�1�.Yt/dWY
t ; Y0 D y; (16.9)

where the correlation structure between dWS
t and dWY

t is described by

�
WS

t

WY
t

�
D
�
1 0

�
p
1 � �2

�
Wt; (16.10)

with Wt a standard two-dimensional Wiener process on a complete filtered proba-
bility space satisfying the usual conditions (e.g. see Karatzas and Shreve 1991) and
j�j < 1 a constant correlation coefficient.
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In the above, Yt is a latent stochastic factor that affects the dynamics of the
observed component St through appropriately chosen functions b and f . The small
parameter ı, which is related to � by � D ı2, models the fact that the latent factor Y
follows a process, whose dynamics are on a “faster” time scale than the dynamics
of S. We will also use the notation x D .s; y/.

We will assume that the “fast” component Y reaches a statistical equilibrium
at a time scale which is shorter than the scale of evolution of S. Therefore,
after the passage of an initial transition period, the Y part of the process X� will
have reached an equilibrium density, thus allowing a decoupling of the system of
Eqs. (16.8) and (16.9), by replacing Y in (16.8) by a constant random variable
distributed by the equilibrium density, hence leading to a single equation for S. This
simplistic argument can be turned into a rigorous mathematical approach, leading
to a perturbative, semi-closed-form solution for the class of variational inequalities
associated with Markov processes X� D .S;Y/ of the above form.

This form of Markov processes is very commonly used in the modelling of
stochastic volatility, and it is motivated by empirical research providing ample
evidence in favour of “fast”, mean-reverting stochastic volatility dynamics for many
asset classes (see the empirical evidence in Alizadeh et al. 2002; Fouque et al.
2003b; Hillebrand 2006; Hikspoor and Jaimungal 2008, among others). For Markov
processes X� of this particular form, the generator operator is of the form

Lı D ı�2L0 C ı�1L1 C L2

with

L0 D �.y/ @
@y
C 1

2
�2.y/

@2

@y2

L1 D ��.y/f .s; y/ @2

@s@y

L2 D 1

2
f 2 .s; y/

@2

@s2
C b.s; y/

@

@s
;

leading to an expansion for the operator Aı as Aı D ı�2A0 C ı�1A1 CA2, where
A0 D L0, A1 D L1 and A2 D L2 � rI, with I the identity operator. For simplicity,
we assume no explicit dependence of the function U W Rd ! R on ı. We further
assume that � and � are chosen so that the only acceptable solution of L0 D 0 is
independent of y (Liouville property).

Under the above assumptions, it can be shown that the variational inequality

maxf�AıVı.x/;U.x/� Vı.x/g D 0; ı > 0; x D .s; y/ (16.11)

admits a solution of the form
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Vı .x/ D
1X

nD0
ınVn .x/ ; (16.12)

and the stopping rule is defined in terms of the solution of the equation
U.x/ D Vı.x/.

The proposition below provides a constructive scheme for the solution, for which
the following definitions will be needed: Let ' be the solution of the differential
equation L�0 ' D 0, where � denotes the adjoint operator (' corresponds to the
invariant density for the fast component Y) and let A2 be the “averaged” operator
A2 D � 12

�R
f 2 .s; y/ '.y/dy

	
@2

@s2
� �R b.s; y/'.y/dy

	
@
@s C rI. Define F.s; y/ as the

solution of

A0F.s; y/ D .A2 �A2/G.s/; (16.13)

with G.s/ a function of the s coordinate only; then F.s; y/ can be written as

F.s; y/ D 1

2
Œ�.y/C c.s/�s2

@2G.s/

@s2
C Œ�.y/C g.s/�s

@G.s/

@s
; (16.14)

where the exact expressions of �.y/; �.y/; c.s/ and g.s/ depend on the form of f .s; y/
and b.s; y/. Finally, define

ˆ.s/ D �
Z
�.y/f .s; y/�0.y/'.y/dy and $.s/ D �

Z
�.y/f .s; y/� 0.y/'.y/dy;

(16.15)

with the prime denoting the derivative with respect to y. Then the following
proposition can be proven.

Proposition 16.3.1. For n 2 f0; 1g, Vn.s; y/ D Vn.s/ and V0 solves the “averaged”
variational inequality

maxŒ�A2V0;U � V0� D 0; (16.16)

while V1 solves the “averaged” equation

A2V1 D �1
2
ˆ.s/s2

@3V0
@s3
� Œˆ.s/C $.s/�s@

2V0
@s2
� $.s/@V0

@s
(16.17)

which depend only on the coordinate s. All the higher-order terms depend on both
s and y, and solve differential equations (rather than variational inequalities) that
are explicitly derived (but not reproduced here for the sake of brevity).

Proof. Introducing the expansion (16.12) into the inequality and separating orders,
we see that the leading order (ı�2) yields A0V0 D 0, which by assumption leads to
the result that V0 depends only on s, while at the next order (ı�1), we get A1V0 C
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A0V1 D A0V1 D 0, which again by the assumption leads to the result that V1
depends only on s. At the next order (ı0), we get the differential inequality

maxŒ�.A2V0 CA1V1 CA0V2/;U � V0� D 0;

and at the continuation region, by straightforward application of the Fredholm
alternative, we are led to equation (16.16), which specifies completely V0 as a
function of s. Moreover, from the application of the Fredholm alternative, we get

A0V2.s; y/ D .A0 �A0/V0.s/;

which is of the form in (16.13), and thus V2.s; y/ can be expressed in the form
of (16.14). At the next order, we get

maxŒ�.A2V1 CA1V2 CA0V3/;�V1� D 0;

which by the properties of A2 leads to A2V1 C A1V2 C A0V3 D 0, where by an
application of the Fredholm alternative and by what has been established regarding
V2, we get (16.17). The next-order corrections follow in a similar fashion. �

16.4 An Optimal Stopping Example Under “Fast”
Mean-Reverting Stochastic Volatility

The example we illustrate in this section is a modified version of the classic waiting-
to-invest model in McDonald and Siegel (1986). From a mathematical perspective,
the problem corresponds to a free boundary differential equation associated with
the option to delay an irreversible investment, so as to undertake it at some future
point in time where its expected net present value is maximised. Such real options
to defer investment in the face of uncertainty and cost irreversibility are typically
encountered in many contexts (see, inter alia, Brennan and Schwartz 1985; Paddock
et al. 1988; Grenadier 1995; Schwartz and Moon 2000, for applications in natural
resources, real estate and R&D investments) where managerial flexibility over the
timing of the investment can be exerted. They are usually formulated and treated
as the optimal exercise of American-style option contracts (see Dixit and Pindyck
1994; Trigeorgis 1996, for reviews of the real options approach).

In order to fix ideas, consider a risk-neutral decision maker contemplating a new
project that can be launched instantaneously, at any point in time once a constant
fixed cost I > 0 is incurred, and suppose that the estimated value of the project at
time t, denoted St, evolves according to the Itô process

dSt D �.� � St/StdtC f .Yt/ StdW
S
t ; S0 D s (16.18)
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dYt D ı�2 .m � Yt/ dtC 

p
2

ı
dWY

t ; Y0 D y; (16.19)

which is a particular case of the general class of processes introduced in the
previous section.2 In (16.18) and (16.19) the latent “fast” component Yt follows
an Ornstein–Uhlenbeck (OU) process that depends on the small parameter ı, while
the observable “slow” component St evolves according to a geometric OU process,
whose variance is affected by the latent factor via the f .�/ function.3

For any initial state .s; y/, the maximised expected present value of the project is

V.s; y/ D sup
�>0

E Œe�r� ŒS.�/� I�� : (16.20)

For the particular problem, '.y/ D 1p
2�


e�
.m�y/2

2
2 , and the “averaged” operator is

A2 D �1
2
f
2
s2
@2

@s2
� �.� � s/s

@

@s
C rI;

with

f
2 D

Z C1

�1
f 2.y/'.y/dy:

For any particular choice of f .y/, the above can be explicitly calculated, analytically
or numerically.

An application of Proposition 16.3.1 leads to the conclusion that the leading-
order term V0 is the solution of the variational inequality

max

�
1

2
f
2
s2
@2V0
@s2
C �.� � s/s

@V0
@s
� rV0; I � V0

�
D 0

which yields (given that S equals zero is an absorbing state and lims!0 V0.s/ D 0)

V0.s/ D AsˇH

"
ˇ;Z.ˇ/;

2�

f
2
s

#
; (16.21)

with

2The assumption of a risk-neutral decision maker is not crucial, as the extension to risk aversion is
fairly straightforward, only at the cost of additional notation.
3See Pindyck (1991) and Metcalf and Hassett (1995) for investment models in economics that
employ the geometric Ornstein–Uhlenbeck process.
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ˇ D f
2 � 2�� C

q
8f
2
rC .2�� � f

2
/

2f
2

> 0; and Z.ˇ/ D 2ˇ C 2��

f
2
; (16.22)

andH Œa; b; x� is the confluent hypergeometric function (see Abramowitz and Stegun
1972). The constant A in (16.21) is determined jointly with the leading-order term
of the stopping rule threshold S�0 by the following system of equations:

V0.S
�
0 / D S�0 � I

V 00.S�0 / D 1 (16.23)

Finally, for this particular problem

ˆ.s/ D �
sp2
Z

f .y/�0.y/'.y/dy DW &s

$.s/ D �
sp2
Z

f .s/� 0.y/'.y/dy DW ‚s; (16.24)

and from Proposition 16.3.1, the first-order correction term V1 is given by solving

A2V1 D �1
2
&s3

@3V0
@s3
� Œ&C‚�s2 @

2V0
@s2
�‚s

@V0
@s
; (16.25)

where the right-hand side is a known function of the s coordinate only.
As a simple numerical demonstration of our main result in Proposition 16.3.1,

assume that the latent “fast” component Yt affects the dynamics of the project value
in (16.18) via f .Yt/ D exp.Yt/. For this particular choice of f .y/, one gets f D
exp.mC 
2/, ‚ D 0 and & D �



p
2



e
5
2 


2C3m � e3mC 9
2 


2
�

. We fix the parameters at

I D � D 1, r D � D 0:10, ı D 1=p200, 
 D 1=p2, m D ln 0:1 and � D �0:3. All
parameters are as in Fouque et al. (2003c) and McDonald and Siegel (1986).

For these parameter values, the blue solid line in Fig. 16.1 plots the leading-order
value term V0.s/ in (16.21) for s 2 Œ0; S�0 D 1:34374�. The dashed blue lines plot
the “corrected” value function V.s/C ıV1.s/ over the s 2 Œ0; S�0 C ıS�1 D 1:38226�
region. “Fast” stochastic volatility that is negatively correlated with project value
(as is usually the case) decreases the value of the option to invest and postpones
optimal investment timing, and the effect is more pronounced the more negative
the correlation between the two. The red and green lines demonstrate the effect of
increases in m, which increase the “averaged” volatility f , making the option to
invest more valuable, ceteris paribus.
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Fig. 16.1 Plots (solid lines) the leading-order value term V0.s/ in Eq. (16.21) and the “corrected”
value V.s/ C ıV1.s/ (dashed lines) for different parameter values. Lines in blue (m D ln 0:1),
red (m D ln 0:2) and green (m D ln 0:25) correspond to different long-run levels for the “fast”
stochastic volatility latent factor. The rest of the parameters are I D � D 1, r D � D 0:10,
ı D 1=

p
200, 
 D 1=

p
2 and f .y/ is equal to exp.y/
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Chapter 17
Modelling the Uruguayan Debt Through
Gaussians Models

Ernesto Mordecki and Andrés Sosa

Abstract We model bond price curves corresponding to the sovereign Uruguayan
debt nominated in USD, as an alternative to the official bond price publication
released by the Central Bank of Uruguay (CBU). Four different Gaussian models
are fitted, based on historical data issued by the CBU, corresponding to some of the
more frequently traded bonds. The main difficulty we approach is the absence of
liquidity in the bond market. Nevertheless the adjustment is relatively good, giving
the possibility of non-arbitrage pricing of the whole family of nontraded instruments
and also the possibility of pricing derivative securities.

Keywords Uruguayan sovereign bonds • Stochastic processes • Yield curve
• Term structure surface • Interest rate models • Forward-rate models • Arbitrage
possibilities

17.1 Introduction

Bond price curves (or equivalently yield curves) constitute a major tool in debt anal-
ysis and perspective of the sovereign debt of a country. Term structure models have
therefore been used in different ways by different classes of market participants.
In the monetary policy context, the term structure is an indicator of the market’s
expectations regarding interest rate and inflation rates. From a financial point of
view, the existence of a bond price curve helps the development of the domestic
capital market, both for the primary and secondary market.

There are essentially two approaches to model the term structure. The general
equilibrium approach starts from a description of the economy and derives the
term structure of interest rate endogenously (see for example Cox et al. (1985)).
In contrast, the arbitrage approach starts from assumptions about the stochastic
evolution of one or more interest rates and derives prices of contingent claims by
imposing the no-arbitrage condition; this is, for example, the pioneering approach
proposed by Vasicek (1977).
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In this first approximation to the problem of the Uruguayan USD nominated
debt, we use the second approach, and further we restrict our analysis to four
Gaussian models due to their analytical and numerical tractability. Factor models
assume that the term structure of interest rate is driven by a set of state variables
named as “factors”. As one factor generally explains a large proportion of the yield
curve movement, it may tempting to reduce the analysis to one factor models.
Nevertheless, the consideration of one factor involves, in some cases, perfect
correlation between log prices of bonds. Although empirical data shows high
correlation, bond prices do not show perfect correlation. Therefore, we use multiple
factor model and in particular two factor models.

The first two models we choose are short-rate models, the classical Vasicek
model (Vasicek 1977), and the more flexible G2 C C model (Brigo and Mercurio
2006). The parameter estimation is carried out based on maximum likelihood,
following (Chen and Scott 1993). The second couple of models belong to the
forward-rate model family, based on the methodology proposed by Heath et al.
(1992). Here we again choose first the simplest possible one, the Ho–Lee model
with constant volatility (Ho and Lee 1986), and second the more flexible Hull–White
model with tempered volatility (Hull and White 1993). In these two last cases, we
calibrate the models with the help of minimization of squared differences between
theoretical and quoted prices of bonds.

Our contribution is to provide an arbitrage-free set of bond prices for the
Uruguayan USD debt that can be used for portfolio valuation and derivative pricing.

The rest of the paper is organized as follows. Sections 17.2 and 17.3 describe the
short-rate model and the forward-rate models, respectively. Section 17.4 provides
information about the Uruguayan debt and the methodology of computation of bond
prices used by the CBU. Section 17.5 describes the estimation methodology through
maximum likelihood and calibration and presents the results obtained. Section 17.6
concludes.

17.2 Short-Rate Models

When modelling yield curves through stochastic processes, the classical approach
consists in modelling the short rate through a certain amount of sources of
uncertainty, under the denomination of factors. When these factors are used to
construct the short interest rate, we obtain a large variety of models, described in
a vast part of the literature in fixed income mathematical finance (Bjork 2009; Brigo
and Mercurio 2006; Filipovic 2009; Musiela and Rutkowski 2005).

In this part of the work, we use two Gaussian models, the one proposed by
Vasicek in 1977 (Vasicek 1977) that is seminal in the literature. The second
model we apply is the G2++ (Brigo and Mercurio 2006), a modification of the
previous one, having two factors and including the initial price curve, avoiding
in this way arbitrage at the initial time. This model has in fact a more general
version, under the denomination of Gn++ model (Di Francesco 2012), including an
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arbitrary amount of factors. However, the choice of the number of factors involves
a compromise between numerically efficient implementation and capability of the
model to represent realistic correlation patterns and to fit satisfactorily enough
market data.

17.2.1 The Vasicek Model

In his classical paper (Vasicek 1977), Vasicek proposes a model for the short rate
through a stochastic differential equation driven by a Wiener process,

dr.t/ D a.b � r.t//dt C �dW.t/ r.0/ D r0I (17.1)

where a, b and � are positive constants and fW.t/g is a standard Wiener process
defined in a stochastic basis .˝;F ; fFtg;P/. The solution to (17.1) is known as the
Ornstein–Uhlenbeck process. It defines an elastic random walk around a trend, with
a mean-reverting characteristic. Given the set of information at time s, the short rate
r.t/ is normally distributed with

E .rtjFs/ Drse�a.t�s/ C b


1 � e�a.t�s/

�

var.rtjFs/ D�
2

2a



1 � e�2a.t�s/

�
:

The bond price can be obtained by computing the discounted expected terminal
value of the bond with respect to a risk-neutral probability measure Q. This quantity
can be explicitly computed concluding that the Vasicek model is an affine model
whose solution is

P.t;T/ D A.t;T/e�B.t;T/rt I (17.2)

where

A.t;T/ D exp

��
b � �2

2a2

�
.B.t;T/ � T C t/ � �

2

4a
B.t;T/2

�
I

B.t;T/ D 1

a



1 � e�a.T�t/

�
:

17.2.2 The G2++ Model

As mentioned above, the price correlation given by the Vasicek model to log prices
of different bonds is one. For this reason, as observed prices do not show such
high correlations; models with more factors (and more parameters) are considered,
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expecting to better fit to the observed data. One of these proposals is the Gn++
model, proposed in Di Francesco (2012) that we use with two factors. Another
relevant characteristic of this proposal is that it takes into account the whole initial
price curve.

The dynamics of the short-rate process in this model is given by

r.t/ D x.t/C y.t/C '.t/; r.0/ D r0I

where the process x.t/ and y.t/ is driven by a correlated two-dimensional Wiener
process fW1.t/;W2.t/g, by the equations

dx.t/ D �ax.t/dtC �dW1.t/; dy.t/ D �by.t/dtC �dW2.t/: (17.3)

We have dW1.t/dW2.t/ D �dt where �1 � � � 1 and the constants r0; a; b; �; �
are positive. The function '.t/ is deterministic and well defined in the time interval
Œ0;T�, which is added in order to fit exactly the initial zero-coupon curve. Given the
set of information at time s, the short rate r.t/ is normally distributed with

E .r.t/jFs/ D x.s/e�a.t�s/ C y.s/e�b.t�s/ C '.t/I

var.r.t/jFs/ D �2

2a
.1 � e�2a.t�s//

C �2

2b
.1 � e�2b.t�s//C 2���

aC b
.1 � exp�.aCb/.t�s//:

The price at time t of a zero-coupon bond with maturity at time T is

P.t;T/ D exp

�
�
Z T

t
'.u/du� 1 � e�a.T�t/

a
x.t/

�1 � e�b.T�t/

b
y.t/C 1

2
V.t;T/

�
I (17.4)

where

V.t;T/ D�
2

a2

�
T � tC 2

a
e�a.T�t/ � 1

2a
e�2a.T�t/ � 3

2a

�

C �2

b2

�
T � tC 2

b
e�b.T�t/ � 1

2b
e�2b.T�t/ � 3

2b

�

C 2���

ab

�
T � tC e�a.T�t/ � 1

a
C e�b.T�t/ � 1

b
� e�.aCb/.T�t/ � 1

aC b

�
:

(17.5)
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Even though the previous formula (17.4) gives bond prices in the model, it is
necessary to estimate the function '. In order to do this, it is necessary to assume
that the initial price curve T 7! PM.0;T/ is known. The model fits the currently
observed term structure if PModel.0;T/ D PM.0;T/; therefore, the price at time t of
a zero-coupon bond maturity at time T is

P.t;T/ D PM.0;T/

PM.0; t/
exp.A.t;T//I (17.6)

where

A.t;T/ D 1

2

�
V.t;T/ � V.0;T/C V.0; t/

�
� 1 � e�a.T�t/

a
x.t/ � 1 � e�b.T�t/

b
y.t/:

17.3 Forward-Rate Models

In the market we do not have a real instantaneous interest rate. In certain cases, the
one (or three)-month interest rate series is used as a proxy to estimate this interest
rate. It is not convenient to use the overnight rate, as it has very high volatility due
to economical factors, as, for instance, the daily liquidity in the market that can give
distortions on the structure of the yield curve.

By this reason, and also to avoid arbitrage opportunities in a systematic way,
Heath, Jarrow and Morton introduce a new methodology (Heath et al. 1992)
(referred to as HJM models) that models the forward instantaneous rate at time
t by a stochastic differential equation driven by a Wiener process

f .s; t/ D f .0; t/C
Z t

0

˛.u; t/duC
Z t

0

�.u; t/dWuI

where Wt is a Wiener process.
We depart from the free arbitrage model that assumes that the coefficients ˛.u; t/,

0 � u � t and �.u; t/, 0 � u � t are adapted processes defined in an underlying
stochastic basis .˝;F ; fFug;Q/, and Q is a risk-neutral probability measure. The
key aspect of HJM techniques lies in the recognition that the drift of the no-arbitrage
evolution of certain variables can be expressed as functions of their volatilities and
the correlations among themselves, giving

˛.s; t/ D �.s; t/
Z t

s
�.s; u/du: (17.7)

Therefore, in order to specify an HJM model, the initial forward rate curve f .0; t/
and the volatility structure �.s; t/ should be given, because no drift estimation is
needed. It should be observed that as long as the function � is deterministic, by
condition (17.7), the drift is also deterministic; in consequence, the forward rates
are Gaussian.
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17.3.1 The Ho–Lee Model and Hull–White Model

In the applications that follow, we first choose the simplest possible alternative for
the volatility. We assume �.s; u/ D � > 0 is a positive constant, and this gives

f .s; t/ D f .0; t/C �.st � s2=2/C �WtI
the so-called Ho–Lee model (Ho and Lee 1986). The price of a zero-coupon bond
in this model is given by

P.t;T/ D PM.0;T/

PM.0; t/
exp



.T � t/f M.0; t/� �

2

2
t.T � t/2 � .T � t/r.t/

�
: (17.8)

In the second model, we assume that the volatility is also deterministic but in this
case is time dependent, given by �.s; u/ D �e�a.u�s/, where a and � are positive
constants. This gives

r.t/ D f .0; t/C �2

2a2
.e�at � 1/2 C �

Z t

0

e�a.t�u/dWu:

The price of a zero-coupon bond in this case is

P.t;T/ D PM.0;T/

PM.0; t/
exp

�
B.t;T/f M.0; t/ � �

2

4a
.1 � e�2at/B.t;T/2 � B.t;T/r.t/

�
:

(17.9)

where the function B.t;T/ is

B.t;T/ D 1

a

�
1 � e�a.T�t/

	
:

This corresponds to the Hull–White model (Hull and White 1993) with time-
dependent parameters.

17.4 About the Uruguayan Debt

The Uruguayan government issues debt through different financial instruments, on
different currencies and expirations. In present times, the most relevant circulating
instruments according to terms and currencies are:

• the Treasury Notes in local currency and linked to CPI (consumer price index),
• the Local Bonds (issued in the country) linked to CPI,
• the Local Bonds (issued in the country) in USD,
• the Global Bonds (issued mainly in United States of America) in USD.
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Fig. 17.1 Central
government debt profile
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To complete the analysis of the debt, it should be mentioned that the government
also holds obligations with multilateral financial institutions, estimated in less than
the 10 % of the global debt amount. In Fig. 17.1 we observe the debt’s profile of the
Uruguayan debt across maturities. The last expiration dates correspond to the 2050
bond, recently issued, paying its face value on thirds, in the years 2048, 2049 and
2050.

Regarding the currency composition, more than one half of the Uruguayan debt
is nominated in local currency (part of it linked to CPI), 45 % is issued in USD,
and the rest corresponds to bonds issued in Euros and Yens. Almost all of the debt
(94 %) pays fixed coupons, and the rest is mainly adjusted to Libor rate.

17.4.1 Curve Price Estimation

In most of the countries, the corresponding regulating agencies and some financial
corporations release yield curves corresponding to the sovereign debt. The most
popular methods to produce these curves include parametric methods [as the ones
proposed by Nelson and Siegel (1987) and Svensson (1994)]. Non-parametric
methods are also used.

Regarding Uruguay, the CBU does not release yield curves but daily issues a
report with prices for all the financial instruments issued by the government. The
two authorized stock exchange institutions release their respective yield curves.
The Electronic Stock Exchange of Uruguay (Bolsa Electrónica de Valores del
Uruguay (BEVSA)) uses B-splines to produce the yield curves corresponding to
local currency, linked to CPI, and to USD. The Montevideo Stock Exchange (Bolsa
de Valores de Montevideo (BVM)) emits a single curve (linked to CPI) based on the
methodology proposed by Svensson (1994).

The purpose of the present paper is to propose an alternative methodology for
bond valuation, for the debt issued in USD, to the one used by the CBU and
also by the BVM and BEVSA. In the next subsection, we briefly describe the
procedure used by the monetary authority (CBU) to compute the prices of the
different financial instruments.
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17.4.2 CBU Pricing Methodology

The CBU issues daily reports containing prices of all the financial instruments
issued by the Uruguayan government. This set of prices is known as the “price
vector”. The pension funds and insurance companies that are relevant participants
in the domestic bond market are obliged by law to use these prices in order to report
their respective portfolio values.

This vector of prices is computed through a methodology that includes four
different criteria, according to whether the bond has been traded or not and
according also to its expiration, and applies with a hierarchical scheme. At the end
of each business day, the CBU releases information about bond prices, according to
the following procedure:

1. For bonds that have been negotiated in the day (according to certain minimal
amounts), the prices are computed as a weighted mean of the respective
negotiation prices in the stock exchanges.

2. For bonds with less than a year to expire, an interpolation procedure between the
previous price and the face value is applied to compute the prices.

3. An index I.t/ where t represents the current date is computed in order to compute
the prices of the other bonds. This amount represents the value of an “ideal” mean
bond.

4. For all other bonds, the new price is obtained from the previous one multiplying
by the ratio I.t/=I.t � 1/.
The most relevant characteristic to be taken into account when analysing this

procedure is that the stock exchange of long expiration debt instruments issued
by the government (bonds) is really not liquid. This implies that most of the
prices published by the CBU result from the application of 4, i.e. are computed
instead of negotiated, and this can happen for some instruments consecutively,
during a relatively long period of time. This can lead to (theoretical) arbitrage
opportunities, for instance, giving larger yields for bonds with smaller maturities,
which is equivalent to larger prices of zero-coupon bond with smaller maturity than
other zero-coupon bonds. Of course, these arbitrage opportunities do not exist in
real negotiations, as they do not follow the released bond prices, but are present, for
instance, when evaluating portfolios. Although the intention of the methodology is
to follow the movements of the market, one should always take into account this
fact.

17.5 Empirical Results

17.5.1 Model Fitting

In relatively developed markets, prices of financial derivatives on bonds are available
in order to estimate the parameters of the model; see Brigo and Mercurio (2006),
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Filipovic (2009) and the references therein. Our main difficulties are the absence of
derivatives market and the lack of liquid market prices of bonds due to the absence
of frequent transactions. This is the reason why we develop two different method-
ologies of model adjustment, first, the classical maximum likelihood estimation,
and, second, we propose a calibration procedure for models with fewer parameters
that seems to give relatively good results.

Our first approach is closer to Chen and Scott (1993), where model adjustment
is carried out departing from bond prices. In our case we do not have the need
to introduce measurement errors in order to fit the model, as we develop a first
approximation to the data. In the second approach, we perform a conventional
calibration model using daily prices of bonds.

17.5.1.1 Maximum Likelihood Estimation

Observe that in formulas (17.2) and (17.6), the log prices are expressed as a linear
function of the state variables. In order to determine these state variables in both
models, it is necessary to use one bond price time series in Vasicek model and
two time series in G2++ model. But to carry out this procedure, the values of
the parameters (to be estimated) are necessary. This is why we use the maximum
likelihood (ML) method with the help of a change of variables that gives the
corresponding Jacobian term in the ML expression. In both models, based on the
Markov property of the processes, the joint density is written as a product of
conditional densities, each of which has normal distribution, with three parameters
in the first case (a; b; �) and five parameters in the second (a; b; �; �; �).

Given the panel data set PM
t D

�
PM.t;T.i//

	
, i D 1; : : : ; I and t D 1; : : : ;T,

where PM.t;T.i// is the price at time t of the zero-coupon bond with maturity T.i/,
denote by Xt D

�
x.i/t
	
, t D 1; : : : ;T the state vector.

The joint density of PM
2 ; : : : ;P

M
T satisfies

f .PM
2 ; : : : ;P

M
T jPM

1 ; �/ D
TY

kD2
f .PM

k jPM
k�1; �/

by the Markov property. Changing variables in each conditional density, we obtain

f .PM
k jPM

k�1; �/ D f .XkjXk�1; �/
ˇ̌
ˇ̌@Xk

@Pk

ˇ̌
ˇ̌

D f .XkjXk�1; �/
ˇ̌
ˇ̌@Pk

@Xk

ˇ̌
ˇ̌
�1
D f .XkjXk�1; �/

1

jJkj ;

where Jk is the Jacobian of the change of variables.
We find adequate in our situation to use as many bond price time series as number

of factors. But this is not strictly necessary. In some cases, when more time series
than state variables are used, it is possible to introduce additional random variables
in order to estimate the model (Chen and Scott 1993).
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17.5.1.2 Calibration

In order to use our models in practice, to price contingent claims or with other
aims, we have to calibrate its parameters departing from market data. To do this
we adopt a cross-sectional approach. Assume that we observe a cross section of
market prices of contingent claims, that is to say, the prices of a set of N zero-
coupon bonds corresponding to the same day. For time t, let us denote the vector
prices PM

t D
�
PM.t;T.i//

	
, i D 1; : : : ; I, where PM.t;T.i// is the price at time t the

zero-coupon bond with maturity at time T.i/ and assume that we are able to compute
the price vector corresponding to the model, denoted by PModel

t D �
PModel.t;T.i//

	
,

i D 1; : : : ; I. Model prices are functions of the parameter vector� of the respective
models; see (17.8) for the Ho–Lee model and (17.9) for the Hull–White model.

The idea is to find the values for � minimizing the difference between market
prices and model prices. To do this we have to solve the least-square problem,

min
�

1

I

iDIX

iD1



PM.t;T.i//� PModel.t;T.i//

�2
:

17.5.2 Results in Short-Rate Models

17.5.2.1 Data

The information used in the construction of the yield curves is the one provided
by the CBU, for USD nominated bond prices, traded both in the domestic market
and in foreign exchanges. It should be noticed that besides the liquidity problem of
the bond market, there are no derivatives on these instruments, so all the available
information is provided by the bond prices.

The data to be used in the estimation procedure corresponds to the time period
from January 4, 2010 to October 30, 2013. In the Vasicek model, we use the bond
BE330115P, expiring in January 2033, and, in the G2++ model, we use the same
one and add the bond BE250928F with expiry in September 2025. We choose these
bonds as they are the most frequently traded. Each time series is processed according
to the coupon payment scheme (amount and frequency) to obtain the corresponding
yields that give the zero-coupon bond prices used in the estimation.

17.5.2.2 Estimation in Vasicek Model

In order to evaluate the influence of the nonliquid computed prices (as explained
above), we proceed in this case in estimating the parameters corresponding to the
Vasicek model in two situations. We first estimate parameters using all the available
information, i.e. we use weekly bond prices taken on Wednesdays. The obtained
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Fig. 17.2 The solid line shows the first estimation with Vasicek model and the dotted one the
second (that uses only negotiated prices). The dots correspond to market prices of zero-coupon
bonds

parameters in (17.1) are:

a D 1:7051I b D 0:0937I � D 0:3721:
In the second case, we use only negotiated prices (504 observations). This implies
that the time intervals between prices are not regular, leading to a slightly more
complicated estimation scheme. The obtained parameters in (17.1) are:

a D 1:7145I b D 0:0896I � D 0:4971:

This comparison helps us to verify that the variation in the values of the parameters
is not significant (perhaps the most important variation is registered in � ), and for
this reason in what follows and in this first approach to the problem, we will use all
the available time series. In Fig. 17.2 we observe the price curve corresponding to
August 13, 2013, given by the model in both estimations carried out and also the
bond prices issued by the CBU.

17.5.2.3 Estimation in G2++ Model

As we mentioned above, we use two bond price time series, with expiration in
2025 and 2033, respectively. We take weekly prices corresponding to Wednesdays.
The obtained values for the parameters in (17.3), with the ML estimation method
described above, are:

a D 0:1300I b D 0:3526I � D 0:2062I � D 0:4892I � D �0:99:

Using these values with the corresponding bond prices, we can obtain the daily time
series corresponding to the short rate. This allows us to compute the bond prices for
arbitrary maturities in each one of the days. We show the bond price curve for the
following maturities: 1, 2, 3, 6 and 9 months and 1, 2, 3, 5, 7, 10, 15, 20 and 25
years.
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Fig. 17.3 Surface of zero-coupon bond prices using the G2++ model

In Fig. 17.3 we see the daily zero-coupon bond price curve corresponding to
the analysed time period issued by the Uruguayan government, as a result of the
application of the G2++ model.

If we analyse the data in Fig. 17.3 for the second semester of 2012, the model
gives a curve with non-negative slope for some maturities. This fact introduces
arbitrage possibilities, as it gives cheaper bonds with smaller maturities than others
with larger maturities. More precisely, our model adjustment gives parameters that
result in increasing bond prices in some intervals of the maturity T. Our parameter
estimations include a correlation very close to �1 and instances of negative values
of the factors x.t/ and y.t/. We will return to this fact in more detail in the next
subsection.

17.5.2.4 On Arbitrage Possibilities in G2++ Model

We analyse how formula (17.6) for a zero-coupon bond price in G2++ model can
give arbitrage opportunities. Equation (17.5) can be written as

V.t;T/ D �2

a2

Z T

t
.1 � e�a.T�u//2duC �2

b2

Z T

t
.1 � e�b.T�u//2du

C 2���

ab

Z T

t
.1 � e�a.T�u//.1� e�b.T�u//du:

We then take logarithms and differentiate formula (17.6) w.r.t T, to obtain

@

@T
logP.t;T/ D @

@T
logPM.0;T/C �2

2a2



.1 � e�a.T�t//2 � .1 � e�aT /2

�

C �2

2b2



.1� e�b.T�t//2 � .1 � e�bT/2

�
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C ���

ab



.1 � e�a.T�t//.1 � e�b.T�t//� .1 � e�aT/.1 � e�bT/

�

� e�a.T�t/x.t/ � e�b.T�t/y.t/:

In this formula the first three addends are negative. The fourth has the opposite sign
of �, and the last two depend on x.t/ and y.t/. In our application � is close to �1,
which is associated with the fact that x.t/ and y.t/ take opposite signs; therefore, in
some time intervals, the derivative is positive, as shown in Fig. 17.3. Nevertheless
the model gives general valuable information about the structure of the debt.

17.5.3 Results for Forward-Rate Models

17.5.3.1 Data

In this analysis we use weekly prices corresponding to the whole year 2014, of 10
USD nominated bonds issued by the CBU. The maximum expiration date corre-
sponds to the BE451120F bond, in November 2045. To obtain an approximation of
the initial interest rate, we used the reference curve CUD-BEVSA daily issued by
BEVSA for three months, and, to adjust the initial forward-rate curve, we used the
yield curve corresponding to January 5, 2013.

17.5.3.2 Results in Ho–Lee Model and Hull–White Model

Calibrating the Ho–Lee model, we obtain the parameter � for each day. In Fig. 17.4
we observe then the daily variation of � . The mean value of the estimation is 0:0232,
with a standard deviation of 0:0094.

For the Hull–White model, the same procedure is carried out. In Fig. 17.5
(above), we observe the daily values of the parameter a and in Fig. 17.5 (below) the
values of the parameter � . The mean value for a is 0:0693 with a standard deviation
of 0:0257. The corresponding mean and standard deviation for � are 0:0177 and
0:0079, respectively.

Fig. 17.4 Calibrated Ho–Lee
� parameter over time
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Fig. 17.5 Calibrated Hull–White parameters over time. Above a, below �

The calibration of the Ho–Lee model corresponding to Wednesday, June 25,
2014, gives � D 0:3071 and is shown in Fig. 17.6 (above). In Fig. 17.6 (below),
we see the calibration for the same day corresponding to the Hull–White model.
The parameters in this case are a D 0:0813 and � D 0:0215.

Both in the Ho–Lee and Hull–White models, the daily calibration allows us to
construct term structure of interest rates for the corresponding day. The result is
shown in Fig. 17.7.

17.6 Conclusions

The objective of the present work is to present an arbitrage-free model to price the
Uruguayan debt nominated in USD. A second purpose is to provide an instrument
capable of pricing derivatives on bonds, as interest rate swaps, that are beginning
to be used in the Uruguayan market. Based on data from the Uruguayan market for
coupon bonds, we adjust four different Gaussian models.

This information is of valuable interest to financial practitioners and policymak-
ers alike. Policymakers monitor expectations of future monetary policy to gauge the
effectiveness of their strategy. For practitioners, the availability of accurate interest
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Fig. 17.6 Bond price curve adjusted to market data. Above Ho–Lee, below Hull–White. In both
cases the dots represent the market prices

0
10

20
30Maturity January

July

Dates

December

2

4
Yield

6

Fig. 17.7 Term structure in Uruguayan market via Hull–White model

rate forecasts can be the key to a successful trading strategy. We hope that these
modelling exercises would enrich our understanding of market expectations and
improve the understanding of the characteristic behaviour of the term structure of
interest rate.

First, we adjust the Vasicek and the G2++ models for interest rates, departing
from data from one bond and two bonds, respectively. We follow the methodology
proposed by Chen and Scott (1993) that departs from historical data to estimate the
parameters of the model through maximum likelihood. The second model is more
flexible than the first one, as it involves more parameters, and also adjusts the initial
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interest rate curve avoiding the possibility of arbitrage. Nevertheless, as we show,
when high values of correlation are obtained (and this is our case), the model can
give arbitrage situations.

Second, we model the debt through the HJM models. We choose two different
situations, assuming first that the volatility is constant, giving rise to the Ho–Lee
model, the simplest HJM model, and second we assume an exponentially decreasing
volatility, giving rise to the two-parameter Hull–White model. In this case the
adjustment seems to be better, as no-arbitrage possibilities appear (the HJM model
uses the initial curve and also works under a risk-neutral measure), and the different
values for different days in both cases show certain stability. We conclude that HJM
models fit better to the data and are capable of describing the whole market structure
with information of a series of then more traded bonds.

Further work includes several issues, such as the comparison of the two methods
employed (maximum likelihood and calibration) in both interest rate and forward-
rate models; the analysis of the effect of the lack of liquidity, including adjustment
with respect to transaction volumes in the least-square minimization; the use of more
data with the help of the methodology proposed by Chen and Scott (1993); and the
consideration of more sophisticated HJM models.

References

Bjork, T.: Arbitrage Theory in Continuous Time, 3rd edn. Oxford Finance, Levin (2009)
Brigo, D., Mercurio, F.: Interest Rate Models Theory and Practice with Smile, Inflation and Credit,

2nd edn. Springer, Berlin (2006)
Chen, R., Scott, L.: Maximum likelihood estimation for a multi factor equilibrium model of the

term structure of interest rates. J. Fixed Income 3(3), 14–31 (1993)
Cox, J., Ingersoll, J., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53,

385–407 (1985)
Di Francesco, M.: A general gaussian interest rate model consistent with the current term structure.

Int. Sch. Res. Netw. (ISRN) Probab. Stat. 2012(673607), 16 (2012). doi: 10.5402/2012/673607
Filipovic, D.: Term-Structure Models. Springer Finance. Springer, Berlin (2009)
Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new

methodology for contingent claims valuation. Econometrica 60(1), 77–105 (1992)
Ho, T., Lee, S.: Term structure movements and pricing interest rate contingent claims. J. Finance

41, 1011–1029 (1986)
Hull, J., White, A.: One factor interest rate models and the valuation of interest rate derivative

securities. J. Financial Quant. Anal. 28(2), 235–254 (1993)
Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modeling. 2nd edn. Springer, Berlin

(2005)
Nelson, C., Siegel, A.: Parsimonious modeling of yield curves. J. Bus. 60(4), 473–489 (1987)
Svensson, L.: Estimating and Interpreting Forward Interest Rates: Sweden 1992–1994. Papers 579.

Institute for International Economic Studies, Stockholm (1994)
Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5, 177–188

(1977)

http://dx.doi.org/10.5402/2012/673607


Chapter 18
A Q-Learning Approach for Investment
Decisions

Martín Varela, Omar Viera, and Franco Robledo

Abstract This work deals with the application of the Q-learning technique in order
to make investment decisions. This implies to give investment recommendations
about the convenience of investment on a particular asset. The reinforcement
learning system, and particularly Q-learning, allows continuous learning based on
decisions proposed by the system itself. This technique has several advantages, like
the capability of decision-making independently of the learning stage, capacity of
adaptation to the application domain, and a goal-oriented logic. These characteris-
tics are very useful on financial problems.

Results of experiments made to evaluate the learning capacity of the method in
the mentioned application domain are presented. Decision-making capacity on this
domain is also evaluated.

As a result, a system based on Q-learning that learns from its own decisions in
an investment context is obtained. The system presents some limitations when the
space of states is big due to the lack of generalization of the Q-learning variant used.

Keywords Reinforcement learning • Q-learning • Portfolio selection • Artificial
intelligence script • Machine learning • Finance • Investment decisions • Meta-
heuristics • Technical analysis

18.1 Introduction

18.1.1 Context

The portfolio selection problem is a highly combinatorial problem with two opposite
goals: maximize profit and minimize risk. There are many works that cover this
problem with different approaches, being the modern portfolio theory proposed by
Harry Markowitz in 1952 (Markowitz 1959), a milestone for further work until
today.
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From the very existence of the stock exchange, there exists a discussion about
the predictability of the market, or more precisely, if the future price of an asset
can be predicted. Efficient market hypothesis (Fama 1965, 1970) states that in an
efficient market, all existing information is reflected in the price, so the current price
is the best measure of its intrinsic value, and as consequence of this, it is impossible
to predict its future behavior. Moreover, some argue that the market has enough
inefficiencies to get a better profit based on speculation. The technical analysis is a
widely used tool by who defend this position, since it provides mechanisms to deal
with the historical series of price and volume of transactions, giving more digested
information that is used to make market predictions. A strong argument of those
who believe that the market behavior can be predicted is the existence of buy and
sell behavioral patterns associated with psychological factors.

18.1.2 Motivation

Unlike many decision problems in which obtaining historical information is a
difficult obstacle to overcome, in this problem the available information is abundant.
It is not only available historical information, but it is possible to obtain near real-
time information and for free. Moreover, this availability of information has been
rising over time, which has meant that there are many more market participants,
not always with a high level of knowledge about financial theories. Furthermore,
this widespread growth tends to increase. This fact enforces the theory contrarian to
the efficient market hypothesis, in the sense that a major number of participants
with limited knowledge about financial theories generate possibilities of more
inefficiencies, guided by a behavior more related with human psychology factors
that with rationality.

While the application of several techniques and models to solve the portfolio
selection problem has been studied, they have not been found in the context of this
work, i.e., studies on the application of decision-making techniques that could adapt
automatically to market changes. In this sense, reinforcement learning (Sutton and
Barto 2000) results in a very interesting technique and its application to this domain
seems to be novel.

18.1.3 Scope

This work pretends to advance in the treatment of the complex problem of
investment decisions, providing a learning and decision-making tool based on
historical and real-time information. Specifically, there is presented a system of
recommendation on whether or not invest in a particular asset, being the result of
that potential investment the feedback to the system, which allows it to learn and
provide better recommendations in the future.
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18.1.4 Organization

The work is divided into five sections. In the first one, the application domain
is described, covering some important concepts like portfolio management and
technical analysis. While portfolio management is mentioned for context reasons,
technical analysis plays an important role in this work. In Sect. 18.2, reinforcement
learning and particularly Q-learning is explained. In the third section, the aim of
this work, the application of Q-learning to investment decisions, is justified and
explained with detail. In the fourth, experimental results are discussed, and finally,
conclusions and some lines of future work are described.

18.2 About the Application Domain

18.2.1 Portfolio Management Problem

In a market with m stocks, let vt D .vt.1/; : : : ; vt.m// be the vector that contains
the closing price of the m stocks at the day t. One way to become independent of
individual prices of each stock is working with relative prices xt.j/ D vt.j/=vt�1.j/,
that is, the relationship between the closing prices of two consecutive days. Thus, an
investment of $d in the stock j made between day t�1 and day t will result in $dxt.j/
and is then denoted as xt D .xt.1/; : : : ; xt.m// to the vector of relative prices for the
m stocks at the day t. A portfolio b represents an allocation of weights to stocks,
specified proportionally to the amount of money invested. Therefore b is expressed
as b D .b.1/; : : : ; b.m//, where b.m/ � 0 and

P
j b.j/ D 1. The daily return of

a portfolio b subject to the relative prices vector x is bx D P
j b.j/x.j/, and the

total return retX.b1; : : : ; bn/ of a sequence of relative prices vectors X D x1; : : : ; xn
is
Qn

tD1 btxt. It is called portfolio selection algorithm to any strategy to specify a
sequence of portfolios (Borodin et al. 2004).

18.2.2 Modern Portfolio Theory

The modern portfolio theory, proposed by Harry Markowitz in 1952 (Markowitz
1959), proposes two conflicting objectives: maximize return and minimize risk. In
this sense, an investment in a risky asset is only justified by a bigger expected return.

The model assumes that only asset expected return and volatility are relevant to
investors. Volatility represents the risk, while the expected return is calculated as the
average of historical returns.

The portfolio return is calculated as the weighted sum, according to the relative
weight, of the returns of the assets comprising the portfolio. The portfolio volatility
is a function of the correlation between assets comprising the portfolio. Expressed
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in mathematical equations,

Expected return: EV.xtC1.P// D
X

i

bt.i/EV.xtC1.i// (18.1)

Portfolio variance: �2t .P/ D
X

i

X

j

bt.i/bt.j/� t.i/� t.j/�.i; j/ (18.2)

Portfolio volatility: � t.P/ D
q
�2t .P/ (18.3)

The mathematical model of variance minimization proposed by Markowitz is as
follows:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

min �2t .P/ D
P

i

P
j bt.i/bt.j/� t.i/� t.j/�.i; j/

s:a: P
i bt.i/EV.xtC1.i// � 0P
i bt.i/ � 0

bt.i/ � 0 ;8i

(18.4)

In this model, a quadratic problem must be solved. The objective is to minimize
the portfolio variance while the expected return acts as a constraint.

18.2.3 Technical Analysis

Technical analysis is the study of market action, primarily through the use of charts,
for the purpose of forecasting future price trends, Murphy (1999).

The market action includes the three main sources of information available for
technicians: price, volume, and open interest (this is only used for futures and
options).

Technical analysis is based on three premises:

1. Market action discounts everything.
2. Price moves in trends.
3. History tends to repeat itself.

The first premise indicates that any factor (financial, psychological, political,
etc.) that could affect an asset price is already reflected on price, so the study of
price action is enough to make right forecasts.

Based on the second premise, the objective is to identify trends early, so as to
trading in the trend direction.

The study of market behavior is concerned with the study of human psychology.
In a century of information about market behavior, behavioral patterns of buying
and selling have been identified. Since these patterns worked well in the past, it is
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assumed that they will work well in the future. These patterns are based on the study
of human psychology, which tends not to change. The third premise is based on this
foundation.

There are, of course, some criticisms of the technical approach:

1. Self-fulfilling prophecy: This criticism suggests that given the growth in the
use of these techniques in recent years, there are many traders using them,
taking similar decisions massively, affecting the market and thus generating the
expected movement. This statement seems somewhat simplistic in that it assumes
that based in the same graph, the vast majority of traders will act the same way.
Typically, the information resulting from technical analysis is not so clear, and
every analyst makes a subjective interpretation. There are too many indicators
and techniques as to assume that technical analysts behave in the same way.

2. Can the past be used to predict the future? Any known prediction method,
whatever its application domain, is based on past data. There not exists another
source of information to predict the future, that is, the knowledge about the
past. This criticism is equally applicable to any prediction mechanism, including
fundamental analysis. Regardless, what determines the price is the relation
between supply and demand. Supply and demand respond to belief of investors
about the future behavior of the asset. Investor beliefs rely on their knowledge,
which is directly related to the past. Therefore, it seems reasonable to think that
past experiences are a very good base for predicting future behavior.

18.3 Reinforcement Learning

18.3.1 Classification of Application Domain

Russell and Norvig (1995), Russell and Norvig (2003), and Russell and Norvig
(2010) categorize application domains for decision-making systems based in the
following properties:

• Fully observable or partially observable: If it is possible to know the complete
state of the system at each point in time, then the domain is fully observable. If,
instead, just some relevant information can be accessed, the domain is partially
observable. If it is not possible to obtain any information about the domain at all,
the domain is unobservable.

• Deterministic or stochastic: If the next state of the system is completely
determined by the current state and the taken action, the domain is deterministic.
Otherwise, it is stochastic.

• Episodic or sequential: An application domain is episodic if the experience can
be divided into “episodes”. Actions executed on an episode do not influence on
the states of the following episodes. The last state of an episode is called terminal
state. In sequential domains, the current decision could affect all future decisions.
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• Static or dynamic: If the system state can change during the decision-making
process, the domain is dynamic. Otherwise, it is a static domain.

• Discrete or continuous: If the union of the sets of state variables and possible
actions result in a discrete set, then the domain is also discrete. If it is not the
case, the domain is continuous.

The most difficult domains to work are those partially observable (or unobserv-
able), stochastic, sequential, dynamic, and continuous.

18.3.2 Definition

The problem of reinforcement learning (Russell and Norvig 1995, 2003, 2010;
Sutton and Barto 2000) is a simplistic abstraction of the interactive learning to
achieve a goal. In this model, the apprentice and decision-maker is called agent,
while all that which interact with the agent is called environment.

Reinforcement learning (Russell and Norvig 1995, 2003, 2010; Sutton and
Barto 2000) tries to relate situations with actions in order to maximize a reward.
Unlike supervised learning, where learning is based on samples provided by an
external supervisor, here the agent is not told about which action must be taken
in a determined situation, but is the agent itself who must discover which actions
generate better rewards in each state, following a trial-and-error approach. This
property and the fact that a reinforcement, positive or negative, is not associated
with one only action but with a sequence of actions, are the most important factors
to distinguish reinforcement learning from another learning techniques.

A reinforcement learning agent can start to work without previous knowledge,
taking random decisions at first and learning from the reinforcements received as
result of its actions. To make this possible, it is essential to maintain a balance
between exploitation and exploration. In other words, as the system must learn from
its own actions, sometimes it has to sacrifice an immediate positive reinforcement
in order to explore the space of states with the hope of finding even better
reinforcements.

A reinforcement learning system is composed by four main elements:

• Policy: Defines the agent behavior at a given time. It is a mapping between states
and actions to be taken in those states. The policy may be a simple lookup table
or it may involve a complex computational process.

• Reward function: The reward function is where the objective of a reinforcement
learning problem is defined. This function maps the states or state-action pairs
with a numerical value called reward. The intrinsic goal of a reinforcement
learning agent is to maximize the total reward it receives in the long run. The
reward function must be fixed, but the rewards received by it can be used to
modify the policy.

• Value function: The value function estimates the goodness of a state in the long
run, that is, the expected future accumulated reward starting from a given state.
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State values estimation has a central role in reinforcement learning since the
agent must try to reach those states with bigger value.

• Model of the environment (optional): The model of the environment tries to
explain its behavior. Using this model the agent could predict the next state and
the reward it will receive. The model of the environment is useful to incorporate
planning into the agent decision-making process.

18.3.3 Agent-Environment Interaction

The agent and the environment interact continuously, the agent selecting actions
and the environment responding to that actions and presenting new situations to the
agent. The environment answer to the actions taken by the agent in form of rewards,
numerical values that the agent will seek to maximize in the long run.

Interaction between the agent and the environment can be divided in a sequence
of discrete steps. In every time step t, the agent receives a representation of the state
of the environment, st 2 S (S is the set of possible states), and has to choose an
action at 2 A.st/ (A.st/ is the set of possible actions that can be taken in the state st).
In the next time step .t C 1/, partially as a consequence of the action at, the agent
receives a numerical reward, rtC1 2 R, and a representation of the new state of the
environment stC1. A diagram of this interaction is showed in Fig. 18.1.

The rewards give an indication about how good or bad are the actions taken
earlier. The agent implicit objective is to maximize accumulated rewards in the long
run. The mechanism of rewards indicates to the agent the goals it must pursue, but
not how. This is a distinguishing factor of reinforcement learning.

Formally, the goal of a reinforcement learning agent is to maximize the expected
return, where the return Rt is defined as a function of the sequence of returns.
The simplest example is calculating the return as a sum of rewards: Rt D rtC1 C
rtC2 C : : : C rT , where T is a final time step. This calculation has sense when the
problem can be divided into independent subsequences called episodes. When the
problem cannot be divided into episodes and the interaction between the agent and

Agent

Environment

reward rtstate st action at

rt +1

st +1

Fig. 18.1 Interaction between the agent and the environment in a reinforcement learning problem
(Sutton and Barto 2000)
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the environment continues to infinity, this equation is not valid because there is not
a final time step T. A solution to this issue is to add the concept of discount. Thus,
the agent will try to maximize the expected discounted return. The discounted
return is expressed by the following equation: Rt D rtC1 C �rtC2 C �2rtC3 C : : : DP1

kD0 � krtCkC1, where � 2 Œ0; 1� is the discount factor, a parameter that adjusts the
value of a future reward depending on the number of time steps to get the reward.

18.3.4 Value Functions

Reinforcement learning algorithms are, in the most, based on estimating value
functions. Value functions depend on state (or state-action pair) and give an
estimation about the goodness of reaching a particular state (or the goodness of
taking a particular action in a particular state). The goodness is based on the
expected future rewards, which depend on the actions taken by the agent. Therefore,
the value functions are defined regarding particular policies.

A policy � maps for every pair of state s 2 S and action a 2 A.s/, the likelihood
of taking the action a in the state s. The value of a state s under a policy � , V�.s/,
is the expected return starting in the state s and following from there the policy � .

Formally, V�.s/ D E�fRt j st D sg D E�fP1kD0 � krtCkC1 j st D sg, where
E�fg denotes the expected value following the policy � . V� is called state-value
function for policy � .

Similarly, the value of selecting a particular action a in a state s under a policy
� , Q�.s; a/, is defined as the expected return starting in the state s, selecting the
action a, and then following the policy � : Q�.s; a/ D E�fRt j st D s; at D
ag D E�fP1kD0 � krtCkC1 j st D s; at D ag. Q� is called action-value function
for policy � .

The value functions V� and Q� can be estimated from experience.
A fundamental property of value functions is that satisfy the Bellman equation

for V� :

V�.s/ D E�fRt j st D sg

D E�

( 1X

kD0
� krtCkC1 j st D s

)

D E�

(
rtC1 C �

1X

kD0
� krtCkC2 j st D s

)

D
X

a2A.s/
�.s; a/

X

s02S
Pa
ss0

"
Ra
ss0 C �E�

( 1X

kD0
� krtCkC2 j stC1 D s0

)#

D
X

a2A.s/
�.s; a/

X

s02S
Pa
ss0ŒR

a
ss0 C �V�.s0/� (18.5)
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where Pa
ss0 D PfstC1 D s0 j st D s; at D ag is the likelihood of reaching the state

s0 from the application of the action a in the state s. Similarly, Ra
ss0 D EfrtC1 j st D

s; at D a; stC1 D s0g is the expected value of the reward to obtain for reaching the
state s0 after applying the action a in the state s.

Bellman equation expresses a relation between the value of a state and the value
of the successor states, weighing every possible future reward with the likelihood of
obtaining it, considering the discount factor.

18.3.5 Temporal Difference Learning

Temporal difference (TD) (Fama 1965) is a combination of Monte Carlo and
dynamic programming ideas.

TD and Monte Carlo have in common the use of experience to adjust its esti-
mation of state values V . Monte Carlo methods wait to know the reward following
the visit to a state, to update the value V.st/ using this return as an objective value
of V.st/. An example of a Monte Carlo method is V.st/  V.st/ C ˛ŒRt � V.st/�,
where Rt is the return obtained after time t and ˛ is a learning factor that weighs the
influence of a particular learning instance over the estimated state value V.st/. This
method is called constant-˛ MC.

Unlike Monte Carlo methods, which must wait until the end of an episode to
update V.st/ because the value of Rt is unknown till then, TD methods just have to
wait until the next time step. The TD method known as TD(0) updates the value
V.st/ according to the following equation:

V.st/ V.st/C ˛ŒrtC1 C �V.stC1/� V.st/� (18.6)

As can be observed, TD uses rtC1C�V.stC1/ as an alternative of the Monte Carlo
method objective Rt, based on the following deductive logic:

V�.s/ D E�fRt j st D sg

D E�

( 1X

kD0
� krtCkC1 j st D s

)

D E�

(
rtC1 C �

1X

kD0
� krtCkC2 j st D s

)

D E�frtC1 C �V�.stC1/ j st D sg (18.7)

As V�.stC1/ is not known at time t, TD uses its current estimation Vt.stC1/
instead of it.

So, TD methods combine the sample-based learning of Monte Carlo methods
with the iterative logic of dynamic programming, which has the advantage versus
Monte Carlo methods of not requiring waiting until a terminal state to learn, and
versus dynamic programming of not requiring a model of the environment.
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18.3.6 Q-Learning

The Q-learning algorithm (Watkins 1989) is a control algorithm based on TD
learning. Instead of estimating every state value, this algorithm estimates every
state-action pair value. State-action pair values are updated according to the
following equation:

Q.st; at/ Q.st; at/C ˛
�
rtC1 C � max

a2A.stC1/
Q.stC1; a/� Q.st; at/

�
(18.8)

The Q-learning algorithm pseudocode is shown below:

Algorithm 1 Q-learning algorithm pseudocode
Initialize Q.s; a/ arbitrarily
for each episode do

Initialize s
repeat

Take action a 2 A.s/ based on Q.a; s/ values (e.g., �-greedy)
Observe r and s0

Q.s; a/ Q.s; a/C ˛ 
rC � maxa0

2A.s0/ Q.s0; a0/� Q.s; a/
�

s s0

until s is terminal
end for

This algorithm converges to optimal policy and optimal state-action pair values
insofar as every state-action pair is evaluated infinite times and that the policy
converges to the greedy policy (eliminating exploration).

18.4 Q-Learning for Investment Decisions

18.4.1 Introduction

The portfolio selection problem can be divided into several subproblems.
Some are:

1. Determining the expected return of a particular asset
2. Determining the risk associated with a particular asset
3. Determining the best portfolio composition in order to maximize the expected

return and minimize the risk

Each subproblem mentioned above can imply a lot of work given the complexity
of them. The scope of this work is a mix of subproblems 1 and 2, looking to develop
a system capable of deciding if it is convenient or not to invest in a particular
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asset. While this approach differs from subproblems 1 and 2 in that the system
does not return an expected return neither a risk associated with the investment,
these elements are implicitly considered by the system in order to determine the
investment convenience.

In addition to building a system capable to make good recommendations, the
learning capability of the system has a big emphasis in this work. It is pretended
to build an agent capable of learning from the results of its own recommendations,
improving in this way its future decisions.

In this sense, reinforcement learning, and particularly the Q-learning variant,
offers an appropriated theoretical framework for the treatment of this problem. Here
are some properties of this learning and decision-making mechanism that make it
appropriate to be applied in this context:

• It is suitable for stochastic problems
• It is suitable for non-episodic problems
• It is suitable for dynamic problems
• It is suitable for nonstationary problems
• It is possible to take decisions without prior knowledge
• Adaptation capability (continuous learning without between training and

execution)

The application of Q-learning for investment decisions implies decisions at three
levels: the generation of a model of the environment, determination of a learning
mechanism, and determination of a decision-making mechanism.

18.4.2 Model of the Environment

Defining the model of the environment implies, basically, selecting the variables
that compose the state of the environment and the set of actions that the agent can
take in each state. The system of reward determination can also be considered part
of the model of the environment.

In this model it is considered that the agent acts daily, so the time is discrete and
every time step represents 1 day.

As the agent will make investment recommendations on a single asset, the state
variables are the result of different technical analyses applied to this asset. The
available data to define the state variables are those that summarize the activity of a
day: Open, Close, Low, High, and Volume.

A lot of technical analysis and even combination of these were analyzed, but
finally, after studying the individual behavior of each analysis and the correlation
between them, the following set of 18 variables were selected to compose the state
of the environment:

• Closing price and moving averages of closing price

– Closing price is higher or lower than previous closing price.
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– The 20-day moving average goes up or down from the previous day.
– The 50-day moving average goes up or down from the previous day.
– The 200-day moving average goes up or down from the previous day.

• Relative strength index (RSI)

– RSI value is in the interval Œ0; 30/, Œ30; 70�, or .70; 100�.
– RSI value goes up or down from the previous day.

• Moving average convergence/divergence (MACD)

– A range is determined from the minimum and maximum MACD values in
the last year. MACD value is positive and greater than 80 % of the defined
range, is positive and less than 80 % of the defined range, is negative and
greater than 20 % of the defined range, or is negative and less than 20 % of
the defined range. That is, from the range, MACD value is in the interval
Œ�1; range� 0:2/, Œrange� 0:2; 0/, Œ0; range� 0:8�, or Œrange� 0:8;1/.

– MACD value goes up or down from the previous day.
– MACD histogram value goes up or down from the previous day.
– MACD signal line value goes up or down from the previous day.

• Stochastic oscillator (K%D)

– Slow %K value is in the interval Œ0; 20/, Œ20; 50/, Œ50; 80�, or .80; 100�.
– Slow %K value goes up or down from the previous day.
– Slow %D value goes up or down from the previous day.

• Slopes of closing price moving averages (slopes are calculated as the difference
between current value and 10 days before value)

– The 10-day moving average of the slope of the 20-day moving average of
closing price goes up or down from the previous day.

– The 25-day moving average of the slope of the 50-day moving average of
closing price goes up or down from the previous day.

– The 100-day moving average of the slope of the 200-day moving average of
closing price goes up or down from the previous day.

• Open, Close, Low, High

– Close is higher or lower than Open.

• Volume

– Volume of transactions goes up or down from the previous day.

An additional variable is added to indicate if the agent has money invested on the
asset or it has not.

The actions that the agent can take are three:

• Buying: Implies investing all available money on the asset
• Selling: Implies selling the totality of the asset shares
• Do nothing: The agent maintains the number of shares of the previous step
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At each time step, the agent can choose an action depending on the investment
state. If the agent has the money invested on the asset, it can sell the shares it owns
or do nothing. If the agent has not invested the money, it can buy shares or do
nothing. So, at each time step, the agent can choose one of two possible actions:
sell; donothing or buy; donothing.

The reward system selected is based on the investment return. It is not considered
the money that the agent win or lose, but the return of the investment measured as
rett  .Closet=Closet�1/ � 1. The agent is rewarded based on this equation only
when it owns shares of the asset.

18.4.3 Learning Mechanism

The learning mechanism emerges from the subject of this work: Q-learning.
However, there are alternatives for Q-learning application. The classical variant
allows to work only with a discrete space of states and actions, while the problem
being solved is continuous in nature. While there is research on the adaptation of
Q-learning for the treatment of continuous problems (i.e., the use of neural networks
for estimating Q-values), it was understood in this work that, for a first approach to
this problem using Q-learning, it was more convenient to apply the classical variant
of this learning technique, which is based on the storage of the Q-value of each
state-action pair, considering that it has a stronger theoretical framework, taking
into account its limitations for continuity and state generalization treatment. So, the
learning of each state-action pair is based on the following equation:

Q.st; at/ Q.st; at/C ˛
�
rtC1 C � max

a2A.stC1/
Q.stC1; a/� Q.st; at/

�
(18.9)

where st and at are the state and the chosen action at time t, respectively, rtC1 is
the reward obtained at time t C 1, and stC1 and A.stC1/ are the state and the set of
possible actions to be taken at time t C 1, respectively, ˛ the learning factor and �
the discount factor.

18.4.4 Decision-Making Mechanism

There are several alternatives for decision-making, being the equilibrium between
exploitation and exploration a fundamental factor. It was selected in this work as an
adaptation of an algorithm based on Ant Colony Systems (Dorigo and Gambardella
1997), which are widely used to solve transportation problems and their learning
mechanism can be classified as reinforcement learning.

The adaptation made comes to solve the issue of negative reinforcements, which
are not considered on its original formulation. The adaptation consists of dividing
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the set of possible actions in two sets, one containing the actions with positive
Q-values and the other containing the actions with negative Q-values. Then, with
a probability p (a system parameter), a positive Q-value action is selected, and
with probability 1 � p, a negative Q-value action is selected. On each case, positive
or negative, the action is taken with likelihood proportional to its Q-value. Dorigo
and Gambardella (1997) also propose on their work a heuristic factor designed for
transportation problem. This factor is not considered in this work.

The pseudocode of the decision-making algorithm proposed on this work is
shown below:

Algorithm 2 Decision-making algorithm pseudocode proposed in this work
r D A random number between 0 and 1
if r � 1� � then

Select a 2 A.s/ such that Q.s; a/ D maxa0

2A.s/ Q.s; a0/

else
Select a 2 A.s/ as follows
AC.s/ D fa 2 A.s/ j Q.s; a/ � 0g (set of actions with positive Q-value)
A�.s/ D fa 2 A.s/ j Q.s; a/ < 0g (set of actions with negative Q-value)
if AC.s/ and A�.s/ are not empty then

With probability p select a 2 AC.s/ with probability Q.s; a/=
P

a0

2AC.s/ Q.s; a
0/

With probability 1� p select a 2 A�.s/ with probability 1
�Q.s;a/ =

P
a0

2A�.s/
1

�Q.s;a0/

else
if A�.s/ is empty then

Select a 2 AC.s/ with probability Q.s; a/=
P

a0

2AC.s/ Q.s; a
0/

else
Select a 2 A�.s/ with probability 1

�Q.s;a/ =
P

a0

2A�.s/
1

�Q.s;a0/

end if
end if

end if

As can be seen, parameters � and p determine the exploration level of the agent.

18.5 Experimental Results

The tests performed on the developed system had two main objectives:

1. Evaluating the learning capacity
2. Evaluating the system ability to take good decisions

For the first objective, the analysis is centered on the agent behavior while it is
acquiring more experience. To make this analysis, a graph of the average of rewards
obtained as a function of experience is used.

For the second objective, it is necessary to make a comparison against some
measure that belongs to the application domain. In this sense, a widely used measure
is the result of applying the B&H strategy. The graph used to make this analysis
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shows the economic profit made by the Q-learning agent (Q-agent) versus the
economic profit following the B&H strategy.

Some assumptions were made in order to simplify evaluation:

• Actions taken by the agent are always executed.
• Transaction costs were not considered.
• The asset price does not change while the action of buying and selling is being

executed.

Preliminary tests were performed in order to determine the values of the Q-agent
parameters. The results showed here are based on the following parameter values:
˛ D 0:1, � D 0:9, � D 0:5, and p D 0:9.

The historical data used correspond to the Dow Jones Industrial Index between
October 2, 1930 and December 12, 2010. The data was obtained from the Yahoo
Finance Database (2011).

The tests were performed on a Toshiba Satellite L305-SP6924R Laptop, with
an Intel Pentium Dual CPU T3400 2.16 GHz processor and 4 GB RAM, using
Windows Vista 64 bits as operative system.

18.5.1 First Evaluation: Simultaneous Execution
and Learning

In the first evaluation of the system, the agent began to take decisions from the first
data of the time series (October 2, 1930), learning dynamically from the results of
its own decisions. Therefore, the complete set of historical data was used in this
evaluation.

Figure 18.2 shows the average of rewards obtained as a function of the
experience.

As can be observed, the agent begins taking actions with negative reward, and as
it gains experience, the rewards increase. A very important observation is that the
average of rewards is positive once it stabilizes, so the agent achieves profit.

Figure 18.3 compares the accumulated return obtained by the Q-agent versus the
return obtained by the B&H strategy.

A first hypothesis about the difference between both mechanisms could be that
the Q-agent begins without knowledge, taking bad initial decisions and affecting
in this way the accumulated return. But nevertheless, if the graph is cautiously
observed, it can be seen that the accumulated returns do not show big differences
until some point after the middle of the considered period. At this point the average
of rewards received by the agent was already stable.

Analyzing more deeply the agent Q behavior, it was detected that the agent did
not repeat each state many times, affecting clearly its learning capacity.
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18.5.2 Second Evaluation: Training and Execution

As a way to solve the issue of the very little repeat level of states achieved
by the agent, the historical data series was divided in two subsets: training data
(10/02/1930–12/31/2004) and validation data (01/03/2005–12/31/2010).

This evaluation implies using the training set several times, with the goal of
achieving a greater level of state repeat, and thus being able to learn more. This
procedure introduces a risk of overtraining. That is why an independent set of data
(validation data) is used to evaluate the agent behavior.

The training was therefore divided in episodes. In each episode the agent goes
through the training set taking decisions and learning. The agent behavior was
analyzed as a function of the number of training episodes.

Figure 18.4 shows the average of rewards received by the agents as a function of
experience, for different numbers of training episodes.

As can be observed, as the number of training episodes increases, also the average
of rewards increases. This fact shows that the agent is learning.

Figure 18.5 shows the accumulated returns obtained by the agent at different
numbers of training episodes. These returns are compared against the B&H strategy.

As can be observed, the accumulated return obtained by the Q-agent fails to
overcome the accumulated return obtained by B&H, but it does as the number of
episodes increases. The behavior of the accumulated return as a function of the
number of episodes is another indicator that the agent achieves learning.
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Fig. 18.4 Average of rewards as a function of experience, according to the number of training
episodes
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After verifying that the agent learns to make better decisions as it trains many
times using the same set of data, the next step is to evaluate the system using the
validation data.

Figure 18.6 shows the average of rewards received by the agents as a function of
experience, for different numbers of training episodes using the validation data.

Figure 18.7 shows the accumulated returns obtained by the agent using the
validation data, according to the number of training episodes and their comparison
with B&H strategy.

From the observation of the last two graphs, it can be deduced that the behavior
achieved with the training data is not achieved over the validation data. Unlike what
happens with the training data, here the average of returns does not necessarily
improve as the number of training episodes increases. The same behavior can be
observed in relation with accumulated return.

A deeper analysis about the agent behavior showed that the most states reached
by the agent during the evaluation phase were unknown to the agent (were never
reached in the training phase), so the agent is making decisions without knowledge.
This explains the excellent behavior achieved over the training data and the average
performance obtained over the validation data.

The explanation about the unknown states is on the lack of generalization of the
Q-learning algorithm used.
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18.6 Conclusions and Further Research

It was built as a learning and decision-making system based on Q-learning. This
system was applied in an investment recommendation context using a discrete
model. It was empirically shown that the agent achieves learning when it is applied
with models that contain enough information of the environment.
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However, it was not possible to generalize the learning achieved by the agent to
future situations. According to the authors of this work, this may be due to several
reasons:

1. It was not possible to generate a discrete model of the environment generic
enough (composed for a little number of variables) to represent the information
needed to make a forecast. In the experiments made, many models were tested.
The bigger ones (many variables) did not allow generalization, while the small
ones (a few variables) were not representative of the domain. The existence of a
discrete model that allows the system to learn and generalize between states is a
possibility, but it could not be generated in the context of this work.

2. The Q-learning algorithm used in this work is based on discrete models, storing
the Q-values associated with every state-action pair in a lookup table. This
implementation does not allow generalizing between similar states. This is,
probably, the biggest limitation of this learning mechanism and, according to the
authors of this work, the main reason for the difference of the agent behavior
in training and validation phases. There are studies on the incorporation of
generalization to the reinforcement learning mechanism (Bertsekas and Yu 2012;
Maei et al. 2010; Precup et al. 2000; Rafols et al. 2005; Sutton 1999a,b; Sutton
et al. 2000, 2009a,b; Van Hasselt 2012; Xu et al. 2014), which were not part
of the scope of this work, but clearly indicate a line of future work. It was
understood that for the first approach on the application of Q-learning to the
investment decision problem, it was more convenient to use the tabular version
of this mechanism, due to the bigger level of research about it, even knowing its
limitations.

3. It is possible that the future behavior of asset price could not be predicted based
on historical information. This is one of the theories about market prediction
[efficient market hypothesis Fama (1965, 1970)].

From this work some lines of future work are proposed:

1. Model of the environment: The search for a model that represents enough
information to determine the future market behavior, based on discrete or
continuous variables, can be considered a line of further research. The sources
of information are many, like technical analysis, fundamental analysis, expert
opinion, financial news, etc.

2. Q-learning generalization: As was already mentioned, the tabular Q-learning
algorithm does not allow generalizing between similar states. This constraint
could be eliminated if another mechanism of Q-values estimation is considered.
One possible solution is using function approximation techniques. In this way,
instead of using Q-values stored in a table, there are estimated values based on a
function built by approximation from a set of samples. These samples could be
the own experience of agent. An interesting example of function approximation
technique that could be applied to add generalization to Q-learning is neural
networks. Some examples in this line of research can be found in Bertsekas
and Yu (2012), Maei et al. (2010), Precup et al. (2000), Rafols et al. (2005),
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Sutton (1999a), Sutton (1999b), Sutton et al. (2000), Sutton et al. (2009a), Sutton
et al. (2009b), Van Hasselt (2012), and Xu et al. (2014). This line of future work
includes the treatment of higher-dimensional models of the environment.

3. Portfolio selection strategies: This work was limited to the study of the appli-
cation of continuous learning and decision-making mechanisms for investment
recommendations on a single asset. How to insert a system like this into a
portfolio selection strategy, considering recommendations on many assets as well
as risk measures, can be also considered a particular line of further research.

4. Application of reinforcement learning to other financial problems: Rein-
forcement learning, and particularly Q-learning, offers a very interesting theo-
retical framework for the treatment of decision problems oriented to short-term
results. Financial problems, in general, have this characteristic. But nevertheless,
it was not detected in the context of this work, the existence of an important
number of works about the application of this mechanism in this field.

5. Techniques to avoid overfitting: When the same set of training data is used to
train the system, like it was made in the present work, overfitting is a logical
consequence. The use of techniques to avoid overfitting can give to this work a
more complete coverage. Some ideas can be found in Whiteson et al. (2011).
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Chapter 19
Relative Entropy Criterion and CAPM-Like
Pricing

Stylianos Z. Xanthopoulos

Abstract The minimal relative entropy criterion for the selection of an equivalent
martingale measure in an incomplete market seems to still hold some mystique
in its financial interpretation. In this paper we work toward this interpretation
by suggesting and exploring the idea of relating a martingale measure selection
criterion to a CAPM-like pricing scheme. We examine this idea in the case of
the minimal relative entropy criterion and we present some preliminary results.
We work within a one-period financial market and show that the minimal relative
entropy pricing criterion is equivalent to some CAPM-like pricing scheme where
the classical beta coefficient formula has been replaced by some “entropic beta”
and the market portfolio by some “appropriate” reference portfolio. Furthermore,
we show that if the assets involved have returns that are jointly normal, then this
“entropic beta” formula coincides with the classical beta coefficient. Additionally
and for comparison reasons, we briefly illustrate that if our criterion for the choice
of the martingale measure was the minimization of the variance of the Radon–
Nikodym derivative, then the resulting martingale pricing and the pricing implied
by the classical CAPM scheme would be the same.

Keywords Minimal relative entropy criterion • Equivalent martingale measure •
Incomplete market • CAPM

19.1 Introduction

It is well known that in an incomplete market, not all contingent claims are
replicable as portfolios of traded assets. Therefore, a deeper understanding of
how the market prices such claims presents extra challenges. A large number of
studies in the area of incomplete markets have already shed some light to a better
understanding of the functioning of financial markets [see, e.g., Magill and Quinzii
(2002), Delbaen and Schachermayer (2006) for relevant overviews]; however a
complete theory on the price selection procedure in incomplete markets is still
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missing. It is well known, for example, that in an incomplete market, there exists an
infinity of pricing kernels, leading to a whole interval of “legitimate” non-arbitrage
prices for a non-replicable contingent claim. The difficulty to determine one single
price stems from the fact that, for a non-replicable claim, one cannot hedge away all
of its risk just by trading in the market’s assets. Although there is a vast literature
focusing on the determination of the upper and lower hedging prices (see, e.g., Davis
et al. 2001, Delbaen and Schachermayer 1994, Sircar and Zariphopoulou 2004), it
seems that additional criteria are needed if one is to figure out one single price,
out of the whole band of the non-arbitrage prices, at which the contingent claim is
eventually traded. This in a sense amounts to introducing criteria for the selection of
some “appropriate” pricing kernel. One of the most popular and interesting of such
criteria, which has been proposed in the literature, amounts to the minimization of
an entropy measure and was introduced by Frittelli (1995) and further elaborated in
Frittelli (2000).

Typically, a pricing kernel can be interpreted as a probability measure—usually
called an “Arrow–Debreu” or equivalent martingale measure—under which the
price of a European claim is the expectation of its discounted payoff (equivalently, a
measure under which the discounted, under the risk-free rate, price process of each
traded asset is a martingale). According to the minimal relative entropy criterion,
the pricing kernel that is selected is the one corresponding to the Arrow–Debreu
measure Q that is “closer” to the “true” statistical measure P which governs the
possible states of the world. In other words, it is this martingale measure Q that
minimizes a Kullback–Leibler-like entropy measure I.Q; P/. This suggestion has
been supported by utility pricing arguments which are related with the relative
entropy minimization problem via duality [see Frittelli (1995), Frittelli (2000),
Bellini and Frittelli (2002), Föllmer and Schied (2011), and references therein].

Despite the popularity of the minimal relative entropy criterion and its connection
to utility pricing via duality, it seems that there is still some mystique in its
financial interpretation. In this work we will suggest a research path idea toward this
interpretation, and we will present some preliminary results by attempting to relate
the minimal relative entropy pricing criterion to a CAPM-like pricing scheme.

One should recall that Black and Scholes, in their seminal paper (Black and
Scholes 1973) on option pricing, explain how CAPM could be used as an alternative
way to derive their famous differential equation. In fact they claim that this
derivation “offers more understanding on the way in which one can discount the
value of an option to the present, using a discount rate that depends on both time
and the price of the stock.” Furthermore they stress the fact that “CAPM provides a
general method for discounting under uncertainty.”

The capital asset pricing model (CAPM), introduced independently by Treynor
(1961b), Sharpe (1964), Lintner (1965a,b) and Mossin (1966), relates the expected
return with the risk of an asset when the market is at an equilibrium and was based
on the pathbreaking work of Markowitz on portfolio theory (Markowitz 1952).

While the notion of expected return is unambiguous, the concept of risk is rather
subtle, and a lot of research has been devoted in order to better understand its nature
and explore the ways to define it and measure it. The traditionality of standard
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deviation as the “appropriate” measure of risk gave its place to wider families of
risk measures, like coherent, convex, and spectral risk measures [Heath et al. (1999),
Artzner et al. (2002), Föllmer and Schied (2002), Acerbi (2002), etc.]. These in
turn allowed for alternative considerations of the Markowitz portfolio theory and
furthermore alternative CAPM considerations. For example, Kadan et al. (2014)
generalize the concept of systemic risk to a broad class of risk measures, offering
thus a whole spectrum of “alternative” CAPMs and extending the traditional beta to
capture multiple dimensions of risk.

In this paper we will work within a one-period financial market, and we will show
that the minimal relative entropy pricing criterion is equivalent to some CAPM-like
pricing scheme. In particular, we will exhibit an “entropic beta” coefficient ˇ� and
an appropriate reference portfolio G so that the pricing of an asset F via the formula
E.RF/ � r D ˇ�.E.RG/ � r/ and the pricing of F as discounted expectation of
its final value, under the minimal relative entropy martingale measure, lead to the
same price. Furthermore, we will show that if the assets involved have returns that
are jointly normal, then this “entropic beta” coefficient formula coincides with the
classical beta coefficient. These results are presented in Sect. 19.3. With regard to
the rest of the paper, in Sect. 19.2 we present some necessary preliminaries and we
fix notation, while in Sect. 19.4, we illustrate even further, via an example, that this
idea of relating a criterion for the choice of a martingale measure to some CAPM-
like pricing scheme can work more generally. More precisely, we show that if our
criterion for the choice of the martingale measure was the minimization of the
variance of the Radon–Nikodym derivative, then the resulting martingale pricing
would be the same as the one implied by the classical CAPM pricing scheme.

19.2 Preliminaries and Notation

We consider a one-period financial market with a finite number of final states
(although the finite states consideration can be rather easily relaxed under the
appropriate technical considerations).

There are two trading days t0 and T and n possible states of the world at time T,
labeled !1; : : : ; !n. The uncertainty about the state of the world that will be realized
at time T is described by some probability measure P D .p1; : : : ; pn/ which assigns
positive probability pi D P.!i/ to each !i, i D 1; : : : ; n.

We assume that there is a riskless asset, bearing a risk-free interest rate r, so that
an investment of 1 unit at time t0 is worth 1C r at time T. Furthermore, we assume
the existence of m risky traded assets S.1/; : : : ; S.m/. We use the following notation.

For each i D 1; : : : ; n and j D 1; : : : ; m we set:

S.j/0 : the price of asset S.j/ at time t0.

S.j/i : the price of asset S.j/ at time T, at state ! i.

S0 WD .S.1/0 ; : : : ; S.m/0 /T

S.j/ WD .S.j/1 ; : : : ; S.j/n /
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Si WD .S.1/i ; : : : ; S
.m/
i /T

ST WD

0

B@
S.1/

:::

S.m/

1

CA D

0

B@
S.1/1 : : : S.1/n
:::

:::
:::

S.m/1 : : : S.m/n

1

CA

R.j/i WD S
.j/
i

S
.j/
0

� 1
R0 WD .R.1/0 ; : : : ; R.m/0 /T

R.j/ WD .R.j/1 ; : : : ; R.j/n /
Ri WD .R.1/i ; : : : ; R

.m/
i /T

RT WD

0
B@
R.1/

:::

R.m/

1
CA D

0
B@
R.1/1 : : : R.1/n
:::

:::
:::

R.m/1 : : : R.m/n

1
CA

E.ST/ WD .EP.S.1//; : : : ; EP.S.m///T

E.RT/ WD .EP.R.1//; : : : ; EP.R.m///T

Cov.X;Y/ WD CovP.X;Y/; Var.X/ WD VarP.X/

In the sequel we will also consider a contingent claim denoted by F that at time
T takes values FT D .F1; : : : ; Fn/; we will write F0 to denote its value at time t0
and RF WD FT

F0
� 1 to denote its return during the period.

A probability measure Q on ˝ is called martingale measure for this market, if
and only if EQ.ST/ D S0.1Cr/. We denote by M the set of all martingale measures
for this market. A martingale measure Q is called equivalent martingale measure
with regard to the measure P if moreover the zero probability events coincide under
both Q and P. We denote by Me the set of all equivalent martingale measures
for this market. The existence of equivalent martingale measures is equivalent to
nonexistence of arbitrage opportunities in the market.

19.3 The Minimal Relative Entropy Criterion

Let Q; P be two probability measures. The relative entropy of Q with respect to P
is defined as

I.Q; P/ D EP.
dQ

dP
ln

dQ

dP
/ I Q << PC1 I otherwise

where dQ
dP denotes the Radon–Nikodym derivative of Q with regard to P.

Let Q D .q1; : : : ; qn/ and P D .p1; : : : ; pn/ > 0 be probability measures
on ˝ D f!1; : : : ; !ng. In this case the Radon–Nikodym derivative is just dQ

dP D
. qipi
/iD1;::;n, and so the relative entropy of Q with respect to P is defined as

I.Q; P/ D
nX

iD1
qi ln

�
qi
pi

�
; with 0 ln 0 WD 0 (19.1)
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The minimal relative entropy criterion, as suggested by Frittelli (1995), amounts
to solving the following optimization problem:

min
Q2M I.Q; P/ (19.2)

or equivalently:

min
q1; :::; qn

nX

iD1
qi ln

�
qi
pi

�
(19.3)

under the restrictions

q1; : : : ; qn � 0Pn
iD1 qi D 1Pn
iD1 qiS

.j/
i D S.j/0 .1C r/ 8j D 1; : : : ; m

It can then be easily proved [see Frittelli (1995) for the details of the proof] that
the solution to the above problem (19.3) is given by

qi D pi exp.��1R.1/i � : : : � �mR.m/i /
Pn

jD1 pj exp.��1R.1/j � : : : � �mR.m/j /
(19.4)

where � D .�1; : : : ; �m/ is the unique solution of the system of equations:

r
nX

iD1
pi exp

0

@�
mX

jD1
� jR

.j/
i

1

A D
nX

iD1
piR

.h/
i exp

0

@�
mX

jD1
� jR

.j/
i

1

A

for all h D 1; : : : ; m

It is also clear that the so-defined martingale measure Q D .q1; : : : ; qn/ is in fact
an equivalent martingale measure.

It will be convenient to write the expressions (19.4) and (19.5) in a more compact
form. For this we set 	 D Pm

jD1 � j and we consider the portfolio G consisting
of positions on the traded assets S.1/; : : : ; S.m/ with respective weights g1; : : : ; gm
where gj D � j

	
. Let RG denote the return of this portfolio and RG

i the return of

the portfolio at state i. Then RG D Pm
jD1 gjR.j/ and RG

i D
Pm

jD1 gjR
.j/
i and the

relations (19.4) and (19.5) can be written as follows:

qi D pi exp.�	 RG
i /

E.exp.�	 RG//
(19.6)

where 	; g1; : : : ; gm is the unique solution of the system:

rE.exp.�	 RG// D E.R.h/ exp.�	 RG//I h D 1; : : : ; m (19.7)
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with
Pm

jD1 gj D 1.
Now it is a straightforward exercise to show that this last expression (19.7) is

equivalent to

r � E.R.h// D Cov.R.h/; exp.�	 RG//

E.exp.�	 RG//
8h D 1; : : : ;m (19.8)

Thus we can give the following definition.

Definition 1. The minimal relative entropy martingale measure Q D .q1; : : : ; qn/
is given by the relation:

qi
pi
D exp.�	 RG

i /

E.exp.�	 RG//

where RG D Pm
jD1 gjR.j/ and .	; g1; : : : ; gm/ is the unique solution of the

martingale equations system:

r � E.R.h// D Cov.R.h/; exp.�	 RG//

E.exp.�	 RG//
I h D 1; : : : ;m

mX

jD1
gj D 1

Remark 1. It is just a matter of calculus of variation technicalities to show that in
the case of continuous probability measures, the previous Definition 1 still works
but with the first relation written in the appropriate form:

dQ

dP
D exp.�	 RG/

E.exp.�	 RG//

where dQ
dP denotes the Radon–Nikodym derivative [see also Frittelli (2000)].

Remark 2. Let R˘ D Pm
jD1 wjR.j/ denote the return of a portfolio consisting of

positions on the risky assets S.1/; : : : ; S.m/ with respective weights w1; : : : ; wm

(i.e., w1 C : : :C wm D 1). Then it is clear that

r � E.R˘/ D Cov.R˘; exp.�	 RG//

E.exp.�	 RG//
(19.9)

Remark 3. If we had further assumed that R˘ and �	 RG are jointly normal, then
the previous Remark 2 combined with Stein’s Lemma would imply that
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	 D E.R˘/ � r

Cov.R˘; RG/
(19.10)

In particular, if the portfolio ˘ is taken to be G itself, then the previous equation
implies that

	 D E.RG/� r

Var.RG/

which is equivalent to

	 stdv.RG/ D E.RG/ � r

stdv.RG/
(19.11)

This last equation shows that 	 measures the Sharpe ratio of this particular portfolio
G in standard deviation units.

Definition 2. Let ˘ be some portfolio consisting of positions on the risky traded
assets S.1/; : : : ; S.m/ and let F be a contingent claim in this market. The entropic
beta of F with respect to ˘ is defined as

ˇ�.F;˘/ WD
Cov.RF; exp.�	 RG//

Cov.R˘; exp.�	 RG//
(19.12)

Remark 4. Suppose RF and �	 RG are jointly normal and that R˘ and �	 RG are
jointly normal as well. Then Stein’s lemma would imply that

ˇ�.F;˘/ WD
Cov.RF; RG/

Cov.R˘; RG/

In particular

ˇ�.F;G/ WD
Cov.RF; RG/

Var.RG/
(19.13)

which coincides with the familiar formula for beta in the classical CAPM.

Now we are in the position to show in the next proposition that, independently
of the distribution of the various asset returns, the minimal relative entropy pricing
criterion is equivalent to a CAPM-like pricing scheme. More precisely, the price
obtained when using the minimal relative entropy martingale criterion is the same
as the price obtained when using a CAPM-like pricing scheme, where the ˇ
coefficient of the classical CAPM has been replaced by a generalized ˇ� coefficient.
Furthermore, the corollary that follows shows that by imposing an additional
condition of joint normality of returns, the minimal relative entropy pricing is
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equivalent to the classical CAPM and highlights the role of the portfolio G, which
now plays a role similar to that of the market portfolio.

Proposition 1. Let ˘ be a portfolio consisting of positions on S.1/; : : : ; S.m/ and
let F be a contingent claim. Let RF D FT

F0
� 1 be the return of F. Consider the

equation:

E.RF/ � r D ˇ�.F;˘/.E.R˘/ � r/ (19.14)

where

ˇ�.F;˘/ D
Cov.RF; exp.�	 RG//

Cov.R˘; exp.�	 RG//
(19.15)

with RG DPm
jD1 gjR.j/ and 	; g1; : : : ; gm/ the unique solution of the system

r � E.R.h// D Cov.R.h/; exp.�	 RG//

E.exp.�	 RG//
I h D 1; : : : ;m

mX

jD1
gj D 1

Then F0 satisfies Eq. (19.14) if and only if .1 C r/F0 D EQ.FT/ where Q is the
minimal entropy martingale measure.

Proof. Equation (19.14) is equivalent to

.RF/� r D Cov.RF; exp.�	 RG//

Cov.R˘; exp.�	 RG//
.E.R˘/� r/

,.19.9/ E.R
F/ � r D Cov.RF; exp.�	 RG//

.r � E.R˘//E.exp.�	 RG//
.E.R˘/ � r/

, E.RF/E.exp.�	 RG//C Cov.RF; exp.�	 RG// D rE.exp.�	 RG//

, E.RF exp.�	 RG// D rE.exp.�	 RG//,

, E

��
FT

F0
� 1

�
exp.�	 RG/

�
D rE.exp.�	 RG//

, 1

F0
E.FT exp.�	 RG// D .1C r/E.exp.�	 RG//

, .1C r/F0 D E.FT exp.�	 RG//

E.exp.�	 RG//

, .1C r/F0 D
EQ.

dP
dQFT exp.�	 RG//

E.exp.�	 RG//
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which by Remark 1 is equivalent to

.1C r/F0 D
EQ.

E.exp.�	 RG//

exp.�	 RG/
FT exp.�	 RG//

E.exp.�	 RG//
, .1C r/F0 D EQ.FT/

where Q such that dQ
dP D exp.�	 RG/

E.exp.�	 RG//
is the minimal relative entropy martingale

measure according to Definition 1 and Remark 1. ut
Corollary 1. Suppose that RF and �	 RG are jointly normal. Then the minimal
relative entropy pricing is equivalent to CAPM pricing, where the role of the market
portfolio is played by portfolio G.

Proof. Remark 4 implies that Eqs. (19.14) and (19.15) of the previous proposition
become

E.RF/ � r D ˇ�.F;G/.E.RG/� r/

and

ˇ�.F;G/ WD
Cov.RF; RG/

Var.RG/
;

respectively, and the result follows. ut

19.4 The Minimal Variance Criterion

In this section we will provide an example illustrating that the idea presented in
the previous section works effectively for other pricing criteria as well. In Frittelli
(1995), Frittelli compares the minimal relative entropy criterion with a method that
was initially proposed by Follmer and Sondermann (1986) and which amounts to
choosing the signed martingale measure that minimizes the variance of the Radon–
Nikodym derivative, i.e., to solve the problem:

min
Q2M Var.dQ=dP/ (19.16)

For simplicity of exposition, we will consider that our market has only one risky
asset (therefore the market portfolio coincides with this asset). In this market
example, the solution to Problem 19.16 turns out to be

qi D pi

�
1C .E.ST/ � Si/.E.ST/ � S0.1C r//

Var.ST/

�
(19.17)
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which we call the minimal variance martingale measure. It has to be noted that this is
not necessarily an equivalent martingale measure (see Frittelli 1995). We will show
here that the employment of the minimal variance criterion, as a pricing method, is
equivalent to the standard CAPM pricing formula.

Proposition 2. Consider the equation:

E.RF/� r D ˇ.E.RS/ � r/ (19.18)

where RF D FT=F0 � 1, RS D ST=S0 � 1 and

ˇ D Cov.RF; RS/

Var.RS/

Then F0 satisfies (19.18) if and only if F0 D EQ.FT=.1Cr//, where Q is the minimal
variance martingale measure

Proof.

E.RF/� r D Cov.RF; RS/

Var.RS/
.E.RS/� r/

, E.FT/ � .1C r/F0 D Cov.FT ; ST /

Var.ST /
.E.ST/� .1C r/S0/

, .1C r/F0 D E.FT/C .E.FT/E.ST/ � E.FTST //.E.ST/� .1C r/S0/

Var.ST /

, .1C r/F0 D
X

piFi C .
P

piFiE.ST /�P piFiSi/.E.ST/ � .1C r/S0/

Var.ST /

, .1C r/F0 D
X

Fipi.1C .E.ST /� Si/.E.ST/� S0.1C r//

Var.ST /
/

, .1C r/F0
X

Fiqi , F0 D EQ.FT=.1C r// ut
This example illustrates also that if a martingale selection criterion is problematic

[as is known to be the case for the minimum variance criterion where arbitrage
prices may be produced, (see Frittelli 1995)], then the same may be true for the
corresponding equivalent equilibrium model (the CAPM in our case) and vice versa.
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