
Integrated Metrics Handling in Open Source
Software Quality Management Platforms

Julio Escribano-Barreno, Javier García-Muñoz and Marisol García-Valls

Abstract Software quality is of vital importance in software development projects. It
influences every aspect of the system such as the functionality, reliability, availability,
maintainability, and safety. In critical software projects, quality assurance has to be
considered at each level of the initial concept to the software engineering process:
from specification to coding and integration. At the lowest coding level, there are
several tools that enable the monitoring and control of software quality. One of
them is SonarQube, an open source quality management platform, used to analyse
and measure technical quality. I can be extended through plugins for customization
and integration with other tools. The specific conception and development of these
plugins is a significant design effort that ensures the correct handling of the different
phases involved in the software quality process. We present an initial design and
development of an integrated analyser component for extending the functionality of
the open source framework for software quality management.

Keywords Software quality ·Monitoring of verification · Software design
1 Introduction

Every software development process needs information about almost every aspect
of the software development phase, like achievement of objectives, monitoring and
control of activities, project costs and technical quality.Metrics are of key importance
in all engineering disciplines and, in particular, for software development (see [13]),

J. Escribano-Barreno
Indra, Alcobendas, Spain
e-mail: jebarreno@indra.es

J. Escribano-Barreno · J. García-Muñoz · M. García-Valls(B)

Universidad Carlos III de Madrid, Leganés, Spain
e-mail: {jgmunoz,mvalls}@it.uc3m.es

© Springer International Publishing Switzerland 2016
S. Latifi (ed.), Information Technology New Generations,
Advances in Intelligent Systems and Computing 448,
DOI: 10.1007/978-3-319-32467-8_45

509



510 J. Escribano-Barreno et al.

providing a vital insight into the development process to assess maintainability,
reliability and even development progress. Metrics provide reproducible indicators
useful to estimate the quality, performance, management, and cost within a project.
Theybring in benefits like the possibility of analysing the data to understand, improve,
and predict future behaviours for undertaking corrective actions on time.

Metrics has been studied and developed throughyears in order to improve software
and systems development. They have increased their relevance due to their applied
use and the contrasted benefits to define baseline quality indicators for serveral pur-
poses. For example, the SEI Capability Mature Model Integration (CMMI) [9] for
development, relies on the usage of metrics (see [17]), and is used for evaluating the
maturity process of the organizations.

The collection and processing of the metrics can involve a significant human
effort, that highlights the need of automating the specification of metrics and subse-
quent data collection that must later be processed. By using automatic analysis tools
(such as [4] for static code analysis), the metrics collection effort is significantly
reduced. One of the platofms that supports this process is Few open source platforms
support the automatic metrics management for this process. Among them, the most
popular quality management platform is SonarQube [10][43]. It enables continuous
inspection and it supports a number of languages, including Java, C, C++, C#, PHP,
and JavaScript. SonarQube provides some basic metrics like complexity, duplicated
code detection, or lines of code counting, among others. However, this is a very
generic functionality that requires to be enhanced for software development projects
of a certain complexity. Highly complex projects such as critical software projects
require that these basic metrics be enhanced to provide the information required by
each particular project, as each project may have to adjust to specific normd. It is then
useful and needed to take information from other sources, like other external tools,
and stablish the adequate methodology in order to enhance the functional power of
this framework in order to provide the required information with a suitable design
that makes it easily customizable.

In this paper, we present an approach to enrich the metrics management and
presentation to verification engineers based on the SonarQube framework. This has
been performed by designing an integrated metrics analyser component that provides
the enhanced functionality for the platform in order to integrate its own analysis
results with the ones from external analysis tools in a single presentation space. The
design is a modular one that allows to easily customize the integration of any external
code analysis tool. The result is the achievement of a more complete set of metrics
that can be managed in the projects to control and monitor the software development
process according to the needs of each specific project. The information from the
analysis of th project code is then centralized in the platform that is, at the same time,
a collaborative environment that allows the remote work of teams of verification
engineers. We validate the component by implementing the specific integration with
external information sources that provide static analysis metrics (such as Understand
[53]); this external tool provides metrics and rule-checks against both, custom and
published standards. In our work, the rules and metrics can also be extended to



Integrated Metrics Handling in Open Source Software Quality Management Platforms 511

complement the provided ones. We exemplify technical metrics, related to software
quality through actual static analyses on a real critical software project.

The paper is structured as follows. Section 1 includes a brief introduction and
motivation for this work. Section 2 describes the related work in what concerns
norms and practices related to technical quality and metrics. Section 3 describes
the baseline framework offered by SonarQube. Section 4 presents our contribution
in the form of a new functionality for the analysis of metrics from different tools,
presenting the design details on the enabling plugin for this functionality. Section 5
validates the design through a concrete implementation for an external tool and we
show its usage in the context of a real-world software project. Section 6 concludes
this paper and presents the continuation work.

2 Background and Related Work

This section describes selected work most related to the objective of the present
contribution, mainly concerning the existing norms and regulations for critical soft-
ware development, the engineering processes that describe the steps to the objective
software development, and current tools for software code analysis.

2.1 Norms and Software Quality Tools and Frameworks

Technical metrics are collected through static analysis techniques. Software static
analysis is required in several norms related to critical systems, some of which are
described here. The norms selected here require the use of static analysis techniques
to comply with their objectives. For example, DO-178C [46] and DO-278A [47]
introduces the use of metrics to be specified in the Software Quality Assurance Plan.
The metrics collection and analysis, additionally supports the compliance of some
norms, like North Atlantic Treaty Organization (NATO) AQAP-2210 [2], and its
spanish version PECAL-2210 [39].

DO-178C is the norm forSoftware Considerations in Airborne Systems and Equip-
ment Certification, [46]. It is one of the most accepted international standards. In-
cludes additional objectives and it is complemented with the supplements [49], [50],
[51] and [52]. The previous version of this norm is DO-178B [48]. DO-278A is the
norm for Guidelines for Communication, Navigation, Surveillance and Air Traffic
Management [47]. It provides guidelines for non-airborne Communication, Naviga-
tion, Surveillance and Air Traffic Management (CNS/ATM) systems, including the
guidelines for the software assurance activities to be conducted with non-airborne
CNS/ATM systems. IEC 61508 is the norm for Functional safety of electrical/elec-
tronic/programmable electronic safety-related systems [31]. It is the standard for
industry automation, intended to be a safety standard applicable to all kinds of indus-
try that includes the complete safety life cycle. Used as basis for other documents, as



512 J. Escribano-Barreno et al.

railway (CENELEC 50128 [34]), automotive industries (ISO 26262 [31]) or nuclear
power plants (IEC 61513 [32]).

The metrics and quality information with respect to a complex software project
may easily require different analysis techniques that generate results and data from
different sources, possibly also collecting data in different ways. In most projects,
more than purely the source code is analyzed, e.g. dependencies among packages
such as [14]. Information about the software is collected in different ways by means
of different tools such as the ones presented as follows. Understand [53] and LDRA
[37] are commercial tools for static code analysis, supporting multi-language. PC-
Lint [41] is also a commercial solution for static code analysis supporting C and C++
languages. Splint [44] is a GNU licensed tool that supports static code analysis for
C programs. PMD [42] supports static code analyser for Java, JavaScript, XML and
XSL. SonarQube [10, 43] is an open source qualitymanagement platform, developed
under LGPL v3 license.

As not a single tool is capable of providing all required data, it is typically required
to set up a tool chain for code analysis setting also the procedures and principles for
information collection and interpretation. in the form of a collaborative environment.
As a result, the SonarQube platform has appeared as a platform to support advanced
analysis; however, SonarQube appears in a similar way to a blank sheet of paper,
so that the required techniques and methods to implement the needed functionality
have to be designed and integrated in it.

The tools mentioned in section 2 are used to statically analyse the code quality.
However, the metrics that they yield do not meet all the requirements across different
projects. In each project, different metrics can be required, or different implemen-
tation languages can be used that vary from a project to another. This situation can
make that one tool that is suitable for a project is not valid to other one.

For example, SonarQube is a quality management platform that can reflect and
present the different quality aspects of several projects, coded in a number of different
languages. This is carried out by the design and implementation of modules that can
extend the functionality of the platform. Apart from the very basic set of metrics and
data that SonarQube provides for any given project, a mechanism to customize it
for particular projects that have different information requirements is needed. This
characteristic can be complemented with the metrics available in other external code
analysers (such as Understand) to enrich and extend the capability of SonarQube.

One other missing element in the current status of SonarQube is that each user
needs to have the tool installed locally; as such, the run-time environment has little
orientation to be a collaborative environment that can simultaneously support their
access to several projects with a number of users.

We overcome these missing characteristics with the design and implementation
of enhancements to SonarQube to support the customizable integration with external
tools for code analysis. We design the required plugins to enrich the basic metrics
presentation functionality of the platform, combining them in an unique repository
that provides collaborative access to different (though shared) software projects.



Integrated Metrics Handling in Open Source Software Quality Management Platforms 513

2.2 Software Architectures in Critical Systems in Emerging
Domains

An essential element of critical systems is the software architecture as it directly
impacts the source code quality and the complexity of the final development. Criti-
cal software systems validation focuses, among other aspects, on temporal behavior
applying real-time techniques [1, 6–8, 15]. These differ to some extent in the thor-
ough application and verification of the temporal properties, rather providing quality
of service mechanisms that are embedded in the software logic. These mechanisms
allow dynamic execution preserving timely properties [11, 21–23, 25, 45]. Software
quality should account for the verification of the properties of distributed software
also related to newer domains as cloud [18], the characteristics of the middleware
are integrated in the model [19, 20]. Critical software systems only tolerate off-line
and design time verification; however newer domains such as cyber-physical sys-
tems require verification techniques to be applied on-line [5, 24]. For distributed
environments based on middleware such as [29, 30], on-line decision on correctness
of the system composition is applied (e.g. [26–28]). In such emerging domains, the
software quality frameworks will have to device new ways of considering properties
that will only emerge at execution time.

3 SonarQube Overview

SonarQube is a software quality management platform, multi-language, capable of
performing simple analysis over the source code. Basically, it provides information
about duplicated code, unit tests, coding standards, code coverage, code complexity,
comments, and software design and architecture. The functionality and capabilities
of SonarQube can be extended with new modules, namely plugins. This allows to
integrate support for additional programming languages, additional metrics, or the
integration with other tools that bring in new functionalities.

The underlying logic of SonarQube is based on a source code analyzer compo-
nent that performs basic analysis activities (such as counting lines of code) and an
application server that graphically displays the data that results from the analysis in
a browser front-end. The following elements are key to the internal function of the
SonarQube framework:

• Widgets are the components that configure the graphical display of data resulting
from the source code analysis, i.e., it enables the customization of the analysis
results presentation to the user. A widget supports the specification of the visual
format and display locations of the presented data. Each widget yields one of the
square boxes that are shown. Each box contains a number of data items whose
display location and characteristics is indicated in the widget code. For each new
analysed project, SonarQube creates a project dashboard for selecting, adding, or
removing the available widgets.



514 J. Escribano-Barreno et al.

• Sensors are components that access the specific source code to be checked and that
support the implementation of analysis functions over the source code to extract
the metrics.

• Decorators are the components that support the programming of additional pro-
cessing over the initialmetrics provided by sensors in order to derivemore complex
metrics.

The framework comprises a key component, Sonar Runner, that controls the se-
quence of steps to launch the source code analysis. In order to execute a SonarQube
analysis, it is needed to initially launch Sonar Runner that is determines the sequence
of invocations of the functions provided by the Sensors and Decorators. Once the
process is completed, the runner stores in a database all the collected data.

4 Metrics Integration in the Quality Framework

This section presents the design and implementation of the integrated metrics anal-
yser that provides the enhanced functionality for SonarQube to integrate its own
analysis results with the ones from external analysis tools in a single presentation
space. The enhancement has been done via a plugin that integrates the external data
and displays the integrated metrics in the project dashboard. The design is flexi-
ble and modular in order to support the integration of any external tool with minor
modifications.

4.1 Addition of Metrics

SonarQube provides basic analysis facilities, yielding very basic metrics over the
code. In software projects for critical systems, the specific standards that must be
applied require more complex metrics over the code. A few examples of these are:
complexity, nesting levels, function parameters, and other values derived from the
previous ones such as maximum, minimum and mean values for each of the previous
metrics. These are not provided by SonarQube. However, there are other specific
external tools that do provide a broad range of complex metrics.

With the enhancement of SonarQube quality management platform, users view
richer information over a software project code by using SonarQube as the single
front-end, presenting a number of metrics in the project dashboard, as an additional
widget.

Following, the structure of a sensor is provided. TheSensor interface is a tagging
components, i.e., a class extending this interface is automatically a sensor as it is
obligued to implement the analyse method to provide a customized functionality
for the sensor.



Integrated Metrics Handling in Open Source Software Quality Management Platforms 515

public interface Sensor extends BatchExtension , CheckProject {
void analyse(Project module, SensorContext context ) ;

}

The design of the integration plugin has to allocate modules to provide the logic
for: (i) storage of the analysis results from the external tool (the external analysis
data); (i i) use and extend a sensor template to locate and acces the external anal-
ysis data; (i i i) overwrite the analyse method to scan and collect the external
analysis data; and optionally (iv) design and implement a decorator that computes
additional metrics from the data collected by the sensor.

4.2 Software Design

The architecture of the analyzer software module is explained below, containing the
following clases:

• ExternalToolPlugin is the class containing the specification of the properties of
the analyser module. An arbitrary number of properties can be specified. For the
integrated metrics analyser, sonar.externaltool.metrics is the basic
property to specify the path to the external analysis results. Other possible prop-
erties are programming language and language.

• ListMetrics is the class that specifies all metrics to be used (displayed) by the plu-
gin. Metrics should be specified by name, type, description, qualitative or quanti-
tative and domain. Sensors later assign values to each metric of the list as a result
of the source code analysis done by SonarQube or by some other external tool.
Here, this class should contain all metrics provided by the external tool, that are
precisely the external analysis results.

• ExternalToolMetricSensor class contains the functionality to scan the analysis
data produced by the external analysis tool in order to collect the metrics that it
provides. This class is invoked when the Runner component is executed.

• MetricsRubyWidget class contains the definition of the properties of the widget,
the title of the widget, and the the design and display characteristics of the data
to be included in the project dashboard. Precisely, the file containing the informa-
tion about the design and display characteristics (html.erb) that contains the
template for such a design and the positioning of the data.

5 Implementation Details for Validation

For the validation, a real project developed under norms [46] and [2] was analysed
with our software module. Understand was selected as the external tool to validate
the analyser module that integrates different sources of analysis results.



516 J. Escribano-Barreno et al.

The first step to integrate Understand analysis into the SonarQube framework was
to develop an extension of the Understand metrics to provide the required files for
SonarQube.

Input files were provided by the external tool and contained all the metrics that the
integrated analyser module is able to detect. The text marked as Free text to include
comments will not be analysed by the module.

The classExternalToolMetricSensor of the integrated analysermodule is extended
to derive the class UnderstandMetricSensor that supports the specific characteristics
of this specific external analysis tool. Consequently, when the Runner component
is executed, this class reads the required output file from Understand to derive its
analysis metrics.

For the class MetricsRubyWidget that defines the properties to customize the
widget and the data display, the specific data for Understand is given:

– getId() returns an identifier to the external tool Understand that is UnderstandMet-
rics

– getTitle() returns Understand Metrics.
– getTemplatePath() that definesto the file html.erb.

6 Conclusions

The paper has presented the design and implementation of a modular integrated
metrics analyser for the SonarQube framework. Its execution inside the SonarQube
framework results in the integration and connection of both tools that improves their
capabilities, yielding a single colloborative remote working space that supports the
interaction of verification teams working over specific projects.

Themodule is applicable toall projectswith theneedof technicalmetricscollection
whereexternal toolsaremandatory tocollect somemetricsnotprovided initiallyby the
SonarQube platform, used as qualitymanagement plattform; and it has been tried in a
real project that requires compliancewith norms related to the development of critical
software such as DO-178C [46] and software quality such as AQAP-2210 [2].

Acknowledgment This work has been partly supported by the Spanish national project
REM4VSS (TIN 2011-28339) and the Technology and Product Management department of In-
dra (Spain) under contract no. 2004/00476/001.

References

1. Alonso, A., García-Valls, M., de la Puente, J.A.: Assessment of timing properties of family
products. In: ARES Workshop – Development and Evolution of Software Architectures for
Product Families. LNCS, vol. 1429, pp. 161–169. Springer (1998)

2. AQAP 2210. NATOSupplementary Software Quality Assurance Requirements to AQAP 2110,
1st edn., November 2006



Integrated Metrics Handling in Open Source Software Quality Management Platforms 517

3. AQAP 2110. NATO Quality Assurance Requirements for Design, Development and Produc-
tion, 2nd edn., November 2006

4. Balachandran, V.: Reducing human effort and improving quality in peer code reviews using
automatic static analysis and reviewer recommendation. In: Proc. of International Conference
on Software Engineering (ICSE) (2013)

5. Bersani, M.M., García-Valls, M.: The cost of formal verification in adaptive CPS. an example
of a virtualized server node. In: Proc. of 17th IEEE High Assurance Systems Engineering
Symposium (HASE), January 2016

6. Bouyssounouse, B., et al.: Programming languages and real-time systems. In: Embedded Sys-
tems Design: The ARTIST Roadmap for Research and Development. Springer (2005)

7. Bouyssounouse, B., et al.: QoS management. In: Embedded Systems Design: The ARTIST
Roadmap for Research and Development. Springer (2005)

8. Bouyssounouse, B., et al.: Adaptive real-time systems development. In: Embedded Systems
Design: The ARTIST Roadmap for Research and Development. Springer (2005)

9. CMMI Product Team. CMMI for Development, version 1.3. Improving processes for develop-
ing better products and services. CMU/SEI-2010-TR-033 (2010)

10. Campbell, G.A., Papapetrou, P.P.: SonarQube in Action. Manning Publications (2013). ISBN-
9781617290954

11. Cano Romero, J., García-Valls, M.: Scheduling component replacement for timely execution
in dynamic systems. Software: Practice and Experience 44(8), 889–910 (2014)

12. CENELEC. Railway applications - Communications, signalling and processing systems. CEN-
ELEC (2001)

13. Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software system
maintainability. IEEE Computer 27(8), 44–49 (2002)

14. di Ruscio, D., Pelliccione, P.: A model-driven approach to detect faults in FOSS systems.
Journal of Software: Evolution and Process 27(4), April 2015

15. Duenas, J., Alonso, A., Lopes Oliveira, W., Garcia, M., Leon, G.: Software architecture assess-
ment. In: Software Architecture for Product Families: Principles and Practice. Addison-Wesley
(2000)

16. Duvall, P.M., Matyas, S., Glover, A.: Continuous integration: improving software quality and
reducing risk. Pearson Education (2007)

17. Fenton, N., Bieman, J.: Software metrics: a rigorous and practical approach. CRC Press (2014)
18. García Valls, M., Cucinotta, T., Lu, C.: Challenges in real-time virtualization and predictable

cloud computing. Journal of Systems Architecture 60(9), 736–740 (2014)
19. García Valls, M., Baldoni, R.: Adaptive middleware design for CPS: considerations on the

OS, resource managers, and the network run-time. In: Proc. 14th Workshop on Adaptive and
Reflective Middleware (ARM) (2015)

20. García-Valls, M., Fernández Villar, L., Rodríguez López, I.: iLAND: An enhanced middleware
for real-time reconfiguration of service oriented distributed real-time systems. IEEE Transac-
tions on Industrial Informatics 9(1), February 2013

21. García-Valls, M., Alonso, A., de la Puente, J.A.: A Dual-Band Priority Assignment Algorithm
for QoS Resource Management. Future Generation Computer Systems 28(6), 902–912 (2012)

22. García-Valls, M., Alonso, A., de la Puente, J.A.: Mode change protocols for predictable
contract-based resource management in embedded multimedia systems. In: Proc. of IEEE
Int’l Conference on Embedded Software and Systems (ICESS), May 2009

23. García-Valls, M., Alonso Munoz, A., Ruíz, J., Groba, A.: An architecture of a quality of
service resource manager middleware for flexible multimedia embedded systems. In: Proc. of
3rd Intern’l Workshop on Software Engineering and Middleware. LNCS, vol. 2596 (2003)

24. García-Valls, M., Perez-Palacin, D., Mirandola, R.: Time sensitive adaptation in CPS through
run-time configuration generation and verification. In: Proc. of 38th IEEE Annual Computer
Software and Applications Conference (COMPSAC), pp. 332–337, July 2014

25. García-Valls, M., Basanta-Val, P., Estévez-Ayres, I.: Real-time reconfiguration in multimedia
embedded systems. IEEE Transactions on Embedded Consumer Electronics 57(3), 1280–1287
(2011)



518 J. Escribano-Barreno et al.

26. García-Valls, M., Basanta-Val, P.: A real-time perspective of service composition: key concepts
and some contributions. Journal of Systems Architecture 59(10), 1414–1423 (2013)

27. García-Valls, M., Basanta-Val, P.: Comparative analysis of two different middleware ap-
proaches for reconfiguration of distributed real-time systems. Journal of Systems Architecture
60(2), 221–233 (2014)

28. García-Valls, M., Uriol-Resuela, P., Ibánez-Vázquez, F., Basanta-Val, P.: Low complexity
reconfiguration for real-time data-intensive service-oriented applications. Future Generation
Computer Systems 37, 191–200 (2014)

29. García-Valls, M., Basanta-Val, P.: Usage of DDS Data-Centric Middleware for Remote Mon-
itoring and Control Laboratories. IEEE Transactions on Industrial Informatics 9(1), 567–574
(2013)

30. García-Valls, M., Basanta-Val, P., Estévez-Ayres, I.: Adaptive real-time video transmission
over DDS. In: Proc. of 8th IEEE International Conference on Industrial Informatics (INDIN),
July 2010

31. IEC 61508. Functional safety of electrical/electronic/programmable electronic safety-related
systems, April 2010

32. IEC. Nuclear power plants. Instrumentation and control important to safety. General require-
ments for systems. IEC 61513 Ed.2.0., August 25, 2011

33. IEC. Medical Device Software–IEC, May 2006
34. ISO. Road Vehicles - Functional Safety. ISO-26262, November 11, 2011
35. Jenkins. Information. http://jenkins-ci.org/ (last retrieved, February 19, 2015)
36. Krutchen, P.: Contextualizing agile software development. Journal of Software: Evolution and

Process 25, 351–361 (2013)
37. LDRA. Information. http://www.ldra.com/ (last retrieved, February 19, 2015)
38. Maven. Information. http://maven.apache.org/ (last retrieved, February 19, 2015)
39. PECAL-2210. Requisitos OTAN de aseguramiento de la Calidad del software, suplementarios

a la PECAL 2110, 1st edn., November 2007
40. PECAL-2110. Requisitos OTAN de aseguramiento de la Calidad para el diseño, el desarrollo

y la producción, 2nd edn., November 2006
41. PC-Lint. Information. http://www.gimpel.com/html/index.htm (last retrieved, February 19,

2015)
42. PMD. Information. http://pmd.sourceforge.net/ (last retrieved, February 19, 2015)
43. SonarQube. Information. http://www.sonarqube.org/ (last retrieved, May 04, 2015)
44. Splint. Information. http://www.splint.org/ (last retrieved, February 19, 2015)
45. Otero Pérez, C.M., Steffens, L., van der Stok, P., van Loo, S., Alonso, A., Ruíz, J., Bril,

R.J., García Valls, M.: QoS-based resource management for ambient intelligence. In: Ambient
Intelligence: Impact on Embedded Sytem Design, pp. 159–182. Kluwer Academic Publishers
(2003)

46. RTCA Inc. Software Considerations in Airborne Systems and Equipment Certification. RTCA
Inc. DO-178C, December 13, 2011

47. RTCA Inc. / EUROCAE. Software Integrity Assurance Considerations for Communication,
Navigation, Surveillance and Air Traffic Management (CNS/ATM) Systems. DO-278A, De-
cember 13, 2011

48. RTCA Inc. DO-178B. Software Considerations in Airborne Systems and Equipment Certifi-
cation. RTCA Inc. DO-178B (1992)

49. RTCA Inc. Software Tool Qualification Considerations. DO-330, December 13, 2011
50. RTCA Inc. Model-Based Development and Verification Supplement to DO-178C and DO-

278A. DO-331, December 13, 2011
51. RTCA Inc. Object-Oriented Technology and Related Techniques Supplement to DO-178C and

DO-278A. DO-332, December 13, 2011
52. RTCA Inc. Formal Methods Supplement to DO-178C and DO-278A
53. Scitools. Scitools Understand. Information. https://scitools.com/ (last retrieved, February 19,

2015)

http://jenkins-ci.org/
http://www.ldra.com/
http://maven.apache.org/
http://www.gimpel.com/html/index.htm
http://pmd.sourceforge.net/
http://www.sonarqube.org/
http://www.splint.org/
https://scitools.com/

	Integrated Metrics Handling in Open Source Software Quality Management Platforms
	1 Introduction
	2 Background and Related Work
	2.1 Norms and Software Quality Tools and Frameworks
	2.2 Software Architectures in Critical Systems in Emerging Domains

	3 SonarQube Overview
	4 Metrics Integration in the Quality Framework
	4.1 Addition of Metrics
	4.2 Software Design

	5 Implementation Details for Validation
	6 Conclusions
	References


