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Abstract The virtualization of cloud network requires flexible and effective 
techniques to accommodate the rapid changes in the network configurations and 
updates. OpenFlow protocol has attracted attentions for cloud networks since it 
facilitates managing and sharing the network resources, and it can be utilized to 
create an overlay abstraction on top of the network infrastructure for the flow 
setup in the cloud. However, the traditional reactive flow setup of OpenFlow 
introduces higher flow latency and overhead on the network controller. This paper 
discusses the issues of the reactive flow setup and presents two optimized overlay 
network virtualization methods that leverage OpenFlow to control and forward the 
tenants’ traffic. The proposed methods enable tenants to use their own MAC/IP 
addresses in the cloud. We have implemented and evaluated the proposed overlay 
methods, and the experimental results show that our methods have less flow 
latency than the traditional reactive approach, and higher performance than the 
popular overlay tunneling protocols such as VXLAN, STT, and NVGRE. 

Keywords OpenFlow · Overlay · Cloud network · Flow rules · Reactive rules · 
Proactive rules · Flow setup · Virtual network 

1 Introduction* 

Network virtualization is one of the key components for the multi-tenancy 
services in the cloud that enables the cloud provider to satisfy the customer 
requirements. As thousands of tenants subscribe to the cloud services on a daily 
basis, the cloud has to handle a massive number of network configurations and 
updates. Therefore, the network virtualization in the cloud requires effective 
techniques for sharing the network infrastructure and maintaining an efficient 
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isolation of the tenants’ traffic. It should support VMs migration to arbitrary 
locations in the cloud while it allows the cloud tenants to use their own addressing 
scheme and configure their virtual subnets. 

The traditional network virtualization techniques such as VLAN cannot 
accommodate large multi-tenant datacenter due to its VLAN ID, 12 bits, which 
supports only 4096 virtual networks. Therefore, the cloud industry has adopted 
tunneling (L2-in-L3) overlay protocols such as VXLAN, NVGRE, and STT to 
address the VLAN limitations.  These tunneling protocols encapsulate the whole 
Ethernet frame of VM in an IP packet in order to transmit the VM frame to its 
destination through a tunnel in the cloud physical network. This encapsulation 
technique hides the MAC/IP addresses of the tenant virtual network (TVN) from 
the cloud physical network, and it maps the tenants’ virtual addressing schemes to 
the cloud physical topology. These tunneling protocols can accommodate millions 
of tenants in the cloud since the virtual network ID (VNID in the outer headers) is 
24 bits in VXLAN and NVGRE, and 64 bits in STT (Context ID field). On the 
other hand, these tunneling protocols have introduced manageability and 
compatibility issues in the traditional networks.  

Usually, the VM fragments the packetinto standard MTU-size without 
considering the additional tunneling headers since the tunneling process is 
transparent to VMs. Consequently, the frame is fragmented again after the 
tunneling encapsulation [1], which affects the network performance [2]. 
Furthermore, VXLAN and NVGRE depend on a multicast-enabled network for 
forwarding the tenants’ traffic, which adds more complexity on troubleshooting 
the network problems, besides the underlying network has to handle a large 
number of multicast trees [3]. The STT protocol was designed to utilize the 
standard offloading capabilities in the network interface cards (NIC) to improve 
performance. However, since it uses a TCP-like header in L4 of the outer headers 
(i.e., it does not engage in the usual TCP 3-way handshake), it is treated as an 
invalid packet by the traditional network security appliances. The NVGRE cannot 
utilize ECMP-based load balancing since it uses GRE protocol for encapsulation, 
which does not have a standard transport layer (TCP/UDP) header.  

This paper presents two flexible edge-overlay methods for network 
virtualization in the cloud datacenter. Both methods apply the same principles and 
leverage OpenFlow to rewrite the addresses of the VM frame before transmitting 
the frame through the cloud physical network. Our methods allow the tenants to 
use their own MAC/IP addresses and forward the tenants’ traffic without relying 
on multicasting or IP encapsulation.Consequently, they eliminate the limitations 
of the tunneling protocols. The first edge-overlay method can be utilized by the 
cloud provider that forward traffic based on layer two (i.e., L2 datacenter network 
fabric), while the second method is edge-overlay for cloud datacenters that rely on 
layer three network infrastructure. Also,performance evaluation of the proposed 
edge-overlay methods, compared to VXLAN, STT, and GRE, is included in this 
paper. 
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more egress port(s). If it does not find the matching flow rule, it will drop the 
packet or send it to the controller via OFPT_PACKET_IN message for forwarding 
decision. Typically, there is a flow entry in flow table called table miss, which 
specifies how to process unmatched packets. After receiving PACKET_IN message, 
the controller installs the flow rules on the related switches along the flow path by 
sending OFPT_FLOW_MOD message to these switches.  

This reactive flow setup provides a fine-grained flow visibility for the network 
controller, and it saves the switch memory since the reactive flow rules have an 
idle and hard timeout for their expiration. However, this traditional OpenFlow 
reactive approach increases the workload on the controller and the flow latency in 
the network [6,7]. For example, for each bi-directional flow setup, there will be: 
2NFLOW_MOD + 2PACKET_IN + 2PACKET_OUTtransmitted control messages between the 
controller and N number of switches along the flow path. Consequently, the flow 
latency is increased along with the increase of network diameter since each switch 
in the flow path has to process OFPT_FLOW_MOD message and install the flow rules.  

Our proposed OpenFlow edge-overlay methods emphasize limiting the reactive 
control messages by using hybrid flow setup. Here, whenever VM is migrated to 
another location in the cloud and connected to a virtual switch, which is running 
on the physical host server, the controller proactively installs flow rules for the 
incoming packets to that VM in the virtual switch. Thus, the reactive flow setup is 
used only for the outgoing traffic in order to instruct the virtual switch to rewrite 
the headers of the outgoing packet before transmitting that packet to its destination 
through the cloud physical network (see Section 3).This hybrid flow setup reduces 
the control messages to 2PACKET_IN + 2FLOW_MOD+PACKET_OUT for each bi-directional 
flow. Also, the flow latency is reduced in this approach since only the ingress 
virtual switch processes the FLOW_MOD message for each new flow. Note, the 
OpenFlow controller knows the location of every VM in the cloud (i.e., virtual 
switch ID, and the port number where the VM is connected to) as follows: 

 When the cloud controller (e.g., OpenStack) configures and adds a new VM to 
the virtual switch, the switch sends an OFPT_PORT_STATUS message to notify the 
OpenFlow controller of the change. Also, when VM is migrated to another 
host, it sends gratuitous ARP, which is intercepted and sent by the virtual 
switch to the OpenFlow controller.Hence, the controller can obtain MAC/IP 
and location of themigrated VM(i.e., Sender Protocol Address (SPA) field in 
ARP has the IP address of  the ARP sender).  

 In addition, the OpenFlow controller can utilize the Neutron plug-in of 
OpenStack to obtain information about the VMs and their locations directly. 

3 Edge-Overlay  

This section presents the proposed edge-overlay for cloud infrastructure that uses 
L2 fabric (see Section 3.1) and elaborates on the rewriting techniques of the 
packets’ headers using OpenFlow. It also shows how the same overlay principles 
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can be applied to the cloud that relies on L3 fabric (see Section 3.2). Our proposed 
overlay methods only require that the cloud physical switches should be 
OpenFlow-enabled, which is easily attainable nowadays as OpenFlow has been 
widely supported in the networking industry. This requirement is necessary to 
control the MAC-learning among the intermediate L2 switches and prevent the 
MAC table explosion problem as OpenFlow can help to reduce the forwarding 
tables by using hierarchical addressing scheme [8]. 

3.1 Overlay for L2 Fabric  

In virtualized datacenter, the first switch that receives the VM packet is the virtual 
switch (e.g., OVS [9]) in the physical host. There we can rewrite the MAC/IP 
addresses of the packet in order to send it to its destination through the cloud 
physical network as shown in Figure 1. Here is the workflow: 

1. VM5 in physical server 2 sends a packet to VM3 in physical server 1 (both 
VMs belong to Tenant C). 

2. The virtual switch receives the outgoing packet to VM3. As the virtual switch 
does not know the destination, it sends OFPT_PACKET_IN to the controller. 

3. As the controller keeps tracks of the location, MAC/IP addresses, and VNID of 
each VM in the cloud, it replies to the virtual switch and installs the reactive 
flow rule for forwarding the packet. The flow rule instructs the virtual switch to 
replace the destination MAC address of the packet with MAC address of the 
physical server 1 that hosts VM3 and replace the destination IP address with 
Virtual IP (VIP) address. This VIP address is used to tell the virtual switch  
in the destination physical server 1 how to forward the received packet  
(see Section 3.3). 

4. After rewriting the destination MAC and IP addresses, the virtual switch 
transmits the packet to the physical network through the trunk port. 

5. When the virtual switch in the physical server 1 receives the incoming packet, 
it knows that the packet should be forwarded to VM3 based on the VIP in the 
destination IP field. 

6. The virtual switch in physical server 1 replaces the destination MAC and IP 
addresses in the received packet with the original MAC and IP of the VM3, and 
then it forwards the packet to the destination VM3. Figure 4 shows the 
addresses of the transmitted packet during VM-to-VM communication as 
described in the six steps above. 

3.2 Overlay for L3 Fabric 

As some cloud datacenters forward traffic based on L3, we also provide another 
edge-overlay for L3 datacenter network fabric. This overlay method applies the 
same 1, 2, 4, and 6 steps above-mentioned when forwarding the tenants’ traffic. 
The difference here is in the steps 3 and 5. In step 3, the controller replies to the  
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Virtual IP (VIP). VIP is a simplified methodto instruct the virtual switch in the 
destination on how to forward the received packet from the trunk port. For 
example, in step 3 of Figure 1, the controller knows that the destination VM3 is 
connected to port 4 of OVS in physical server 1. Consequently, it installs flow rule 
in the OVS of physical server 2 that rewrites the original destination IP address of 
the outgoing packet with VIP = “0.0.0.4”. We used only the first byte of the VIPto 
encode the switch port number where the destination VM is connected to. Now, 
when the OVS in physical server 1 receives that packet, it replaces the destination 
MAC and IP fields in the incoming packet with the original MAC and IP of VM3, 
and then it forwards the packet through port 4. Thus, the header rewriting is 
transparent to VMs in the cloud. Figure 2 shows an example of flow rules for 
incoming packets into OVS of the physical server 1, which are installed 
proactively by the controller when VMs were connected to the virtual switch. In 
this example, the port number one of the OVS is a trunk port while VM1, VM2, 
and VM3 are connected to ports two, three, and four respectively.  When the OVS 
receives a packetwith VIP = “0.0.0.4” in the destination IP field, the third flow 
rule in Figure 2 instructs the OVS to change the destination MAC address to 
“42:34:01:ab:87:a1”, IP address to “192.168.0.1”,  and forward the packet through 
port 4 where the destination VM3 is connected. Note, in the hybrid flow setup, the 
controller deletes the proactive flow rules for the disconnected VMs to save the 
switch memory and keep the flow tables updated. 

Virtual MAC Address (VMAC). VMAC is used for the second proposed edge-
overlay in L3 fabric instead of VIP.  Since the destination IP is used for 
forwarding purposes in the cloud physical network, which relies on layer three 
network infrastructure, we used the destination MAC field to tell the virtual switch 
in the destination how to forward the received packet from the trunk port. In our 
implementation, only the first byte of the VMAC is used as the port number where 
the destination VM is connectedto the virtual switch. Figure 3 shows an example 
of the flow rules for incoming packets into OVS of physical server 1, which can 
be installed proactively with the deployment of edge-overlay for L3 fabric. For 
example, when the OVS receives a packet with VMAC = “00:00:00:00:00:02” in 
the destination MAC field, the first flow rule for incoming traffic in Figure 3 
instructs the OVS to change the destination MAC address to “68:54:A1:05:53:48”, 
IP address to “172.16.0.1”, and forward the packet through port 2 where the 
destination VM1 is connected to. 

3.4 ARP Processing 

When the OVS receives an ARP request from VM, it sends OFPT_PACKET_IN 
message to the controller. As mentioned earlier, the controller knows the MAC/IP 
addresses of all VMs in the cloud, so it replies with the flow rule that instructs the 
OVS to create an ARP reply (i.e., the ARP reply is created by using OVS-specific 
actions which are move, load, andmod_dl_src [10]) and send it to the same port 
where the ARP request came from.  
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5.1 Flow Latency  

This set of experiments was conducted to investigate the impact of the traditional 
reactive flow setup on the flow latency and validate the enhancement using the 
hybrid flow setup. All the flow latency experiments were conducted in the same 
experimental environment. We used the Mininet emulator to configure and run 
different types of SDN topologies with using software OpenFlow switches. 
Mininet integrates Open vSwitch in its framework, which is a popular OpenFlow-
compliant switch. Note, Mininet can create many OVS instances and configure 
them to run in kernel space. In our experiments, the network emulator was running 
in a server that is equipped with four CPUs, each Intel(R) Xeon(R) E5530 @ 
2.40GHz, and 16 GB of RAM. Another server with the same above-mentioned 
resources was used to run the Floodlight controller.  

In the first experiment, 243 hosts and 121 switches were emulated by Mininet 
to create a tree network topology with fanout 3 and depth 5. The emulated hosts 
generate traffic randomly using Iperf and create synthetic workload on the 
network. We chose two hosts in the network that are 9 hops apart and used ping 
responses to measure the latency between them in three modes. The first mode is 
the reactive flow setup for all flows in the network, including the flows from the 
two selected hosts. The second mode is same as the first mode except that the flow 
rules for the path between the selected two hosts are installed proactively in the 
intermediate switches. In the third mode, we deployed the hybrid approach and 
used our implemented applications on the controller. Here, the flow tables of the 
intermediate switches were populated proactively for traffic forwarding between 
the edge switches, and the flow rules for incoming traffic are installed proactively 
in the edge switches as described in Section 3.3. Every run was repeated 20 times, 
and the results are plotted in Figure 6. The ping response latency between the 
selected hosts is significantly high in mode one, compared to mode two and three. 
Also, the standard deviation of the ping responses’ latencies in mode one was 8.4, 
while it was 4.6 in mode three. The maximum latency in mode one was 48.6 
ms,whereas it was approximately 64% less in mode three. In this experiment, we 
did not configure any transmission or propagation delays between the network 
nodes in the emulator in order to focus only on the flow setup latencies in the 
reactive and hybrid approaches. As shown in Figure 6, the reactive flow setup 
introduces higher latency because all switches in the flow path have to process 
OFPT_FLOW_MOD message before forwarding the traffic.  

The second experiment was aiming to investigate the impact of processing 
additional flow rules while there is traffic in transit, and testing the flow latency for 
this scenario in the reactive and hybrid approaches. Therefore, a linear topology with 
two edge switches and 12 intermediate switches was created in Mininet. We 
configured the controller to push randomly and continuously additional flow rules in 
the intermediate switches, and the ping responses were used to measure the flow 
latency between hosts, which are connected to edge switches. Each run was repeated 
20 times. As you can see in Figure 7, generally the flow latency is lower in the hybrid 
approach, and the standard deviation of the responses’ latencies in the hybrid setup is 
approximately 62% less than the reactive approach. 
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The network throughput of the proposed edge-overlay methods are similar. 
Therefore, we present the performance results of the edge-overlay for L3 fabric 
and omit the results for the other overlay method due to the space limit.  

The results of UDP throughput in the proposed edge-overlay are plotted in 
Figure 9 with the UDP throughput in VXLAN, STT, and GRE for comparison. 
Besides, the optimal throughput for VM to VM communication is included as the 
upper performance bound in the experimental environment. Here, the VMs were 
bridged to the physical network (i.e., no headers rewriting or tunneling 
encapsulation). The x-axis is the size of the transmitted bytes in UDP, excluding 
headers, by Iperf client. The y-axis is the throughput measured by the Iperf server. 
As you see in Figure 9, the STT performance was close to the optimal, while the 
proposed method almost matched the optimal throughput. The overhead of the 
outer headers in STT does not affect its performance as it utilizes the offloading 
capabilities of NIC. In our method, there are no outer headers, so there are no any 
additional fragmentations, and with the support of OVS-kernel module, the 
performance was high. Contrarily, the throughput of VXLAN and GRE was far 
below the optimal, especially for large data chunks in UDP. The VXLAN 
specification recommends setting MTU size to a value that can accommodate the 
outer headers and avoid fragmentation. In our experiment, we kept the default 
MTU (i.e., 1500 bytes) to test all protocols under the same conditions and obtain a 
fair comparison. Comparatively, Figure 10 shows the packet loss rate, which is 
high in VXLAN and GRE. Whereas TCP retransmits the missingfragments, UDP 
drops the whole packet when it misses fragments, especially when processes send 
packets rapidly as it has a limited frame buffer. In our experiments, the Iperf client 
in the sender side was configured to consume all the available bandwidth. Thus, 
Figure 10 shows the packet loss rate increases gradually with VXLAN, notably 
when data chunk is multiple of 1500 bytes. The TCP in our overlay method can 
use the offloading capabilities of NIC same as STT. Figure 11 shows the 
throughput of TCP in the proposed method, which is even higher than STT and 
very close to the optimal throughput.  

6 Related Work 

NetLord [12] architecture encapsulates the VM frame with additional MAC/IP 
headers. The outer MAC headers have the addresses of the edge switches where 
the sender and receiver VMs are connected, and the outer destination IP has the 
tenant ID. Our solution does not require any additional headers as it rewrites the 
addresses in the original headers and restores them in the destination. VL2 [13] 
uses L3 fabric for forwarding traffic in Clos topology, and it uses IP-in-IP 
encapsulation for network virtualization. It relies on IP multicasting to handle the 
virtual network broadcasts. Kawashima et al. [2] proposed non-tunneling edge-
overlay model for the cloud network. His model utilizes OpenFlow to rewrite the 
MAC addresses (source and destination) of the VM frame and replace them with 
the MAC addresses of the physical servers in the cloud. It uses VLAN tag as VM 
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identifier in the host. However, his model does not hide the addresses of the 
physical servers in the cloud from the tenants, which exposes the cloud network 
infrastructure to threats. Chen et al. [14] proposed a scalable L2 architecture that 
spans multiple datacenters across diverse geographical locations. Their 
architecture only serves the cloud provider that relies on L2 fabric datacenter 
networks. Guenender et al. [19] published non-encapsulation overlay technique 
for network virtualization, which replaces the addresses in VM packet with the 
addresses of the edge-switches, and they used the source TCP port number to 
identify the VM in the destination host. Their research focused only in TCP, while 
our overlay methods consider both TCP and UDP protocols. 

7 Conclusion 

In this paper, we have presented two OpenFlow-based overlay methods for the 
cloud networks. The first method is designed to serve L2 fabric datacenter 
network, while the second method can be used for L3 cloud networkinfrastructure. 
Our methods utilize OpenFlow for rewriting VM packet headers in order to 
forward the tenants’ traffic through the cloud physical network with maintaining 
sufficient isolation. Both methods do not use any additional encapsulation headers, 
and they can handle broadcast traffic such as ARP with less overhead. We are 
planning to extend our design to forward traffic between multiple datacenters in 
different locations as future work. 
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