

© Springer International Publishing Switzerland 2016 25
S. Latifi (ed.), Information Technology New Generations,
Advances in Intelligent Systems and Computing 448,
DOI: 10.1007/978-3-319-32467-8_3

Elastic Edge-Overlay Methods
Using OpenFlow for Cloud Networks

Amer Aljaedi, C. Edward Chow and Jia Rao

Abstract The virtualization of cloud network requires flexible and effective
techniques to accommodate the rapid changes in the network configurations and
updates. OpenFlow protocol has attracted attentions for cloud networks since it
facilitates managing and sharing the network resources, and it can be utilized to
create an overlay abstraction on top of the network infrastructure for the flow
setup in the cloud. However, the traditional reactive flow setup of OpenFlow
introduces higher flow latency and overhead on the network controller. This paper
discusses the issues of the reactive flow setup and presents two optimized overlay
network virtualization methods that leverage OpenFlow to control and forward the
tenants’ traffic. The proposed methods enable tenants to use their own MAC/IP
addresses in the cloud. We have implemented and evaluated the proposed overlay
methods, and the experimental results show that our methods have less flow
latency than the traditional reactive approach, and higher performance than the
popular overlay tunneling protocols such as VXLAN, STT, and NVGRE.

Keywords OpenFlow · Overlay · Cloud network · Flow rules · Reactive rules ·
Proactive rules · Flow setup · Virtual network

1 Introduction*

Network virtualization is one of the key components for the multi-tenancy
services in the cloud that enables the cloud provider to satisfy the customer
requirements. As thousands of tenants subscribe to the cloud services on a daily
basis, the cloud has to handle a massive number of network configurations and
updates. Therefore, the network virtualization in the cloud requires effective
techniques for sharing the network infrastructure and maintaining an efficient

A. Aljaedi() · C.E. Chow · J. Rao
Department of Computer Science, University of Colorado, Colorado Springs, USA
e-mail: {aaljaedi,cchow,jrao}@uccs.edu

26 A. Aljaedi et al.

isolation of the tenants’ traffic. It should support VMs migration to arbitrary
locations in the cloud while it allows the cloud tenants to use their own addressing
scheme and configure their virtual subnets.

The traditional network virtualization techniques such as VLAN cannot
accommodate large multi-tenant datacenter due to its VLAN ID, 12 bits, which
supports only 4096 virtual networks. Therefore, the cloud industry has adopted
tunneling (L2-in-L3) overlay protocols such as VXLAN, NVGRE, and STT to
address the VLAN limitations. These tunneling protocols encapsulate the whole
Ethernet frame of VM in an IP packet in order to transmit the VM frame to its
destination through a tunnel in the cloud physical network. This encapsulation
technique hides the MAC/IP addresses of the tenant virtual network (TVN) from
the cloud physical network, and it maps the tenants’ virtual addressing schemes to
the cloud physical topology. These tunneling protocols can accommodate millions
of tenants in the cloud since the virtual network ID (VNID in the outer headers) is
24 bits in VXLAN and NVGRE, and 64 bits in STT (Context ID field). On the
other hand, these tunneling protocols have introduced manageability and
compatibility issues in the traditional networks.

Usually, the VM fragments the packetinto standard MTU-size without
considering the additional tunneling headers since the tunneling process is
transparent to VMs. Consequently, the frame is fragmented again after the
tunneling encapsulation [1], which affects the network performance [2].
Furthermore, VXLAN and NVGRE depend on a multicast-enabled network for
forwarding the tenants’ traffic, which adds more complexity on troubleshooting
the network problems, besides the underlying network has to handle a large
number of multicast trees [3]. The STT protocol was designed to utilize the
standard offloading capabilities in the network interface cards (NIC) to improve
performance. However, since it uses a TCP-like header in L4 of the outer headers
(i.e., it does not engage in the usual TCP 3-way handshake), it is treated as an
invalid packet by the traditional network security appliances. The NVGRE cannot
utilize ECMP-based load balancing since it uses GRE protocol for encapsulation,
which does not have a standard transport layer (TCP/UDP) header.

This paper presents two flexible edge-overlay methods for network
virtualization in the cloud datacenter. Both methods apply the same principles and
leverage OpenFlow to rewrite the addresses of the VM frame before transmitting
the frame through the cloud physical network. Our methods allow the tenants to
use their own MAC/IP addresses and forward the tenants’ traffic without relying
on multicasting or IP encapsulation.Consequently, they eliminate the limitations
of the tunneling protocols. The first edge-overlay method can be utilized by the
cloud provider that forward traffic based on layer two (i.e., L2 datacenter network
fabric), while the second method is edge-overlay for cloud datacenters that rely on
layer three network infrastructure. Also,performance evaluation of the proposed
edge-overlay methods, compared to VXLAN, STT, and GRE, is included in this
paper.

Elastic Edge-Overlay Metho

The rest of this paper
of OpenFlow, and it disc
Section 3 presents the
datacenter networks. Sect
methods. Section 5 show
based overlay with detai
Finally, Section 7 conclud

2 OpenFlow

Under the current SDN p
throughout the networkin
commodity switches with
allows more flexibility in
the whole network devic
operators/applications can
then the controller transla
add/delete/modify flow e
network. It has been utili
VMWare/Nicira NVP [5]

The OpenFlow contro
using either reactive or p
ingress switch receives a
(i.e., based on headers o

Fig. 2 Flow rules for incom
OVS in host 1(L2network fa

Fig. 3 Flow rules for incom
OVS in host 1 (L3 network f

ods Using OpenFlow for Cloud Networks 2

is organized as follows. Section 2 provides an overvie
cusses the flow rules for traffic forwarding in the clou
edge-overlay methods for L2 and L3 fabrics of th
tion 4 elaborates on the implementation of the propose

ws the experimental results of the proposed OpenFlow
iled analysis, and Section 6 surveys the related wor
des this research and highlights the future work.

paradigm, OpenFlow protocol has gained broad suppo
ng industry as you can easily find OpenFlow-enable
h reasonable prices in the networking market. OpenFlo
n managing, programming, and dynamically controllin
ces by a logically centralized controller. The networ
n specify a global network policy via the controller, an
ates this high-level policy into low-level instructions th
entries in the flow tables of the related switches in th
ized in the large datacenters such as Google B4 [4] an
 to control and forward the network traffic efficiently.

oller can install the forwarding flow rules in switch
proactive flow setup. In the reactive approach, when th

packet, it performs lookup for a match in its flow tab
f the received packet) to forward that packet to one o

ming packets to
abric).

ming packets to
fabric).

Fig. 1 Overview of the proposed OpenFlo
edge-overlay.

27

ew
ud.
he
ed
w-
rk.

ort
ed

ow
ng
rk
nd
hat
he
nd

es
he

ble
or

ow

28 A. Aljaedi et al.

more egress port(s). If it does not find the matching flow rule, it will drop the
packet or send it to the controller via OFPT_PACKET_IN message for forwarding
decision. Typically, there is a flow entry in flow table called table miss, which
specifies how to process unmatched packets. After receiving PACKET_IN message,
the controller installs the flow rules on the related switches along the flow path by
sending OFPT_FLOW_MOD message to these switches.

This reactive flow setup provides a fine-grained flow visibility for the network
controller, and it saves the switch memory since the reactive flow rules have an
idle and hard timeout for their expiration. However, this traditional OpenFlow
reactive approach increases the workload on the controller and the flow latency in
the network [6,7]. For example, for each bi-directional flow setup, there will be:
2NFLOW_MOD + 2PACKET_IN + 2PACKET_OUTtransmitted control messages between the
controller and N number of switches along the flow path. Consequently, the flow
latency is increased along with the increase of network diameter since each switch
in the flow path has to process OFPT_FLOW_MOD message and install the flow rules.

Our proposed OpenFlow edge-overlay methods emphasize limiting the reactive
control messages by using hybrid flow setup. Here, whenever VM is migrated to
another location in the cloud and connected to a virtual switch, which is running
on the physical host server, the controller proactively installs flow rules for the
incoming packets to that VM in the virtual switch. Thus, the reactive flow setup is
used only for the outgoing traffic in order to instruct the virtual switch to rewrite
the headers of the outgoing packet before transmitting that packet to its destination
through the cloud physical network (see Section 3).This hybrid flow setup reduces
the control messages to 2PACKET_IN + 2FLOW_MOD+PACKET_OUT for each bi-directional
flow. Also, the flow latency is reduced in this approach since only the ingress
virtual switch processes the FLOW_MOD message for each new flow. Note, the
OpenFlow controller knows the location of every VM in the cloud (i.e., virtual
switch ID, and the port number where the VM is connected to) as follows:

 When the cloud controller (e.g., OpenStack) configures and adds a new VM to
the virtual switch, the switch sends an OFPT_PORT_STATUS message to notify the
OpenFlow controller of the change. Also, when VM is migrated to another
host, it sends gratuitous ARP, which is intercepted and sent by the virtual
switch to the OpenFlow controller.Hence, the controller can obtain MAC/IP
and location of themigrated VM(i.e., Sender Protocol Address (SPA) field in
ARP has the IP address of the ARP sender).

 In addition, the OpenFlow controller can utilize the Neutron plug-in of
OpenStack to obtain information about the VMs and their locations directly.

3 Edge-Overlay

This section presents the proposed edge-overlay for cloud infrastructure that uses
L2 fabric (see Section 3.1) and elaborates on the rewriting techniques of the
packets’ headers using OpenFlow. It also shows how the same overlay principles

Elastic Edge-Overlay Methods Using OpenFlow for Cloud Networks 29

can be applied to the cloud that relies on L3 fabric (see Section 3.2). Our proposed
overlay methods only require that the cloud physical switches should be
OpenFlow-enabled, which is easily attainable nowadays as OpenFlow has been
widely supported in the networking industry. This requirement is necessary to
control the MAC-learning among the intermediate L2 switches and prevent the
MAC table explosion problem as OpenFlow can help to reduce the forwarding
tables by using hierarchical addressing scheme [8].

3.1 Overlay for L2 Fabric

In virtualized datacenter, the first switch that receives the VM packet is the virtual
switch (e.g., OVS [9]) in the physical host. There we can rewrite the MAC/IP
addresses of the packet in order to send it to its destination through the cloud
physical network as shown in Figure 1. Here is the workflow:

1. VM5 in physical server 2 sends a packet to VM3 in physical server 1 (both
VMs belong to Tenant C).

2. The virtual switch receives the outgoing packet to VM3. As the virtual switch
does not know the destination, it sends OFPT_PACKET_IN to the controller.

3. As the controller keeps tracks of the location, MAC/IP addresses, and VNID of
each VM in the cloud, it replies to the virtual switch and installs the reactive
flow rule for forwarding the packet. The flow rule instructs the virtual switch to
replace the destination MAC address of the packet with MAC address of the
physical server 1 that hosts VM3 and replace the destination IP address with
Virtual IP (VIP) address. This VIP address is used to tell the virtual switch
in the destination physical server 1 how to forward the received packet
(see Section 3.3).

4. After rewriting the destination MAC and IP addresses, the virtual switch
transmits the packet to the physical network through the trunk port.

5. When the virtual switch in the physical server 1 receives the incoming packet,
it knows that the packet should be forwarded to VM3 based on the VIP in the
destination IP field.

6. The virtual switch in physical server 1 replaces the destination MAC and IP
addresses in the received packet with the original MAC and IP of the VM3, and
then it forwards the packet to the destination VM3. Figure 4 shows the
addresses of the transmitted packet during VM-to-VM communication as
described in the six steps above.

3.2 Overlay for L3 Fabric

As some cloud datacenters forward traffic based on L3, we also provide another
edge-overlay for L3 datacenter network fabric. This overlay method applies the
same 1, 2, 4, and 6 steps above-mentioned when forwarding the tenants’ traffic.
The difference here is in the steps 3 and 5. In step 3, the controller replies to the

30

Fig. 4 Rewriting the packe
transmission (overlay for L2

virtual switch and install
packet with IP address o
destination MAC addres
similar to VIP. It is jus
physical server 1 how to
the virtual switch in the
that the received packet s
destination MAC field. F
during VM-to-VM comm
fabric.

3.3 Virtual Address

As it is highlighted earlie
forwarding decision is d
Whenever it receives a
corresponding action of th
specifies how to forward
in its table(s), it will forw
were designed to reduce
the virtual edge switche
workload on the controlle
using hybrid flow setup. I
flow rules for the incomin
switch. Thus, the virtual
to the controller for the ou
incoming packet via its
destination VM based on

A. Aljaedi et a

et headers during
2 fabric).

Fig. 5 Rewriting the packet headers durin
transmission (overlay L3 fabric).

ls flow rule to replace the destination IP address of th
of the physical server 1 that hosts VM3 and replace th
s with Virtual MAC (VMAC) address. The VMAC
st used to inform the virtual switch in the destinatio
forward the received packet (see Section 3.3). In step
destination, where the target VM3 is connected, know

should be forwarded to VM3 based on the VMAC in th
Figure 5 shows the addresses of the transmitted pack
munication with edge-overlay for L3 datacenter networ

ses

er, the OpenFlow switch is relatively simple because th
efined by a controller, rather than by switch firmwar
new packet, it checks the flow table(s) to find th

he matching flow entry. The action field in the flow entr
the received packet. If it does not find a matching entr

ward the packet to the controller. Our proposed method
the number of the exchanged control messages betwee

es and the controller, which consequently reduces th
er for forwarding the tenants’ traffic. We achieved this b
In the hybrid approach, the controller proactively instal
ng traffic to the VMs, which are connected to the virtu
switch only sends the reactive OFPT_PACKET_IN messag
utgoing traffic. Here, when the virtual switch receives a
s trunk port, it can forward the received packet
VIP or VMAC as described below:

al.

ng

he
he
is

on
5,

ws
he

ket
rk

he
re.
he
ry
ry
ds
en
he
by
lls

ual
ge
an
to

Elastic Edge-Overlay Methods Using OpenFlow for Cloud Networks 31

Virtual IP (VIP). VIP is a simplified methodto instruct the virtual switch in the
destination on how to forward the received packet from the trunk port. For
example, in step 3 of Figure 1, the controller knows that the destination VM3 is
connected to port 4 of OVS in physical server 1. Consequently, it installs flow rule
in the OVS of physical server 2 that rewrites the original destination IP address of
the outgoing packet with VIP = “0.0.0.4”. We used only the first byte of the VIPto
encode the switch port number where the destination VM is connected to. Now,
when the OVS in physical server 1 receives that packet, it replaces the destination
MAC and IP fields in the incoming packet with the original MAC and IP of VM3,
and then it forwards the packet through port 4. Thus, the header rewriting is
transparent to VMs in the cloud. Figure 2 shows an example of flow rules for
incoming packets into OVS of the physical server 1, which are installed
proactively by the controller when VMs were connected to the virtual switch. In
this example, the port number one of the OVS is a trunk port while VM1, VM2,
and VM3 are connected to ports two, three, and four respectively. When the OVS
receives a packetwith VIP = “0.0.0.4” in the destination IP field, the third flow
rule in Figure 2 instructs the OVS to change the destination MAC address to
“42:34:01:ab:87:a1”, IP address to “192.168.0.1”, and forward the packet through
port 4 where the destination VM3 is connected. Note, in the hybrid flow setup, the
controller deletes the proactive flow rules for the disconnected VMs to save the
switch memory and keep the flow tables updated.

Virtual MAC Address (VMAC). VMAC is used for the second proposed edge-
overlay in L3 fabric instead of VIP. Since the destination IP is used for
forwarding purposes in the cloud physical network, which relies on layer three
network infrastructure, we used the destination MAC field to tell the virtual switch
in the destination how to forward the received packet from the trunk port. In our
implementation, only the first byte of the VMAC is used as the port number where
the destination VM is connectedto the virtual switch. Figure 3 shows an example
of the flow rules for incoming packets into OVS of physical server 1, which can
be installed proactively with the deployment of edge-overlay for L3 fabric. For
example, when the OVS receives a packet with VMAC = “00:00:00:00:00:02” in
the destination MAC field, the first flow rule for incoming traffic in Figure 3
instructs the OVS to change the destination MAC address to “68:54:A1:05:53:48”,
IP address to “172.16.0.1”, and forward the packet through port 2 where the
destination VM1 is connected to.

3.4 ARP Processing

When the OVS receives an ARP request from VM, it sends OFPT_PACKET_IN
message to the controller. As mentioned earlier, the controller knows the MAC/IP
addresses of all VMs in the cloud, so it replies with the flow rule that instructs the
OVS to create an ARP reply (i.e., the ARP reply is created by using OVS-specific
actions which are move, load, andmod_dl_src [10]) and send it to the same port
where the ARP request came from.

32

4 Implementatio

The proposed OpenFlow
applications [11]. Both
modules in the Floodlight
setup. Also, The IOFMess
the VM profile, which m
and port number where th
physicalhost server. Our m
install and update the f
switches, which is OVS
installed based on the in
DeviceManager modules i

In our implementation,
reactively install flow rule
which sends the OFPT_PAC
as ARP is handled direc
module in the Floodlight
of the changes in the netw
of the network links.

Fig. 6 Latency variation in a

5 Evaluation

This section presents an
proposed edge-overlay m
of experiments. The first
flow setup helps to reduc
flow setup. The second s
our edge-overlay to the tu

A. Aljaedi et a

on

w edge-overlay methods are implemented as Floodlig
methods utilize StaticFlowPusher and Forwardin

t controller to implement the aforementioned hybrid flo
sageListener module of the Floodlight is used to crea

maps each VM to its location in the cloud (i.e., switch I
he VM is connected to) and the MAC/IP addresses of th
methods use the StaticFlowPushermodule to proactive
flow rules for incoming traffic into the virtual edg
S in our experiments.These proactive flow rules a
nformation that is collected from TopologyManager an
in Floodlight.
 we modified the Forwarding module of the Floodlight

es for the outgoing traffic in the virtual ingress switch onl
CKET_INmessage, and the ARP request flood is prevente
ctly by the controller. Also, the LinkDiscoveryManage
controller was utilized to notify our network application

work topology (i.e., added/removed switches) and the statu

a tree topology. Fig. 7 Latency variation in a fatigued path.

nd discusses the performance evaluation results of th
methods. We tested our overlay methods through a seri
t set of the experiments shows how the proposed hybr
e the flow latency compared with the traditional reactiv
set of experiments compares the network throughput o
unneling protocols VXLAN, GRE, and STT.

al.

ght
ng

ow
ate
ID
he
ly

ge-
are
nd

to
ly,
ed
er
ns
us

he
es

rid
ve
of

Elastic Edge-Overlay Methods Using OpenFlow for Cloud Networks 33

5.1 Flow Latency

This set of experiments was conducted to investigate the impact of the traditional
reactive flow setup on the flow latency and validate the enhancement using the
hybrid flow setup. All the flow latency experiments were conducted in the same
experimental environment. We used the Mininet emulator to configure and run
different types of SDN topologies with using software OpenFlow switches.
Mininet integrates Open vSwitch in its framework, which is a popular OpenFlow-
compliant switch. Note, Mininet can create many OVS instances and configure
them to run in kernel space. In our experiments, the network emulator was running
in a server that is equipped with four CPUs, each Intel(R) Xeon(R) E5530 @
2.40GHz, and 16 GB of RAM. Another server with the same above-mentioned
resources was used to run the Floodlight controller.

In the first experiment, 243 hosts and 121 switches were emulated by Mininet
to create a tree network topology with fanout 3 and depth 5. The emulated hosts
generate traffic randomly using Iperf and create synthetic workload on the
network. We chose two hosts in the network that are 9 hops apart and used ping
responses to measure the latency between them in three modes. The first mode is
the reactive flow setup for all flows in the network, including the flows from the
two selected hosts. The second mode is same as the first mode except that the flow
rules for the path between the selected two hosts are installed proactively in the
intermediate switches. In the third mode, we deployed the hybrid approach and
used our implemented applications on the controller. Here, the flow tables of the
intermediate switches were populated proactively for traffic forwarding between
the edge switches, and the flow rules for incoming traffic are installed proactively
in the edge switches as described in Section 3.3. Every run was repeated 20 times,
and the results are plotted in Figure 6. The ping response latency between the
selected hosts is significantly high in mode one, compared to mode two and three.
Also, the standard deviation of the ping responses’ latencies in mode one was 8.4,
while it was 4.6 in mode three. The maximum latency in mode one was 48.6
ms,whereas it was approximately 64% less in mode three. In this experiment, we
did not configure any transmission or propagation delays between the network
nodes in the emulator in order to focus only on the flow setup latencies in the
reactive and hybrid approaches. As shown in Figure 6, the reactive flow setup
introduces higher latency because all switches in the flow path have to process
OFPT_FLOW_MOD message before forwarding the traffic.

The second experiment was aiming to investigate the impact of processing
additional flow rules while there is traffic in transit, and testing the flow latency for
this scenario in the reactive and hybrid approaches. Therefore, a linear topology with
two edge switches and 12 intermediate switches was created in Mininet. We
configured the controller to push randomly and continuously additional flow rules in
the intermediate switches, and the ping responses were used to measure the flow
latency between hosts, which are connected to edge switches. Each run was repeated
20 times. As you can see in Figure 7, generally the flow latency is lower in the hybrid
approach, and the standard deviation of the responses’ latencies in the hybrid setup is
approximately 62% less than the reactive approach.

34

5.2 Network Throu

The second set of exper
proposed edge-overlay m
used three physical serve
servers were used for virt
and VM2 respectively, a
shows the machine speci
2.4, was used as the vir
configured with OVS L
distribution. All the thre
In this experiment, Iper
TCP packets for 25 seco
while the Iperf server in
environment.

Fig. 8 Machine specification

Fig. 10 UDP loss rate.

A. Aljaedi et a

ughput

riments was designed to assess the performance of th
methods in an emulated cloud environment. Therefore, w

ers and Kernel-based Virtual Machine(s) (KVM). Tw
tualization, server one and server two were hosting VM
and the third server was used as a controller. Figure
ifications of the virtualized environment. OVS, versio
rtual switch in server one and server two, and it wa

Linux-kernel modules, which are included in the OV
ee servers were connected via Gigabit Ethernet switc
rf version 2.0.8 was used to send/receive UDP an

onds in each run. The Iperf client was running in VM
n VM2. All the conducted experiments share the sam

ns. Fig. 9 UDP throughput.

Fig. 11 TCP throughput.

al.

he
we
wo
M1

8
on
as

VS
ch.
nd

M1
me

Elastic Edge-Overlay Methods Using OpenFlow for Cloud Networks 35

The network throughput of the proposed edge-overlay methods are similar.
Therefore, we present the performance results of the edge-overlay for L3 fabric
and omit the results for the other overlay method due to the space limit.

The results of UDP throughput in the proposed edge-overlay are plotted in
Figure 9 with the UDP throughput in VXLAN, STT, and GRE for comparison.
Besides, the optimal throughput for VM to VM communication is included as the
upper performance bound in the experimental environment. Here, the VMs were
bridged to the physical network (i.e., no headers rewriting or tunneling
encapsulation). The x-axis is the size of the transmitted bytes in UDP, excluding
headers, by Iperf client. The y-axis is the throughput measured by the Iperf server.
As you see in Figure 9, the STT performance was close to the optimal, while the
proposed method almost matched the optimal throughput. The overhead of the
outer headers in STT does not affect its performance as it utilizes the offloading
capabilities of NIC. In our method, there are no outer headers, so there are no any
additional fragmentations, and with the support of OVS-kernel module, the
performance was high. Contrarily, the throughput of VXLAN and GRE was far
below the optimal, especially for large data chunks in UDP. The VXLAN
specification recommends setting MTU size to a value that can accommodate the
outer headers and avoid fragmentation. In our experiment, we kept the default
MTU (i.e., 1500 bytes) to test all protocols under the same conditions and obtain a
fair comparison. Comparatively, Figure 10 shows the packet loss rate, which is
high in VXLAN and GRE. Whereas TCP retransmits the missingfragments, UDP
drops the whole packet when it misses fragments, especially when processes send
packets rapidly as it has a limited frame buffer. In our experiments, the Iperf client
in the sender side was configured to consume all the available bandwidth. Thus,
Figure 10 shows the packet loss rate increases gradually with VXLAN, notably
when data chunk is multiple of 1500 bytes. The TCP in our overlay method can
use the offloading capabilities of NIC same as STT. Figure 11 shows the
throughput of TCP in the proposed method, which is even higher than STT and
very close to the optimal throughput.

6 Related Work

NetLord [12] architecture encapsulates the VM frame with additional MAC/IP
headers. The outer MAC headers have the addresses of the edge switches where
the sender and receiver VMs are connected, and the outer destination IP has the
tenant ID. Our solution does not require any additional headers as it rewrites the
addresses in the original headers and restores them in the destination. VL2 [13]
uses L3 fabric for forwarding traffic in Clos topology, and it uses IP-in-IP
encapsulation for network virtualization. It relies on IP multicasting to handle the
virtual network broadcasts. Kawashima et al. [2] proposed non-tunneling edge-
overlay model for the cloud network. His model utilizes OpenFlow to rewrite the
MAC addresses (source and destination) of the VM frame and replace them with
the MAC addresses of the physical servers in the cloud. It uses VLAN tag as VM

36 A. Aljaedi et al.

identifier in the host. However, his model does not hide the addresses of the
physical servers in the cloud from the tenants, which exposes the cloud network
infrastructure to threats. Chen et al. [14] proposed a scalable L2 architecture that
spans multiple datacenters across diverse geographical locations. Their
architecture only serves the cloud provider that relies on L2 fabric datacenter
networks. Guenender et al. [19] published non-encapsulation overlay technique
for network virtualization, which replaces the addresses in VM packet with the
addresses of the edge-switches, and they used the source TCP port number to
identify the VM in the destination host. Their research focused only in TCP, while
our overlay methods consider both TCP and UDP protocols.

7 Conclusion

In this paper, we have presented two OpenFlow-based overlay methods for the
cloud networks. The first method is designed to serve L2 fabric datacenter
network, while the second method can be used for L3 cloud networkinfrastructure.
Our methods utilize OpenFlow for rewriting VM packet headers in order to
forward the tenants’ traffic through the cloud physical network with maintaining
sufficient isolation. Both methods do not use any additional encapsulation headers,
and they can handle broadcast traffic such as ARP with less overhead. We are
planning to extend our design to forward traffic between multiple datacenters in
different locations as future work.

References

1. Kawashima, R., Matsuo, H.: Performance evaluation of non-tunneling edge-overlay
model on 40GbE environment. In: IEEE 3rd Symposium on Network Cloud
Computing and Applications, pp. 68–74. IEEE Xplore (2014)

2. Kawashima, R., Matsuo, H.: Non-tunneling edge-overlay model using openflow for
cloud datacenter networks. In: IEEE 5th International Conference on Cloud Computing
Technology and Science, pp. 176–181. IEEE Xplore (2013)

3. Nakagawa, Y., Hyoudou, K., Shimizu, T.: A management method of IP multicast in
overlay networks using OpenFlow. In: First Workshop on Hot Topics in Software
Defined Networks, pp. 91–96. ACM, New York (2012)

4. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4:
experience with a globally-deployed software defined wan. In: ACM SIGCOMM
2013, pp. 3–14. ACM, New York (2013)

5. Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A., Fulton, B., Ganichev,
I., Gross, J., Gude, N., Ingram, P., Jackson, E., Lambeth, A., Lenglet, R., Li, S.,
Padmanabhan, A., Pettit, J., Pfaff, B. Ramanathan, R., Shenker, S., Shieh, A.,
Stribling, J., Thakkar, P., Wendlandt, D., Yip, A., Zhang, R.: Network virtualization in
multi-tenant datacenters. In: 11th USENIX NSDI, pp. 203–216. ACM, Berkeley
(2014)

Elastic Edge-Overlay Methods Using OpenFlow for Cloud Networks 37

6. Curtis, A., Mogul, J., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee, S.:
DevoFlow: scaling flow management for high-performance networks. In: ACM
SIGCOMM 2011, pp. 254–265. ACM, New York (2011)

7. Bu, K.: Gotta tell you switches only once: toward bandwidth-efficient flow setup for
SDN. In: IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 492–497. IEEE Xplore (2015)

8. Chen, C., Liu, C., Liu, P., Loo, B., Ding, L.: A scalable multi-datacenter layer-2
network architecture. In: 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, Article No. 8. ACM, New York (2015)

9. Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang,
A., Stringer, J., Shelar, P., Amidon, K., Casado, M.: The design and implementation of
Open vSwitch. In: 12th USENIX NSDI, pp. 117–130. ACM, Berkeley (2015)

10. OVS ARP Responder – Theory and Practice. http://assafmuller.com/2014/05/21/ovs-
arp-responder-theory-and-practice/

11. Floodlight Project. https://floodlight.atlassian.net/wiki/display/floodlightcontroller/For+
Developers

12. Mudigonda, J., Yalagandula, P., Mogul, J., Stiekes, B., Pouffary, Y.: Netlord: a
scalable multi-tenant network architecture for virtualized datacenters. In: ACM
SIGCOMM 2011, pp. 62–73. ACM, New York (2011)

13. Greenberg, A., Hamilton, J., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D., Patel,
P., Sengupta, S.: VL2: a scalable and flexible data center network. In: ACM
SIGCOMM 2009, pp. 51–62. ACM, New York (2009)

14. Guenender, S., Barabash, K., Ben-Itzhak, Y., Levin, A., Raichstein, E., Schour, L.:
NoEncap: overlay network virtualization with no encapsulation overheads. In: 1st
ACM SIGCOMM Symposium on Software Defined Networking Research, Article No. 9.
ACM, New York (2015)

	Elastic Edge-Overlay Methods Using OpenFlow for Cloud Networks
	1 Introduction
	2 OpenFlow
	3 Edge-Overlay
	3.1 Overlay for L2 Fabric
	3.2 Overlay for L3 Fabric
	3.3 Virtual Address ses
	3.4 ARP Processing

	4 Implementatio on
	5 Evaluation
	5.1 Flow Latency
	5.2 Network Throu ughput

	6 Related Work
	7 Conclusion
	References

