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Abstract In this emerging age of social media, social networks become growing 
resources of user-generated material on the internet. These types of information 
resources, which are an expansive platform of humans’ emotions, opinions, feed-
back, and reviews, are considered powerful informants for big industries, markets, 
news, and many more. The great importance of these platforms, in conjunction 
with the increasingly high number of users generating contents in Arabic lan-
guage, makes maiming the Arabic reviews in social networks necessary. This 
paper applies four automatic classification techniques; these techniques are Sup-
port vector Machine (SVM) and Back-Propagation Neural Networks (BPNN), 
Naïve Bayes, and Decision Tree. The main goal of this paper is to find a light-
weight sentiment analysis approach for social networks’ reviews written in Arabic 
language. Results show that the SVM classifier achieves the highest accuracy rate, 
with 96.06% compared with other classifiers. 

Keywords Polarity · Sentiment analysis · Text classification · Data mining ·  
Arabic language · Social media 

1 Introduction* 

Finding an automatic way to analyze and classify users' reviews in social networks 
is very important. This is because it is the most empirical way to get the direct 
feedback or information from people. For example, finding which reviews are 
giving positive or negative polarities helps in dealing with customers' behaviors. 
The process of classifying texts or documents according to their polarity is known 
as Sentiment Analysis (SA) [1,2]. 
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Sentiment analysis, which is part of Natural Language Processing (NLP), is set 
to extract the meanings from a text in a way to find the polarity of the text. During 
sentiment analysis process, it is important to try to maintain data accuracy despite 
the need for features selection methods. These features are then classified to which 
polarity this text belongs.  

A study done on 2014 [3] estimated that the percentage of websites containing 
Arabic language contents constitutes around 0.8 % of all the contents on the inter-
net. Users of social networks on the web create around 30% of the Arabic content. 
However, Arabic language has fuzzy and vague semantics, which makes the process 
of analyzing Arabic texts hard to be developed in a systematic way. Moreover,  
Arabic users use informal Arabic language, which is deferent than the formal 
Modern Standard Arabic (MSA), and can be vary from one to another. Informal 
Arabic language is the most using language of speaking and communication on 
social media outlets. Moreover, this spoken Arabic varies, in terms of vocabulary 
and sentence structure, by country. Unlike English language, the research interest 
on processing Arabic language texts is started recently.  

This paper performs SA on Arabic reviews and comments by using four  
machine learning algorithms, which are Support Vector Machine (SVM) [4], 
Back-Propagation Neural Networks (BPNN) [5], Naïve Bayes [6], and Decision 
Tree [7]. We collected 2000 Arabic reviews from social media in order to evaluate 
the different machine learning algorithms based on sentiment analysis. In this 
paper, a particular attention is paid on the preprocessing and features selection for 
Arabic reviews to optimize the classification process. Our motivation was to eval-
uate the strengths and weaknesses of these commonly used machine learning 
methodologies in the field of informal Arabic text sentiment analysis. 

The rest of this paper is organized as follows; related works are presented in 
Section 2. Section 3 describes the used machine learning algorithms. The pro-
posed methodology is presented in Section 4. Section 6 presents the experimental 
results, followed by the conclusion. 

2 Related Work 

Sentiment analysis is a research space in which a lot of difficult problems are to be 
tackled. A number of different approaches have been taken to sentiment analysis. 
In general, these approaches have relied on one of two techniques: either super-
vised or unsupervised machine learning. These techniques for sentiment analysis 
have been principally focused on Indo-European languages, especially English. 
However, to date, there are few approaches to sentiment analysis social media's 
texts that have focused on Arabic language. 

Santidhanyaroj et al. [8] presented a system that uses analysis of social network 
data to evaluate public sentiment of issues and actions affecting the general social 
conscience. They made use of two algorithms: Naïve Bayes and SVM classifiers. 
Within the model for sentiment analysis, a pre-categorized data set was compiled 
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from Twitter. The SVM outperformed the Naïve Bayes classifier in analysis and 
provided more consistent, reliable results.  

A sentimental analysis for Arabic language using two popular tools for  
social analysis: Senti-Strength and Social Mention was proposed by Khasawneh  
et al. [9]. The data set for this study was taken from Facebook and Twitter posts in 
Arabic. Based on the contents of the posts, the tools were used to identify polarity 
of the comments. A comparison of the two tools in ability to guess polarity re-
vealed that the Naïve Bayes gave 91.83% for the Social Mention tool and 95.59% 
accuracy for Senti-Strength.  

Kamal et al. [10] merged the rule-based and machine-learning methods to pro-
pose a new sentiment analysis method for identifying polarity. This approach’s 
novelty stems from its use of NLP features and statistical sets, which allow for 
taxonomy of sentiment at the word-level.  

In [11], Abdul-Mageed and Diab exhibited AWATIF a multi-type corpus for 
Modern Standard Arabic Subjectivity and Sentiment Analysis (MSA SSA). This 
approach is based on by looking to demonstrate how annotation examines inside 
subjectivity and assessment dissection (SSA) can both be roused by existing pho-
netic hypothesis and cater for type subtleties. 

Other works, such as [12], used three different datasets pulled from data on 
Twitter to classify the sentiment of Semitic features using three different methods 
of analysis: replacement, augmentation, and interpolation. Alaa El-Halees [13] 
presented another approach for extracting opinions from Arabic text. His com-
bined approach was tri-fold. It consisted of a lexicon-based method for text classi-
fication, a training set of the classified texts for Maximum Entropy model, and 
finally a K-nearest neighbor for classification of the remaining texts. 

M. Rushdi-Saleh et al. presented an Opinion Corpus for Arabic (OCA) in [14]. 
The corpus consists of Arabic text pulled from web pages specifically focused on 
movies and films. They produced different classifiers using SVM and Naïve 
Bayes algorithms. A. Al-Subaihin et al. [15] proposed an Arabic language senti-
ment analysis tool that relies on human-based computing. The tool is beneficial as 
it aids in the construction, dynamic development, and maintenance of the lexicon. 

3 Machine Learning Algorithms  

In sentiment analysis, the appropriate type of machine learning to use is text clas-
sification, which is known as “supervised learning”. This section briefly describes 
back-propagation neural network, naïve bayes, decision tree, and support vector 
machine classification methodologies, which are employed in this paper.  

3.1 Back-Propagation Neural Networks 

Artificial Neural Networks (ANN) simulates human neurons based on building three 
layers; input layer, hidden layers and output layer. Input layer consists of vectors after 
applying feature dimensionality reduction, hidden layers is the activity region in  
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categorization. Output layer represents the categories. There are two types of training 
the neural networks, which are feed-forward and feedback. Feedback algorithm is 
designed to reduce the mean square error between the real output of a networks and 
the desired output. Within the back-propagation algorithm, there is both a forward 
pass, which gets the activation value, and a backward pass, which adjusts weights 
biases relative to desired and actual outputs. Until the network converges, the back-
ward and forward passes iterate continuously.  

3.2 Naïve Bayes 

Naïve Bayes classifier is frequently used for text classification problems, which is 
a simple probabilistic on the so-called Bayesian theorem. Bayes' classifier is par-
ticularly suited when the dimensionality of the inputs is high. It assumes that a 
document's features are conditionally independent of one another. Given a docu-
ment Ti; the probability that this text is belong to a class Cj, noted as P(Cj| Ti), is 
calculated as: is calculated as:  P(Cj|Ti) = P( T |C )∗P(C )P(T )                         (1) 

where P(Ti |Cj), P(Cj), and P(Ti) is the probability of text Ti is in class Cj, class Cj 
occurrence, text Ti occurrence respectively in the training set. Bayes' classifier 
classifies the target text to the class that has the highest probability value among 
all others classes. 

3.3  Decision Trees 

Decision tree [23] is one of the most common techniques for classification. The 
decision tree is composed of nodes that are connected with branches. The leaf 
nodes are the final decision that categorized the target input to a specific class. All 
inner nodes are set to split the classes into subsets of classes according to a set of 
selected features checks.   

Designing the decision tree is done by analyzing the training data to find the 
discriminatory features. The most significant features are placed at the top of the 
tree, and recursively add the next features checks in the following nodes levels 
until we reach the tree's leafs, which labels the target text to a category.  

3.4 Support Vector Machine (SVM) 

SVM is based on finding the best hyper plane that divide the data into two catego-
ries with the largest possible margin. In this linear classification, the hyper plane  
y = w f(x) + b Where w is the weights vector, b is the bias, and f(x) denotes the 
mapping function from input feature space with maximum margin. SVM can be 
used to create boundaries among categories in case of nonlinear classifications.  
In this case, the data is mapping into another space, which SVMs perform the 
linear algorithm over it.  
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and visualizing data. We found that the RapidMiner tool can accommodate the 
Arabic language easily.  

To evaluate the proposed approach, the experiments is built based on dividing the 
labeled data into two groups; the first group is set for tanning the machine learning 
algorithms, which is 70% of the collected data set, and the second group, which is the 
remaining 30% of the data set, is set to evaluate and test the classifiers.   

5.1 Collected Data Set 

In order to apply machine learning classifications, a set Arabic reviews should be 
collected to train and test the classifiers. The proposed data set is collected from 
Jordanian hotels' customers' reviews on the internet. The collected data set is a 
combination of Arabic reviews and comments from Facebook, Twitter, and 
YouTube. The total number of collected reviews is 2,000. Table 1 shows the total 
number of reviews for each category of the three polarities; positive, negative, and 
neutral.  The collected data set is has a lot of informal Arabic and vernaculars. 

Table 1 Number of reviews by polarity.  

Category Number of Arabic Reviews 
Positive 1003 
Negative 593 
Neutral 404 

5.2 Performance Measures and Results 

In our experiments, we have used the most common performance measures that 
include recall (R), precision (P), and F-measure (F). Given a test set of reviews S1 
that are labeled to the polarity k, and a prediction set S2 that is labeled with polari-
ty k by the machine learning algorithm, the recall (R) and precision (P) measures 
are defined by: =  ∩       (2) 

and =   ∩       (3) 

respectively [16]. To compare the different algorithms with a single rate, we used 
the F-measure, which combine recall and precision. F-measure that is used in our 
experiments is defined as: − =                   (4) 
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The experiments' results for applying sentiment analysis for the proposed data 
set using SVM, BPNN, Naïve Bayes, and Decision Tree classifications algorithms 
are shown in Table 2 in term in terms of Precision, Recall and F-measure.  

As shown in Table 2, SVM achieved the highest accuracy, which is 96.06%, 
followed by Naïve Bayes with average accuracy of 88.38%, and Decision Tree 
with average accuracy of 85.82%. BPNN was the lowest average accuracy of 
69.77%. Moreover, SVM has the highest precision and recall values. 

Table 2 Performance results for each classifier. 

Classifier Precision Recall F-measure 
SVM 95.80% 96.40% 96.06% 

BPNN 72.14% 67.61% 69.77% 
Naïve Bayes 92.62% 84.99% 88.38% 

Decision Tree 83.98% 87.99% 85.82% 
 
In order to test the learning abilities we setup five different experiments with 

300, 600, 900, 1200, and 1500 training reviews set. Figure 2 shows the F-measure 
value for each classifier with these five training sets. As shown in Figure 2, the 
accuracy of SVM, Decision tree, and Naïve Bayes classifiers increase as long as we 
increase the training data. However, BPNN does not learn reasonably well. We 
believe this is because the ambiguity of the data set, which affect the behavior of 
the neural network.  

 

 
Fig. 2 F-measure value versus number of training reviews. 

Figure 3 shows the average training time in seconds for each classifier. As 
shown in the figure, Decision tree classifier needs the largest amount of training 
time compared to other three classifiers. SVM has the smallest training time, 
which is 6.45 seconds. Naïve Bayes has also a small training time with 11.41  
seconds. 
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Fig. 3 Average training time
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