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2.1 Introduction

Ensuring stable crop yields in an era where climate change threatens traditional
agricultural practices through altered rainfall patterns and increased urban con-
sumption has become a vital concern in global food security. Projected freshwater
availability for irrigation indicates that between 20 and 60 Mha of irrigated cropland
may have to be reverted to rainfed management [57]. Formerly irrigated crops would
become entirely dependent on rainfall and vulnerable to yield loss due to drought.
Biotechnology and mining of germplasm of numerous crop species has resulted in
discovery of traits that control water use efficiency (WUE) and improve drought
tolerance, but only a few of these traits have been implemented in the field [116].
“We need a Blue Revolution in agriculture that focuses on increasing productivity
per unit of water—more crop per drop,” Secretary-General Kofi Annan called for a
“Blue Revolution” in agriculture [153]. The Green Revolution drastically increased
agricultural productivity by remediating nutrient-poor soils with fertilizer, devel-
oping irrigation methods and systems, instigating integrated control strategies for
weeds and pests, and selected crops that responded to these changes with high yields.
The Blue Revolution proposes to address decreasing water availability and climate
change. This requires not just drought-tolerance traits, but a high level of control of
WUE while still maintaining high yields required by both industrial agriculture and
smallholders. An integrated research approach has emerged as a valuable strategy to
tackle these necessities. One component of this approach is the mining and intro-
duction of traits from landraces and wild relatives in order to improve drought
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tolerance and WUE in crop species. In some cases, this has been combined with
modern biotechnology in an integrated approach. Recently, drought-tolerant maize
hybrids have been released in the United States as a result of biotechnology and
introduction of traits from distant relatives [140].

This chapter gives a broad overview of the genetic basis of developmental and
cellular responses known in crops to enhance drought tolerance. A number of key
processes and genes have been discovered in model systems that show great pro-
mise for use in crop species. Furthermore, this chapter also addresses the potential
for wild relatives of five major crop species (tomato, potato, wheat, rice, and corn)
as sources for genetic improvement. These landraces and wild relatives are often
remarkably well adapted to their environment through natural selection and tradi-
tional breeding. These relatives provide a resource for mining novel traits for the
genetic improvement of cultivated crops that are vulnerable to environmental stress.

2.2 Cellular Mechanisms and Traits Conferring
Drought Tolerance

2.2.1 Genes Controlling Primary and Secondary
Metabolism

Plants respond to environmental stresses through various physiological and bio-
chemical changes. Exposure to drought, high salinity, and low temperature leads to
cellular dehydration. This removal of water from the cytoplasm results in a decrease
of cytosolic and vacuolar volumes. In response, plants increase the production of
specific sets of primary and secondary metabolites that act as osmoprotectants,
osmolytes, antioxidants, and stress signals. The net accumulation of these solutes
lowers the cellular osmotic potential and draws water into the cell to maintain turgor
pressure. Osmoprotectants preserve the cellular apparatus from the damage caused
by dehydration, without interfering with the normal metabolic processes at the
cellular level. These solutes include amines (polyamines and glycinebetaine), amino
acids (proline), soluble sugars (glucose, sucrose, trehalose), and polyols (mannitol,
sorbitol and inositol; [172]). Because some crops have low levels of these com-
pounds, the manipulation of genes involved in osmoprotectant biosynthesis path-
ways is one of the strategies to improve stress tolerance in plants [158].

Polyamines (PAs) are small aliphatic nitrogen compounds that are ubiquitous in
all organisms. The biological function of PAs is associated with their cationic
nature. In plants, PAs act as regulatory molecules implicated in fundamental cel-
lular processes, including embryogenesis, floral development, and pollen tube
growth [185]. Significant accumulation of the three most common PAs, putrescine
(Put), spermidine (Spd), and spermine (Spm), occurs during biotic and abiotic stress
[198]. Modulation of the PAs biosynthetic pathway by overexpression of ornithine
and arginine decarboxylases (ODC, ADC), S-adenosyl-methionine-decarboxylase
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(SAMDC), and Spermidine synthase (SPDS) resulted in enhanced tolerance to
different environmental stresses in rice (Oryza sativa; [37, 54]), tobacco (Nicotiana
tabacum) and tomato (Solanum lycopersicum; [7]).

Glycine betaine (GB) is a quaternary ammonium derivative of glycine and is
considered a major osmolyte involved in cell membrane protection. In response to
various abiotic stresses such as drought and salinity, GBs are accumulated in
chloroplasts and other plastids of many plant species. One of the principal roles of GB
is that it encourages water influx into cells for maintaining the intracellular osmotic
equilibrium and regulates the cascade of signal transduction [156]. The overpro-
duction of GB in various plants including maize (Zea mays) [155] and cotton
(Gossypium hirsutum) [131] by modulation of two key genes involved in GB
biosynthesis, betA (encoding choline dehydrogenase) and CMO (choline monooxy-
genase), results in improved yield production under stressful field conditions.

In addition, the accumulation of proline under stress conditions in many plant
species has been correlated with stress tolerance. Proline (Pro) is a versatile amino
acid that is essential both as a component of protein and as a free amino acid. To
avoid cellular dehydration, proline facilitates water uptake and reduces the accu-
mulation of Na+ and Cl− [12]. In plants, the Pro biosynthesis takes place in the
cytosol and in the plastids. The principal precursor, glutamate, is converted to proline
by two consecutive steps catalyzed by pyrroline-5-carboxylatesynthetase (P5CS)
and P5C reductase (P5CR). The degradation of proline occurs in mitochondria by the
reverse action of proline dehydrogenase (PDH) and pyrroline-5-carboxylate dehy-
drogenase (P5CDH; [113]). The modulation of expression of these genes signifi-
cantly enhances endogenous levels of proline and increases drought stress tolerance
in wheat (Triticum aestivum; [193]) as well as in rice [177], promoting growth,
antioxidant defense, and decreasing uptake of Na+ and Cl−.

Themanipulation of osmoprotectant accumulationwas also successfully usedwith
the reduced forms of sugars such as glucose, sucrose, fructose, and trehalose. Sugars
provide carbon for cellular metabolism and regulate growth and development in
plants. During salinity and drought stresses, sugars and sugar alcohols act as osmo-
protectants regulating the osmotic adjustment, protecting the membrane by interact-
ing with protein complexes and enzymes, and scavenging toxic ROS [191]. The
regulation of trehalase activity occurs by expression of trehalose synthesis-related
genes: trehalose phosphate synthase (TPS) and trehalose-6-phosphate phosphatase
(TPP), improve tolerance to abiotic stresses in rice [66] and alfalfa (Medicago sativa;
[178]), decreasing aggregation of denatured proteins [13, 112]. Similarly, sugar
alcohols including mannitol, sorbitol, and inositol improve stress tolerance of plants.
Mannitol is the most common polyol in nature and is synthesized in mature leaves
from mannose-6-phosphate by the combined action of mannose-6-phosphate reduc-
tase (M6PR) and a mannose-6-phosphate phosphatase. It is then translocated through
the phloem and oxidized tomannose bymannitol dehydrogenase (MTD) or stored and
used as a carbon source. During abiotic stress, mannitol is accumulated in the cytosol
to act as a scavenger of hydroxyl radicals and to stabilize macromolecules [47].

Metabolic plasticity as well as biosynthesis and accumulation of osmoprotective
compounds are promising mechanisms of plant acclimation to stress. Polyamines,
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glycine betaine, amino acids, polyols, and some classes of sugar are active par-
ticipants in the response to drought and salinity. Therefore, their biosynthetic
pathways represent interesting targets for future breeding applications.

2.2.2 Stress-Induced Regulatory Genes

Plants respond and adapt to water deficit at both the cellular and molecular levels,
by accumulating osmolytes and proteins specifically involved in stress tolerance.
Drought induces the biosynthesis of the phytohormone abscisic acid (ABA), which
in turn causes stomatal closure and induces expression of stress-related genes.
There are two important transcriptional networks activated under abiotic stress
conditions in Arabidopsis: an abscisic acid (ABA)-dependent signaling pathway
and an ABA-independent regulatory network. Transcription factors (TFs) activated
by ABA include the AREB/ABF (ABA-responsive cis-element binding
protein/ABA-responsive cis-element binding factor). The AREB/ABF TFs have a
bZIP domain and four conserved domains containing SnRK2 phosphorylation sites.
Upon phosphorylation, AREB/ABFs are activated and bind to the ABA-responsive
cis-element (ABRE; PyACGTGG/TC), enriched in the promoter regions of
drought-inducible genes. AREB/ABFs function as master transcriptional activators
regulating ABRE-dependent gene expression in ABA signaling under drought
stress conditions.

Other important transcriptional regulators, such as the MYC and MYB proteins,
function as activators in theABA-dependent regulatory systems [2, 190]. AMYCTF,
RD22BP-1 (AtMYC2), and AtMYB2 have been shown to bind cis-elements in the
RD22 promoter and cooperatively activate RD22 [1]. TheseMYC andMYB proteins
are synthesized after the accumulation of endogenous ABA, indicating that their role
is in a late stage of the stress responses. SnRK2 functions upstream of
ABA-responsive expression ofRD22 andRD29B. In particular, twoABREmotifs are
important in the expression of RD29B. Instead, ABRE-like motifs are not involved in
theABA regulation ofRD22. Several drought-inducible genes do not respond toABA
treatment, suggesting the existence of an ABA-independent pathway in the dehy-
dration stress response. This pathway is mediated by dehydration-responsive
element-binding (DREB)-type TF. DREB2 proteins are members of the AP2/ERF
family of plant-specific TFs; they bind to dehydration-responsive element/C-repeat
(DRE/CRT) and their conserved DNA-binding motif is A/GCCGAC. Among the
eight DREB2 genes in Arabidopsis, DREB2A and DREB2B are highly induced by
drought, high salinity, and heat stress. Evidence for interaction between the
AREB/ABFs and DREB/CBFs has been reported. Lee et al. [119] showed that the
DREB1A/CBF3, DREB2A, and DREB2C proteins interact physically with
AREB/ABF proteins. These data suggest crosstalk between elements of the
ABA-dependent and -independent response pathways.

It has also become clear that changes in gene expression patterns and in RNA
processing are involved in stomatal movement. The first TFs for which a role in
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stomatal opening/closure has been clearly demonstrated were the Arabidopsis
AtMYB60 [46] and AtMYB61 proteins [122]. AtMYB60 is specifically localized
in guard cells and its expression is upregulated by signals that induce stomatal
opening, such as white and blue light, and downregulated by darkness, desiccation,
and ABA treatment, signals that promote stomatal closure. In contrast to
AtMYB60, the AtMYB61 gene is mainly expressed in guard cells in the darkness,
when stomata are closed.

Two other Arabidopsis MYB have been described for their involvement in
stomatal movements: AtMYB44 [103] and AtMYB15 [53]. AtMYB44 expression
was induced by ABA and by different abiotic stresses. It was highly expressed in
guard cells. AtMYB44 negatively regulates the expression of genes encoding a
group of serine/threonine protein phosphatases 2C (PP2Cs) that have been previ-
ously described as negative regulators of the ABA signaling. The AtMYB15 gene
has a role in the regulation of stomatal closure. In Arabidopsis three other TFs
involved in stomatal movements have been characterized: AtERF7 [175], NFYA5
[121], and NPX1 [106]. AtERF7 belongs to the APETALA2/ethylene-responsive
element binding proteins (AP2/EREBP) family. This protein binds to the GCC box
located in the promoter of its target genes and acts as a repressor of transcription.
NFYA5 is a member of the Arabidopsis NF-YA family. Nuclear factor Y (NF Y) is
a TF that binds to the CCAAT box, a cis-element present in about one fourth of
eukaryotic gene promoters. The expression of NFYA5 is upregulated by ABA and
drought and the gene is highly expressed in vascular tissues and guard cells.

A novel Arabidopsis transcriptional regulator involved in stomatal movement is
nuclear protein X1 (NPX1). This protein is a nuclear factor, without a functional
DNA binding motif. It acts as a negative regulator of transcription, probably
through the interaction with other proteins that bind DNA.

Two TFs, SNAC1 and DST, involved in the regulation of stomatal movements
have been identified in rice [83, 86]. Stress responsive NAC1 (SNAC1) is a
member of the plant-specific NAC (NAM, ATAF, and CUC) family of TF that
includes 149 members in rice. SNAC1 expression is induced in response to abiotic
stresses and is predominant in guard cells under drought conditions. Drought and
salt tolerance (DST) is a C2 H2-type zinc finger-containing protein. DST is unique
in that its single zinc finger motif is required for both its DNA-binding and
transactivation. Huang and colleagues [86] found that DST is involved in a novel
H2O2-mediated pathway for stomatal closure that is ABA-independent.

2.2.3 Regulation of ROS

An important cellular mechanism conferring drought tolerance is the regulation of
reactive oxygen species (ROS). ROS are chemically reactive molecules containing
oxygen and they are formed in the metabolism of oxygen and have important roles
in cell signaling and homeostasis. It has been established that 1–2 % of oxygen
absorbed by plants is used to produce ROS in plants [24]. Overaccumulation of
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ROS from abiotic stress contributes to major losses of crop productivity and is an
important economic problem for cultivated plants worldwide [69]. Accumulation of
ROS causes oxidative stress, which in turn results in oxidative damage to proteins,
DNA, and lipids [69]. Increased levels of ROS have been reported during biotic
and/or abiotic stresses, such as pathogen attack, wounding, UV irradiation, high
light, drought, salinity, and chilling [170]. Acclimation of plants to drought and
salinity is often associated with increased levels of ROS, such as superoxide anion
(O2

−), hydrogen peroxide (H2O2), hydroxyl radical (HO), and singlet oxygen (O2),
which are toxic for the cell [74]. These products are produced in chloroplasts by the
electron transport chain when CO2 is limited, in mitochondria during overreduction
of the electron chain transport and in peroxisomes when glycolate is oxidized to
glyoxylic acid during photorespiration [144]. In addition, the plasma membrane
together with the cell wall and apoplast can make an important contribution to
drought-induced ROS production. During nonstress conditions, ROS are efficiently
eliminated by nonenzymatic and enzymatic antioxidants. However, during drought
and salt stress, the production of ROS exceeds the capacity of the antioxidative
systems to remove them, causing oxidative stress [192]. In these conditions, the
elimination of ROS is a key response to tolerate drought stress. This is mainly
achieved by antioxidant compounds such as ascorbic acid, glutathione, thioredoxin,
and by oxyreductant enzymes as glutathione peroxidase, superoxide dismutase, and
catalase (Table 2.1).

The antioxidant compounds play different roles: ascorbic acid (AsA) is used as a
substrate by ascorbate peroxidase to reduce H2O2 to H2O in the ascorbate–glu-
tathione cycle and generates monodehydroascorbate, which further dissociates to
ascorbic acid and dehydroascorbate [65]. α-Tocopherol is a lipid soluble antioxi-
dant that acts as lipophilic antioxidant and interacts with polyunsaturated acyl
groups of lipids. This in turn reduces the deleterious effects of ROS by stabilizing
the membrane and acts as a modulator of signal transduction [60]. Glutathione
(GSH) is a tripeptide (γglu-cys-gly) that reduces disulfide bonds formed within
cytoplasmic proteins to cysteines by serving as an electron donor. It has been
reported that the conversion ratio of reduced glutathione to its oxidized (GSSG)
form during the detoxification of H2O2 is an indicator of cellular redox balance.
This has been widely reported in plants under various abiotic stresses [81]. The
defense against ROS is maintained by detoxifying enzymes such as superoxide

Table 2.1 ROS scavenging antioxidant enzymes, their substrates and products

Enzymatic antioxydant Reaction catalyzed

Superoxide dismutase (SOD) O2
− + O2

− + 2H+ → 2H2O2 + O2

Catalase (CAT) H2O2 → H2O + ½ O2

Ascorbate peroxidase (APX) H2O2 + AsA → 2 H2O + DHA

Monodehydroascorbate reductase (MDHAR) MDHA + NAD(P)H → AsA + NAD(P)+

Dehydroascorbate reductase (DHAR) DHA + 2GSH → AsA + GSSG

Glutathione reductase (GR) GSSG + NAD(P)H → 2GSH + NAD(P)+
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dismutase, ascorbate peroxidase, glutathione peroxidase, and catalase. Superoxide
dismutase converts superoxide to H2O2, and ascorbate peroxidase and glutathione
peroxidase detoxify H2O2 to water, and catalase converts H2O2 to oxygen [9].
Several studies have been published about tolerant transgenic plants overexpressing
scavenging antioxidant enzymes. Transgenic rice plants overexpressing OsMT1α, a
gene coding for superoxide dismutase, showed enhanced tolerance to drought
together with an increase in catalase and ascorbate activity [203]. Overexpression of
ascorbate peroxidase in tobacco chloroplasts enhanced plant tolerance to salt stress
and water deficit [15]. Tobacco plants overexpressing Prosopis julifora glutathione
S-transferase (PjGSTU1) had increased survival over controls under 15 % PEG
stress [68]. Tobacco cells silenced in the PDH gene showed an accumulation of
proline and enhanced osmotolerance with respect to the wild-type cells [182].

2.3 Developmental Mechanisms and Traits Conferring
Drought Tolerance

2.3.1 Genes Controlling WUE: Stomatal Sensitivity
and ABA

Stomata are the key organs regulating plant gas exchanges with the environment,
responsible for controlling over 98 % of the CO2 and H2O exchanged by plants
with the outside air [117]. Several endogenous and environmental cues regulate
stomatal movements, including hormonal stimuli, atmospheric CO2 concentrations,
presence and wavelength of light, and pathogen attack [46]. Integration of all these
signals determines stomatal conductance and therefore photosynthesis and tran-
spiration rate, resulting in plant growth and control of dehydration. WUE is defined
by the ratio of water loss to carbon gain [105]. At the leaf level, WUE is determined
by the net CO2 assimilated by photosynthesis divided by the water lost through
transpiration [180]. Changes in climatic conditions result in a modulation of WUE.
For example, the recent rise in atmospheric CO2 has resulted in increased CO2

uptake and reduced transpiration in temperate and boreal forests of the northern
hemisphere [105]. An increased WUE is a main target of breeding programs for
several important crops and genetic variation has been used to identify quantitative
trait loci governing WUE, often using carbon isotope discrimination as a simple
measure to quantify WUE. This approach has been used in tomato [137], alfalfa
[101], and sunflower [4]. In some instances, quantitative trait loci (QTL) isolation
has been followed by identification of candidate genes. This was the case in a recent
study in Pinus, where the first WUE QTL for which the responsible gene identified
was an orthologue of the Arabidopsis Erecta gene [50]. This gene encodes a
receptor-like kinase involved in the determination of stomatal density and pat-
terning [138]. The identification of genes involved in regulation of stomatal
movements has extensively relied on Arabidopsis. Several components of the signal
transduction cascades activated by high/low CO2 concentrations and ABA have
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been identified and signaling pathways have been elucidated. Responses appear
specific to the different stimuli in the early stages and subsequently merge in the
downstream transduction pathways [107].

Several plasma-membrane–associated ion transporters are responsible for mem-
brane polarization and depolarization events necessary to induce water exit/entrance
in the guard cells that cause stomatal closure/opening, respectively. Slow anion
channel-associated 1 (SLAC1) is an S-type anion channel, which, upon activation,
transports anions such as malate to the apoplast [67, 189]. Membrane depolarization
in turn stimulates the efflux of K+ ions, followed by osmosis of H2O. In an opposing
role to SLAC1, ABC transporter B family member 14 (AtABCB14) transports
malate into the guard cells, thereby preventing stomatal closure [118]. Gated
outwardly-rectifying K+ channel (GORK) is a K+ outward-rectifying channel
expressed in guard cells and largely responsible for the K+ efflux caused by ABA
[56, 82]. Knockout mutants in which GORK expression is abolished display an
increased water loss caused by defects in stomatal closure [82]. Potassium channel in
Arabidopsis thaliana 1 (KAT1) is a hyperpolarization-activated inward-rectifying
potassium channel that mediates potassium influx into guard cells leading to
stomatal opening [21]. Another essential component of stomatal opening is
AHA1/OST2 (open stomata 2), the guard-cell plasma membrane H+-ATPase
responsible for the plasma-membrane hyperpolarization, which initiates stomata
opening [142]. Plasma membrane located NADPH oxidases AtRBOHD/AtRBOHF
(respiratory burst oxidase homologue D and F) determine the ABA-triggered pro-
duction of second messenger ROS [115, 173] that activate plasma membrane Ca2+

channels, and cause ABA-induced stomatal closure [115].
Regulation of these effectors to induce stomatal closure when water scarcity

conditions are perceived is achieved through an increase in ABA concentration
within guard cells. This intracellular increase is the result of biosynthesis, translo-
cation from other tissues, or the mobilization of inactive,glycosylated forms. ABA is
perceived by the pyrabactin resistance (PYR)/PYL (PYR1-like)/regulatory compo-
nent of ABA response (RCAR) family of intracellular ABA receptors [133, 151].
Initially identified in Arabidopsis, the ABA receptors have since been described in
many species such as tomato [179, 71], beechnut [164], strawberry [39], rice [108],
sweet orange [163], and soybean [16]. Upon binding to ABA, the receptors undergo
a conformational change that enables them to bind to and inactivate protein phos-
phatase 2C (PP2Cs), a family of major negative regulators of ABA responses
including ABA insensitive 1 (ABI1), ABA insensitive 2 (ABI2), homology to ABI1
(HAB1), and PP2CA [64]. When the PP2Cs are bound to the ABA receptors, their
activity is inhibited and downstream components are released from PP2C-operated
inactivation. In guard cells, the main target of PP2C inhibition is OST1 (open
stomata 1, also known as SnRK2.6/SRK2E), a Ser/Thr kinase that constitutes a
major hub for the regulation of immediate and transcriptional responses to ABA and
is also involved in CO2 responses. When OST1 is released from PP2C inhibition,
several downstream effectors such as TFs (see section above) and proteins located on
the plasma membrane get phosphorylated, resulting in the activation of stomatal
closure promoters such as SLAC1 and AtRBOHF [67, 109, 173]. By contrast,
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OST1-induced phosphorylation results in the inactivation of inhibitors of stomatal
closure. For example, phosphorylation at Thr306 results in reduction of the activity
of KAT1 [168].

Early signaling components of the CO2 response pathway have also been iso-
lated. The first identified negative regulator of CO2-induced stomatal closure is the
kinase high temperature 1 (HT1) [76]. ht1–2 mutants show a constitutive high CO2

response but still retain the ability to respond to variations in light wavelengths and
to ABA, placing HT1 upstream of the merging point of these different signal
transduction cascades. Stomatal closure induced by high CO2 concentrations is
promoted by two β-carbonic anhydrases expressed in the guard cells, CA1 and
CA4. Analysis of ca1ca4 double mutants, which retained the ability to respond to
shifts in light wavelength and ABA, indicated that carbonic anhydrases act early in
CO2 perception [84]. Triple mutants in which HT1, CA1, and CA4 were inactivated
showed a constitutive high CO2 response phenotype similar to that of ht1–2,
indicating that HT1 is epistatic to CA1/CA4. An upstream regulator of HT1 kinase
was recently identified in resistant to high carbon dioxide 1 (RHC1), a mate-like
protein [184]. By examining genetic interactions and biochemical properties of the
different CO2 sensing and signal transduction machinery, Tian and colleagues [184]
proposed that RHC1 senses carbonic anhydrase-generated increases in carbonic
acid and undergoes a conformational change that enables the inhibition of HT1.
Inactivation of HT1 removes inhibition of stomatal closure by releasing OST1 from
inhibition through phosphorylation.

2.3.2 Architectural: Roots, Stomatal Density, Cuticle
and Waxes

2.3.2.1 Roots

The root is an important organ providing water, nutrients, and hormones to the
aboveground tissues as well as mechanical support. Root architecture is a term that
describes the distribution of roots within the soil profile through space and time
[132] and defines the zone of water and nutrient availability to plants. This plays an
important role in abiotic stress tolerance, crop performance, and yield. The inter-
actions between developmental programs and the responses to abiotic and biotic
environmental stimuli determine the architecture of the roots through which the
plant explores the soil [135]. In response to environmental changes, root archi-
tecture is modified to increase water uptake efficiency. Therefore, understanding the
development and architecture of roots has potential for the exploitation and
manipulation of root characteristics to optimize growth in unfavorable environ-
mental conditions [51]. Drought has a major effect on root architecture, with many
plants preferentially increasing primary root elongation and suppressing lateral root
branching in response to stress. Many plants adapted to drought, such as sorghum,
have a naturally more vertically oriented root structure [171]. Recent studies have
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identified many genetic components that contribute to root architecture; some of
these have the potential to limit crop loss due to adverse environmental conditions
[102].

In rice, several genes related to root architecture that confer a yield advantage in
conditions of water deficit have been identified [41, 42, 93, 98]. In particular, the
NAC family of TFs was characterized with regard to root architecture and some
members of this family were overexpressed [211]. One of these, OsNAC9, alters
the root architecture enhancing drought resistance and grain yield under field
conditions [157]. The authors evaluated the overexpression of the TF OsNAC9
under the control of a constitutive or root-specific promoter in transgenic rice under
both normal and drought conditions. In suboptimal water availability, grain yield
was found to be improved in both transgenic lines, which showed a reduced lateral
root density. Zhan et al. [208] reported that maize recombinant inbred lines with
few, but long, lateral roots had substantially deeper rooting, greater leaf relative
water content, greater stomatal conductance, and 50 % greater shoot biomass than
lines with numerous short roots. In water stress conditions, these recombinant lines
had 144 % greater yield than controls.

Hormone balance also plays an important role in the definition of root archi-
tecture. Seo and colleagues [169] reported that an Arabidopsis R2R3-type MYB
transcription factor, MYB96, regulates lateral root meristem activation under
drought conditions via ABA-auxin signaling crosstalk. In this signaling scheme, the
MYB96-mediated ABA signals are incorporated into an auxin signaling pathway
that involves a subset of GH3 genes encoding auxin-conjugating enzymes. The
activation-tagged mutant overexpressing MYB96 had a dwarf phenotype and
reduced lateral root formation while exhibiting enhanced drought resistance.
Expression of the GH3 genes was significantly elevated, which is consistent with
the reduced lateral root formation. In contrast, the MYB96-deficient knockout
mutant produced more lateral roots and was more susceptible to drought stress. The
authors speculate that MYB96 is a molecular link that integrates ABA and auxin
signals that auxin homeostasis during lateral root development, especially under
water-deficit conditions. Cao and Li [36] showed that autophagic programmed cell
death (PCD) happens in the region of the root apical meristem in response to severe
water deficit. They emphasized that ROS accumulation may trigger the cell death
process of the meristematic cells in the stressed root tips. Analysis of the
Arabidopsis mutant atbi1-1, BAX inhibitor-1 (AtBI1), under severe water stress
revealed that AtBI1 and the endoplasmic reticulum stress-response pathway mod-
ulate water stress-induced PCD. These mutants develop thick and short lateral roots
that result in increased tolerance to the water stress. Under severe drought condi-
tions, plants activate the PCD program in the root apical root meristem, so that
apical root dominance is removed. In this way, plants can remodel their root system
architecture to adapt to the stress environment.

In conclusion, aboveground components of plants are well studied because they
are accessible. Roots are less well studied because they are not readily visible and
replicating the conditions in which they grow can prove difficult. Root traits,
especially root length, density, and depth, have long been seen as critical traits in
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order to improve crop adaptation to water stress. It is important to note that drought
tolerance is a complex composite resulting from the interaction of root and shoot
traits [130]. The size and activity of the root system determines the rate at which the
shoot system can produce photosynthates. It is evident that improving yield under
drought conditions will require a whole plant growth and functioning approach.
Drought adaptation must be evaluated in relation to the timing and severity of
drought stress. This may vary according to soil water-holding capacity, moisture
availability at crop sowing, timing and quantity of in-season rainfall, and in asso-
ciation with other major abiotic stresses, such as high temperature and salinity.
Drought stress frequently occurs along with high-temperature stress, and crosstalk
occurs between the responses to these stresses at various levels.

2.3.2.2 Stomatal Density

Stomata are pores on leaf epidermis for both water and carbon dioxide fluxes and
play a crucial role in photosynthesis and transpiration processes. The best com-
promise between photosynthesis and transpiration would maximize CO2 uptake and
minimize water loss, and ultimately achieve the possible maximal WUE. Stomata
are, therefore, the primary determinants of plant drought tolerance because crop
water loss directly involves stomata [206]. Leaf gas exchanges are greatly affected
by stomatal density, defined as pore size or number. Environmental factors, such
light, CO2, temperature, humidity, and drought, can affect plant stomatal density
during the development of plants. Recent advances have identified a number of
genes regulating stomatal density and this has made it possible to generate plants
with modified stomatal densities and analyze the effect of stomatal density on plant
WUE. In Arabidopsis it has been demonstrated that angustifolia3 (AN3) functions as
a focal regulator of water stress tolerance and WUE by a mechanism that involves
transcriptional repression of YDA, a MAPKK kinase gene that negatively regulates
stomatal development, stomatal density, and transpiration [141]. Arabidopsis plants
lacking AN3 activity have high drought stress tolerance because of low stomatal
densities and improved root architecture. Such plants also exhibit enhanced WUE
through lower transpiration without a reduction in biomass accumulation. The AN3
was associated with a region of the YDA promoter in vivo. Mutation in YDA
significantly decreased the stomatal density and root length of an3 mutant, thus
proving the participation of YDA in an3 drought tolerance and WUE enhancement.
These components form an AN3–YDA complex, which allows the integration of
water deficit stress signaling into the production or spacing of stomata and cell
proliferation, thus leading to drought tolerance and enhanced WUE.

Also in Arabidopsis, Franks et al. [63] found that a reduction in stomatal con-
ductance via reduced stomatal density in epidermal patterning factor (EPF2)-
overexpressing plants increased both instantaneous and long-term WUE without
altering significantly the photosynthetic capacity. Conversely, plants lacking both
EPF1 and EPF2 expression exhibited higher stomatal density, higher stomatal
conductance, and lower instantaneous and long-term WUE. Arabidopsis plants with
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lower stomatal densities that have reduced transpiration and greater drought tol-
erance have been found to have little or no loss of nutrient uptake [78].

In rice it has been reported that an Arabidopsis homeodomain–leucine zipper
transcription factor enhanced drought tolerance/homeodomain glabrous11
(EDT1/HDG11) was able to confer drought tolerance and increase grain yield in
transgenic plants. The improved drought tolerance was associated with a more
extensive root system, reduced stomatal density, and higher water use efficiency
[207]. Heterologous expression in tobacco of SlERF36, a tomato EAR
motif-containing transcription factor, leads to a 25–35 % reduction in stomatal
density but without any effect on stomatal size or sensitivity [187]. Reduction in
stomatal density leads to a marked reduction in stomatal conductance (42–56 %) as
well as transpiration and is associated with reduced CO2 assimilation rates,
reduction in growth, early flowering, and senescence. SlERF36 overexpressing
plants have constitutively high nonphotochemical quenching (NPQ) that might
function as a protective measure to prevent damage from high excitation pressure.
The high NPQ leads to markedly reduced light utilization and low electron transport
rates even at low light intensities. Taken together, these data suggest that SlERF36
exerts a negative control over stomatal density and modulates photosynthesis and
plant development through its direct or indirect effects. In Arabidopsis, the
expression of Medicago truncatula cold-acclimation specific protein 31
(MtCAS31) in response to NaCl, ABA, cold, and drought stress was analyzed
[200]. MtCAS31 was significantly upregulated following drought stress.
Overexpression of MtCAS31 markedly increased drought tolerance and decreased
stomatal density of transgenic plants.

In rice, Liu et al. [123] observed that phytochrome B (phyB) mutants exhibited
enhanced drought tolerance, suggesting that phyB may be involved in the regulation
of tolerance to drought stress. They demonstrated that phyB mutants exhibited
reduced stomatal density and length and showed a decreased transpiration per unit
leaf area that contributed to the improved drought tolerance. In these plants, the
expression of genes related to stomatal such as Erecta and Expansin gene families
were upregulated in the phyB mutants by comparison. This suggests that this
increased expression in the leaves of the phyB mutants probably resulted in the
enlarged epidermal cells and therefore the reduced stomatal density without
changing the stomatal index. The Arabidopsis GT-2 LIKE 1 loss-of-function
mutations (gtl1) result in increased water deficit tolerance and higher integrated
WUE by reducing daytime transpiration without a reduction in biomass accumu-
lation [206]. The gtl1 plants had higher instantaneous WUE that was attributable to
about 25 % lower transpiration and stomatal conductance but CO2 assimilation.
Lower transpiration was associated with higher expression of stomatal density and
distribution1 (SDD1) and an about 25 % reduction in abaxial stomatal density.
GTL1 expression occurred in abaxial epidermal cells where the protein was
localized to the nucleus, and its expression was downregulated by water stress.
GTL1 interacts with a region of the SDD1 promoter that contains a GT3 box,
necessary for the interaction between GTL1 and the SDD1 promoter. These results
establish that GTL1 negatively regulates WUE by modulating stomatal density via
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transrepression of SDD1. Using two cultivars with contrasting responses to salinity
has been able to demonstrate that reduced stomatal density increased salinity tol-
erance and WUE under salt stress. Constitutive low transpiration fluxes associated
with reduced stomatal density may uncouple plant adaptation and yield reduction
under saline stress in a specific agricultural context [18, 150]. It is plausible that
through genetic modification of stomatal density, by breeding selection and/or
genetic methods, improving crops for better WUE and drought tolerance is
achievable. Understanding how multiple signals contrast with the components of
stomatal development will be the next challenge. Knowledge of such molecular
interactions will elucidate the significance of stomata to whole-plant growth,
development, and physiology. Lastly, as genome sequence information of more
plant species becomes available, it will also become possible to understand the
conservation and uniqueness of the evolution of gene regulatory networks speci-
fying stomatal development.

2.3.2.3 Cuticle and Waxes

The plant cuticle is a hydrophobic coating composed of a cutin polyester membrane
impregnated and overlaid with free waxes that provides the last barrier over
essentially all aerial plant organs [72]. The cuticle is synthesized by the epidermal
cells and it can protect plants from nonstomatal water loss, dust deposits, pollen,
and air pollutants as well as biotic and abiotic stresses such as UV radiation damage
and bacterial and fungal pathogens [97, 114, 161, 162]. The mechanical structure
and chemical composition of cuticle lipids vary considerably between plant species,
and in response to environmental stimuli and stresses. Several studies have indi-
cated that drought can induce increased wax deposition on the leaf surfaces of
different plant species, including Arabidopsis [204], cotton [28], peanut [166], and
tree tobacco [34]. The importance of cuticle function is highlighted by studies using
mutants defective in cuticle biosynthesis, which often do not survive when ger-
minating under normal conditions but can be rescued by high humidity [203].

Increased levels of cuticular waxes have been associated with enhanced drought
tolerance in oat [22], rice [92], and sorghum [100]. A mutant of wild barley, eibi1,
with a very thin cutin layer, was hypersensitive to drought [40]. Breeding for
greater tolerance and yield under drought conditions led to increased amounts of
cuticle waxes, further confirming the connection between drought tolerance and
cuticle properties [70]. Thus, the activated biosynthesis of cuticle waxes appears to
be an established plant response to dry conditions.

Many genes coding for enzymes involved in the biosynthesis of cuticle com-
ponents have been isolated and characterized [99, 167, 169].

Transcription factors (TFs) are involved in the regulation of biosynthesis and
accumulation of cuticle components. Most of these belong to one of three different
families: ethylene responsive factors (ERFs), myeloblastosis family (MYB) TFs,
and homeodomain–leucine zipper class IV (HD-Zip IV) factors [5, 31, 45, 96, 169,
209]. Overexpression of these TFs leads to changes in cuticle accumulation and/or
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composition often increasing stress tolerance. In many cases, overexpression of
these TFs negatively affects plant growth and yield [5, 209]. Recently, Wang et al.
[195] isolated a CER1 homologue CsCER1, a gene involved in alkane biosynthesis,
in cucumber. They showed that abnormal expression of CsCER1 in transgenic
cucumber plants had dramatic effects on very-long–chain (VLC) alkane biosyn-
thesis, cuticle permeability, and drought resistance. In Arabidopsis, the mutant,
shine (shn) displays characteristics of plant surface defects [5]. When compared
with the wild type, leaves of shn show a deep shiny green appearance, with a curled
structure. They also have altered cuticle permeability, cuticular wax load and
structure, and epidermal differentiation. The SHN gene encodes an AP2/EREBP
transcription factor, and the characterization of two of its homologues suggests that
this clade of genes acts in the regulation of lipid biosynthesis required for protection
of plants from the environment, including organ separation processes and
wounding. The tomato orthologue, SlSHN1 transcription factor, was also isolated
and the expression analysis indicated that it is induced in response to drought
conditions [6]. Overexpression of SlSHN1 in tomato produced plants that showed
mild growth retardation with shiny and dark green leaves. Expression analysis
indicated that several wax-related synthesis genes were induced in transgenic lines
overexpressing SlSHN1. Transgenic tomato plants showed higher drought tolerance
compared to wild-type plants; this was reflected in delayed wilting of transgenic
lines, improved water status, and reduced water loss.

Zhou et al. [212] conducted a functional analysis of OsGL1-6 in rice. OsGL1-6 is
homologous to CER1 in Arabidopsis and Wda1 in rice, universally expressed in
vegetative and reproductive organs, and especially highly expressed in leaf epidermal
cells and vascular bundles. A phenotypic characterization and drought sensitivity
experiments on OsGL1-6 antisense-RNA transgenic plants indicated that OsGL1-6 is
involved in cuticular wax accumulation and drought resistance. The drought sus-
ceptibility was in agreement with their deficient cuticles and positively correlated
with the reduced accumulation of the leaf cuticular wax, implying its role in drought
stress resistance. Thus, genetic modification of OsGL1-6 may have great potential for
improving the drought resistance of rice. Studies on mutation of the eceriferum9
(CER9) gene in Arabidopsis showed extreme alteration in the cuticular wax profile
(especially on leaves) toward the VLC free fatty acids tetracosanoic acid (C24) and
hexacosanoic acid (C26; [129]). Relative to the wild type, cer9 mutants exhibit
elevated cuticle membrane thickness over epidermal cells and cuticular ledges with
increased occlusion of the stomatal pore. CER9 is the first described cuticle
biosynthesis gene whose deficiency improves both plant response to water deficit and
WUE, indicating that CER9may encode an important new cuticle-associated drought
tolerance determinant. These studies provide evidence that the CER9 protein is a
negative regulator of cuticle lipid synthesis via its putative role as an E3 ubiquitin
ligase, similar to Doa10 in yeast. Due to its novel impact on plant water status,
elucidation of CER9’s cellular function may reveal new molecular breeding and
transgenic strategies to improve the drought tolerance and WUE of crop plants.

Systematic studies of the large collection of diverse wax mutants now available
should highlight the specific contribution of single wax compounds in
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plant/environment interactions as well as in the organization of waxes, together
with cutin, in the highly structured cuticle. Clearly, a coregulation of cutin and
waxes is required for both environmental and developmental purposes of the
cuticle. The transcriptional regulators controlling the deposition of both lipophilic
materials throughout plant development must be investigated [23].

2.4 Landraces and Wild Relatives as Sources
for Drought Tolerance Traits

2.4.1 Tomato

Global demand for tomato is steadily increasing, particularly in developing areas
prone to drought cycles [174]. Therefore, it is necessary to develop more
drought-tolerant tomato varieties to address this need. Although there are a growing
number of studies designed to investigate the mechanisms of drought response in
tomato, most modern varieties are sensitive to a wide range of abiotic stresses [62].
The efforts of the International Solanacee genome project (SOL) and of the 100
Tomato Genome Sequencing Consortium et al. [183], have recently provided a
tremendous genomic resource for the research community and the possibility suc-
cessfully to exploit for tomato breeding for stress tolerance the enormous reservoir of
adaptive traits present in wild species and in some S. lycopersicum landraces locally
adapted to arid environments. There are a number of tomato relatives, including
Solanum chilense and S. peruvianum, adapted to growth under water restriction
imposed by their habitat, that are known to be very drought tolerant, but only a few
studies have examined in detail drought tolerance-related morphophysiological traits
[181, 199]. Here, we focus on two promising wild relatives that have been already
extensively characterized for their adaptive features and for which a wide collection
of genetic and genomic tools are available. The wild relative Solanum pennellii is
native to the Andean area of South America and is evolutionarily adapted to arid
conditions [160]. Comparative transcriptomics between S. pennellii and S. lycop-
ersicum showed distinct patterns of evolution. Domesticated tomato was selected for
a number of fruit traits and postharvest quality, however, the wild relative retained a
number of gene expression patterns more suited for environmental response and
stress tolerance [110]. For example, several genes involved in wax deposition were
highly expressed in S. pennellii, possibly accounting for the thicker cuticle of the
wild species compared to cultivated tomato. By contrast, one developmental regu-
lator contributing to the definition of the stomatal index had a lower expression in S.
pennellii, which has a different stomatal density compared to S. lycopersicum [110].
This selective pressure driven by adaptation to an arid environment has resulted in
rapidly evolving genes not selected for in the artificial selection that shaped
domesticated tomato. The recently completed genome of S. pennellii makes it an
ideal source for mining novel traits [27]. A number of introgression lines (ILs) are
available, where the whole genome of S. pennellii is represented in the genetic
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background cultivar, M82 of S. lycopersicum [58]. Some of these segments have
been shown to increase remarkably the agronomic performance of S. lycopersicum
and some lines showed increased yield and brix units under drought stress [75].
Adaptation to arid conditions in S. pennellii is also accompanied by increased salt
tolerance over cultivated tomato. It appears that the antioxidative systems in S.
pennellii are more robust than cultivated tomato, particularly under salt stress [145].
Genomic studies, between S. lycopersicum and S. pennellii, of QTLs associated with
drought or salt tolerance have correlated these QTLs with gene copy number, allelic
polymorphisms, and polymorphisms within the promoters of key genes [27]. Traits
from S. pennellii have already been shown to increase drought tolerance in cultivated
tomato. The universal stress protein (USP) is involved in ABA responses to abiotic
stress but is not well characterized. Transgenic tomato plants expressing the S.
pennellii USP gene were more tolerant to drought stress as seedlings and adults
[128]. It is certain that S. pennellii will provide a number of traits for the genetic
improvement of tomato under adverse stress conditions.

The second species of interest is Solanum habrochaites, which is highly tolerant
to drought and low temperatures [41, 42]. Comparative transcriptomic studies
between S. habrochaites and S. lycopersicum have been done on secondary
metabolism [25], freezing tolerance [41, 42], glandular trichomes [139], and disease
resistance [165]. As with S. pennellii, near isogenic lines and backcross recombi-
nant inbred lines have been developed in the S. lycopersicum background [61, 146].
These lines provide a valuable resource for discovery of novel traits and map
important quantitative trait loci. Under root chilling stress S. habrochaites exhibits
tight control of stomatal closure and retention of water whereas S. lycopersicum is
unable to prevent water loss in these conditions [11]. This implies that S. hab-
rochaites exhibits tighter control in water limiting conditions. Introduction of the S.
habrochaites cold-induced SK3-type dehydrin gene increased both cold and
drought tolerance in cultivated tomato. These transgenic plants also grew better
under osmotic and salt stress and were more tolerant to oxidative stress [125].
Adaptations to the environment on slopes of the Andes of Ecuador and Peru have
already provided novel traits for cold tolerance and will doubtlessly provide more
for the improvement of drought tolerance in tomato.

2.4.2 Potato

Potato production worldwide is strongly affected by water stress, either because of
insufficient rainfall or due to inadequate irrigation. Improving drought tolerance is
consequently becoming a priority for potato breeders, particularly in the perspective
of climate change. Modern potato varieties are highly sensitive to drought stress
[197]. In contrast, landraces of Andean potato species and wild potatoes occurring in
the Americas, from the United States to Chile and Uruguay [79] are better adapted to
harsh environments and regularly exposed to water-deficit conditions. Moreover,
primitive forms of cultivated potato and their wild relatives provide a rich, unique,
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and diverse source of genetic variation, which could be a source of various traits for
potato breeding. This may be because of their adaptation to a broad range of habitats
and niches varying in latitude, altitude, habitat, soil, and precipitation regimes.

The many wild relatives and primitive cultivars of potato have proven to be
valuable in breeding programs for improvement of disease resistance, abiotic stress
tolerance, and other agronomic traits and qualities of interests [17, 19, 49, 80, 95,
149, 176]. As potato has gained importance as a food source in developing
countries [90], the breeding has shifted to adaptation to the conditions of these
countries, generally hot and dry environments.

Therefore genes from wild relatives and landraces should be explored to the
improvement of potato tolerance [79]. The major problem in this case is undesirable
effects of genes linked to the introgressed trait or gene [91, 136, 32]. In addition,
photoperiod requirements of modern varieties compared with native potato are
different, which could explain why plants from interspecific crosses and back-
crosses often have lower yield, small tuber number, late maturity, poorer foliage,
and altered tuber appearance when grown under nonsuitable photoperiods [104].

Drought-tolerant accessions identified in Andean potatoes [188] have been
barely used in breeding programs because of their adaptation to the short day
conditions prevalent in the low latitudes. In this context, some attempts have been
made to transfer drought-tolerance genes from wild to cultivated potato species via
traditional breeding. In addition, potato breeders have used somatic fusion, embryo
rescue, and bridging strategies to overcome the natural barriers from interspecific
crossing between wild and cultivated species. Screening for drought tolerance in
potato landraces has been performed by Cabello et al. [33, 32]. A high proportion of
accessions combining drought tolerance with high irrigated yield were found in
Andean landraces, particularly in the species S. curtilobum in the S. tuberosum L.
cultivar groups Stenotomum, Andigenum, and Chaucha. Watanabe et al. [196]
identified S. chillonanum, S. jamesii, and S. okadae as potential drought-tolerant
species by screening 44 accessions of wild species selected based on their drought
habitats derived from GIS information. Climate change and other factors that
additionally increase pressure on ecosystems are threatening the existence of many
wild relatives. The establishment and maintenance of gene banks is intended to
narrow the loss of this diversity in varieties. The genetic resources of the potato are
preserved in the form of true potato seeds, vegetative tubers, and in vitro seedlings.
In particular, conservation under in situ conditions is considered an important
strategy to preserve the genetic resources. In situ conservation involves exposing
the varieties in question to natural conditions in the field. Sustainably increasing
productivity in a changing climate is one of the most important challenges for
people conducting research on potato worldwide to ensure food security. Primitive
cultivars and wild relatives of potato have been used as sources of desirable traits,
such as resistance or tolerance to diseases, pests, and environmental stresses, and of
tuber qualities, for potato breeding. Tools for incorporating useful alleles from its
wild relatives into cultivated potato have been developed so that there remains a

2 Genetics of Drought Stress Tolerance in Crop Plants 55



broad gene pool to be more effectively exploited. Currently, large amounts of potato
germplasm containing useful alleles are available in gene banks around the world;
however, re-collection may reveal novel genes. Precise identification of species is
essential for making decisions for effective utilization of germplasm collections;
therefore, taxonomic research and updating taxonomical descriptions of the gene
bank collections in potato are indispensable [134].

2.4.3 Wheat

The Green Revolution resulted in high-yielding semi-dwarf wheat (T. aestivum) and
rice (O. sativa) cultivars with improved responsiveness to fertilizer and irrigation
[29]. This selection for aboveground traits and focus on yields under optimal
environments may have overlooked traits that enhance growth under limited water
[194]. Over the previous decades, a number of studies have examined the drought
tolerance of wheat landraces [26, 52, 55, 152]. Later studies used DNA finger-
printing to reveal diversity and divergence among wild relatives and landraces
[159]. Larger high-throughput studies of these wheat relatives have been able to
assess over 9000 SNPs amongst 2994 accessions comprising both modern cultivars
and landraces [38]. Such studies that establish genomic diversity maps are valuable
tools for finding relevant traits in landraces and wild relatives.

Allelic diversity in wheat has been increased with landrace accessions from
extreme environments through crossing or interspecific hybridization. This
hybridization uses ancestral genomes to produce synthetic hexaploid-derived wheat
lines (SYN-DER) [159]. Synthetic hexaploid wheats (SHWs) and their synthetic
derivative lines (SDLs) provide a way of introducing genetic diversity from
ancestor genomes into cultivated wheat varieties [127]. These SYN-DER lines have
been used to study novel drought tolerance alleles from wheat relatives [8, 48].
Landraces of wheat can also be used to improve traits controlling root architecture
and drought avoidance. Many modern wheat varieties have smaller root masses,
optimized for shallow irrigation and absorption of added fertilizers, compared to
some landraces. Some of the landraces have mapped traits, such as 1RS that can
improve root architecture and drought avoidance [194]. When the chromosome
segment 7DL from the wild relative Agropyron elongatum was introduced into
cultivated wheat, the translocation line showed improved root and shoot biomass,
improved water stress adaptation, and enhanced access to water for growth [154].

Nutrient assimilation and growth under limiting conditions is an additional target
for genetic improvement. Landraces and wild relatives have the potential to
improve assimilation, particularly under limiting conditions. Studies with
Brachypodium distachyon have revealed heritable traits that maintain growth, even
in limiting conditions [89].
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Proteomic studies using contrasting wheat landraces, N49 and N14, under
drought stress revealed key proteins that are involved in oxidative stress response,
senescence, and mobilization of carbohydrate reserves [20, 59]. Further studies of
drought-tolerant landraces with proteomes and subproteomes under stress can
elucidate the role of drought-responsive proteins and their expression, abundance,
and posttranslation modifications [85].

2.4.4 Rice

O. sativa is thought to have been domesticated over 6000 years ago, but since
domestication introgression of wild germplasm from cross-compatible species has
been a natural and ongoing process [14]. Over 120,000 genotypes of O. sativa and
Oryza glaberrima exist in gene banks, but very little genetic diversity exists within
these accessions [14]. More than 22 wild species of Oryza are known and the
genetic diversity within these wild relatives can provide novel traits for drought
tolerance. Transfer of genes from wild relatives into cultivated rice has had several
impediments to making crosses, such as low crossability and limited recombination
between chromosomes [30]. With the discovery of the killer–protector system at the
S5 locus encoded by three tightly linked genes, open reading frame 3 (ORF3),
ORF4, and ORF5, it may be possible to overcome reduced fertility in hybrids [205].
The research community is striving to build tools to utilize the existing diversity.
Two of the goals of the International Oryza Map Alignment Project are to sequence
reference genomes and transcriptomes for all species and generate advanced
mapping populations for functional and breeding studies [94]. Sequencing of 517
rice landraces revealed approximately 3.6 million SNPs that were used to construct
a high-density haplotype map of the rice genome [87]. Genomewide association
studies using such resources can identify novel traits that contribute to agronomic
improvement. Such association studies can reveal the role of known drought tol-
erance genes, such as OsDREB1F, and the presence of variant proteins within
drought-tolerant wild relatives [172]. Generation of introgression lines using elite
cultivars and a wild rice Dongxiang accession (O. rufipogon Griff.) was used to
generate and identify a drought-tolerant introgression line [210]. Comparative
analysis of cultivated rice and the drought-tolerant landrace, Nagina 22 (N22),
revealed differential regulation of both primary and secondary metabolism genes
[120]. Of the three major cereal crops, rice is the most sensitive to drought stress,
primarily due to the shallow roots of most cultivars [111]. Improvement in root
architecture and root depth is a key focus in rice improvement [73]. The locus
deeper rooting 1 (DRO1) has been definitively shown to contribute to drought
avoidance in rice. DRO1 alters root system architecture by controlling root angle
growth [186]. DRO1 was successfully introduced into IR64, a commonly grown
shallow-rooting cultivar, and the near isogenic line containing DRO1 demonstrated
deeper rooting and improved drought avoidance [10].
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2.4.5 Corn

When researchers analyzed field-level data for 17 years of maize productivity in the
American mid-west, they found that absolute yields have increased over that time
period. However, sensitivity of maize yields to drought stress had increased.
Selection and breeding for traits clearly increased overall yield, but failed to
decrease yield sensitivity to drought stress [126]. Although yield potentials have
drastically increased in maize through traditional and molecular breeding, much less
emphasis has been placed on breeding for WUE or drought tolerance. QTLs
associated with tolerance have been identified, however, they may be of limited
utility for applied breeding due to their dependency on genetic background and a
lack of understanding of the biophysical basis of these traits [35].

In maize, tropical landraces and inbred lines possess numerous potential traits for
increasing WUE and drought tolerance. A number of these lines have been assessed
for their drought tolerance [3, 88, 143, 147, 148, 202]. Traits controlling root
anatomy and morphology can also play a key role in maize drought tolerance.
When lines with contrasting cortical cell sizes were subjected to water-stress con-
ditions, those with large cortical cells showed 21 and 27 % deeper rooting, 50 %
greater stomatal conductance, and 59 % greater CO2 assimilation [43]. The group
who reported these finding proposes that the increased tolerance is due to a
reduction in the metabolic cost of soil exploration by roots and facilitates greater
exploration to increase water acquisition. The same group found that lines with a
reduced cortical cell file number have a similar benefit under water stress [44].
Recombinant inbred lines with contrasting root number and length have been
assessed in a number of water-limiting conditions. Lines with fewer, but longer
roots showed greater stomatal conductance and 50 % more shoot biomass and up to
144 % great yield under water-limiting conditions [208]. Identification of hormonal
regulators associated with QTLs, such as members of the CYP707A subfamily
responsible for ABA catabolism and ARR, a negative regulator of cytokinin sig-
naling, have revealed control points in regulating hormonal responses to drought
stress [201]. Genomewide analysis of 368 varieties was used to evaluate DREB
transcription factors in conjunction with the cloning of 18 ZmDREB genes present
in the maize B73 genome. Analysis indicated a significant association between
ZmDREB2.7 and drought tolerance at early developmental stages. Natural variation
in the promoter region of ZmDREB2.7 correlated with varying levels of drought
tolerance [124]. Tolerant landraces demonstrated higher stomatal conductance and
rates of photosynthesis under drought stress. Upregulation of ABI3 and HVA22
exclusively in drought-tolerant lines indicated ABA-responsive genes may play a
key role. The investigators also found a number of other differentially regulated
genes, AP2, bHLH, C2C2, C2H2, C3H, zinc finger, CCAAT binding factor
(HAP2), and WRKY gene families, expressed in tolerant lines, but not in the
sensitive line [77].
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2.5 Conclusions

As discussed in this chapter, there are a number of key genes that control or
contribute to drought responses in crop species. Understanding the mechanisms
behind these traits is essential for the genetic improvement of crops. Although new
genomes and transcriptomes emerge daily for these species, model systems, such as
Arabidopsis thaliana, remain our best system for dissecting these traits. Wild rel-
atives and landraces represent a vast pool of traits that can be utilized for novel
stress tolerance traits, but a thorough functional characterization is necessary in
order to take advantage of the benefits they offer. The challenges posed by drought
and water deficit are not insurmountable; they can be overcome with sufficient
understanding of the genetic basis of tolerance and the resources available to the
research community.
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