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Synopsis:
An earlier selection (paper #14 in this collection) presented what is now known

as the BBP formula for π, which permits one to calculate binary or base-16 digits
of π beginning at an arbitrary starting point. The original BBP paper presented
a similar formula for π2, permitting arbitrary binary digits of π2 to be calculated
by this same general process. Since the publication of that paper, additional BBP-
type formulas have also been found, among them one that permits arbitrary base-3
digits of π2

Catalan’s constant =
∑∞
n=0(−1)n/(2n+ 1)2 = 0.9159965594 . . . to be calculated.

This paper outlines the history of computing π and other constants through
the ages, and then gives details on three new computations: base-64 digits of π2,
base-729 digits of π2 and base-4096 digits of Catalan’s constant, in each case be-
ginning with position ten trillion. These computations, which required a total of
approximately 1.5 × 1019 floating-point arithmetic operations, and which ran for
tens of “rack-days” on an IBM Blue-Gene computer, are comparable in total cost,
say, to that of generating a state-of-the-art animated movie.
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to be calculated, and another that permits arbitrary binary digits of
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Introduction
We recently concluded a very large mathematical
calculation, uncovering objects that until recently
were widely considered to be forever inaccessible
to computation. Our computations stem from the
“BBP” formula for π , which was discovered in
1997 using a computer program implementing the
“PSLQ” integer relation algorithm. This formula
has the remarkable property that it permits one
to directly calculate binary digits of π , beginning
at an arbitrary position d, without needing to
calculate any of the first d − 1 digits. Since 1997
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numerous other BBP-type formulas have been
discovered for various mathematical constants,
including formulas for π2 (both in binary and
ternary bases) and for Catalan’s constant.

In this article we describe the computation
of base-64 digits of π2, base-729 digits of π2,
and base-4096 digits of Catalan’s constant, in
each case beginning at the ten trillionth place,
computations that involved a total of approximately
1.549 × 1019 floating-point operations. We also
discuss connections between BBP-type formulas
and the age-old unsolved questions of whether and
why constants such as π,π2, log 2, and Catalan’s
constant have “random” digits.

Historical Background
Since the dawn of civilization, mathematicians
have been intrigued by the digits of π [6], more
so than any other mathematical constant. In the
third century BCE, Archimedes employed a brilliant
scheme of inscribed and circumscribed 3 · 2n-gons
to compute π to two decimal digit accuracy.
However, this and other numerical calculations of
antiquity were severely hobbled by their reliance
on primitive arithmetic systems.

One of the most significant scientific devel-
opments of history was the discovery of full
positional decimal arithmetic with zero by an
unknown mathematician or mathematicians in
India at least by 500 CE and probably earlier. Some
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of the earliest documentation includes the Aryab-
hatiya, the writings of the Indian mathematician
Aryabhata dated to 499 CE; the Lokavibhaga, a
cosmological work with astronomical observations
that permit modern scholars to conclude that it was
written on 25 August 458 CE [9]; and the Bakhshali
manuscript, an ancient mathematical treatise that
some scholars believe may be older still, but in
any event is no later than the seventh century [7],
[8], [2]. The Bakhshali manuscript includes, among
other things, the following intriguing algorithm
for computing the square root of q, starting with
an approximation x0:

an =
q − x2

n
2xn

,

xn+1 = xn + an −
a2
n

2 (xn + an)
.(1)

This scheme is quartically convergent in that it
approximately quadruples the number of correct
digits with each iteration (although it was never
iterated more than once in the examples given in
the manuscript) [2].

In the tenth century, Gerbert of Aurillac, who
later reigned as Pope Sylvester II, attempted
to introduce decimal arithmetic in Europe, but
little headway was made until the publication of
Fibonacci’s Liber Abaci in 1202. Several hundred
more years would pass before the system finally
gained universal, if belated, adoption in the West.
The time of Sylvester’s reign was a very turbulent
one, and he died in 1003, shortly after the death of
his protector, Emperor Otto III. It is interesting to
speculate how history would have changed had he
lived longer. A page from his mathematical treatise
De Geometria is shown in Figure 1.

The Age of Newton

Armed with decimal arithmetic and spurred by the
newly discovered methods of calculus, mathemati-
cians computed with aplomb. Again, the numerical
value of π was a favorite target. Isaac Newton
devised an arcsine-like scheme to compute digits of
π and recorded 15 digits, although he sheepishly
acknowledged, “I am ashamed to tell you to how
many figures I carried these computations, having
no other business at the time.” Newton wrote
these words during the plague year 1666, when,
ensconced in a country estate, he devised the
fundamentals of calculus and the laws of motion
and gravitation.

All large computations of π until 1980 relied
on variations of Machin’s formula:

π
4

= 4 arctan
(

1
5

)
− arctan

(
1

239

)
.(2)

The culmination of these feats was a computation of
π using (2) to 527 digits in 1853 by William Shanks,

Figure 1. Excerpt from De Geometria by Pope
Sylvester II (reigned 999–1003 CE).

later (erroneously) extended to 707 digits. In the
preface to the publication of this computation,
Shanks wrote that his work “would add little or
nothing to his fame as a Mathematician, though
it might as a Computer” (until 1950 the word
“computer” was used for a person, and the word
“calculator” was used for a machine).

One motivation for such computations was to
see whether the digits of π repeat, thus disclosing
the fact that π is a ratio of two integers. This
was settled in 1761, when Lambert proved that
π is irrational, thus establishing that the digits
of π do not repeat in any number base. In 1882
Lindemann established that π is transcendental,
thus establishing that the digits of π2 or any
integer polynomial of π cannot repeat, and also
settling once and for all the ancient Greek question
of whether the circle could be squared—it cannot,
because all numbers that can be formed by
finite straightedge-and-compass constructions are
necessarily algebraic.

The Computer Age

At the dawn of the computer age, John von
Neumann suggested computing digits of prominent
mathematical constants, including π and e, for
statistical analysis. At his instigation, π was
computed to 2,037 digits in 1949 on the Electronic
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Figure 2. The ENIAC in the Smithsonian’s
National Museum of American History.

Numerical Integrator and Calculator (ENIAC); see
Figure 2. In 1965 mathematicians realized that
the newly discovered fast Fourier transform could
be used to dramatically accelerate high-precision
multiplication, thus facilitating not only large
calculations ofπ and other mathematical constants
but research in computational number theory as
well.

In 1976 Eugene Salamin and Richard Brent
independently discovered new algorithms for
computing the elementary exponential and trigono-
metric functions (and thus constants such as π
and e) much more rapidly than by using classical
series expansions. Their schemes, based on elliptic
integrals and the Gauss arithmetic-geometric mean
iteration, approximately double the number of
correct digits in the result with each iteration.
Armed with such techniques, π was computed to
over one million digits in 1973, to over one billion
digits in 1989, to over one trillion digits in 2002,
and to over five trillion digits at the present time;
see Table 1.

Similarly, the constants e,φ,
√

2, log 2, log 10,
ζ(3), Catalan’s constantG =

∑∞
n=0(−1)n/(2n+1)2,

and Euler’s γ constant have now been computed
to impressive numbers of digits; see Table 2 [10].

One of the most intriguing aspects of this
historical chronicle is the repeated assurances,
often voiced by highly knowledgeable people, that
future progress would be limited. As recently
as 1963, Daniel Shanks, who himself calculated
π to over 100,000 digits, told Philip Davis that
computing one billion digits would be “forever
impossible.” Yet this feat was achieved less than
thirty years later in 1989 by Yasumasa Kanada
of Japan. Also in 1989, famous British physicist
Roger Penrose, in the first edition of his best-
selling book The Emperor’s New Mind, declared
that humankind likely will never know if a string of

Table 1. Modern Computer-Era π Calculations.

Name Year Correct Digits

Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi Apr. 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000

Table 2. Computations of Other Mathematical
Constants.

Constant Decimal digits Researcher Date
√

2 1,000,000,000,000 S. Kondo 2010
φ 1,000,000,000,000 A. Yee 2010
e 500,000,000,000 S. Kondo 2010

log 2 100,000,000,000 S. Kondo 2011
log 10 100,000,000,000 S. Kondo 2011
ζ(3) 100,000,001,000 A. Yee 2011
G 31,026,000,000 A. Yee and R. Chan 2009
γ 29,844,489,545 A. Yee 2010

ten consecutive 7s occurs in the decimal expansion
of π . This string was found just eight years later,
in 1997, also by Kanada, beginning at position
22,869,046,249. After being advised of this fact
by one of the present authors, Penrose revised his
second edition to specify twenty consecutive 7s.

Along this line, Brouwer and Heyting, exponents
of the “intuitionist” school of mathematical logic,
proposed, as a premier example of a hypothesis
that could never be formally settled, the question
of whether the string “0123456789” appears in the
decimal expansion of π . Kanada found this at the
17,387,594,880-th position after the decimal point.
Even astronomer Carl Sagan, whose lead character
in his 1985 novel Contact (played by Jodi Foster in
the movie version) sought confirmation in base-11
digits of π , expressed surprise to learn, shortly
after the book’s publication, that π had already
been computed to many millions of digits.

The BBP Formula for pi
A 1997 paper [3], [5, Ch. 3] by one of the present
authors (Bailey), Peter Borwein and Simon Plouffe
presented the following unknown formula for π ,
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now known as the “BBP” formula for π :
(3)

π=
∞∑
k=0

1
16k

(
4

8k+ 1
− 2

8k+ 4
− 1

8k+ 5
− 1

8k+ 6

)
.

This formula has the remarkable property that
it permits one to directly calculate binary or
hexadecimal digits of π beginning at an arbitrary
starting position without needing to calculate
any of the preceding digits. The resulting simple
algorithm requires only minimal memory, does not
require multiple-precision arithmetic, and is very
well suited to highly parallel computation. The
cost of this scheme increases only slightly faster
than the index of the starting position.

The proof of this formula is surprisingly
elementary. First note that for any k < 8,

(4)

∫ 1/
√

2

0

xk−1

1− x8
dx =

∫ 1/
√

2

0

∞∑
i=0

xk−1+8i dx

= 1
2k/2

∞∑
i=0

1
16i(8i + k) .

Thus one can write

(5)

∞∑
i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)

=
∫ 1/

√
2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx,

which on substituting y :=
√

2x becomes
(6)∫ 1

0

16y − 16
y4 − 2y3 + 4y − 4

dy

=
∫ 1

0

4y
y2 − 2

dy −
∫ 1

0

4y − 8
y2 − 2y + 2

dy = π,

reflecting a partial fraction decomposition of the
integral on the left-hand side. In 1997 neither Maple
nor Mathematica could evaluate (3) symbolically
to produce the result π . Today both systems can
do this easily.

Binary Digits of log 2

It is worth noting that the BBP formula (3) was not
discovered by a conventional analytic derivation.
Instead, it was discovered via a computer-based
search using the PSLQ integer relation detection
algorithm (see the section “Hunt for a pi Formula”)
of mathematician-sculptor Helaman Ferguson [4]
in a process that some have described as an
exercise in “reverse mathematical engineering”.
The motivation for this search was the earlier
observation by the authors of [3] that log 2 also has
this arbitrary position digit calculating property.
This can be seen by analyzing the classic formula

log 2 =
∞∑
k=1

1
k2k

,(7)

which has been known at least since the time of
Euler and which is closely related to the functional
equation for the dilogarithm.

Let r mod 1 denote the fractional part of a non-
negative real number r , and let d be a nonnegative
integer. Then the binary fraction of log 2 after the
“decimal” point has been shifted to the right d
places can be written as
(8)
(2d log 2)mod 1

=
 d∑
k=1

2d−k

k
mod 1+

∞∑
k=d+1

2d−k

k
mod 1

 mod 1

=
 d∑
k=1

2d−k mod k
k

mod 1

+
∞∑

k=d+1

2d−k

k
mod 1

 mod 1,

where “mod k” has been inserted in the numerator
of the first term since we are only interested in the
fractional part of the result after division.

The operation 2d−k mod k can be performed
very rapidly by means of the binary algorithm
for exponentiation. This scheme is the simple
observation that an exponentiation operation such
as 317 can be performed in only five multiplications
instead of 16 by writing it as 317 = ((((32)2)2)2)·3.
Additional savings can be realized by reducing all
of the intermediate multiplication results modulo
k at each step. This algorithm, together with the
division and summation operations indicated in the
first term, can be performed in ordinary double-
precision floating-point arithmetic or for very
large calculations by using quad- or oct-precision
arithmetic.

Expressing the final fractional value in binary
notation yields a string of digits corresponding to
the binary digits of log 2 beginning immediately
after the first d digits of log 2. Computed results
can be easily checked by performing this operation
for two slightly different positions, say d − 1 and
d, then checking to see that resulting digit strings
properly overlap.

Hunt for a pi Formula

In the wake of finding the above scheme for the
binary digits of log 2, the authors of [3] immediately
wondered if there was a similar formula for π
(none was known at the time). Their approach was
to collect a list of mathematical constants (αi) for
which formulas similar in structure to the formula
for log 2 were known in the literature and then to
determine by means of the PSLQ integer relation
algorithm if there exists a nontrivial linear relation
of the form

(9) a0π + a1α1 + a2α2 + · · · + anαn = 0,
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where ai are integers (because such a relation
could then be solved for π to yield the desired
formula). After several months of false starts, the
following relation was discovered:
(10)

π = 4 · 2F1

1, 1
4

5
4

∣∣∣∣−1
4

+ 2 arctan
(

1
2

)
− log 5,

where the first term is a Gauss hypergeometric
function evaluation. After writing this formula
explicitly in terms of summations, the BBP formula
for π was uncovered:
(11)

π=
∞∑
k=0

1
16k

(
4

8k+ 1
− 2

8k+ 4
− 1

8k+ 5
− 1

8k+ 6

)
.

One question that immediately arose in the
wake of the discovery of the BBP formula for π
was whether there are formulas of this type for π
in other number bases—in other words, formulas
where the 16 in the BBP formula is replaced by some
other integer, such as 3 or 10. These computer
searches were largely laid to rest in 2004, when one
of the present authors (Jonathan Borwein), together
with Will Galway and David Borwein, showed that
there are no degree-1 BBP-type formulas of Machin-
type for π , except those whose base is a power of
two [5, pp. 131–133].

The BBP Formula in Action

Variants of the BBP formula have been used
in numerous computations of high-index digits
of π . In 1998 Colin Percival, then a 17-year-
old undergraduate at Simon Fraser University
in Canada, computed binary digits beginning at
position one quadrillion (1015). At the time, this
was one of the largest, if not the largest, distributed
computations ever done. More recently, in July
2010, Tsz-Wo Sze of Yahoo! Cloud Computing, in
roughly 500 CPU-years of computing on Apache
Hadoop clusters, found that the base-16 digits of
π beginning at position 5× 1014 (corresponding
to binary position two quadrillion) are

0 E6C1294A ED40403F 56D2D764 026265BC
A98511D0 FCFFAA10 F4D28B1B B5392B8

In an even more recent 2013 computation along
this line, Ed Karrels of Santa Clara University used a
system with NVIDIA graphics cards to compute 26
base-16 digits beginning at position one quadrillion.
His result: 8353CB3F7F0C9ACCFA9AA215F2.

The BBP formulas have also been used to
confirm other computations of π . For example, in
August 2010, Shigeru Kondo (a hardware engineer)
and Alexander Yee (an undergraduate software
engineer) computed five trillion decimal digits of
π on a home-built $18,000 machine. They found
that the last thirty digits leading up to position
five trillion are

Figure 3. (T) Shigeru Kondo and his π -computer.
(B) Alex Yee and his elephant.

7497120374 4023826421 9484283852

Kondo and Yee (see Figure 3) used the following
Chudnovsky-Ramanujan series:
(12)
1
π
=12

∞∑
k=0

(−1)k (6k)!(13591409+ 545140134k)
(3k)! (k!)3 6403203k+3/2 .

They did not merely evaluate this formula as
written but instead employed a clever quasi-
symbolic scheme that mostly avoids the need for
full-precision arithmetic.

Kondo and Yee first computed their result in
hexadecimal (base-16) digits. Then, in a crucial
verification step, they checked hex digits near the
end against the same string of digits computed
using the BBP formula for π . When this test passed,
they converted their entire result to decimal. The
entire computation took ninety days, including
sixty-four hours for the BBP confirmation and eight
days for base conversion to decimal. Note that the
much lower time for the BBP confirmation, relative
to the other two parts, greatly reduced the overall
computational cost. A description of their work is
available at [11].
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BBP-Type Formulas for Other Constants
In the years since 1997, computer searches
using the PSLQ algorithm, as well as conven-
tional analytic investigations, have uncovered
BBP-type formulas for numerous other math-
ematical constants, including π2, log2 2, π log 2,
ζ(3),π3, log3 2, π2 log 2, π4, ζ(5) and Catalan’s
constant. BBP formulas are also known for many
arctangents, as well as for log k, 2 ≤ k ≤ 22, al-
though none is known for log 23. These formulas
and many others, together with references, are
given in an online compendium [1].

One particularly intriguing fact is that, whereas
only binary formulas exist for π , there are both
binary and ternary (base-3) formulas for π2:

π2= 9
8

∞∑
k=0

1
64k

(
16

(6k+ 1)2
− 24
(6k+ 2)2

− 8
(6k+ 3)2

(13)

− 6
(6k+ 4)2

+ 1
(6k+ 5)2

)
,

π2 = 2
27

∞∑
k=0

1
729k

(
243

(12k+ 1)2
− 405
(12k+ 2)2

(14)

− 81
(12k+ 4)2

− 27
(12k+ 5)2

− 72
(12k+ 6)2

− 9
(12k+ 7)2

− 9
(12k+ 8)2

− 5
(12k+ 10)2

+ 1
(12k+ 11)2

)
.

Formula (13) appeared in [3], while formula (14)
is due to Broadhurst. There are known binary BBP
formulas for both ζ(3) and π3, but no one has
found a ternary formula for either.

Catalan’s Constant

One other mathematical constant of central interest
is Eugéne Charles Catalan’s (1814–1894) constant,
(15)

G =
∞∑
n=0

(−1)n

(2n+ 1)2
= 0.91596559417722 . . . ,

which is arguably the most basic constant whose
irrationality and transcendence (though strongly
suspected) remain unproven. Note the close
connection to this formula for π2:
(16)
π2

8
=

∞∑
n=0

1
(2n+ 1)2

= 1.2337005501362 . . . .

Formulas (15) and (16) can be viewed as the simplest
Dirichlet L-series values at 2. Such considerations
were behind our decision to focus the computation
described in this paper on these two constants.

Catalan’s constant has already been the sub-
ject of some large computations. As mentioned
above, in 2009 Alexander Yee and Raymond Chan

calculated G to 31.026 billion digits [10]. This
computation employed two formulas, including
this formula due to Ramanujan:

(17) G = 3
8

∞∑
n=0

1(
2n
n

)
(2n+ 1)2

+ π
8

log(2+
√

3),

which can be derived from the fact that

G = −T(π/4) = −3/2 · T(π/12),

where T(θ) :=
∫ θ
0 log tanσ dσ .

The BBP compendium lists two BBP-type formu-
las for G. The first was discovered numerically by
Bailey, but both it and the second formula were
subsequently proven by Kunle Adegoke, based in
part on some results of Broadhurst.

For the present study, we sought a formula forG
with as few terms as possible, because the run time
for computing with a BBP-type formula increases
roughly linearly with the number of nonzero
coefficients. The two formulas in the compendium
have twenty-two and eighteen nonzero coefficients,
respectively. So we explored, by means of a
computation involving the PSLQ algorithm, the
linear space of formulas for G spanned by these
two sets of coefficients, together with two known
“zero relations” (BBP-type formulas whose sum
is zero). These analyses and computations led
to the following formula, which has only sixteen
nonzero coefficients and which we believe to be the
most economical BBP-type formula for computing
Catalan’s constant:

G = 1
4096

∞∑
k=0

1
4096k

(
36864

(24k+ 2)2
− 30720
(24k+ 3)2

(18)

− 30720
(24k+ 4)2

− 6144
(24k+ 6)2

− 1536
(24k+ 7)2

+ 2304
(24k+ 9)2

+ 2304
(24k+ 10)2

+ 768
(24k+ 14)2

+ 480
(24k+ 15)2

+ 384
(24k+ 11)2

+ 1536
(24k+ 12)2

+ 24
(24k+ 19)2

− 120
(24k+ 20)2

− 36
(24k+ 21)2

+ 48
(24k+ 22)2

− 6
(24k+ 23)2

)
.

BBP Formulas and Normality
One prime motivation in computing and analyzing
digits of π and other well-known mathematical
constants through the ages is to explore the age-old
question of whether and why these digits appear
“random”. Numerous computer-based statistical
checks of the digits of π—unlike those of e—so
far have failed to disclose any deviation from
reasonable statistical norms. See, for instance,
Table 3, which presents the counts of individual
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hexadecimal digits among the first trillion hex
digits, as obtained by Yasumasa Kanada.

Given some positive integer b, a real numberα is
said to be b-normal if everym-long string of base-b
digits appears in the base-b expansion of α with
precisely the expected limiting frequency 1/bm. It
follows from basic probability theory that almost
all real numbers are b-normal for any specific
base b and even for all bases simultaneously. But
proving normality for specific constants of interest
in mathematics has proven remarkably difficult.

Interest in BBP-type formulas was heightened by
the 2001 observation, by one of the present authors
(Bailey) and Richard Crandall, that the normality
of BBP-type constants such as π,π2, log 2 and G
can be reduced to a certain hypothesis regarding
the behavior of a class of chaotic iterations [5,
pp. 141–173]. No proof is known for this general
hypothesis, but even specific instances of this
result would be quite interesting. For example, if
it could be established that the iteration given by
w0 = 0 and

(19) wn =
(

2wn−1 +
1
n

)
mod 1

is equidistributed in [0,1) (i.e., is a “good” pseu-
dorandom number generator), then, according to
the Bailey-Crandall result, it would follow that
log 2 is 2-normal. In a similar vein, if it could be
established that the iteration given by x0 = 0 and

(20) xn =
(

16xn−1

+ 120n2 − 89n+ 16
512n4 − 1024n3 + 712n2 − 206n+ 21

)
mod 1

is equidistributed in [0,1), then it would follow
that π is 2-normal.

Giving further hope to these studies is the recent
extension of these methods to a rigorous proof
of normality for an uncountably infinite class of
real numbers. Given a real number r in [0,1), let
rk denote the k-th binary digit of r . Then the real
number

(21) α2,3(r) =
∞∑
k=0

1

3k23k+rk

is 2-normal. For example, the constant α2,3(0) =∑
k≥0 1/(3k23k) = 0.541883680831502985 . . . is

provably 2-normal. A similar result applies if 2
and 3 in this formula are replaced by any pair
of coprime integers (b, c) greater than one [5,
pp. 141–173].

A Curious Hexadecimal Conjecture

It is tantalizing that if, using (20), one calculates
the hexadecimal digit sequence

(22) yn = b16xnc

Table 3. Digit counts in the first trillion
hexadecimal (base-16) digits of π . Note that

deviations from the average value
62,500,000,000 occur only after the first six

digits, as expected.

Hex Digit Occurrences
0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

(where b·c denotes greatest integer), then the

sequence (yn) appears to perfectly (not just

approximately) produce the hexadecimal expansion

of π . In explicit computations, we checked that

the first 10,000,000 hexadecimal digits generated

by this sequence are identical with the first

10,000,000 hexadecimal digits of π − 3. This is a

fairly difficult computation, as it requires roughly

n2 bit-operations and is not easily performed on a

parallel computer system. In our implementation,

computing 2,000,000 hex digits with (22) using

Maple, required 17.3 hours on a laptop. Computing

4,100,000 using Mathematica, with a more refined

implementation, required 46.5 hours. The full

confirmation using a C++ program took 433,192

seconds (120.3 hours) on an IBM Power 780

(model: 9179-MHB, clock speed: 3.864 GHz). All

these outputs were confirmed against stored hex

digits of π in the software section of http:

//www.experimentalmath.info.

Conjecture 1. The sequence b16xnc, where (xn) is

the sequence of iterates defined in equation (20),

generates precisely the hexadecimal expansion of

π − 3.

We can learn more. Let ||x − y|| = min(|x −
y|, |1 − (x − y)|) denote the “wrapped” distance

between reals x and y in [0,1). The base-16
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expansion of π , which we denote πn, satisfies
(23)
||πn − xn||

≤
∞∑

k=n+1

· 120k2−89k+16
16k−n(512k4−1024k3+712k2−206k+21)

≈ 1
64(n+ 1)2

,

so that ,upon summing from some N to infinity,
we obtain the finite value

(24)
∞∑
n=N
||πn − xn|| ≤

1
64(N + 1)

.

Heuristically, let us assume that the πn are inde-
pendent, uniformly distributed random variables
in (0,1), and let δn = ||αn − xn||. Note that an
error (i.e., an instance where xn lies in a subinterval
of the unit interval different from πn so that the
corresponding hex digits don’t match) can only
occur when πn is within δn of one of the points
(0,1/16,2/16, . . . ,15/16). Since xn < πn for all n
(where < is interpreted in the wrapped sense when
xn is slightly less than one), this event has proba-
bility 16δn. Then the fact that the sum (24) has a
finite value implies that, by the first Borel-Cantelli
lemma, there can only be finitely many errors.
Further, the small value of the sum (24), even when
N = 1, suggests that it is unlikely that any errors
will be observed. If we set N = 10,000,001 in (24),
since we know there are no errors in the first
10,000,000 elements, we obtain an upper bound
of 1.563× 10−9, which suggests it is truly unlikely
that errors will ever occur.

A similar correspondence can be seen between
iterates of (19) and the binary digits of log 2. In
particular, let zn = b2wnc, wherewn is given in (19).
Then since the sum of the error terms for log 2,
corresponding to (24), is infinite, it follows by the
second Borel-Cantelli lemma that discrepancies
between (zn) and the binary digits of log 2 can be
expected to appear indefinitely but with decreasing
frequency. Indeed, in computations that we have
done, we have found that the sequence (zn)
disagrees with ten of the first twenty binary digits
of log 2, but in only one position over the range
5,000 to 8,000.

Computing Digits of π2 and Catalan’s
Constant
In illustration of this theory, we now present the
results of computations of high-index binary digits
of π2, ternary digits of π2, and binary digits of
Catalan’s constant, based on formulas (13), (14),
and (18), respectively. These calculations were
performed on a 4-rack BlueGene/P system at IBM’s
Benchmarking Center in Rochester, Minnesota (see
Figure 4). This is a shared facility, so calculations
were conducted over a several-month period during

Figure 4. Andrew Mattingly, Blue Gene/P, and
Glenn Wightwick.

which time, none, some, or all of the system
was available. It was programmed remotely from
Australia, which permitted the system to be used
off-hours. Sometimes it helps to be in a different
time zone!

(1) Base-64 digits of π2 beginning at posi-
tion 10 trillion. The first run, which
produced base-64 digits starting from
position 1012 − 1, required an average
of 253,529 seconds per thread and was
subdivided into seven partitions of 2048
threads each, so the total cost was
7 · 2048 · 253529 = 3.6× 109 CPU-seconds.
Each rack of the IBM system features 4096
cores, so the total cost is 10.3 “rack-days”.
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The second run, which produced base-64
digits starting from position 1012, com-
pleted in nearly the same run time (within
a few minutes). The two resulting base-8
digit strings appear in row A of Table X.
(Each pair of base-8 digits corresponds
to a base-64 digit.) Here the digits in
agreement are delimited by |. Note that 53
consecutive base-8 digits (or, equivalently,
159 consecutive binary digits) are in
perfect agreement.

(2) Base-729 digits of π2 beginning at position
10 trillion. In this case the two runs each
required an average of 795,773 seconds
per thread, similarly subdivided as above,
so that the total cost was 6.5 × 109 CPU-
seconds, or 18.4 “rack-days”. The two
resulting base-9 digit strings are found in
row B of Table X. (Each triplet of base-9
digits corresponds to one base-729 digit.)
Note here that 47 consecutive base-9 digits
(94 consecutive base-3 digits) are in perfect
agreement.

(3) Base-4096 digits of Catalan’s constant be-
ginning at position 10 trillion. These two
runs each required 707,857 seconds per
thread, but in this case they were subdi-
vided into eight partitions of 2048 threads
each, so that the total cost was 1.2× 1010

CPU-seconds, or 32.8 “rack-days”. The two
resulting base-8 digit strings are found in
row C of Table X. (Each quadruplet of base-8
digits corresponds to one base-4096 digit.)
Note that 47 consecutive base-8 digits (141
consecutive binary digits) are in perfect
agreement.

These long strings of consecutively agreeing
digits, beginning with the target digit, provide a
compelling level of statistical confidence in the
results. In the first case, for instance, note that
the probability that thirty-two pairs of randomly
chosen base-8 digits are in perfect agreement is
roughly 1.2× 10−29. Even if one discards, say, the
final six base-8 digits as a 1-in-262,144 statistical
safeguard against numerical round-off error, one
would still have twenty-four consecutive base-8
digits in perfect agreement, with a corresponding
probability of 2.1× 10−22. Now strictly speaking,
one cannot define a valid probability measure on
digits of π2, but nonetheless, from a practical
point of view, such analysis provides a very high
level of statistical confidence that the results have
been correctly computed.

For this reason, computations of π and the
like are a favorite tool for the integrity testing for
computer system hardware and software. If either
run of a paired computation of π succumbs to
even a single fault in the course of the computation,

Figure 5. A “random” walk on a million digits of
Catalan’s constant.

then typically the final results will disagree almost
completely. For example, in 1986 a similar pair
of computations of π disclosed some subtle but
substantial hardware errors in an early model of the
Cray-2 supercomputer. Indeed, the calculations we
have done arguably constitute the most strenuous
integrity test ever performed on the BlueGene/P
system. Table 4 gives some sense of the scale of the
three record computations, which used more than
135 “rack-days”, 1378 serial CPU-years, and more
than 1.549×1019 floating point operations. This is
comparable to the cost of the most sophisticated
animated movies as of the present time (2011).

For the sake of completeness, in Table 5 we
also record the one-, two-, and three-bit frequency
counts from our Catalan computation.

Future Directions
It is ironic that, in an age when even pillars
such as Fermat’s Last Theorem and the Poincaré
conjecture have succumbed to the brilliance of
modern mathematics, one of the most elementary
mathematical hypotheses, namely whether (and
why) the digits of π or other constants such
as log 2, π2, or G (see Figure 5) are “random”,
remains unanswered. In particular, proving that
π (or log 2, π2, or G) is b-normal in some integer
base b remains frustratingly elusive. Even much
weaker results, for instance the simple assertion
that a one appears in the binary expansion of π (or
log 2, π2, or G) with limiting frequency 1/2 (which
assertion has been amply affirmed in numerous
computations over the years), remain unproven
and largely inaccessible at the present time.

Almost as much ignorance extends to simple
algebraic irrationals such as

√
2. In this case it

is now known that the number of ones in the
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Table 4. (A) base-4 digits of π2, (B) base-729 digits of π2, and (C) base-4096 digits of Catalan’s
constant, in each case beginning at position 10 trillion.

A
75|60114505303236475724500005743262754530363052416350634|573227604

|60114505303236475724500005743262754530363052416350634|220210566

B
001|12264485064548583177111135210162856048323453468|10565567635862

|12264485064548583177111135210162856048323453468|04744867134524

C
0176|34705053774777051122613371620125257327217324522|6000177545727

|34705053774777051122613371620125257327217324522|5703510516602

Table 5. The scale of our computations. We estimate 4.5 quad-double operations per iteration and
that each costs 266 single-precision operations. The total cost in single-precision operations is given
in the last column. This total includes overhead which is largely due to a rounding operation that we
implemented using bit-masking.

#iters time/iter time with total o’head flops
constant n′ d (×1015) (microsec) (yr) verify (yr) (%) (×1018)
π2 base-26 5 1013 2.16 1.424 97.43 194.87 230.35 18.2 2.58
π2 base-36 9 1013 3.89 1.424 175.38 350.76 413.16 17.8 4.65
G base-46 16 1013 6.91 1.424 311.79 623.58 735.02 17.9 8.26

Table 6. Base-4096 digits of G beginning at position 10 trillion: digit proportions.

Digit 0 1 2 3 4 5 6 7
base-2 (141) 0.454 0.546 - - - - - -
base-4 (70) 0.171 0.329 0.229 0.271 - - - -
base-8 (47) 0.085 0.128 0.213 0.128 0.064 0.128 0.043 0.213

first n binary digits of
√

2 must be at least of
the order of

√
n, with similar results for other

algebraic irrationals [5, pp. 141–173]. But this is
a very weak result, given that this limiting ratio
is almost certainly 1/2, not only for

√
2 but more

generally for all algebraic irrationals.
Nor can we prove much about continued frac-

tions for various constants, except for a few
well-known results for special cases such as
quadratic irrationals, ratios of Bessel functions,
and certain expressions involving exponential
functions.

For these reasons there is continuing interest
in the theory of BBP-type constants, since, as men-
tioned, there is an intriguing connection between
BBP-type formulas and certain chaotic iterations
that are akin to pseudorandom number generators.
If these connections can be strengthened, then
perhaps normality proofs could be obtained for a
wide range of polylogarithmic constants, possibly
including π, log 2, π2, and G.

As settings change, so do questions. Until the
question of efficient single-digit extraction was
asked, our ignorance about such issues was not
exposed. The case of the exponential series

(25) ex =
∞∑
n=0

xn

n!

is illustrative. For present purposes, the conver-
gence rate in (25) is too good.

Conjecture 2. There is no BBP formula for e. More-
over, there is no way to extract individual digits of
e significantly more rapidly than by computing the
first n digits.

The same could be conjectured about
other numbers, including Euler’s constant
γ = 0.57721566490153 . . . . In short, until vastly
stronger mathematical results are obtained in this
area, there will doubtless be continuing interest in
computing digits of these constants. In the present
vacuum, that is perhaps all that we can do.
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