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Foreword

The fundamental constant π has played an indispensable role in mathematics, sci-
ence, and most world cultures for over 4000 years. One would like to calculate
the circumference of a circle without actually physically measuring it. The ancient
Babylonians and Hebrews recognized that it was considerably easier to determine
the radius of a circle than its circumference, and so the more physically demand-
ing task of calculating the circumference could be replaced by simply multiplying
the radius by 3. However, before 2000 BCE, the Babylonians replaced this ini-
tial approximation of 3 for π by 3 1

8 . On the Egyptian Rhind Papyrus from about

1650 BCE, we find the slightly better approximation 4(8/9)2 = 3.16049 . . . . We
have come a long way since the heydays of the Babylonian, Hebrew, and Egyptian
cultures. With the calculation of “houkouonchi” and Alexander J. Yee, we now
“know” 13.3 trillion digits of π. It might be pointed out that π was not always
denoted by π; William Jones first used the notation π in 1706. Euler adopted the
symbol by 1737, and since that time, the notation π has been universally used.

The value π arises in many contexts in mathematics in surprising ways. One

of length ℓ will land on one of the vertical, equally spaced parallel lines on a floor,
where the distance between each two adjacent lines is equal to d. If d = ℓ, this
probability is 2/π. Any calculus student will testify that the value of π often arises
in the calculation of a definite integral or of an infinite series in closed form. The
great Indian mathematician, Srinivasa Ramanujan, evaluated a plethora of integrals
and infinite series in closed form, and he also found many beautiful series identities.
Chapter 14 in his second notebook contains 87 such results, and of these series and
integral evaluations in closed form and series identities, I counted 70 of them in
which π appears.

Unusual or surprising formulas for π are a source of delight for many of us.
When we calculate the simple continued fraction

π = 3 +
1

7 +

1

15 +

1

1 +

1

293 + · · · ,

of π, we are perhaps surprised by the “large” denominator 293. This indicates that
if we truncate the continued fraction just prior to this large denominator, we should
obtain a good approximation to π. Indeed, the associated approximation 355

113 gives
the first six digits of π. On the other hand, examining the simple continued fraction

π4 = 97 +
1

2 +

1

2 +

1

3 +

1

1 +

1

16539 + · · · ,

for π4, we find the “huge” denominator 16539. This leads to the approximations

π4 ≈ 97
9

22
= 97.40909090909 . . . , π ≈ 3.14159265262 . . . ,

while

π4 = 97.409091034002 . . . , π = 3.14159265358 . . . .

ix

of these is the Buffon needle problem, which asks for the probability that a needle
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Infinite series, perhaps beginning with the familiar Madhava–Gregory series for
Arctan x, have played important roles in calculating the digits of π. One of the
most beautiful series representations for π is given by

9801

π 8
=

∞∑
n=0

(4n)!(1103 + 26390n)

(n!)4(396)4n
, (1)

stated without proof along with 16 further such series for 1/π by Ramanujan in
his famous paper, Modular equations and approximations to π. In November, 1985,
R. William Gosper, Jr., employed (1) to calculate 17,526,100 digits of π, which was
a world record at that time. Each term of (1) gives about 8 digits of π per term.
Perhaps we should have put quotation marks about world record, because at that
time no proof of (1) had ever been given. We now have proofs of (1), Ramanujan’s
16 further series formulas for 1/π, and many similar series representations for 1/π,
in particular, one due to David and Gregory Chudnovsky that yields 14 digits of
π per term. Papers numbered 10, 11, and 19 in this volume provide readers with
more details about these formulas and their use for computing digits of π.

There are many further intriguing formulas for π. One of the most popular is
John Wallis’s formula (1655)

π = 2
2

1

2

3

4

3

4

5

6

5

6

7
· · · .

My favorite is Lord Brouncker’s (1620–1684) continued fraction for π,

π =
4

1 +

12

2 +

32

2 +

52

2 +

72

2 + · · · . (2)

Brouncker was a student of Wallis, and mathematicians have speculated for many
years on how Brouncker might have derived his formula (2). It is actually a special
case of a more general continued fraction

Γ( 14 (x+ n+ 1))Γ( 14 (x n+ 1))

Γ( 14 (x+ n+ 3))Γ( 14 (x n+ 3))
=

4

x

n2 12

2x

n2 32

2x

n2 52

2x · · · , (3)

which can be found as Entry 25 in Chapter 12 of Ramanujan’s second notebook. If
we set x = 1 and n = 0 in (3), we obtain (2).

Seemingly strange approximations to π can be obtained from class invariants.
Let n be a positive integer, and set q = e−π

√
n. The class invariant Gn is defined

by

Gn := 2−1/4q−1/24(1 + q)(1 + q3)(1 + q5) · · · . (4)

Class invariants are algebraic numbers. Thus, taking the logarithm of both sides
of (4) for a certain class invariant should produce an approximate formula for π.
For example, on page 300 in his second notebook, Ramanujan considered the cubic
equation

2x3 4x2 + 6x 1 = 0,

which has the real root

x0 = 0.188018406073701181981836762895 . . . .

Note that the first 16 digits of

24 log x0

163
= 3.141592653589793245 . . .

agree with the first 16 digits of

π = 3.141592653589793238 . . . .



FOREWORD xi

(individually) Eugene Salamin and Richard Brent. Readers can learn about these
developments in the first five papers of this volume.

Although we know a lot of digits of π, there is much that we do not know about
these digits. For example, we would conjecture that the average digit should be
about 4.5, but we do not know how to prove this. More precisely, it is conjectured
that π is normal, but evidently we are far from proving this as well. This volume
contains papers by StanWagon (no. 6); by the present authors (no. 17); by Francisco
Aragon Artacho, the present authors, and Peter Borwein (no. 21); and by the
present authors (no. 23) bringing readers up to date on what we know about this
famous conjecture.

We have provided only a small sample of examples to illustrate the beauty
and mystery of this remarkable number. Mathematicians and computer scientists
continue to delve into the mysteries of π. Our goal in the present volume is to bring
together some of these investigations and thoughts about π from papers published
during the past half century. Many of these papers can be read by a broad audience.
For readers who want to read further, most of the 25 selected papers point to more
technical articles.

Bruce C. Berndt

It may come as a surprise to readers that the resurgence in calculating the
digits of π arose from an adaptation of the arithmetic-geometric mean of Gauss by





Preface

Borwein, and Peter Borwein, Springer-Verlag), which was first published in 1997,
with a third edition released in 2004.

Rather than produce an even heftier fourth edition, the current authors have
prepared a collection of papers written between 1975 and the present. Since a
number of the collected papers contain substantial historical material, the reader
can glean an accurate picture of the life of π from the current volume. That said,
the focus in this book is on “π in the digital age.” The reader will note that many of
the papers have substantial algorithmic material and it is recommended that where
possible he or she explore such material at the computer.

Each of the 25 papers comprising this volume is preceded by a brief summary
of its contents, and this is accompanied by a very brief, key word, indication of
some of the ways the content of the given paper relates to that of others in the
collection. This information is also recorded in Table 1 below.

For the most part, however, we are happy to let the papers speak for themselves.
The present authors have been fascinated by π throughout their academic lives and
hope that this volume will help readers share this fascination and potentially even
contribute to the ever-growing literature on the subject. The associated webpage

We are also delighted that Bruce Berndt agreed to add a Foreword to the
volume.

Algorithms | 1, 2, 4, 5, 8, 10, 11, 13, 14, 16, 17, 22, 23, 24, 25
Arithmetic-geometric mean | 1, 2, 3, 4, 5, 8
Computation | 1, 2, 4, 6, 7, 8, 9, 11, 14, 17, 19, 20, 22, 24, 25
Curiosities | 12, 21, 22
Elliptic integrals | 1, 2, 3, 8, 11
General audience | 6, 10, 23, 24
Graphical representation | 21
History | 3, 4, 8, 10, 11, 17, 19, 20, 22, 24, 25
Approximations | 2, 4, 18
Irrationality | 15, 24, 25
Modular equations | 10, 11
Normality | 6, 7, 9, 17, 20, 21, 23
Random walks | 21
Series | 12, 19, 22

Table 1. Articles by Keyword

xiii

for the collection is accessible through
9783319323756.

http://www.springer.com/us/book/

This volume is a companion to Pi: A Source Book (by Lennart Berggren, Jonathan

http://www.springer.com/us/book/9783319323756
http://www.springer.com/us/book/9783319323756
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1. Computation of π using arithmetic-geometric
mean (1976)

Paper 1: Eugene Salamin, “Computation of pi using arithmetic-geometric mean,”
Mathematics of Computation, vol. 30, no. 135 (July 1976), pg. 565–570. Reprinted
by permission of the American Mathematical Society.

Synopsis:
In 1976, Eugene Salamin and Richard Brent independently discovered two

equivalent “quadratically convergent” algorithms for computing π, meaning that
each iteration of the algorithm approximately doubles the number of correct digits
in the result, provided each iteration is performed with a level of numeric precision
that is desired for the final result. This remarkable co-discovery arguably launched
the modern computer era of the computation of π.

Salamin’s statement of the algorithm could hardly be more concise:

π =
4agm2(1,

√
2)

1−∑∞j=1 2j+1c2j
, (5)

where agm(a, b) is the arithmetic-geometric mean (AGM) iteration:

an =
an−1 + bn−1

2
(6)

bn =
√
an−1bn−1 (7)

with a0 and b0 as the two input arguments, and c2n = a2n − b2n.
However, this is just a special case of his Theorem 1a, which is that

π =
4agm(1, k)agm(1, k′)

1−∑∞j=1 2j(c2j + c′2j )
, (8)

for any k and k′ satisfy k2 + k′2 = 1.
Salamin does not report any computation in his paper. He only says that some

colleagues are attempting to implement this algorithm on the Illiac IV computer,
one of the first parallel processors, to 33 million bit (roughly 10 million digit)
precision. The present authors are not aware of any report of this calculation, if it
was successful.

Keywords: Algorithms, Arithmetic-Geometric Mean, Computation, Elliptic Inte-
grals

1© Springer International Publishing Switzerland 2016 
D.H. Bailey, J.M. Borwein, Pi: The Next Generation,  
DOI 10.1007/978-3-319-32377-0_1 





1. COMPUTATION OF π USING AGM (1976) 3

MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 135 

JULY 1976, PAGES 565-570 

Computation of 1r Using Arithmetic-Geometric Mean 

By Eugene Salamin 

Abstract. A new formula for 1T is derived. It is a direct consequence of Gauss' 

arithmetic-geometric mean, the traditional method for calculating elliptic integrals, 

and of Legendre's relation for elliptic integrals. The error analysis shows that its 

rapid convergence doubles the number of significant digits after each step. The 

new formula is proposed for use in a numerical computation of 1T, but no actual 

computational results are reported here. 

1. Introduction. This paper announces the discovery of a new formula for rr. 

It is based upon the arithmetic-geometric mean, a process whose rapid convergence 

doubles the number of significant digits at each step. The arithmetic-geometric mean, 

together with rr as a known quantity, is the basis of Gauss' method for the calculation 

of elliptic integrals. But with the help of an elliptic integral relation of Legendre, 

Gauss' method can be turned around to express rr in terms of the arithmetic-geometric 

mean. The resulting algorithm retains the property of doubling the number of digits 

at each step. 

The proof of the main result (Theorem la) from first principles can be conducted 

on the elementary calculus level. The references cited here for the theorems of Landen, 

Gauss and Legendre have been chosen to achieve this goal, thus allowing the widest 

possible reader audience comprehension. 

The formula presented in this paper is proposed as a method for the numerical 

computation of rr. It has not yet been tested on a calculation of nontrivial length, 

although such a calculation is currently in progress [2]. 

2. The Arithmetic-Geometric Mean. Let a0 , b0 , c0 br. positive numbers satisfy

ing a~ = b~ + c~. Define an, the sequence of arithmetic means, and bn, the sequence 
of geometric means, by 

Also, define a positive sequence en: 

Two relations easily follow from these definitions. 

(1) en = !6(an-I - bn-1 ). 

(2) c~ =4an+Icn+I· 

Received May 27, 1975; revised November 3, 1975. 
AMS (MOS) subject classifications (1970). Primary 10A30, IOA40, 33A25; Secondary 41A25. 
Key words and phrases. 1T, arithmetic-geometric mean, elliptic integral, Landen's transforma-

tion, Legendre's relation, fast Fourier transform multiplication. 
Copyright© 1976, American Mathematical Society 
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The arithmetic-geometric mean is the common limit 

agm(a0 , b0 ) =lim an= lim bn. 

Because of the rapidity of convergence of the arithmetic-geometric mean, as exhibited 

by Eq. (2), the formula to be derived should be regarded as a plausible candidate for 

the numerical computation of rr. 

3. Elliptic Integrals. The complete elliptic integrals are the functions 

K(k) = J:12 (1 - k2 sin2 t)-% dt, E(k) = f~12 (1 - k2 sin2 t)y, dt. 

Also, if k2 + k~2 = 1, then K'(k) = K(k') and E'(k) = E(k') are two more elliptic 

integrals. 

There is also a symmetric form of these integrals: 

Jrr/2 
I( a, b) = 0 (a 2 cos2 t + b2 sin 2 t)-Y> dt, 

J(a, b)= J:12 (a 2 cos2 t + b2 sin2 tl• dt. 

It is clear that 

I( a, b) = a-• K'(b/a), J(a, b) = aE'(b/a). 

4. Landen's Transformation and the Computation of Elliptic Integrals. Using 

the notation developed in Section 2 of this paper, these transformations are [6, 

Section 25.15], 

(3) !(an, bn) =I(an+l' bn+l), 

(4) J(an, bn) = 2J(an+l• bn+l) -anbnl(an+l• bn+l). 

From Eq. (3) it follows that 

and, after a little work, Eq. (4) yields 

(6) J(a0 , b0 ) =(a~-~~ 2icJ\I(a0 , b0 ). 

\ ]=0 J 
For a0 = 1, b0 = k', the integrals in Eqs. (5) and (6) are equal to K(k) and E(k), 

respectively, while for a0 = 1, b0 = k, they equal K'(k) and E'(k). This is the well-known 

method of Gauss for the numerical calculation of elliptic integrals [5, pp. 78-80], [1, 
Section 17 .6] . 

5. Legendre's Relation. This relation is [4, Article 171], [1, Eq. 17.3.13], 

(7) 

Equivalently, 

K(k)E'(k) + K'(k)E(k)- K(k)K'(k) = rr/2. 

(8) a2I(a, b )J(a', b') + a'2 I( a', b')J(a, b) - a2 a' 2 I( a, b )I( a', b') = (rr/2)aa', 

where a, b, a', b' are subject to the restriction (b/a) 2 + (b' /a') 2 = I. 
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6. New Expression for rr. Take a0 = a~ = 1, b0 = k, b~ = k'. As in Section 2, 
define the sequences a"' bn, en, a~, b~, e~. In Eq. (8) eliminate the J integrals by use 
of (6), and then eliminate the I integrals by use of (5). Lo and behold, the resulting 
equation can be solved for rr! 

THEOREM la. 
4agm(l, k)agm(l, k') 

rr= 
1 - :L"" 2i(e~ + e~2 ) 

j=l I I 

(9) 

The j = 0 term in the summation has been eliminated by use of e~ + e~2 = 

k' 2 + k 2 = 1. It is best to compute ei from Eq. (1 ). 

Theorem la is a one-dimensional continuum of formulae for rr. This provides 
for an elegant and simple computational check. For example, rr could be calculated 
starting with k = k' = r¥2, and then checked using k = 4/5, k' = 3/5. The symmetric 

choice, k = k', causes the two agm sequences to coincide, thus halving the computa-
tional burden. 

THEOREM lb. 
4(agm(l' r¥2))2 

rr= . 
1-:L~ i+ 1 e~ 

j=l I 

7. Error Analysis. Although Theorem la is true for all complex values of k 
(except for a discrete set), the error analysis will assume real k and k'. Then 0 < 
k, k' < 1. Let n square roots be taken in the process of computing agm = agm(l, k), 
and n' square roots in computing agm' = agm(l, k'). Then no further square roots 
are needed to calculate the approximation 

4an+la~'+l 
(10) 

A rough estimate shows that an+ 1 differs from agm by en+ 2 , and that the 
finite sum differs from the infinite sum by 2n + 3 en+ 2 • Thus, the numerator and 
denominator in (10) have been truncated for compatible error contributions, and the 
denominator error is dominant. 

To obtain rigorous error bounds, introduce the auxiliary quantity 1T nn' whose 
denominator is taken from (10), but whose numerator is taken from (9). The first 

step is to establish the existence of enn'• e nn' such that 

{11) 0 < 1T - 1i nn' < enn'' 

(12) 
inn'< enn'· 

These three inequalities imply that lrr- rrnn' I< enn'· 

The left-hand inequalities in (11) and (12) are obvious. From the general inequal
ity (1/x)- {1/(x + y)) <y/x2 , valid for positive x andy, it follows that 

rr -1i • < rr
2 

, ( £ 2iej + L,~ 2ie?). 
nn 4 agm agm n+l n +l 
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This establishes (11), with error bound 

(13) enn' = 2 7T
2 

1 ( £ 2ia6 + f 2ia;.c;). 
agm agm n+2 n'+2 

Proceeding to the next inequality, we first get 
- 1T ( I I) 

1Tnn'-1Tnn'< I an+lan'+t-agmagm. 
agm agm 

Substitute an+ 1 = agm + s, a~• + 1 = agm1 + S1
, where 

~ ~ 

s = L: ci , s1 = L: cj, 
n+2 n'+2 

and use agm < 1 , agm1 < 1 to get 

1Tnn' - 1i nn' < 1T(S + S1 + ss1)/agm agm1
• 

Also, since s < 1, s1 < 1, it follows that ss1 < (s + s1)/2. Thus, inequality (12) is 

established with error bound 
3 1T 

(14) e , =.- , 
nn 2 agm agm 

Finally, a term-by-term comparison of (13) and (14), using 2iai > 1 and 1T > 3, shows 

that e nn' < enn'· 
At this point, a needed inequality is derived. 

(15) 

Consider the first summation in (13), but with the upper limit oo replaced by 

finite N. Perform the following sequence of operations, each of which increases the 

sum" First, replace aN by aN-t· Next, repeatedly apply (15) to the pair of highest

indexed terms in the sum. At the end, we are left with the single term 2n+ 2an+tcn+ 2 
< 2n + 2 en+ 2 , which is thus an upper bound for the initial summation. Since N was 

arbitrary, the infinite summation also has this upper bound. Therefore, 
27T2 , 

(16) enn' < 1 (2ncn+2 + 2n C~'+2). 
agm agm 

An upper bound for cn+ 2 is needed now. It is convenient to use the abbrevia-

tions 

Equation (2) gives xn as the solution to an inhomogeneous linear difference equation. 

xn = 2n(xo- trig,). 
J=l 
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Using gi- gi+ 1 > 0, gn <log 4, and x 0 - g1 = (1/2)log(c.J4a1), we get 

(1 7) xn <2n- 1 L~1 z-i+1log(a/ai+ 1)-log(4atfc1)] +log4. 

569 

For the purpose of an error analysis, the expression within brackets could be calculated 

numerically for any case of interest_ However, it can be evaluated in closed form [7, 

p. 14] and is equal to -nK'(k)/K(k) = -nagm/agm'. Then 

xn <- n(agm/agm')2n-1 +log 4. 

Substituting this into (16) yields the final result_ 

In _T:E~~: 2asn2 I 12n exp (- n agm, 2n+ 1\+ 2n' exp (_ n agm' 2n'+ 1)] 0 

nn agm agm L agm ) \ agm 

In the symmetric case, with nn = nnn' Theorem 2a simplifies to 

THEOREM 2b. 

The number of valid decimal places is then 

THEOREM 2c. 

-log10 In- nn I> (n/log 10)2n+ 1 - nlog102- 2log10(4n/agm). 

8. Numerical Computation. Raphael Finkel, Leo Guibas and Charles Simonyi 

are currently engaged in calculating n using the method proposed in this paper [2]. 

The operations of multiprecision division and square root are reduced to multiplication 

using a Newton's method iteration. The multiplications are then performed by the 

SchOnhage-Strassen fast Fourier transform algorithm [10], [8, p. 274]. The computa

tion, to be run on the Illiac IV computer, is expected to yield 33 million bits of n in 

an estimated run time of four hours. This run time is determined by disc input-output, 

and the actual computation is estimated to be only a couple of minutes. Alas, they do 

not plan to convert to decimal. 

9. Concluding Remarks. The main result of this paper, Theorem 1 a, directly 

follows from Gauss' method for calculating elliptic integrals, Eqs. (5) and (6), which 

was known in 1818 [3, pp. 352, 360], and from Legendre's elliptic integral relation, 

Eq. (7), which was known in 1811 [9, p. 61]. It is quite surprising that such an 

easily derived formula for n has apparently been overlooked for 155 years. The author 

made his discovery in December of 1973. 

The series summation which was used to simplify Eq. ( 17) was also discovered 

by Gauss [3, p. 377]. An interesting consequence of this result of Gauss is that e.,. 

can be expressed as a rapidly convergent infinite product_ If a0 = 1, b0 = z-¥2, then 

Charles Stark Draper Laboratory 

Cambridge, Massachusetts 02139 

e.,.= 32 IT (ai+1 )2-i+1 

i=O ai 
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Fast Multiple-Precision Evaluation of Elementary Functions 

RICHARD P. BRENT 

Australian National University, Canberra, Australia 

ABSTRAC'f. Let f(x) be one of the usual elementary functions (exp, log, artan, sm, cosh, etc.), and 
let M (n) be the number of single-precision operations reqmred to multiply n-bit integers. It is shown 
that, f(x) can be evaluated, with relative error 0(2"""), m O(M(n)log (n)) operations as n-> oc, for 
any Jloatmg-pomt number x (w1th ann-bit fraction) in a suitable finite interval. From the Schonhage
Strassen bound on M(n), it follows that an n-bit approximation to f(x) may be evaluated 
in O(n log'(n) log log(n)) operations. SpeCial cases include the evaluation of constants such as 
-r, e, and e•. The algoritluns depend on the theory of elhptic integrals, using the arithmetic-geometric 
mean iteration and ascending Landen transformations. 

KEY woRDS AND PHRASES: multiple-precision arithmetw, analytic complexity, arithmetic-geometric 
mean, computational complexity, elementary function, elliptic integral, evaluation of r, exponenttal, 
Landen transformation, logarithm, trigonometric functiOn 

CR CATEGORIES: 5.12, 5.15, 5.25 

1. Introduction 

We consider the number of operations required to evaluate the elementary functions 
exp(x), log(x),1 artan(x), sin(x), etc., with relative error 0(2-"), for x in some 
interval [a, b], and large n. Here, [a, b] is a fixed, nontrivial interval on which the relevant 
elementary function is defined. The results hold for computations performed on a multi
tape Turing machine, but to simplify the exposition we assume that a standard serial 
computer with a random-access memory is used. 

Let M(x) be the number of operations required to multiply two integers in the range 
[0, 21

x
1
). We assume the number representation is such that addition can be performed in 

0( M ( n)) operations, and that M ( n) satisfies the weak regularity condition 

M(an) S ~M(n), (1.1) 

for some a and {3 in (0', 1), and all sufficiently large n. Similar, but stronger, conditions 
are usually assumed, either explicitly (ll] or implicitly (15]. Our assumptions are cer
tainly valid if the SchOnhage-Strassen method [15, 19] is used to multiply n-bit integers 
(in the usual binary representation) in 0( n log( n) log log( n)) operations. 

The elementary function evaluations may be performed entirely in fixed point, using 
integer arithmetic and some implicit scaling scheme. However, it is more convenient to 
assume that floating-point computation is usoo. For example, a sign and magnitude 
representation could be used, with a fixed length binary exponent and an n-bit binary 
fraction. Our results are independent of the particular floating-point number system 
used, so long as the following conditions are satisfied. 

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish, 
but not for profit, all or part of this material is granted provided that ACM's copynght notice is 
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting 
privileges were granted by permission of the Association for Computing Machinery. 

Author's address: Computer Centre, Australian National University, Box 4, Canberra, ACT 2600, 
Australia. 
1 Log(x) denotes the natural logarithm. 

Jouroal of tho AI!I!OCiat10n lor Computmg Macbmery, Vol. 23, No.2, Apnl 1976, pp. 242-261. 
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1. Real numbers which are not too large or sm~ll can be approximated by floating· 
point numbers, with a relative error 0(2-n). 

2. Floating-point addition and multiplication can be performed in 0( M ( n)) opera
tions, with a relative error 0(2-n) in the result. 

3. The precision n is variable, and a floating-point number with precision n may be 
approximated, with relative error 0(2__,.) and in 0(111(n)) operations, by a floating
point number with precision m, for any positive m < n. 

Throughout this paper, a floating-point number means a number in some representation 
satisfying conditions 1 to 3 above, not a single-precision number. We say that an opera
tion is performed with precision n if the result is obtained with a relative error 0(2-n). 
It is assumed that the operands and result are approximated by floating-point numbers. 

The main result of this paper, established in Sections 6 and 7, is that all the usual 
elementary functions may be evaluated, with precision n, in 0(111(n) log(n)) operations. 
Note that O(M(n)n) operations are required if the Taylor series for log(1 + x) is 
summed in the obvious way. Our result improves the bound 0(111( n) log2(n)) given in 
[4], although the algorithms described there may be faster for small n. 

Preliminary results are given in Sections 2 to 5. In Section 2 we give, for completeness, 
the known result that division and extraction of square roots to precision n require 
0( 111 ( n)) operations. Section 3 deals briefly with methods for approximating simple 
zeros of nonlinear equations to precision n, and some results from the theory of elliptic 
integrals are summarized in Section 4. Since our algorithms for elementary functions 
require a knowledge of 1r to precision n, we show, in Section 5, how this may be obtained 
in 0( M ( n) log( n)) operations. An amusing consequence of the results of Section 6 is 
that e" may also be evaluated, to precision n, in 0( M ( n) log( n)) operations. 

From [4, Th . .'>.1], at least O(M( n)) operations are required to evaluate exp(x) or 
sin(x) to precision n. It is plausible to conjecture that 0(111(n) log(n)) operations are 
necessary. 

Most of this paper is concerned with order of magnitude results, and multiplicative 
constants are ignored. In Section 8, though, we give upper bounds on the constants. 
From these bounds it is possible to estimate how large n needs to be before our algorithms 
are faster than the conventional ones. 

After this paper was submitted for publication, Bill Gasper drew my attention to 
Salamin's paper (18], where an algorithm very similar to our algorithm for evaluating 1r 

is described. A fast algorithm for evaluating log(x) was also found independently by 
Salamin (see [2 or 5]). 

Apparently similar algorithms for evaluating elementary functions are given by 
Borchardt (3), Carlson (8, 9], and Thacher (23]. However, these algorithms require 
0(111(n)n) or 0(111(n)n1) operations, so our algorithms arc asymptotically faster. 

We know how to evaluate certain other constants and functions almost as fast as 
elementary functions. For example, Euler's constant 'Y = 0.5772 ... can be evaluated 
with 0(111(n) log2 n) operations, using Sweeney's method [22] combined with binary 
splitting [4]. Similarly for f(a), where a is rational (or even algebraic): see Brent [7). 
Related results are given by Gasper (13] and Schroeppel (20]. It is not known whether 
any of these upper bounds are asymptotically the best possible. 

2. Reciprocals and Square Roots 

In this section we show that reciprocals and square roots of floating-point numbers may 
be evaluated, to precision n, in 0(111(n)) operations. To simplify the statement of the 
following lemma, we assume that M(x) = 0 for all x < 1. 

LEMMA 2.1. lf-y E (0, l), then L~-oM(-y'n) = O(M(n)) as n--> oo. 

PRooF. If a and .Bare as in ( 1.1), there exists k such that·/::::; a. Thus, I:i-o M( -y'n) 
::::; k L::-o M ( a'n) ::::; kM ( n) / ( 1 - {3) + 0( 1), by repeated application of ( 1.1). Since 
M ( n) -> oo as n -> oo, the result follows. 
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In the following lemma, we assume that 1/c is in the allowable range for floating-point 
numbers. Similar assumptions are implicit below. 
Ll~MMA 2.2. If cis a wnzero floating-point number, tlwn 1/c can be evaluated, to pre

cision n, in 0( M ( n)) operations. 
PROOF. The Newton iteration 

x,+J = x.(2 - ex,) (2.1) 

converges to 1/c with order 2. In fact, if x, = (I - E,)jc, substitution in (2.1) gives 
~•+l = ~.2 • Thus, assuming Ito! < t, we have jt,[ < 2-2

' for all i 2: 0, and x. is a suffi
ciently good approximation to 1/c if k 2: log2 n. This assumes that (2.1) is satisfied 
exactly, but it is easy to show that it is sufficient to use precision n at the last iteration 
(z = k - 1), precision slightly greater than n/2 fori = k - 2, etc. (Details, and more 
efficient methods, are given in [4, 6).) Thus the result follows from Lemma 2.1. Since 
xjy = x(l/y), it is clear that floating-point division may also be done in O(M(n)) 
operations. 

LEMMA 2.3. If c 2: 0 is a floating-point number, then c1 can be evaluated, to precision n, 
in O(M(n)) operations. 

PnooF. If c = 0 then cl = 0. If c ~ 0, the proof is similar to that of Lemma 2.2, 
using the Newton iteration x.+t = (x, + cjx,)/'2. 

LEMMA 2.4. For any fixed k > 0, M(kn) = O(M( n)) as n--> oo. 
PnooF. Since we can add integers less than 2n in O(M(n)) operations, we can add 

integers less than 2<n in 0( kM ( n)) = 0( M ( n)) operations. The multiplication of 
integers less than 2kn can be split into O(k2

) multiplications of integers less than 2 .. , 
and O(k2

) additions, so it can be done in O(k2M(n)) = O(M(n)) operations. 

3. Solution of Nonlinear Equations 

In Section 6 we need to solve nonlinear equations to precision n. The following lemma is 
sufficient for this application. Stronger results are given in [4, 6]. 

LEMMA 3.1. I! the equation f( X) = c has a stmple root r ~ 0, ( 18 Lipschztz continuous 
near t, and we can evaluate f(x) to precision n in O(M(n).p(n)) operations, where .P(n) 
is a posztive, monotonzc uu;reasing junctwn, for X near 5', then S can be evaluated to precision 
n in O(M(n).p(n)) operatzons. 

PROOF. Consider the discrete Newton iteration 

x,+l = x.- h,(f(x,) - c)/(f(x, + h,) - f(x,)). (3.1) 

If h, = Tn12
, x,- t = 0(2-n12

), and the right side of (3.1) is evaluated with precision 
n, then a standard analysis shows that x.+l - t = 0(2-n). Since a sufficiently good 
starting approximation xn may be found in 0( 1) operations, the result follows in the 
same way as in the proof of Lemma 2.2, using the fact that Lemma 2.1 holds with M(n) 
replaced by M(n).P(n). The assumption r ,e 0 is only necessary because we want to 
obtain 5' with a relative (not absolute) error 0(2-n). 

Other methods, e.g. the secant method, may also be used if the precision is increased 
appropriately at each iteration. In our applications there is no difficulty in finding a 
suitable initial approximation xo (see Section 6). 

4. Results on Elliptic Integrals 

In this section we summarize some classical results from elliptic integral theory. Most of 
the results may be found in [1], so proofs are omitted. Elliptic integrals of the first and 
second kind are defined by 

F(-.J;, a) = J.~o - sin2a sin28)-•do (4.1) 
0 , 
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and 

(4.2) 

respectively. For our purposes we may assume that a and t/1 are in [0, 'lT/2]. The complete 
elliptic integrals, F(7r/2, a) and E(7r/2, a), are simply written as F(a) and E(a), 
respectively. 

Legendre's Relatum. W c need the identity of Legendre [17]: 

E(a)F(7r/2- a)+ E(1rj2- a)F(a)- F(a)F(1rj2- a) 

and, in particular, the special case 

2E( 7r/4)F( 7r/4) - (F( 7r/4) )2 = 7r/2. 

Small Angle Approximation. From ( 4.1) it is clear that 

F(t/1, a) =If+ O(a
2

) 

as a--+ 0. 
Large Angle Approximatwn. From ( 4.1), 

F(l/1, a) = F(,.Y, 7r/2) + 0(7r/2- a)2
, 

uniformly for 0 :::; If :::; .Po < 1r/2, as a--+ 1r /2. Also, we note that 

F(,P, 7r/2) = log tan( 7r/4 + ,P/2). 

'lT/2, (4.3) 

(4.4) 

( 4.5) 

( 4.6) 

( 4.7) 

Ascending Landen Transformation. If 0 < a, < a,~ 1 < tr/2, 0 < "'·+1 < If, :::; 1rj2. 

sin a,= tan2(a,+t/2), (4.8) 

and 

sin(21/l,+l - If,) = sin a, sin f,, 

then 

F(lf,+1, a,+t) = ((l +sin cx,)/2]F(t/l,, a,). 

If s, =sin a, and v, = tan(.f-./2), then (4.8) gives 

s,+t = 2s1/(1 + s,), 

and ( 4.9) gives 

where 

W3 =tan lf'•+1 = (v, + w2)/(l - v,wz), 

Wz = tan(t/l,+t - t/1,/2) = w1/(1 + (1 - w1')'), 

and 

Wt = sin(2f,+1- .f',) = 2s,v./(1 + v,2). 

( 4.9) 

( 4.10) 

( 4.11) 

( 4.12) 

( 4.13) 

( 4.14) 

( 4.15) 

Arithmetic-Geometric Mean Iteration. From the ascending Landen transformation 
it is possible to derive the arithmetic-geometric mean iteration of Gauss (12] and La
grange [16]: if ao = 1, bo = cos a > 0, 

a,+, = (a,+ b,)/2, ( 4.16) 

and 

(4.17) 
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then 

lim a,= 1r/[2F(a)]. ( 4.18) 
·~"' 

Also, if co = sm a and 

( 4.19) 

then 

"' 
E(a)/F(a) = 1 - L: 2'-1c/. ( 4.20) 

•-0 

An Infinite Product. Lets,, a,, and b, be as above, with a = 1r/2 - a0 , so s0 = 
bo/ao. From (4.11), (4.16), and (4.17), it follows that s, = b,ja, for all t;:::: 0. Thus, 
(1 + s,)/2 = a,+t/a., and 

"' II [(I+ s.)/2] = hm a,= 1r/[2F(1r/2- ao)] ( 4.21) 
~=0 t-~ 

follows from ( 4.18). (Another connection between ( 4.11) and the arithmetic-geometric 
mean iteration is evident if s0 = (1 - b0

2/a0
2)!. Assuming (4.11) holds fori < 0, it 

follows that s_, = (1 - b.2/a,2
)
1 for all i;:::: 0. This may be used to deduce (4.18) from 

( 4.10).) 

5. Evaluation of 1r 

Let ao = 1, bo = co = 2-l, A = hm,_"' a,, and T = lim,_, t,, where a,, b,, and c, are 
defined by ( 4.16), ( 4.17), and ( 4.19) fori;:::: 1, and t, = t - L:;-o 2,_1c/. From ( 4.4), 
(4.18), and (4.20), we have 

( 5.1) 

Since a, > bo > 0 for all t ;:::: 0, and c,+I = a, - a, +I = a,+I - b, , ( 4.17) gives b,+l 
= [(a,+J + c, 1r)(a,+l- c,!-1)]1 = a.+t- O(c;+I), so c,+l = O(c;+J). Thus, the process 
converges with order at least 2, and logz n + 0( 1) iterations suffice to give an error 
O(Tn) in the estimate of (5.1). A more detailed analysis shows that a; ,_tft, < 1r < a,2/t, 
for all t ;:::: 0, and also a,2/t, - 1r ~ 81rexp(-2'1r) and 1r - a;+t!t, ""' 
1r

22'+t exp( -2'+11r) as i-> ctJ. The speed of convergence is illustrated in Table I. 
From the discussion above, it is clear that the following algorithm, given in pseudo

Algol, evaluates 1r to precision n. 

Algorilhm for r 

A<- 1, B <-- z-!; T <-- t; X<-- 1; 
while A - B > z-n do 

begin Y <--A; A <-- (A + B)/2; B <-- (BY)I; 
T <-- T - X (A - Y)•; X <-- 2X 

end; 
return A•jT [or, better, (A + B)'/(4T)]. 

TABLE I. CoNvE~GENCE OF 

APPROXIMATIONS TO 1r 

"~"- a,2+.ft, a,t,ft,- 7f 

0 2.3'-1 8.6'-1 
1 1.0'-3 4.6'-2 
2 7.4'-9 8 8'-5 
3 1.8'-19 3.1'-10 
4 5.5'-41 3.7'-21 
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Since log2n + 0( 1) iterations are needed, it is necessary to work with precision n + 
O(log log{n)), even though the algorithm is numerically stable in the conventional 
sense. From Lemmas 2.2-2.4, each iteration requires O(M(n)) operations, so 1r may be 
evaluated to precision n in O(M(n) log{n)) operations. This is asymptotically faster 
than the usual O(n2

) methods (14, 21] if a fast multiplication algorithm is used. A high
precision computation of 1r by a similar algorithm is described in (10]. Note that, beca\llle 
the arithmetic-geometric mean iteration is not self-correcting, we cannot obtain a bound 
0( M ( n)) in the same way as for the evaluation of reciprocals and square roots by New
ton's method. 

6. Evaluation of exp(x) and log(x) 

Suppose a > 0 fixed, and m E [o, 1 - o]. If sin an = ml, we may evaluate F( cx0 ) to pre
cision n in O(M(n) log(n)) operations, using (4.18) and the arithmetic-geometric 
mean iteration, as for the special case F( 11"/4) described in Section 5. (When using ( 4.18) 
we need 1r, which may be evaluated as described above.) Applying the ascending Landen 
transformation ( 4.8)-( 4.10) with z = 0, 1, · · · , k - 1 and ifto = -rr/2 gives 

F(t/1., ak) = {~ [(1 + sincx,)/2]} F(cxo). (6.1) 

Since So = sin IXo = m1 ;::: a1 > 0, it follows from ( 4.11) that 8, ..... 1 as i ..... 00. In fact, 
if s, = 1 - E,, then E,+1 = 1 - s,+l = 1 - 2(I - t,) 1/(2- E,) = e,2/8 + O(e,3), so 
s,--> I with order 2. Thus, after k ,...., log2n iterations we have Ek = 0( z-•), so 11" /2 - a, 
= ocz-·12

) and, from (4.6) and (4.7), 

F(ift•, ak) = log tan( 'lr/4 + ift./2) + O(T"). (6.2) 

Assuming k > 0, the error is uniformly 0(2-") for all m E [a, I - ll], since iftk::;; iftt < 7r/2. 
Define the functions 

U(m) = {~ [(1 + sincx,)/21} F(cxo) (6.3) 

and 

T(m) = tan( 7r/4 + ift"'/2), (6.4) 

where """' = lim,~oo ift, . Since s, --> I with order 2, the infinite product in ( 6.3) is con
vergent, and U ( m) is analytic for all m E ( 0, I). Taking the limit in ( 6.I) and ( 6.2) 
as n (and hence k) tends to oo, we have the fundamental identity 

U(m) = log T(m). (6.5) 

Using (4.ll)-(4.I5), we can evaluate U(m) = !IT~:~ [(1 + s,)/2]}F(cxo) + ocz-•) 
and T(m) = (1 + V<)/(I - v<) + 0(2-"), to precision n, in O(M(n) log(n)) opera
tions. The algorithms are given below in pseudo-Algol. 

Algorithmfor U(m) 

A .... 1; B .... (1 - m)l; 
while A - B > z-.11 do 

begin C <-- (A + B)/2; B +- (AB)l; A +- C end; 
A<-- w/(A +B); S +- mt; 
while 1 - S > z-n" do 

begin A+- A(l + S)/2; S <-- 281/(1 + S) end; 
return A(l + S)/2. 

Algorithm for T(m) 

V +-1; S +- mi; 
while 1 - S > z-. do 



2. FAST MULTIPLE-PRECISION EVALUATION OF ELEMENTARY FUNCTIONS (1976) 17

248 

begin W <- 2SV/(l + V1); 

W <- W/(1 + (1- W•)l); 
W <- (V + W)/(1 - VW); 
V +- W/(1 + (1 + Wt)l); 
S <- 281/(1 + S) 

end; 
return (1 + V)/(1 - V). 

Properties of U(m) and T(m). From (4.21) and (6.3), 

U(m) = (1T/2)F(a,)jF(1T/2- a 0), 

RICHARD P. BRENT 

(6.6) 

where sin ao = m1 as before. Both F( a,) and F( 1r /2 - ao) may be evaluated by the 
arithmetic-geometric mean iteration, which leads to a slightly more efficient algorithm 
for U(m) than the one above, because the division by (1 + S) in the final "while" 
loop is avoided. From (6.5) and (6.6), we have the special cases U(!) = 1r/2 and T(!) 
= e~12• Also, (6.6) gives 

U(m)U(l - m) = 7r
2/4, (6.7) 

for all m E (0, 1). 
Although we shall avoid using values of m near 0 or 1, it is interesting to obtain asymp

totic expressions for U(m) and T(m) as m _. 0 or 1. From the algorithm for T(m), 
T(l - E) = 4t-i - tl + O(tl) as t _. 0. Thus, from (6.5), U(1 - t) = L(t) - t/4 
+ O(l), whereL(E) =log (4/i). Using (6.7), this gives U(E) = ?r

2/[4L(t)] + 0(E/L2
), 

and hence T(t) = exp(?r2/[4L(E)]) + 0(E/L2
). Some values of U(m) and T(m) are 

given in Table II. 
Evaluation of exp(x). To evaluate exp(x) to precision n, we first use identities such 

as exp(2x) = (exp(x))2 and exp( -x) = 1/exp(x) to reduce the argument to a 
suitable domain, say 1 ~ x ~ 2 (see below). We then solve the nonlinear equation 

U(m) = x, (6.8) 

obtaining m to precision n, by a method such as the one described in Section 3. From 
Lemma 3.1, with <f>(n) = log(n), this may be done in O(M(n)log(n)) operations. 
Finally, we evaluate T(m) to precision n, again using O(M(n)log(n)) operations. 
From (6.5) and (6.8), T(m) = exp(x), so we have computed exp(x) to precision n. 
Any preliminary transformations may now be undone. 

Evaluationoflog(x). Since we can evaluate exp(x) to precision n in O(M(n) log(n)) 
operations, Lemma 3.1 shows that we can also evaluate log(x) in O(M(n) log(n)) 
operations, by solving the equation exp(y) = x to the desired accuracy. A more direct 
method is to solve T( m) = x (after suitable domain reduction), and then evaluate U ( m). 

Further deiatls. If x E [1, 2] then the solution m of (6.8) lies in (0.10, 0.75), and it 
may be verified that the secant method, applied to ( 6.8) , converges if the starting ap
proximations are m0 = 0.2 and m1 = 0.7. If desired, the discrete Newton method or 
some other locally convergent method may be used after a few iterations of the secant 
method have given a good approximation tom. 

TABLE II. THE FUNCTIONS U(m) AND T(m) 

"' U(m) T(m) m U(m) T(m) 

0 01 0 6693 1.9529 0.60 1.7228 5.6004 
0.05 0.8593 2.3615 0.70 1.9021 66999 
0.10 0.9824 2.6710 0.80 2.1364 8.4688 
0.20 1.1549 3.1738 0.90 2.5115 12.3235 
0.30 1.2972 3.6591 0.95 2.8714 17.6617 
0.40 1.4322 4.1878 0.99 3.6864 39.8997 
0.50 1.5708 4.8105 
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Similarly, if x E [3, 9], the solution of T(m) = x lies in (0.16, 0.83), and the secant 
method converges if mo = 0.2 and m1 = 0.8. 

If x = 1 + t where E is small, and for domain reduction the relation 

log(x) = log(Xx) - log(>.) (6.9) 

is used, for some X E (3, 9), then log(Xx) and log(X) may be evaluated as above, but 
cancellation in ( 6.9) will cause some loss of precision in the computed value of log( x). If 
ltl > 2-•, it is sufficient to evaluate log(Xx) and log(X) to precision 2n, for at most n 
bits are lost through cancellation in (6.9). On the other hand, there is no difficulty if 
I tl :S 2-•, for then log(l + E) = t( l + 0( 2-")). When evaluating exp( x), a similar 
loss of precision never occurs, and it is sufficient to work with precision n + O(log log(n) ), 
as in the evaluation of 1r (sec Section 5). To summarize, we have proved: 

THEoRE.\1 0.1. If - oo < a < b < oo , then 0( M ( n) log( n)) operations suffice to evalu
ate exp(x) to precision n, uniformly for all floating-point numbers x E [a, b], as n --> oo; 
and simtlarly for log(x) if a > 0. 

7. Evaluation of Trigonometric Functwn8 

Suppose o > 0 fixed, and x E [o, 1). Let so = sin ao = 2-"12 and Vo = tan( ~0/2) = 
x/(1 + (1 + x2)1), so tan 1/to = x. Applying the ascending Landen transformation, as 
for ( 6.1), gives 

(7.1) 

Also, from ( 4.5) and the choice of s0 , 

F(l/10 , a 0 ) = artan(x) + O(T"). (7.2) 

From ( 4.11), 8,+1 ~ 8,1, so there is somej :S log.n + 0(1) such that s, E [t, tJ. Since 
8, --> 1 with order 2, there is some k ~ 2 log2n + 0 ( 1) such that 1 - Sk = 0( 2-n). From 
(4.6) and (4.7), F(•h, ak) == log tan(7r/4 + .V./2) + 0(2-"). Thus, from (7.1) and 
(7.2), 

artan(x) = {n [2/(1 + 8,))} log tan(n/4 + .Pk/2) + 0(2-"). (7.3) 

If we evaluat!J tan( 1r /4 + ~k/2) as above, and use the algorithm of Section 6 to evaluate 
the logarithm in (7.3), we have artan(x) to precision n in O(M( n) log(n)) operations. 
The algorithm may be written as follows. 

Algorithm for artan(x), x E [~. l] 

S <- Z""""; V <- x/(1 + (l + x 2)1); Q <- l; 
while 1 - S > z-n do 

begin Q ...- ZQ/(1 + S); 
W <- 2SV/(1 + V'); 
W <- W/(1 + (l- W')l); 
W <- (V + W)/(1 - VW); 
V <- W/(1 + (l + W•)l); 
S ,_ 2Sij (1 +S) 

end; 
return Q log((l + V)/(1 - V)). 

After k iterations, Q ~ 2k, so at most 2 log2n + 0(1) bits of precision are lost because V 
is small. Thus it is sufficient to work with precision n + 0 (log ( n)), and Lemma 2.4 justi
fies our claim that O(M(n) log (n)) operations are sufficient to obtain artan (x) to pre
cision n. 

If x is small, we may use the same idea as that described above for evalu
ating log(l +E): work with precision 3n/2 + O(log(n)) if x > 2-"12, and use artan(x) 
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= x(l + 0(2-")) if 0 ~ x ~ 2-"12
• (Actually, it is not necessary to increase the working 

precision if log( (1 + V) /( 1 - V)) is evaluated carefully.) 
Using the identity artan(x) = 7r/2- artan(l/x) (x > 0), we can extend the do

main to [0, oo ). Also, since artan( -x) = -artan(x), there is no difficulty ~ith negative 
x. To summarize, we have proved the following theorem. 

THEOREM 7.1. O(M(n) log(n)) operations suffice to evaluate artan(x) to precision n, 
uniformly for all floating-point numbers x, as n -+ oo . 

Suppose (J E [ll, 7r/2 - ll]. From Lemma 3.1 and Theorem 7.1, we can solve the equa
tion artan(x) = fJ/2 to precision n in O(M(n) log(n)) operations, and thus evaluate 
x = tan(fJ/2). Now sin 8 = 2x/(1 + x") and cos (J = (1 - x2)/(1 + x2

) may easily be 
evaluated. For arguments outside [li, 1r/2 - li), domain reduction techniques like those 
above may be used. Difficulties occur near certain integer multiples of 7r/2, but these 
may be overcome (at least for the usual floating-point number representations) by in
creasing the working precision. We state the following theorem for sin(x), but similar 
results hold for the other trigonometric functions (and also, of course, for the elliptic 
int<:grals and their inverse functions). 

1HEOREM 7.2. Ifla, b] ~ ( -1r, 1r), thenO(M(n) lo!J(n)) operations suffice to evaluate 
sin(x) to precision n, uniformly for all floating-point numbers x E [a, b), as n-+ a:>. 

8. Asymptotic Constants 

So far we have been concerned with order of magnitude results. In this section we give 
upper bounds on the constants K such that w(n) ~ (K + o(l) )M(n) logzn, where w(n) 
is the number of operations required to evaluate 71', exp(x), etc., to precision n. The fol
lowing two assumptions will be made. 

1. For all 'Y > 0 and e > 0, the inequality Jf('Yn) ~ ('Y + e)M(n) holds for suffi
ciently large n. 

2. The number of operations required for floating-point addition, conversion between 
representations of different precision (at most n), and multiplication or division of 
floating-point numbers by small integers is o( M ( n)) as n -+ oo . 

These assumptions certainly hold if a standard floating-point representation is used and 
M ( n) ,...,_, n (log( n) t (log Jog( n) / for some a 2: 0, provided (3 > 0 if a = 0. 

The following result is proved in !4]. The algorithms used are similar to those of Sec
tion 2, but slightly more efficient. 

THEOREM 8.1. PrecuJion-n diviswn of floatin!J-potnt numbers may be performed in 
(4 + o(l))M(n) operations as n-+ oo, and square roots may be evaluated in (11/2 + 
o( I) )M( n) operations. 

Using Theorem 8.1 and algorithms related to those of Sections 5-7, the following re
sult is proved in [5]. 

THEOREM 8.2. 1r may be evaluated to precision n in (15/2 + o(l))M(n) log2n opera
tions as n -+ oo . If 11' and log 2 are precomputed, the elementary functwn f( x) can be evalu
ated to preciswn n in ( K + o( 1)) M ( n) log2n operations, where 

K = {13 1/ f(x) = log(x) or exp(x), 
34 if f(x) = artan(x), sin(x), etc., 

and x is a floating-point number w an interval on which f( x) is defined and bounded away 
from 0 and oo . 

For purposes of comparison. note that evaluation of log(l + x) or log((l + x)/ 
(1 - x)) by the usual series expansion requires (c + o(I))M(n)n operations, where c 
is a constant of order unity (depending on the range of x and the precise method used). 
Since 13 log2n < n for n ~ 83, the O(M ( n) log( n)) method for log(x) should be faster 
than the O(M(n)n) method for n greater than a few hundred. 
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3. The arithmetic-geometric mean of Gauss (1984)

Paper 3: David A. Cox, “The arithmetic-geometric mean of Guass,” L'Enseignement
Mathematique, vol. 30 (1984), p. 275–330. Reprinted by permission.

Synopsis:
Although the arithmetic-geometric mean (AGM) is now used widely in high-

precision computation, it was actually discovered nearly a century earlier, indepen-
dently by Lagrange, Legendre and, in considerably more detail, by Gauss (although
there is no evidence that any of them saw the connection to computing π). As David
A. Cox points out in this article, Gauss did numerous computations with the AGM,
such as when he numerically discovered that

agm(
√

2, 1) = 1.19814023473355922074 . . . =
π

2
∫ 1

0
dz/
√

1− z4
,

a fact that Gauss declared in his workbook “will surely open an entirely new field
of analysis.” Indeed it did, as Cox describes in considerable detail.

As Cox observes, Gauss’ analyses of the AGM for complex arguments are par-
ticularly interesting. In this case, the square root in the defining formulas of the
AGM leads to multiple-valued complex functions, and is not at all clear which of
these branches one should take, nor is it clear whether any of these branches con-
verge. But Gauss developed a rigorous theory of the complex AGM, and further
saw connections to the theory of elliptic modular functions. Gauss’ work in this
area was almost completely unknown to others during his lifetime, but today is
recognized as a major contribution to the field.

Keywords: Arithmetic-Geometric Mean, Elliptic Integrals, History
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THE ARITHMETIC-GEOMETRIC MEAN OF GAUSS 

by David A. Cox 

INTRODUCTION 

The arithmetic-geometric mean of two numbers a and b is defined to be 
the common limit of the two sequences {a,}:'~ 0 and { bn} := 0 determined 

by the algorithm 

a0 =a, b0 = b, 

(0.1) 

Note that a 1 and b1 are the respective arithmetic and geometric means of a 
and b, a2 and b2 the corresponding means of a 1 and h1 , etc. Thus the limit 

(0.2) M(a, b) = lim a" = lim b" 

really does deserve to be called the arithmetic-geometric mean of a and b. 
This algorithm first appeared in a paper of Lagrange, but it was Gauss who 
really discovered the amazing depth of this subject. Unfortunately, Gauss 
published little on the agM (his abbreviation for the arithmetic-geometric 
mean) during his lifetime. It was only with the publication of his collected 
works [12] between 1868 and 1927 that the full extent of his work became 
apparent. Immediately after the last volume appeared, several papers (see [15] 
and [35]) were written to bring this material. to a wider mathematical 
audience. Since then, little has been done, and only the more elementary 
properties of the agM are widely known today. 

In § 1 we review these elementary properties, where a and b are positive 
real numbers and the square root in (0.1) is also positive. The convergence 
of the algorithm is easy to see, though less obvious is the connection 
between the agM and certain elliptic integrals. As an application, we use 

M(j2, 1) to determine the arc length of the lemniscate. In § 2, we allow a 
and b to be complex numbers, and the level of difficulty changes dramatically. 
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The convergence of the algorithm is no lo nger obvious, and as might be 
expected, the square root in (0.1) causes trouble. In fact, M(a, b) becomes a 
multiple valued function, and in order to determine the relation between the 
various val11es, we will need to "uniformize" the agM using quotients of the 
classical Jacobian theta functions, which are modular functions for certain 
congruence subgroups of level four in SL(2, Z). The amazing fact is that 
Ga uss knew all of this! Hence in § 3 we explore some of the history of 
these ideas. The topics encountered will range from Bernoulli's study of elastic 
rods (the origin of the lemniscate) to Gauss' famous mathematical diary 
and his work on secular perturbations (the only article on the agM published 
in his lifetime). 

I would like to thank my colleagues David Armacost and Robert Breusch 
for providing translations of numerous passages originally in Latin or 
German. Thanks also go to Don O'Shea fo r suggesting the wonderfully 
q uick proof of (2.2) given in § 2. 

1. THE ARITHMETIC-GEOMETRJC MEAN OF REAL NUMBERS 

When a and bare positive real numbers, the properties of the agM M(a, b) 
a re well kno wn (see, for example, [5] and [26]). We will still give complete 
proofs of these properties so tha t the reader can fully appreciate the difficulties 
we encounter in § 2. 

We wi.ll assume that a ~ b > 0, a nd we let {an} :'=o and {bn} :'=o be as 
in (0.1), where bn + 1 is always the positive square root of a.b •. The usual 
inequality between the arithmetic and geometric means, 

(a +b)/2 ~ (ab)112 , 

immediately implies that an ~ bn for all n ~ 0. Actually, much more is true: 
we have 

(1.1) a ~ Ql i ... ~ Qn ~ an+ 1 ~ · ·· ~ bn + 1 ~ bn ~ ··· ~ bl ~ b 

(1.2) 0 ~ an- bn ~ 2-"(a- b) . 

To prove (1.1), note that an~ b. and an +l ~ bn+l imply 

a,~ (an+bn)/2 = an+l ~ bn+l = (a.b.) 112 ~b., 

and (1.1) follows. From bn+l ~ bn we obtain 
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and (1.2) follows by induction. From (1.1) we see immediately that lim an 

and lim b,. exist, and (1.2) implies that the limits are equal. Thus, we can 

use (0.2) to define the arithmetic-geometric mean M(a, b) of a and b. 

Let us work out two examples. 

Example 1. M(a, a) = a. 

This is obvious because a = b implies a,. = b,. = a for all n ~ 0. 

Example 2. M(.j2, 1) = 1.1981402347355922074 ... 

The accuracy is to 19 decimal places. To compute this, we use the fact 
that a" ~ M(a, b) ~ b,. for all n ~ 0 and the following table (all entries are 
rounded off to 21 decimal places). 

n a,. b,. 

0 1.414213562373905048802 1.000000000000000000000 
1 1.207106781186547524401 1.189207115002721066717 
2 1.198156948094634295559 1.198123521493120122607 
3 1.198140234793877209083 1.198140234677307205798 
4 1.198140234735592207441 1.198140234735592207439 

Such computations are not too difficult these days, though some extra 
programming was required since we went beyond the usual 16 digits of 
double-precision. The surprising fact is that these calculations were done not 
by computer but rather by Gauss himself. The above table is one of four 
examples given in the manuscript "De origine proprietatibusque generalibus 
numerorum mediorum arithmetico-geometricorum" which Gauss wrote in 
1800 (see [12, III, pp. 361-371]). As we shall see later, this is an especially 
important example. 

Let us note two obvious properties of the agM: 

(1.3) 

M(A.a, A.b) = A.M(a, b) . 

Both of these follow easily from the definition of M(a, b). 

Our next result shows that the agM is not as simple as indicated by 
what we have done so far. We now get our first glimpse of the depth 
of this subject. 
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THEOREM 1.1. If a ~ b > 0, then 

Proof Let !(a, b) denote the above integral, and set 1-1. = M (a, b). Thus 
we need to prove !(a, b) = (7t/2)1!- 1. The key step is to show that 

(1.4) 

The shortest proof of (1.4) is due to Gauss. He introduces a new variable 
¢' such that 

(1.5) 
. 2a sin¢' 

sm<t> = . . 
a + b + (a - b)sm2¢ ' 

Note that 0 ~ cp' ~ rr/2 corr~sponds to 0 ~ <P ~ 7t/2. Gauss then asserts 
"after the development has been made correctly, it will be seen" that 

(1.6) (a2cos2<f>+b2sin 2¢)- 112d¢ = (ai cos2 cp' +bfsin2¢T 1
'
2d¢' 

(see [12, III, p. 352]). Given this, (1.4) follows easily. In "Fundamenta nova 
theoriae functionum ellipticorum," Jacobi fills in some of the details Gauss 
left out (see [20, I, p. 152]). Specifically, one first proves that 

2 cos¢'(a f cos2¢' + b fsin 2 cj>')112 

cos¢ = . 
a + b + (a- b)sm2¢' 

(these are straightforward manipulations), and then (1.6) follows from these 
formulas by taking the differential of (1.5). 

Iterating (1.4) gives us 

I(a, b) = l(a 1 , b1) = I(a 2 , b2 ) = ... , 

so that /(a, b) = lim !(an, b") = n/ 21-1. since the functions 
n-+ oo 

(a;cos 2¢+b; sin2 ¢) - 112 

converge uniformly to the constant function Jl - 1
. QED 

This theorem relates very nicely to the classical theory of complete 
elliptic integrals of the first kind, i.e., integrals of the form 
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To see this, we set k = a - b . Then one easily obtains 
a+ b 

l(a, b) = a- 1 Fc2~, rr;(2), I(a 1 , b1) = a 11 F(k, 1tj2), 

so that (1.4) is equivalent to the well-known formula 

F (zfi, rc/2) = (1 +k) F(k, n/2) 
l+k 

279 

(see [16, p. 250] or [17, p. 908]). Also, the substitution (1.5) can be written as 

. ( 1 + k)sin<P' 
smcp = 1 k . 2<1>' ' + sm 

which is now called the Gauss transformation (see [32, p. 206]). 
For someone well versed in these formulas, the derivation of (1.4) would 

not be difficult. In fact, a problem on the 1895 Mathematical Tripes was 
to prove (1.4), and the same problem appears as an exercise in Whittaker 
and Watson's Modern Analysis (see [36, p. 533]), though the agM is not 
mentioned. Some books on complex analysis do define M(a, b) and state 
Theorem 1.1 (see, for example, [7, p. 417]). · 

There are several other ways to express Theorem 1.1. For example, if 
0 :::;; k < 1, then one can restate the theorem as 

l . - ~ fn/2 - 2 . 2 - 1/2 - 2 
(1.7) M(l + k, 1 _ k) - 1t 0 (1 k sm y) dy - ~ F(k, 1t/2). 

Furthermore, using the well-known power series expansion for F(k, rc/2) 
(see [16, p. 905]), we obtain 

(1.8) 
1 

M(1+k, 1-k) 

Finally, it is customary to set k' = J 1 - k2 • Then, using (1.3), we can 
rewrite (1.7) as 

(1.9) 
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This last equation shows that the average value of the function 
(1- k2 sin 2y)- 112 on the interval [0, 7t/ 2] is the reciprocal of the agM of the 
reciprocals of the minimum and maximum values of the function, a lovely 
interpretation due to Gauss - see [12, III, p. 371 ]. 

One application of Theorem 1.1, in the guise of (1.7), is that the algorithm 
for the agM now provides a very efficient method for approximating the 
elliptic integral F(k, 7t/ 2). As we will see in § 3, it was just this problem 
that led Lagrange to independently discover the algorithm for the agM. 

Another application of Theorem 1.1 concerns the arc length of the 
lemniscate r 2 = cos 28 : 

-I 

Using the formula for arc length in polar coordinates, we see that the total 
arc length is 

4 J:4 

(r2 + (drjde) 2
)

1
'
2 de = 4 J:4 

(cos 2e) - 1
'
2 de . 

The substitution cos 28 = cos 2 <j> transforms this to the integral 

4 J:2 

(1+cos 2 <j>) - 112 d<j> = 4 J:2 

(2cos2 <j>+sin 2 <j>) - 112 d<j> . 

Using Theore~ 1.1 to interpret this last integral in terms of M(.j2, 1), 

we see that the arc length of the lemniscate r 2 = cos 28 is 27t/M(j2, 1). 
From Example 2 it follows that the arc length is approximately 5.244, 

and much better approximations can be easily obtained. (For more on the 
computation of the arc length of the lemniscate, the reader should consult [33].) 

On the surface, this arc length computation seems rather harmless. 
However, from an historical point of view, it is of fundamental importance. 
If we set z = cos<)>, then we obtain 
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The integral on the right appeared in 1691 in a paper of Jacob Bernoulli 
and was well known throughout the 18th century. Gauss even had a special 
notation for this integral, writing 

f1:J = 2 J: (1-z4)- 112 dz. 

Then the relation between the arc length of the lemniscate and M(..ji, 1) 

can be written 

h - 1t M(v 2, 1) --. 
ro 

To see the significance of this equation, we turn to Gauss' mathematical 
diary. The 98th entry, dated May 30, 1799, reads as follows: 

We have established that the arithmetic-geometric mean between 1 and 

j2 is njrJJ to the eleventh decimal place; the demonstration of this 
fact will surely open an entirely new field of analysis. 

(See [12, X.l, p. 542].) The genesis of this entire subject lies in Gauss' 
observation that these two numbers are the same. It was in trying to 
understand the real meaning of this equality that several streams of Gauss' 

thought came together and produced the exceptionally rich mathematics 
which we will explore in § 2. 

Let us first examine how Gauss actually showed that M(j2., 1) = rr.j(ll. 
The proof of Theorem 1.1 given above appeared in 1818 in a paper on 
secular perturbations (see [12, III, pp. 331-355]), which is the only article 
on the agM Gauss published in his lifetime (though as we've seen, Jacobi 
knew this paper well). It is more difficult to tell precisely when he first 
proved Theorem 1.1, although his notes do reveal that he had two proofs 
by December 23, 1799. 

Both proofs derive the power series version (1.8) of Theorem l.l. Thus 
the goal is to show that M(l + k, 1- k) -l equals the function 

( 1.10) Y = L pn ro (1 · 3 · ... • (2n -1)) 2 

n=O 2"n! . 

The first proof, very much in the spirit of Euler, proceeds as follows. 
Using (1.3), Gauss derives the identity 

( 1.11) ( 2t 2t ) 1 2 2 M 1 + -1 - 2 , 1 - -1 2 = l 2 M(1 + t , 1- t ) . 
+t +t + t 
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He then assumes that there is a power series expansion of the form 

1 - 2 4 6 
M(l + k, l _ k) - 1 + A k + B k + C k ,+ ... . 

By letting k = t 1 and 2t/ (1 + t 2
) in this series and using (1.11), Gauss obtains 

l+A(12t2)2 +B(~)4 +C(~) 6 + ... 
+t l+t l+ t 

= (1 + t2
) (1 + At4 + Bt8 + Ct12 + ... ) . 

Multiplying by 2t/(1 +t2
), this becomes 

_2_t --=-z +A (-2_t_1) 3 + B (-2_t_2) s + ... = 2t(1+At4+ Bta+ ... ) . 
l+t l+t l+t . 

A comparison of the coefficients of powers of t gives an infinite system of 
equations in A, B, C, .... Gauss showed that this system is equivalent to the 
equatipns 0 = 1 - 4A = 9A - 16B = 25B - 36C = ... , and (1.8) follows 

easily (see [12, III, pp. 367-369] for dP-tails). Gauss' second proof also 
uses the identity (1.11), but in a different way. Here, he first shows that 
the series y of (1.10) is a solution of the hypergeometric differential equation 

(1.12) 

This enables him to show that y satisfies the identity 

y (~) = (1 + t 2)y(t2
)' 

l+t 

so that by (1.11), F(k) = M(l + k, 1- k)y(k) has the property that 

( 
2t ) 2 F --2 = F(t). 

1 + t 

Gauss then asserts that F(k) is clearly constant. Since F(O) = 1, we obtain a 
second proof of (1.8) (see [12, X.l, pp. 181-183]). It is interesting to note 
that neither proof is rigorous from the modem point of view: the first 

assumes without proof that M(l + k, 1- k) - 1 has a power series expansion, 

and the second assumes without proof that M(1 + k, 1- k) is continuous (this 
is needed in order to show that F(k) is constant). 

We can be certain that Gauss knew both of these proofs by December 23, 
1799. The evidence for this is the 102nd entry in Gauss' mathematical 
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diary. Dated as above, it states that "the arithmetic-geometric mean is itself 
an integral quantity" (see [12, XJ, p. 544]). However, this statement is not 
so easy to interpret. If we turn to Gauss' unpublished manuscript of 1800 

(where we got the example M(j2, 1)), we find (1.7) and (1.8) as expected, 
but also the observation that a complete solution of the differential equation 
(1.12) is given by 

(1.13) 
A B 

M(l +k, 1-k) + M(l, k)' 
A,BEC 

(see [12, III, p. 370]). In eighteenth century terminology, this is the "complete 
integral" of (1.12) and thus may be the "integral quantity" that Gauss was 
referring to (see [12, X.l, pp. 544-545]). Even if this is so, the second proof 
must predate December 23, 1799 since it uses the same differential equation. 

In § 3 we will study Gauss' early work on the agM in more detail. 
But one thing should be already clear: none of the three proofs of Theorem 1.1 
discussed so far live up to Gauss' May 30, 1799 prediction of "an entirely 
new field of analysis." In order to see that his claim was justified, we will 
need to study his work on the agM of complex numbers. 

2. THE ARITHMETIC-GEOMETRIC MEAN OF COMPLEX NUMBERS 

The arithmetic-geometric mean of two complex numbers a and b is not 
easy to define. The immediate problem is that in our algorithm 

a0 = a, b0 = b, 

(2.1) 

there is no longer an obvious choice for b,+ 1 . In fact, since we are 
presented with two choices for b, + 1 for all n ~ 0, there are uncountably 
many sequences {a,} ~=o and {bn} :'=o for given a and b. Nor is it clear 
that any of these converge! 

We will see below (Proposition 2.1) that in fact all of these sequences 
converge, but only countably many have a non-zero limit. The limits of 
these particular sequences then allow us to define M(a, b) as a multiple 
valued function of a and b. Our main result (Theorem 2.2) gives the relation
ship between the various values of M(a, b). This theorem was discovered 
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by Gauss in 1800, and we will follow his proof, which makes extensive use 
of theta functions and modular functions of level fou r. 

We first restrict ourselves to consider only those a's and b's such that 

a =I= 0, b =I= 0 and a =I= ±b. (If a=O, b=O or a = ±b, one easily sees that the 
sequences (2.1) converge to either 0 or a, and hence are not very interesting.) 
An easy induction argument shows that if a and b satisfy these restrictions, 
so do a. and b, for all n ;;:::: 0 in (2.1). 

We next give a way of distinguishing between the two possible choices 
fo r each bn + 1 . 

Definition. Let a, bE C* satisfy a =I= ±b. Then a square root b1 of ab is 

called the right choice if I a 1 - b1 I ~ I a1 + b1 I and, when I a1 - b1 I 
= I a1 + b1 I, we also have lm(b1/a 1) > 0. 

To see that this definition makes sense, suppose that Im(btfa 1) = 0. 

Then b 1/a1 = r E R, and thus 

since r ¥= 0. Notice also that the right choice is unchanged if we switch a 

and b, and that if a and b are as in § 1, then the right choice for (ab) 1' 2 is the 
positive one. 

It thus seems natural that we should define the agM using (2.1) with 

b. + 1 always the right choice for (a"bY12
. However, this is not the only 

possibility: one can make some wrong choices for bn + 1 and still get an 
interesting answer. For instance, in G auss' notebooks, we find the following 
example: 

n a. b. 

0 3.0000000 1.0000000 

1 2.0000000 - 1.7320508 

2 .1339746 1.8612098i 

3 .0669873 + .9306049i .3530969 + .3530969i 

4 .2100421 + .641 8509i .2836903 + .6208239i 

5 .2468676 + .6313374i .2470649 + .6324002i 

6 .2469962 + .6318688i .2469962 + .6318685i 

(see [12, III, p. 379]). Note that b1 is the wrong choice but bn is the right 

choice for n ;;:::: 2. The algorithm appears to converge nicely. 
Let us make this idea more precise with a definition. 
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Definition. Let a, bE C* satisfy a ¥ ±b. A pair of sequences {a,.} :=o 
and {b,.},~c=o as in (2.1) is called good if bn+l is the right choice for 

(a 11b11) 112 for all but finitely many n ;;;::: 0. 
The following proposition shows the special role played by good sequences. 

PROPOSITION 2.1. If a, bE C*' satisfy a =f. ±b, then any pair of 
sequences {a,.},;, 0 and {b,.} ,;= 0 as in ( 2.1) converge to a common limit, 
and this common limit is non-zero if and only if {a,.};= 0 and { b,.} ;:'= 0 are 
good sequences. 

Proof We first study the properties of the right choice b 1 of (ab) 112 

in more detail. Let 0 ~ ang(a, b) ~ 1t denote the unoriented angle between a 
and b. 

Then we have: 

(2.2) 

(2.3) 

I a1 - b1 I ~ Cl/2) I a - b I 

ang(a1, b1) :::::; (1/2) ang(a, b). 

To prove (2.2), note that 

I al - h1 l l al + b1 I = (1/4) l a - b 12 . 

Since I a 1 - b1 I :::::; I a1 + b1 I, (2.2) follows immediately. To prove (2.3), let 
81 = ang(a 1 , b1) and 9 = ang(a, b). From the law of cosines 

I a 1 ± b 1 I 2 = I a 1 12 + I b 1 I 2 ± 2 I a 1 I I b 1 I case 1 , 

we see that 81 ~ n/2 because I a 1 - b1 I ~ I a 1 + b1 j. Thus 

ang(al' bl) = el ~ 1t- el = ang(al, -bl). 

To compare this to e, note that one of ± b 1 , say b '1 , satisfies ang(a, b '1) 

= ang(b '1 , b) = 8/2. Then the following picture 

b' 1 
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shows that ang(a 1 , b '1) ~ B/2. Since b'1 = ±b 1 , the above inequalities imply 
that 

proving (2.3). 

Now, suppose that {a.} :'=o and {bn} ~=o are not good sequences. We set 
M" = max{l a. I , I b" I}, and it suffices to show that lim M" = 0. Note that 

n-+ 00 

Mn + 1 ~ M" for n ~ 0. Suppose that for some n, b,, +1 is not the right choice 
for (anbn) 112

. Then -b. + 1 is the right choice, and thus (2.2), applied to an 
and b", implies that 

However, we also have I b.+2 I ~ M". It follows easily that 

(2.4) 

Since {an}:= 0 and { bn} ~ 0 are not good sequences, (2.4) must occur infinitely 
of!en, proving that lim M . = 0. 

Next, suppose that {an} ~= o and {b.} ~= o are good sequences. By neglecting 
the first N terms fo r N sufficiently large, we may assume that b. + 1 is 
the. right choice for all n ~ 0 and that ang(a, b) < 1t (this is possible by (2.3)). 

We also set e. = ang(a", b.). From (2.2) and (2.3) we obtain 

(2.5) 

Note that a" - an+ 1 = (1/2) (an-b.), so that by (2.5), 

I a - a I ~ 2 - (n+ 1) I a - b I 
n n + 1 """ 

Hence, if m ·> · n, we see that 

I an - am.l . ~ :t: I ak - ak+ 1 I ~ Ct: 2- (k+ 
0

) I a - b I < 2-" I a - b I . 

Thus {an} ~=o converges because it is a Cauchy sequence, and then (2.5) 

implies that lim a" = lim b • . 

It remains to show that this common limit is nonzero. Let 

Clearly I bn+t I~ mn. To relate I an +t I and mn, we use the law of cosines : 
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(21a. + 1ll 2 = I an I 2 + I b, 12 + 2 I a, I I bn I cos e. 
~ 2m; (1 +cos8") = 4m; cosz(OJ2). 

287 

It follows that mn+ 1 ~ cos(8J2)m, since 0 ~ e, < 1t (this uses (2.5) and the 
fact that 80 = ang(a, b) < 7t). Using (2.5) again, we obtain 

m, ~ Col cos(Go/2k)) mo . 

However, it is well known that 

(See [16, p. 38]. When 90 = 0, the right hand side is interpreted to be 1.) We 
thus have 

for all n ~ 1. Since 0 ~ 80 < rt, it follows that lim a. = lim b, =1- 0. QED 
71_, oo n-<Xl 

We now define the agM of two complex numbers. 

Definition. Let a, b e C* satisfy a '# ±b. A nonzero complex number 11 
1s a value of the arithmetic·geometric mean M(a, b) of a and b if there 
are good sequences {a,},;._ 0 and {b,}~o as in (2.1) such that 

11 = lim a, = lim b • . 

Thus M(a, b) is a multiple valued function of a and b and there are a 
countable number of values. Note, however, that there is a distinguished 
value of M(a, b), namely the common limit of {an}:'= 0 and {b,.} :'=o where 
b,+ 1 is the right choice for (a,b.) 112 for all n ~ 0. We will call this the 
simplest value of M(a; b). When a and b are positive real numbers, this 
simplest value is just the agM as defined in § 1. 

We now come to the major result of this paper, which determines how 
the various values of M(a, b) are related for fixed a and b. 

THEOREM 2.2. Fix a, b E C* which satisfy a =f:. ± b and I a I ~ I b I, 
and let 11 and A denote the simplest values of M(a, b) and M(a + b, a- b) 
respectively. Then all values Jl.' of M(a, b) are given by the formula 
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1 d ic 
-=-+
ll' ll A. ' 

where d and c are arbitrary relatively prime integers satisfying 
d == 1 mod 4 and c = 0 mod 4. 

Proof Our treatment of the agM of complex numbers thus far has 
been fairly elementary. The proof of this theorem, however, will be quite 

different; we will finally discover the "entirely new field of analysis" predicted 
by Gauss in the diary entry quoted in § 1. In the proof we will follow 
Gauss' ideas and even some of his notations, though sometimes translating 
them to a modern setting and of course filling in the details he omitted 
(Gauss' notes are extremely sketchy and incomplete - see [ 12, III, pp. 467-
468 and 477-478]). 

The proof will be broken up into four steps. In order to avoid writing a 
treatise on modular functions, . we will quote certain classical facts without 
proof. 

Step I . Theta Functions 
Let 5 = {• E C : Im1: > 0} and set q = enit. The Jacobi theta functions 

are defined as follows : 

00 

p(•) = 1 + 2 I q", = 0 3(1, o), 
n= 1 

00 

q(•) = 1 + 2 I ( -1)"q"
2 = E>4(1, o), 

n= 1 

00 

r(r) = 2 L q(ln-1 )2/4. = 0z(-r, 0) . 
n=l 

Since I q I < 1 for -r E ~' these are holomorphic functions of 1. The notation 
p, q and r is due to Gauss, though he wrote them as power series in . 
e -nr, Ret > 0 (thus he used the right half plane rather t han the upper half 
plane f:> - see [12, HI, pp. 383-386]). The more common notation 0 3 , 0 4 

and 8 2 is from [36, p. 464] and [32, p. 27]. 
A wealth of formulas are associated with these functions, including the 

product expansions: 

(2.6) 

co 
p('t) = n (1 - q2") (1 + q2n - 1)2' 

n;l 
00 

q('t) = n (1-q2") (1-q2n-1)2 ' 
n=l 
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CJ) 

r<-r> = 2ql/4 TI (1-q2n> (1 +q2nf, 
n=l 

(which show that p(r), q('r) and r(t) are nonvanishing on ~), the trans
formations: 

(2.7) 

p(c + 1) = q(-r), 

q(-r+ 1) = p('r), 

r(T + 1) = e"i14r(-r) ' 

p( -1/-r) = (- it) 112p(t), 

q( -1/t) = (- i't)112r(-r)' 

r( -1/'r) = (- it)1' 2q(t), 

(where we assume that Re(- ic) 112 > 0), and finally the identities 

p{t)2 + q(t)2 = 2p(2t)2 , 

(2.8) p(t) 2 - q(tf = 2r{2t)2 ' 

p(-r)q(t) = q(2-r)2 , 

and 

p(2-r)2 + r(2-r) 2 = p(t)2 , 

(2.9) p(2tY - r(2-r) 2 = q(-r)2 , 

q(-r)4 + r(-r)4 = p(t)4 . 

Proofs of (2.6) and (2.7) can be found in [36, p. 469 and p. 475], while 
one must turn to more complete works like [32, pp. 118-119] for proofs of 
(2.8). (For a modern proof of (2.8), consult [34].) Finally, (2.9) follows easily 
from (2.8). Of course, Gauss knew all of these formulas (see [12, III, 
pp. 386 and 466-467]). 

What do these formulas have to do with the agM? The key lies in (2.8): 
one sees that p(2t)2 and q(2-r) 2 are the respective arithmetic and geometric 
means of p(c)2 and q(t)2 ! To make the best use of this observation, we 
need to introduce the function k'(t) = q(-r)2/p(t)2. 

Then we have: 

LEMMA 2.3. Let a, b e C* satisfy a -=I' ± b, and suppose there is t e f) 

such that k'('t) = b/a. Set J.L = ajp('tf and, for n ~ 0, an = 1.1 p(2nt)2 

and bn = j.l. q(2nt)2 • Then 

(i) {a.} ~=o and {b.} ~0 are good sequences satisfying (2.1 ), 

{ii) lim an = lim bn = J.l • 
n ....... ao n .... oo 

Proof We have a0 = a by definition, and b0 = b follows easily from 
k'('t) = bja. As we observed above, the other conditions of (2.1) are clearly 
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satisfied. Finally, note that exp(rri2"-r) --+ 0 as n --+ oo, so that lim p(2"-r)2 

= lim q(2"-r)2 = 1, and (ii) follows . Since 11 =1- 0, Proposition 2.1 shows that 

QED 

. Thus every solution t of k'(-r) = bja gives us a value Jl = ajp(t )2 of 

M(a, b). As a first step toward understanding all solutions of k'(• ) = b/a, we 
introduce the region F 1 s ~ : 

F 1 = { 1: E ~: I Re1 I ::::; 1 , I Re(1 /•) I ~ 1} 

F 1 shaded 

-I 0 

The following result is well known. 

LEMMA 2.4. k' 2 assumes every value in C - {0, 1} exactly once in 
F '1 = F 1 - (oF 1 n{i:e~ : Rei:<O}). 

A proof can be found in [36, pp. 481-484]. Gauss was aware of similar 

results which we will discuss below. He drew F 1 as follows (see [12, III, 

p. 478]). 

0 

-j 

1 
Raum fii r t und -

t 

Note that our restnctwns on a and b ensure that (b/a)2 e C - {0, 1 }. 

Thus, by Lemma 2.4, we can always solve k'(•) 2 = (b fa) 2
, i.e., k'(t) = ± bja. 

We will prove below that 

(2.10) k' (2.~ J = - k'(-t:), 
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which shows that we can always solve k'(r) = bja. Thus, for every a and b 
as above, M(a, b) has at least one value of the form a(p(:r:)2 , where k'(r) = bja. 

Three tasks now remain. We need to find all solutions 't of k'(t") = bja, 
we need to see how the values ajp(T:)2 are related for these 't's, and we need 
to prove that all values of M(a, b) arise in this way. To accomplish these 
goals, we must first recast the properties of k'(T) and p(-r)2 into more modem 
terms. 

Step 2. Modular Forms of Weight One. 
The four lemmas proved here are well known to experts, but we include 

their proofs in order to show how easily one can move from the classical 
facts of Step 1 to their modern interpretations. We will also discuss what 
Gauss had to say about these facts. 

We will use the transformation properties (2 7) by way of the group 

SU),Z) = {(; ~): a,b,c,deZ, ad-be= 1} 
which acts on f) by linear fractional transformations as follows : if 

( a b) a't + b 
Y = d E SL(2, Z) and t e .f>, then 'f't = . 

c n+d 
For example, if 

(0 -1) (1 l) -1 S = 1 0 and T = 0 1 , then S-r: = r , Tt: = T + 1' 

which are the tral}sformations in (2.7). It can be shown that S and T 
generate SL(2, Z) (see [29, Ch. VII, Thm. 2]), a fact we do not need here. 

We will consider several subgroups of SL(2, Z). The first of these is f(2), 
the principal congruence subgroup of level 2: 

r(2) = {yeSL(2,Z):r =(~ ~)mod2}. 
Note that - 1 e f(2) and that r(2)/ { ± 1} acts on f). 

LEMMA 2.5. 

(i) f(2)/{ ± 1} acts freely on .f>. 

(ii) f(2) is generated by -1, U = (~ ~) and V = (~ ~). 
(iii) Given 't E ~. there is y E r(2) such that yt: e F 1 . 
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Proof Let y = (: ~)be an element of r(2). 

(i) If 1 E ~and "(1 = 1, then we obtain e-r2 + (d-a)-r - b = 0. If e = 0, 
then y = ± 1 follows immediately. If c =1= 0, then (d - a)2 + 4 be < 0 because 
1 E ~. Using ad - be = 1, this becomes (a +df < 4, and thus a + d = 0 
since a and d are odd. However, b and c are even so that 

1 = ad - be = ad = - a2 mod 4 

This contradiction proves (i). 

(ii) We start with a variation of the Euclidean algorithm. Given y as 
above, let r 1 = a - 2a 1 c, where a 1 E Z is chosen so that I r 1 I is minimaJ. 
Then I r1 I ~ I c I, and hence I r1 I < I c I since a and c have different parity~ 

Thus 

Note that c and r 1 also have different parity. Continuing this process, we 
obtain 

c = 2a2 r1 + r2 , I r 2 I < I r 1 I , 
r 1 = 2a 3 r 2 + r 3 , I r 3 I < I r 2 I , 

rzn - 1 = 2a2n + 1 rzn + ,.2n +1, r2n + 1 ±1' 

r2n = 2a2n+2 r2n + 1 + 0' 

since GCD(a, c) = 1. Then one easily computes that 

. (+ 1 **). v - azn+ l u - azn+i ... v - a2 u - a, 'Y = 0 

Since the left-hand side is in f(2), the right-hand side must be of the form 
± um, and we thus obtain 

(iii) Fix -r E 5. The quadratic form I x 1 + y 12 is positive definite for 
x, y E R, so that for any S s; Z 2, I x1 + y 1 2 assumes a minimum value at 

some (x, y) E S. In particular, I c't + d 1 2, where y = (; :) E r(2}, assumes a 

minimum value at some y 0 E r(2). Since Im "f't = Im 't I c't + d I - 2, we see 
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that •' = Yo• has maximal imaginary part, i.e., Irn ,;' ~ Im y-r' for y E r(2). 

Since Im r' = Im U1:', we may assume that I Ret' I ~ 1. Applying the above 
inequality to y± 1 E r(2), we obtain 

Im t' ~ Im V ± 1 t' = Im 1:' I 2t' ± 1 I - 2 • 

Thus I 2r ± 1 I ~ 1, or I• ± (1/2) I :;?: 1/2. This is equivalent to I Re 1/t' I ~ 1, 

and hence •' E F 1 . QED 

We next study how p(t) and q(r) transform under elements of r(2). 

LEMMA 2.6. Let y = (: :) E r(2), and assume that a = d = 1 mod 4. 

Then 

(i) p(y'tf = (c't+d) p('t)2 , 

(ii) q(y'tf = ic(ct +d) q(t)2• 

Proof From (2.7) and v = G -~) u- 1 (- ~ ~)we obtain 

p(Ur)1 = p(•)2 , p(V-r)2 = (2t + 1) p('tY, 

(2.11) 

Thus (i) and (ii) hold for U and V. The proof of the previous h~mma shows 
that y is in the subgroup of r(2) generated by U and V. We now proceed 
by induction on the length of y as a word in U and V. 

(i) If y = (: ~) and p(y-r)2 = (ct+d) p(t)2 then (2.11) implies that 

p(Uy'tf- = p(y-r)2 = (ct +d) p(t)2 , 

p(Vy-r)2 = (2r•+ 1) p(y-r) 2 = (2y• + 1) (c-r +d) p(•)2 

= ((2a+c)-r+(2b+d)) p(t)2 • 

However Uy = C ;) , Vy = (la~c lb:d), so that (i) now holds for 

Uy and Vy. 

(ii) Using (2.11) and arguing as above, we see that if y = (a b) 
- c d 

= uat ybt .. .- uan ybn ' then 
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However, U and V commute modulo 4, so that 

r = (2~b; 
2~0) mod 4 . 

Thus c = 2~bi mod 4, and (ii) follows. QED 

Note that {2.10) is an immediate consequence of Lemma 2.6. 
In order to fully exploit this lemma, we introduce the following subgroups 

of r(2): 
r(2)0 = { r e r(2) : a = d = 1 mod 4} , 

1 2(4) = {r E r(2)0 : c = 0 mod 4} 

Note that r(2) = { ± 1} · r(2)0 and that f 2(4) has index 2 in r(2)0 . From 
Lemma 2.6 we obtain 

p(yt)2 = {C't +d) p(t)2 , "( E r(2)o , 
(2.12) 

q(y1)2 = (c•+d) q(r)2
, y E f 2(4). 

Since these functions a re holomorphic on f), one says that p(r)2 and q(-r)2 

are weak modular forms of weight one for r(2)0 and r 2(4) respectively. 
The term more commonly used is modular form, which requires that the 

functions be holomorphic at the cusps (see [30, pp. 28-29] for a precise 
definition). Because r(2)0 and r 2(4) a re congruence subgroups of level 
N = 4, this condition reduces to proving that 

(2.13) 

are holomorphic functions of q 112 = exp(27ti-r/ 4) for all y E SL(2, Z). This will 
be shown later. 

In general, it is well known that the square of a theta function is a 

modular form of weight one (see [27, C h. I,§ 9] ), although the general theory 
only says that our functions are modular forms for the group 

r(4) = {y E SL(2, Z}: ')' := (~ ~)mod 4} 

(see [27, Ch. I, Prop. 9.2]). We will need the more precise information 
given by (2.12). 

We next study the quotients of ~ by 1(2) and r 2 (4). From Step 1, 

recall the region F 1 £ ~. We now define a larger region F: 

F = {re~:I Rerl ~ 1, I • ±1/41 ;3: 1/4, I• ±3/41 ;3: 1/4}. 
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F' = F - (oF n { -r e ~: Ret < O}). 
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F shaded 

F 1 above dashed lines 

LEMMA 2. 7. F '1 and F' are fundamental domains for 1(2) and r 2( 4) 
respectively, and the functions k' 2 and k' induce biholomorphic maps 

k' 2 : Sjjr(2) -=+ c - {0, 1} 

k' :f)jr2(4)-=+C-{0,±1}. 

Proof A simple modification of the proof of Lemma 2.6 shows that if 

y = (: :) e F(2), then p(y-r)4 = (c-r+d)2 p(t)4 , q(y1:)4 = (c1:+d)2 q(-r)4 • Thus 

k' 2 is invariant under 1(2). 
Given -r e f), Lemma 2.5 shows that y1: e F 1 for some y e 1(2}. Since 

U - ( 1 2) maps the left vertical line in oF 1 to the right one and - 0 1 

V -- (zl 01) maps the left semicircle in of 1 to the right one, we may 

assume that "f't e F 11 • If we also had cr1: e F 11 for cr E r(2), then k1( cr1:)2 
= k'(-r) 2 = k'(yt)2 , so that crt = y-t by Lemma 2.4. This shows that F 11 is a 
fundamental domain for 1(2). 

Since 1(2)0 ~ f(2)/{ ± 1 }, F~ is also a fundamental domain for f(2)0 • 

Since r 2(4) has index 2 in 1(2)0 with 1 and V as coset representatives, 
it follows that 

F* = F'1 u V(f'1 n {1: E f>: Re-r :::;_; 0}) u v- 1(F'1 n {t e t): Ret > 0}) 
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F* shaded 

-I -1/2 0 1/2 

(
-3 -2) is a fundamental domain for r i4). Since E r 2(4) takes the far 
- 4 - 3 

left semicircle in aF to the far right one, it follows that F' is a fundamental 
domain for r 2(4). 

It now follows easily from Lemma 2.4 that k'2 induces a bijection 

k' 2
: ~/1(2) -t C - {0, 1}. Since 1(2)/{±1} acts freely on~ by Lemma 2.5, 

5 /1(2) is a complex manifold and k' 2 is holomorphic. A straightforward 

argument then shows that k' 2 is biholomorphic. 
Next note that k' is invariant under r 2(4) by (2.12), and thus induces a 

map k': f)/1 2( 4) _.. C - { 0, ± 1 }. Since f)/1(2) = f)/ 1(2)0 , we obtain a com
mutative diagram : 

Sjj [' 2(4) 

fl 

k ' 
-4 c - {0, 1} 

l g 

k72 
f>/1(2)0 -4 C - {0, 1} 

where f is induced by [' 2(4) £ 1(2)0 and g is just g(z) = z2
. Note that g is a 

covering space of degree 2, and the same holds for f since [r(2)0 : 1 2(4)] = 2 

and r(2)0 acts freely on f>. We know that k'2 is a biholomorphism, and 

it now follows easily tha t k' is also. QED 

We should point out that r(t}2 has properties similar to p(t)2 and q(t)2
. 

Specifically, r(t)2 is a modular form of weight one for the group 

1 2(4)' = {ye1(2):y = (! ~)mod4}, 

which is a conjugate of f 2(4). Furthermore, if we set k(t) = r{t)2 /p(t)2
, 

-
then k is invariant under f 2(4)1 and induces a biholomorphism k : S)/1 2(4)' 
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-+ C- {0, ± 1}. We leave the proofs to the reader. Note also that k(r)2 

+ k'(t) 2 = 1 by (2.9). 

Our final lemma will be useful in studying the agM. Let F 2 be the 
region (1/2)F 1 , pictured below. Note that F 2 s;; F. 

I 
I 
1/ 

- -
' ,,,. - ....... 

'~ \ 

--\ 
.,.. ' 

I 

-I 

LEMMA 2.8. 

-1/2 0 1/2 

F 2 shaded 

F, F 1 indicated by dashed lines 

k'(Fd = {zeC- {0, ±1} :Rez ~ 0}, 

k'(F 2) = {z E C - {0, ± 1} :I z I ~ 1}. 

Proof We will only treat k'(F 2), the proof for k'(F1 ) being quite similar. 

We first claim that {k'(t): Re-r = ±1/2} = S1 - {±1}. To see this, note 

that Ret = ± 1/2 and the product expansions (2.6) easily imply that k'("~) 

= k'(-r)- 1, i.e., I k'(-r) I= 1. How much of the circle is covered? It is easy 
to see that k'( ± 1/2 +it) -+ 1 as t -+ + oo. To study the limit as t -+ 0, 
note that by (2.10) we have 

k'(± 1/2+it) = -k' ( ± 1/2+ :t). 
As t -+ 0, the right-hand side clearly approaches - 1. Then connectivity 
arguments easily show that all of S 1 - { ± 1} is covered. 

Since k' is injective on F' by Lemma 2.7, it follows that k'(F 2) - S1 

is connected. Since I k'(it) I < 1 for t > 0 by (2.6), we conclude that 

k'(F 2) ~ { z E c - {0, ± 1} : I z I ~ 1} . 

Similar arguments show that 

k'(F-F 2) £:; {zeC:Iz\ > 1}. 
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Since k'(F) = C - {0, ± 1} by Lemma 2.7, both inclusions must be equalities. 
QED 

Gauss' collected works show that he was familiar with most of this 
material, though it's hard to tell precisely what he knew. For example, he 
basically has two things to say about k'(-r): 

(i) k'(;:) has positive real part for;: E F 1 , 

(ii) the equation k'(;:) = A has one and only one solution ;: E F 2 . 

(See [12, III, pp. 477-478].) Neither statement is correct as written. Modifica
tions have to be made regarding boundary behavior, and Lemma 2.8 shows 
that we must require I A I ~ 1 in (ii). Nevertheless, these statements show that 
Gauss essentially knew Lemma 2.8, and it becomes clear that he would not 
have been greatly surprised by Lemmas 2.4 and 2.7. 

Let us see what Gauss had to say about other matters we've discussed. He 
was quite aware of linear fractional transformations. Since he used the right 

half plane, he wrote 

at- bi 
t' = cri + d , ad - be = 1, a, b, c, d E Z, Ret> 0 

(see [12, III, p. 386]). To prevent confusion, we will always translate formulas 
into ones involving t E f>. 

Gauss decomposed an element y E SL(2, Z) into si mpler ones by means of 

continued fractions. For example, Gauss considers those transformations 
-r* = -y-r which can be written as 

(2.14) 

- 1 
t' = - - + 2a 1 • - 1 
t " = -- + 2a2 t' 

- 1 
-r* = 't(n) = -- + 2a 

't(n - 1) " 

(see [12, X.l , p. 223]). If u = G ~)and v = G ~),then •" = U02 V - 0 1
"C, 

so that for n even we see a similarity to the proof of Lemma 2.5 (ii). 
The similarity becomes deeper once we realize that the algorithm used in 

the proof gives a continued fraction expansion for ajc, where y = (; !) . 
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However, since n can be odd in (2.14), we are dealing with more than just 
elements or r(2). 

Gauss' real concern becomes apparent when we see him using (2.14) 
together with the transformation properties of p('r). From (2.7) he obtains 

p(t*) = J(- it) (- i't') • • • (- it(n-l)) p(t) 

(see [12, X.1, p. 223]). The crucial thing to note is that if t* = yt, 

y = (: :). then (-it)···(-it<n-ll) is just ct + d up to a power of i. 

This tells us how p(t) transforms under those y's described by (2.14). In 
general, Gauss used similar methods to determine how p(t), q(t) and r(t) 
transform under arbitrary elements y of SU,2, Z). The answer depends in part 

on how y = (: :) reduces modulo 2. Gauss labeled the possible reductions 

as follows: 

a 

b 
c 
d 

1 

0 
0 
1 

1 

1 
1 
0 
1 

2 

1 
0 
1 
1 

3 

0 
1 
1 
1 

4 

1 

1 
0 

5 

0 
1 
1 
0 

6 

(see [12, X.1, p. 224]). We recognize this as the isomorphism SU,2, Z)/r(2) 
~ SU.2, F 2), and note that (2.14) corresponds to cases 1 and 6. Then the 

transformations of p(t), q(1) and r("r) under y = (: :) E SL(2, Z) are given by 

1 2 3 4 5 6 

h- 1 p(yt) = p(t) q(t) r("r) q(t) r(t) p{t) 

(2.15) h- 1 q(yt) = q(t) p(t) p(t) r(t) p{t) r(t) 

h- 1 r(yt) = r(t) r("r) q(t) p(t) q(t) q(t) 

where h = (i"(ct+d))112 and t.. is an integer depending on both y and which 
one of p{t). q("t) -or r(t) is being transformed (see [12, X.l, p. 224]). Note that 
Lemma 2.6 can be regarded as giving a careful analysis of t.. in case 1. 
An analysis of the other cases may be found in [13, pp. 117-123]. One 
consequence of this table is that the functions (2.13) are holomorphic functions 
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of q 112
, which proves that p(-rf, q(-r) 2 and r(-r)2 are modular forms, as 

claimed earlier. 

Gauss did not make explicit use of congruence subgroups, although they 
appear implicitly in several places. For example, the table (2.15) shows Gauss 
using 1(2). As for 1(2)0 , we find Gauss writing 

k'(yt) = i'k'(t) 

where y = ( a -b) and, as he carefully stipulates, "ad - be = 1, 
-c d 

a = d = 1 mod 4, b, c even" (see [12, III, p. 478]). Also, if we ask which 
of these y's leave k' unchanged, then the above equation immediately gives 
us r 2(4), though we should be careful not to read too much into what 
Gauss wrote. 

More interesting is Gauss' use of the reduction theory of positive definite 
quadratic forms as developed in Disquisitiones Arithmeticae (see [11, § 171]). 
This can be _ used to determine fundamental domains as follows. A positive 
definite quadratic form ax2 + 2bxy + cy2 may be written a I x - -ry 1 2 where 
1: E f,. An easy computation shows that this form is equivalent via an 
element y of SL(2, Z) to another form a' I x - -r'y 1

2 if and only if -r' = y- 1-r. 
Then, given -r E f,, Gauss applies the reduction theory mentioned above to 
I x - -ry 1

2 and obtains a SL(2, Z)- equivalent form A I x - -r'y 1
2 = Ax2 

+ 2Bxy + Cy2 which is reduced, i.e. 

21BI~A~C 

(see [11, § 171] and [12, X.l, p. 225]). These inequalities easily imply that 
I Re-r' I ~ 1/ 2, I Re 1/-r' I ~ 1/ 2, so that 1:' lies in the shaded region 

-I -1/2 0 1/2 



3. THE ARITHMETIC-GEOMETRIC MEAN OF GAUSS (1984) 49

THE ARITHMETIC-GEOMETRIC MEAN 301 

which is well known to be the fundamental domain of SL(2, Z) acting on f) 

(see [29, Ch. VII, Thm. 1]). 
This seems quite compelling, but Gauss never gave a direct connection 

between reduction theory and fundamental domains. Instead, he used reduc
tion as follows: given 't E f), the reduction algorithm gives 't' = "f't as 
above and at the same time decomposes y into a continued fraction similar 
to (2.14). Gauss then applies this to relate p(c:') and p(r), etc., bringing us 
back to (2.15) (see [12, X.1, p. 225]). But in another place we find such 
continued fraction decompositions in close conjunction with geometric 
pictures similar to F 1 and the above (see [12, VIII, pp. 103-105]). Based 
on this kind of evidence, Gauss' editors decided that he did see the connection 
(see [12, X.2, pp. 105-106]). Much of this is still a matter of conjecture, 
but the fact remains that reduction theory is a powerful tool for finding 
fundamental domains (see [6, Ch. 12]) and that Gauss was aware of some 
of this power. 

Having led the reader on a rather long digression, it is time for us to 
return to the arithmetic-geometric mean. 

Step 3. The Simplest Value 

Let F " = {rEF: I -r - 1/41 > 1/4, I • + 3/41 > 1/4} . We may picture 
F " as follows. 

F " shaded 

-;- I -1 /2 0 1/2 

Let a, b E C* be as usual, and let rE f) satisfy k'(r) = b/a. From Lemma 2.3 

we know that ll = ajp(T.)2 is a value of M(a, b). The goal of Step 3 is to 
prove the following lemma. 

LEMMA 2.9. If t E f " , then 11 is the simplest value of M(a, b). 

Proof From Lemma 2.3 we know that 

(2.16) an = 1l p(2"<)2 , bn = ll q(2"<)2 , n = 0, 1, 2, ... 

gives us good sequences converging to ll· We need to show that b is the 
. n + l 

nght choice for (anbn)1' 2 for all n ~ 0. 
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The following equivalences are very easy to prove: 

! a,+l- b.+1l :(! an+t + bn+t! <:::> Re (bn+t)? 0 
an+! 

! a.+t - b,+1l = I a,+ 1 + b"+ 1 I<==> Re (b•+l) = 0. 
a.+ l 

Recalling the definition of the right choice, we see that we have to prove, 

c ll 0 h (b" + 1) . (b· + 1) (b" + 1) tor a n ~ , t at Re -- ~ 0, and tf Re -- = 0, then Im -- > 0. 
a,+ 1 a.+ 1 a"+ 1 

From (2.16) we see that 

b (2"+1,)1 
~ = q = k'(2"+ Lr) 
a.+ 1 p(2" + lr ):~ - ' 

so that we are reduced to proving that if -rEF", then for all n ? 0, 
Re(k'(2" + Lr)) ~ 0, and if Re( k'(2" + LrJ) = 0, then Im{k'(2" + 1t)) > 0. 

Let fi\ denote the region obtained by translating F 1 by ± 2, ± 4, etc. 
The drawing below pictures both F1 and F. 

·. .,.-, .... - ·~- .... ,.-.... . 

-2 -I 0 2 
F1 shaded 

F indicated by dashed lines 

Since k'('r) has period 2 and its real part is nonnegative on F 1 by Lemma 2.8, 

it follows ~hat the real part of k'(-t) is nonnegative on all of /!1 • Further
more, it is clear that on F 1 , Re(k'(t)) = 0 can occur only on oF 1 . The 

product expansions (2.6) show that k'(!) is real when Re! = ± 1, so that 
on F 1 , Re(k'(!)) = 0 can occur only on the boundary semicircles. From the 
periodicity of k'(-r) we conclude that k'(-r) has positive real part on the 

interior F? of F1 . 

If -rEF", then the above drawing makes it clear that 2"+ 1-r E F1 for 
n ~ 0 and that 2"+ 1--r E f!? for n ~ l. We thus see that Re(k'(2n+ 1-r)) > 0 

for n ? 0 unless n = 0 and 2! E oF1 . Thus the lemma will be proved once 
we show that Im(k'(2t)) > 0 when T E F" and 2t E of1 • 

These last two conditions imply that 2• lies on one of the semicircles A 

and B pictured below. 
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F 1 indicated by dashed lines 

-I 0 2 

By periodicity, k' takes the same values on A and B. Thus it suffices to 

(0 -1) show that Im(k'(2<)) > 0 for 2r EA. Since S = 1 0 maps the line 

Recr = 1 to A, we can write 2t = -1/cr, where Recr = 1. Then, using (2.7), 

we obtain 

k'(2T) = k'( -1/cr) = q(- l/cr)2 = r(cr)2 . 
p(- 1/cr)1 p( cr)2 

Since Recr = 1, the product expansions (2.6) easily show that 

Im(r(cr)2 /p(cr) 2) > 0, 

which completes the proof of Lemma 2.9. 

Seep 4. Conclusion of the Proof. 

QED 

We can now prove Theorem 2.2. Recall that at the end of Step 1 we 

were left with three tasks: to find all solutions t' of k'(t') = b/a, to relate 

the values of a/p(1')2 thus obtained, and to show that all values of M(a, b) 

arise in this way. 

We are given a, be C* with a =I= ± b and I a I ~ I b 1. We will first find 

r0 E F2 n F" such that k'(t0 ) = bja. Since I bja I ~ 1, Lemma 2.8 gives us 

r0 e F 2 with k'(t 0) = b/a. Could t 0 fail to lie in F" ? From the definition 

of F", this only happens when -c0 lies in the semicircle B pictured below. 

F2 shaded 

-112 0 1/2 
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However, 'Y = ( l 
0

) E r 2(4) takes B to the semicircle A. Since k' is 
-4 1 

invariant under r 2 (4), we have k'(y<:0 ) = k'(-r:0) = bfa. Thus, replacing -r:0 by 

y-c0 , we may assume that -c0 E F 2 n F". 

It is now easy to solve the first two of our tasks. Since k' induces a 

bijection ,f)j r i4) ~ C - {0, ± 1 }, it follows that all solutions of k'(;;) = b/a are 

given by -r = yr:0 , 'Y E r 2(4). This gives us the following set of values of 
M(a, b): 

Recalling the statement of Theorem 2.2, it makes sense to look a t the 

reciprocals of these values: 

R = {p("f't0)
2/a : "/ E r 2(4)} 

By (2.12), p(y-ro)2 = (cto + d) p{-ro)2 for y = (: ~) E r z(4) s;: r(2)o . Setting 

11 = ajp(-c0 )
2

, we have 

R = {(c<:0+d)p(-r:0)2/a:y_ = (; ~)Er2(4)} 

= {(c-c0 +d)fll :'Y = (: !)er2(4)}. 

An easy exercise in number theory shows that the bottom rows (c, d) of 

elements of r 2(4) are precisely those pairs (c, d) satisfying GCD(c, d) = 1, 

c = 0 mod 4 and d = 1 mod 4. We can therefore write 

R = {(cr0 + d)/ 1-.L: GCD(c, d) = 1, c = 0 mod 4, d = 1 mod 4}. 

Then setting A. = i~-.L/r0 gives us 

(2.17) R = {~ + ~ : GCD(c, d) = 1, d := 1 mod 4, c = 0 mod 4} . 

Finally, we will show that l.l and A. a re the simplest values of M(a, b) 
and M(a+b, a - b) respectively. This is easy to see for w since -r:0 E F A, 
Lemma 2.9 implies that J.l = ajp(-c0 )

2 is the simplest value of M(a, b), 
Turning to 'A, recall from Lemma 2.3 that a = J.!p{-t0 )

2 and b = Jlq(t0 )
2

• 

Thus by (2.8) and (2.7), 
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= 2f! (-i ) q (.=_!_) 2 ' 
2T0 2t0 

which implies that 

a + b = A. p( -1/2r0 )2 , a - b = A. q(- 1/2t0 ) 2 • 

Hence A. is a value of M(a+b, a-b). To see that it is the simplest value, 
we must show that -1/2t0 e F" (by Lemma 2.9). Since -r0 E F 2 , we have 

(0 -1) 2r0 E F 1 . But F1 is stable under S = 1 0 , so that -1/2t0 E F 1 • 

The inclusion F 1 ~ F {\ is obvious, and -1/2r0 e F {\ follows. This completes 
our first two tasks. 

Our third and final task is to show that (2.17) gives the reciprocals of 
all values or M(a, b). This will finish the proof of Theorem 2.2. So let !!' be a 
value of M(a, b), and let {an} ~=o and {bn} :'=o be the good sequences such that 
!!' = lim an = lim b". Then there is some m such that b" + 1 is the right 

choice for (anbn) 112 for all n ~ m; and thus Jl' is the simplest value of 
M(am, bm). Since k' : F' -+ C - { 0, ± 1} is surjective by Lemma 2. 7, we can find 
t e F' such that k'(-r) = bm/am. Arguing as above, we may assume that 
t E FA. Then Lemma 2.9 shows that Jl' = a,jp(r)1 and also that for n ~ m, 

(2.18) 

Let us study am- 1 and bm-t· Their sum and product are 2 am and b! 
respectively. From the quadratic formula we see that 

Using (2.9), we obtain 

so that, again using (2.9), we have 

Thus, either 

~ ll' p( -r/2)2 

~ ll' q(•/2)2 • 
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In the former case, set -r 1 = -r/2. Then from (2.18) we easily see tha t for 
n ~ m- 1, 

(2.19) an = J.l' p(2n - m+Ltl)2 ' bn = ~~ q(2n- m+!'t1 )2. 

If the latter case holds, let -r 1 = ;;f2 + 1. From (2.7) we see that am- l 
= J.l.' p(-r 1)

2
, b'" _ 1 = 11' q(-r Y, and it also follows easily that p(2" - m + 11 1) 

= p(2" - "'-r) and q(2"- "' +1 't 1) = q(2" - "'-c) for all n ~ m. Thus (2.19) holds for 

this choice of -c 1 and n ;:.: m - 1. 

By induction, this argument shows that there is '"' E 5 such tha t for all 
n;:.: 0, 

a, = 11' p(2"-rm)2 
, b, = 11' q(2"-c,Y . 

In particular, 11' = ajp(1mf and k'(1m) = bfa. Thus (11T 1 = p(-rm)2 / a is in the 

set R of (2.17). This shows that R consists of the reciprocals of all values 

of M(a, b), and the proof of Theorem 2.2 is now complete. QED 

We should poin~ out that the proof just given, though arrived at 

independently, is by no means original. The first proofs of Theorem 2.2 

appeared in 1928 in [15] and [35]. Geppert's proof [15] is similar to ours 

in the way it uses the theory of theta functions and modula r functions. 

The other proof [35], due to von David, is much shorter; it is a model of 
elegance and conciseness. 

Let us discuss some consequences of the proof of Theorem 2.2. First, the 

formulfl. /.. = iJ.l/<o. obtained above is quite interesting. We say that -c0 

"uniformizes" the simplest value 11 of M(a, b), where 

Writing the above formula as 1:0 = i i , we see how to explicizly compute 

-r0 in terms of the simplest values of M(a, b) and M(a +b, a-b). This is 

especially u~~ful when a > b > 0. Here, if we set c = J a2 
- b2

, then, 

using the notation of § 1, the simplest values are M(a, b) and M(a, c), so that 

(2.20) 
. M(a, b) 

'to = l . 
M(a, c) 

A nice example is when a = j2 and b = 1. Then c = 1, which implies 

-r0 = i! Thus M(,j2, 1) = j2/p(i)2 = 1/q(i)2 . From § 1 we know M(.j2, 1) 

= nj tf>, which gives us the formulas 
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(2.21) 

{;)j1t = q(i)2 = (1-2e- 11 +2e- 4"-2e- 9"'+ ... )2 • 

We will discuss the importance of this in§ 3. 

307 

Turning to another topic, note that M(a, b) is clearly homogeneous of 

degree 1, i.e., if ll is a value of M(a, b), then q.t is a value of M(ca, cb) 
for c E C*. Thus, it suffices to study M(l, b) for bE C - {0, ± 1 }. Its values 

are given by ~ = l/p('t)2 where k'(t) = b. Since k': ~-+ C - {0, ± 1} is a 
local biholomorphism, it follows that M(l, b) is a multiple valued holomorphic 
function. To make it single valued, we pull back to the universal cover 
via k', giving us M(l, k'('t)). We thus obtain 

M(l, k'(t)) = l/p(t)2 • 

This shows that the agM may be regarded as a meromorphic modular form 
of weight -1. 

Another interesting multiple valued holomorphic function is the elliptic 

integral J:2 
(l-k2sin2Q>)- 1' 2dQ>. This is a function of k E C - {0, ± 1 }. If 

we pull back to the universal cover via k: !) -+ C - {0, ± 1} (recall from 
Step 2 that k('t) = r(t)2/p('t)2), then it is well known that 

i fll/2 
- (1-k('c)2sin2<J>t 1' 2 d<j> = p(t)2 

1t 0 

(see [36, p. 500]). Combining the above two equations, we obtain 

which may be viewed as a rather amazing generalization of (1.9). 
Finally, let us make some remarks about the set .A of values of M(a, b), 

where a and b are fixed. If ll denotes the simplest value of M(a, b), then 
it can be shown that I ill ~ Ill' I for ~' E .At, and I Ill is a strict maximum 
if ang(a, b) =1= 1t. This may be proved directly from the definitions (see [35]). 
Another proof proceeds as follows. We know that any J.1' e .At can be 
written 

(2.22) Jl' = Jl/(C'to +d) ' 
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where10 EF2 and(: ~)Er2(4).Thusitsufficestoprovethatlcc0 + dl ~ 1 

. (a b) whenever -r0 E F 2 and c d E r 2(4). This is left as an exercise for the 

reader. 
We can also study the accumulation points of A. Since I c'!0 + d I 

is a positive definite quadratic form in c and d, it follows from (2.22) that 
0 E C is the only accumulation point of vii. This is very satisfying once we 
recall from Proposition 2.1 that 0 E C is the common limit of all non-good 
sequences {an} := o and {b.} :=o coming from (2.1). 

The proof of Theorem 2.2 makes one thing very clear : we have now seen 
"an entirely new field of analysis." However, before we can say that Gauss' 
prediction of May 30, 1799 has been fulfilled, we need to show that the 
proof given above reflects what Gauss actually did. Since we know from 
Step 2 about his work with the theta functions p('r), q('r) and r(-r) and the 
modular function k'('!), it remains to see how he applied all of this to the 
arithmetic-geometric mean. 

The connections we seek are found in several places in Gauss' notes. 
For example, he states very clearly that if 

(2.23) a = ~ p(1)2 
, b = ~ q(-rf , 

then the sequences an = 11 p(2"1)2
, b. = 11 q(2"-r)2 satisfy the agM algorithm 

(2.1) with 11 as their common limit (see [12, III, p. 385 and pp. 467-468]). 
This is precisely our Lemma 2.3. In another passage, Gauss defines the 
"einfachste Mittel" (simplest mean) to be the limit of those sequences where 
Re(b. +dan) > 0 for all n ~ 0 (see [12, III, p. 477]). This is easily seen to 
be equivalent to our definition of simplest value when ang(a, b) =1= 1t. On the 
same page, Gauss then asserts that for • E F 2 , J..L is the simplest value of 
M(a, b) for a, b as in (2.23). This is a weak form of Lemma 2.9. Finally, 
consider the following quote from [12, VIII, p. 101]: "In order to solve the 

. q(t) . 
equatiOn - = A, one sets A 2 = n/m and takes the agM of m and n; 

p(t) 

let this be ll· One further takes the agM of m and J m2 
- n2

, or, what 
is the same, of m + n and m - n; let this be /.... One then has t = J..L/A. 
This gives only one value of t; all others are contained in the formula 

ext - 2Bi 
t' = ---

0 - 2yti' 
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where ex., p, y, S signify all integers which satisfy the equation a8 - 4~y = 1." 
Recall that Ret > 0, so that our -c is just li. Note also that the last 
assertion is not quite correct. 

Unfortunately, in spite of these compelling fragments, Gauss never actually 
stated Theorem 2.2. The closest he ever came is the following quote from 
[12, X.l, p. 219]: "The agM changes, when one chooses the negative value for 
one of n', n", n"' etc.: however all resulting values are of the following 
form: 

(2.24) 
1 1 4ik M 

- = -+-. 
(~) ~ "A 

Here, Gauss is clearly dealing with M(m, n) where m > n > 0. The fraction 
1/J.l in (2.24) is correct: in fact, it can be shown that if the negative value 
of n(rl is chosen, and all other choices are the right choice, then the cor
responding value J.l' of M(m, n) satisfies 

1 1 2'+ 1i 
-=-+--
).1' J.l A. 

(see [13, p. 140]). So (2.24) is only a very special case of Theorem 2.2. 
There is one final piece of evidence to consider: the 1 09th entry m 

Gauss' mathematical diary. It reads as follows: 

Between two given numbers there are always infinitely many means 
both arithmetic-geometric and harmonic-geometric, the observation of 
whose mutual connection has been a source of happiness for us. 

(See [12, X.l, p. 550]. The harmonic-geometric mean of a and b is 
M(a-1, b- 1)- 1.) What is amazing is the date of this entry: June 3, 1800, 
a little more than a year after May 30, 1799. We know from § 1 that 
Gauss' first proofs of Theorem 1.1 date from December 1799. So less than 
six months later Gauss was aware of the multiple valued nature of M(a, b) 
and of the relations among these values! One tantalizing question remains: 
does the phrase "mutual connection" refer only to (2.24), or did Gauss have 
something more like Theorem 2.2 in mind? Just how much did he know 
about modular functions as of June 3, 1800? In order to answer these 
questions, we need to examine the history of the whole situation more 
closely. 
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3. HISTORICAL REMARKS 

The main difficulty in writing about the history of mathematics is that 
so much has to be left out. The mathematics we are studying has a richness 
which can never be conveyed In one article. For instance, our discussion 
of Gauss' proofs of Theorem 1.1 in no way does justice to the complexity 
of his mathematical thought; several important ideas were simplified or 
omitted altogether. This is not entirely satisfactory, yet to rectify such gaps 
is beyond the scope of this paper. As a compromise, we will explore the 
three following topics in more detail: 

A. The history of the lemniscate, 

B. Gauss' work on inverting lemniscatic integrals, and 

C. The chronology of Gauss' work on the agM and theta functions. 

A. The lemniscate was discovered by Jacob Bernoulli in 1694. He gives 
the equation in the form 

XX + yy = aJ XX - yy 

(in § 1 we assumed that a = 1), and he explains that the curve has "the 
form of a figure 8 on its side, as of a band folded into a knot, or of a 
lemniscus, or of a knot of a French ribbon" (see [2, p. 609]). "Lemniscus" 
is a Latin word (taken from the Greek) meaning a pendant ribbon fastened 
to a victor's garland. 

More interesting is that the integral I: (1- z4r 112dz, which gives one

quarter of the arc length of the lemniscate, had been discovered three years 
earlier in 169'1! This was when Bernoulli worked out the equation of the 
so-called elastic curve. The situation is as follows: a thin elastic rod is bent 
until the two ends are perpendicular to a given line L. 

----------------------0 A 
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After introducing cartesian coordinates as indicated and letting a denote OA, 
Bernoulli was able to show that the upper haif of the curve is given by the 
equation 

(3.1) 

where 0 ~ x ~ a (see [2, pp. 567-600]). 
It is convenient to assume that a = 1. But as soon as this is done, 

we no longer know how long the rod is. In fact, (3.1) implies that the 
arc length from the origin to a point (x, y) on the rescaled elastic curve is 

f: ( 1- z4 ) _,, dz. Thus the length or the whole rod is 2 f: ( 1 - z"')- 1"dz, 

which is precisely Gauss' m! 

How did Bernoulli get from here to the lemniscate? He was well aware 
of the transcendental nature of the elastic curve, and so he used a standard 
seventeenth century trick to make things more manageable: he sought 
"an algebraic curve ... whose rectification should agree with the rectification 
of the elastic curve" (this quote is from Euler [9, XXI, p. 276]). 

Jacob actually had a very concrete reason to be interested in arc length: 
in 1694, just after his long paper on the elastic curve was published, he 
solved a problem of Leibniz concerning the "isochrona paracentrica" (see 
[2, pp. 601-607]). This called for a curve along which a falling weight recedes 
from or approaches a given point equally in equal times. Since Bernoulli's 
solution involved the arc length of the elastic curve, it was natural for him 
to seek an algebraic curve with the same arc length. Very shortly thereafter, 
he found the equation of the lemniscate (see [2, pp. 608-612]). So we really 
can say that the arc length of the lemniscate was known well before the 
curve itself. 

But this is not the full story. In 1694 Jacob's younger brother Johann 
independently discovered the lemniscate! Jacob's paper on the isochrona 
paracentrica starts with the differential equation 

(xdx+ ydy)JY = (xdy- ydx)Ja, 

which had been derived earlier by Johann, who, as Jacob rather bluntly 
points out, hadn't been able to solve it. Johann saw this comment for the 
first time when it appeared in June 1694 in Acta Eruditorum. He took up 
the challenge and quickly produced a paper on the isochrona paracentrica 
which gave the equation of the lemniscate and its relation to the elastic 
curve. This appeared in Acta Eruditorum in October 1694 (see [3, pp. 119-
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122]), but unfortunately for Johann, Jacob's article on the lemniscate appeared 
in the September issue of the same journal. T here followed a bitter priority 
dispute. U p to now relations between the brothers had been variable, 

sometimes good, sometimes bad, with always a strong undercurrent of com
petition between them. After this incident, amicable rela tions were never 
restored. (For details of this cont roversy, as well as a fuller discussion of 
Jacob's mathematical work, see [ 18].) 

We need to mention one more thing before going on. Near the 
end of Jacob's paper on the lemniscate, he points out that the y-value 

I: z2
(a

4
- z4

) - 112dz of the elastic curve can be expressed as the difference 

of an arc of the ellipse with semiaxes aj2 and a, and an arc of the 
lemniscate (see [2, pp. 611-612]). This observation is an easy consequence 
of the equation 

(3.2) Ix a2dz Ix z2dz Ix (a2 + z2) 1/2 
o (a4 -z4)1/2 + o (a4 - z4)1/2 = o a2 -z2 dz . 

What is especially intriguing is th~t the ratio .j2.: 1, so important in Gauss' 
observation of May 30, 1799, was present at the very birth of the lemniscate. 

Throughout the eighteenth century the elastic curve and the lemniscate 
appeared in many papers. A . lot of work was done on the integrals 

I: (1- z4
)-

1
'
2dz and I: z 2(1- z4

)-
1

'
2dz. For example, Stirling, in a work 

written in 1730, gives the approximations 

I 
1 

dz - 1.31102877714605987 
0~ -

It z2dz = 
= .59907011736779611 

0~ 
(see [31, pp. 57-58]). Note that the second number doubled is 

1.19814023473559222, which agrees with M(j2, 1) to sixteen decimal places. 
Stirling also comments that these two numbers add up to one half the 

circumference of an ellipse with .j2. and 1 as axes, a special case of 

Bernoulli's observation (3.2). 
Another notable work on the elastic curve was E uler's paper "De miris 

proprietatibus curvae· elasticae sub equatione y = f~ contentae" 
1- x 4 
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which appeared posthumously in 1786. In this paper Euler gives approxima
tions to the above integrals (not as good as Stirling's) and, more importantly, 
proves the amazing result that 

(3.3) f1 dz f1 z2dz 1t 

o .j1-z2 • o ,j1=?" = 4 

(see [9, XXI, pp. 91-118]). Combining this with Theorem 1.1 we see that 

f 1 z1dz 
M(~, 1) = 2 ,j1=?" , 

o 1-z4 

so that the coincidence noted above has a sound basis in fact. 
We have quoted these two papers on the elastic curve because, as we 

will see shortly, Gauss is known to have read them. Note that each paper 

has something to contribute to the equality M(j2, 1) = 1t/m: from Stirling, 

we get the ratio J2: 1, and from Euler we get the idea of using an 
equation like (3.3). 

Unlike the elastic curve, the story of the lemniscate in the eighteenth 
century is well known, primarily because of the key role it played in the 
development of the theory of elliptic integrals. Since this material is thoroughly 

covered elsewhere (see, for example, [1, Ch. 1-3], [8, pp. 470-496], [19, § 1-§ 4] 
and (21, § 19.4]), we will mention only a few highlights. One early worker 
was C. G. Fagnano who, following some ideas of Johann Bernoulli, studied 
the ways in which arcs of ellipses and hyperbolas can be related. One result, 
known as Fagnano's Theorem, states that the sum of two appropriately 

chosen arcs of an ellipse can be computed algebraically in terms of the 
coordinates of the points involved. He also worked on the lemniscate, 
starting with the problem of halving that portion of the arc length of the 

lemniscate which lies in one quadrant. Subsequently he found methods for 
dividing this arc length into n equal pieces, where n = 2m, 3 ·2m or 5 ·2m. 
These researches of Fagnano's were published in the period 1714-1720 in an 
obscure Venetian journal and were not widely known. In 1750 he had his 
work republished, and he sent a copy to the Berlin Academy. It was given 
to Euler for review on December 23, 1751. Less than five weeks later, on 
January 27, 1752, Euler read a paper giving new derivations for Fagnano's 

results on elliptic and hyperbolic arcs as well as significantly new results on 
lemniscatic arcs. By 1753 he had a general addition theorem for lemniscatic 
integrals, and by 1758 he had the addition theorem for elliptic integrals 
(see [9, XX, pp. VII-VIII]). This material was finally published in 1761, 
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and for the first time there was a genuine theory of elliptic integrals. For 

the next twenty years Euler and Lagrange made significant contributions, 

paving the way for Legendre to cast the field in its classical form which 

we glimpsed at the end of § 1. Legendre published his definitive treatise on 
elliptic integrals in two volumes in 1825 and 1826. The irony is that in 

1828 he had to publish a third volume describing the groundbreaking papers 

of Abel and Jacobi which rendered obsolete much of his own work 

(see [23]). 

An important problem not menhoned so far is that of computing tables 

of elliptic integrals. Such tables were needed primarily because of the many 

applications of elliptic integrals to mechanics. Legendre devoted the entire 

second volume of his treatise to this problem. Earlier Euler had computed 

these integrals using power series similar to (1.8) (see also [9, XX, pp. 21-55]), 

but these series often converged very slowly. The · real breakthrough came 

in Lagrange's 1785 paper "Sur une nouvelle methode de calcul integral" 

(see [22, pp. 253-312]). Among other things, Lagrange is concerned with 

integrals of the for~ 

(3.4) 

where M is a rational function of y 2 and p ;:::: q > 0. He defines sequences 
p, p', p", ... , q, q', q", ... as follows : 

(3.5) 

and then, using the substitution 

(3.6) 

he shows that 

Two methods of approximation are now given. The first starts by 

observing that the sequence p, p', p", ... approaches + oo while q, q', q" , ... 

approaches 0. Thus by iterating the substitution (3.6) in the integral of (3.4), 
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one can eventually assume that q = 0, which gives an easily computable 
integral. The second method consists of doing the first backwards: from (3.5) 
one easily obtains 

p = (p' + q')/2 , q = (p' q')l/2 . 

Lagrange then observes that continuing this process leads to sequences 
p', p, 'p, "p, ... , q', q, 'q, "q, ... which converge to a common limit (see [22, 
p. 271]). Hence iterating (3.6) allows one to eventually assume p = q, 
again giving an easily computable integral. 

So here we are in 1785, staring at the definition of the arithmetic
geometric mean, six years before Gauss' earliest work on the subject. By 
setting py = tan<j), one obtains 

so that (3.6) and (3.7) are precisely (1.5) and (1.6) from the proof of The
orem 1.1. Thus Lagrange not only could have defined the agM, he could 
have also proved Theorem 1.1 effortlessly. Unfortunately, none of this 
happened; Lagrange never realized the power of what he had discovered. 

One question emerges from all of this: did Gauss ever see Lagrange's 
article? The library of the Collegium Carolinum in Brunswick had some of 
Lagrange's works (see [ 4, p. 9]) and the library at Gottingen had an 
extensive collection (see [12, X.2, p. 22]). On the other hand, Gauss, in 
the research announcement of his 1818 article containing the proof of 
Theorem 1.1, claims that his work is independent of that of Lagrange and 
Legendre (see [12, III, p. 360]). A fuller discussion of these matters is in 
[12, X.2, pp. 12-22]. Assuming that Gauss did discover the agM independently, 
we have the amusing situation of Gauss, who anticipated so much in Abel, 
Jacobi and others, himself anticipated by Lagrange. 

The elastic curve and the lemniscate were equally well known in the 
eighteenth century. As we will soon see, Gauss at first associated the integral 

f(1-z 4 )- 112dz with the elastic curve, only later to drop it in favor of the 

lemniscate. Subsequent mathematicians have followed his example. Today, the 
elastic curve has been largely forgotten, and the lemniscate has suffered the 
worse fate of being relegated to the polar coordinates section of calculus 
books. There it sits next to the formula for arc length in polar coordinates, 
which can never be applied to the lemniscate since such texts know nothing 
of elliptic integrals. 
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B. Our goal in describing Gauss' work on the lemniscate is to learn 
more of the background to his observation of May 30, 1799. We will see 
that the lemniscatic functions played a key role in Gauss' development of 

the arithmetic-geometric mean. 
Gauss began innocently enough in September 1796, using methods of 

Euler to find the formal power series expansion of the inverse function of 

first f(l -x3
)-

112dx, and then more generally f(l -x")- 112dx (see [12, X.1, 

p. 502]). Things became more serious on January 8, 1797. The 51st entry 
in his mathematical diary, bearing this date, states that "I have begun to 

investigate the elastic curve depending on f (l-x4)- 112dx." Notes written 

at the same ·time show that Gauss was reading the works of Euler and 
Stirling on the elastic curve, ~s discussed earlier. Significantly, Gauss later 
struck out the word "elastic" and replaced it with "lemniscatic" (see [ 12, X.1, 
pp. 147 and 510]). 

Gauss was strongly motivated by the analogy to the circular functions. 

For example, notice the similarity between (j'j/2 = J: (l - z4
) -

1
'
2dz and 

n/2 = f: (1-z2
) -

112dz. (This similarity is reinforced by the fact that many 

eighteenth century texts used tU to denote 11: - see [12, X.2, p. 33].) 

Gauss then defined the lemniscatic functions as follows: 

sinlemn (J: (1- z4
)-

112dz) = x 

coslemn ( (J)/2- J: (l- z4
) -

1
'
2dz) = x 

(see [12, III, p. 404]). Gauss often used the abbreviations sl <!> and cl <!> 

for sinlemn <j> and coslemn <!> respectively, a practice we will adopt. From 

Euler's addition theorem one easily obtains 

(3.8) 

(3.9) 
, sl <!> cl <!>' + sl <!>' cl <j> 

sl( <!> + <!> ) = 1 - sl <!> sl <!>' cl <!> cl <!>' 

(see [12, X.l, p. 147]). 
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Other formulas can now be derived in analogy with the trigonometric 
functions (see [25, pp. 155-156] for a nice treatment), but Gauss went much, 

much farther. A series of four diary entries made in March 1797 reveal the 

amazing discoveries that he made in the first three months of 1797. We will 
need to describe these results in some detail. 

Gauss started with Fagnano's problem of dividing the lemniscate into n 
equal parts. Since this involved an equation of degree n2, Gauss realized that 

most of the roots were complex (see [12, X.l, p. 515]). This led him to 
define sl q, and cl q, for complex numbers q,. The first step is to show that 

sl(iy) = i sl y , cl(iy) = 1/cl(y) . 

(the first follows from the change of variable z = iz' in J (1-z4)- 1i 2dz, 

and the second follows from (18)). Then (3.9) implies that 

sl x + i sl v cl x cl y 
sl(x+iy) = · 

ci y - i sl x sl y cl x 

(see [12, X.l, p. 154]). 

It follows easily that sl <!> is doubly periodic, with periods 2m and 2iti'>. 
The zeros and poles of sl <!> are also easy to determine; they are given by 
4> = (m+in)Ci'> and<!>= ((2m-l)+i(2n-l))(li>/2), rn, n eZ, respectively. Then 
Gauss shows that sl <P can be written as 

sl <!> = M( <!>) 
N(<l>) 

where M(<\l) and N(<j>) are entire functions which are d-oubly indexed 
infinite products whose factors correspond to the zeros and poles respect
ively (see [12, X.l, pp. 153-155]). In expanding these products, Gauss 
writes down the first examples of Eisenstein series (see [12, X.1, pp. 515-516]). 
He also obtains many identities involving M(<P) and N(<P). such as 

(3.10) 

(see [12, X.l, p. 157]). Finally, Gauss notices that the numbers N(m) 
and e"-11 agree to four decimal places (see [12, X.1, p. 158]). He comments 
that a proof of their equality would be "a most important advancement 
of analysis" (see 12, X.l, p. 517]). 

Besides being powerful mathematics, what we have here is almost a 
rehearsal for what Gauss did with the arithmetic-geometric mean: the 
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observation that two numbers are equal, the importance to analysis of 

proving this, and the passage from real to complex numbers in order to 

get a t the real depth of the subject. Notice also that identities such as 

(3.10) are an important warm-up to the theta function identities needed 
in § 2. 

Two other discoveries made at this time require comment. First, only 

a year after constructing the regular 17-gon by ruler and compass, Gauss 
found a ruler and compass construction for dividing the lemniscate into 

five equal pieces (see [12, X.l , p. 517]). This is the basis for the remarks 

concerning f (1- x4r 1
'
2dx made in Disquisitiones Arithmeticae (see [11, 

§ 335]). Second, Gauss discovered the complex multiplication of elliptic 

function s when he gave formulas for sl(l + i)<j>, N(l + i)¢, etc. (see [12, III, 
pp. 407 and 411]). These discoveries are linked: complex multiplication on 

the elliptic curve associated to the lemniscate enabled Abel to determine 
all n for which the lemniscate can be divided into n pieces by ruler and 

compass. (The answer is the same as for the circle! See [ 28] for an 

excellent modern account of Abel's theorem.) 

After this burst of progress, Gauss left the lemniscatic functions to work 

on other things. He returned to the subject over a year later, in July 1798, 

and soon discovered that there was a better way to write sl <P as a quotient 

of entire functions. The key was to introd uce the new variables = sin (: <l>) . 
Since. sl <P has period 2&, it can certainly be written as a function of s. 

By expressing the zeros and poles of sl 4> in terms of s, Gauss was able 

to prove that 

sl <!> 
P(<j>) 

= Q(<j>) ' 

where 

Q(<j>) = (1-(e"/2::
2 
•12)2) (1- (e3n/2 ::

2

- 3~f2) 2)·· · 
(see [12, III, pp. 415-416]). Relating these to the earlier functions M(Q>) 

and N(<j>), Gauss obtains (letting <!> = l)!ro) 

M(\j!ID) = e"'¥2
12 P(\ji!D) , 
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N(\jlli:\) = e""w•t2 Q(\jllb) , 

(see [12, III, p. 416]). Notice that N((b) = e"·12 is an immediate consequence 
of the second formula. 

Many other things were going on at this time. The appearance of 7t/(JJ 

sparked Gauss' interest in this ratio. He found several ways of expressing 
{lljn, for example 

(1\ j2 ( (1) 2 1 (3) 2 1 ( 5 ) 1 1 ) <3·11) j[ = -2- 1 + 2 2 + 8 4 + 16 8 + ... ' 

and he computed {b/rt to fifteen decimal places (see [12, X.l, p. 169]). 
He also returned to some of his earlier notes and, where the approximation 

2 J: z2(1-z4)- 1' 2dz ~ 1.198 appears, he added that this is n/(b (see [12, X.l, 

pp. 146 and 150]). Thus in July 1798 Gauss was intimately familiar with 

the right-hand side of the equation M(j2, 1) = 7t/{ll. Another problem he 
studied was the Fourier expansion of sl <f>. Here, he first found the numerical 
value of the coefficients, i.e. 

sl \(11!1 = .95500599 sin o/rt - .04304950 sin 3 \jm + ... , 

and then he found a formula for the coefficients, obtaining 

41t . 41t . 
sl \(tlt:l = lt:l(en/2 + e -n/2) sm o/rt - m(e3n/2 + e- 3n/2) sm 3 \(In + ... 

see [ 12, X.1, p. 168 and III, p. 417]). 

The next breakthrough came in October 1798 when Gauss computed the 
Fourier expansions of P(<f>) and Q(<j>). As above, he first computed the 
coefficients numerically and then tried to find a general formula for them. 
Since he suspected that numbers like e-", e-"' 2, etc., would be involved, 
he computed several of these numbers (see [12, III, pp. 426-432]). The final 
formulas he found were 

P(o/lt)) = 

23' 4 (rr/(i)) 1' 2 (e-"14 sin \(11t- e- 9"'4 sin 3 vrr + e- 25"/4 sin 5\(11t- ···} 

(3.12) Q(ljfln) = 

r 1' 4(1t/fb) 1' 2 ( 1 + ze- 11 cos 2\jf1t + 2e- 4" cos 4'if1t + ze- 9" cos 6\j.rn + .. ) 
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(see [12, X.l, pp. 536-537] ). A very brief sketch of how Gauss proved 
these formulas may be found in [12, X.2, pp. 38-39]. 

These formulas are remarkable for several reasons. First, recall the theta 
functions e 1 and e3: 

el(z , q) = 2q 114 sin z - 2q914 sin 3z + 2q2514 sin 5z - ... 

(3.13) 

0 3(z, q) = 1 + 2q cos 2z + 2q4 cos 4z + 2q9 cos 6z + ... 

(see [36, p. 464]). Up to the constant factor 2 - 1
'
4 (rr./ (J)) 112

, we see that 
P(\jl&) and Q(~&) are precisely 01(~7t , e - ") and 03(~7t, e-") respectively. 
Even though this is just a special case, one can easily discern the general 
form of the theta functions from (3. 12). (For more on the relation between 
theta functions and sl q,, see [36, pp. 524-525]). 

Several interesting formulas can be derived from (3.12) by making specific 
choice for ~- For example, if we. set \jJ = 1, we obtain 

j(iJii = r 1'4(1+2e-"+2e-4~+2e - 9"+ ... ) . 

Also, if we set \jJ = 1/ 2 and use the nontrivial fact that P(m/2) = Q(m/2) 
= 2- 114 (this is a consequence of the formula Q(2<!>) = P(<!>)4 + Q(<j>)4 - see 
(3.10)), we obtain 

(3.14) 

Gauss wrote down these last two formulas in October 1798 (see [12, III, 
p. 418]). We, on. the other hand, derived the first and third formulas as 
(2.21) in § 2, only after a very long development. Thus Gauss had some 
strong signpo~s to guide his development of modular functions. 

These results, all dating from 1798, were recorded in Gauss' mathematical 
diary as the 91st and 92nd entries (in July) and the 95th entry (in 
October). The statement of the 92nd entry is especially relevant : "I have 
obtained most elegant results concerning the lemniscate, which surpasses 
all expectation- indeed, by methods which open an entirely new field to us" 
(see [12, X.l, p. 535]). There is a real sense of excitement here: instead 
of the earlier "advancement of analysis" of the 63rd entry, we have the much 
stronger phrase "entirely new field." Gauss knew that he had found 
something of importance. This feeling of excitement is confirmed by the 
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95th entry: "A new field of analysis is open before us, that is, the investigation 

of functions, etc." (see [12, X.l, p. 536]). It's as if Gauss were so enraptured 
he didn't even bother to finish the sentence. 

More importantly, this "new field of analysis" is clearly the same 
"entirely new field of analysis" which we first saw in § 1 in the 98th entry. 

Rather than being an isolated phenomenon, it was the culmination of years 

of work. Imagine Gauss' excitement on May 30, 1799: this new field which 
he had seen grow up around the lemniscate and reveal such riches, all of a 
sudden expands yet again to encompass the arithmetic-geometric mean, a 
subject he had known since age 14. All of the powerful analytic tools he had 
developed for the lemniscatic functions were now ready to he applied to 
the agM. 

C. In studying Gauss' work on the agM, it makes sense to start by 

asking where the observation M(j2, 1) = 7t/GJ came from. Using what we 
have learned so far, part of this question can now be answered: Gauss was 
very familiar with n)f1J, and from reading Stirling he had probably seen the 

ratio J2 : 1 associated with the lemniscate. (In fact, this ratio appears in most 
known methods for constructing the lemniscate-see [24, pp. 111-117].) We 
have also seen, in the equation N(f1J) = enf 2 , that Gauss often used numerical 

calculations to help him discover theorems. But while these facts are 
enlightening, they still leave out one key ingredient, the idea of taking the 

agM of j2 and 1. Where did this come from? The answer is that every 

great mathematical discovery is kindled by some intuitive spark, and in our 
case, the spark came on May 30, 1799 when Gauss decided to compute 

M(fl, 1). 

We are still missing one piece of our picture of Gauss at this time: 
how much did he know about the agM? Unfortunately, this is a very 

difficult question to answer. Only a few scattered fragments dealing with the 
agM can be dated before May 30, 1799 (see [12, X.l, pp. 172-173 and 260]). 
As for the date 1791 of his discovery of the agM, it comes from a Jetter 
he wrote in 1816 (see [12, X.l, p. 247]), and Gauss is known to have 
been sometimes wrong in his recollections of dates. The only other knowledge 

we have about the agM in this period is an oral tradition which holds 
that Gauss knew the relation between theta functions and the agM in 1794 
(see [12, III, 493]). We will soon see that this claim is not as outrageous 
as one might suspect. 

It is not our intention to give a complete account of Gauss' work on 
the agM. This material is well covered in other places (see [10], [12, X.2, 
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pp. 62-114], [13], [14] and [25]- the middle three references are especially 
complete), and furthermore it is impossible to give the full story of what 
happened. To explain this last statement, consider the following formulas: 

B + (l/ 4)B3 + (9j 64)B5 + ... = (2z1
'
2 + 2z9

'
2 + ... )2 = r 2

, 

(3.15) 

a . 2 4 
M(a, b) = 1 + (l/4)B + (9/64)B + ... , 

where B = (1 - (b/a)2)1 '2
• These come from the first surviving notes on the 

agM that Gauss wrote after May 30, 1799 (see [ 12, X.1, pp. 177-178]). 

If we set a = 1 and b = k' = ~. then B = k, and we obtain 

(3.16) 

1 
-- = 1 + (1/4)P + (9/64)k4 + ... 
M(l , k'} 

k ___ = (2z11z + 229tz + )2 = r z . 
M(1, k') ... 

The first formula is (l.8), and the second, with z = e~i•l2, follows easily 
from what we learned in § 2 about theta functions and the agM. Yet the 

· formulas (3.15) appear with neither .proofs nor any hint of where they came 
from. The discussion at the end of § 1 sheds some light on the bottom 
formula of (3.15), but there is nothing to prepare us for the top one. 

It is true that Gauss had a long-standing interest in theta functions, 
going back to when he first encountered. Euler's wonderful formula 

00 00 :L (-Jtx(3n,+n)/2 = TI(I-xn). 
n= -oo n=l 

The right-hand side appears in a fragment dating from 1796 (see [ 12, X.l , 
p. 142]), and the 7th entry of his mathematical diary, also dated 1796, gives a 
continued fraction expansion for 

1- 2 + 8- 64 + .... 

Then the 58th entry, dated February 1797, generalizes this to give a con
tinued fraction expansion for 

1 - a + a3 - a6 + alO - ... 

(see [12, X.1, pp. 490 and 513]). The connection between these series and 
lemniscatic functions came in October 1798 with formulas such as (3.14). 
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This seems to have piqued his interest in the subject, for at this time he 
also set himself the problem of expressing 

(3.17) 

as an infinite product (see [12, X.l, p. 538]). Note also that the first 
formula of(3.14) gives r with z = e-"'2• 

Given these examples, we can conjecture where (3.15) came from. Gauss 
could easily have defined p, q and r in general and then derived identities 
(2.8)-(2.9) (recall the many identities obtained in 1798 for P( <j>) and Q( <!>)-see 
(3.10) and [12, III, p. 410]). Then (3.15) would result from noticing that 
these identities formally satisfy the agM algorithm, which is the basic content 
of Lemma 2.3. This conjecture is consistent with the way Gauss initially 
treated z as a purely formal variable (the interpretation z = e- 11i'12 was only 
to come later-see [12, X.l, pp. 262-263 and X.2, pp. 65-66]). 

The lack of evidence makes it impossible to verify this or any other 
reasonable conjecture. But one thing is now clear: in Gauss' observation 
of May 30, 1799, we have not two but three distinct streams of bis thought 

coming together. Soon after (or simultaneous with) observing that M(.ji, 1) 
= rt/{f), Gauss knew that there were inimate connections between lemniscatic 
functions, the agM, and theta functions. The richness of the mathematics we 
have seen is in large part due to the many-sided nature of this confluence. 

There remain two items of unfinished business. From § 1, we want to deter
mine more precisely when Gauss first proved Theorem 1.1. And recall from§ 2 
that on June 3, 1800, Gauss discovered the "mutual connection" among 
the infinitely many values of M(a, b). We want to see if he really knew the 
bulk of § 2 by this date. To answer these questions, we will briefly 
examine the main notebook Gauss kept between November 1799 and 
July 1800 (the notebook is "Scheda Ac" and appears as pp. 184-206 m 
[12, X.1]). 

The starting date of this notebook coincides with the 1 OOth entry of 
Gauss' mathematical diary, which reads "We have uncovered many new 
things about arithmetic-geometric means" (see [12, X.l, p. 544]). After several 
pages dealing with geometry, one all of a sudden finds the formula (3.11) 
for &/rt. Since Gauss knew (3.15) at this time, we get an immediate proof 

of M(..j2, 1) = nj(J). Gauss must have had this in mind, for otherwise why 
would he so carefully recopy a formula proved in July 1798? Yet one could 
also ask why such a step is necessary: isn't Theorem 1.1 an immediate 
consequence of (3.15)'? Amazingly enough, it appears that Gauss wasn't yet 
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aware of this connection (see [12, X.1, p . 262]). Part of the problem is 

that he had been distracted by the power series, closely related to (3.15), 

which gives the arc length of the ellipse (see [12, X.l, p . 177]). This 

distraction was actually a bonus, for an asymptotic formula of Euler's for 

the arc length of the ellipse led Gauss to write 

(3.18) 

where x = k-1, and z and k are as in (3.16) (see [12, X. 1, pp. 186 and 

268-270] ). He was then able to show that the power series on top was 

(k M(l, k' )t 1, which implies that 

z = exp ( - ~ . M (1, k')) 
2 M(1, k) 

(see [12, X.1 , pp. 187 and 190]). Letting z = e"it/2, we obtain formulas 

similar to (2.20). More importantly, we see that Gauss is now in a position 
to uniformize the agM ; z is no longer a purely formal variable. 

In the process of studying (3.18), Gauss also saw the relation between 

the agM and complete elliptic integrals of the first kind. The formula 

follows easily from [12, X. l, p . 187] , and this is trivially equivalent to (1.7). 

Furthermore, we know that this page was written on December 14, 1799 
since on this date Gauss wrote in his mathematical diary that the a'gM 

was the quotient of two transcendental functions (see (3.18)), one of which 

was itself an integral quantity (see the lOlst entry, [12, X.1, 544]). Thus 
Theorem 1.1 was proved on December 14, 1799, nine days earlier than our 

previous estimate. 
Having proved this theorem, Gauss immediately notes one of its 

corollaries, that the "constant term" of the expression (1 + Jl cos 2<j>) -l /2 is 

M(~, 1)- 1 (see [12, X.l, p. 188]). By "constant term" Gauss means 

the coefficient A in the Fourier expansion 

(l+ll cos2<!>)- 112 = A+ A' cos <l> +A" cos 2<1> + ... 

2 fn/2 
Since A is the integral - (1 +I! cos24>) -ll2d4>, the desired result follows 

1t 0 

from Theorem 1.1. This interpretation is important because these coefficients 
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are useful in studying secular perturbations in astronomy (see [12, X.l, 

pp. 237-242]). It was in this connection that Gauss published his 1818 paper 

[12, III, pp. 331-355] from which we got our proof of Theorem 1.1. 
What Gauss did next is unexpected: he used the agM to generalize the 

lemniscate functions to arbitrary elliptic functions, which for him meant inverse 

functions of elliptic integrals of the form 

J(l+J.l2sin2~)-l/2d¢ = J{(l-.x:2)(1+l!2x2)tli2Jx. 

Note that 11 = 1 corresponds to the lemniscate. To start, he first set 

11 = tan v, 

1t cos v 
I'D= , 

M(l, cosv) 
U:J' = ----

M(l, sinv) 

TC COS V 

and finally 

(3.19) z = exp (- ~ · :) = exp (- ~ · :~~·. :~:~D · 
Then he defined the elliptic functionS(¢) by S(¢) = :~:)where 

13.20) 

W(\j!U:J) = J M(l, cosv) (l + 2z 2cos2\jfrr + 2z8cos4\(Jrr + ... ) 

bee [12, X.l, pp: 194-195 and 198]). In the pages that follow, we find 
the periods 2G:l and 2illl ', the addition formula, and the differential equation 

connecting S(¢) to the above elliptic integral. Thus Gauss had a complete 
theory of elliptic functions. 

In general, there are two basic approaches to this subject. One involves 

direct inversion of the elliptic integral and requires a detailed knowledge of 
Ihe associated Riemann surface (see [17, Ch. VII]). The other more common 

u.pproach defines elliptic functions as certain series (~-functions) or quotients 

of series (theta functions). The difficulty is proving that such functions invert 
all elliptic integrals. Classically, this uniformization problem is solved by 

studying a function such as k(-r) 2 (see [36, § 20.6 and § 21.73]f or j(-r) (as in 
most modern texts-see [30, § 4.2]). Gauss uses the agM to solve this 

problem: (3.19) gives the desired uniformizing parameter! (In this connection, 
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the reader should reconsider the from [12, VJII, p. 101] gtven near 
the end of§ 2.) 

For us, the most interesting aspect of what Gauss did concerns the 
functions T and W. Notice that (3.20) is a direct generalization of (3.12); 
in fact, in terms of (3.13), we have 

T(o/&) = Jl- 112 jM(1,cosv) 0 1(o/rt, z2), 

W(\jf&) = jM(1, cosv) 0 3(\jfrt, z 2
) . 

Gauss also introduces T(lll/ 2-<j>) and W(&/2-<j>), which are related to the 
theta functions 0 2 and 0 4 by similar formulas (see [12, X.l, pp. 196 and 
275]). He then studies the squares of these functions and he obtains 
identities such as 

2E> 3(0, z4
) E>3(2<j>, z4

) = 8 3 (<j>, z2
)

2 + E>4 (<j>, z2
)

2 

(this, of course, is the modern formulation-see [12, x :1, pp. 196 (Eq. 14) 
and 275]). When <1> = ' 0, this reduces to the first formula 

p('rV + q(•)2 = 2p(2•)2 

o( (2.8). The other formulas of (2.8) appear similarly. Gauss also obtained 
product expansions for the theta functions (see [12, X.l, pp. 201-205]). 
In particular, one finds all the formulas of (2.6). These manipulations yielded 
the further result that 

00 

1 + z + z3 + z6 z10 + ... - fl (1-z) - 1(1-z2
), 

n= 1 

solving the problem he had posed a year earlier in (3.17). 
From Gauss' mathematical diary, we see that the bulk of this work was 

done in May 1800 (see entries 105, 106 and 108 in [12, X.1, pp. 546-549]). 
The last two weeks were especially intense as Gauss realized the special 
role played hy the agM. The 108th entry, dated June 3, 1800, announces 
completion of a general theory of elliptic functions ("sinus lemniscatici univer
salissime accepti"). On the same day he recorded his discovery of the "mutual 
connection" among the values of the agM ! 

This is rather surprising. We've seen that Gauss knew the basic identities 
(2.6), (2.8) and (2.9), but the formulas (2.7), which tell us how theta functions 
behave under linear fractional transformations, are nowhere to be seen, nor 
do we find any hint of the fundamental domains used in § 2. Reading this 
notebook makes it clear that Gauss now knew the basic observation of 
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Lemma 2.3 that theta functions satisfy the agM algorithm, but there is no 
way to get from here to Theorem 2.2 with.out knowing (2.7). It is not 
until 1805 that this material appears in Gauss' notes (see [12, X.2, pp. 101-
103]). Thus some authors, notably Markushevitch [25], have concluded that 
on June 3, 1800, Gauss had nothing approaching a proof of Theorem 2.2. 

Schlesinger, the last editor of Gauss' collected works, feels otherwise. 
He thinks that Gauss knew (2.7) at this time, though knowledge of the 
fundamental domains may have not come until 1805 (see [12, X.2, p. 106]). 
Schlesinger often overestimates what Gauss knew about modular functions, 
but in this case I agree with him. As evidence, consider pp. 287-307 in 
[12, X.1]. These reproduce twelve consecutive pages from a notebook written 
in 1808 (see [12, X.l, p. 322]), and they contain the formulas (2.7), a clear 
statement of the basic observation of Lemma 2.3, the infinite product 
manipulations described above, and the equations giving the division of the 
agM into 3, 5 and 7 parts (in analogy with the division of the lemniscate). 
The last item is especially interesting because it relates to the second half 
of the 108th entry: "Moreover, in these same days, we have discovered the 
principles according to which the agM series should be interpolated, so as 
to enable us to exhibit by algebraic equations the terms in a given pro
gression pertaining to any rational index" (see [12, X.l, p. 548]). There is no 
other record of this in 1800, yet here it is in 1808 resurfacing with other 
material (the infinite products) dating from 1800. Thus it is reasonable to 
assume that the rest of this material, including (2.7), also dates from 1800. 
Of course, to really check this conjecture, one would have to study the 
original documents in detail. 

Given all of (2.6)-(2.9), it is still not clear where Gauss got the basic 
insight that M(a, b) is a multiple valued function. One possible source of 
inspiration is the differential equation (1.12) whose solution (1.13) suggests 
linear combinations similar to those of Theorem 2.2. We get even closer 
to this theorem when we consiser the periods of S(<!>): 

mro + inm' = 1t cos v (M(1~osv) + M(/:inv)) 

where m, n are even integers. Gauss' struggles during May 1800 to understand 
the imaginary nature of these periods (see [12, X.2, pp. 70-71]) may have 
influenced his work on the agM. (We should point out that the above 
comments are related: Theorem 2.2 can be proved by analyzing the mono
dromy group-r i4) in this case-of the differential equation (1.12).) On the 
other hand, Geppert suggests that Gauss may have taken a completely different 
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route, involving the asymptotic formula (3.18), of arriving a t Theorem 2.2 

(see [14, pp. 173-175]). We will of course never really know how Gauss 
arrived at this theorem. 

For many years, Gauss hoped to write up these results for publica tion. 
He mentions this in Disquisitiones Arithmeticae (see [ 11, § 335]) and in the 
research announcement to his 1818 article (see [ 12, III, p. 358]). Two 

manuscripts written in 1800 (one on the agM, the other on lemniscatic 
functions) show that Gauss made a good start on this project (see [12, III, 
pp. 360-371 and 413-415]). He also periodically returned to earlier work and 
rewrote it in more complete form (the 1808 notebook is an example of 
this). Aside from the many other projects G auss had to distract him, it is 
clear why he never finished this one: it was simply too big. Given his 
predilection for completeness, the resulting work would have been enormous. 
Gauss finally gave up trying in 1827 when the first works of Abel and 
Jacobi appeared. As he wrote in 1828, "I shall most likely not soon prepare 
my investigations on transcendental functions which I have had fo r many 
years-since 1798- because I have many other matters which must be cleared 
up. Herr Abel has now, I see, anticipated me and relieved me of the burden 
in regard to one third of these matters, particularly since he carried out all 
developments with great concision and elegance" (see [12, X.l , p. 248]). 

The other two thirds "of these matters" encompass Gauss' work on the 
agM and modular functions. The latter were studied vigorously in the 
nineteenth century and are still an active area of research today. The agM, 
on the other hand, has been relegated to the history books. This is not 
entirely wrong, for the history of this subject is wonderful. But at the same 
time the agM is also wonderful as mathematics, and this mathematics 
deserves to be better known. 
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Synopsis:
In this paper, brothers Jonathan and Peter Borwein present a review of the

recently discovered (as of 1984) quadratically convergent formulas for π and ele-
mentary functions (including some new formulas of their own), complete with a
rigorous derivation of all the requisite mathematics. The paper is thus an excellent
self-contained tutorial on the theory of the arithmetic-geometric mean, quadrati-
cally convergent algorithms (including Newton’s algorithm for computing square
roots and roots of polynomials), and how these concepts lead to fast algorithms for
π and elementary functions. They do this without needing to venture into incom-
plete elliptic integrals and Landen transforms, which were used to various degrees
by earlier writers.

This paper has particular significance for the editors of this volume, as its
appearance in SIAM Review, a publication mostly read in the applied mathematics
and high-performance computing communities, led to Bailey becoming interested
in these topics and joining with Jonathan and Peter Borwein in a multi-decade
collaboration.
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THE ARITHMETIC-GEOMETRIC MEAN AND FAST COMPUTATION OF 
ELEMENTARY FUNCTIONS* 

J. M. BORWEINt AND P. B. BORWEINt 

Abstract. We produce a self contained account of the relationship between the Gaussian arithmetic
geometric mean iteration and the fast computation of elementary functions. A particularly pleasant algorithm 
for 1r is one of the by-products. 

Introduction. It is possible to calculate 2" decimal places of 1r using only n iterations 
of a (fairly) simple three-term recursion. This remarkable fact seems to have first been 
explicitly noted by Salamin in 1976 [16]. Recently the Japanese workers Y. Tamura and 
Y. Kanada have used Salamin's algorithm to calculate 1r to 223 decimal places in 6.8 
hours. Subsequently 224 places were obtained {[18] and private communication). Even 
more remarkable is the fact that all the elementary functions can be calculated with 
similar dispatch. This was proved (and implemented) by Brent in 1976 [5]. These 
extraordinarily rapid algorithms rely on a body of material from the theory of elliptic 
functions, all of which was known to Gauss. It is an interesting synthesis of classical 
mathematics with contemporary computational concerns that has provided us with these 
methods. Brent's analysis requires a number of results on elliptic functions that are no 
longer particularly familiar to most mathematicians. Newman in 1981 stripped this 
analysis to its bare essentials and derived related, though somewhat less computationally 
satisfactory, methods for computing 1r and log. This concise and attractive treatment may 
be found in [15]. 

Our intention is to provide a mathematically intermediate perspective and some bits 
of the history. We shall derive implementable (essentially) quadratic methods for 
computing 1r and all the elementary functions. The treatment is entirely self-contained 
and uses only a minimum of elliptic function theory. 

1. 3.141592653589793238462643383279502884197. The calculation of 1r to great 
accuracy has had a mathematical import that goes far beyond the dictates of utility. It 
requires a mere 39 digits of 1r in order to compute the circumference of a circle of radius 
2 x 1025 meters (an upper bound on the distance travelled by a particle moving at the 
speed of light for 20 billion years, and as such an upper bound on the radius of the 
universe) with an error of less than 10- 12 meters (a lower bound for the radius of a 
hydrogen atom). 

Such a calculation was in principle possible for Archimedes, who was the first person 
to develop methods capable of generating arbitrarily many digits of 1r. He considered 
circumscribed and inscribed regular n-gons in a circle of radius 1. Using n = 96 he 
obtained 

6336 14688 
3.1405 ... = 20 7 2 < 7r < -46 = 3.1428. 

1 . 5 73.5 

If 1/ A. denotes the area of an inscribed regular 2" -gon and 1/ B. denotes the area of a 
circumscribed regular 2"-gon about a circle of radius 1 then 

(1.1) A.+, = .JA.B., 

*Received by the editors February 8, 1983, and in revised form November 21, 1983. This research was 
partially sponsored by the Natural Sciences and Engineering Research Council of Canada. 
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This two-term iteration, starting with A2 :~ 1/2 and B2 :~ 1/4, can obviously be used to 
calculate 1r. (See Edwards [9, p. 34].) AIL for example, is 3.14159266 which is correct 
through the first seven digits. In the early sixteen hundreds Ludolph von Ceulen actually 
computed 1r to 35 places by Archimedes' method [2]. 

Observe that A.:~ 2-" cosec (0/2") and B.:~ 2-n-I cotan (0/2"+ 1) satisfy the above 
recursion. So do A.:~ 2-• cosech (0/2") and B.:~ 2-n-I cotanh (0/2"+ 1). Since in both 
cases the common limit is 1 fO, the iteration can be used to calculate the standard inverse 
trigonometric and inverse hyperbolic functions. (This is often called Borchardt's algo
rithm [6], [19].) 

If we observe that 

1 
A 1-B I~ (A -B) 

n+ n+ 2 (.JA./.JB.+ 1) n n 

we see that the error is decreased by a factor of approximately four with each iteration. 
This is linear convergence. To compute n decimal digits of 1r, or for that matter arcsin, 
arcsinh or log, requires O(n) iterations. 

We can, of course, compute 1r from arctan or arcsin using the Taylor expansion of 
these functions. John Machin (1680-1752) observed that 

1r~ 16arctanG)- 4arctan( 2~9) 
and used this to compute 1r to 100 places. William Shanks in 1873 used the same formula 
for his celebrated 707 digit calculation. A similar formula was employed by Leonhard 
Euler (1707-1783): 

1r ~ 20 arctan ( ~) + 8 arctan ( : 9 ) . 

This, with the expansion 

arctan (x) ~ - 1 + - y + - y + ... y ( 2 2.4 2 ) 

X 3 3.5 

where y ~ x 2 / ( 1 + x2), was used by Euler to compute 1r to 20 decimal places in an hour. 
(See Beckman [2] or Wrench [21] for a comprehensive discussion of these matters.) In 
1844 Johann Dase ( 1824-1861) computed 1r correctly to 200 places using the formula 

~ ~ arctan G) + arctan G) + arctan G). 
Dase, an "idiot savant" and a calculating prodigy, performed this "stupendous task" in 
"just under two months." (The quotes are from Beckman, pp. 105 and 107.) 

A similar identity: 

1r ~ 24 arctan G) + 8 arctan ( 5\) + 4 arctan ( 2~9 ) 
was employed, in 1962, to compute 100,000 decimals of 1r. A more reliable "idiot savant", 
the IBM 7090, performed this calculation in a mere 8 hrs. 43 mins. [17]. 

There are, of course, many series, products and continued fractions for 1r. However, 
all the usual ones, even cleverly evaluated, require 0( ..fli) operations ( +, x, -;-, ,[") to 
arrive at n digits of 1r. Most of them, in fact, employ O(n) operations for n digits, which is 
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essentially linear convergence. Here we consider only full precision operations. For a time 
complexity analysis and a discussion of time efficient algorithms based on binary splitting 
see [4]. 

The algorithm employed in [ 17] requires about 1,000,000 operations to compute 
1,000,000 digits of 1r. We shall present an algorithm that reduces this to about 200 
operations. The algorithm, like Salamin's and Newman's requires some very elementary 
elliptic function theory. The circle of ideas surrounding the algorithm for 1r also provides 
algorithms for all the elementary functions. 

2. Extraordinarily rapid algorithms for algebraic functions. We need the following 
two measures of speed of convergence of a sequence (a.) with limit L. If there is a constant 
cl so that 

I a.+ 1 - L I ;:,; C1l a. - L 12 

for all n, then we say that (a.) converges to L quadratically, or with second order. If there 
is a constant C2 > l so that, for all n, 

Ia.- Ll;:;; C22" 

then we say that (a.) converges to L exponentially. These two notions are closely related; 
quadratic convergence implies exponential convergence and both types of convergence 
guarantee that a. and L will "agree" through the first 0(2") digits (provided we adopt the 
convention that .9999 ... 9 and 1.000 ... 0 agree through the required number of digits). 

Newton's method is perhaps the best known second order iterative method. Newton's 
method computes a zero ofj(x) - y by 

(2.1) 
f(x.)- Y 

Xn+l :~ Xn- f'(x.) 

and hence, can be used to compute f- 1 quadratically from f, at least locally. For our 
purposes, finding suitable starting values poses little difficulty. Division can be performed 
by inverting (1 f x) - y. The following iteration computes lfy: 

(2.2) 

Square root extraction ( ,f)i) is performed by 

(2.3) Xn+l ~ Hx• + ;J 
This ancient iteration can be traced back at least as far as the Babylonians. From (2.2) 
and (2.3) we can deduce that division and square root extraction are of the same order of 
complexity as multiplication (see [5]). Let M(n) be the "amount of work" required to 
multiply two n digit numbers together and let D(n) and S(n) be, respectively, the 
"amount of work" required to invert ann digit number and compute its square root, to n 
digit accuracy. Then 

D(n) ~ O(M(n)) 

and 

S(n) ~ O(M(n)). 

We are not bothering to specify precisely what we mean by work. We could for example 
count the number of single digit multiplications. The basic point is as follows. It requires 
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O(Iog n) iterations of Newton's method (2.2) to compute 1/ y. However, at the ith 
iteration, one need only work with accuracy 0(2;). In this sense, Newton's method is 
self-correcting. Thus, 

D(n) = o(~ M(2;)) = O(M(n)) 

provided M (2;) ~2M (2;- 1). The constants concealed beneath the order symbol are not 
even particularly large. Finally, using a fast multiplication, see [ 12], it is possible to 
multiply two n digits numbers in O(n log (n) log log (n)) single digit operations. 

What we have indicated is that, for the purposes of asymptotics, it is reasonable to 
consider multiplication, division and root extraction as equally complicated and to 
consider each of these as only marginally more complicated than addition. Thus, when we 
refer to operations we shall be allowing addition, multiplication, division and root 
extraction. 

Algebraic functions, that is roots of polynomials whose coefficients are rational 
functions, can be approximated (calculated) exponentially using Newton's method. By 
this we mean that the iterations converge exponentially and that each iterate is itself 
suitably calculable. (See [13],) 

The difficult trick is to find a method to exponentially approximate just one 
elementary transcendental function. It will then transpire that the other elementary 
functions can also be exponentially calculated from it by composition, inversion and so 
on. 

For this Newton's method cannot suffice since, iff is algebraic in (2.1) then the limit 
is also algebraic. 

The only familiar iterative procedure that converges quadratically to a transcenden
tal function is the arithmetic-geometric mean iteration of Gauss and Legendre for 
computing complete elliptic integrals. This is where we now turn. We must emphasize 
that it is difficult to exaggerate Gauss' mastery of this material and most of the next 
section is to be found in one form or another in [10]. 

3. The real AGM iteration. Let two positive numbers a and b with a > b be giVen. 
Let a0 :=a, b0 :=band define 

(3.1) 

forninr\1. 
One observes, as a consequence of the arithmetic-geometric mean inequality, that 

a.~ an+ I ~ bn+I ~b. for all n. It follows easily that (a.) and (b.) converge to a common 
limit L which we sometimes denote by AG(a, b). Let us now set 

(3.2) 

It is apparent that 

(3.3) 
1 c~ c~ 

cn+I = 2(a.- b.)= 4an+ 1 ~ 4L' 

which shows that (c.) converges quadratically to zero. We also observe that 

(3.4) 

which allows us to define a., b. and c. for negative n. These negative terms can also be 
generated by the conjugate scale in which one starts with a~ := a0 and b~ '= c0 and defines 
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(a~) and (b~ by (3.1). A simple induction shows that for any integer n 

(3.5) 

Thus, backward iteration can be avoided simply by altering the starting values. For future 
use we define the quadratic conjugate k' == ..fl=72i for any k between 0 and 1. 

The limit of (an) can be expressed in terms of a complete elliptic integral of the first 
kind, 

(3.6) 1~12 dfJ 
I(a, b)== . 

o ~a2 cos2 fJ + b2 sin2 fJ 

In fact 

(3.7) 1 !00 dt 
I(a, b) = l -oo ~(a2 + t2)W + t2) 

as the substitution t ==a tan fJ shows. Now the substitution of u == '/2 (t - (abjt)) and 
some careful but straightforward work [15] show that 

(3.8) I(a, b)= 1((a; b). /tlb). 
It follows that I(a", b") is independent of nand that, on interchanging limit and integral, 

I(ao, bo) = lim I(an, bn) = I(L, L). 

Since the last integral is a simple arctan (or directly from (3.6)) we see that 

(3.9) 

Gauss, of course, had to derive rather than merely verify this remarkable formula. We 
note in passing that AG(-, ·)is positively homogeneous. 

We are now ready to establish the underlying limit formula. 
PROPOSITION 1. 

(3.10) 

Proof Let 

and 

A(k) == 1~12 k' sin fJ dfJ 

o ~k2 + (k') 2 cos2 fJ 

B(k) == 1~12 1 - k' sin fJ dfJ. 
1 + k' sin fJ 

Since 1 - (k' sin 0)2 = cos2 fJ + (k sin 0)2 = (k' cos 0)2 + e, we can check that 

I(l, k) = A(k) + B(k). 

Moreover, the substitution u == k' cos fJ allows one to evaluate 

(3.11) 1k' du {1 + k') 
A(k) == o ~u2 + k2 =log -k- . 
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Finally, a uniformity argument justifies 

(3.12) I. JK/2 COS 0 dO 
1m B(k) = B(O) = . = log 2, 

k-o' o 1 + sm 0 

and (3.11) and (3.12) combine to show (3.10). 0 
It is possible to give various asymptotics in (3.1 0), by estimating the convergence rate 

in(3.12). 
PROPOSITION 2. Fork E (0, 1] 

(3.13) jlog (~)- I(l, k) j ;;;; 4k2I(l, k);;;; 4e(s +I log k I). 

Proof Let 

6.(k) ==log(~)- !(1, k). 

As in Proposition 1, fork E (0, 1], 

(3.14) 

16. (k) I;;;; I log(~) - log ( 1 : k') I + IJK12 [ 

We observe that, since 1 - k' = 1 -~ < k2, 

1 - k' sin 0 

1 + k' sin 0 
1 - sin 0 l dO I· 
1 + sin 0 

{3.15) jlog(~) -logC: k')j = jlogC ~ k') j;;;; 1- k';;;; k2 • 

Also, by the mean value theorem, for each 0 there is a 'Y E [0, k], so that 

This yields 

1 - k' sin 0 1 - sin 0 l 
1 + k' sin 8 1 + sin 0 

1 - (1 - k2) sin 0 1 - sin 0 l 
1 + (1 - k2 ) sin 0 1 + sin 0 

[~1 + (1 - "(2) sin 0 2"( sin 0 ] 

= ~1 - (1 - 'Y2) sin 0 . (1 + (1 - 'Y2) sin 0)2 k 

1 - k' sin 0 

1 + k' sin 0 
1 - sin 0 l dO I ;;;; 2e JK/2 dO ;;;; 2 .fi eJ(l k) 
1 + sin 0 o .J 1 - k' sin 0 ' 

which combines with (3.14) and (3.15) to show that 

I6.Ck) 1;;;; (1 + 2.fi)e I(1, k);;;; 4k2I(1, k). 

We finish by observing that 

7r 
kl(l, k) 5:-2 
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allows us to deduce that 

I(l, k);;; 2trk +log(~)· D 

Similar considerations allow one to deduce that 

(3.16) 

for 0 < k, h < 1/ ..fi. 
The next proposition gives all the information necessary for computing the elemen

tary functions from the AGM. 
PROPOSITION 3. The AGM satisfies the following identity (for all initial values): 

(3.17) "a~ (4a") 7r lim 2- - log - ~ - . 
n--oo a. c. 2 

Proof One verifies that 

7r 0 ' ( ' b') -2 ~ hm a.I ao, o 
n--oo 

~lim a~I(2"a., 2"c.) 

(by (3.9)) 

(by (3.8)) 

(by 3.5)). 

Now the homogeneity properties of I(·, ·)show that 

Thus 

7r n a~ ( c.) -~lim 2- -I 1,- , 
2 n--oo a. a. 

and the result follows from Proposition 1. D 
From now on we fix a0 •~ a~·~ 1 and consider the iteration as a function of b0 :~ k 

and c0 •~ k'. Let P. and Q. be defined by 

(3.18) ( 4 )z'-• 
P.(k) •~ c:· , a. 

Q.(k) ·~ --; ' 
a. 

and let P(k) •~ lim,_.oo P.(k), Q(k) ~ lim,_.00 Q.(k). Similarly let a •~ a(k) •~ lim,_.00 a. 
and a' •~ a'(k) •~ lim,_.00 a~. 

THEOREM 1. ForO< k < 1 one has· 

(a) P(k) ~ exp (trQ(k)), 

(3.19) 
(b) 0;;; P.(k)- P(k);;; 1 ~6kz (a"~ a), 

(c) I Q.(k) _ Q(k) I;;; a' Ia- a.~~~la'- a~l 

Proof (a) is an immediate rephrasing of Proposition 3, while (c) is straightforward. 
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To see (b) we observe that 

(3.20) 

because4an+ 1 cn+l ~ c~, as in (3.3). Sincean+ 1 ;:;o an we see that 

(3.21) 

since an decreases to a. The result now follows from (3.21) on summation. 0 
Thus, the theorem shows that both P and Q can be computed exponentially since (an) 

can be so calculated. In the following sections we will use this theorem to give 
implementable exponential algorithms for 1r and then for all the elementary functions. 

We conclude this section by rephrasing (3.19a). By using (3.20) repeatedly we derive 
that 

(3.22) 16 Iloo (an+ I ) 2'-' 
P~--2 - . 

1 - k n-0 an 

Let us note that 

and x. :~ b./ a. satisfies the one-term recursion used by Legendre [ 14] 

2..Jx;, 
Xn+l :~ Xn + 1 (3.23) Xo'~ k. 

Thus, also 

(3.24) pn+l(k) ~~IT (1 + xi)2'-J ~ (1 + x.)2-'. 
1 - k j~O 2 1 - Xn 

When k :~ 2- 112, k ~ k' and one can explicitly deduce that P(2- 112) ~ e~. When k ~ 2- 1/ 2 

(3.22) is also given in [16]. 

4. Some interrelationships. A centerpiece of this exposition is the formula (3.17) of 
Proposition 3. 

(4.1) 1 1 (4a") 1r a. lim--;; og - ~ - lim--; , 
,.....00 2 c. 2 n->oo a. 

coupled with the observation that both sides converge exponentially. To approximate log x 
exponentially, for example, we first find a starting value for which 

( 4a.)l/2' 
- -+x. 
c. 

This we can do to any required accuracy quadratically by Newton's method. Then we 
compute the right limit, also quadratically, by the AGM iteration. We can compute exp 
analogously and since, as we will show, (4.1) holds for complex initial values we can also 
get the trigonometric functions. 
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There are details, of course, some of which we will discuss later. An obvious detail is 
that we require 1r to desired accuracy. The next section will provide an exponentially 
converging algorithm for 1r also based only on ( 4.1). The principle for it is very simple. If 
we differentiate both sides of ( 4.1) we lose the logarithm but keep the 1r! 

Formula (3.1 0), of Proposition 1, is of some interest. It appears in King [ 11, pp. 13, 
38] often without the "4" in the log term. For our purposes the "4" is crucial since without 
it (4.1) will only converge linearly (like (log 4)/2n). King's 1924 monograph contains a 
wealth of material on the various iterative methods related to computing elliptic integrals. 
He comments [11, p. 14]: 

"The limit [ ( 4.1) without the "4"] does not appear to be generally known, although 
an equivalent formula is given by Legendre (Fonctions eliptiques, t. I, pp. 94-101)." 

King adds that while Gauss did not explicitly state (4.1) he derived a closely related 
series expansion and that none of this "appears to have been noticed by Jacobi or by 
subsequent writers on elliptic functions." This series [ 10, p. 377] gives ( 4.1) almost 
directly. 

Proposition 1 may be found in Bowman [3]. Of course, almost all the basic work is to 
be found in the works of Abel, Gauss and Legendre [ 1], [10] and [14]. (See also [7].) As 
was noted by both Brent and Salamin, Proposition 2 can be used to estimate log given 1r. 

We know from (3.13) that, for 0 < k ~ 10-3, 

I log(~)- /(l,k) I< 10k2llogkl. 

By subtraction, for 0 < x < 1, and n ;;; 3, 

(4.2) I log (x) - [/(1, 10-n) - /(1, 10-nx)JI < n 10-2(n-I) 

and we can compute log exponentially from the AGM approximations of the elliptic 
integrals in the above formula. This is in the spirit of Newman's presentation [15]. 
Formula (4.2) works rather well numerically but has the minor computational drawback 
that it requires computing the AGM for small initial values. This leads to some linear 
steps (roughly log (n)) before quadratic convergence takes over. 

We can use (3.16) or (4.2) to show directly that 1r is exponentially computable. With 
k :~ 1 o-n and h :~ 1 o- 2n + 1 o-n (3.16) yields with (3.9) that, for n ;;; 1, 

I log oo-n + 1)- ~ [AG(l~ 10 n)- AG(l, lO!n + 10-2n)] I~ lol-2n. 

Since I log (x + 1)/x - II~ xj2for 0 < x < 1, we derive that 

() J3.-[ 10n _ 10n JI:::;JOI-n. 4·3 1r AG(l, 10 n) AG(l, 10 n + 10 2n) -

Newman [15] gives (4.3) with a rougher order estimate and without proof. This 
analytically beautiful formula has the serious computational drawback that obtaining n 
digit accuracy for 1r demands that certain of the operations be done to twice that 
precision. 

Both Brent's and Salamin's approaches require Legendre's relation: for 0 < k < 1 

(4.4) /(1, k)J(l, k') + /(1, k')J(l, k)- /(1, k)/(1, k') ~ ~ 

where J(a, b) is the complete elliptic integral of the second kind defined by 

J(a, b)=~ 1"12 ~a2 cos2 (} + b2 sin2 (}dO. 
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The elliptic integrals of the first and second kind are related by 

(4.5) J(a0, b0 ) = ( a5 - ~ ~ 2"c~) l(a0, bo) 

where, as before, c~ = a~ - b~ and a" and bn are computed from the AGM iteration. 
Legendre's proof of ( 4.4) can be found in [3] and [8]. His elegant elementary 

argument is to differentiate ( 4.4) and show the derivative to be constant. He then 
evaluates the constant, essentially by Proposition 1. Strangely enough, Legendre had 
some difficulty in evaluating the constant since he had·problems in showing that e log (k) 
tends to zero with k [8, p. 150]. 

Relation ( 4.5) uses properties of the ascending Landen transformation and is derived 
by King in [11]. 

From (4.4) and (4.5), noting that if k equals 2- 1/ 2 then so does k', it is immediate 
that 

(4.6) 

This concise and surprising exponentially converging formula for 1r is used by both 
Salamin and Brent. As Salamin points out, by 1819 Gauss was in possession of the AGM 
iteration for computing elliptic integrals of the first kind and also formula (4.5) for 
computing elliptic integrals of second kind. Legendre had derived his relation (4.4) by 
1811, and as Watson puts it [20, p. 14] "in the hands of Legendre, the transformation 
[(3.23)] became a most powerful method for computing elliptic integrals." (See also [10], 
[14] and the footnotes of [11].) King [11, p. 39] derives (4.6) which he attributes, in an 
equivalent form, to Gauss. It is perhaps surprising that (4.6) was not suggested as a 
practical means of calculating 1r to great accuracy until recently. 

It is worth emphasizing the extraordinary similarity between (l.l) which leads to 
linearly convergent algorithms for all the elementary functions, and (3.1) which leads to 
exponentially convergent algorithms. 

Brent's algorithms for the elementary functions require a discussion of incomplete 
elliptic integrals and the Landen transform, matters we will not pursue except to mention 
that some of the contributions of Landen and Fagnano are entertainingly laid out in an 
article by G.N. Watson entitled "The Marquis [Fagnano] and the Land Agent [Land
en]" [20]. We note that Proposition 1 is also central to Brent's development though he 
derives it somewhat tangentially. He also derives Theorem l (a) in different variables via 
the Landen transform. 

5. An algorithm for 1r. We now present the details of our exponentially converging 
algorithm for calculating the digits of 1r. Twenty iterations will provide over two million 
digits. Each iteration requires about ten operations. The algorithm is very stable with all 
the operations being performed on numbers between 1/2 and 7. The eighth iteration, for 
example, gives 1r correctly to 694 digits. 

THEOREM 2. Consider the three-term iteration with initial values 

given by 
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(ii) {3n+ 1 :~ a~12 ( {3. + 1 ) , 
{3. + a. 

(iii) 7rn+l :~ 1rnf3n+l C : ;:::). 
Then 1r" converges exponentially to 1r and 

Proof Consider the formula 

(5.1) _!_ log (4 ~) - ~ ~ 
2" c. 2 a~ 

which, as we will see later, converges exponentially at a uniform rate to zero in some 
(complex) neighbourhood of 1 I /i. (We are considering each of a., b., c., a~, b~, c~ as 
being functions of a complex initial value k, i.e. b0 ~ k, b0 ~ ~, a0 ~ a0 ~ 1.) 

Differentiating (5.1) with respect to k yields 

(5.2) ~(a" -S_) - ~%(a" - ~) 
2 a. c. 2 a. a. an 

which also converges uniformly exponentially to zero in some neighbourhood of 1 I /i. 
(This general principle for exponential convergence of differentiated sequences of 
analytic func~ions is a trivial consequence of the Cauchy integral formula.) We can 
compute a., b. and c. from the recursions 

. a.+ b. 
Gn+ I :~ --2- ' 

(5.3) . 1(. !b. . fa.) 
bn+l ~ 2 a. '{i. + bn -vt. , 
. 1 . . 

Cn+l :~ 2 (an- bn), 

where ao :~ 0, Do:~ 1, Go:~ 1 and bo :~ k. . 
We note that a. and b. map {z I Re(z) > 0} into itself and that a. and b. (for 

sufficiently large n) do likewise. 
It is convenient to set 

(5.4) 

with 

a:~~ and 
n bn 

a. 
f3n :~ y; 

n 

ao :~ k and {30 :~ 0. 

We can derive the following formulae in a completely elementary fashion from the basic 
relationships for a., bn and c. and (5.3): 

(5.5) an+ I - bn+l = ~ ({a,- $.) ( ~- ~ ), 
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(5.6) 1 - ~n+l cn+l ~ 2(an- fJn) , 
an+l cn+l (an- 1)(fJn + 1) 

(5.7) 
1 

a ~ _ (al/2 + a-1/2) n+l 2 n n ' 

(5.8) f.l ~ 1/2 ( fJn + 1 ) 
1-'n+l an f.l + , 

tJn CXn 

(5.9) - 1--1-( 1/2- 1)2 an+l - 2 1/2 an , 
an 

(5.10) 
_ R _ a!12 (1 - an)(fJn - an) 

an+ I 1-'n+ I - 2 an(fJn + an) ' 

an+l - fJn+l (1 + a!12 ) 2 (an- fJn) 
an+l - 1 (fJn + an) • (an- 1) . 

(5.11) 

From (5.7) and (5.9) we deduce that an- 1 uniformly with second order in compact 
subsets of the open right half-plane. Likewise, we see from (5.8) and (5.1 0) that fJn- 1 
uniformly and exponentially. Finally, we set 

(5.12) :~~(an - fJn) 
'Yn 2n a - 1 · 

n 

We see from (5.11) that 

(5.13) 

and also from (5.6) that 

(5.14) 

Without any knowledge of the convergence of (5.1) one can, from the preceding 
relationships, easily and directly deduce the exponential convergence of (5.2), in 
{z liz - Y2l ~ c < Y2l. We need the information from (5.1) only to see that (5.2) converges 
to zero. 

The algorithm for 1r comes from multiplying (5.2) by an/an and starting the iteration 
at k :~ 2- 1/ 2• For this value of k a~~ an, (a~) ~ -an and 

_1_ (1 - an+ I en+ I)- 7r 

2n+l an+l cn+l 

which by (5.14) shows that 

'Yn 
1r := ---7r. 

n 1 + fJn 

Some manipulation of (5.7), (5.8) and (5.13) now produces (iii). The starting values for 
an, f1n and 'Yn are computed from (5.4). Other values of k will also lead to similar, but 
slightly more complicated, iterations for 1r. 

To analyse the error one considers 

'Yn+l 'Yn [ (1 + a!12 ) 2 1 ] 
1 + fJn+l - 1 + fJn ~ 2({J. + an)(1 + fJn+l) - (1 + fJn) 'Yn 



4. THE AGM AND FAST COMPUTATION OF ELEMENTARY FUNCTIONS (1984) 93

ARITHMETIC-GEOMETRIC MEAN AND FAST COMPUTATION 363 

and notes that, from (5.9) and (5.IO), for n ~ 4, 

I I 
I an - 1 I ;$ 102'+2 and I.Bn - II ;$ 102'+2 . 

(One computes that the above holds for n = 4.) Hence, 

II :n~~+l - 1 :n ,BJ ;$110!'+!11 ~n I 
and 

I ~n I 1 
1 + .Bn - 1T ;$ 102' • 

0 

In fact one can show that the error is of order 2"e-.. 2'·'. 
If we choose integers in [o, o-'], 0 < o < Y2 and perform n operations 

( +, -, x, -o-, ../) then the result is always less than or equal to o2'. Thus, if~ > o, it is not 
possible, using the above operations and integral starting values in [o, o- 1], for every n to 
compute 1r with an accuracy of 0(~-2') inn steps. In particular, convergence very much 
faster than that provided by Theorem 2 is not possible. 

The analysis in this section allows one to derive the Gauss-Salamin formula (4.6) 
without using Legendre's formula or second integrals. This can be done by combining our 
results with problems 15 and 18 in [ 11]. Indeed, the results of this section make 
quantitative sense of problems 16 and 17 in (11]. King also observes that Legendre's 
formula is actually equivalent to the Gauss-Salamin formula and that each may be 
derived from the other using only properties of the AGM which we have developed and 
equation ( 4.5). 

This algorithm, like the algorithms of §4, is not self correcting in the way that 
Newton's method is. Thus, while a certain amount of time may be saved by observing that 
some of the calculations need not be performed to full precision it seems intrinsic (though 
not proven) that O(log n) full precision operations must be executed to calculate 1r to n 
digits. In fact, showing that 1r is intrinsically more complicated from a time complexity 
point of view than multiplication would prove that 1r is transcendental [5]. 

6. The complex AGM iteration. The AGM iteration 

1 
an+ I := 2 (an + bn), 

is well defined as a complex iteration starting with a0 := 1, b0 := z. Provided that z does not 
lie on the negative real axis, the iteration will converge (to what then must be an analytic 
limit). One can see this geometrically. For initial z in the right half-plane the limit is given 
by (3.9). It is also easy to see geometrically that an and bn are always nonzero. 

The iteration for Xn := bnf an given in the form (3.23) as Xn+l := 2.[X,j Xn+l satisfies 

(6.1) ( - 1) = (1 - .[X,)2 
Xn+l 1 + Xn 

This also converges in the cut plane C- ( -oo, 0]. In fact, the convergence is uniformly 
exponential on compact subsets (see Fig. 1 ). With each iteration the angle fJn between Xn 
and 1 is at least halved and the real parts converge uniformly to 1. 

It is now apparent from (6.1) and (3.24) that 

(6.2) Pn(k) := (4an)2'-' = (1 ~ Xn)2-' 
Cn 1 Xn 
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FIG. 1. 

and also, 

Q.(k) 

converge exponentially to analytic limits on compact subsets of the complex plane that 
avoid 

D== {z E Clz ¢ {-oo, OJ U [1, oo)}. 

Again we denote the limits by P and Q. By standard analytic reasoning it must be that 
(3.19a) still holds fork in D. 

Thus one can compute the complex exponential-and so also cos and sin
exponentially using (3.19). More precisely, one uses Newton's method to approximately 
solve Q(k) = z fork and then computes P.(k). The outcome is e'. One can still perform the 
root extractions using Newton's method. Some care must be taken to extract the correct 
root and to determine an appropriate starting value for the Newton inversion. For 
example k == 0.02876158 yields Q(k) = 1 and P4(k) = e to 8 significant places. If one now 
uses k as an initial estimate for the Newton inversions one can compute e1+iB for I f) I~ 1r /8. 
Since, as we have observed, e is also exponentially computable we have produced a 
sufficient range of values to painlessly compute cos f) + i sin f) with no recourse to any 
auxiliary computations (other than 1r and e, which can be computed once and stored). By 
contrast Brent's trigonometric algorithm needs to compute a different logarithm each 
time. 

The most stable way to compute P. is to use the fact that one may update c. by 

(6.3) 

One then computes a., h. and c. to desired accuracy and returns 

(~·r2· or c(a.c: h.)r2·. 
This provides a feasible computation of P., and so of exp or log. 
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In an entirely analogous fashion, formula ( 4.2) for log is valid in the cut complex 
plane. The given error estimate fails but the convergence is still exponential. Thus (4.2) 
may also be used to compute all the elementary functions. 

7. Concluding remarks and numerical data. We have presented a development of the 
AGM and its uses for rapidly computing elementary functions which is, we hope, almost 
entirely self-contained and which produces workable algorithms. The algorithm for 1r is 
particularly robust and attractive. We hope that we have given something of the flavour of 
this beautiful collection of ideas, with its surprising mixture of the classical and the 
modern. An open question remains. Can one entirely divorce the central discussion from 
elliptic integral concerns? That is, can one derive exponential iterations for the elemen
tary functions without recourse to some nonelementary transcendental functions? It 
would be particularly nice to produce a direct iteration for e of the sort we have for 1r 

which does not rely either on Newton inversions or on binary splitting. 
The algorithm for 1r has been run in an arbitrary precision integer arithmetic. (The 

algorithm can be easily scaled to be integral.) The errors were as follows: 

Iterate Digits correct Iterate Digits correct 

I 3 6 170 
2 8 7 345 
3 19 8 694 
4 41 9 1392 
5 83 10 2788 

Formula (4.2) was then used to compute 2log (2) and log (4), using 1r estimated as 
above and the same integer package. Up to 500 digits were computed this way. It is worth 
noting that the error estimate in ( 4.2) is of the right order. 

The iteration implicit in (3.22) was used to compute e" in a double precision Fortran. 
Beginning with k == 2- 1/ 2 produced the following data: 

Iterate a./b.- I 

I 1.6 x w- 1 1.5 x w-2 

2 2.8 x w-• 2.8 x w-' 
3 1.1 x w-2• 9."7 x w-u 
4 < w-•• 1.2 x w-21 

Identical results were obtained from (6.3). In this case Yn == 4a.j c. was computed by the 
two term recursion which uses x., given by (3.23), and 

(7.1) 
2 16 

Yo== 1 _ k2, ( 1 + x.)2 2 
Yn+1 = --2- Yn· 

One observes from (7.1) that the calculation of Yn is very stable. 
We conclude by observing that the high precision root extraction required in the 

AGM [18], was actually calculated by invertingy = ljx2• This leads to the iteration 

3x.- x~y 
Xn+1 = (7.2) 

2 

for computing y - 112• One now multiplies by y to recapture {jj. This was preferred because 
it avoided division. 
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5. A simplified version of the fast algorithms of
Brent and Salamin (1985)

Paper 5: D. J. Newman, “A simplified version of the fast algorithms of Brent and
Salamin,” Mathematics of Computation, vol. 44 (1985), p. 207–210. Reprinted by
permission of the American Mathematical Society.

Synopsis:
In this paper, Newman defines an alternate version of the arithmetic-geometric

mean, which he denotes h(a, b), defined as follows:

an+1 =
√
anbn, bn+1 = 2anbn/(an + bn).

With this formulation, he is able to derive the formulas of Brent and Salamin more
easily, avoiding the need for elliptic integral functions and Landen transforms, and
also derives some new formulas. He shows, for instance, that N(h(N + 1, 1) −
h(N, 1)) gives 2/π to n-bit accuracy, provided we choose N = 2n, and

N

(
h(N + 1, 1)

h(N, 1)
− 1

)

gives 1/ log x to n-bit accuracy, provided we choose N = xn/4.

Keywords: Algorithms, Arithmetic-Geometric Mean
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A Simplified Version of the Fast Algorithms

of Brent and Salamin

By D. J. Newman*

Abstract. We produce more elementary algorithms than those of Brent and Salamin for,

respectively, evaluating ex and it. Although the Gauss arithmetic-geometric process still plays

a central role, the elliptic function theory is now unnecessary.

In their remarkable papers, Brent [1] and Salamin [3], respectively, used the theory

of elliptic functions to obtain "fast" computations of the function ex and of the

number it. In both cases rather heavy use of elliptic function theory, such as the

transformation law of Landen, had to be utilized. Our purpose, in this note, is to

give a highly simplified version of their constructions. In our approach, for example,

the incomplete elliptic integral is never used.

We begin as they did with the Gauss arithmetic-geometric process, T(a, b) =

i(a + b)/2, \fab) which maps couples with a > b > 0 into same. From the inequali-

ties

(a + b)/2 -{Ob _ /ya - y/fc \2 ^ /a-M2

(a + b)/2 + Ja~b      \h+Jb)   '*U + */'

and

we see that T'ia, b) goes to its hmiting couple (m, m) im = m(a, b) the so-called

arithmetic-geometric mean) with "quadratic" speed. Indeed, w(a, b) is determined

to n places for an i of around logloga/¿> + log«. The log log from the y/a/b

inequality expressing the time till the ratio first goes below 2, and the log from the

Ha — b)/ia + b))2 inequality expressing the time for the error squaring to do its

job.

Next, we recall Gauss' beautiful formula:

/oo dx

- /(x2 + a2)(x2 + b2)
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208 D. J. NEWMAN

which follows from the fact that this (complete) elliptic integral is invariant under T.

This fact, that namely

r00 dx r00 dtr°°_ax_r

j-~ /(>2 + a2)(x2 + b2)      '-<» ^(t2+((a + b)/2)2)(t2 + ab) '

is a simple consequence of the change of variables t = (x - ab/x)/2. Namely, we

obtain

,,x2 + ab 2    (a + b\2=(x2 + a2)(x2 + b2)

2x2        ' I     2     J   ■ 4x2

,       .      (x2 + ab)2

0 < x < oo, so that indeed we have

r00 dx rx 2dxr00 ax _  r

/_~, .//..2   ,    „2\r„2   ,    l2\ A/(x2 + a2)(x2 + 62)      ■'o   J(x2 + a2)(x2 + b2)

-f dt

(t2+((a + b)/2)2)(t2 + ab)

Accordingly, a repeated use of this invariance gives

dx r00 dxr°° ax _ r

J_.1/..2   ,    „2\l ..2   ,   l2\ /_

r00_eft

•'-ooX2 +

« \/(;t2 + a2)(x2 + ¿>2) ■'-oo J(x2 + m2)(x2 + m2)

x       dx TT

m2     m

and this is exactly Gauss' formula.

Actually, it is handier for us to work with what we might call the harmonic-geo-

metric mean which can be defined by h(a, b) = ab/mia, b) or, alternatively, as the

limit under repeated applications of S, rather than T, where

S(a,b) = (\/a~b,2ab/(a + b)).

In these terms Gauss' formula reads

h(a,b)=1-r,       dx
" 3-~ J(l + x2/a2)(l + x2/b2)

The only place that we actually use this formula is to establish the asymptotic

formula:

h(N,l) = -log 47V + OÍ1/JV2).
IT

(This simple-looking formula certainly deserves an elementary proof independent of

elliptic integrals, but we are unable to find one.)

So begin with

2  r°° dx

77 Jo   , (1 + x2)(l(1 + x2)(l + x2/N2)
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and observe that the map x -» N/x leaves the integrand invariant. Thereby, we

conclude

rfÑ dx _  r00 dx

'o     /(l + x2)(l + x2/N2)      -W /(l + x2)(l + x2/N2)

which gives us

h(N,l) = * [& , dX      =

"J°     /(l + x2)(l + x2/yV2)

= 4 pi (n _ x2/2/V2 + 0(^4/A,4X) ^
77 Jo      /(1 + x2)

^o    IvTT^      27V2j V/     '

= -(log(i/Ñ + v/Ar+ 1) - 1/4/V) + 6>(1/tV2)

v^ + v/Ai + l = 2v/)v(l + 1/(2JV + 2iJN(N+ 1))),

and so, since

we obtain

log(i/3v + vVV + l) = log2v/A7+ 1/4/V + o(-^),

which together with the previous gives

h(N,l) = ±log2v^ + o(^) = f log4^V + o(^),

as required. (This result can also be found in [2].)

Summarizing, then, we have produced a fast method for obtaining n places of

2 log4N/ir (if N is of the size c"). But, and here is the trick, this combination of it

and the logarithm can be used to yield both of them separately, and we can thereby

rederive both Salamin's and Brent's results.

To obtain m we examine the difference, hiN + 1,1) — hiN,I), and observe that

N{hiN + 1,1) - hiN, 1)) = 2/tt + 0(1/N) which gives n place accuracy for it if

we choose, e.g., N = 2".

For the logarithm, on the other hand, we look to the quotient, hiN + 1, l)//i(7V, 1).

This time we obtain

Jh(N +1,1)       \ _ vlog(l + l/iV) + 0(l/JV2) = 1

\    h(N,l) j log4N + 0(1/N) log4/V + 0(l/N) '

From this we will be able to evaluate log x throughout the interval (3,9), and so, of

course, throughout any interval. And thereby, we will be able to obtain ex, the

inverse function, by the usual use of the (fast) Newton iteration scheme.

To obtain log x, then, in the interval (3,9), we first calculate TV = \x", a process

that takes only log n multiplications. But then the above formula becomes, upon

substitution of this value of TV,

1     J hUx" + 1,1)        \ 1 i n \ 1 i n\

which does give the desired n place evaluation of log x.
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210 D. J. NEWMAN

This trick of "differencing" h(N + 1,1) and h(N,l), of course, carries a price.

Thus we must compute these two quantities to 2n places and so the running time is

around twice as long as the corresponding ones of Brent and Salamin.
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6. Is pi normal? (1985)

Paper 6: Stan Wagon, “Is pi normal,” The Mathematical Intelligencer, vol. 7
(1985), p. 65–67. With permission of Springer.

Synopsis:
As our earlier Compendium makes clear, mathematicians have been fascinated

by the decimal expansion (and expansions in other bases) of π since the time of
Archimedes — what sort of number is π? Questions such as whether π is rational
or not, or algebraic or not, were settled in the 18th and 19th century, respectively.

But one question, originally raised by Borel in 1909, remains unanswered even
today: whether or not π is normal. A real constant is said to be normal base 10,
or 10-normal, if every m-long string of digits appears in the decimal expansion of π
with limiting frequency 1/10m (with a similar definition for a general base b), and is
said to be absolutely normal if it is b-normal for all integer bases b simultaneously.

In this highly readable paper, Wagon introduces the question of the normality
of π in the context of the recently discovered quadratically convergent algorithms.
He also presents a statistical analysis of the digits of π provided by Yasamusa
Kanada, who had, at the time, just computed π to 10,000,000-digit precision.

Keywords: Computation, General Audience, Normality
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The Evidence 

Is 1T Normal? 
by Stan Wagon 

The nature of the number 7r has intrigued mathema
ticians since the beginning of mathematical history. 
The most important properties of 1r are its irrationality 
and transcendence, which were established in 1761 
and 1882, respectively. In the twentieth century the 
focus has been on a different sort of question, namely 
whether 1r, despite being irrational and transcen
dental, is normal. 

The idea of normality, first introduced by E. Borel 
in 1909, is an attempt to formalize the notion of a real 
number being random. The definition is as follows: A 
real number x is normal in base b if in its representation 
in base b all digits occur, in an asymptotic sense, 
equally often. In addition, for each rn, the bm different 
rn-strings must occur equally often. In other words, 
Jimn__.xN(s,n)ln = b-m for each rn-string s, where N(s,n) 
is the number of occurrences of s in the first n base-b 
digits of x. A number that is normal in all bases is 
called normal. The apparent randomness of 1r's digits 
had been observed prior to the precise definition of 
normality. De Morgan, for example, pointed out that 
one would expect the digits to occur equally often, but 
yet the number of 7's in the first 608 digits is 44, much 
lower than expected. However, it turned out that his 
count was based on inaccurate data. 

There are lots of normal numbers-Bore! proved 
(see Niven or §9.12 of Hardy and Wright) that the set 
of non-normal numbers has measure zero-but it is 
difficult to provide concrete examples. While an un
dergraduate at Cambridge University, D. Champer
nowne proved that 0.12345678910111213 ... is normal 
in base 10, but an explicit example of a normal number 
is still lacking. 

The question of 1r's normality only scratches the sur-

Column Editor: Stan Wagon, Department of Mathematics, Smith 
College, Northampton, Massachusetts 01063, USA. 

face of the deeper question whether the digits of 1r are 
"random." That normality is not sufficient follows 
from the observation that a truly random sequence of 
digits ought to be normal when only digits in positions 
corresponding to perfect squares are examined. But if 
all such positions in a normal number are set to 0, the 
number is still normal. On the other hand, more rig
orous definitions of "random" exclude 7T because 1r's 
decimal expansion is a recursive sequence. For an en
lightening discussion of the general problem of de
fining randomness, see the section on "What is a 
Random Sequence" in volume 2 of Knuth's trilogy. 

Thus deeper questions are lurking, but so little is 
known about 1r's decimal expansion that it is reason
able to focus on whether 1r is normal to base ten. To 
put our ignorance in perspective, note that it is not 
even known that all digits appear infinitely often: per
haps 

1T = 3.1415926 ..... 01001000100001000001... 

In order to gather evidence for 1r's normality one 
would like to examine as many digits as possible. 
Those who have pursued the remote digits of 1r have 
often been pejoratively referred to as "digit hunters," 
but certain recent developments have added some 
glamor to the centuries-old hunt. In 1975 Brent and 
Salamin, independently, discovered an algorithm that 
dramatically lowered the time needed to compute 
large numbers of digits of 1r. Moreover, the algorithm 
has important connections with efficient algorithms for 
computing various transcendental functions (sin, 
arctan, exp, log, elliptic integrals) to great accuracy. 

The reader is probably aware that various arctangent 
formulas have been central in the computation of 7T. 

Early investigators used series such as the one for 
arctan 1/\13, but convergence was much speeded by 
the use of formulas such as the following, by means 
of which Machin computed 100 decimals of 1r in 1706: 
1r = 16arctan1/5 - 4arctanl/239. Indeed, this same 
formula was used in the first computer calculation, the 
ENIAC's computation of 2037 digits in 1949. Com
puters have become much faster, and various opti-
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Year Time Number of digits Computer time per digit 

1949 -70 hours 2,037 - 2 minutes 

1958 100 minutes 10,000 0.6 second 

1961 8.43 hours 100,000 1/3 second 
1973 23 .3 hours 1,000,000 1/12 second 
1983 <30 hours 16,000,000 <11155 second 

Sophisticated algorithms, combined with ever-faster machines, have led to increas
ingly more efficient computations of 'IT 's digits during the computer age. 

Table 1 

mizing tricks help speed up computations, but even and bn = Van-! bn-I· Gauss had investigated such 
the million-digit computation in 1973 used the same limits and had proved that AG(a,b) equals 'IT/21, where 
sort of formula, this one due to Gauss: 

'IT = 48arctan1/18 + 32arctan1/57 ± 20arctanll239. 

A limiting aspect of the arctangent formulas is the 
number of full-precision operations that must be car
ried out. By an operation we mean one of + , x , + , 
V. Since large-precision square roots and divisions 
can be performed in essentially as much time as that 
required by a full-precision multiplication (Newton's 
method can be used for both; see Borwein and Bor
wein), this measure of complexity (number of full-pre
cision operations) is as good as the more usual "time 
complexity" for comparing algorithms. Now, an ex
amination of the rate of convergence of the arctangent 
series shows that the arctangent method uses O(n) 
(i.e., at most en, c a constant) full-precision operations 
to compute n decimals of 'IT; for example, the Shanks 
and Wrench computation of 100,000 decimals used just 
under 105,000 full-precision operations. Thus there are 
two basic time costs involved in the pushing of a cal
culation from n to 10n digits: 

(1) the number of operations increases by a factor of 
10, and 

(2) the time for each full-precision operation is about 
10 times greater. 

The Brent-Salamin algorithm requires only 0 (log n) 
full-precision operations for n digits of 'IT. Since log n 
barely increases when n is replaced by IOn, the first of 
the two costs just mentioned is almost entirely elimi
nated! 

The Brent-Salamin formula uses ideas that go back 
to Gauss and Legendre, but prior to the 1970s no one 
had thought to apply these ideas to evaluate 'IT. The 
formula exploits the speed of convergence of the de
fining sequences for the arithmetic-geometric mean of 
two numbers. Given positive reals a0 > b0, their arith
metic-geometric mean, AG(a0,b0), is defined to be the 
common limit of {aJ, {bn}, where an = (an-I + bn_ 1)/2 
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a complete elliptic integral of the first kind. To get a 
formula for 'IT let a0, b0 be 1, 11\12, respectively, and 
define dn to be a~ - ~; then 

If 'ITn is defined to be 4a~+ 1/(1 - 2.)~ 1 2i+ 1di), then 
'ITn converges quadratically to 'IT. This means, roughly, 
that the number of correct digits doubles from one 'ITn 

to the next. 
Quadratic convergence is most familiar from New

ton's method of approximating solutions to algebraic 
equations. Thus, from a computational perspective, 'IT 

behaves like an algebraic number. 
A more precise error analysis shows that 'IT 16 is ac

curate to 178,000 digits, 'IT19 to over a million, 'IT22 to 
over ten million, and 'IT26 to almost 200,000,000 digits. 
Since the computation of 'ITn requires 7n full-precision 
operations, the improvement over the classical algo
rithm is impressive: 100,000 digits require only 112 full
precision operations! 

The fact that c log n full-precision operations yield n 
digits of 'IT means that the time complexity (essentially, 
number of bit operations) of the computation is 
0 (n log2n loglog n); this uses the fact that n-digit mul
tiplication is of complexity O(n log n loglog n). Thus 
these fast algorithms for 'IT are just about the fastest 
possible: it takes n steps just to write down n digits, 
and there is not much room between n and n log2n 
loglog n. 

For refinements of the Brent-Salamin formulas, ap
plications to the computation of transcendental func
tions, and some proofs, see the paper by Borwein and 
Borwein, who are preparing a book on the arithmetic
geometric mean. See the paper by Cox for more on the 
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Type of hand Expected number Actual number 

o two digits the same 
One pair 
Two pair 
Three of a kind 
Full house 
Four of a kind 
Five of a kind 

604,800 
1,008,000 

216,000 
144,000 
18,000 
9,000 

200 

604,976 
1,007,151 

216,520 
144,375 
17,891 
8,887 

200 

Distribution of the first two million poker hands in the digits of 'IT . 

Table 2 

arithmetic-geometric mean and for a historical account 
of Gauss's work. 

There is a surprising connection between these 
modern algorithms and the method of Archimedes. 
Archimedes used inscribed and circumscribed poly
gons to approximate 'IT. Now, if An is the reciprocal of 
the circumference of a 2n-gon inscribed in a unit circle 
and Bn likewise for a circumscribed 2n-gon, then An 
and Bn satisfy: Bn + 1 = HAn + Bn) and An+ 1 = 

V AnBn+J· Thus the double sequence of Archimedes 
obeys a recursion almost identical to the defining re
cursion for AG(1/2, 1/4). Archimedes' sequences con
verge much more slowly, however: each iteration de
creases the error by, approximately, a factor of four. 

The Brent-Salamin algorithm has been implemented 
in Japan by Kanada, Tamura, Yoshino, and Ushiro 
who, in 1983, used it to compute 16 million decimal 
places. They checked the first 10,013,395 of these using 
Gauss's arctangent relation. The computation of 16 
million digits took less than 30 hours of CPU time, 
although some time (10-20%) was saved by the reuse 
of intermediate values from earlier computations. See 
Table 1 for a comparison with previous computations. 
The check took only 24 hours, but the two times are 
not comparable since the arctangent computation was 
performed on a much faster computer, a Japanese Hi
tachi supercomputer with a speed of 630 MFLOPS 
(million floating-point operations per second). 

A forthcoming paper by Kanada contains a statistical 
analysis of the first ten million digits, which show no 
unusual deviation from expected behavior. The fre
quencies for each of the ten digits are: 999,440; 999,333; 
1,000,306; 999,964; 1,001,093; 1,000,466; 999,337; 
1,000,207; 999,814; and 1,000,040. Moreover, the speed 
with which the relative frequencies are approaching 
1/10 agrees with theory. Consider the digit 7 for ex
ample. Its relative frequencies in the first 10i digits 
(i = 1, ... , 7) are 0, .08, .095, .097, .10025, .0998, 
.1000207, which seem to be approaching 1/10 at the 
speed predicted by probability theory for random 
digits, namely at a speed approximately proportional 
to 1/Vn. The poker test is relevant to the question of 

normality in base ten, and Table 2 contains the fre
quencies of poker hands from the first ten million 
digits; there is no significant deviation from the ex
pected values. 

Writers over the years have been fond of mentioning 
that 20 decimals of 'lT suffice for any application imag
inable. Moreover, the millions of digits now known 
shed absolutely no light on how to prove 'IT's nor
mality. But these criticisms miss the point. Huyghens, 
in using an extrapolative techinque to extend Ar
chimedes' calculations, was the first to use an impor
tant technique that, in this century, has come to be 
known as the Romberg method for approximating def
inite integrals. And the arithmetic-geometric mean al
gorithms and their refinements are closely connected 
to the fastest known techniques for evaluating multi
precision transcendental functions. Thus digit-hunting 
has an importance that goes beyond the mere exten
sion of the known decimal places of 'lT. 
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7. The computation of π to 29,360,000 decimal
digits using Borweins’ quartically convergent

algorithm (1988)

Paper 7: David H. Bailey, “The computation of pi to 29,360,000 decimal digits
using Borweins’ quartically convergent algorithm,” Mathematics of Computation,
vol. 50 (1988), p. 283–296. Reprinted by permission of the American Mathematical
Society.

Synopsis:
This paper, written by one of the present editors, describes the computation

of π using a set of formulas that at the time (1988) had just been discovered by

Jonathan and Peter Borwein: Let a0 = 6− 4
√

2 and y0 =
√

2− 1. Iterate

yk+1 =
1− (1− y4k)1/4

1 + (1− y4k)1/4

ak+1 = ak(1 + yk+1)4 − 22k+3yk+1(1 + yk+1 + y2k+1).

Then ak converges quartically to 1/π: each successive iteration approximately
quadruples the number of correct digits in the result.

Bailey also described in detail the computational techniques required to do such
a long computation, such as the observation that a fast Fourier transform (FFT)
can be employed to perform high-precision multiplication, and also presented the
results of detailed statistical analyses of the digits.

Interestingly, this computation, which was performed on one of the original
Cray-2 supercomputers while in a test mode, disclosed at least one bug in the
hardware, which was subsequently rectified. In the wake of this finding, Cray
employed a similar calculation as a test code to be run on new computers to ensure
hardware integrity.

Keywords: Computation, Normality
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The Computation of 1r to 29,360,000 Decimal Digits 
Using Borweins' Quartically Convergent Algorithm 

By David H. Bailey 

Abstract. In a recent work (6], Borwein and Borwein derived a cl!188 of algorithms based 
on the theory of elliptic integrals that yield very rapidly convergent approximations to 
elementary constants. The author has implemented Borweins' quartically convergent 
algorithm for 1/11:, using a prime modulus transform multi-precision technique, to com
pute over 29,360,000 digits of the decimal expansion of 11:. The result was checked by 
using a different algorithm, also due to the Borweins, that converges quadratically to 
11:. These computations were performed as a system test of the Cray-2 operated by the 
Numerical Aerodynamical Simulation (NAS) Program at NASA Ames Research Center. 
The calculations were made possible by the very large memory of the Cray-2. 

Until recently, the largest computation of the decimal expansion of 11: was due to 
Kanada and Tamura (12) of the University of Tokyo. In 1983 they computed approxi
mately 16 million digits on a Hitachi S-810 computer. Late in 1985 Gosper (9] reported 
computing 17 million digits using a Symbolics workstation. Since the computation de
scribed in this paper was performed, Kanada has reported extending the computation 
of 11: to over 134 million digits (January 1987). 

This paper describes the algorithms and techniques used in the author's computation, 
both for converging to 11: and for performing the required multi-precision arithmetic. The 
results of statistical analyses of the computed decimal expansion are also included. 

1. Introduction. The computation of the numerical value of the constant 1r 

has been pursued for centuries for a variety of reasons, both practical and theo
retical. Certainly, a value of 1r correct to 10 decimal places is sufficient for most 
''practical" applications. Occasionally, there is a need for double-precision or even 
multi-precision computations involving 1r and other elementary constants and func
tions in order to compensate for unusually severe numerical difficulties in an ex
tended computation. However, the author is not aware of even a single case of a 
"practical" scientific computation that requires the value of 1r to more than about 
100 decimal places. 

Beyond immediate practicality, the decimal expansion of 1r has been of interest 
to mathematicians, who have still not been able to resolve the question of whether 
the digits in the expansion of 1r are "random". In particular, it is widely suspected 
that the decimal expansions of 1r, e, ..j'i, ..J'Fi, and a host of related mathematical 
constants all have the property that the limiting frequency of any digit is one 
tenth, and that the limiting frequency of any n-long string of digits is w-n. Such 
a guaranteed property could, for instance, be the basis of a reliable pseudo-random 
number generator. Unfortunately, this assertion has not been proven in even one 
instance. Thus, there is a continuing interest in performing statistical analyses on 
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the decimal expansions of these numbers to see if there is any irregularity that 
would suggest this assertion is false. 

In recent years, the computation of the expansion of 1r has assumed the role as 
a standard test of computer integrity. If even one error occurs in the computation, 
then the result will almost certainly be completely in error after an initial correct 
section. On the other hand, if the result of the computation of 1r to even 100,000 
decimal places is correct, then the computer has performed billions of operations 
without error. For this reason, programs that compute the decimal expansion 
of 1r are frequently used by both manufacturers and purchasers of new computer 
equipment to certify system reliability. 

2. History. The first serious attempt to calculate an accurate value for the 
constant 1r was made by Archimedes, who approximated 1r by computing the areas 
of equilateral polygons with increasing numbers of sides. More recently, infinite 
series have been used. In 1671 Gregory discovered the arctangent series 

x3 x5 x1 
tan- 1 (x) = x-- +--- + ·· ·. 

3 5 7 
This discovery led to a number of rapidly convergent algorithms. In 1706 Machin 
used Gregory's series coupled with the identity 

1r = 16tan-1 (1/5)- 4tan-1 (1/239) 

to compute 100 digits of 1r. 

In the nearly 300 years since that time, most computations of the value of 1r, 

even those performed by computer, have employed some variation of this technique. 
For instance, a series based on the identity 

1r = 24tan- 1 (1/8) + 8tan-1 (1/57) + 4tan- 1 (1/239) 

was used in a computation of 1r to 100,000 decimal digits using an IBM 7090 in 
1961 [15]. Readers interested in the history of the computation 1r are referred to 
Beckmann's entertaining book on the subject [2]. 

3. New Algorithms for 1r. Only very recently have algorithms been discov
ered that are fundamentally faster than the above techniques. In 1976 Brent [7] 
and Salamin [14] independently discovered an approximation algorithm based on 
elliptic integrals that yields quadratic convergence to 1r. With all of the previous 
techniques, the number of correct digits increases only linearly with the number 
of iterations performed. With this new algorithm, each additional iteration of the 
algorithm approximately doubles the number of correct digits. Kanada and Tamura 
employed this algorithm in 1983 to compute 1r to over 16 million decimal digits. 

More recently, J. M. Borwein and P. B. Borwein [4] discovered another quadrat
ically convergent algorithm for 1r, together with similar algorithms for fast compu
tation of all the elementary functions. Their quadratically convergent algorithm 
for 1r can be stated as follows: Let a0 = J2, b0 = 0, p0 = 2 + J2. Iterate 

_ (y'ak+1/y'ak) b _ y'ak(1+bk) Pkbk+1(1+ak+l) 
ak+l - 2 , k+l - ak + bk , Pk+l = 1 + bk+l . 

Then Pk converges quadratically to 1r: Successive iterations of this algorithm yield 
3, 8, 19, 40, 83, 170, 345, 694, 1392, and 2788 correct digits of the expansion of 1r. 
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However, it should be noted that this algorithm is not self-correcting for numerical 
errors, so that all iterations must be performed to full precision. In other words, in 
a computation of 1r to 2788 decimal digits using the above algorithm, each of the 
ten iterations must be performed with more than 2788 digits of precision. 

Most recently, the Borweins [6] have discovered a general technique for obtaining 
even higher-order convergent algorithms for certain elementary constants. Their 
quartically convergent algorithm for 1/7r can be stated as follows: Let ao = 6-4v'2 
and Yo = v'2 - 1. Iterate 

1- (1- y4)1/4 
Yk+l = 1 + (1 - yi)l/4' 

ak+l = ak(1 + Yk+1) 4 - 22k+3Yk+l (1 + Yk+l + Y~+l). 
Then ak converges quartically to 1/7r: Each successive iteration approximately 
quadruples the number of correct digits in the result. As in the previous case, each 
iteration must be performed to at least the level of precision desired for the final 
result. 

4. Multi-Precision Arithmetic Techniques. A key element of a very high 
precision computation of this sort is a set of high-performance routines for perform
ing multi-precision arithmetic. A naive approach to multi-precision computation 
would require a prohibitive amount of processing time and would, as a result, 
sharply increase the probability that an undetected hardware error would occur, 
rendering the result invalid. In addition to employing advanced algorithms for such 
key operations as multi-precision multiplication, it is imperative that these algo
rithms be implemented in a style that is conducive for high-speed computation on 
the computer being used. 

The computer used for these computations is the Cray-2 at the NASA Ames 
Research Center. This computation was performed to test the integrity of the 
Cray-2 hardware, as well as the Fortran compiler and the operating system. The 
Cray-2 is particularly well suited for this computation because of its very large 
main memory, which holds 228 = 268,435, 456 words (one word is 64 bits of data). 
With this huge capacity, all data for these computations can be contained entirely 
within main memory, insuring ease of programming and fast execution. 

No attempt was made to employ more than one of the four central processing 
units in the Cray-2. Thus, at the same time these calculations were being per
formed, the computer was executing other jobs on the other processors. However, 
full advantage was taken of the vector operations and vector registers of the system. 
Considerable care was taken in programming to insure that the multi-precision al
gorithms were implemented in a style that would admit vector processing. Most key 
loops were automatically vectorized by the Cray-2 Fortran compiler. For those few 
that were not automatically vectorized, compiler directives were inserted to force 
vectorization. As a result of this effort, virtually all arithmetic operations were 
performed in vector mode, which on the Cray-2 is approximately 20 times faster 
than scalar mode. Because of the high level of vectorization that was achieved using 
the Fortran compiler, it was not necessary to use assembly language, nonstandard 
constructs, or library subroutines. 
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A multi-precision number is represented in these computations as an (n + 2)
long array of floating-point whole numbers. The first cell contains the sign of the 
number, either 1, -1, or 0 (reserved for an exact zero). The second cell of the array 
contains the exponent (powers of the radix), and the remaining n cells contain the 
mantissa. The radix selected for the multi-precision numbers is 107 • Thus the 
number 1.23456789 is represented by the array 1, 0, 1, 2345678,9000000,0,0, ... , 0. 

A floating-point representation was chosen instead of an integer representation 
because the hardware of numerical supercomputers such as the Cray-2 is designed 
for floating-point computation. Indeed, the Cray-2 does not even have full-word 
integer multiply or divide hardware instructions. Such operations are performed by 
first converting the operands to floating-point form, using the floating-point unit, 
and converting the results back to fixed-point (integer) form. A decimal radix was 
chosen instead of a binary value because multiplications and divisions by powers of 
two are not performed any faster than normal on the Cary-2 (in vector mode). Since 
a decimal radix is clearly preferable to a binary radix for program troubleshooting 
and for input and output, a decimal radix was chosen. The value 107 was chosen 
because it is the largest power of ten that will fit in half of the mantissa of a single 
word. In this way two of these numbers may be multiplied to obtain the exact 
product using ordinary single-precision arithmetic. 

Multi-precision addition and subtraction are not computationally expensive com
pared to multiplication, division, and square root extraction. Thus, simple algo
rithms suffice to perform addition and subtraction. The only part of these opera
tions that is not immediately conducive to vector processing is releasing the carries 
for the final result. This is because the normal "schoolboy" approach of beginning 
at the last cell and working forward is a recursive operation. On a vector super
computer this is better done by starting at the beginning and releasing the carry 
only one cell back for each cell processed. Unfortunately, it cannot be guaranteed 
that one application of this process will release all carries (consider the case of two 
or more consecutive 9999999's, followed by a number exceeding 107 ). Thus it is 
necessary to repeat this operation until all carries have been released (usually one 
or two additional times). In the rare cases where three applications of this vector
ized process are not successful in releasing all carries, the author's program resorts 
to the scalar "schoolboy" method. 

Provided a fast multi-precision multiplication procedure is available, multi
precision division and square root extraction may be performed economically us
ing Newton's iteration, as follows. Let x0 and y0 be initial approximations to the 
reciprocal of a and to the reciprocal of the square root of a, respectively. Then 

Yk(3- ay~) 
Xk+l = Xk(2- axk), Yk+l = 2 

both converge quadratically to the desired values. One additional full-precision mul
tiplication yields the quotient and the square root, respectively. What is especially 
attractive about these algorithms is that the first iteration may be performed using 
ordinary single-precision arithmetic, and subsequent iterations may be performed 
using a level of precision that approximately doubles each time. Thus the total 
cost of computation is only about twice the cost of the final iteration, plus the one 
additional multiplication. As a result, a multi-precision division costs only about 
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five times as much as a multi-precision multiplication, and a multi-precision square 
root costs only about seven times as much as a multi-precision multiplication. 

5. Multi-Precision Multiplication. It can be seen from the above that the 
key component of a high-performance multi-precision arithmetic system is the mul
tiply operation. For modest levels of precision (fewer than about 1000 digits), some 
variation of the usual "schoolboy" method is sufficient, although care must be taken 
in the implementation to insure that the operations are vectorizable. Above this 
level of precision, however, other more sophisticated techniques have a significant 
advantage. The history of the development of high-performance multiply algo
rithms will not be reviewed here. The interested reader is referred to Knuth [13]. 
It will suffice to note that all of the current state-of-the-art techniques derive from 
the following fact of Fourier analysis: Let F(x) denote the discrete Fourier trans
form of the sequence x = (x0 , x1 , x2 , ••• , XN- 1), and let F- 1 (x) denote the inverse 
discrete Fourier transform of x: 

N-1 

Fk(x) = L x1wik, 
J=O 

N-1 

F -1 ( ) - 1 '"' . -Jk 
k X - N LJ XJW ' 

where w = e-271"i/N is a primitive Nth root of unity. 
lution of the sequences x and y: 

N-1 

Ck(x, y) = L XJYk-J• 
J=O 

J=O 

Let C(x, y) denote the convo-

where the subscript k- j is to be interpreted as k- j + N if k- j is negative. Then 
the "convolution theorem", whose proof is a straightforward exercise, states that 

F[C(x, y)] = F(x)F(y), 

or expressed another way, 

C(x, y) = F- 1 [F(x)F(y)]. 

This result is applicable to multi-precision multiplication in the following way. 
Let x andy ben-long representations of two multi-precision numbers (without the 
sign or exponent words). Extend x andy to length 2n by appending n zeros at the 
end of each. Then the multi-precision product z of x and y, except for releasing 
the carries, can be written as follows: 

zo = xoyo 

Z1 = XoY1 + X1Y0 

Z2 = XoY2 + X1Y1 + X2Y0 

Zn-1 = XoYn-1 + X1Yn-2 + · · · + Xn-1YO 

Z2n-3 = Xn-1Yn-2 + Xn-2Yn-1 

Z2n-2 = Xn-1Yn-1 

Z2n-1 = 0. 



116 7. THE COMPUTATION OF π TO 29,360,000 DECIMAL DIGITS (1988)

288 DAVID H. BAILEY 

It can now be seen that this "multiplication pyramid" is precisely the convolution 
of the two sequences x and y, where N = 2n. The convolution theorem states that 
the multiplication pyramid can be obtained by performing two forward discrete 
Fourier transforms, one vector complex multiplication, and one reverse transform, 
each of length N = 2n. Once the resulting complex numbers have been rounded 
to the nearest integer, the final multi-precision product may be obtained by merely 
releasing the carries as described in the section above on addition and subtraction. 

The key computational savings here is that the discrete Fourier transform may 
of course be economically computed using some variation of the "fast Fourier trans
form" (FFT) algorithm. It is most convenient to employ the radix two fast Fourier 
transform since there is a wealth of literature on how to efficiently implement this 
algorithm (see [1], [8], and [16]). Thus, it will be assumed from this point that 
N = 2m for some integer m. 

One useful "trick" can be employed to further reduce the computational require
ment for complex transforms. Note that the input data vectors x and y and the 
result vector z are purely real. This fact can be exploited by using a simple pro
cedure ([8, p. 169]) for performing real-to-complex and complex-to-real transforms 
that obtains the result with only about half the work otherwise required. 

One important item has been omitted from the above discussion. If the radix 107 

is used, then the product of two cells will be in the neighborhood of 1014 , and the 
sum of a large number of these products cannot be represented exactly in the 48-
bit mantissa of a Cray-2 floating-point word. In this case the rounding operation 
at the completion of the transform will not be able to recover the exact whole 
number result. As a result, for the complex transform method to work correctly, it 
is necessary to alter the above scheme slightly. The simplest solution is to use the 
radix 106 and to divide all input data into two words with only three digits each. 
Although this scheme greatly increases the memory space required, it does permit 
the complex transform method to be used for multi-precision computation up to 
several million digits on the Cray-2. 

6. Prime Modulus Transforms. Some variation of the above method has 
been used in almost all high-performance multi-precision computer programs, in
cluding the program used by Kanada and Tamura. However, it appears to break 
down for very high-precision computation (beyond about ten million digits on the 
Cray-2), due to the round-off error problem mentioned above. The input data can 
be further divided into two digits per word or even one digit per word, but only with 
a substantial increase in run time and main memory. Since a principal goal in this 
computation was to remain totally within the Cray-2 main memory, a somewhat 
different method was used. 

It can readily be seen that the technique of the previous section, including the 
usage of a fast Fourier transform algorithm, can be applied in any number field in 
which there exists a primitive Nth root of unity w. This requirement holds for the 
field of the integers modulo p, where pis a prime of the form p = kN + 1 ([11, p. 
85]). One significant advantage of using a prime modulus .field instead of the field 
of complex numbers is that there is no need to worry about round-off error in the 
results, since all computations are exact. 
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However, there are some difficulties in using a prime modulus field for the trans
form operations above. The first is to find a prime p of the form kN + 1, where 
N = 2m. The second is to find a primitive Nth root of unity modulo p. As it turns 
out, it is not too hard using a computer to find both of these numbers by direct 
search. Thirdly, one must compute the multiplicative inverse of N modulo p. This 
can be done using a variation of the Euclidean algorithm from elementary number 
theory. Note that each of these calculations needs to be performed one time only. 

A more troublesome difficulty in using a prime modulus transform is the fact 
that the final multiplication pyramid results are only recovered modulo p. If p is 
greater than about 1024 then this is not a problem, but the usage of such a large 
prime would require quadruple-precision arithmetic operations to be performed in 
the inner loop of the fast Fourier transform, which would very greatly increase the 
run time. A simpler and faster approach to the problem is to use two primes, p1 

and p2 , each slightly greater than 1012 , and to perform the transform algorithm 
above using each prime. Then the Chinese remainder theorem may be applied to 
the results modulo p1 and p2 to obtain the results modulo the product p1p2 . Since 
p 1p2 is greater than 1024 , these results will be the exact multiplication pyramid 
numbers. Unfortunately, double-precision arithmetic must still be performed in the 
fast Fourier transform and in the Chinese remainder theorem calculation. However, 
the whole-number format of the input data simplifies these operations, and it is 
possible to program them in a vectorizable fashion. 

Borodin and Munro ([3, p. 90]) have suggested using three transforms with three 
primes p1 ,p2 and p3 , each of which is just smaller than half of the mantissa, and 
using the Chinese remainder theorem to recover the results modulo p1p2p3 . In this 
way, double-precision operations are completely avoided in the inner loop of the 
FFT. This scheme runs quite fast, but unfortunately the largest transform that can 
be performed on the Cray-2 using this system is N = 219 , which corresponds to a 
maximum precision of about three million digits. 

Readers interested in studying about prime modulus number fields, the Euclidean 
algorithm, or the Chinese remainder theorem are referred to any elementary text 
on number theory, such as [10] or [11]. Knuth [13] and Borodin [3] also provide 
excellent information on using these tools for computation. 

7. Computational Results. The author has implemented all three of the 
above techniques for multi-precision multiplication on the Cray-2. By employing 
special high-performance techniques [1], the complex transform can be made to run 
the fastest, about four times faster than the two-prime transform method. However, 
the memory requirement of the two-prime scheme is significantly less than either 
the three-prime or the complex scheme, and since the two-prime scheme permits 
very high-precision computation, it was selected for the computations of 1r. 

One of the author's computations used twelve iterations of Borweins' quartic 
algorithm for 1/7r, followed by a reciprocal operation, to yield 29,360,128 digits 
of 1r. In this computation, approximately 12 trillion arithmetic operations were 
performed. The run took 28 hours of processing time on one of the four Cray-2 
central processing units and used 138 million words of main memory. It was started 
on January 7, 1986 and completed January 9, 1986. The program was not running 
this entire time-the system was taken down for service several times, and the run 
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was frequently interrupted by other programs. Restarting the computation after a 
system down was a simple matter since the two key multi-precision number arrays 
were saved on disk after the completion of each iteration. 

This computation was checked using 24 iterations of Borweins' quadratically 
convergent algorithm for 1r. This run took 40 hours processing time and 147 million 
words of main memory. A comparison of these output results with the first run 
found no discrepancies except for the last 24 digits, a normal truncation error. 
Thus it can be safely assumed that at least 29,360,000 digits of the final result are 
correct. 

It was discovered after both computations were completed that one loop in the 
Chinese remainder theorem computation was inadvertently performed in scalar 
mode instead of vector mode. As a result, both of these calculations used about 
25% more run time than would otherwise have been required. This error, however, 
did not affect the validity of the computed decimal expansions. 

8. Statistical Analysis of 1r. Probably the most significant mathematical 
motivation for the computation of 1r, both historically and in modern times, has 
been to investigate the question of the randomness of its decimal expansion. Before 
Lambert proved in 1766 that 1r is irrational, there was great interest in checking 
whether or not its decimal expansion eventually repeats, thus disclosing that 1r is 
rational. Since that time there has been a continuing interest in the still unan
swered question of whether the expansion is statistically random. It is of course 
strongly suspected that the decimal expansion of 1r, if computed to sufficiently high 
precision, will pass any reasonable statistical test for randomness. The most fre
quently mentioned conjecture along this line is that any sequence of n digits occurs 
with a limiting frequency of w-n. 

With 29,360,000 digits, the frequencies of n-long strings may be studied for 
randomness for n as high as six. Beyond that level the expected number of any 
one string is too low for statistical tests to be meaningful. The results of tabulated 
frequencies for one and two digit strings are listed in Tables 1 and 2. In the first 
table the Z-score numbers are computed as the deviation from the mean divided 
by the standard deviation, and thus these statistics should be normally distributed 
with mean zero and variance one. 

TABLE 1 

Single digit statistics 

Digit Count Deviation Z-score 
0 2935072 -928 -0.5709 
1 2936516 516 0.3174 
2 2936843 843 0.5186 
3 2935205 -795 -0.4891 
4 2938787 2787 1.7145 
5 2936197 197 0.1212 
6 2935504 -496 -0.3051 
7 2934083 -1917 -1.1793 
8 2935698 -302 -0.1858 
9 2936095 95 0.0584 
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TABLE 2 

Two digit frequency counts 

00 293062 01 293970 02 293533 03 292893 04 294459 
05 294189 06 292688 07 292707 08 294260 09 293311 
10 294503 11 293409 12 293591 13 294285 14 294020 
15 293158 16 293799 17 293020 18 293262 19 293469 
20 293952 21 293226 22 293844 23 293382 24 293869 
25 293721 26 293655 27 293969 28 293320 29 293905 
30 293718 31 293542 32 293272 33 293422 34 293178 
35 293490 36 293484 37 292694 38 294152 39 294253 
40 294622 41 294793 42 293863 43 293041 44 293519 
45 293998 46 294418 47 293616 48 293296 49 293621 
50 292736 51 294272 52 293614 53 293215 54 293569 
55 294194 56 293260 57 294152 58 293137 59 294048 
60 293842 61 293105 62 294187 63 293809 64 293463 
65 293544 66 293123 67 293307 68 293602 69 293522 
70 292650 71 294304 72 293497 73 293761 74 293960 
75 293199 76 293597 77 292745 78 293223 79 293147 
80 292517 81 292986 82 293637 83 294475 84 294267 
85 293600 86 293786 87 293971 88 293434 89 293025 
90 293470 91 292908 92 293806 93 292922 94 294483 
95 293104 96 293694 97 293902 98 294012 99 293794 

The most appropriate statistical procedure for testing the hypothesis that the 
empirical frequencies of n-long strings of digits are random is the x2 test. The x2 

statistic of the k observations X 1 , X2, ... , Xk is defined as 

2 t (Xi -Ei)2 
X = E-

i=l • 

where Ei is the expected value of the random variable Xi. In this case k = 10n and 
Ei = 10-nd for all i, where d = 29,360,000 denotes the number of digits. The mean 
of the x2 statistic in this case is k -1 and its standard deviation is J2(k- 1). Its 
distribution is nearly normal for large k. The results of the x2 analysis are shown 
in Table 3. 

TABLE 3 

Multiple digit x2 statistics 

Length x2 value Z-score 
1 4.869696 -0.9735 
2 84.52604 - 1.0286 
3 983.9108 -0.3376 
4 10147.258 1.0484 
5 100257.92 0.5790 
6 1000827.7 0.5860 

Another test that is frequently performed on long pselJdo-random sequences is 
an analysis to check whether the number of n-long repeats for various n is within 
statistical bounds of randomness. An n-long repeat is said to occur if the n-long 
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digit sequence beginning at two different positions is the same. The mean M and 
the variance V of the number of n-long repeats in d digits are (to an excellent 
approximation) 

Tabulation of repeats in the expansion of 1r was performed by packing the string 
beginning at each position into a single Cray-2 word, sorting the resulting array, 
and counting equal contiguous entries in the sorted list. The results of this analysis 
are shown in Table 4. 

TABLE 4 

Long repeat statistics 

10 42945 43100. -0.677 
11 4385 4310. 1.033 
12 447 431. 0.697 
13 48 43.1 0.675 
14 6 4.31 0.736 
15 1 0.43 0.784 

A third test frequently performed as a test for randomness is the runs test. This 
test compares the observed frequency of long runs of a single digit with the number 
of. such occurrences that would be expected at random. The mean and variance of 
this statistic are the same as the formulas for repeats, except that d2 is replaced by 
2d. Table 5 lists the observed frequencies of runs for the calculated expansion of 1r. 

The frequencies of long runs are all within acceptable limits of randomness. The 
only phenomenon of any note in Table 5 is the occurrence of a 9-long run of sevens. 
However, there is a 29% chance that a 9-long run of some digit would occur in 
29,360,000 digits, so this instance by itself is not remarkable. 

TABLE 5 

Single-digit run counts 

Length of Run 
Digit 5 6 7 8 9 

0 308 29 3 0 0 
1 281 21 1 0 0 
2 272 23 0 0 0 
3 266 26 5 0 0 
4 296 40 6 1 0 
5 292 30 4 0 0 
6 316 33 3 0 0 
7 315 37 6 2 1 
8 295 36 3 0 0 
9 306 40 7 0 0 

9. Conclusion. The statistical analyses that have been performed on the ex
pansion of 1r to 29,360,000 decimal places have not disclosed any irregularity. The 
observed frequencies of n-long strings of digits for n up to 6 are entirely unremark
able. The numbers of long repeating strings and single-digit r··ns are completely 
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acceptable. Thus, based on these tests, the decimal expansion of 1r appears to be 
completely random. 

Appendix 

Selected Output Listing 

Initial 1000 digits: 

3. 
14159265358979323846264338327950288419716939937510 
58209749445923078164062862089986280348253421170679 
82148086513282306647093844609550582231725359408128 
48111745028410270193852110555964462294895493038196 
44288109756659334461284756482337867831652712019091 
45648566923460348610454326648213393607260249141273 
72458700660631558817488152092096282925409171536436 
78925903600113305305488204665213841469519415116094 
33057270365759591953092186117381932611793105118548 
07446237996274956735188575272489122793818301194912 
98336733624406566430860213949463952247371907021798 
60943702770539217176293176752384674818467669405132 
00056812714526356082778577134275778960917363717872 
14684409012249534301465495853710507922796892589235 
42019956112129021960864034418159813629774771309960 
51870721134999999837297804995105973173281609631859 
50244594553469083026425223082533446850352619311881 
71010003137838752886587533208381420617177669147303 
59825349042875546873115956286388235378759375195778 
18577805321712268066130019278766111959092164201989 

Digits 4,999,001 to 5,000,000: 

49480754784558100182731931632488412804488722296956 
79855015464855780486736535227902836997918084867230 
64962221004527085768335035212069684801817137616329 
97561738425160340472537100056351640342162492027179 
66824926458930960182645026923102266570541641475347 
20341554913770421505764452807809035248393621093031 
02288096238486877923145240841637271180953058890040 
68843766781431498914299893621278545260143140439048 
49938801556336059513116731891132765777881364690708 
47036863411196323063886507480852125682842257852524 
03086993703255692093960818587414181230484153204049 
20234989002732447593020323794790776444752398445514 
67304403210968985244961967143433964895893190552338 
49818852746844924836314634250006421630628686858848 
27453318669926734730642735036364002856022218966350 
11429182634319974163253372368798553451111253055262 
39104082639970934508146672521381105913047210052428 
18988626533169469331951675296209306752291590715999 
89846179288059262000848638138811280944056488021060 
48865855191846702365421761783505181721320764619715 
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Digits 9,999,001 to 10,000,000: 

55097818243516728227849910720400286757907904466335 
12718202979525150617725334066894988956424703269230 
15399820900390166275224338184424808589395293652582 
53635658584175485536744818650289245188206447853280 
79129675504865572929083083485483937583334671019089 
12067114536955173140929461823466478725289529974204 
02127635235923293305770179423865225963240694027480 
60412880303092452481034941582735932443887273109397 
41634889604695819245395151341043433998381874650972 
33692635225791472454244401326312964396391209607800 
16344851199125420819737407446045899742145731042313 
64456486501937801063526603744056568823861389375443 
97351681296831567911618884222251141477322612331396 
18606080373110348692660933940438416300326143449280 
50821131575737727739821551522286509997662432587213 
93393445902091662272905493493827178205126669021149 
47192311380933822311224099588372246332501222323378 
96895269025366263941267010317327864987170257149617 
76105155492579857592045532468944687427025046397905 
65326553194060999469787333810631719481735348955897 

Digits 14,999,001 to 15,000,000: 

75161912582729034437123279749256311511925243956985 
41466735069194815163837226073925151887751751659741 
00622880726448602209456930414488539882981108512492 
30626088375966783621649753412539683084922711342513 
94953995693625441331401738133085848172315887473225 
66862139251938540102249475575494947158395623512785 
67033888824495551084462300472407612165952784386252 
83059992302223284865934566262929748436827730812030 
14434593689874259766415514412097984133998015934584 
35393475650624323850160432731918805126406671871353 
77555766214670931813151162879500509710551795152818 
09093154481058044767364122166100032425098263166257 
41730518220480715488224616563891344046934208103238 
39903254029881746342496583186836947486194257533540 
36331223838222392494056270856378033056213544686593 
02986821714952808585949418676532291067339817684850 
77576151785057277099880627370814385794117668763599 
75814499149890314594098525960336377989988228138579 
03954608500076180754880433958468619641092762653446 
79645205263473393286074979323931503141172775669803 



7. THE COMPUTATION OF π TO 29,360,000 DECIMAL DIGITS (1988) 123

THE COMPUTATION OF 7r TO 29,360,000 DECIMAL DIGITS 295 

Digits 19,999,001 to 20,000,000: 

24662421652199659486815804456870197576438951607697 
86758526528445124126249995515004465281646092893016 
37396198596248627116552469686381679679898926165214 
19985145392716546108714664257998278750239431446690 
24524827883001435830699295155565194378002452231513 
03498450165135282534109758167508041457187906821950 
98156889669401540575560430489547131781464796920586 
99611799897126388736531564345333853581593559913668 
62608486227029865668230856391322081859205243349223 
41898466479821052634622968628766495150696262416056 
24275201300452308788083860012754008114751496913646 
62422297630443481605116791864334302662386921297850 
27885235888942133721123400642720173755448172632485 
38990548569368292370090889371435442648824207842546 
28067400727949203553263884395310176843535902614634 
76307233029969045465206192626213143248919480318684 
24091340888618503237670440877047193079665717842568 
49026897445701681738816789861189706430445720674936 
81903857815020793466156644931359073005891342758785 
95072447895232808191116291055801380049338634527644 

Digits 24,999,001 to 25,000,000: 

64626376657788401626872035835150250932381126804132 
24527774629670113871130617683224437149346115597163 
91099108362268853888484703799982396604187954247350 
36635859521304516872709809678948655853409228442863 
24948936001342207955968740967092110719683856558205 
30816048151902240856062148774123551023529985810792 
74189214723685203602121713995138514107079374902532 
54350785997288413483911434952219864948321330490074 
60146435121254311259573947301142531184570914224080 
72612210306331872567179327168155609249989038137333 
66960257521334843154895361888436208731274888674781 
18373984739313750077149269011462219615798047067514 
35050981335283641909759090614464729227662129370246 
47057090874450108027231969863517024941726518038367 
32762891741863822149208539226376382907305941739639 
07549588865849168186491743776278287261919660505923 
92475738836587226649359524383297861404378228288281 
73596312642574370611956801297356036342637793562761 
38037507909491563108238168922672241753290045253446 
07864115924597806944245511285225546774836191884322 
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Digits 29,359,001 to 29,360,000: 

34192841788915229643368473881977698539005746219846 
69525347577001729886543392436261840972591968259157 
61107476294007303074005235627829787025544075405543 
99895071530598162189611315050419697309728290606067 
18890116138206842589980215445395753593792898823575 
01412347486672046935635735777380648437308573291840 
62108496330974827689411268675222975523230623956833 
62631148916063883977661973091499155192847894109691 
39612265329351195978725566764256462895375180907449 
49363092921314127640888510170422584084744149319118 
65755825721772836144977978766052285469047197596264 
76680055360842209689517737135008611890452433015212 
37693745702070338988940123376693961057269535278146 
99719136307074643201853864071307997507974509883554 
65961575782849747512645786441130845325323149405419 
17263364899647912032878171893387317819324912382342 
18648271763723022561720016348368584955658165112489 
95446848720693621957797943429494640258419939089135 
34266985232776239314365259670832026370250924776814 
70490971424493675414330987259507806654322272888253 
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Synopsis:
If the title of this article seems wide-ranging, it is because the article itself is,

delightfully so. The authors take the reader on an entertaining but highly informa-
tive tour of the arithmetic-geometric mean (AGM), including the historical roots
of Gauss’s work, a mini-biography of the reclusive 19th century British mathemati-
cian John Landen, who wrote articles on mathematics (including on the AGM)
for the Ladies Diary, a popular womens magazine that included a mathematics
column, and late-20th-century developments including the new quadratically con-
vergent algorithms of Salamin, Brent and others, and computations implementing
these techniques on powerful computer systems. All of this is presented in a very
rigorous style that exposes both the methods and results of the theory.

Almkvist and Bernt also discuss some extensions of this theory that were un-
dertaken by the famed Indian mathematician Ramanujan. The authors were well-
equipped to present this material, since Berndt, for instance, was in the process
of editing the works of Ramanujan for a modern audience. The result is a very
enlightening mathematical tour of the AGM.
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Virtue and sense, with female-softness join' d 
(All that subdues and captivates mankind!) 
In Britain's matchless fair resplendent shine; 
They rule Love's empire by a right divine: 
Justly their charms the astonished World admires, 
Whom Royal Charlotte's bright example flres. 

1. Introduction. The arithmetic-geometric mean was first discovered by Lagrange 
and rediscovered by Gauss a few years later while he was a teenager. However, 
Gauss's major contributions, including an elegant integral representation, were 
made about 7-9 years later. The first purpose of this article is, then, to explain the 
arithmetic-geometric mean and to describe some of its major properties, many of 
which are due to Gauss. 

*Research partially supported by the Vaughn Foundation. 
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Because of its rapid convergence, the arithmetic-geometric mean has been signifi
cantly employed in the past decade in fast machine computation. A second purpose 
of this article is thus to delineate its role in the computation of 'TT. We emphasize 
that the arithmetic-geometric mean has much broader applications, e.g., to the 
calculation of elementary functions such as log x, eX, sin x, and cos x. The inter
ested reader should further consult the several references cited here, especially 
Brent's paper [14] and the Borweins' book [13]. 

The determination of the arithmetic-geometric mean is intimately related to the 
calculation of the perimeter of an ellipse. Since the days of Kepler and Euler, several 
approximate formulas have been devised to calculate the perimeter. The primary 
motivation in deriving such approximations was evidently the desire to accurately 
calculate the elliptical orbits of planets. A third purpose of this article is thus to 
describe the connections between the arithmetic-geometric mean and the perimeter 
of an ellipse, and to survey many of the approximate formulas that have been given 
in the literature. The most accurate of these is due to Ramanujan, who also found 
some extraordinarily unusual and exotic approximations to elliptical perimeters. 
The latter results are found in his notebooks and have never been published, and so 
we shall pay particular attention to these approximations. 

Also contributing to this circle of ideas is the English mathematician John 
Landen. In the study of both the arithmetic-geometric mean and the determination 
of elliptical perimeters, there arises his most important mathematical contribution, 
which is now called Landen's transformation. Many very important and seemingly 
unrelated guises of Landen's transformation exist in the literature. Thus, a fourth 
purpose of this article is to delineate several formulations of Landen's transforma
tion as well as to provide a short biography of this undeservedly, rather obscure, 
mathematician. 

For several years, Landen published almost exclusively in the Ladies Diary. This 
is, historically, the first regularly published periodical to contain a section devoted 
to the posing of mathematical problems and their solutions. Because an important 
feature of the MONTHLY has its roots in the Ladies Diary, it seems then dually 
appropriate in this paper to provide a brief description of the Ladies Diary. 

2. Gauss and the arithmetic-geometric mean. As we previously alluded, the 
arithmetic-geometric mean was first set forth in a memoir of Lagrange [30] pub
lished in 1784-85. However, in a letter, dated April 16, 1816, to a friend, H. C. 
Schumacher, Gauss confided that he independently discovered the arithmetic-geo
metric mean in 1791 at the age of 14. At about the age of 22 or 23, Gauss wrote a 
long paper [23] describing his many discoveries on the arithmetic-geometric mean. 
However, this work, like many others by Gauss, was not published until after his 
death. Gauss's fundamental paper thus did not appear until1866 when E. Schering, 
the editor of Gauss's complete works, published the paper as part of Gauss's 
Nachlass. Gauss obviously attached considerable importance to his findings on the 
arithmetic-geometric mean, for several of the entries in his diary, in particular, from 
the years 1799 to 1800, pertain to the arithmetic-geometric mean. Some of these 
entries are quite vague, and we may still not know everything that Gauss discovered 
about the arithmetic-geometric mean. (For an English translation of Gauss's diary 
together with commentary, see a paper by J. J. Gray [24].) 

By now, the reader is anxious to learn about the arithmetic-geometric mean and 
what the young Gauss discovered. 
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Let a and b denote positive numbers with a > b. Construct a sequence of 
arithmetic means and a sequence of geometric means as follows: 

1 
a 1 = 2(a +b), 

1 
a 2 = 2(a1 + b1), 

1 
an+l = 2(an + bn), 

Gauss [23] gives four numerical examples, of which we reproduce one. Let a = 1 
and b = 0.8. Then 

a 1 = 0.9, 

a 2 = 0.897213595499957939282, 

a 3 = 0.897211432116346, 

a4 = 0.897211432115042, 

bl = 0.894427190999915878564, 

b2 = 0.897209268732734, 

b3 = 0.897211432113738, 

b4 = 0.897211432115042. 

(Obviously, Gauss did not shirk from numerical calculations.) It appears from this 
example that {an} and { bn} converge to the same limit, and that furthermore this 
convergence is very rapid. This we now demonstrate. 

Observe that 

b < b1 < a1 <a, 

b < b1 < b2 < a 2 < a1 <a, 

b < b1 < b2 < b3 < a3 < a 2 < a1 < a, 

etc. Thus, { bn } is increasing and bounded, and {an} is decreasing and bounded. 
Each sequence therefore converges. Elementary algebraic manipulation now shows 
that 

a-b a- b 1 
---,------,,....---- < -
2( a + b) + 4b1 2 · 

Iterating this procedure, we deduce that 

an - bn < ( ~ ) n (a - b) , n ~ 1, 

which tends to 0 as n tends to oo. Thus, an and bn converge to the same limit, 
which we denote by M(a, b). By definition, M(a, b) is the arithmetic-geometric 
mean of a and b. 

To provide a more quantitative measure of the rapidity of convergence, first 
define 

n ~ 0, (1) 
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where a0 =a and b0 =b. Observe that 

1 c2 c2 

cn+l = Z(an- bn) = 4a:+l ..;; 4M(:, b). 

Thus, en tends to 0 quadratically, or the convergence is of the second order. More 
generally, suppose that {an} converges to L and assume that there exist constants 
C > 0 and m ;?; 1 such that 

n ;?; 1. 

Then we say that the convergence is of the mth order. 
Perhaps the most significant theorem in Gauss's paper [23] is the following 

representation for M for which we provide Gauss's ingenious proof. 

THEOREM 1. Let lxl < 1, and define 

1'11/2( . )-1/2 K(x)= 1-x2sm2<p d<p. 
0 

(2) 

Then 
7T 

M(1 + x,1- x) = 2K(x). 

The integral K( x) is called the complete elliptic integral of the first kind. 
Observe that in the definition of K(x), sin2<p may be replaced by cos2<p. 

Before proving Theorem 1, we give a reformulation of it. Define 

( ) 1'11/2( 2 2 2 . 2 )-1/2 I a, b = 
0 

a cos <p + b sm <p d<p. 

It is easy to see that 

where 

Since 

1 
I(a,b) = -K(x), 

a 

(3) 

M(a,b)=M(a1,b1 ) and M(ca,cb)=cM(a,b), (4) 

for any constant c, it follows that, with x as above, 

1 
M(1 + x,1- x) = -M(a, b). 

a 

The following reformulation of Theorem 1 is now immediate. 

THEOREM 1'. Let a > b > 0. Then 

7T 

M(a,b) = 2/(a,b). 
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Proof Clearly, M(1 + x, 1 - x) is an even function of x. Gauss then assumes 
that 

1 00 

-.,......-------:- = L Akx2k. 
M(1+x,1-x) k=O 

(5) 

Now make the substitution x = 2t/(1 + t2). From (4), it follows that 

1 1 
M(1 + x, 1- x) = --2M((l + 1)2, (1- 1)2) = --2M(1 + 12,1- 12). 

1+1 1+1 

Substituting in (5), we find that 

(1 + 12 ) :E Akl4k = :E Ak(~)2k 
k=O k=O 1 + I 

Clearly, A 0 = 1. Expanding (1 + 12)- 2k-1, k;;;. 0, in a binomial series and equating 
coefficients of like powers of I on both sides, we eventually find that 

1 = 1 + (~)2x2 + (~)2x4 + (1. 3. 5 )2x6 + ... 
M(1 + x, 1 -X) 2 2. 4 2. 4. 6 

~ f: m;x" 
k=O (k!) 

(6) 

Here we have introduced the notation 

(a)k =a( a+ 1)(a + 2) ···(a+ k- 1). (7) 

Complete details for the derivation of (6) may be found in Gauss's paper [23, pp. 
367-369). 

We now must identify the series in (6) with K(x). Expanding the integrand of 
K ( x) in a binomial series and integrating termwise, we find that 

K(x) ~ f: m'x"Csm'\pdo 
k=O k! 0 

~ ~ f: (~ ); x" 
2 k=O (k!) 

(8) 

Combining (6) and (8}, we complete the proof of Gauss's theorem. 

Another short, elegant proof of Theorem 1 has been given by Newman [39] and is 
sketched by J. M. and P. B. Borwein [10]. 

For a very readable, excellent account of Gauss's many contributions to the 
arithmetic-geometric mean, see Cox's paper [18). We shall continue the discussion of 
some of Gauss's discoveries in Section 5. 

3. Landen and the Ladies Diary. We next sketch another proof of Theorem 1 (or 
Theorem 1') which is essentially due to the eighteenth-century English mathemati
cian John Landen. 
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Second proof Although the basic idea is due to Landen, the iterative procedure 
that we shall describe is apparently due to Legendre [33, pp. 79-83] some years 
later. 

For brevity, set 

n;;;, 0, (9) 

where en is defined by (1). In the complete elliptic integral of the first kind (2), 
make the substitution 

sin(2<p) 
tan <l't = x1 + cos(2<p) · (10) 

This is called Landen's transformation. After a considerable amount of work, we 
find that 

K(x) = (1 + x1)K(x1). 

Upon n iterations, we deduce that 

K(x) = (1 + x1)(1 + x 2 ) • • • (1 + xn)K(xn). 

Since, by (1) and (9), 1 + xk = ak_ 1jak, k;;;, 1, we see that (11) reduces to 
a 

K(x) = -K(xn). 
an 

(11) 

We now let n tend to oo. Since an tends to M(a, b) and xn tends to 0, we conclude 
that 

a a'lT 
K(x)= ( )K(0)= 2 ( )" Ma,b Ma,b 

Landen's transformation (10) was introduced by him in a paper [31] published in 
1771 and in more developed form in his most famous paper [32] published in 1775. 
There exist several versions of Landen's transformation. Often Landen's transfor
mation is expressed as an equality between two differentials in the theory of elliptic 
functions [17], [37]. The importance of Landen's transformation is conveyed by 
Mittag-Leffler who, in his very perceptive survey [37, p. 291] on the theory of elliptic 
functions, remarks, "Euler's addition theorem and the transformation theorem of 
Landen and Lagrange were the two fundamental ideas of which the theory of 
elliptic functions was in possession when this theory was brought up for renewed 
consideration by Legendre in 1786." 

In Section 4, we shall prove the following theorem, which is often called Landen's 
transformation for complete elliptic integrals of the first kind. 

THEOREM 2. If 0 ~ x < 1, then 

K( 2/X )=(1+x)K(x). 
1 +X 

In fact, Theorem 2 is the special case a = 'lT, fJ = 'lT /2 of the following more 
general formula. If x sin a = sin(2/J - a), then 

(I+ x)1"'(1- xzsinz<prt/2 d<p = 21P(1- 4x 2 sinz<p)-1/2 d<p, 
o o (1+x) 
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which is known as Landen's transformation for incomplete elliptic integrals of the 
first kind. 

To describe another form of Landen's transformation, we introduce Gauss's 
ordinary hypergeometric series 

• • - oo (a)k(b)k k 
F(a, b, c, x)- k~O (c)kk! x , lxl < 1, (12) 

where a, b, and c denote arbitrary complex numbers and (ah is defined by (7). 
Then 

F(a, b;2b; 4x 2 ) = (1 + x) 2aF(a, a- b + ~; b + ~; x 2 ) 
(1+x) 2 2 

(13) 

is Landen's transformation for hypergeometric series. Theorems 1 and 2 imply the 
special case 

F( ~' ~; 1; (1 :xx)2 ) = (1 + x)F( ~' ~; 1; x 2 )· 

Thus, a seemingly innocent "change of variable" (10) has many important 
ramifications. Indeed, Landen himself evidently never realized the importance of his 
idea. 

Since Landen undoubtedly is not known to most readers, it seems appropriate 
here to give a brief biography. He was born in 1719. According to the Encyclopedia 
Britannica [20], "He lived a very retired life, and saw little or nothing of society; 
when he did mingle in it, his dogmatism and pugnacity caused him to be generally 
shunned." In 1762, he was appointed as the land-agent to the Earl Fitzwilliam, a 
post he held until two years before his death in 1790. 

As a mathematician, Landen was primarily an analyst and geometer. Most of his 
important works were published in the latter part of his career. These include the 
aforementioned papers and Mathematical Memoirs, published in 1780 and 1789. 
For several years, Landen contributed many problems and solutions to the Ladies 
Diary. From 1743-1749, he posed a total of eleven problems and published thirteen 
solutions to problems. However, Leyboum [34) has disclosed that contributors to 
the Ladies Diary frequently employed aliases. In particular, Landen used the 
pseudonyms Sir Stately Stiff, Peter Walton, W altoniensis, C. Bumpkin, and Peter 
Puzzlem, who, collectively, proposed ten problems and answered seventeen. 
Leyboum [34] has compiled in four volumes the problems and solutions from the 
Ladies Diary from 1704-1816. Especially valuable are his indices of subject classifi
cations and contributors. (The problems and solutions from the years 1704-1760 
had been previously collected by others in one volume in 1774 [50).) 

First published in 1704, the annual Ladies Diary evidently was very popular in 
England with a yearly circulation of several thousand. The Ladies Diary is "de
signed principally for the amusement and instruction of the fair sex." It contains 
"new improvements in arts and sciences, and many entertaining particulars ... for 
the use and diversion of the fair sex." The cover is graced by a poem dedicated to 
the reigning queen and which normally changed little from year to year. Our paper 
begins with the poem from 1776 paying eloquent homage to the beloved of King 
George III. Among other things, the Ladies Diary contains a "chronology of 
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remarkable events," birth dates of the royal family, enigmas, and answers to 
enigmas from the previous year. The enigmas as well as the answers were normally 
set to verse. 

The largest portion of the Ladies Diary is devoted to the solutions of mathemati
cal problems posed in the previous issue. Despite the name of the journal, very few 
contributors were women. Leybourn's [34] index lists a total of 913 contributors of 
which 32 were women. Because proposers and solvers did occasionally employ pen 
names such as Plus Minus, Mathematicus, Amicus, Archimedes, Diophantoides, and 
the aforementioned aliases for Landen, it is possible that the number of female 
contributors is slightly higher. In 1747, Landen gave a solution to a problem which 
was "designed to improve gunnery of which there are several things wanting." Does 
not this have a familiar ring today? Geometrical problems were popular, and rigor 
was lax at times. Here is an example from 1783. Let 

00 1 
a= L ----r==:===

k=O y2k + 1 

00 1 
and b= L -. 

k=l !ik 
Show that ajb = /i - 1. In 1784, Joseph French provided the following "elegant" 
solution. We see that 

00 1 00 1 
li "L - = L: - = a + b. 

k=l !ik k=l lk 
Thus, b({i - 1) =a, and the result follows. 

Those readers wishing to learn more about Landen's work should consult 
Watson's very delightful article, "The Marquis and the Land-agent" [52]. Readers 
desiring more knowledge of the mathematical content of the Ladies Diary should 
definitely consult Leybourn's compendium [34]. (Only a few libraries in the U.S. 
possess copies of the Ladies Diary. The University of Illinois Library has a fairly 
complete collection, although there are several gaps prior to 1774. T. Perl [43] has 
written a detailed description of the Ladies Diary with an emphasis on the 
contributions by women and an analysis of both the positive and negative sociologi
cal factors on womens' mathematical education during the years of the Diary. For 
additional historical information about the Ladies Diary and other obscure English 
journals containing mathematics, see Archibald's paper [2].) 

4. Ivory and Landen's transformation. In 1796, J. Ivory [25] published a new 
formula for the perimeter of an ellipse. A very similar proof establishes Theorem 2, 
a version of Landen's transformation discussed in the previous section. 

Before proving Theorem 2, we note that it implies a new version of Theorem 1. 

THEOREM 1". If x > 0, then 

71"(1 + x) 
M(1 + X, 1 - X) = IX . 

2K(~) 1+x 

Theorem 1' also follows from Theorem 1"; put x =(a- b)j(a +b) and uti
lize ( 4). 
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Proof of Theorem 2. Using the definition (2) of K, employing the binomial series, 
and inverting the order of summation and integration below, we find that 

( 2/X ) 1 ( 4x )-1
1

2 

K 1 +x x = 2 {' 1 - (1 + x )2 sin2«p d«p 

1 ( 2 )- 1
/

2 

= -177 1- x 2 (1- cos(2«p)) d«p 
2 o (1+x) 

1 177 -1/2 
=-(1+x) (1+x 2 +2xcos(2«p)) d«p 

2 0 

1 1.,. . -1/2 . -1/2 
= -(1 + x) (1 + xe 2''~') (1 + xe- 2''~') d«p 

2 0 

(1) m (1) n 
1 oo 2 (-x) oo 2 (-x) 77 

= -(1 + x) L m L n 1 e2i(m-n)q> d«p 
2 m~o m! n~O n! o 

- "(! + xd': m>'· 
2 n~O {n!) 2 

= (1 + x)K(x), 

by (8). This concludes the proof. 

Ivory's paper [25), establishing an analogue of Theorem 2, possesses an unusual 
feature in that it begins with the "cover letter" that Ivory sent to the editor John 
Playfair when he submitted his paper! In this letter, Ivory informs Playfair about 
what led him to his discovery. Evidently then, the editor deemed it fair play to 
publish Ivory's letter as a preamble to his paper. The letter reads as follows. 

Dear Sir, 
Having, as you know, bestowed a good deal of time and attention on the study of that part of 

physical astronomy which relates to the mutual disturbances of the planets, I have, naturally, been 

led to consider the various methods of resolving the formula ( a 2 + b2 - 2ab cos cp )" into infinite 

series of the form A + B cos cp + C cos 2cp + & c. In the course of these investigations, a series for 

the rectification of the ellipsis occurred to me, remarkable for its simplicity, as well as its rapid 

convergency. As I believe it to be new, I send it to you, inclosed, together with some remarks on 

the evolution of the formula just mentioned, which if you think proper, you may submit to the 

consideration of the Royal Society. 

I am, Dear Sir, 
Yours,&c. 

James Ivory 

5. Calculation of 'lr. First, we define the complete elliptic integral of the second 
kind, 

177/2( 0 )1/2 E(x) := 
0 

1- x 2sm2«p d«p, 

where lxl < 1. Two formulas relating the elliptic integrals E(x) and K(x) are the 
basis for one of the currently most efficient methods to calculate 7T. The first is due 



136 8. GAUSS, LANDEN, RAMANUJAN, AND THE LADIES DIARY (1988)

594 GAUSS, LANDEN, RAMANUJAN ... [August-September 

to Legendre [33, p. 61]. We give below a simple proof that appears not to have been, 
heretofore, given. 

THEOREM 3. Let x' =~.where 0 < x < 1. Then 
'IT 

K(x)E(x') + K(x')E(x)- K(x)K(x') = 2· 

Proof Let c = x 2 and c' = 1 - c. A straightforward calculation gives 

d d 1"" ;2 c sin2<p 
-(E- K) = -- d<p 
de de o (1 - c sin2<p )1/2 

E 1 1w/2 d<p 

= 2c - 2c o ( 1 - c sin2<p )3/2 . 

Since 

d ( sin<p cos <p ) 1 1; 2 c' -3/2 
- 112 = - ( 1 - c sin2<p) - - ( 1 - c sin2<p) , 
d<p (1 - c sin2<p) c c 

we deduce that 

-(E- K) = -- - + - - d<p 
d E E 1 1w;2 d ( sin <p cos <p ) 

de 2c 2cc' 2c' o d<p (1 _ c sin2<p )112 

= ~ ( 1 - :, ) = - 2~' . 
For brevity, put K' = K( c') and E' = E( c'). Since c' = 1 - c, it follows that 

d E' 
de ( E' - K') = 2c · 

Lastly, easy calculations yield 

dE E-K dE' E'- K' 

de 2c' de 2c 
and -=----

If L denotes the left side of (14), we may write L in the form 

L = EE'- (E- K)(E'- K'). 

Employing (15)-(17), we find that 

dL 

de 

(E- K)E' 

2c 

E(E'- K') E(E'- K') (E- K)E' 
----=0. ---- + ----

2c' 2c' 2c 

Hence, L is a constant, and we will find its value by letting c approach 0. 
First, 

. 2 1w/2 Sill <p 
E-K= -c d<p=O(c) 

o (1 - c sin2<p )1/2 

(14) 

(15) 

(16) 

(17) 
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as c tends to 0. Next, 

1'17/2( 2 )-1/2 1'1T/2 1/2 K' = 1 - c'sin <p d<p ~ (1 - c')- d<p 
0 0 

= O(c-112), 

as c tends to 0. Thus, 

limL= lim{(E-K)K'+E'K} 
c--+0 c--+0 

and the proof is complete. 

The second key formula, given in Theorem 4 below, can be proved via an 
iterative process involving Landen's transformation. We forego a proof here; a 
proof may be found, for example, in King's book [29, pp. 7, 8]. 

THEOREM 4. Let, for a> b > 0, 

1 '1Tj2( 0 )1/2 J(a, b)= 
0 

a 2cos2<p + b2sm2<p d<p, 

and recall that en is defined by (1). Then 

J(a, b)= (a 2 - ~ n~O 2nc~ )I( a, b), 

where I (a, b) is defined by (3). 

Note that 

J(a, b)= aE(x), 

where x = (1ja)Va 2 - b2 • 

(18) 

Theorems 3 and 4 now lead to a formula for 7T which is highly suitable for 
computation. 

THEOREM 5. If en is defined by (1), then 

4M 2 (1, 1//2) 
7f= 

Proof Letting x = x' = 1j /2 in Theorem 3, we find that 

(19) 

Setting a = 1 and b = 1//2 in Theorem 4, we see that 

(20) 
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since /(1, /2) = K(1/ /2) and 1(1, 1/ /2) = E(l/ /2). Lastly, by Theorem 1', 
7T 

M(1, 1//2) = ( M") . (21) 
2K 1/v2 

Substituting (20) into (19), employing (21), noting that c5 = 1/2, and solving for w, 
we complete the proof. 

According to King [29, pp. 8, 9, 12], an equivalent form of Theorem 5 was 
established by Gauss. Observe that in the proof of Theorem 5, we used only the 
special case x = x' = 1/ {i of Legendre's identity, Theorem 3. We would like to 
show now that this special case is equivalent to the formula 

11 dx 11 x 2 dx w 
-== =- (22) 

0~0~ 4' 

first proved by Euler [22] in 1782. (Watson [52, p. 12] claimed that an equivalent 
formulation of (22) was earlier established by both Landen and Wallis, but we have 
been unable to verify this.) The former integral in (22) is one quarter of the arc 
length of the lemniscate given by r 2 = cos(2q:> ), 0 ..:; q:> ..:; 27T. The latter integral in 
(22) is intimately connected with the classical elastic curve. For a further elaboration 
of the connections of these two curves with the arithmetic-geometric mean, see 
Cox's paper [18]. 

In order to prove (22), make the substitution x = cos q:>. Then straightforward 
calculations yield 

K- -v2 ( 1 ) r;;- 11 dx 
fi - o VI- x 4 

and 

2E( ~)- K( ~)={if 12;. 
It is now easy to see that Legendre's relation Theorem 3 in the case x = x' = 1/ {i 
implies (22). 

In 1976, Salamin [47] rederived the forgotten Theorem 5, from which he estab
lished a rapidly convergent algorithm for the computation of w. Recall that in 
Section 2 we demonstrated how rapidly the arithmetic-geometric mean converges 
and thus how fast en tends to 0. Tamura and Kanada have used this algorithm to 
compute w to 224 (over 16 million) decimal places. An announcement about their 
calculation of w to 223 decimal places was made in Scientific American [48]. Their 
paper [27] describes their calculation to 10,013,395 decimal places. More recently, 
D. H. Bailey (3] has used a quartically convergent algorithm to calculate 7T to 
29,360,000 digits. 

Newman [40] has obtained a quadratic algorithm for the computation of w that is 
somewhat simpler than Salamin's. His proof is quite elementary and avoids 
Legendre's identity. It should be remarked that Newman's estimates of some 
integrals are not quite correct. However, the final result (middle of p. 209) is correct. 

In 1977, Brent [14] observed that the arithmetic-geometric mean could be 
implemented to calculate elementary functions as well. Let us briefly indicate how 
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to calculate log2. From Whittaker and Watson's text [53, p. 522], as x tends to 
1-' 

From Theorem 1', 

and so 

4 
K(x)-log ~· 

y1- x 2 

'1T 

K(x)= 2M(1,Vt-x 2 )' 

4 '1T 

2M(1,~)· 

Taking v't - x 2 = 4 · 2 -n, we find that 

for large n. 
Further improvements in both the calculation of '" and elementary functions 

have been made by J. M. and P. B. Borwein [8], [9], [10], [11], [12], [13]. In 
particular, in [8], [11], and [12], they have utilized elliptic integrals and modular 
equations to obtain algorithms of higher order convergence to approximate '"· The 
survey article [10] by the Borwein brothers is to be especially recommended. Carlson 
[16] has written an earlier survey on algorithms dependent on the arithmetic-geo
metric mean and variants thereof._ 

Postscript to 'II'. The challenge of approximating and calculating '" has been with 
us for over 4000 years. By 1844, '" was known to 200 decimal places. This 
stupendous feat was accomplished by a calculating prodigy named Johann Dase in 
less than two months. On Gauss's recommendation, the Hamburg Academy of 
Sciences hired Dase to compute the factors of all integers between 7,000,000 and 
10,000,000. Thus, our ideas have come to a full circle. As Beckmann [5, p. 104] 
remarks, "It would thus appear that Carl Friedrich Gauss, who holds so many firsts 
in all branches of mathematics, was also the first to introduce payment for computer 
time." The computer time now for 29 million digits (28 hours) is considerably less 
than the computer time for 200 digits by Gauss's computer, Dase. 

6. Approximations for the perimeter L of an ellipse. If an ellipse is given by the 
parametric equations x = a cos <p and y = b sin <p, 0 ..-;; <p ..-;; 2'1T, then from elemen
tary calculus, 

12""( . 2 )1/2 L=L(a,b)= a 2smcp+b2cos2cp dcp 
0 (23) 

= 4J(b, a), 

where J( b, a) is defined by (18). Thus, we see immediately from Theorems 1' and 4 
that elliptical perimeters and arithmetic-geometric means are inextricably inter
twined. Ivory's letter and our concomitant comments also unmistakenly pointed to 
this union. 
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Before discussing approximations for L, we offer two exact formulas. The former 
is due to MacLaurin [36] in 1742, and the latter was initially found by Ivory [25] in 
1796, although it is implicit in the earlier work of Landen. 

THEOREM 6. Let x = a cos rp and y = b sin rp, 0 <::;; rp <::;; 2'17. Let e = 
(1/a)Va 2 - b2 , the eccentricity of the ellipse. Then ifF is defined by (12), 

L(a,b)=2'1TaFG,-~;l;e 2 ) {24) 

=7T(a+b)F(-~,-~;l;A2 ), (25) 

where 
a-b 

A=--. 
a+b 

Proof. The proofs are very similar to those in Sections 2 and 4. First, using (23), 
expanding the integrand in a binomial series, and integrating termwise, we deduce 
that 

l 'lT/2 1/2 
L(a, b)= 4a 

0 
(1- e2cos2rp) drp 

{26) 

Thus, (24) is established. 

We indicate two proofs of (25). First, in Landen's transformation (13) of 
hypergeometric series, set a= -lj2, b = 1/2, and x =A. We immediately find 
that 

F(- ~ ~·I· e 2 ) = a+ b F(- ~ - ~ ·1· A2 ). 
2 ' 2 ' ' 2a 2 ' 2 ' ' 

By this formula and (24), formula (25) is demonstrated. 
The second proof that we mention is that of Ivory [25]. Using (26), proceed 

exactly in the same fashion as in the proof of Theorem 2 in Section 4. 

In fact, there exists a third early formula for L(a, b). In 1773, Euler [21] proved 
that 

Although Euler proceeded differently, we mention that his formula may be derived 
from MacLaurin's via a certain quadratic transformation for hypergeometric series 
that is different from Landen's. Euler's formula also trivially leads to an approxima
tion for L (a, b) given in our table below. 
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The problem of determining L(a, b) is not as venerable as that for determining 
'TT. However, some have argued (not very convincingly) that the problem goes back 
to the time of King Solomon, who hired a craftsman Huram to make a tank. 
According to 1 Kings 7:23, "Huram made a round tank of bronze 5 cubits deep, 10 
cubits in diameter, and 30 cubits in circumference." The implication is clear that the 
ancient Hebrews regarded 'TT as being equal to 3. It has been suggested, perhaps by 
someone who believes that "God makes no mistakes," that "round" and "depth" 
are to be interpreted loosely, and that the tank really was elliptical in shape, with 
the major axis being 10 cubits and the minor axis being about 9.53 cubits in length. 

As might be expected. the primary impetus in finding methods for calculating 
elliptical perimeters arises from astronomy. In 1609, Kepler [28] offered perhaps the 
first legitimate approximations 

L =:: 'TT( a + b) and L =:: 2'TT/(ib, 

although, as we shall see, his arguments were not very rigorous and 2'TT/(ib was 
intended to be only a lower bound for L. Kepler [28, p. 307] first remarks that the 
ellipse with semiaxes a and b and the circle with radius f(ib have the same areas. 
Since the circle has the smaller circumference, 

L ~ 2'TT/(ib. 

He [28, p. 368] furthermore remarks that (1/2)(a +b)~ /(ib, and so concludes 
that 

Kepler appears to be using the dubious principle that quantities larger than the 
same number must be about equal. 

Approximations of several types, depending upon the relative sizes of a and b, 
exist in the literature. In this section, we concentrate on estimates that are best for a 
close to b. Thus, we shall write all of our approximations in terms of ;\ = 
(a- b)/(a +b) and compare them with the expansion (25). For example, Kepler's 
second approximation can be written in the form 

We now show how the formula 

2'TT ( 1 00 ) 

L(a, b)= 4J(a, b)= M(a, b) a 2 - 2 Eo 2"c~ , (27) 

ansmg from Theorems 1' and 4, can be used to find approximations to the 
perimeter of an ellipse. Replacing M(a, b) by a 2 and neglecting the terms with 
n ~ 2, we find that 

2'TT ( c~ ) 2'TTaf ( a + b )2 

L(a,b) =::- a2 -- -cf = -- =2'fT {(i /b · 
a 2 2 a 2 a + b 

This formula was first obtained by Ekwall [19] in 1973 as a consequence of a 
formula by Sipos from 1792 [54]. 
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If we replace M(a, b) by a3 in (27) and neglect all terms with n;:;. 3, we find, 
after some calculation, that 

2(a + b) 2 - ({a- /b) 4 

L(a,b)::=2'1T 2 4 · 

({a+ /b) + 2/i/a + b Tab 
This formula is complicated enough to dissuade us from calculating further ap
proximations by this method. 

We now provide a table of approximations for L(a, b) that have been given in 
the literature. At the left, we list the discoverer (or source) and year of discovery (if 
known). The approximation A(A) for L(a, b)/'TT(a +b) is given in the second 
column in two forms. In the last column, the first nonzero term in the power series 
for 

A(A)- L(a,b) =A(A)-F(-~ -~·I·;\2 ) 
'TT( a + b) 2' 2' ' 

is offered so that the accuracy of the approximating formula can be discerned. For 
convenience, we note that 

F(- ~ -~.I· A2) = 1 + ~A2 + ~A4 + ~A6 + 25 As + 49 Aw + .... 
2 ' 2 ' ' 4 43 44 47 48 

2rah 3 2 
Kepler [28], 1609 -- ~ (1 - i\2)1/2 - -i\ 

a+b 4 

Euler [21], 1773 
/1(a2+b2) 

~ (1 + i\2 )1/2 1 2 
-i\ 

a+b 4 

Sipos [54], 1792 2(a +b) 2 7 

(Va + /b)2 
~ 

1 + /1 - i\2 
-i\4 

Ekwall [19], 1973 64 

Peano [42], 1889 ~ - rob ~ ~ - ~(1 - i\2i/2 3 4 
-A. 

2 a+b 2 2 64 

Muir [38], 1883 
_ 2_ ( a3/2 + b3/2) 2/3 

a+ b 2 - _2:._i\4 

1 64 
~ -{(1 + i\)3/2 + (1- i\)3/2}2/3 

22/3 

Lindner [35, p. 439], 
{ 1 + H:: :rf - 2_i\6 1904-1920 

Nyvoll [41], 1978 ~ ( 1 + ~i\2 r 28 

Selmer [49], 1975 
4( a- b )2 

1 + 
(5a + 3b)(3a + 5b) 

3 6 

1 1 --X 
~ 1 + -i\2 iO 

4 1 2 
1- -i\ 

16 
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Ramanujan [44], [45], 1914 
3- ,j(a + 3b)(3a +b) 

- 2.-~.6 a+b 
Fergestad [49], 1951 

= 3- V4- A2 
29 

Almkvist [1], 1978 2 
2(a + b)2 - (ra- /b)4 

(a+ b){ (ra + /b)2 + 2/2/Q+b~} 15 

( 1 + V1 - A2) 2 + >-V1 - ;\2 
i4;\s 

=2 
4 2 

( 1 + Vt - 1.2 ) ( 1 + /1 - 1.2 ) 

Bronshtein and 1 64(a+bt-3(a-bt 
Semendyayev 

16 (a+ b)2 (3a + b)(a + 3b) 9 8 
[15], 1964 --N 

64- 31.4 
i4 

Selmer [49], 1975 = 
64- 16;\2 

1 { ( a - b r 2/2( a2 + 6ab + b2
) } 

Selmer [49], 1975 - 12+ -- -
- _2_;\s 8 a+b a+b 

214 

= !_ + !_>.2- !_v1- !_>.2 
2 8 2 2 

Jacobsen and 256 - 481.2 - 21A4 33 
-->(0 

Waadeland [26], 1985 256 - 112;\2 + 31.4 iB 

Ramanujan 3;\2 3 
1 + __ >(0 

[44], [45], 1914 10 + ,;4- 3>-2 217 

The two approximations by India's great mathematician, S. Ramanujan, were 
first stated by him in his notebooks [46, p. 217], and then later at the end of his 
paper [44], [45, p. 39], where he says that they were discovered empirically. 
Ramanujan [44], [45] also provides error approximations, but they are in a form 
different from that given here. Since 

a-b 1-~ e 2 

A= a+ b = 1 + ~ ""'4' 
we find that, for the first approximation, 

A6 ( e2/4)6 el2 el2 

'1T(a +b) 29 ""''1Ta(l + ~) 29 < 2'1Ta221 = '1Ta22o, 

which is the approximate error given by Ramanujan. Similarly, for the second 
approximation, Ramanujan states that the error is approximately equal to 

e2o 

3'1Ta 236, 

which is in agreement with our claim. The exactness of Ramanujan's second formula 
for eccentricities that are not too large is very good. For example, for the orbit of 
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Mercury (e = 0.206), the absolute error is about 1.5 X 10- 13 meters. Note that if 
we set b = 0 in Ramanujan's second formula, we find that 'IT"" 22/7. 

Fergestad [49] rediscovered Ramanujan's first formula several years later. 
Despite Ramanujan's remark on the discovery of these two formulas, Jacobsen 

and Waadeland [26] have offered a very plausible explanation of Ramanujan's 
approximations. We confine our attention to the latter approximation, since the 
arguments are similar. Write 

( 1 1 ) }1.2 

F -2,-2; 1;1\2 = 1 + 4(1+w)" (28) 

Then it can be shown that w has the continued fraction expansion 

3 3 3 11 
w = ~{ -16;\2 -16;\2 -16;\2 - 48"2 } 

3 1 + 1 + 1 + 1 + .... 

If each numerator above is replaced by - 31\2 j16, then we obtain the approximation 

1 
w"" 12 ( -2 + v4- 31\2 ). 

Substituting this approximation in (28) and then using (25), we are immediately led 
to the estimate 

L(a,b) 3;\2 

---:-----:- ::::: 1 + ---;==== 
'TT(a+b) 10+V4-31\2 

Since Ramanujan's facility in representing analytic functions by continued fractions 
is unmatched in mathematical history, it seems likely that Ramanujan discovered his 
approximations in this manner. 

In the next section, we examine some approximations for L(a, b) of a different 
type given by Ramanujan in his notebooks [46]. 

7. Further approximations given by Ramanujan. In his notebooks [46], Ramanu
jan offers some very unusual formulas, expressed in sexagesimal notation, for 
L( a, b). The first is related to his approximation 3 - J 4 - 1\2 given in Section 6. 

THEOREM 7. Put 

L (a, b) = 'IT (a + b) ( 1 + 4 sin2 ~ 8), 0 ~ 8 ~ 'IT/ 4, (29) 

and 
a-b 

sinO= A sin a, ;\=--. 
a+b 

(30) 

Then, when the eccentricity e = 1, a = 30°18'6", and as e tends to 0, a tends 
monotonically to 30°. 

It is not clear how Ramanujan was led to this very unusual theorem. The variance 
of a over such a small interval is curious. 

Proof We shall prove Theorem 7 except for the conclusion about monotonicity. 
However, we shall show that a > 'IT j6 always. 
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For brevity, we write (25) in the form 

L(a,b) 00 

( b) = L anA_2n' 
'1T a+ n~o 

IA.I < 1. (31) 

It then follows from (29) and (30) that 
1 00 

3- 2.../1- A.2sin2a = 1 + 4sin228 = L anA.2n, 
n~o 

IA.I < 1. (32) 

Next set 

IA.I < 2. (33) 

As implied in Section 6, an = /3n, n = 0, 1, 2. We shall further show that, for n ~ 3, 

(34) 

From the definitions (31) and (33), respectively, short calculations show that, for 
n ~ 1, 

Thus, 

(2n- 1)2 

(2n + 2) 2 
and 

2n- 1 

8(n+1). 

/3n+llan+l = n + 1 1 
13n an 2(2n -1).:;;; l' 

if n ~ 2. Proceeding by induction, we deduce that 

/3n+ 1 1 /3n 1 
-- .:;;; - - .:;;; ---;;-=! ' 
an+l 2 an 2 

for n ~ 2, and the proof of (34) is complete. 
From (32) and (34), it follows that 

3 - V4 - A.2 .:;;; 3 - 2.../1 - A.2sin2a. 

Solving this inequality, we find that sin2a ~ 1/4, or a~ '1Tj6. 

Second, we calculate a when e = 1. Thus, A. = 1 and 8 = a. Therefore, from (25) 
and (32), 

1+4sin2~a=F(-~ -~·1·1)= ~. 
2 2' 2' ' '1T 

(35) 

This evaluation follows from a general theorem of Gauss on the evaluation of 
hypergeometric series at the argument 1 [4, p. 2]. Moreover, this particular series is 
found in Gauss's diary under the date June, 1798 [24]. Thus, 

1 1 1 
sin2-a = - - - = 0.0683098861. 

2 '1T 4 

It follows that a = 30°18'6". 
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Third, we calculate a when e = 0. From (30) and (32), 

1 
sin20 4 sin2 2 0 

lim sin2a = lim -- = lim 
>.-+o >.-+o "A? >.-+o 

00 1 
= limA-2 L: anA2n = al = -. 

>.-+0 n=l 4 

Thus, a tends to 'IT /6 as e tends to 0. 
Ramanujan [46, p. 224] offers another theorem, which we do not state, like 

Theorem 7 but which appears to be motivated by his second approximation for 
L(a, b). 

Ramanujan [46, p. 224] states two additional formulas each of which combines 
two approximations, one for e near 0 and the other for e close to 1. Again, we give 
just one of the pair. A complete proof of Theorem 8 below would be too lengthy for 
this paper, and so we shall just sketch the main ideas of the proof. Complete details 
may be found in [7]. 

THEOREM 8. Set 

and 

tanO 
L(a, b)= 7r(a + b)-0-, 0 ~ 0 < 'TT/2, 

tanO = Acosa, 
a-b 

A=--. 
a+b 

(36) 

(37) 

Then as e increases from 0 to 1, a decreases from 7r/6 to 0. Furthermore, a is 
approximately given by 

2Vab { (/(i- /b) 2 (a- b )2
} -- 30° + 6°18'49" - 1 °10'55" -- . 

a+b a+b a+b 
(38) 

Proof If e = 0, then A = 0 and 0 = 0. The argument is very similar to that in 
the proof of Theorem 7, and we find that 

lim cos2a = 3a1 = 3/4. 
>.-.o 

Thus, a= 'IT/6 when A= 0 =e. 
We next determine a when e = 1. Thus, A = 1 and tan 0 = cos a by (37). From 

(25), (36), and (35), 

tan 0 I = F(- _: - _:. 1· 1) = ~. 
0 "-=l 2' 2 ' ' 7T 

Thus, 0 = 'TT/4 and a= 0. 
It appears to be extremely difficult to show that as A goes from 0 to 1, a 

monotonically decreases from '1T /6 to 0. It can be shown [7], however, that 0 ~ a ~ 
'TT/6, always. A proof depends upon a continued fraction for tan- 1x. 
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The proof of (38) is very difficult, and we provide only a brief sketch. We observe 
(again) that 

r:;--:;? = 2/ab 
V 1 - 1\- a+ b, 

and so 

2/ab 2 /1- A2 - (1- A2) = 2 ({a- /b) . 
(a+ b) 

Thus, Ramanujan is attempting to find an approximation to a of the form 

VI - A2 (A + B { 1 - VI - A2 } + CA2), (39) 

which will be a good approximation both when A is close to 0 and when A is near 1. 
Our task is then to determine A, B, and C. 

With a considerable amount of effort, it can be shown that [7] 

7T 21{3 
a= 6 - 160 A2 + 0(A4) (40) 

in a neighborhood of A = 0. The proper expansion near A = 1 is even more difficult 
to obtain because F(- 1,- 1; 1; A2) is not analytic at A= 1. However, there does 
exist an asymptotic expansion for F(- 1, - 1; 1; A2 ) as A tends to 1 - , and 
employing this, we can show that [7] 

(41) 

as A tends to 1 - . 

Having omitted the hard analysis, we now determine A, B, and C from (40) and 
(41) with little difficulty. When A tends to 0, (39) tends to A. Thus, A = 7Tj6, by 
(40). Next, examine (a- 7T/6)/A2 as A tends to 0. From (39) and (40), we find that 

7T 1 21{3 
--+-B+C=---. 

12 2 160 

Now check aj /1 - A2 as A tends to 1 - . From (39) and (41), we see that 

~+B+C= ~. 
6 v~ 

Simultaneously solving these last two equalities, we conclude that 

21{3 7T 
B = 2 + -- - - = 0.1101935 

80 2 

and 

7T rg-7T 21{3 c =-- - -- = -0.0206291. 
3 27T- 4 80 

Converting A, B, and C to the sexagesimal system and substituting in (39), we 
complete the proof. 
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Although Ramanujan is well known for his approximations and asymptotic 
formulas in number theory, he has not been adequately recognized for his deep 
contributions to approximations and asymptotic series in analysis, because the vast 
majority of his results in the latter field have been hidden in his notebooks. These 
notebooks were begun in about 1903, when he was 15 or 16, and are a compilation 
of his mathematical discoveries without proofs. The last entries were made in 1914, 
when he sailed to England at the urging of G. H. Hardy. Although the editing of 
Ramanujan's notebooks was strongly advocated by Hardy and others immediately 
after Ramanujan's death in 1920, it is only recently that this has come to fruition 
[6]. 

We have not attempted to give complete proofs of some of the theorems that we 
have described, but we hope that the principal ideas have been made clear. We have 
seen that a chain of related ideas stretches back over a period exceeding two 
centuries and provides impetus to contemporary mathematics. Ideas and topics that 
appear disparate are found to have common roots and merge together. For further 
elaboration of these ideas, readers should consult the works cited, especially Cox's 
paper [18], the papers and book of J. M. and P. B. Borwein [8]-[13], a paper by 
Alrnkvist [1] written in Swedish, and Berndt's forthcoming book [7]. 

We are most grateful to Birger Ekwall for providing some very useful references. 
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Vectorization of Multiple-Precision Arithmetic Program 
and 

201,326,000 Decimal Digits of x Calculation 

Yasumasa Kanada 

Computer Centre, University of Tokyo, 
Bunkyo-ku Yayoi 2-11-16, Tokyo 113, Japan 

More than 200 million decimal places of n: were calculated using arithmetic-geometric mean formula 
independently discovered by Salamin and Brent in 1976. Correctness of the calculation were verified 
through Bmwein's quartic convergent formula developed in 1983. The computation took CPU times of 5 
hours 57 minutes for the main calculation and 7 hours 30 minutes for the verification calculation on the 
HIT AC S-820 model 80 supercomputer with 256 Mb of main memory and 3 Gb of high speed semicon
ductor storage, Extended Storage, for shorten 1/0 time. 

Computation was completed in 27th of January 1988. At that day two programs generated values up 
to 3x226, about 201 million. The two results agreed except for the last 21 digits. These results also agree 
with the 133,554,000 places calculation of 1t which was done by the author in January 1987. Compare to 
the record in 1987, 50% more decimal digits were calculated with about 1/6 of CPU time. 

Computation was performed with real arithmetic based vectorized Fast Fourier Transform (FFI) 
multiplier and newly vectorized multiple-precision add, subtract and (single word) constant multiplication 
programs. V ectorizations for the later cases were realized through first order linear recurrence vector 
instruction on the S-820. Details of the computation and statistical tests on the first 200 million digits of 
n:-3 are reported. 

1. Introduction 

Since the epoch-making calculation of 1t to 100,000 decimals [17], several computations have been 
performed as in Table 1. The development of new algorithms and programs suited to the calculation of 1t 
and new high speed computers with large memory and high speed large semiconductor disk, Extended 
Storage or Solid State Disk, threw more light on this fascinating number. 

There are many arctangent relations for n:[9]. However, all these computations until 1981 and 
verification for 10,000,000 decimal calculation of our previous record[21] used arctangent formulae such 
as: 

1 1 
1t = l6arctan5 - 4arctan 

239 
• Machin 

1 1 1 = 24arctan8 + 8arctan 
51 

+ 4arctan 
239 

, StOrmer 

1 1 1 
48arctanli + 32arctans=; - 20arctan 

239 
, Gauss 

1 1 1 = 32arctan10 - 4arctan 
239 

16arctan 
515 

. Klingenstierna 

In 1976, an innovative quadratic convergent formula for the calculation of 1t was published indepen
dently by Salamin [14] and Brent [5]. Later in 1983, quadratic, cubic, quadruple and septet convergent 
product expansion for 1t, which are competitive with Salarnin's and Brent's formula, were also discovered 
by two of Borwein[2]. These new formulae are based on the arithmetic-geometric mean, a process whose 
rapid convergence doubles, triples, quadruples and septates the number of significant digits at each step. 
The arithmetic-geometric mean is the basis of Gauss' method for the calculation of elliptic integrals. With 
the help of the elliptic integral relation of Legendre, 1t can be expressed in terms of the arithmetic
geometric mean and the resulting algorithm retains quadratic, cubic, quartic and septic convergence of the 
arithmetic-geometric mean process. 
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The author and Mr. Y. Tamura have calculated 1t up to more than 200 million decimal places by 
using the formula of Brent and Salamin and verified through Borwein's quartic convergent algorithm for 1t. 

Even for the quartic convergent algorithm, quadratic convergent algorithm of Brent and Salamin is faster 
through actual FORTRAN programs. 

For reducing the computing time, theoretically fast multiple-precision multiplication algorithm was 
implemented through normal fast Fourier transform (FF A), inverse fast Fourier transform (FFS) and convo
lution opetations[ll] as before[l9,9,21,8]. And in order to get more speed than before, vectorization 
schemes to the multiple-precision add, subtract and (single word) constant multiplication were introduced 
for the first time. 

Calculation of 200 million decimal places of 1t was completed in January 27, 1988 and needed 5 
hours 57 minutes of CPU time on a HITAC S-820 model 80 supercomputer at Hitachi Kanagawa Works 
under a VOS3/HAP/ES 31 bit addressing operating system. Main memory used was about 240 Mb and 2.7 
Gb of Extended Storage was also required. If the machine had more memory, CPU time could be reduced 
and more Extended Storage, calculation decimals could be extended with minor changes in the FORTRAN 
programs. 

The algorithms used in the 200 million place calculation are briefly explained in section 2. Program
ming in FORTRAN is discussed in section 3. Results of statistical tests and some interesting figures for 
the 200,000,000 decimals of 1t appear in section 4. 

2. How to Calculate x: Algorithmic Aspects 

In this section we briefly explain the algorithms used in the 200 million decimal place calculations. 

2.1. Tbe Gauss-Legendre Algorithm: Main Algorithm 

The theoretical basis of the Gauss-Legendre algorithm for 1t is explained in the references [2, 5, 14]. 
Here, we summarize the quadratic algorithm for 1t. (Refer to the references for the details.) 

We first define the arithmetic-geometric mean agm(a 0,b0). Let a0, b0 and c0 be positive numbers 
satisfying a6 = b6 + c6. Define a,., the sequence of arithmetic means, and b,, the sequence of geometric 
means, by 

(a,._I + b,._J) I/2 
a,. = 

2 
, b,. = (a,._1 x b,._1) • 

Also, define a positive number sequence c,.: 

Note that, two relations easily follow from these definitions. 

(a,_l - b,.-1) 2 
c,. = 

2 
= (a,.-t - a,.) , c, = 4 x a,.+1 x c,.+1 • 

Then, agm(ao.b0) is the common limit of the sequences a, and b,., namely 
agm(a0,bo) = lim a,. = limb,. . 

Now, 1t can be expressed as follows: 

,._,_ A-+-

1t = 4agmfl.k)agm(l,k) 

1- "f.Y(c/ + c'J) 
j=l 

(1) 

(2) 

(4) 

where a0 =a'0 == 1, b0 =k, b'o""k' and k 2 +kr2"" 1. It is easier to compute squares of c; and c'i by 
Eq. (2) than to calculate c/ and c 'J by Eq. (1). 

The symmetric choice of k = k' "" 2-112 is recommendable for the actual calculation and it causes the 
two sequences of arithmetic-geometric means to coincide. Then, Eq. (3) becomes 

1t = 4(agm21.2-112))2 (4) 

1- "J:.2i+lc/ 
i=l 

After n square root operations in computing agm = agm(l,z-112), 7t can be approximated by 1t,: 

liS 
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4a,;+l 
7t,. =--...;.;.;,:...,__ 

1- ±2i+lcl 
,. 

0.25- Z.2i-1cl 
i•l i=l 

Then, the absolute value of 7t- 7t,. is bounded as follows (Theorem 2b in reference [14]) : 

: 7t- 7t,.: < (rx2"+4tagm'l-y exp(-1tX2"+1) . 

(5) 

(6) 

Thus, the fonnula has the quadratic convergence nature. We must note here that all operations and con
stants in Eq. (4) must be correct up to the required number of digits plus a (20 to 30 as the guard digits for 
200 million decimal digits calculation). 

Then the sequences of agm and agm related 7t are calculated by the following algorithm; 

A := I; B := 2-112; T := 1/4; X := 1; 

while A -B >2-" do begin 
W :=A*B; V :=A; A :=A+B;A :=A/2; 
V :=V-A; V := V*V; V :=V*X; 
T :=T-V; B ;;;;; V"W; X:= 2*X end; 

A := A*B; B := 1/T; A := A*B; 
return A . 

Here, A , B , T, V and W are full-precision variables and X is a double-precision variable. After twenty 
eight iterations of the main loop, 7t to 200 million decimal places is to be obtained. 

2.2. Borwein's Quartic Convergent Algorithm: Verification Algorithm 

Borwein's quartic convergent algorithm is explained as the following scheme: 

a0 = 6- 4 x .J2 , Yo= {2- 1 

1 - (1 - Yt 4)lt4 

Yt+l = 1 + (1 + Yk 4)114 • 

7t == _!_ for large k. 
a a 

Here, precisions for at and Yt must be more than the desired digits. This algorithm is basically the same 
with that used for the main run of the 29 million decimal calculation done by Dr. D.H. Bailey[l]. Dr. Bai
ley used the following Borwein's quadratic convergent algorithm for the verification calculation: 

7t = Pt for large k . 

Here, precisions for a1 , bt and p1 must be more than the desired digits. It is to be noted that the Gauss
Legendre algorithm is superior to the Borwein's algorithms explained here as in the Table 2. 

2.3. Calculation of Reciprocals and Square Roots 

As is easily seen from the algorithms explained above, arithmetic operations, reciprocals and square 
roots must be computed with high efficiency in order to reduce the computing time. Theoretical bases for 
fast calculation of reciprocals and square roots of multi-precision numbers appear in references 
[16,12,4, 5). In this subsection we summarize the algorithms used in the actual calculation. 

The reciprocal of C is obtained by the Newton iteration for the equation f (x) x-1 - C = 0: 

Xi+l = X; X (2 - C X X;) . (7) 

lJ9 
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A single-, double- or quadruple-precision approximation of 1/C is a reasonable selection for x0, i.e. initial 
starting value for the Newton iteration. 

Square roots of C should be calculated through the multiplication of C and the result obtained by the 
Newton iteration for the equation f (x) = x-2 - C • 0: 

x1 x(3-C xxl> 
Xi+!= 2 (8) 

In this case also, a single-, double- or quadruple-precision approximation of 11-.JC is a reasonable selection 
for x0, initial starting value. 

Compare this to the weU known Newton iteration for the equation f (x) = x 2 - C • 0: 
c 

(X·+-) 
• Xi 

2 
(9) 

The iteration of Eq. (8) is better in both computing complexity and in actual calculation than the iteration 
of Eq. (9). The order of convergence for the iterations of Eq. (7) and Eq. (8) is two. This convergence 
speed is favorable in the actual calculation. It is to be noted that in these iterations the whole operation 
need not to be done with full-precision at each step. That is, if k-precision calculation is done at step j, 
2k -precision calculation is sufficient for at step j + 1. 

2.4. Multiple-precision Multiplication 

Schfinhage-Strassen's algorithm [15], which uses the discrete Fourier transform with modulo 2" + l, 
could be the key multiple-precision multiplication algorithm for speeding up the 1t calculation. However, 
this algorithm is so hard to implement and needs binary to decimal radix conversion for the final result. 
Dr. Bailey also used discrete Fourier transform but with three prime modulo computation followed by the 
reconstruction through Chinese Remainder Theorem for his 29 million decimal places calculation[l]. 

Now, we focused the special scheme which utilizes the fact of "the Fourier transform of a convolu
tion product is the ordinary product of the Fourier transforms." 

Let consider the product C of two length n with radix X integers A and B • Note that the radix X 
need not to be a power of 2. 

:Z,.-1 :Z..-1 

A= :Ea1X
1 ,B = :Eb1X

1
, 

~~ ~~ 

where 0 ~a, <X, 0 ~ b1 <X for 0 ~ i < n-1, 0 < a,._1 <X, 0 < b,_1 <X and a; = b; = 0, for 
i < 0, n :s; i. 

Then, 
:Z..-1 :Z..-1 211-1 :Z,.-1 :Z..-1 

C =A ·B =(:Ea;X;)· (:Eb1Xj)= :EXi(:EaA-i)"" :Ec1X' 
·~ ~~ ·~ ~~ ·~ 

Thus, 
:Z,.-1 

c1 = :E aibi-i• for i = 0, · · · , 2n-2, and c:z,._1 = 0. 
i~ 

If ro exp (2m 12n. ) is a 2n th root of unity, the one-dimensional Fourier transform of the sequences 
of complex numbers (a 0, a1o · · · , a 211 _ 1), (b 0, b 1, • • • , b 211_1) and {c 01 c 1, • • • , c 211 _1) are defined as 
the sequences of (a 01 a1, • • • , a211_1), (b0, b1, • • • , 6211_1) and (c0 , c1, • • • , c211_ 1), respectively. 
Here, 

:z,.~ :z,.~ :z,.~ 

• "("' i/ b. 't"'b i/ • "" i/ a1 = "-a,ro, 1 = "-" ;ro ,c1 = "-c;ro, for 0 ~ l S 2n.-1 . 
j~ i~ j~ 

:Z..-1 :Z..-1 

iikbk = ( :E a; roki) ( :E bio:li) 
i~ ~~ 
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In these discussions, radix X might be an any number. However, ro must be a complex number, 

namely floating point real arithmetic operations are needed in the process of Fourier transformation. If and 
only if all the floating point real arithmetic operations are performed exactly, this scheme should give the 

correct result as discussed in page 290-295 of reference[ll]. Compared to the discrete Fourier transform 
based multiplier, floating point real arithmetic operations based Fourier transform seems ideal and 

dangerous, but attractive as for the actual multiple-precision multiplication method. 

The reasons are: 

1) The speed of double precision floating point operations is faster than integer operations in the 
available machine, especially for supercomputers. And in general, the number of bits obtain
able in one double precision floating point instruction is longer than that obtainable in one 
single integer instruction. 

2) Conversion from binary results to decimal results needs other techniques and coding. (Simple 
is best Scht>nhage-Strassen's discrete FFf algorithm is the binary data multiplier.) 

3) A qualified high-speed FFf routine was available as a library. (Qualified programming 
improves the reliability of the program. If we adopt Scht>nhage-Sttassen's discrete FFf algo
rithm, we have to code for il) 

4) Chinese remainder based discrete FFf algorithm is not so fast as far as the Dr. Y. Ushiro's 
experiment in 1983[20) is concerned. (He showed the inferiority of Chinese remainder based 
discrete FFf to us prior to the Dr. Bailey's experiment[l]. We needed a faster multiple
precision multiplier.) 

Followings are the algorithm used in our calculation. Here, let consider the multiplication of two 
m x 2" bit (= m x (log1o2) x 2" decimal digit) integers A and B through our schemes. 

Step 1: Prepare two 2 x 2" entry double precision floating point array. 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Convert both of m x 2" bit integers into double precision floating point numbers. (The 
first half of 2 x 2" entry contains information for m x 2" bit, namely, m bit information 
per one double precision floating point array entry.) 

Initialize to double precision floating point zero for the second half of 2 x 2" entry. 

Apply 2"+1 point normal Fourier transform, say FFA, operations to A and B giving A' and 
B ',respectively. 

Do the convolution product operations between A ' and B ' giving new 2 x 2" entry double 
precision array C '. 

Apply 2n+1 point inverse Fourier transform, say FFS, operations to C' giving C. (Now, C 
is the double precision floating point array of 2 x 2" entry. If operations FFA, FFS and 
convolution product are performed in infinite precision, each entry of C should be the exact 
double precision floating point representation for integer with maximum value of 
2" x (2"'-1)2

• However, these representation are slightly deviated from exact integer in the 
actual operation. Because, infinite precision operations are impossible to perform.) 

Convert each entry of C (let it to be x) into integer representation. (Conversion should be 
done with IDNINT operation in FOR1RAN. (IDNINT(x) = IDINT(x+0.500).) If absolute 
value of (x-DFLOAT(IDNINT(x))) is near to 0.500, the multiplication is considered to be 
incorrect We don't know that criterion of 0.4500 is sufficient or not However criterion 
of 0.200, for example, was sufficient enough in the actual multiplication.) 

Normalize C under the suitable base. The base of 2"' or 10"'(/og 1o2> is better for binary or 

decimal representation. Final result is the result of multiplication between A and B. 

According to the theoretical and experimental analysis of error in FFf [6,10], FFf attains rather 

stable error behavior. Theoretically roughly speaking, 21 point FFf attains l log (I) bits error at the max

imum (worst case). This means that FFA and the convolution product followed by FFS would acquire 
2 l log (I) bits error at the maximum, even if the trigonometric functions at coefficients for the butterfly 
operation are calculated exactly. 

Available mantissa bits are 56 for double-precision floating point data of the Japanese supercomput
ers. (CRAY and ETA machines adopt 48 bit mantissa representation for the floating point numbers.) Then, 
the following equation must be satisfied for the worst case; 
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bits available in the calculation ~(guard bits for FFA and FFS operations)+ 

(necessary bits for preserving the results) 

56~ 2 (n+l) log(n+l) + log(2"x(2"'-li). 

Here n is an integer. Thus, even form = 1, 

n S 7. 

The analysis suggests a maximum n of 7. However, the maximum n depends on the method of program
ming, errors in trigonometric function calculations, value of m, etc. (There is another error analysis for the 
floating point real FFT multiplier in reference[ll) which specifies the radix X in our explanation to be the 
power of 2.) 

The error analysis for the actual calculation is hard. Then, we have checked the availability of the 
FFT multiplier based on the above schemes through actual programs. We monitored the deviations from 
integer values after the stage of conversion to integer representation as explained in Step 1 of the above 
explanation. The monitoring secures a maximum n of 24, for the condition of one data point, a double 
word, holds 3 decimals at the maximum (m is about 10) on the first half of 2 x 224 data points and zero on 
the second half of 2 x 224 data points. Then we decided that the maximum length of multiplicand to be 
multiplied in-core is 3 x 224 decimal places (about 50 million decimals) in the actual multiplication. 

For multiplying 3 x 226 decimal places numbers (multiple-precision data for 200 million decimal 
places), we used the classical 0 (n ~ algorithm, e.g. school boy method, for the data of 2261224 22 = 4 
units with base of 224 x 1,000! It is possible to realize multiple-precision multiplier all through FFT, not 
through school boy method. In order to do so, we must write extra program for out-of-core version of 
FFT. We preferred to utilize the reliability of the numerical libraries. 

2.5. Vectorization of Multiple-Precision Add, Subtract and (Single Word) Constant Multiplication 

For the programs of multiple-precision add, subtract and (single word) constant multiplier, time con
suming process is releasing the "borrow or carry." 

If the machine has special instruction for vectorizing first order linear recurrence relation of the fol
lowing, the process of releasing the borrow or carry could be vectorized. (Now, all of the Japanese super
computers are equipped with such instructions.) 

00101= ... 
10 A(l) = B(I) * A(I-1) + C(I) 

Here, vector A bas a nature of first order linear recurrence relation. The following program which were 
extracted form the source codes of the actual run will explain how to rewrite the program for multiple
precision adder. Same strategies can be applied to the multiple-precision routines for subtract and (single 
word) constant multiplication. 

C integer•4 -- HA. HB. ICYC=carry), ICW<=work>. IONE8C=base=10**6) 
C real•8 -- Y<=work>, Z<=carry), CY<=work). CW<=work> 
C real•B -- ONED8=DFLOAT<IONE8>, ONEDH8=1.DO/ONED8, HLFDM8=.5DO•ONEDH8 

10 

DO 10 J=NDA.1,-1 
ICW=HA(J)+HBCJ)+ICY 
IF< ICW.GE.IONE8 > THEN 

HAtJ>=ICW-IONE8 
ICY=1 10 

ELSE ==> 
HA<J>=ICW 
ICY=O 

END IF 11 
CONTINUE 

3. How to Calculate Jt: Programming Aspects 

DO 10 J=NDA.2,-1 
Y<J>=HA<J>+HBCJ) 
Z<J-1>=Y<J>•ONEDH8+Z<J>•ONEDH8 
Z<J>=DINT<Z<J>+HLFDHB> 

CONTINUE 
Z<1>=DINTCZ<J>+HLFDH8) 

DO 11 J=NDA.2.-1 
MA<J>=Y(J)+Z<J>-l<J-1>•0HED8 

CONTINUE 
CW=DFLOAT<HAC1)+MBC1))+Z(1) 
CY=OINTCCW•ONEDH8+HLFDH8> 
HAC1>=CW-CY•ONED8 

The actual programs, written in FORTRAN, consisted of 3426 (main) and 3642 (verification) lines of 
source code with comment lines. The numbers of program units are 59 (main) and 64 (verification). In 
this section we briefly overview the actual programming. 
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About the half of the sub-programs are routines related to multiple-precision multiplication. Others 
are routines for addition, subtraction, reciprocal operations, square root operations, file 1/0 operations, etc. 

The HIT AC S-820 model 80 is a so called 2nd generation supercomputer in Japan. The machine is 
single processor model and has theoretical peak performance of 3Gftops. Maximum attachable main 
memory size is 512 Mb and Extended Storage size is 12Gb. FFr routines, FFA and FFS, are carefully 
selected from the non-vectorized FORTRAN numerical library which was provided by the Hitachi and 
source codes were slightly modified by myself for the vectorization. 

3.1. Layout of Storage 

As explained in section 2, we used a floating point real FFr whose accuracy is secured under the 
conditions of 

(1) 224+1 point double-precision floating point real FFr, 

(2) maximum number at each entry point for the first half entry is non negative number and 
must be bounded by 1 ,000, 

(3) the second half entry contains zero. 

These conditions allow in-core multiplication of numbers with 224 x 3 ( = 50,331,648) decimals. If we 
want more decimals to be calculated in-core (on main memory), we must reduce the above conditions, e.g. 

(I) 224+1 points -> 229+1 points, 

(2) maximum number at each entry point of 1,000 -> 100. 

These new conditions would allow numbers of up to 229 x 2 (= 1,073,741,824) decimals to be manipulated 
in-core. (Jt/e did not check the validity of these conditions through actual run. Our examples are only for 
explanation!) However, currently available maximum memory size prevent such higher precision calcula
tions in-eore. In order to run with such ideal conditions, at least 8 GB of main memory should be avail
able. Now, the cases with 217+1 points or 21""1 points and maximum number at each entry point of 10,000 
were applied for the previous our 1t calculations including 133 million decimals record. The increase of 
in-core operable FFr points is the major factor for the speed-up to tbe 1t calculation. 

It was impossible to obtain 200 million decimal places through in-core operations because of avail
able main memory size. Therefore we introduced the user controlled virtual memory scheme for saving 
high precision constants of 1/"2, "2, 1t, and several working storage with compression factor of 6 decimals 
I 4 bytes. (Integer representation was used for saving storages on the extended storage. For FFr, a 3 
decimals I 8 bytes scheme - double precision floating point representation - was needed as explained.) 
These schemes needed about 240 Mb of main memory for the working storage, input and output (I/0) 
buffer, object codes, etc. As for the extended storage size, 13.5 Mb /1 million decimal places was needed. 

3.2. Optimization for Speedup 

We have employed several optimization schemes: 

l) Multiplication by 1 -> normal copy operation. 
2) Multiplication by 2 -> normal addition operation. 
3) Deletion of unnecessary FFA and FFS operations. 
4) Reuse of internal iteration results. 

For 1) and 2), explanation is simple enough. In the following two subsections, we explain the details of 3) 
and 4). 

3.2.1. How to Delete FFA and FFS Operations 

As explained in section 2.4, the school boy method was employed for multiple-precision multiplica
tion (for data length longer than in-eore operable length). Now as for an example of 4 x 4 school boy 
method, let consider the simple case of 2 x 2. That corresponds to the multiplication of two integers, both 
with a length of 3 x225 and in-core operable length of 3 x 224• Without optimization, each 224 x 1,000 
decimal based multiplication needs eight FFA for input and four FFS for output as follows; 

(AI X BASE+ Ai) x (B1 X BASE + Bi) 

(FFS of (FFA of A 1 ·FFA of Bj))xBASE 2 

+((FFS of (FFA of A 1 ·FFA of Bi))+(FFS of (FFA of A 2 ·FFA of B 1)))xBASE 
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+{FFS of (FFA of A 2 • FFA of B~), 

where · is the convolution product for the Fourier transformed data, + is the vector-wise addition and 
BASE is 224 X 1,000. 

There are vecy many FF A and FFS operations. These operations can be reduced a lot by the follow
ing schemes: 

1) First apply FFA operations to A 1, A 2, B 1 and Bz. Let the results be A 1', A 2', B 1' and Bz', 
respectively. 

2) Now (A 1' • B1.' +A{· B{) preserve information in the sense explained in section 2.4. 

3) Then, the linearity of FFS operation satisfies the following equation: 

(A1 X BASE + Az) X (B1 x BASE + B~ 

= (FFS of (A { · B {)) x BASE2 + (FFS of (A 1' • B 2' + Az' · B ()) x BASE 

+ (FFS of (A:z' · B{)). 

According to the results of CPU time profile analysis for 33 million decimal places calculation, multiplica
tion occupies 90% of CPU time. (Here, CPU time does not contain the time for input and output opera
tions.) Thus, this optimization is rather efficient when the length of multiplicand becomes long. (In this 
case, FFA operations was reduced from 8 to 4 and FFS operations was reduced from 4 to 3.) 

3.2.2. Reuse of Internal Iteration Results 

Newton's iteration for square roots and reciprocals has second order convergence nature. This 
implies that internal iteration results at the calculation of the half-length precision of 1t can be the initial 
value for the iteration at the calculation of the full-length precision of x. (And this selection is the best 
selection for reducing CPU time.) According to measurements of CPU time, this scheme reduced the CPU 
time 10-20% for the 16 or 33 million decimal places calculation. 

If we utilize this fact. we can reduce the computation time probably by 10-20%. To do so, however, 
we had to prepare the permanent storage of about 1.5 Gb. This was completely impossible at the time of 
actual run. For the history of 1t calculation, we had saved the internal iteration results from the calculation 
of 16 million decimal places (data size is around 100 Mb). That data helped for the calculation of 32 mil
lion decimal places of 1t substantially. And also for the calculation of 16 million decimal places of x, we 
had utilized the internal iteration results from the calculation of 8 million decimal places. 

4. Statistical Analysis of 200,000,000 Decimals of x 

In order to analyze the statistics of 200,000,000 decimals of x, we used the same statistical tests as 
Pathria[l3], except that the number of digits expanded from 100,000 to 200,000,000. In this section we 
briefly show the statistical data and some interesting figures from the 200,000,000 decimals of x. Now. the 
200,000,ooo-th decimal number of :n: 3 is 9. 

4.1. Results of Statistical tests 

Five kinds of statistical tests were performed. These are the frequency test, the serial tests, the Poker 
hand test, the gap test and the five-digit sum test. We have reproduced only the results of frequency test in 
the Table 3. The other results are to be published through the reference[?]. 

4.2. Some Interesting Figures 
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Analysis of digit sequences for 200,000,000 decimal places of :n: - 3 gives some interesting figures; 

1) A longest descending sequence of 2109876543 appears (from 26,160,634) only once. The next 
longest descending sequence is 876543210 (from 2,747,956) only. The next longest descending 
sequence of length 8 appears 9 times. 

2) The longest ascending sequence is 901234567 which appears from 197,090,144. The next 
longest ascending sequence is 23456789 (from 995,998), 89012345 (from 33,064,267, 
39,202,678, 62,632,993 and 78,340,559), 90123456 (from 35,105,378, 44,994,887, 98,647,533 
and 127,883,114), 56789012 (from 100,800,812 and 139,825,562), 67890123 (from 
102,197,548, 135,721,079 and 178,278,161), 01234567 (from 112,099,767), 78901234 (from 
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119,172,322, 122,016,838, 182,288,028 and 195,692,744), 12345678 (from 186,557,266) and 
45678901 (from 194,981,709). The next longest ascending sequence of length 7 appears 170 
times. 

3) A sequence of maximum multiplicity (of 9) appears 3 times. These are 7 (from 24,658,601), 6 
(from 45,681,781) and 8 {from 46,663,520). The next longest sequence of multiplicity (of 8) 
appears 16 times. 

4) The longest sequence of 27182818 appears from 73,154,827, 143,361,474 and 183,026,622. 
The next longest sequence of 2718281 appears 22 times. 

5) The longest sequence of 14142135 appears from 52,638, 10,505,872 and 143,965,527. The 
next longest sequence of 1414213 appears from 13,816,189, 40,122,589, 72,670,122, 
87,067,359, 104,717,213, 115,301,872, 145,035,762, 147,685,125, 155,299,021, 165,871,476, 
166,005,277, 166,491,213 and 191,208,533. The next longest sequence of 141421 appears 169 
times. 

6) The longest sequence of 31415926 appears 2 times. These are from 50,366,472 and 
157,060,182. The next longest sequence of 3141592 appears 7 times. 

S. Conclusion 

Details of 201,326,000 decimal digits of 1t calculation and some results of statistical tests on 
200,000,000 decimals of 1t are presented. The original program is written in FORTRAN 77 and heavily 
utilizes floating point operations. Multiple-precision add, subtract and constant multiplication programs 
were also vectorized through linear recurrence special instruction. Programs do not depend on the scheme 
of round-off and cut-off to the results for the floating point operations. Then, not only round-off machine, 
e.g. supercomputers of CRAY Inc. and ETA systems, but also cut-off machine, e.g. Japanese supercomput
ers, can generate correct 1t digits. The program calls few system specific subroutines, e.g. CLOCK, TIME, 
but adaptation to the new machine is easy. In order to get speed, available main memory size is crucial 
and shorten elapsed time, availability of high speed I/0 devices is also crucial. Thus, the 1t calculation 
program based on the scheme explained here can be a good benchmark program for the supercomputer. 

We have programmed the fast multiple-precision multiplication through a floating point real FFf 
package, which was available as one of the program libraries. This means that half a hundred lines of code 
is sufficient for the fast multiple-precision multiplication. (A few lines of array declaration, one line for 
calling the FFA routine, a few lines of convolution products, one line for calling the FFS routine and a few 
lines of normalization under a suitable base.) These schemes would be of benefit to other high-precision 
constant and function calculations. And another scheme, high utilization of floating point operations in the 
processing of integers, is also favorable for the integer calculation, especially to number crunchers. 

As the Table 1 shows, it took 12 years for extending the length of known 1t value from 100,000 to 
1,000,000, 10 years from 1,000,000 to 10,000,000 and 4 years from 10,000,000 to the order of 
100,000,000. When can we unveil the digits after 1,000,000,000, how and by whom? 
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Calculated by Machme used Date Pn!dslllll n~~~e Formula 
(~) declared com:cl: (check} (check) 

Reitwiesner « al. ENIAC 1949 (2040) 2037 "71!1 M(M) 

("7at) 

Nicholson & Jeenel NORC 1954 (3093) 3092 13m M(M) 

(13m) 

Felton Pegasus 1957 (10021) 7480 33h K(G) 

(:33h) 

Genuys IBM704 1958 (10000) 10000 lh 4(kn M(M) 

(1h 4&1) 

Felton Pegasm " (10021) 10020 33h K(G) 

(33h) 

Guilloud I IBM704 1959 (16167) 16167 4.3h M(M) 

(4.3h) 

Shanks & Wrench IBM7090 1961 (100265) !00265 8h 43m S(G) 

(4h 22m) 

Guilloud & Filliatre IBM 7030 1966 (250000) 250000 4lh55m G(S) 

(24h 35m) 

Guilloud & Dichampt COC6600 1967 (500000) 500000 28h 10m G(S) 

(16h 35m) 

Guilloud & Bouyer COC7600 1973 (1001250) 100!250 23h 18m G(S) 

(13h 40m) 

Miyoshi & Kanada FACOMM-200 1981 (2000040) 2000036 137.3h K(M) 

2000000 (143.3h) 

Guilloud X 191!1-82 (::!.) 2000050 X X 

2000050 (x) 

Tamura MELCOM 90011 1982 (2097152) 2091144 7h14m L(L) 

(2h 21m) 

Tamura & Kanada IllTACM-280H " (4194304) 4194288 2h 21m L(L) 

{6h 52m) 

Tamura & Kanada " fl (8388608) 83885'76 6h 52m L(L) 

(< 3tlt) 

Kanada, Yoshino & . 1983 (16777216) 16777206 < 3at L(L) 

Tamura (6h 36m) 

U shiro & Kanada IllTAC S-810/20 1983 (10013400) 10013395 <24h G(L) 

Oct 10000000 {< 3tlt) 

Gosper Symbolics 3670 1985 (>~17526200) 17526200 X R(B4) 

Oet (28h) 

Bailey CRAY-2 1986 (29360128) 293601lt 28h B4(B2) 

Jan. 29360000 (4Cit) 

Kanada & Tamura IllTAC S-810/20 1986 (33554432) 33554414 6h 36m L(L) 

Sep. 33554000 (23h) 

Kanada & Tamura IllTAC S-810/20 1986 (67108864) 67108839 23h L(L) 

Oet (3Sh ISm) 

Kanada, Tamura, NEC SX-2 1987 (134214728) 134214700 35h ISm L(B4) 

Kubo etc. Jan. 133554000 (48h 2m) 

Kanada & Tamura IllT AC S-820/80 1988 (201326572) 201326551 Sh 57m L(B4) 

Jan. 201326000 (7h 30m) 

Table 1. Historical records of the calculation of 1t perfonned on electronic computers. M, K, G, S, L, R, 
B4 and B2 are the fonnulae of Machin, Klingenstiema, Gauss, St5nner, and Gauss-Legendre, fonnula 
explained in the reference[3], Borwein's quartic convergent, Borwein's quadratic convergent, respectively. 
Symbol 'x' means 'unknown'. Check time means the additional time for the calculated value checking. 
This information was basically obtained from Mr. Shibata[l8]. 
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at. Borwein's quartic Borwein's uadratic 

n n 

Sn 6n 

n+l 2n 

+,- 6n 3n 

Table 2. Comparison of basic, time consuming, operations in the three historically important algorithms for 
1t calculation. Here n is a number of iterations. In order to compare with fare, both side columns numbers 
should he doubled. 

Digit 0 I l 3 4 5 6 7 ~~ 
100 8 8 I • 9 • 12 

200 19 20 24 19 22 20 16 12 25 23 6.80 

500 45 59 S4 so 53 so 48 36 Sl 52 6.88 

lk 93 116 103 IOZ 93 97 94 9S 101 106 4.74 

2k 182 212 207 188 195 205 200 197 202 212 4.34 

Sk 466 S32 496 459 508 525 513 488 492 521 10.77 

IOK 968 1026 1021 974 1012 1046 1021 970 948 1014 9.32 

20K 1954 1997 1986 1986 2043 2082 2017 1953 1962 2020 7.72 

SOK 5033 soss 4867 4947 5011 5052 SOlS 4977 5030 SOlO 5.86 

lOOK 9999 10137 9908 IOOZS 9971 10026 10029 IOOZS 9978 9902 4.09 

200K 20104 20063 19892 20010 19114 20199 19898 20163 19956 19841 7.31 

SOOK 49915 49984 49753 soooo 50357 50235 49824 50230 49911 49791 7.73 

1M 99959 99758 100026 100229 100230 100359 99548 99100 99985 100106 S.SI 

2M 199792 199535 2001117 200141 200083 200:521 199403 200310 199447 200691 9.00 

4M 399419 399463 399822 399913 400792 400032 399032 400650 400183 400694 7.92 

5M 499620 499898 499508 499933 500544 sooozs 498758 500880 499880 500954 7.88 

8M 799111 100110 799788 800234 800202 800154 798885 800560 800638 800318 3.79 

tOM 999440 999333 1000306 999964 1001093 1000466 999331 1000207 999814 1000040 2.78 

15M !500081 1499675 1501044 1499917 1501166 1500417 1498447 1499584 1500435 1499234 4.07 

20M 2001162 1999832 2001409 1999343 200lUl6 2000125 1999269 1998404 1999720 1999630 4.17 

25M 2500496 2499915 2500701 2499313 2502826 2500139 2499603 2498290 2499189 2499522 5.28 

30M 2999157 3000554 93 2999997 2999548 2998115 2999592 3000193 4.34 

50M 4999632 5002220 sooosn 4998630 5004009 4999797 4998017 4998895 4998494 4999733 6.17 

80M 7998801 8002788 8001828 7997656 8003525 1996500 7998165 7999389 1000308 1001034 5.95 

lOOM 9999921. 10002475 10001092 9998442 10003863 9993478 9999417 9999610 10002180 9999521 1.1:1 

150M 14998689 15001880 1500!586 ~ !5003829 14993562 14998434 14999462 15001416 1SOOZOI2 4.90 

200M 19997437 20003774 20002185 19999846 19993031 19999161 20000287 20002301 20000562 4.13 

Table 3. Summary of frequency for the first 200,000,000 digits of 11: - 3 and corresponding x2 values. 
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In this paper, Jonathan and Peter Borwein wrote about the recent develop-

ments in the computation of π, and their roots in the work of Archimedes, Gauss,

which is read by several hundred thousand readers worldwide.
One of the more interesting items in this article is its presentation of a full set

of formulas enabling one to compute one billion digits of π on a “pocket calculator”:
namely to iterate the Borwein quartically convergent algorithm 15 times. As they
jokingly point out in a footnote, though, you would need a pretty big calculator or
else the computation would be pretty uninteresting after the second iteration.
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Ramanujan and Pi 
Some 75 years ago an Indian mathematical genius developed ways 
of calculating pi with extraordinary efficiency. His approach is now 
incorporated in computer algorithms yielding millions of digits of pi 

by Jonathan M. Borwein and Peter B. Borwein 

Pi, the ratio of any circle's cir
cumference to its diameter, was 
computed in 1987 to an unprec

edented level of accuracy: more than 
100 million decimal places. Last year 
also marked the centenary of the 
birth of Srinivasa Ramanujan, an en
igmatic Indian mathematical genius 
who spent much of his short life in 
isolation and poor health. The two 
events are in fact closely linked, be
cause the basic approach underlying 
the most recent computations of pi 
was anticipated by Ramanujan, al
though its implementation had to 
await the formulation of efficient al
gorithms (by various workers includ
ing us), modern supercomputers and 
new ways to multiply numbers. 

Aside from providing an arena in 
which to set records of a kind, the 
quest to calculate the number to mil
lions of decimal places may seem 
rather pointless. Thirty-nine places 
of pi suffice for computing the cir
cumference of a circle girdling the 
known universe with an error no 
greater than the radius of a hydrogen 
atom. It is hard to imagine physical 
situations requiring more digits. Why 
arc mathematicians and computer 
scientists not satisfied with, say, the 
first 50 digits ofpi7 

Several answers can be given. One 
is that the calculation of pi has be
come something of a benchmark 
computation: it serves as a measure 
of the sophistication and reliability of 
the computers that carry it out. In ad
dition, the pursuit of ever more ac
curate values of pi leads mathema
ticians to intriguing and unexpect
ed niches of number theory. Another 
and more ingenuous motivation is 
simply "because it's there." In fact, pi 
has been a fixture of mathematical 
culture for more than two and a half 
millenniums. 

Furthermore, there is always the 
chance that such computations will 
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shed light on some of the riddles sur
rounding pi, a universal constant that 
is not particularly well understood, 
in spite of its relatively elementary 
nature. For example, although it has 
been proved that pi cannot ever be 
exactly evaluated by subjecting posi
tive integers to any combination of 
adding, subtracting, multiplying, di
viding or extracting roots, no one has 
succeeded in proving that the digits 
of pi follow a random distribution 
(such that each number from 0 to 9 
appears with equal frequency). It is 
possible, albeit highly unlikely, that 
after a while all the remaining digits 
of pi arc O's and 1 's or exhibit some 
other regularity. Moreover, pi turns 
up in all kinds of unexpected places 
that have nothing to do with circles. 
If a number is picked at random from 
the set of integers, for instance, the 
probability that it will have no re
peated prime divisors is six divided 
by the square of pi. No different from 
other eminent mathematicians, Ra
manujan was prey to the fascinations 
of the number. 

T he ingredients of the recent 
approaches to calculating pi arc 

among the mathematical treasures 
unearthed by renewed interest in Ra
manujan's work. Much of what he 
did, however, is still inaccessible to 
investigators. ·1 he body of his work 
is contained in his "Notebooks," 
which are personal records written 
in his own nomenclature. To make 
matters more frustrating for math
ematicians who have studied the 
"Notebooks," Ramanujan generally 
did not include formal proofs for his 
theorems. The task of deciphering 
and editing the "Notebooks" is only 
now nearing completion, by Bruce C. 
Berndt of the University of Illinois at 
Urbana-Champaign. 

To our knowledge no mathemati
cal redaction of this scope or difficul-

© 1988 SCIENTIFIC AMERICAN, INC 

ty has ever been attempted. The ef
fort is certainly worthwhile. Rama
nujan's legacy in the "Notebooks" 
promises not only to enrich pure 
mathematics but also to find applica
tion in various fields of mathematical 
physics. Rodney]. Baxter of the Aus
tralian National University, for exam
ple, acknowledges that Ramanujan's 
findings helped him to solve such 
problems in statistical mechanics as 
the so-called hard-hexagon model, 
which considers the behavior of a 
system of interacting particles laid 
out on a honeycomblike grid. Simi
larly, Carlos]. Moreno of the City Uni
versity of New York and Freeman]. 
Dyson of the Institute for Advanced 
Study have pointed out that Ramanu
jan's work is beginning to be applied 
by physicists in superstring theory. 

Ramanujan's stature as a mathe
matician is all the more astonishing 
when one considers his limited for
mal education. He was born on De
cember 22, 1887, into a somewhat 
impoverished family of the Brahmin 
caste in the town of Erode in south
ern India and grew up in Kumba
konam, where his father was an ac
countant to a clothier. His mathemat
ical precocity was recognized early, 
and at the age of seven he was given 
a scholarship to the Kumbakonam 
Town High School. He is said to have 
recited mathematical formulas to his 
schoolmates-including the value of 
pi to many places. 

When he was 12, Ramanujan mas
tered the contents of S. L. Loney's 
rather comprehensive Plane Trigo
nometry, including its discussion of 
the sum and products of infinite se
quences, which later were to figure 
prominently in his work. (An infinite 
sequence is an unending string of 
terms, often generated by a simple 
formula. In this context the interest
ing sequences are those whose terms 
can be added or multiplied to yield 
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an identifiable, finite value. If the 
terms are added, the resulting ex
pression is called a series; if they are 
multiplied, it is called a product.) 
Three years later he borrowed the 
Synopsis of Elementary Results in Pure 
Mathematics, a listing of some 6,000 
theorems (most of them given with
out proof) compiled by G. S. Carr, a 
tutor at the University of Cambridge. 
Those two books were the basis of 
Ramanujan's mathematical training. 

In 1903 Ramanujan was admitted to 
a local government college. Yet total 
absorption in his own mathematical 
diversions at the expense of every
thing else caused him to fail his ex
aminations, a pattern repeated four 
years later at another college in Ma
dras. Ramanujan did set his avoca
tion aside- if only temporarily-to 
look for a job after his marriage in 
1909. Fortunately in 1910 R. Rama
chandra Rao, a well-to-do patron of 
mathematics, gave him a monthly 
stipend largely on the strength of fa
vorable recommendations from vari
ous sympathetic Indian mathemati
cians and the findings he already had 
jotted down in the "Notebooks." 

In 1912, wanting more convention
al work, he took a clerical position 
in the Madras Port Trust, where the 
chairman was a British engineer, Sir 
Francis Spring, and the manager was 
V. Ramaswami Aiyar, the founder 
of the Indian Mathematical Socie
ty. They encouraged Ramanujan to 
communicate his results to three 
prominent British mathematicians. 
Two apparently did not respond; the 
one who did was G. H. Hardy of Cam
bridge, now regarded as the foremost 
British mathematician of the period. 

H ardy, accustomed to receiving 
crank mail, was inclined to dis

regard Ramanujan's letter at first 
glance the day it arrived, january 
16, 1913. But after dinner that night 
Hardy and a close colleague, john 
E. Littlewood, sat down to puzzle 
through a list of 120 formulas and the
orems Ramanujan had appended to 
his letter. Some hours later they had 
reached a verdict: they were seeing 
the work of a genius and not a crack
pot. (According to his own "pure-tal
ent scale" of mathematicians, Hardy 
was later to rate Ramanujan a 100, 
Littlewood a 30 and himself a 25. The 
German mathematician David Hil
bert, the most influential figure of the 
time, merited only an 80.) Hardy de
scribed the revelation and its conse
quences as the one romantic incident 
in his life . He wrote that some of 
Ramanujan's formulas defeated him 

completely, and yet "they must be 
true, because if they were not true, 
no one would have had the imagina
tion to invent them." 

Hardy immediately invited Rama
nujan to come to Cambridge. In spite 
of his mother's strong objections as 
well as his own reservations, Rama
nujan set out for England in March of 
1914. During the next five years Har
dy and Ramanujan worked together 
at Trinity College. The blend of Har
dy's technical expertise and Rama
nujan's raw brilliance produced an 
unequaled collaboration. They pub
lished a series of seminal papers on 
the properties of various arithmetic 
functions, laying the groundwork for 
the answer to such questions as: How 
many prime divisors is a given num
ber likely to have? How many ways 
can one express a number as a sum 
of smaller positive integers? 

In 1917 Ramanujan was made a Fel
low of the Royal Society of London 
and a Fellow of Trinity College-the 
fi rst Indian to be awarded either hon
or. Yet as his prominence grew his 
health deteriorated sharply, a de
cline perhaps accelerated by the dif
ficulty of maintaining a strict vege
tarian diet in war-rationed England. 
Although Ramanujan was in and 
out of sanatoriums, he continued to 
pour forth new results. In 1919, when 
peace made travel abroad safe again, 
Ramanujan returned to India. Al
ready an icon for young Indian intel
lectuals, the 32-year-old Ramanujan 
died on April 26, 1920, of what was 
then diagnosed as tuberculosis but 
now is thought to have been a severe 
vitamin deficiency. True to mathe
matics until the end, Ramanujan did 
not slow down during his last, pain
racked months, producing the re-

SRINIVASA RAMANUJAN, born in 1887 in India, managed in spite of limited formal 
education to recons truct a lmost single-handedly much of the edifice of number theory 
and to go on to derive original theorems and formulas. Like many illustrious mathema· 
ticians before him, Ramanujan was fascinated by pi: the ratio of any circle's circumfer· 
ence to its diameter. Based on his investigation of modular equations (see box on page 
114 ), he formulated exact expressions for pi and derived from them approximate val
ues. As a result of the work of various investigators (including the authors), Ramanu· 
jan's methods are now better understood and have been implemented as algorithms. 
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markable work recorded in his so
called "Lost Notebook." 

Ramanujan's work on pi grew in 
large part out of his investigation 

of modular equations, perhaps the 
most thoroughly treated subject in 

PERIMETER OF 
CIRCUMSCRIBED 

POLYGON 

the "Notebooks." Roughly speaking, 
a modular equation is an algebra
ic relation between a function ex
pressed in terms of a variable x-in 
mathematical notation, f(x)-and the 
same function expressed in terms of 
x raised to an integral power, for ex-

WHERE 

PERIMETER OF 
INSCRIBED POLYGON 

P;=n sin (1~0) 
n = NUMBER 

OF SIDES 

n= 6 

n = 12 

Pc=3.215··· 

n = 24 

Pc = 3.159 ... 

~=3.000· .. 

P.= 3.105··· 
I 

lj= 3132 oo• 

ARCHIMEDES' METHOD for estimating pi relied on inscribed and circumscribed regu
lar polygons (polygons with sides of equal length) on a circle having a diameter of one 
unit (or a radius of half a unit). The perimeters of the inscribed and circumscribed poly
gons served respectively as lower and upper bounds for the value of pi. The sine and 
tangent functions can be used to calculate the polygons' perimeters, as is shown here, 
but Archimedes had to develop equivalent relations based on geometric constructions. 
Using 96-sided polygons, he determined that pi is greater than 3' 0/ n and less than 3' / , . 
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ample f(x'), f(x') or f(x' ). The "order" 
of the modular equation is given by 
the integral power. The simplest 
modular equation is the second-or
der one: ((x) = 2 .Jffii"l I [ l + ((x')]. Of 
course, not every function will satis
fy a modular equation, but there is 
a class of functions, called modular 
functions, that do. These functions 
have various surprising symmetries 
that give them a special place in 
mathematics. 

Ramanujan was unparalleled in his 
ability to come up with solutions to 
modular equations that also satisfy 
other conditions. Such solutions are 
called singular values. It turns out 
that solving for singular values in 
certain cases yields numbers whose 
natural logarithms coincide with pi 
(times a constant) to a surprising 
number of places [see box on page 
11 4 ]. Applying this general approach 
with extraordinary virtuosity, Rama
nujan produced many remarkable in
finite series as well as single-term ap
proximations for pi. Some of them 
are given in Ramanujan's one formal 
paper on the subject, Modular Equa
tions and Approximations to rr, pub
lished in 19 14. 

Ramanujan's attempts to approxi
mate pi are part of a venerable tradi
tion. The earliest Indo-European civi· 
lizations were aware that the area of 
a circle is proportional to the square 
of its radius and that the circumfer· 
ence of a circle is directly proportion· 
al to its diameter. Less clear, howev· 
er, is when it was firs t realized that 
the ratio of any circle's circumfer
ence to its diameter and the ratio of 
any circle's area to the square of its 
radius are in fact the same constant, 
which today is designated by the 
symbol n. (The symbol, which gives 
the constant its name, is a latecomer 
in the history of mathematics, having 
been introduced in 1706 by the En· 
glish mathematical writer William 
Jones and popularized by the Swiss 
mathematician Leonhard Euler in the 
18 th century. ) 

A rchimedes of Syracuse, the great· 
J-\. est mathematician of antiquity, 
rigorously established the equiva· 
lence of the two ratios in his treatise 
Measurement of a Circle. He also cal· 
culated a value for pi based on math· 
ematical principles rather than on di
rect measurement of a circle's cir
cumference, area and diameter. What 
Archimedes did was to inscribe and 
circumscribe regular polygons (poly· 
gons whose sides are all the same 
length) on a circle assumed to have a 
diameter of one unit and to consider 
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the polygons' respective perimeters 
as lower and upper bounds for possi
ble values of the circumference of the 
circle , which is numerically equal to 
pi [see illustration on opposite pagel. 

This method of approaching a val
ue for pi was not novel: inscribing 
polygons of ever more sides in a cir
cle had been . proposed earlier by 
Antiphon, and Antiphon's contempo
rary, Bryson of Heraclea, had added 
circumscribed polygons to the proce
dure. What was novel was Archime
des' correct determination of the ef
fect of doubling the number of sides 
on both the circumscribed and the in
scribed polygons. He thereby devel
oped a procedure that, when repeat
ed enough times, enables one in prin
ciple to calculate pi to any number of 
digits. (It should be pointed out that 
the perimeter of a regular polygon 
can be readily calculated by means 
of simple trigonometric functions: 
the sine, cosine and tangent func
tions. But in Archimedes' time, the 
third century B.C., such functions 
were only partly understood. Archi
medes therefore had to rely mainly 
on geometric constructions, which 
made the calculations considerably 
more demanding than they might ap
pear today.) 

Archimedes began with inscribed 
and circumscribed hexagons, which 
yield the inequality 3 <TI < 2 J3. By 
doubling the number of sides four 
times, to 96, he narrowed the range 
of pi to between 3' 0/ " and 3'/,, obtain
ing the estimate 1T "' 3.14. There is 
some evidence that the extant text 
of Measurement of' a Circle is only a 
fragment of a la rger work in which 
Archimedes described how, starting 
with decagons and doubling them six 
times, he got a five-digit estimate: 
1T"' 3.1416. 

Archimedes' method is conceptu
ally simple, but in the absence of a 
ready way to calculate trigonometric 
functions it requires the extraction of 
roots , which is rather time-consum
ing when done by hand. Moreover, 
the estimates converge slowly to pi: 
their error decreases by about a fac
tor of four per iteration. Neverthe
less, all European attempts to calcu
late pi before the mid-17th century 
relied in one way or another on 
the method. The 16th-century Dutch 
mathematician Ludolph van Ceulen 
dedicated much of his career to a 
computation of pi. Near the end of his 
life he obtained a 32-d igit estimate 
by calculating the perimeter of in
scribed and circumscribed polygons 
having 26 ' (some 1018 ) sides. His val
ue for pi, called the Ludolphian num-

ber in parts of Europe, is said to have 
served as his epitaph. 

T he development of calculus, 
largely by Isaac Newton and 

Gottfried Wilhelm Leibniz, made it 
possible to calculate pi much more 
expeditiously. Calculus provides ef
ficient techniques for computing 
a function's derivative (the rate of 
change in the function 's value as its 
variables change) and its integral 
(the sum of the function's·values over 
a range of variables). Applying the 
techniques, one can demonstrate 
that inverse trigonometric functions 
are given by integrals of quadratic 
functions that describe the curve of a 
circle. (The inverse of a trigonomet
ric function gives the angle that cor
responds to a particular value of the 
function. For example, the inverse 
tangent of 1 is 45 degrees or, equiva
lently, n / 4 radians.) 

(The underlying connection be-

WALLIS' PRODUCT (166S) 

!!:~ >< 4 x 4 xU 8 8 
2 1 3 3 5 5x 7 7 x 9 

GREGORY'S SERIES (1671) 

···= i'r ~ 11 4n2 - 1 
n I 

i = 1 - ~+~- ;+ . = ~ ~~~~ 
n =O 

MACHIN'S FORMULA (1706) 

tween trigonometric functions and 
algebraic expressions can be appre
ciated by considering a circle that 
has a radius of one unit and its center 
at the origin of a Cartesian x-y plane. 
The equation for the circle-whose 
area is numerically equal to pi-is 
x' + y' = 1, which is a restatement of 
the Pythagorean theorem for a right 
triangle with a hypotenuse equal to 
1. Moreover, the sine and cosine of 
the angle between the positive x axis 
and any point on the circle are equal 
respective ly to the point's coordi
nates, y and x; the angle's tangent is 
s imply y/ x.) 

Of more importance for the pur
poses of calculating pi, however, is 
the fact that an inverse trigonometric 
function can be "expanded" as a se
ries , the terms of which are comput
able from the derivatives of the func
tion. Newton himself calculated pi 
to 15 places by adding the first few 
terms of a series that can be derived 

X3 xs X7 ~ (2n+ 1l i = 4arctan(1/5) - arctan (1/239), where arctan X= x - 3 + 5 - 7+ ··=;;,. ( - 1)" 2n + 1 

RAMANUJAN (1914) 

1 _ v8 ~ (4n)![1,103 + 26,390n] where n! = n x (n-1) x (n-2) x ... x 1 and 0! = 1 
;;- 9,801 n = O (n!)< 396<n ' 

BORWEIN AND BORWEIN (1987) 

1 

" ~ (-1)"(6n)1[212,175,710,912v61 + 1,657,145,277,365 + n(13,773,980,892,672v 61 + 107,578,229,802,750)] 
12 L. (n)" (3n)'[5.2 80(236,674 + 30.303\ 61\]tln· '" 

n= O 

TERMS OF MATHEMATICAL SEQUENCES can be summed or multiplied to yield values 
for pi (divided by a constant) or its reciprocal. The first two sequences, discovered re
spectively by the mathematicians john Wallis and james Gregory, are probably among 
the best-known, but they are practically useless for computa tional purposes. Not even 
100 years of computing on a supercomputer programmed to add or multiply the terms 
of either sequence would yield 100 digits of pi. The formula discovered by john Machin 
made the calculation of pi feasible, since calculus allows the inverse tangent (arc tan
gent) of a number, x, to be expressed in terms of a sequence whose sum converges 
more rapidly to the value of the arc tangent the smaller xis. Virtually all calculations for 
pi from the beginning of the 18th century until the early 1970's have relied on varia
tions of Machin's formula. The sum of Ramanujan's sequence converges to the true val
ue of 1/ TT much faster: each successive term in the sequence adds roughly eight more 
correct digits. The last sequence, formulated by the authors, adds about 2 5 digits per 
term; the firs t term (for which n is 0) yields a number that agrees with pi to 24 digits. 
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as an expression for the inverse of 
the sine function. He later confessed 
to a colleague: "I am ashamed to tell 
you to how many figures I carried 
these calculations, having no other 
business at the time'' 

In 1674 Leibniz derived the formula 
1 -l/3 + l/5- l/7 ... = n / 4, which is 
the inverse tangent of l. (The general 
inverse-tangent series was originally 
discovered in 1671 by the Scottish 
mathematician james Gregory. In
deed, similar expressions appear to 
have been developed independently 
several centuries earlier in India.) 
The error of the approximation, de
fined as the difference between the 
sum of n terms and the exact value of 
n/4, is roughly equal to the n+ lth 
term in the series. Since the denomi
nator of each successive term in
creases by only 2, one must add ap
proximately SO terms to get two-digit 
accuracy, 500 terms for three-digit 
accuracy and so on. Summing the 
terms of the series to calculate a val
ue for pi more than a few digits long 
is clearly prohibitive. 

An observation made by John Ma-

chin, however, made it practicable to 
calculate pi by means of a series ex
pansion for the inverse-tangent func
tion. He noted that pi divided by 4 is 
equal to 4 times the inverse tangent 
of l/5 minus the inverse tangent of 
l/239. Because the inverse-tangent 
series for a given value converges 
more quickly the smaller the value 
is, Machin's formula greatly simpli
fied the calculation. Coupling his for
mula with the series expansion for 
the inverse tangent, Machin comput
ed 100 digits of pi in 1706. Indeed, his 
technique proved to be so powerful 
that all extended calculations of pi 
from the beginning of the 18th centu
ry until recently relied on variants of 
the method. 

Two 19th-century calculations de
serve special mention. In 1844Jo

hann Dase computed 205 digits of pi 
in a matte r of months by calculating 
the values of three inverse tangents 
in a Machin-like formula. Dase was a 
calculating prodigy who could mul
tiply 100-digit numbers entirely in 
his head-a feat that took him rough-

MODULAR FUNCTIONS AND APPROXIMATIONS TO PI 

A modular function is a function, >.(q), that can be related through an algebraic expression 
called a modular equation to the same function expressed in tenns of the same variable, q, 
raised to an integral power: >.(qP). The integral power, p, determines the "order" of the 
modular equation. An example of a modular function is 

_ -/'t: 1+ q2n 8 
Mql - 16Hl (1 . q2n- t) · 

n•l 

Its associated seventh-order modular equation, which relates >.(q) to A(q7), is given by 

'( A(q)A(q1) • '( 11 A(q)JI1 A(q7)) = 1 . 

Singular values are solutions of modular equations that must also satisfy additional condi
tions. One class of singular values corresponds to computing a sequence of values, kP, 
where 

and p takes integer values. These values have the curious property that the logarithmic 
expression 

- 2 log(k4") 
\p 

coincides with many of the first digits of pi. The number of digits the expression has in 
common with pi increases with larger values of p. 

Ramanujan was unparalleled in his ability to calculate these singular values. One of his most 
famous is the value when p equals 210, which was included in his original letter to G. H. 
Hardy.lt is 

k210 = (\ 2- 1 )2(2 - \ 3)(\ :7 - \16)2(8- 3\ 7)(\ 10 3)2(\ 15 \ 14)(4 \ 1"s)>(6- v'35). 

This number, when plugged into t he logarithmic expression, agrees with pi through the first 
20 decimal places. In comparison, k2 .. yields a number that agrees with pi through more 
than one million digits. 

Applying this general approach, Ramanujan constructed a number of remarkable series for 
pi, including the one shown in the illustration on the preceding page. The general approach 
also underlies the two-step, iterative algorithms in the top illustration on the opposite page. 
In each iteration the first step (calculating y.,) corresponds to computing one of a sequence 
of singular values by solving a modular equation of the appropriate order; the second step 
(calculating a.,) is tantamount to taking the logarithm of the singular value. 
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ly eight hours. (He was perhaps 
the closest precursor of the modern 
supercomputer, at least in terms of 
memory capacity.) In 1853 William 
Shanks outdid Dase by publishing 
his computation of pi to 607 places, 
although the digits that followed 
the 527th place were wrong. Shank's 
task took years and was a rather rou
tine , albeit laborious, application of 
Machin's formula. (In what must itself 
be some kind of record, 92 years 
passed before Shank's error was de
tected, in a comparison between his 
value and a 530-place approximation 
produced by D. F. Ferguson with the 
aid of a mechanical calculator.) 

The advent of the digital comput
er saw a renewal of efforts to cal
culate ever more digits of pi, since 
the machine was ideally suited for 
lengthy, repetitive "number crunch
ing." ENIAC, one of the first digital 
computers, was applied to the task in 
june, 1949, by john von Neumann 
and his colleagues. ENIAC produced 
2,037 digits in 70 hours. In 1957 G. E. 
Felton attempted to compute 10,000 
digits of pi, but owing to a machine 
error only the first 7,480 digits were 
correct. The 10,000-digit goal was 
reached by F. Genuys the following 
year on an IBM 704 computer. In 1961 
Daniel Shanks and john W. Wrench, 
Jr., calculated 100,000 digits of pi in 
less than nine hours on an IBM 7090. 
The million-digit mark was passed in 
1973 by jean Guilloud and M. Bouyer, 
a feat that took just under a day of 
computation on a CDC 7600. (The 
computations done by Shanks and 
Wrench and by Guilloud and Bouyer 
were in fact carried out twice using 
diffe rent inverse-tangent identities 
for p i. Given the history of both hu
man and machine error in these cal
culations, it is only after such verifi
cation that modern "digit hunters" 
consider a record officially set.) 

Although an increase in the speed 
of computers was a major reason 
ever more accurate calculations for 
pi could be performed, it soon be
came clear that there were inescap
able limits. Doubling the number of 
digits lengthens computing time by 
at least a factor of four, if one applies 
the traditional methods of perform
ing arithmetic in computers. Hence 
even allowing for a hundredfold in
crease in computational speed, Guil
loud and Bouyer's program would 
have required a t least a quarter cen
tury to produce a billion-digit value 
for pi. From the perspective of the 
early 1970's such a computation did 
not seem realistically practicable. 

Yet the task is now feasible, thanks 
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not only to faster computers but also 
to new, efficient methods for mul
tiplying large numbers in comput
ers. A third development was also 
crucial: the advent of iterative algo
rithms that quickly converge to pi. 
(An iterative algorithm can be ex
pressed as a computer program that 
repeatedly performs the same arith
metic operations, taking the output 
of one cycle as the input for the next.) 
These algorithms, some of which we 
constructed, were in many respects 
anticipated by Ramanujan, although 
he knew nothing of computer pro
gramming. Indeed, computers no t 
only have made it possible to apply 
Ramanujan's work but also have 
helped to unravel it. Sophisticated 
algebraic-manipulation software has 
allowed further exploration of the 
road Ramanujan traveled alone and 
unaided 75 years ago. 

One of the interesting lessons of 
theoretical computer science is 

that many familiar algorithms, such 
as the way children are taught to 
multiply in grade school, are far from 
optimal. Computer scientists gauge 
the efficiency of an algorithm by 
determining its bit complexity: the 
number of times individual digits are 
added or multiplied in carrying out 
an algorithm. By this measure, add
ing two n-digit numbers in the nor
mal way has a bit complexity that in
creases in step with n; multiplying 
two n-digit numbers in the normal 
way has a bit complexity that in
creases as n' . By traditional methods, 
multiplication is much "harder" than 
addition in that it is much more time
consuming. 

Yet, as was shown in 1971 by A. 
Schonhage and V. Strassen, the mul
tiplication of two numbers can in the
ory have a bit complexity only a little 
greater than addition. One way to 
achieve this potential reduction in bit 
complexity is to implement so-called 
fast Fourier transforms (FFT's). FFT
based multiplication of two large 
numbers allows the intermediary 
computations among individual d ig
its to be carefully orchestrated so 
that redundancy is avoided. Because 
division and root extraction can be 
reduced to a sequence of multiplica
tions, they too can have a bit com
plexity just slightly greater than that 
of addition. The result is a tremen
dous saving in bit complexity and 
hence in computation time. For this 
reason all recent efforts to calcula te 
pi rely on some variation of the FFT 
technique for multiplication. 

Yet for hundreds of millions of dig-

(a) Let y0 = ~ " o =; 
and 

Yn+ 1 = 
1 -~ 
1 + v'1- y~ 

a,. . 1= (( 1+ y,. 1)Za,)- 2n+t y, .. 1 

(b) Lety0 = \1'2- 1 a 0 = 6 - 4\1'2 

and 

y = 1 -~ 
n+ 1 1 +~ 

(c) Let S0 = 5(VS - 2) 

and 

1 
o:o = 2 

25 5 
Sn+ 1= Sn(Z + XfZ + 1)2' w here X = 5, - 1, Y = (X-1 )2+ 7 

and z = \Yx(Y + v'Y2..:4X3) 
2 

ITERATIVE ALGORITHMS that yield extremely accurate values of pi were developed 
by the authors. (An iterative algorithm is a sequence of operations repeated in such a 
way that the ouput of one cycle is taken as the input for the next.) Algorithm a con
verges to 1/ TT quadratically: the number of correct digits given by "'• more than dou
bles each time n is increased by l. Algorithm b converges quartica lly and algorithm c 
converges quintically, so tha t the number o f coinciding digits given by each itera tion 
increases respectively by more than a factor of four and by more than a factor of five. 
Algorithm b is possibly the most efficient known algorithm for calculating pi; it was run 
on supercomputers in the last three record-setting calcula tions. As the authors worked 
on the algorithms it became clear to them that Ramanujan had pursued similar meth
ods in coming u p with his approximations for pi. In fact, the computation of sn in algo
rithm crests on a remarkable fifth-order modular equation discovered by Ramanujan. 
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NUMBER OF KNOWN DIGITS of pi has increased by two orders of magnitude (factors 
of 10) in the past decade as a result of the development of itera tive algorithms tha t can 
be run on supercomputers equipped with new, efficient methods of multip lication. 
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its of pi to be calculated practically a 
beautiful formula known a century 
and a half earlier to Carl Friedrich 
Gauss had to be rediscovered. In the 
mid-1970's Richard P. Brent and Eu
gene Salamin independently noted 
that the formula produced an algo
rithm for pi that converged quadrati
cally, that is, the number of digits 
doubled with each iteration. Between 
1983 and the present Yasumasa Ka
nada and his colleagues at the Uni
versity of Tokyo have employed this 
algorithm to set several world rec
ords for the number of digits of pi. 

We wondered what underlies the 
remarkably fast convergence to pi of 
the Gauss-Brent-Salamin algorithm, 
and in studying it we developed gen
eral techniques for the construction 
of similar algorithms that rapidly 
converge to pi as well as to other 
quantities. Building on a theory out
lined by the German mathematician 

Karl Gustav jacob jacobi in 1829, we 
realized we could in principle arrive 
at a value for pi by eval)_lating inte
grals of a class called elliptic inte
grals, which can serve to calculate 
the perimeter of an ellipse. (A circle, 
the geometric setting of previous ef
forts to approximate pi, is simply an 
ellipse with axes of equal length.) 

Elllptic integrals cannot generally . 
be evaluated as integrals , but they 
can be easily approximated through 
iterative procedures that rely on 
modular equations. We found that 
the Gauss-Brent-Salamin algorithm is 
actually a specific case of our more 
general technique relying on a sec
ond-order modular equation . Quick
er convergence to the value of the in
tegral, and thus a faster algorithm for 
pi , is possible if higher-order modu
lar equations are used, and so we 
have also 'constructed various algo
rithms based on modular equations 

HOW TO GET TWO BILLION DIGITS OF PI 
WITH A CALCULATOR* 

Yo = Y2- t 

y1 = [t - 'Clt - y04)f[t +'Cit - y0•J 

Y2 = [t - 'Clt - y14)i[t +~t - y14j 

Y3 = [t -~t - y24)/[t +'Cit - y24l 

Y4 = [t -~t - y341![t +~t - y34l 

Ys = [t -'Clt - y44)1[ t +'Cit - y441 

y6 = [t -~t - y54li[ t +'Cit - y541 

Y1 = [t - 'Clt - y64)1[t +'Cit - y64j 

Ys = [t -~t -y74li[ t +'Cit - y741 

y9 = [t -~4j/[ t +'Cit - y84) 

Y10 = [ t -~t -y94)f[t +'Cit - y94j 

y11 = [t - 'Clt - y104)1[t +~t - y10•) 

Y12 = [t -~t -y114)/[t +'Cit - y114) 

Yn = [t - 'Clt - y1241![t +'Cit - y1241 

Y14 = [t - 'Clt - y134)/[t +'Ci1- y1341 

Y1s = [t -~t - y144)/[ t +~t - y144) 

Let 

"o = 6 - 4Vl 

" 1 = (t + y1)4 a o- 23y1(1+ y1+ Y12) 

"2 = (1 + y2l4 a1 - 25y2(1 + y2+ Yi l 

"3 = (1 + y3)4 a2-27y3(1 + y3 + Y32) 

a4 ·= (1 +y.J4 ar29y4(1 + y4 + y42) 

"s = (1+ys)•a. - 2" ys(1 + ys + Ys2) 

"G = (1 + y6)4 as - 213y6(1 + y6+ YG2) 

"7 = (t + y7)4 aG - 215y7(1 + y7+ Y72) 

" s = (1 + ysl4 " 7- 217Ys(1 + ys + Yll 

ag = (1 + y9)• a 8 - 219y9(1 + y9+ y92) 

"10 = (t + y10)4 ag - 221Y10(1 + y10+ Y1o2l 

"" = (1 + y,)4 " 10 - 223y, (1 + y, + y,2) 

" 12 = (1 + Y1 2l4 a 11 - 225y12(1 + Y1 2+ Y1 i l 

"13 = (1 + y13l4 " 12 - 227y13(1 + y13 + Y132) 

" 14 = (1 + y1.J4 " 13 - 229Y14(1 + Y14 + Y142l 

<> 1s = (1 + Y1sl4 "14 - 231Y1s(1 + Y1s+ Y1s2l 

1/., 15 agress with" for more t han two billion decimal digits 

*Of course, the calculator needs to have a two-bill ion-digit display; on a pocket calcu
lator the computation would not be very interesting after the second iteration. 

EXPLICIT INSTRUCTIONS for executing algorithm b in the top illustration on the pre
ceding page makes it possible in principle to compute the first two billion digits of pi in 
a matter of minutes. All one needs is a calculator that has two memory registers and the 
usual capacity to add, subtract, multiply, divide and extract roots. Unfortunately most 
calculators come with only an eight-digit display, which makes the computation moot. 
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of third, fourth and higher orders. 
In january, 1986, David H. Bailey of 

the National Aeronautics and Space 
Administration's Ames Research 
Center produced 29,360,000 decimal 
places of pi by ite ra ting one of our 
algorithms 12 times on a Cray-2 su
percomputer. Because the algorithm 
is based on a fourth-order modular 
equation, it converges on pi quar
tically , more than quadrupling the 
number of digits with each iteration. 
A year late r Kanada and his col-· 
leagues carried out one more it
eration to attain 134,2 17,000 places 
on an NEC SX-2 supercomputer and 
thereby verified a similar computa
tion they had done earlier using the 
Gauss-Brent-Salamin algorithm. (Iter
ating our algorithm twice more- a 
feat entirely feasible if one could 
somehow monopolize a supercom
puter for a few weeks- would yield 
more than two billion digits of pi. ) 

I terative methods are _ best suited 
for calculating pi on a computer, 

and so it is not surpris ing that Rama
nujan never bothered to pursue 
them. Yet the basic ingredients of the 
ite rative algorithms for pi-modular 
equations in particular- are to be 
found in Ramanujan's work. Parts of 
his original derivation of infinite se
ries and approximations for pi more 
than three-quarters of a century ago 
must have paralleled our own efforts 
to come up with algorithms for pi. In
deed, the fo rmulas he lists in his pa
per on pi and in the "Notebooks" 
helped us greatly in the construction 
of some of our algorithms. For exam
ple, although we were able to prove 
that an ll th-order algorithm exists 
and knew its general formulation, it 
was not until we stumbled on Rama
nujan's modular equations of the 
same order that we discovered its un
expectedly simple form. 

Conversely, we were also able to 
derive all Ramanujan 's series from 
the general formulas we had devel
oped. The derivation of one, which 
converged to pi faster than any other 
series we knew a t the time, came 
about with a little help from an unex
pected source. We had justified all 
the quantities in the expression for 
the series except one: the coefficient 
1, 103, which appears in the numera
tor of the expression [see i llustra tion 
on page 113]. We were convinced
as Ramanujan must have been- that 
1,103 had to be correct. To prove it 
we had either to simplify a daunting 
equation containing variables raised 
to powers of several thousand or 
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to delve considerably further into 
somewhat arcane number theory. 

By coincidence R. William Cosper, 
Jr., of Symbolics, Inc. , had decided in 
1985 to exploit the same series of Ra
manujan's for an extended-accuracy 
value for pi. When he carried out the 
calculation to more than 17 million 
digits (a record at the time), there was 
to his knowledge no proof that the 
sum of the series actually converged 
to pi. Of course, he knew that mil
lions of digits of his value coincided 
with an earlier Gauss-Brent-Salamin 
calculation done by Kanada. Hence 
the possibility of error was vanish
ingly small. 

As soon as Gasper had finished his 
calculation and verified it against 
Kanada's , however, we had what we 
needed to prove that 1,103 was the 
number needed to make the series 
true to within one part in 101o.ooo.ooo 
In much the same way that a pair of 
integers differing by less than l must 
be equal , his result sufficed to specify 
the number: it is precisely 1 ,103. In ef
fec t, Cosper's computation became 
part of our proof. We knew that the 
series (and its associated algorithm) 
is so sensitive to slight inaccuracies 
that ifGosper had used any other val
ue for the coefficient or, for that mat
ter, if the computer had introduced 
a single-digit error during the calcu
lation, he would have ended up 
with numerical nonsense instead of 
a value for pi. 

Ramanujan-type algorithms for ap
proximating pi can be shown to be 
very close to the best possible . If all 
the operations involved in the exe
cution of the algorithms are totaled 
(assuming that the best techniques 
known for addition, multiplication 
and root extraction are applied), the 
bit complexity of computing n digits 
of pi is only marginally greater than 
that of multiplying two n-digit num
bers. But multiplying two n-digit 
numbers by means of an FFT-based 
technique is only marginally more 
complicated than summing two n
digit numbers, which is the simplest 
of the arithmetic operations possible 
on a computer. 

Mathematics has probably not yet 
felt the full impact of Ramanu

jan's genius. There are many other 
wonderful formulas contained in the 
"Notebooks" that revolve around 
integrals, infinite series and contin
ued fractions (a number plus a frac
tion, whose denominator can be 
expressed as a number plus a frac
tion, whose denominator can be ex-

.fl ( -fr. ·" 1 Ul , 
I 

tl ~-:r: "• -;. 

. • .-4.' ,,, >} - ., !/!! • J' ._,..' ··-" I ' I 
..,. - I ~ ,,. 
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RAMANUJAN'S " NOTEBOOKS" were personal records in which he jotted down many 
of his formulas. The page shown contains various third-order modular equations- all 
in Ramanujan's nonstandard notation. Unfortunately Ramanujan did not bother to in
clude formal proofs for the equations; others have had to compile, edit and prove them. 
The formulas in the "Notebooks" embody subtle relations among numbers and func
tions that can be applied in other fields of mathematics or even in theoretical physics. 

pressed as a number plus a fraction, 
and so on). Unfortunately they a re 
listed with little- if any- indication 
of the method by which Ramanujan 
proved them. Littlewood wrote: "If 
a significant piece of reasoning oc
curred somewhere, and the total mix
ture of evidence and intuition gave 
him certainty, he looked no further." 

The herculean task of editing the 
"Notebooks," initiated 60 years ago 
by the British analysts G. N. Watson 
and B. N. Wilson and now being com
pleted by Bruce Berndt, requires pro
viding a proof, a source or an occa
sional correction for each of many 
thousands of asse rted theorems and 
identities. A single line in the "Note
books" can easily elicit many pages 

© 1988 SCIENTIFIC AMERICAN, INC 

of commentary. The task is made all 
the more difficult by the nonstandard 
mathematical notation in which the 
formulas are written. Hence a great 
deal of Ramanujan's work will not 
become accessible to the mathemat
ical community until Berndt's proj
ect is finished. 

Ramanujan 's unique capacity for 
working in tuitively with complicated 
formulas enabled him to plant seeds 
in a mathematical garden (to borrow 
a metaphor from Freeman Dyson) 
that is only now coming into bloom. 
Along with many other mathema
ticians, we look forward to seeing 
which of the seeds will germinate in 
future years and further beautify the 
garden. 

11 7 
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manujan, modular equations, and approximations to pi, or how to compute one
billion digits of pi,” American Mathematical Monthly, vol. 96 (1989), p. 201–219.
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Synopsis:
Here the authors reprise the history of π, describe the recently discovered

quadratically convergent algorithms, describe (briefly) the computational tech-
niques required to compute, say, one billion digits of π, and then explore in con-
siderable detail the connections between these mathematical developments and the
recently uncovered writings of Ramanujan, the hundredth anniversary of whose
birth was celebrated in 1987. As the article observes, if Ramanujan had accom-
plished so much with paper, pencil and slateboard, how much further could he have
seen if he had access to a modern symbolic computing environment such as Maple
or Mathematica?

Interestingly, although not as asymptotically fast as the quadratically conver-
gent formulas, Ramanujan discovered some very interesting formulas, e.g.

1

π
=

√
8

9801

∞∑

n=0

(4n)!(1103 + 26390n)

(n!)43964n
,

a variation of which was used by David and Gregory Chudnovsky to compute up
to two billion digits (when accompanied with some very clever reorganization of
the computation) in the early 1990s. Each term of this formula adds roughly eight
correct digits.

Keywords: Algorithms, Computation, Elliptic Integrals, History, Modular Equa-
tions
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Ramanujan, Modular Equations, and Approximations to Pi or 
How to Compute One Billion Digits of Pi 

J. M. BORWEIN AND P. B. BORWEIN 

Mathematics Department, Dalhousie University, Halifax, N.S. BJH 3J5 Canada 

and 

D. H. BAILEY 

NASA Ames Research Center, Moffett Field, CA 94035 

Preface. The year 1987 was the centenary of Ramanujan's birth. He died in 1920 
Had he not died so young, his presence in modern mathematics might be more 
immediately felt. Had he lived to have access to powerful algebraic manipulation 
software, such as MACSYMA, who knows how much more spectacular his already 
astonishing career might have been. 

This article will follow up one small thread of Ramanujan's work which has 
found a modern computational context, namely, one of his approaches to approxi
mating pi. Our experience has been that as we have come to understand these pieces 
of Ramanujan's work, as they have become mathematically demystified, and as we 
have come to realize the intrinsic complexity of these results, we have come to 
realize how truly singular his abilities were. This article attempts to present a 
considerable amount of material and, of necessity, little is presented in detail. We 
have, however, given much more detail than Ramanujan provided. Our intention is 
that the circle of ideas will become apparent and that the finer points may be 
pursued through the indicated references. 

1. Introduction. There is a close and beautiful connection between the transfor
mation theory for elliptic integrals and the very rapid approximation of pi. This 
connection was first made explicit by Ramanujan in his 1914 paper "Modular 
Equations and Approximations to '1T" [26]. We might emphasize that Algorithms 1 
and 2 are not to be found in Ramanujan's work, indeed no recursive approximation 
of '1T is considered, but as we shall see they are intimately related to his analysis. 
Three central examples are: 

Sum 1. (Ramanujan) 

1 /8 ~ (4n)! [1103+26390n] 

9801 n"::o ( n !)4 396 4n '1T 

Algorithm 1. Let a0 == 6 - 4/i and Yo == /i - 1. 
Let 

Yn+l := 

and 

1- (1 - y:)l/4 
1 + (1- Yn4)lj4 

201 
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Then 

0 <an- 1/'IT < 16 · 4ne- 2 · 4"" 

and an converges to 1/'IT quartically (that is, with order four). 

Algorithm 2. Let s0 := 5({5 - 2) and a0 := 1/2. 
Let 

25 
sn+l := _(_z_+_x_j_z_+_1_)2=-s-n' 

where 

X:= 5/sn- 1 y := (x- 1) 2 + 7 

and 

Let 

Then 

1 n 
0 < a - - < 16 . sne- 5 " 

n 'IT 

and an converges to 1/'IT quintically (that is, with order five). 

[March 

Each additional term in Sum 1 adds roughly eight digits, each additional iteration 
of Algorithm 1 quadruples the number of correct digits, while each additional 
iteration of Algorithm 2 quintuples the number of correct digits. Thus a mere 
thirteen iterations of Algorithm 2 provide in excess of one billion decimal digits of 
pi. In general, for us, pth-order convergence of a sequence {an) to a means that an 
tends to a and that 

Jan+l- aJ :-;;; CJan- aJP 

for some constant C > 0. Algorithm 1 is arguably the most efficient algorithm 
currently known for the extended precision calculation of pi. While the rates of 
convergence are impressive, it is the subtle and thoroughly nontransparent nature of 
these results and the beauty of the underlying mathematics that intrigue us most. 

Watson [37], commenting on certain formulae of Ramanujan, talks of 

a thrill which is indistinguishable from the thrill which I feel when I enter the 
Sagrestia Nuovo of the Capella Medici and see before me the austere beauty of 
the four statues representing "Day," "Night," "Evening," and "Dawn" which 
Michelangelo has set over the tomb of Giuliano de' Medici and Lorenzo 
de'Medici. 

Sum 1 is directly due to Ramanujan and appears in [26]. It rests on a modular 
identity of order 58 and, like much of Ramanujan's work, appears without proof 
and with only scanty motivation. The first complete derivation we know of appears 
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in [11]. Algorithms 1 and 2 are based on modular identities of orders 4 and 5, 
respectively. The underlying quintic modular identity in Algorithm 2 (the relation 
for sn) is also due to Ramanujan, though the first proof is due to Berndt and will 
appear in [7]. 

One intention in writing this article is to explain the genesis of Sum 1 and of 
Algorithms 1 and 2. It is not possible to give a short self-contained account without 
assuming an unusual degree of familiarity with modular function theory. Also, parts 
of the derivation involve considerable algebraic calculation and may most easily be 
done with the aid of a symbol manipulation package (MACSYMA, MAPLE, 
REDUCE, etc.). We hope however to give a taste of methods involved. The full 
details are available in [11]. 

A second intention is very briefly to describe the role of these and related 
approximations in the recent extended precision calculations of pi. In part this 
entails a short discussion of the complexity and implementation of such calcula
tions. This centers on a discussion of multiplication by fast Fourier transform 
methods. Of considerable related interest is the fact that these algorithms for 7T are 
provably close to the theoretical optimum. 

2. The State of Our Current Ignorance. Pi is almost certainly the most natural of 
the transcendental numbers, arising as the circumference of a circle of unit diame
ter. Thus, it is not surprising that its properties have been studied for some 
twenty-five hundred years. What is surprising is how little we actually know. 

We know that 7T is irrational, and have known this since Lambert's proof of 1771 
(see [5]). We have known that 7T is transcendental since Lindemann's proof of 1882 
[23]. We also know that 7T is not a Liouville number. Mahler proved this in 1953. An 
irrational number f3 is Liouville if, for any n, there exist integers p and q so that 

o <1/3- !!_I<~-q qn 

Liouville showed these numbers are all transcendental. In fact we know that 

177 - % 1 > ql: 65 (2.1) 

for p, q integral with q sufficiently large. This irrationality estimate, due to 
Chudnovsky and Chudnovsky [16] is certainly not best possible. It is likely that 
14.65 should be replaced by 2 + e for any e > 0. Almost all transcendental numbers 
satisfy such an inequality. We know a few related results for the rate of algebraic 
approximation. The results may be pursued in [4] and [11]. 

We know that e'IT is transcendental. This follows by noting that e'IT = ( -1)-; and 
applying the Gelfond-Schneider theorem [4]. We know that 7T + log 2 + V2log 3 is 
transcendental. This result is a consequence of the work that won Baker a Fields 
Medal in 1970. And we know a few more than the first two hundred million digits 
of the decimal expansion for 7T (Kanada, see Section 3). 

The state of our ignorance is more profound. We do not know whether such basic 
constants as 7T + e, 1rje, or log 7T are irrational, let alone transcendental. The best 
we can say about these three particular constants is that they cannot satisfy any 
polynomial of degree eight or less with integer coefficients of average size less than 
10 9 [3]. This is a consequence of some recent computations employing the 
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Ferguson-Forcade algorithm [17]. We don't know anything of consequence about 
the single continued fraction of pi, except (numerically) the first 17 million terms, 
which Gosper computed in 1985 using Sum 1. Likewise, apart from listing the first 
many millions of digits of TT, we know virtually nothing about the decimal expan
sion of 77. It is possible, albeit not a good bet, that all but finitely many of the 
decimal digits of pi are in factO's and l's. Carl Sagan's recent novel Contact rests on 
a similar possibility. Questions concerning the normality of or the distribution of 
digits of particular transcendentals such as 7T appear completely beyond the scope 
of current mathematical techniques. The evidence from analysis of the first thirty 
million digits is that they are very uniformly distributed [2]. The next one hundred 
and seventy million digits apparently contain no surprises. 

In part we perhaps settle for computing digits of 7T because there is little else we 
can currently do. We would be amiss, however, if we did not emphasize that the 
extended precision calculation of pi has substantial application as a test of the 
"global integrity" of a supercomputer. The extended precision calculations de
scribed in Section 3 uncovered hardware errors which had to be corrected before 
those calculations could be successfully run. Such calculations, implemented as in 
Section 4, are apparently now used routinely to check supercomputers before they 
leave the factory. A large-scale calculation of pi is entirely unforgiving; it soaks into 
all parts of the machine and a single bit awry leaves detectable consequences. 

3. Matters Computational 

I am ashamed to tell you to how many figures I carried these calculations, having 
no other business at the time. 

Isaac Newton 

Newton's embarrassment at having computed 15 digits, which he did using the 
arcsinlike formula 

7T = 3/3 + 24( ~ - _1_ - _1_ - _1_ - ... ) 
4 12 5 . 25 28 . 27 72 . 29 

3/3 llr---7 = -- + 24 ·vx- x 2 dx, 
4 0 

is indicative both of the spirit in which people calculate digits and the fact that a 
surprising number of people have succumbed to the temptation [5]. 

The history of efforts to determine an accurate value for the constant we now 
know as 7T is almost as long as the history of civilization itself. By 2000 B.C. both the 
Babylonians and the Egyptians knew 7T to nearly two decimal places. The Babyloni
ans used, among others, the value 3 1/8 and the Egyptians used 3 13/81. Not all 
ancient societies were as accurate, however-nearly 1500 years later the Hebrews 
were perhaps still content to use the value 3, as the following quote suggests. 

Also, he made a molten sea of ten cubits from brim to brim, round in compass, 
and five cubits the height thereof; and a line of thirty cubits did compass it round 
about. 

Old Testament, 1 Kings 7:23 

Despite the long pedigree of the problem, all nonempirical calculations have 
employed, up to minor variations, only three techniques. 
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i) The first technique due to Archimedes of Syracuse (287-212 B.C.) is, recur
sively, to calculate the length of circumscribed and inscribed regular 6 · 2n-gons 
about a circle of diameter 1. Call these quantities an and bm respectively. Then 
a 0 := 2/3, b0 := 3 and, as Gauss's teacher Pfaff discovered in 1800, 

2anbn ~ 
an+l := + b and bn+l := van+lbn. 

an n 

Archimedes, with n = 4, obtained 

3W<'JT<3~. 

While hardly better than estimates one could get with a ruler, this is the first method 
that can be used to generate an arbitrary number of digits, and to a nonnumerical 
mathematician perhaps the problem ends here. Variations on this theme provided 
the basis for virtually all calculations of 'IT for the next 1800 years, culminating with 
a 34 digit calculation due to Ludolph van Ceulen (1540-1610). This demands 
polygons with about 260 sides and so is extraordinarily time consuming. 

ii) Calculus provides the basis for the second technique. The underlying method 
relies on Gregory's series of 1671 

x dt x 3 x 5 

arctan x = fa 1 + t 2 = x - 3 + 5 - · · · !xi ~ 1 

coupled with a formula which allows small x to be used, like 

~ = 4 arctan(~) - arctan( 2~9 ). 
This particular formula is due to Machin and was employed by him to compute 100 
digits of 'IT in 1706. Variations on this second theme are the basis of all the 
calculations done until the 1970's including William Shanks' monumental hand
calculation of 527 digits. In the introduction to his book [32], which presents this 
calculation, Shanks writes: 

Towards the close of the year 1850 the Author first formed the design of rectifying 
the circle to upwards of 300 places of decimals. He was fully aware at that time, 
that the accomplishment of his purpose would add little or nothing to his fame as a 
Mathematician though it might as a Computer; nor would it be productive of 
anything in the shape of pecuniary recompense. 

Shanks actually attempted to hand-calculate 707 digits but a mistake crept in at 
the 527th digit. This went unnoticed until 1945, when D. Ferguson, in one of the 
last "nondigital" calculations, computed 530 digits. Even with machine calculations 
mistakes occur, so most record-setting calculations are done twice-by sufficiently 
different methods. 

The advent of computers has greatly increased the scope and decreased the toil of 
such calculations. Metropolis, Reitwieser, and von Neumann computed and ana
lyzed 2037 digits using Machin's formula on ENIAC in 1949. In 1961, Dan Shanks 
and Wrench calculated 100,000 digits on an IBM 7090 [31]. By 1973, still using 
Machin-like arctan expansions, the million digit mark was passed by Guillard and 
Bouyer on a CDC 7600. 
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iii) The third technique, based on the transformation theory of elliptic integrals, 
provides the algorithms for the most recent set of computations. The most recent 
records are due separately to Gosper, Bailey, and Kanada. Gosper in 1985 calcu
lated over 17 million digits (in fact over 17 million terms of the continued fraction) 
using a carefully orchestrated evaluation of Sum 1. 

Bailey in January 1986 computed over 29 million digits using Algorithm 1 on a 
Cray 2 [2]. Kanada, using a related quadratic algorithm (due in basis to Gauss and 
made explicit by Brent [12] and Salamin [27]) and using Algorithm 1 for a check, 
verified 33,554,000 digits. This employed a HITACHI S-810/20, took roughly eight 
hours, and was completed in September of 1986. In January 1987 Kanada extended 
his computation to 227 decimal places of 1r and the hundred million digit mark had 
been passed. The calculation took roughly a day and a half on a NEC SX2 machine. 
Kanada's most recent feat (Jan. 1988) was to compute 201,326,000 digits, which 
required only six hours on a new Hitachi S-820 supercomputer. Within the next few 
years many hundreds of millions of digits will no doubt have been similarly 
computed. Further discussion of the history of the computation of pi may be found 
in [5] and [9]. 

4. Complexity Concerns. One of the interesting morals from theoretical com
puter science is that many familiar algorithms are far from optimaL In order to be 
more precise we introduce the notion of bit complexity. Bit complexity counts the 
number of single operations required to complete an algorithm. The single-digit 
operations we count are +,- , X . (We could, if we wished, introduce storage and 
logical comparison into the count. This, however, doesn't affect the order of growth 
of the algorithms in which we are interested.) This is a good measure of time on a 
serial machine. Thus, addition of two n-digit integers by the usual method has bit 
complexity 0( n ), and straightforward uniqueness considerations show this to be 
asymptotically best possible. 

Multiplication is a different story. Usual multiplication of two n-digit integers 
has bit complexity O(n 2 ) and no better. However, it is possible to multiply two 
n-digit integers with complexity O(n(log n)(loglog n)). This result is due to 
Schonhage and Strassen and dates from 1971 [29]. It provides the best bound known 
for multiplication. No multiplication can have speed better than 0( n ). Unhappily, 
more exact results aren't available. 

The original observation that a faster than O(n 2 ) multiplication is possible was 
due to Karatsuba in 1962. Observe that 

(a+ blOn)(c + dlOn) = ac +[(a- b)(c- d)- ac- bd]lon + bdl0 2n, 

and thus multiplication of two 2n-digit integers can be reduced to three multiplica
tions of n-digit integers and a few extra additions. (Of course multiplication by 10° 
is just a shift of the decimal point.) If one now proceeds recursively one produces a 
multiplication with bit complexity 

Note that log 2 3 = 1.58 ... < 2. 
We denote by M ( n) the bit complexity of multiplying two n-digit integers 

together by any method that is at least as fast as usual multiplication. 
The trick to implementing high precision arithmetic is to get the multiplication 

right. Division and root extraction piggyback off multiplication using Newton's 
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method. One may use the iteration 

xk+ 1 = 2xk- x~y 

to compute 1jy and the iteration 

xk+1 = ~(xk + ~) 
2 xk 

to compute /i. One may also compute 1/ /i from 

xk(3- yxt} 

2 

207 

and so avoid divisions in the computation of /i. Not only do these iterations 
converge quadratically but, because Newton's method is self-correcting (a slight 
perturbation in xk does not change the limit), it is possible at the kth stage to work 
only to precision 2k. If division and root extraction are so implemented, they both 
have bit complexity O(M(n)), in the sense that n-digit input produces n-digit 
accuracy in a time bounded by a constant times the speed of multiplication. This 
extends in the obvious way to the solution of any algebraic equation, with the 
startling conclusion that every algebraic number can be computed (to n-digit 
accuracy) with bit complexity O(M(n)). Writing down n-digits of fi or 317 is (up 
to a constant) no more complicated than multiplication. 

The Schonhage-Strassen multiplication is hard to implement. However, a multi
plication with complexity O((log n )2+'n) based on an ordinary complex (floating 
point) fast Fourier transform is reasonably straightforward. This is Kanada's 
approach, and the recent records all rely critically on some variations of this 
technique. 

To see how the fast Fourier transform may be used to accelerate multiplication, 
let x := (x0 , x1, x2 , ... , xn_ 1) and y := (y0, y1, ]2, ... , Yn- 1) be the representations 
of two high-precision numbers in some radix b. The radix b is usually selected to be 
some power of 2 or 10 whose square is less than the largest integer exactly 
representable as an ordinary floating-point number on the computer being used. 
Then, except for releasing each "carry," the product z := (z0 , z1, z 2, ... , z 2n_ 1) of x 
and y may be written as 

Zo = XoYo 

Z1 = XoY1 + X1Yo 

Z2 = XoY2 + X1Y1 + X2Yo 

z2n-3 = xn-1Yn-2 + xn-2Yn-1 

z2n-2 = xn-1Yn-1 

Z2n-1 = 0. 

Now consider x and y to have n zeros appended, so that x, y, and z all have 
length N = 2n. Then a key observation may be made: the product sequence z is 
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precisely the discrete convolution C(x, y): 
N-1 

zk = Ck(x, y) = L x1Yk-J' 
)=0 

[March 

where the subscript k - j is to be interpreted as k - j + N if k - j is negative. 
Now a well-known result of Fourier analysis may be applied. Let F(x) denote 

the discrete Fourier transform of the sequence x, and let F-\x) denote the inverse 
discrete Fourier transform of x: 

N-1 

Fk(x) == L x/-2'"iJk/N 
j=O 

1 N-1 

FJ:l(x) == _ L xJe2wiJk/N. 
N j=O 

Then the "convolution theorem," whose proof is a straightforward exercise, states 
that 

F[C(x, y)] = F(x)F(y) 

or, expressed another way, 

C(x, y) = F- 1 [F(x)F(y)]. 

Thus the entire multiplication pyramid z can be obtained by performing two 
forward discrete Fourier transforms, one vector complex multiplication and one 
inverse transform, each of length N = 2n. Once the real parts of the resulting 
complex numbers have been rounded to the nearest integer, the final multiprecision 
product may be obtained by merely releasing the carries modulo b. This may be 
done by starting at the end of the z vector and working backward, as in elementary 
school arithmetic, or by applying other schemes suitable for vector processing on 
more sophisticated computers. 

A straightforward implementation of the above procedure would not result in 
any computational savings-in fact, it would be several times more costly than the 
usual "schoolboy" scheme. The reason this scheme is used is that the discrete 
Fourier transform may be computed much more rapidly using some variation of the 
well-known "fast Fourier transform" (FFT) algorithm [13]. In particular, if N = 2m, 
then the discrete Fourier transform may be evaluated in only 5m2m arithmetic 
operations using an FFT. Direct application of the definition of the discrete Fourier 
transform would require 22m+ 3 floating-point arithmetic operations, even if it is 
assumed that all powers of e- 2wi/N have been precalculated. 

This is the basic scheme for high-speed multiprecision multiplication. Many 
details of efficient implementations have been omitted. For example, it is possible to 
take advantage of the fact that the input sequences x and y and the output 
sequence z are all purely real numbers, and thereby sharply reduce the operation 
count. Also, it is possible to dispense with complex numbers altogether in favor of 
performing computations in fields of integers modulo large prime numbers. Inter
ested readers are referred to [2], [8], [13], and [22]. 

When the costs of all the constituent operations, using the best known tech
niques, are totalled both Algorithms 1 and 2 compute n digits of 7T with bit 
complexity 0( M( n )log n ), and use O(log n) full precision operations. 
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The bit complexity for Sum 1, or for 7T using any of the arctan expansions, is 
between O((log n)2M(n)) and O(nM(n)) depending on implementation. In each 
case, one is required to sum 0( n) terms of the appropriate series. Done naively, one 
obtains the latter bound. If the calculation is carefully orchestrated so that the terms 
are grouped to grow evenly in size (as rational numbers) then one can achieve the 
former bound, but with no corresponding reduction in the number of operations. 

The Archimedean iteration of section 2 converges like 1/4n so in excess of n 
iterations are needed for n-digit accuracy, and the bit complexity is O(nM(n )). 

Almost any familiar transcendental number such as e, y, n3), or Catalan's 
constant (presuming the last three to be nonalgebraic) can be computed with bit 
complexity O((log n)M(n)) or O((log n) 2M(n)). None of these numbers is known 
to be computable essentially any faster than this. In light of the previous observa
tion that algebraic numbers are all computable with bit complexity O(M(n )), a 
proof that 7T cannot be computed with this speed would imply the transcendence of 
7T. It would, in fact, imply more, as there are transcendental numbers which have 
complexity O(M(n)). An example is 0.10100100001 .... 

It is also reasonable to speculate that computing the nth digit of 7T is not very 
much easier than computing all the first n digits. We think it very probable that 
computing the nth digit of 7T cannot be O(n). 

5. The Miracle of Theta Functions 

When I was a student, abelian functions were, as an effect of the Jacobian 
tradition, considered the uncontested summit of mathematics, and each of us was 
ambitious to make progress in this field. And now? The younger generation 
hardly knows abelian functions. 

Felix Klein [21] 

Felix Klein's lament from a hundred years ago has an uncomfortable timelessness 
to it. Sadly, it is now possible never to see what Bochner referred to as "the miracle 
of the theta functions" in an entire university mathematics program. A small piece 
of this miracle is required here [6], [11], [28]. First some standard notations. The 
complete elliptic integrals of the first and second kind, respectively, 

K(k) := i 7Tk dt 

o VI - k 2sin2t 
(5.1) 

and 

(5.2) 

The second integral arises in the rectification of the ellipse, hence the name elliptic 
integrals. The complementary modulus is 

k' := /1- k 2 

and the complementary integrals K' and E' are defined by 

K'(k) := K(k') and E'(k) := E(k'). 

The first remarkable identity is Legendre's relation namely 
7T 

E(k)K'(k) + E'(k)K(k)- K(k)K'(k) = 2 (5.3) 
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(for 0 < k < 1), which is pivotal in relating these quantities to pi. We also need to 
define two Jacobian theta functions 

(5.4) 
n= -oo 

and 
00 

83(q) := L qn2· (5.5) 
n=- oo 

These are in fact specializations with ( t = 0) of the general theta functions. More 
generally 

00 

83(t, q) := L qn2eimt (im t > 0) 
n= -oo 

with similar extensions of 8 2 • In Jacobi's approach these general theta functions 
provide the basic building blocks for elliptic functions, as functions of t (see [11], 
[39]). 

The complete elliptic integrals and the special theta functions are related as 
follows. For lql < 1 

and 

where 

and 

7T 

K(k) = 28i(q) 

8J(q) 
k := k(q) = 8i(q), k' := k'( ) = 8i(- q) 

q 8l(q) 

q = e-'"K'(k)jK(k). 

The modular function A is defined by 

[ 82 ( q) ]4 

A(t) := A(q) := k 2(q) := -- , 
83(q) 

where 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

We wish to make a few comments about modular functions in general before 
restricting our attention to the particular modular function A. Modular functions are 
functions which are meromorphic in H, the upper half of the complex plane, and 
which are invariant under a group of linear fractional transformations, G, in the 
sense that 

f(g(z)) = f(z) 'Vg E G. 
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[Additional growth conditions on f at certain points of the associated fundamental 
region (see below) are also demanded.] We restrict G to be a subgroup of the 
modular group r where r is the set of all transformations w of the form 

at+ b 
w(t) = ct + d' 

with a, b, e, d integers and ad- be = 1. Observe that r is a group under composi
tion. A fundamental region Fe is a set in H with the property that any element in H 
is uniquely the image of some element in Fe under the action of G. Thus the 
behaviour of a modular function is uniquely determined by its behaviour on a 
fundamental region. 

Modular functions are, in a sense, an extension of elliptic (or doubly periodic) 
functions-functions such as sn which are invariant under linear transformations 
and which arise naturally in the inversion of elliptic integrals. 

The definitions we have given above are not complete. We will be more precise in 
our discussion of .\. One might bear in mind that much of the theory for .\ holds in 
considerably greater generality. 

The fundamental region F we associate with .\ is the set of complex numbers 

F := {im t ~ 0} n [ {Ire tl < 1 and 

12t ± 11 > 1} U {ret = -1} u { 12t + 11 = 1}]. 

The .\-group (or theta-subgroup) is the set of linear fractional transformations w 

satisfying 

at+ b 
w ( t) := et + d ' 

where a, b, e, d are integers and ad- be = 1, while in addition a and d are odd 
and b and c are even. Thus the corresponding matrices are unimodular. What 
makes .\ a .\-modular function is the fact that .\ is meromorphic in {im t > 0} and 
that 

.\ ( w ( t)) := .\ ( t) 

for all w in the .\-group, plus the fact that .\ tends to a definite limit (possibly 
infinite) as t tends to a vertex of the fundamental region (one of the three points 
(0, -1), (0, 0), ( i, oo )). Here we only allow convergence from within the fundamental 
region. 

Now some of the miracle of modular functions can be described. Largely because 
every point in the upper half plane is the image of a point in F under an element of 
the .\-group, one can deduce that any .\-modular function that is bounded on F is 
constant. Slightly further into the theory, but relying on the above, is the result that 
any two modular functions are algebraically related, and resting on this, but further 
again into the field, is the following remarkable result. Recall that q is given by 
(5.9). 

THEOREM 1. Let z be a primitive pth root of unity for p an odd prime. Consider the 
pth order modular equation for .\ as defined by 

(5.11) 
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where 

and 

Then the function wp is a polynomial in X and A (independent of q ), which has integer 
coefficients and is of degree p + 1 in both x and A. 

The modular equation for A usually has a simpler form in the associated 
variables u := xlf8 and u := A118• In this form the 5th-order modular equation is 
given by 

(5.12) 

In particular 

are related by an algebraic equation of degree p + 1. 
The miracle is not over. The pth-order multiplier (for A) is defined by 

(5.13) 

and turns out to be a rational function of k(qP) and k(q). 
One is now in possession of a pth-order algorithm for Kj'TT, namely: Let 

k; == k(qP'). Then 

2K(k0 ) 

'TT = M; 1(k 0 , k 1 )MP- 1(k1 , k 2 )MP- 1(k 2 , k 3 ) • • •• 

This is an entirely algebraic algorithm. One needs to know the pth-order modular 
equation for A to compute ki+l from k; and one needs to know the rational 
multiplier Mr The speed of convergence ( 0( cP'), for some c < 1) is easily deduced 
from (5.13) and (5.9). 

The function A(t) is 1-1 on F and has a well-defined inverse, A -I, with branch 
points only at 0, 1 and oo. This can be used to provide a one line proof of the "big" 
Picard theorem that a nonconstant entire function misses at most one value (as does 
exp ). Indeed, suppose g is an entire function and that it is never zero or one; then 
exp(A - 1(g(z))) is a bounded entire function and is hence constant. 

Littlewood suggested that, at the right point in history, the above would have 
been a strong candidate for a 'one line doctoral thesis'. 

6. Ramanujan's Solvable Modular Equations. Hardy [19] commenting on 
Ramanujan's work on elliptic and modular functions says 

It is here that both the profundity and limitations of Ramanujan 's knowledge 
stand out most sharply. 

We present only one of Ramanujan's modular equations. 
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THEOREM 2. 

where for i = 1 and 2 

with 

x:= 
503(q5) - 1 
e3(q) 

and Y := (X - 1) 2 + 7. 

213 

( 6.1) 

This is a slightly rewritten form of entry 12(iii) of Chapter 19 of Ramanujan's 
Second Notebook (see [7], where Berndt's proofs may be studied). One can think of 
Ramanujan's quintic modular equation as an equation in the multiplier MP of 
(5.13). The initial surprise is that it is solvable. The quintic modular relation for A, 
Ws, and the related equation for A118, Qs, are both nonsolvable. The Galois group of 
the sixth-degree equation Qs (see (5.12)) over I!JI(u) is As and is nonsolvable. Indeed 
both Hermite and Kronecker showed, in the middle of the last century, that the 
solution of a general quintic may be effected in terms of the solution of the 
5th-order modular equation (5.12) and the roots may thus be given in terms of 
the theta functions. 

In fact, in general, the Galois group for WP of (5.11) has order p(p + 1)(p- 1) 
and is never solvable for p z 5. The group is quite easy to compute, it is generated 
by two permutations. If 

T 
then T ~ T + 2 and T ~ ---

(2T + 1) 

are both elements of the A-group and induce permutations on the A; of Theorem 1. 
For any fixed p, one can use the q-expansion of (5.10) to compute the effect of 
these transformations on the A;, and can thus easily write down the Galois group. 

While Uj is not solvable over O(A), it is solvable over O(A, A0 ). Note that A0 is 
a root of Uj. It is of degree p + 1 because Uj is irreducible. Thus the Galois group 
for Uj over Q( A, A0 ) has order p( p - 1). For p = 5, 7, and 11 this gives groups of 
order 20, 42, and 110, respectively, which are obviously solvable and, in fact, for 
general primes, the construction always produces a solvable group. 

From (5.8) and (5.10) one sees that Ramanujan's modular equation can be 
rewritten to give As solvable in terms of A0 and A. Thus, we can hope to find an 
explicit solvable relation for A P in terms of A and A0 . For p = 3, Uj is of degree 4 
and is, of course, solvable. For p = 7, Ramanujan again helps us out, by providing a 
solvable seventh-order modular identity for the closely related eta function defined 
by 

00 

r,(q) := qfi f1 (1 _ q2n). 
n=l 

The first interesting prime for which an explicit solvable form is not known is the 
"endecadic" (p = 11) case. We consider only prime values because for nonprime 
values the modular equation factors. 
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This leads to the interesting problem of mechanically constructing these equa
tions. In principle, and to some extent in practice, this is a purely computational 
problem. Modular equations can be computed fairly easily from (5.11) and even 
more easily in the associated variables u and v. Because one knows a priori bounds 
on the size of the (integer) coefficients of the equations one can perform these 
calculations exactly. The coefficients of the equation, in the variables u and v, grow 
at most like 2n. (See [11].) Computing the solvable forms and the associated 
computational problems are a little rnore intricate-though still in principle entirely 
mechanical. A word of caution however: in the variables u and v the endecadic 
modular equation has largest coefficient 165, a three digit integer. The endecadic 
modular equation for the intimately related function J (Klein's absolute invariant) 
has coefficients as large as 

27090964785531389931563200281035226311929052227303 X 29231952011253. 
It is, therefore, one thing to solve these equations, it is entirely another matter to 
present them with the economy of Ramanujan. 

The paucity of Ramanujan's background in complex analysis and group theory 
leaves open to speculation Ramanujan's methods. The proofs given by Berndt are 
difficult. In the seventh-order case, Berndt was aided by MACSYMA-a sophisti
cated algebraic manipulation package. Berndt comments after giving the proof of 
various seventh-order modular identities: 

Of course, the proof that we have given is quite unsatisfactory because it is a 
verification that could not have been achieved without knowledge of the result. 
Ramanujan obviously possessed a more natural, transparent, and ingenious 
proof. 

7. Modular Equations and Pi. We wish to connect the modular equations of 
Theorem 1 to pi. This we contrive via the function alpha defined by: 

E'(k) w 

a(r) == K(k) - (2K(k))2, (7.1) 

where 

k == k(q) and q == e-"'rr. 
This allows one to rewrite Legendre's equation (5.3) in a one-sided form without the 
conjugate variable as 

~ = K[vrE- (Vr- a(r))K]. (7.2) 

We have suppressed, and will continue to suppress, the k variable. With (5.6) and 
(5.7) at hand we can write a q-expansion for a, namely, 

(7.3) 
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and we can see that as r tends to infinity q = e-".;r tends to zero and a(r) tends to 
1/'IT. In fact 

(7 .4) 

The key now is iteratively to calculate a. This is the content of the next theorem. 

THEOREM 3. Let k 0 := k(q), k1 := k(qP) and MP := M/k0, k1) as in (5.13). 
Then 

where represents the full derivative of MP with respect to k 0 . In particular, a is 
algebraic for rational arguments. 

We know that K(k1) is related via MP to K(k) and we know that E(k) is 
related via differentiation to K. (See (5.7) and (5.13).) Note that q ~ qP corre
sponds to r --> p 2r. Thus from (7.2) some relation like that of the above theorem 
must exist. The actual derivation requires some careful algebraic manipulation. (See 
[11], where it has also been made entirely explicit for p := 2, 3, 4, 5, and 7, and 
where numerous algebraic values are determined for a(r).) In the case p := 5 we 
can specialize with some considerable knowledge of quintic modular equations to 
get: 

THEOREM 4. Lets:= ljM5(k 0 , k1). Then 

[ (s
2 - 5) ] 

a(25r) = s2a(r) -IY 2 + vs(s 2 - 2s + s) . 

This couples with Ramanujan's quintic modular equation to provide a derivation of 
Algorithm 2. 

Algorithm 1 results from specializing Theorem 3 with p := 4 and coupling it with 
a quartic modular equation. The quartic equation in question is just two steps of the 
corresponding quadratic equation which is Legendre's form of the arithmetic 
geometric mean iteration, namely: 

2fk 
kl = 1 + k. 

An algebraic pth-order algorithm for 'IT is derived from coupling Theorem 3 with 
a pth-order modular equation. The substantial details which are skirted here are 
available in [11]. 

8. Ramanujan's sum. This amazing sum, 

_: = /8 f (4n)! [1103 + 26390n] 

'IT 9801 n=O {n!)4 3964n 

is a specialization ( N = 58) of the following result, which gives reciprocal series for 
'IT in terms of our function alpha and related modular quantities. 
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THEOREM 5. 

(1) (1) (3) - - - d (N) 
~ = i: 4 n 2 n ; n n X ~n + 1' 

'IT n~o {n!) 
(8.1) 

where, 

with 

d (N) = [a(N)x,V1 - IN -12] + nm( g}l- g,V12) 
n 1 + k~ 4 gN 2 

and 

Here (c)n is the rising factorial: (c)n := c(c + 1)(c + 2) · · · (c + n- 1). 

Some of the ingredients for the proof of Theorem 5, which are detailed in [11], 
are the following. Our first step is to write (7.2) as a sum after replacing the E by K 
and dK/dk using (5.7). One then uses an identity of Clausen's which allows one to 
write the square of a hypergeometric function 2F1 in terms of a generalized 
hypergeometric 3F2 , namely, for all k one has 

Here g is related to k by 

4k(k')2 = ( g12 + g-12)-1 

(1 + k 2 ) 2 2 

as required in Theorem 5. We have actually done more than just use Clausen's 
identity, we have also transformed it once using a standard hypergeometric substitu
tion due to Kummer. Incidentally, Clausen was a nineteenth-century mathematician 
who, among other things, computed 250 digits of 7T in 1847 using Machin's formula. 
The desired formula (8.1) is obtained on combining these pieces. 

Even with Theorem 5, our work is not complete. We still have to compute 

k 58 := k( e-.,n/58) and a 58 :=a( 58). 

In fact 

2 -(129+5) g58-
2 
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is a well-known invariant related to the fundamental solution to Pell's equation for 
29 and it turns out that 

( 
{5.9 + 5 )6 

a 58 = 2 (99{5.9- 444)(99/2- 70- 13{5.9). 

One can, in principle, and for N == 58, probably in practice, solve for k N by directly 
solving the Nth-order equation 

wN(k1,1- k1) = o. 

For N = 58, given that Ramanujan [26] and Weber [38] have calculated g58 for us, 
verification by this method is somewhat easier though it still requires a tractable 
form of J.t;8• Actually, more sophisticated number-theoretic techniques exist for 
computing k N (these numbers are called singular moduli). A description of such 
techniques, including a reconstruction of how Ramanujan might have computed the 
various singular moduli he presents in [26]; is presented by Watson in a long series 
of papers commencing with [36]; and some more recent derivations are given in [ll] 

and [30]. An inspection of Theorem 5 shows that all the constants in Series 1 are 
determined from g58 • Knowing a is equivalent to determining that the number 1103 
is correct. 

It is less clear how one explicitly calculates a 58 in algebraic form, except by brute 
force, and a considerable amount of brute force is required; but a numerical 

calculation to any reasonable accuracy is easily obtained from (7.3) and 1103 
appears! The reader is encouraged to try this to, say, 16 digits. This presumably is 
what Ramanujan observed. Ironically, when Gosper computed 17 million digits of w 

using Sum 1, he had no mathematical proof that Sum 1 actually converged to ljw. 

He compared ten million digits of the calculation to a previous calculation of 
Kanada · et al. This verification that Sum 1 is correct to ten million places also 
provided the first complete proof that a 58 is as advertised above. A nice touch-that 
the calculation of the sum should prove itself as it goes. 

Roughly this works as follows. One knows enough about the exact algebraic 
nature of the components of dn(N) and xN to know that if the purported sum (of 
positive terms) were incorrect, that before one reached 3 million digits, this sum 
must have ceased to agree with ljw. Notice that the components of Sum 1 are 
related to the solution of an equation of degree 58, but virtually no irrationality 
remains in the final packaging. Once again, there are very good number-theoretic 
reasons, presumably unknown to Ramanujan, why this must be so (58 is at least a 
good candidate number for such a reduction). Ramanujan's insight into this 
marvellous simplification remains obscure. 

Ramanujan [26] gives 14 other series for ljw, some others almost as spectacular 
as Sum l-and one can indeed derive some even more spectacular related series.* 
He gives almost no explanation as to their genesis, saying only that there are 
"corresponding theories" to the standard theory (as sketched in section 5) from 
which they follow. Hardy, quoting Mordell, observed that "it is unfortunate that 
Ramanujan has not developed the corresponding theories." By methods analogous 

*(Added in proof) Many related series due to Borwein and Borwein and to Chudnovsky and 

Chudnovsky appear in papers in Ramanujan Revisited, Academic Press, 1988. 
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to those used above, all his series can be derived from the classical theory [11]. 
Again it is unclear what passage Ramanujan took to them, but it must in some part 
have diverged from ours. 

We conclude by writing down another extraordinary series of Ramanujan's, 
which also derives from the same general body of theory, 

~ = f (2n)342n + 5 
7T n 212n+4 

n~O 

This series is composed of fractions whose numerators grow like 26n and whose 
denominators are exactly 16 · 212n. In particular this can be used to calculate the 
second block of n binary digits of 1r without calculating the first n binary digits. 
This beautiful observation, due to Holloway, results, disappointingly, in no intrinsic 
reduction in complexity. 

9. Sources. References [7], [11], [19], [26], [36], and [37] relate directly to Ra
manujan's work. References [2], [8], [9], [10], [12], [22], [24], [27], [29], and [31] 
discuss the computational concerns of the paper. 

Material on modular functions and special functions may be pursued in [1], [6], 
[9], [14], [15], [18], [20], [28], [34], [38], and [39]. Some of the number-theoretic 
concerns are touched on in [3], [6], [9], [11], [16], [23], and [35]. 

Finally, details of all derivations are given in [11]. 
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Synopsis:
In this paper, Jonathan Borwein, Peter Borwein and Karl Dilcher described

a remarkable phenomenon originally brought to their attention by R. D. North of
Colorado Springs, Colorado. North found that if one uses Gregory’s series for π,
namely π = 4

∑∞
k=1(−1)k−1/(2k−1), to compute decimal digits of π, but truncates

the sum to 500,000 terms, one finds, not surprisingly, that the sum is incorrect in
the sixth digit. But surprisingly, the next ten digits are correct, and a similar
on-again, off-again patterns continues much further.

Borwein, Borwein and Dilcher were above to explain this curious phenomenon
— first by looking up the sequence of discrepancy values in Sloane’s Handbook of
Integer Sequences (this was before the online version was available), identifying
these numbers as Euler numbers, applying the Boole summation formula, and ex-
tending the result to some other series. The resulting study not only explains a
very interesting feature of the decimal expansion of π, but it is also a classic of
experimental mathematics in action.

Keywords: Curiosities, Series
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l. Introduction. Gregory's series for 'IT, truncated at 500,000 terms, gives to forty 
places 

500 ()()() ( 1)k-l 

4 ~ 2k- 1 = 3.14159Q65358979324()4626433832§9502884197. 
k=l 

The number on the right is not 'IT to forty places. As one would expect, the 6th 
digit after the decimal point is wrong. The surprise is that the next 10 digits are 
correct. In fact, only the 4 underlined digits aren't correct. This intriguing observa
tion was sent to us by R. D. North [10] of Colorado Springs with a request for an 
explanation. The point of this article is to provide that explanation. Two related 

1Research of the authors supported in part by NSERC of Canada. 
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examples, to fifty digits, are 

'TT 50,000 ( -1)k-l 

- =2 I: 
2 k-1 2k- 1 

1.5707~63267948976192313211916397520520985833147388 

1 - 1 5 - 61 
and 

50,000 (-1)k+l 

log2 = L k 
k-1 

.6931~7180§5994530939723212147417656804830013446572, 

1 -1 2 - 16 272 

where all but the underlined digits are correct. The numbers under the underlined 
digits are the numbers that must be added to correct these. The numbers 1, -1, 5, 
- 61 are the first four Euler numbers while 1, -1, 2, -16, 272 are the first five 
tangent numbers. Our process of discovery consisted of generating these sequences 
and then identifying them with the aid of Sloane's Handbook of Integer Sequences 
[11]. What one is observing, in each case, is an asymptotic expansion of the error in 
Euler summation. The amusing detail is that the coefficients of the expansion are 
integers. All of this is explained by Theorem 1. 

The standard facts we need about the Euler numbers { E; }, the tangent numbers 
{ T; }, and the Bernoulli numbers { B; }, may all be found in [1] or in [6]. The numbers 
are defined as the coefficients of the power series 

oo E z2n 
secz = I: ( -1r-2n-

n-o (2n )! ' 

t ~ ( 1)n+l T2n+lz2n+l 
an z = i..J - --:---.,--

n-o (2n + 1)! 
and T0 = 1, 

z 00 B zn 

ez -1 = n~O ~· 
They satisfy the relations 

n (2n) L 2k E2k = 0, E2n+l = 0, 

and 

k-0 

-nT,_l 
B =----

n 2n(2n- 1} n ~ 1, 

{1.1) 

{1.2) 

{1.3) 

{1.4) 

{1.5) 

{1.6) 

These three identities allow for the easy generation of {En}, {Tn}, and {Bn}· The 
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first few values are recorded below. 

n 0 1 2 3 4 5 6 7 8 

En 1 0 -1 0 5 0 -61 0 1365 

r.. 1 -1 0 2 0 -16 0 272 0 

-1 1 -1 1 -1 
Bn 1 - - 0 - 0 - 0 -

2 6 30 42 30 

It is clear from (1.4) that the Euler numbers are integral. From (1.5) and (1.6) it 
follows that the tangent numbers are integers. Also, 

4n+ 1(2n)! 2(2n)! 
IE2nl- 7T2n+l and IB2nl- (2w)2n 

as follows from (5.1) and (5.2) below. The main content of this note is the following 
theorem. The simple proof we offer relies on the Boole Summation Formula, which 
is a pretty but less well-known analogue of Euler summation. The details are 
contained in Sections 2 and 3 (except for c] which is a straightforward application of 
Euler summation). More complicated developments can be based directly on Euler 
summation or on results in [9]. 

THEOREM 1. The following asymptotic expansions hold: 

7T N/2 ( -1)k-1 oo E2m 
a) -2 - 2 L 2k 1 - L N2m+1 

k=l - m=O 

1 1 5 61 
=---+---+··· 

N N 3 N 5 N 7 

b) 
N/2 (- 1)k-1 1 oo T 
"' "' 2m-1 log2- .t... k - - + .t... -2-N Nm 

k=1 m=l 

1 1 2 16 272 
=---+---+--··· 

N N 2 N 4 N 6 N 8 

and 
N-l 1 1 00 B 

L k2 - 2N2 + L N2~:1 
k=1 m=O 

c) 
6 

1 1 1 1 1 
= N + 2N2 + 6N 3 - 30N5 + 42N 7 •••• 

From the asymptotics of {E.,} and { Bn} and (1.5) we see that each of the above 
infinite series is everywhere divergent; the correct interpretation of their asymptotics 
is 

a') ~ Ezm = {, Ezm + ( (2K + 1)!) 
J... N2m .t... N2m 0 ( N)2K+1 

m=l m=l 7T 

b'] ~ Tzm-1 = {, Tzm-1 + ( (2K + 1)!) 
.t... N2m .t... N2m 0 ( N)ZK-1 

m=1 m=1 7T 

c'] ~ B2m K B2m ( (2K + 1)! ) 
m"'::,l N2m+1 = m~l N2m+1 + 0 (2wN)2K+1 ' 
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where in each case the constant concealed by the order symbol is independent of N 
and K. In fact, the constant 10 works in all cases. 

2. The Boole Summation Formula. The Euler polynomials En(x) can be defined 
by the generating function 

2etx oo tn 
--= 'LE(x)- (jtj<'IT); (2.1) 
et + 1 n=O n n! 

(see [1, p. 804]). Each En(x) is a polynomial of degree n with leading coefficient 1. 
We also define the periodic Euler function En(x) by 

for all x, and 

It can be shown that En(x) has continuous derivatives up to the (n - 1)st order. 
The following is known as Hoole's summation formula (see, for example, 

[9, p. 34]). 

LEMMA 1. Let f(t) be a function with m continuous derivatives, defined on the 
interval x ~ t ~ x + w. Then for 0 ~ h ~ 1 

where 

This summation formula is easy to establish by repeated integration by parts of 
the above integral. It is remarked in [9, p. 26] that this formula was known to Euler, 
for polynomial f and without the remainder term. Also note that Lemma 1 turns 
into Taylor's formula with Lagrange's remainder term if we replace h by hjw and 
let w approach zero. 

To derive a convenient version of Lemma 1 for the applications we have in mind, 
we set w = 1 and impose further restrictions on f. 

LEMMA 2. Let f be a function with m continuous derivatives, defined on t ~ x. 
Suppose that f<k)(t) ~ 0 as t ~ oo for all k = 0, 1, ... , m. Then for 0 ~ h ~ 1 

where 

11ooEm l(h- t) 
Rm = - - f(m)(x + t)dt. 

2 o (m- 1)! 



12. PI, EULER NUMBERS, AND ASYMPTOTIC EXPANSIONS (1989) 203

1989] PI, EULER NUMBERS, AND ASYMPTOTIC EXPANSIONS 685 

3. The Remainder for Gregory's Series. The Euler numbers En may also be 
defined by the generating function 

2 oo tn 
1 1 = LEn-· 

e + e- n=O n! 
(3.1) 

Comparing (3.1) with (2.1), we see that 

En= 2nEn( ~ )· (3.2) 

The phenomenon mentioned in the introduction is entirely explained by the next 
proposition-if we set n = 500,000. It is also clear that we will get similar patterns 
for n = 10m j2 with any positive integer m. 

PROPOSITION 1. For positive integers n and M we have 

oo (-l)k M 2E 
4 ~ - ( 1) n ~ 2k + Rl ( M)' 
/::n2k+I-- k"-::o(2n)2k+l 

(3.3) 

where 

21Ezul 
I Rl(M) I~ 2M+l 0 

(2n) 

Proof Apply Lemma 2 with f(x) = Ijx; then set x = n and h = 1/2. We get 

oo ( -1) v m-l Ek(I/2) ( -l)kk! 

v~O n + V + 1/2 = k~O 2k! nk+l + Rm, (3.4) 

with 

R =~1ooEm_ 1(h-t) (-l)mm! 
m ( ) +l dt. 2 o m-1! (x+t)m 

We multiply both sides of (3.4) by 2( -It. Then the left-hand side is seen to be 
identical with the left-hand side of (3.3). After replacing m by 2M+ 1 and taking 
into account (3.2) and the fact that odd-index Euler numbers vanish, we see that the 
first terms on the right-hand sides of (3.3) and (3.4) agree. To estimate the error 
term, we use the following inequality, 

(see, e.g., [1, p. 805]). Carrying out the integration now leads to the error estimate 
given in Proposition 1. 0 

4. An Analogue For log 2. Lemma 2 can also be used to derive a result similar to 
Proposition 1, concerning truncations of the series 

00 ( -l)k+l 
log2 = L 

k=l k 
(4.1) 

In this case the tangent numbers Tn will play the role of the En in Proposition 1. It 
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follows from the identity 

tanz=- . -1 
1 ( 2e2iz ) 

i e2•• + 1 

together with (1.2) and (2.1) that 

T, = ( -1)"2"£,(1) (4.2) 

as in [9, p. 28]. The T, can be computed using the recurrence relation T0 = 1 and 

t (~)2kTn-k + T, = 0 for n ~ 1. 
k=O 

Other properties can be found, e.g., in [8] or [9, Ch. 2]. 

PROPOSITION 2. For positive integers n and M we have 

L - = ( -1)n+l - + L ~ + R (M) oo ( 1)k+l { 1 M T } 

k=n+l k 2n k=l (2n)2k 2 ' 
(4.3) 

where 

Proof We proceed as in the proof of Proposition 1. Here we take x = n and 

h = 1. Using (4.2) and the fact that T0 = 1 and T2k = 0 for k ~ 1, we get the 

summation on the right-hand side of (4.3). The remainder term is estimated as in the 

proof of Proposition 1. 0 

Using Proposition 2 with n = 10m /2 one again gets many more correct digits of 

log 2 than is suggested by the error term of the Taylor series. 

5. Generalizations. Proposition 1 and 2 can be extended easily in two different 

directions. 
i). The well-known infinite series (see, e.g., [1, p. 807]) 

and 

00 (-1)k IE I 
"' 2n 2n+l 

k"::o (2k + 1)2n+l = 22n+2(2n )! 'TT 

= (22n-l_l) IB2nl 2n 
(2n )! ., 

(n = 0,1, ... ), 

(n=1,2, ... ) 

(5.1) 

(5.2) 

can be considered as extensions of Gregory's series and of (4.1). These series admit 

exact analogues to Propositions 1 and 2; one only has to replace f(x) = 1jx by 

f(x) = x-<2n+l), respectively x-<2n>, in the proofs. 
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We note that the Euler-MacLaurin summation formula leads to similar results for 

oo IB l22n-l L k-2n = 2n 7T2n 

k=l {2n)! ' 
{5.3) 

where multiples of the Bernoulli numbers B2n take the place of the En and Tn in 
Propositions 1 and 2. 

ii). A generalization of the Euler-MacLaurin and Boole summation formulas was 
derived by Berndt [3]. This can be applied to character analogues of the series 
(5.1)-(5.3). The roles of the En and T, in Proposition 1 and 2 are then played by 
generalized Bernoulli numbers or by related numbers. 

6. Additional Comments. The phenomenon observed in the introduction results 
from taking N to be a power of ten; taking N = 2 · 10m also leads to "clean" 
expressions. References [1], [5], [6], and [9] include the basic material on Bernoulli 
and Euler numbers, while [8] deals extensively with their calculation, and [2] 
describes an entertaining analogue of Pascal's triangle. Much on the calculation of 
pi and related matters may be found in [4]. Euler summation is treated in [5], [6], 
and [9], while Boole summation is treated in [9]. Related material on the computa
tion and acceleration of alternating series is given in [7]. 

Added in Proof. A version of the phenomeon was observed by M. R. Powell 
and various explanations were offered (see The Mathematical Gazette, 66 (1982) 
220-221, and 67(1983) 171-188). 
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Synopsis:
In this paper, Rabinowitz and Wagon introduce a very interesting “spigot al-

dimensional table of data, generates the decimal digits of π one by one. The
algorithm acts only on modest-sized integer data — no floating-point arithmetic is
involved. The process was discovered by some experimentation using the Mathe-
matica software.

This scheme is different in nature from the BBP algorithm, to be presented
in the next chapter, in that it cannot directly generate digits of π at an arbitrary
starting point. But it is very simple, and, unlike the BBP formula and algorithm,
it works in base ten.
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207© Springer International Publishing Switzerland 2016 
D.H. Bailey, J.M. Borwein, Pi: The Next Generation,  
DOI 10.1007/978-3-319-32377-0_  13
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A Spigot Algorithm for the Digits of 1T 

Stanley Rabinowitz and Stan Wagon 

It is remarkable that the algorithm illustrated in Table 1, which uses no floating
point arithmetic, produces the digits of 1r. The algorithm starts with some 2s, in 
columns headed by the fractions shown. Each entry is multiplied by 10. Then, 
starting from the right, the entries are reduced modulo den, where the head of the 
column is numjden, producing a quotient q and remainder r. The remainder is 
left in place and q X num is carried one column left. This reduce-and-carry is 
continued all the way left. The tens digit of the leftmost result is the next digit of 
1r. The process continues with the multiplication of the remainders by 10, the 
reductions modulo the denominators, and the augmented carrying. 

TABLE 1. The workings of an algorithm that produces digits of Tr. The dashed line indicates the key 
step: starting from the right, entries are reduced modulo the denominator of the column head 
(25, 23, 21, ... , resp.), with the quotients, after multiplication by the numerator (12, 11, 10, ... ), carried 
left. For example, the 20 in the f.J 's column yields a remainder of 1 and a left carry of 1 · 9 = 9. After 
the leftmost carries, the tens digits are 3, 1, 4, 1. To get more digits of 7r one must start with a longer 
string of 2s. 

Digits I 1 2 3 4 5 6 7 8 9 10 11 12 
of1t 3 5 7 9 u i3 15 17 19 21 23 25 

Initialize 2 2 2 2 2 2 2 2 2 2 2 2 2 
x10 20 20 20 20 W•W W W W W W W W 
Carry 3 ~.ltt1 ;cR--. r.k.2 ... \ 1li'·" 1:!:!l·~·-r.l:2.-t.:.S-~ ~-·\ f2···i dh d-\ i&·- = ·. l \ ; ~ \ . . ~ ' \ . . . :: . l, \ \ .. 

· 30 \ 3-2-, \ '3-2···, \32 .. \ 30.. "~ 1-2.., \'2:'1., \~s .. ,y~9-, \ -w. "~ "2~ ,;2o \2o , 
Remainders 

\ \. ! ........ \ \ \ \ \ •• •• l\ \\ \ \ : \ \ : 

0 ·-·-:t··' '--1·-' <t··' -....3-.1 "111-' "-._l-' }~ . ..J 'l-2..i '·--1./ '20-·· '20-' 2{).) 

x10 0 20 20 40 30 100 10 130 120 10 200 200 200 
Carry 1~ +.2!2 +.ll +M}. + .D..i :!:..iB. :!:..2.8. "LB.8. £JJ.. + .!.5.!1 + m \~·; -= 

13 40 53 80 95 148 108 218 192 160 332 ·296hoo ., 
Remainders 3 1 3 3 5 5 4 8 5 8 17 20 '--e-.) 
xlO 30 10 30 30 50 50 40 80 50 80 170 200 0 
Carry 4~11 +M +.JQ. +~ +All + 12. +...Ql + M + .2fr + .l2Q "LB.8. --±..0. -= 

41 34 60 70 90 92 103 144 140 200 258 200 0 
Remainders 1 1 0 0 0 4 12 9 4 10 6 16 0 

x10 10 10 0 0 0 40 120 90 40 100 60 160 0 
Carry l~ti ±.2. ±.2 +M +21 +M +...Ql +..±8. +..11 +..QQ. +M ..:t.U -= 

14 12 9 24 55 124 183 138 112 160 126 160 0 

This algorithm is a "spigot" algorithm: it pumps out digits one at a time and 
does not use the digits after they are computed. Moreover, the digits are generated 
without any use of high-precision (or low-precision) operations on floating-point 
real numbers; the entire algorithm uses only ordinary integer arithmetic on 
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relatively small integers. For example, to obtain the first 5,000 digits of 7T requires 
only arithmetic operations on integers less than 600,000,000. Although high
precision floating-point routines are built up from integer operations, the algo
rithms in this paper are quite simple and do not simulate floating-point computa
tions. 

In order to motivate the 71"-algorithm, we first discuss the much simpler case of 
e, for which a spigot algorithm was discovered by Sale [Sale]. His algorithm is the 
basis of the discussion in § 1. 

1. A NUMBER SYSTEM IN WHICH e's DIGITS ARE PERIODIC. A real num
ber's decimal representation may be interpreted as an infinitely nested expression; 
for example: 

{i = 1.41421356 ... = l + -fo(4 + -fo(t + fo-(4 + -fo(2 + -fo(l + ... ))))). 

Some interesting and useful representations may be obtained if we change the 
base-sequence, which in the case above is ( -fo, -fo, fa-, to ... ). For example, using the 
base b = (~, %, ·L t, ... ) yields the following form, called a mixed-radix represen
tation (see [Knu, §4.1]): 

a0 + t(a1 + t(a2 + t(a3 + t(a4 + t{a5 + ... ))))), 

where the a; (the digits) are nonnegative integers. If 0 :::;; a1 :::;; i for i z 1, the 
representation is called regular. Mixed-radix representations will be denoted by 
(a 0 ; a1, a2 , a3 , a4 , ••• )b. For base b, every positive real number has a regular 
representation and representations are unique provided we exclude representa
tions that terminate with maximal digits (otherwise, for example, i = 

(0; 1, 0, 0, ... \ = (0; 0, 2, 3, 4, 5, 6, ... )b); from now on and for all bases, we exclude 
such representations. The proof of the following Lemma is in Appendix 1. 

Lemma l(a). If i z 1, (0; 0, 0, ... , 0, ai, ai+l• ... )b < fr; in particular, 
(0; a1, a2 , a3 , a4 , ••• )b < 1. 

(b). Representations using the mixed-radix base b are unique. 
(c). The integer part of (a0 ; a1, a2 , a 3, a4 , ••• )b is a0 and the fractional part is 

(0; a1, a2 , a3, a 4, ... )b. 

In this number system some irrationals become periodic. For example, e = 

(2; 1, 1, 1, 1, ... )b; this is just a restatement of the infinite series Lft as 
1 + f{l + i(l + f(l + t(l + t(l + ... ))))). Rational numbers in this system cor
respond to digit-sequences that terminate (Appendix 1, Lemma 2). 

The decimal digits of a real number x in [0, 10) can be obtained by taking the 
integer part of x, multiplying its fractional part by 10, taking the integer part of the 
result, multiply the resulting fractional part by 10, and so on. In some mixed-radix 
bases, this is especially simple. If x = (a 0 ; a1, a2 , ••• , an)b, then lOx = 
(10a0 ; l0a1, 10a2 , 10a3, •.• , lOan)b. The latter may not be a regular expression: 
some digits may be too big. But we can decrease digits by reducing them modulo i, 
where i is the denominator of the corresponding element of b. Starting these 
reductions at the right end, we carry the quotients left, eventually getting the 
regular representation of lOx. Thus multiplying by 10 is algorithmically straightfor
ward. Taking the integer and fractional parts for b-representations is also easy, 
thanks to Lemma l(c). 
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We can now give the algorithm to get the first n base-10 digits of e. A proof of 
correctness-the error analysis showing that n + 2 mixed-radix digits suffice1 to 
get n base-10 digits-is given as Lemma 3 in Appendix 1. 

Algorithm e-spigot 

1. Initialize: Let the first digit be 2 and initialize an array A of length n + 1 to 
(1, 1, 1, ... ' 1). 

2. Repeat n - 1 times: 
Multiply by 10: Multiply each entry of A by 10. 
Take the fractional part: Starting from the right, reduce the ith entry of A 

modulo i + 1, carrying the quotient one place left. 
Output the next digit: The final quotient is the next digit of e. 

The first few steps of this algorithm, starting with an array of 10 1s (this 
corresponds to 11 mixed-radix digits, good for 9 digits of e; only 5 are shown), are 
displayed in Table 2. 

TABLE 2. The workings of a spigot algorithm for the digits of e (in bold). The reductions in the 
column headed f are performed modulo i. The leftmost base-10 real nt,Jmbers are the values of the 
rows viewed as mixed-radix representations. Since only 11 mixed-radix digits start the algorithm, the 
first base-10 number is only an approximation to e. 

Base 10 lt2 lt3 lt4 1ts It6 lh 1ts It9 1t1 0 ltll 

2.718281826 ... 2 1 1 1 1 1 1 1 1 1 1 
7.18281826 ... 10 10 10 10 10 10 10 10 10 10 
canies 7 ±1 ±1 ±2 +1 +1 +1 ±1 +1 ±.Q ---14 13 12 11 11 11 11 11 10 10 
0.18281826 ... 0 1 0 1 5 4 3 2 0 10 
1.8281826 ... 0 10 0 10 50 40 30 20 0 100 
canies 1 ±1 ±.Q ±1 ±2 ±.6. +4 +2 ±.Q ±2 ---

3 10 3 19 56 44 32 20 9 100 
0.8281826 ... 1 1 3 4 2 2 0 2 9 1 
8.281826 ... 10 10 30 40 20 20 0 20 90 10 
canies 8 ±.6. ±2 ±.R ±1 +2 ±.Q ±1 ±2 ±.Q ---16 19 38 43 22 20 3 29 90 10 
0.281826 ... 0 1 2 3 4 6 3 2 0 10 
2.81826 ... 0 10 20 30 40 60 30 20 0 100 
canies 2 .±5. ±.6. ±1 ±.R ±2 +4 +2 ±.Q ±2 --

5 16 27 38 49 64 32 20 9 100 
0.81826 ... 1 1 3 3 1 1 0 2 9 1 

2. A SPIGOT FOR DIGITS OF "lT. The ideas of §llead to a spigot algorithm for 
7T, but there are additional complexities and additional interesting questions that 
distinguish 1r from e. Our starting point is the following moderately well-known 

1Any digit-producing algorithm for a presumed-normal number x suffers from a drawback that, 
although unlikely, can impinge on the result. If x is between 1 and 10 and the algorithm says that the 
first 100 digits of x are, say, 4, 6, 5, 0, 7, ... , 3, 9, 9, 9, 9, 9 then one cannot be sure that the last 6 digits 
are correct. They will be the digits of a certain approximation to x that is within 5 · 10- 100 of the true 
value. One cannot simply go farther until a non-9 is reached, because memory allocations must be made 
in advance. The user must realize that a terminating string of 9s is a red flag concerning those digits 
and even with no 9s, the last digit might be incorrect. In practice, one might ask for, say, 6 extra digits, 
reducing the odds of this problem to one in a million. 
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series: 

00 (i!)22i+l 
7T=I:~--

;~o(2i+1)! 

This series can be derived from the Wallis product for 1r; another approach uses 
an acceleration technique called Euler's transform applied to the series 1T = 4 -
~ + g - ~ + . . . . These proofs, together with three others and references to 
earlier sources, may be found in [Li]. We let k!! denote the product 1 · 3 · 5 · · · k 
for odd integers k; then the series is equivalent to 

1T 00 i! 1 1·2 1·2·3 
-I: =1+-+ + + 2 - ;~o (2i + 1) !! 3 3 · 5 3 · 5 · 7 

which expands to become 

~ = 1 + ~ ( 1 + ~ ( 1 + ~ ( 1 + ~(1 + ... ) ) ) ) . 

This last expression leads to the mixed-radix base c = (t, i, f, ~' ... ),with respect 
to which 1T is simply (2; 2, 2, 2, 2, 2, ... )c. For a regular representation in base c, 
the digit in the ith place must lie in the interval [0, 2i]. Unfortunately, base cis less 
accommodating than b. 

Lemma 4 (Proof in Appendix 1). The base-c number with maximal digits, 

(0; 2, 4, 6, 8, ... ), represents 2; hence regular representations of the form 

(0; a, b, c, ... )c lie between 0 and 2. 

Lemma 4 implies that c-representations are not unique. For example, 
(0;0,4,6,8, ... \ = 2- %= ~' whence (0;0,2,3,4, ... \ = t= (0;2,0,0,0, ... )c. 
More relevant algorithmically, integer and fractional parts using c are not straight
forward, as they are for b. The integer part of (a 0 ; a1, a 2 , ••• )c is either a0 or 
a0 + 1 according as (0; a1, a 2 , •.• ) is in [0, 1) or [1, 2). This problem is surmounted 
by leaving the units digit of a0 in place during the next iteration and calling the 
tens digit of a0 a predigit. The predigits must be temporarily held because 
occasionally (once every 20 iterations, roughly) the next predigit is a 10; this will 
happen when the carry, which is between 0 and 19, is greater than 10 and, 
simultaneously, the leftover units digit of a0 is 9, which becomes 90 in the 
multiply-by-10 step. This event requires that the held number be increased by 1 
before being released. Specific details of the algorithm follow; the presentation at 
the beginning of this paper sidestepped the problem of the occasional 10. The 
proof that [10nj3J mixed-radix digits suffice for n digits of 1T is in Appendix 1 
(Lemma 5). Appendix 2 contains a Pascal implementation of this algorithm. 

Algorithm 'TT'-spigot 

1. Initialize: Let A = (2, 2, 2, 2, ... , 2) be an array of length [10nj3J. 
2. Repeat n times: 

198 

Multiply by 10: Multiply each entry of A by 10. 
Put A into regular form: Starting from the right, reduce the ith element of A 

(corresponding to c-entry (i - 1)j(2i - 1)) modulo 2i - 1, to get a 
quotient q and a remainder r. Leave r in place and carry q(i - 1) one 
place left. The last integer carried (from the position where i - 1 = 2) 
may be as large as 19. 
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Get the next predigit: Reduce the leftmost entry of A (which is at most 
109[ = 9 · 10 + 19]) modulo 10. The quotient, q, is the new predigit of 
1T, the remainder staying in place. 

Adjust the predigits: If q is neither 9 nor 10, release the held predigits as true 
digits of 1T and hold q. If q is 9, add q to the queue of held predigits. If 
q is 10 then: 
• set the current predigit to 0 and hold it; 
• increase all other held predigits by 1 (9 becomes 0); 
• release as true digits of 1T all but the current held predigit. 

This algorithm uses only integer arithmetic and is easy to program. The table at 
the beginning of the paper shows it in action, starting with 13 mixed-radix digits of 
1T (good for 4 base-10 digits). To clarify the working of the algorithm, note that the 
(finite) first row of Table 1 is a mixed-radix representation of 3.1414796 ... , 
the second row represents 31.414796 ... , the fifth row represents 1.414796 ... , the 
sixth row is 14.14796 ... , the ninth row is 4.14796 ... , and so on. Table 3 shows 
the result of a computation using a larger initial array; the holding aspect does not 
become relevant until the 32nd digit. 

TABLE 3. The actual digits of 1r (bottom) compared to the sequence of leftmost base-c digits for 35 
iterations with a starting array of 116 2s (good for 35 digits). At the 32nd iteration a 102 shows up, 
yielding a predigit of 10. 

* ~8~~~nuM~~~6~nnnn~u~~UMGTI~~nnn~~~~~ 

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 

t 

We repeat that the algorithm uses only integer operations. To get 5,000 digits of 
1T requires only integer arithmetic on numbers less than 600,000,000. The algo
rithm leads naturally to the question of improving it to one that is essentially as 
simple as e-spigot. 

Question. Is there a base d of rationals such that 1T has a d-representation that is 
periodic, or an arithmetic progression, and such that a0 is always the integer part 
of (a0 ; a1, a2, ... )d? 

Gasper [Gos, p. 32] has discovered a series for 1T that brings us tantalizingly 
close to spigot-perfection: 

1 1 2·3 1 2·3 3·5 
1T = 3 + -8 + - 13 + - 18 + 

60 60 7 . 8 . 3 60 7 . 8 . 3 10 . 11 . 3 

1 2·3 3·5 4·7 
-----------23 + .... 

60 7 . 8. 3 10. 11 . 3 13 . 14. 3 

He obtained this series by using a refinement of the Euler transform on 4 - j- + 
~ - ~ + .... Gasper's series leads to the base d =(to, 1 ~8 , iio, ;:6 , ... ), with 
respect to which 1T is (3; 8, 13, 18, ... ). A computation shows that 
(0; 59, 167, 329, 545, ... )d = 1.092 ... , a substantial improvement over the 2 that 
arose for c. Under the usual randomness assumption for 1T'S digits, the odds of a 
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bad predigit in base c are 1 in 20, while in base d they decrease to less than 1 in 
110; this is because a d-predigit of 10 occurs only when the remainder is a 9 (which 
becomes 90) and the carry is a 10. The former happens 10% of the time, while the 
latter happens no more than once in 11 iterations because the carry is the integer 
part of a real between 0 and 10.93. So base d is within 1% of spigot-perfection. 
Because Gasper's series converges more quickly than the one we used, it has less 
memory requirements: n digits of 7T require an initial array of length n; however, 
the arithmetic on the array will involve integers larger than those in an array of the 
same size using base c. 

One way to improve the Gosper-series approach is to reduce the fractions in d 
to lowest terms. Then the regular number with maximal digits is (0; 59, 27, 21, 
38, ... )d, which equals 1.0000476468 .... It is not hard to see that the regular 
representation of 7T is unchanged in this new base. However, the work expended 
in reducing to lowest terms outweighs the gain made in reducing the number of 
times a 10 appears as a predigit. Thus it is likely that an affirmative answer to the 
question above is of more theoretical than practical interest. 

The spigot algorithm for 7T is by no means competitive with the recently 
discovered fast algorithms (due to the Borwein brothers, the Chudnovsky brothers, 
and others) that have been used to compute hundreds of millions of digits of 7T 

(see [BBB]). But the spigot algorithm does have the advantage of avoiding all 
floating-point computations; thus it is easily implemented on a home computer 
where it can produce thousands of digits in a few minutes. Moreover, it gives the 
result directly in base 10 (most other Tr-algorithms produce the result in binary or 
some internal format and a second pass must be made to obtain decimal digits). 

The algorithm given here can be made to run faster by outputting multiple 
digits at a time. For example, to get five decimal digits at a time, simply compute 
the digits of 7r using base 100,000. This can be done by multiplying by 100,000 
instead of 10 in the main step. The integer part is then the next "digit" in base 
100,000. 

If one is working in base 100,000 and knows in advance that the portion of digits 
to be computed does not contain the string 00000, then one can omit the lengthy 
part of the algorithm that adjusts the predigits. This can lead to an exceedingly 
short computer program. For example, Rabinowitz [Rab] used this idea to exhibit a 
14-line Fortran program that outputs 1,000 decimal digits of TT. 

Finally, we mention that the algorithm can be parallelized, in which case it 
becomes blindingly fast up to about 10,000 digits. 

For examples of spigot algorithms for other functions, see [Abd]. 

APPENDIX 1. FIVE LEMMAS 
Lemma l(a). Ifi 2:: 1,(0; 0,0, ... ,0, a;, ai+I• ... )b < t; in particular, (0; a1, a2 , a3 , 

a4, · · · )b < 1. 
(b). Representations using mixed-radix base b are unique. 
(c). The integer part of (a 0 ; a1, a 2 , a3 , a4 , ••. )b is a0 and the fractional part is 

(0; a 1, a2 , a3 , a4 , ••• )b. 

Proof: (a). It suffices to prove that L~=i+ 1(k- 1)/k! = 1/i!, which follows from 
the fact that"the series telescopes to: 
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(b). Suppose (a 0 ; a 1, a2, a3, a4 , ••• )b and (c0 ; c1, c2 , c3 , c4 , ... )b represent the 
same real number. Then, for some i, 0 = L,~~;ddk!, where ldkl < k and d; =I= 0. 
But then ld;l/i!::;; '£~~;+ 1 1dkljk!, contradicting (a). 

(c). This follows from (a). 

Lemma 2. A positive number is rational iff its digits using the mixed-radix base b are 
eventually 0. 

Proof" The reverse direction is obvious. For the forward direction we use a 
sublemma. 

Sublemma. For any integers t and n, with 0 ::;; 'n < t!, there are integers d; in [0, i] 
such that n = d 1t(t - 1)(t - 2) · · · 4 · 3 + d 2t(t - l)(t - 2) .. · 5 · 4 + 
... +dt-3t(t- 1) + dt-2t + dt-J• 

Proof" By induction on t. If n < t! write n as qt + r with 0 ::;; r < t and 0 ::;; q < 
(t - 1)!. By induction there is a sequence (d1, d 2 , ••• d 1_ 3 , d 1_ 2 ) that is a solution 
for q with respect to terms (t - 1)(t - 2) · · · 4 · 3, and the like, whence 
(d 1, d2, ... d 1 _ 3, d 1 _ 2, r) is a solution for n w.r.t. the terms t(t - 1)(t - 2) · · · 4 · 3, 
and the like. 

Returning to Lemma 2's proof, suppose a positive rational sjt is given. Use the 
sublemma to express s(t - 1)! in the form d 1t(t - 1)(t - 2) · · · 4 · 3 + d2t 
(t- l)(t- 2) · · · 5 · 4 + · · · +d1_At- 1) + d 1 _ 2t + d 1 _ 1• Dividing by t! then 
yields a representation of s jt as a sum of reciprocals of factorials with appropri
ately small coefficients, which is the same as a terminating representation in the 
mixed-radix base b. 

Lemma 3. The algorithm for digits of e is correct. 

Proof" It must be shown that n + 2 mixed-radix digits of e suffice to get n base-10 
digits of e. We first prove that if n 2 28 ( = rwe 1), then n mixed-radix digits 
suffice for n base-10 digits. Using n mixed-radix digits means we are actually 
getting the base-10 digits of en = (2; 1, 1, 1, ... , 1) = L.7~ 0 1ji!. Thus we must show 
that 
e - en ::;; 5 · w-n (see footnote at beginning of paper). A geometric series estima
tion of the tail of the series shows that e - en < 2j(n + 1)!, and then Stirling's 
formula yields 

2 1 n ( 1 )n 
---- < - < (~) < -
( n + 1)! n! n 10 

If n < 28 then a direct computation of the digits shows that n + 2 mixed-radix 
digits suffice. 

Lemma 4. The base-c number with maximal digits, (0; 2, 4, 6, 8, ... ), represents 2; 
hence regular representations of the form (0; a, b, c, ... )c lie between 0 and 2. 

Proof· Instead of giving a formal proof, we show how some Mathematica computa
tions led to the result (and a proof). In terms of series, the lemma states that 

I: (2i)i! = 2. 
i~O (2i +.1)!! 
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A rough calculation showed that the sum is near 2. Then a rational computation of 
the remainders-the differences between the partial sums and 2-yielded the 
following sequence. 

4 4 16 16 32 32 256 256 512 512 
3' 5' 35' 63' 231' 429' 6435' 12155' 46189' 88179. 

The pattern in these remainders was found by dividing each by the preceding one, 
which yielded: 

Induction proves the pattern to be valid in general; it follows that the remainders 
have the closed form 2n+ I 1( 2n n+ I), which COnvergeS tO 0, aS claimed. 

Lemma 5. The algorithm for digits of 1r is correct. 

Proof: As for e, we look at 1r - 1r m' where 1r m = (2; 2, 2, ... , 2)c. This error is the 
tail of our main series for 1r: L7~m(i!)2 2i+l j(2i + 1)!. This tail is less than twice its 
first term since each subsequent term is less than half its predecessor, leading us to 
study m! 2 2m+Z j(2m + 1)!. Splitting the denominator into evens and odds turns 
this into: m! 22/(3 · 5 ···(2m+ 1)), which is less than tm! 22/(2 · 4 ···(2m)), or 
1 /(3 · 2m- 1 ). It is easy to see (using the fact that fa < log 10 2) that this last is less 
than 5 . w-n when m = l10nj3J, as claimed. 

APPENDIX 2. PASCAL CODE 
The following program, for which we are grateful to Macalester student Simeon 
Simeonov, implements the algorithm 1r-spigot. This code makes use of the fact that 
the queue of predigits always has a pile of 9s to the right of its leftmost member, 
and so only this leftmost predigit and the number of 9s need be remembered. The 
program computes 1000 digits of 1r and requires a version of Pascal with a longint 
data type (32-bit integer). 

Program Pi_Spigot; 
const n = 1000; 
l e n = 1 O* n d i v 3 ; 
var 

begin 

i, j, k, q, x, nines, predigit 
a : array[1 •• lenJ of longint; 

integer; 

for : = 1 to len do a[j] ·= 2; {Start with 2s} 

202 

nines : = 0; predigit := 0 {First predigit is a 0} 
for j : = 1 to n do 
begin q : = 0; 

for : = len down to 1 do 
begin 

x := 10*a[iJ+q*i; 
a[iJ := x mod (2*i-1>; 
q := x div (2*i-1>; 

end; 
a[1J : = q mod 10; q : = q div 
i f q = 9 then nines : = nines 
else if q = 10 then 

{Work backwards} 

10; 
+ 1 
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begin write(predigit+1); 
for k := 1 to nines do write<O>; 
predigit := 0; nines := 0 

{zeros} 

end 
else begin 

write{predigit); predigit := q; 
if nines <> 0 then 
begin 

for k := 1 to nines do write{9); 
nines := 0 

end 
end 

end; 
writeln{predigit); 

end. 

ADDED IN PRooF. The latest version of Mathematica (2.3) can sum many of the series that occur in 
this paper. It takes only a second or so to get 7r /2 as the sum of the crucial series at the beginning of 
section 2, to get 1/i! for the series in Lemma 1's proof, and to get 2 as the sum of the series in Lemma 
4's proof. 
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Paper 14: David H. Bailey, Peter B. Borwein and Simon Plouffe, “On the rapid
computation of various polylogarithmic constants,” Mathematics of Computation,
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Synopsis:
For many years, it had been widely presumed impossible to calculate, say, the

millionth binary digit of π any faster than simply computing all one million digits.
Thus it was with considerable interest that in 1996 the above authors announced
that they could do just that. The authors presented a surprisingly simple algorithm,
based on the formula

π =
∞∑

k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
,

that permits one to directly calculate a string of binary or hexadecimal digits of
π, beginning at position n, without needing to compute any of the first n − 1
digits. The authors further presented formulas of this type for numerous other
mathematical constants.

However, the real story of interest here is that the above formula (now known
as the BBP formula) was discovered by a computer program, running Helaman
Ferguson’s PSLQ integer relation algorithm. This was the first notable discovery
by the PSLQ algorithm; since 1997, a large number of other previously unknown
mathematical identities have been found in this process. Indeed, PSLQ is now a
premier tool of the rapidly expanding field of experimental mathematics.

Keywords: Algorithms, Computation
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ABSTRACT. We give algorithms for the computation of the d-th digit of cer
tain transcendental numbers in various bases. These algorithms can be easily 
implemented (multiple precision arithmetic is not needed), require virtually 
no memory, and feature run times that scale nearly linearly with the order of 
the digit desired. They make it feasible to compute, for example, the billionth 
binary digit of log (2) or 1r on a modest work station in a few hours run time. 

Vve demonstrate this technique by computing the ten billionth hexadecimal 
digit of 1r, the billionth hexadecimal digits of 1r2 , log(2) and log2 (2), and the 
ten billionth decimal digit of log(9/10). 

These calculations rest on the observation that very special types of iden
tities exist for certain numbers like 1r, 1r2 , log(2) and log2 (2). These are essen
tially polylogarithmic ladders in an integer base. A number of these identities 
that we derive in this work appear to be new, for example the critical identity 
for 1r: 

00 1 4 2 1 1 
11' = t;, 16' ( 8i + 1 - 8i + 4 - 8i + 5 - 8i + 6). 

1. INTRODUCTION 

It is widely believed that computing just the d-th digit of a number like 1r is 
really no easier than computing all of the first d digits. From a bit complexity 
point of view this may well be true, although it is probably very hard to prove. 
What we will show is that it is possible to compute just the d-th digit of many 
transcendentals in (essentially) linear time and logarithmic space. So while this is 
not of fundamentally lower complexity than the best known algorithms (for say 1r 

or log(2)), this makes such calculations feasible on modest workstations without 
needing to implement arbitrary precision arithmetic. 

We illustrate this by computing the ten billionth hexadecimal digit of 1r, the 
billionth hexadecimal digits of 1r2 , log(2) and log2 (2), and the ten billionth decimal 
digit of log(9/10). Details are given in Section 4. A previous result in this same 
spirit is the Rabinowitz-Wagon "spigot" algorithm for Jr. In that scheme, however, 
the computation of the digit at position n depends on all digits preceding position 
n. 

We are interested in computing in polynomially logarithmic space and polyno
mial time. This class is usually denoted SC (space= log°C1l(d) and time= d0 ( 1) 

Received by the editor October 11, 1995 and, in revised form, February 16, 1996. 
1991 Mathematics Subject Classification. Primary 11A05, 11Yl6, 68Q25. 
Key words and phrases. Computation, digits, log, polylogarithms, SC, 1r, algorithm. 
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where dis the place of the "digit" to be computed). Actually we are most interested 
in the space we will denote by SC* of polynomially logarithmic space and (almost) 
linear time (here we want the time= O(dlog0 (1l(d))). There is always a possible 
ambiguity when computing a digit string base b in distinguishing a sequence of 
digits a(b- 1)(b- 1)(b- 1) from (a+ 1)000. In this particular case we consider 
either representation as an acceptable computation. In practice this problem does 
not arise. 

It is not known whether division is possible in SC, similarly it is not known 
whether base change is possible in SC. The situation is even worse in SC*, where it 
is not even known whether multiplication is possible. If two numbers are in SC* (in 
the same base) then their product computes in time = 0( d2 log0 (l) (d)) and is in 
SC but not obviously in SC*. The d2 factor here is present because the logarithmic 
space requirement precludes the usage of advanced multiplication techniques, such 
as those based on FFTs. 

We will not dwell on complexity issues except to point out that different algo
rithms are needed for different bases (at least given our current ignorance about 
base change) and very little closure exists on the class of numbers with d-th digit 
computable in SC. Various of the complexity related issues are discussed in [6], [8], 
[9], [11], [14]. 

As we will show in Section 3, the class of numbers we can compute in SC* in 
base b includes all numbers of the form 

(1.1) 
00 p(k) 
L bckq(k)' 
k=l 

where p and q are polynomials with integer coefficients and c is a positive integer. 
Since addition is possible in SC*, integer linear combinations of such numbers are 
also feasible (provided the base is fixed). 

The algorithm for the binary digits of 1r, which also shows that 1r is in SC* in 
base 2, rests on the following remarkable identity: 

Theorem 1. The following identity holds: 

00 1 4 2 1 1 
11" = L w ( si + 1 - si + 4 - si + 5 - si + 6) · 

,=0 
(1.2) 

This can also be written as: 

= 
(1.3) '"""' Pi 7r=~16L'-J·' 

i=l 8 ~ 
[pi] = [4, 0, 0, -2, -1, -1, 0, 0] 

where the overbar notation indicates that the sequence is periodic. 

Proof. This identity is equivalent to: 

(1.4) 
-1l/v'2 4)2- 8x3 - 4)2x4 - 8x5 

1r- 8 dx, 
0 1- X 

which on substituting y := J2x becomes 

11 16y- 16 d 
7r= y 

0 y4 - 2 y3 + 4 y - 4 . 
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The equivalence of (1.2) and (1.4) is straightforward. It follows from the identity 

11/v'2 xk-1 il/v'2 oo 
--dx= L.:xk-l+Sidx 

o 1- x8 . o i=O 

1 00 1 

= y2k ~ 16i(8i + k)' 

That the integral (1.4) evaluates to 1f is an exercise in partial fractions most easily 
done in Maple or Mathematica. 0 

This proof entirely conceals the route to discovery. We found the identity (1.2) 
by a combination of inspired guessing and extensive searching using the PSLQ 
integer relation algorithm [3], [12]. 

Shortly after the authors originally announced the result (1.2), several colleagues, 
including Helaman Ferguson, Tom Hales, Victor Adamchik, Stan Wagon, Donald 
Knuth and Robert Harley, pointed out to us other formulas for 1f of this type. One 
intriguing example is 

00 1 2 2 1 1/2 1/2 1/4 
1f = L 16i ( 8i + 1 + 4i + 2 + 4i + 3 - 4i + 5 - 4i + 6 - 4i + 7)' 

,=0 

which can be written more compactly as 

00 ( -1)i 2 2 1 
1f = 2:.: 4i ( 4i + 1 + 4i + 2 + 4i + 3) · 

t=O 

In [2], this and some related identities are derived using Mathematica. 
As it turns out, these other formulas for n can all be written as formula (1.2) 

plus a rational multiple of the identity 

00 1 -8 8 4 8 2 2 1 
0 = L 16i ( 8i + 1 + 8i + 2 + 8i + 3 + 8i + 4 + 8i + 5 + 8i + 6 - 8i + 7). 

t=O 

The proof of this identity is similar to that of Theorem 1. 
The identities of the next section and Section 5 show that, in base 2, n 2 , log2 (2) 

and various other constants, including {log(2), log(3), ... , log(22)} are in SC*. (We 
don't know however if log(23) is even in SC.) 

We will describe the algorithm in Section 3. Complexity issues are discussed in 
[3], [5], [6], [7], [8], [9], [14], [19], [21] and algorithmic issues in [5], [6], [7], [8], [14]. 
The requisite special function theory may be found in [1], [5], [15], [16], [17], [20]. 

2. IDENTITIES 

As usual, we define the m-th polylogarithm Lm by 

(2.1) 
00 . 

z' 
Lm(z) := L ~' 

i=l z 
lzl < 1. 

The most basic identity is 

(2.2) 

which shows that log(1- 2-n) is in SC* base 2 for integer n. (See also section 5.) 
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Much less obvious are the identities 

(2.3) n2 = 36£2(1/2)- 36£2(1/4)- 12£2(1/8) + 6£2(1/64) 

and 

(2.4) log2(2) = 4£2(1/2)- 6£2 (1/4)- 2£2(1/8) + £2(1/64). 

These can be written as 

(2.5) 

(2.6) 

00 

2 '\"' a; 
7r = 36 ~ 2i "2 , 

i=l z 

2( ) ~ b; log 2 = 2 ~ 2; .2 , 
i=l z 

[a;] = [1, -3, -2, -3, 1, 0], 

[b;] = [2, -10,-7,-10, 2, -1]. 

Here the overline notation indicates that the sequences repeat. Thus we see that 
n2 and log2(2) are in SC* in base 2. These two formulas can alternately be written 

2 9 00 1 16 24 8 6 1 
7r = sL64i((6i+1)2- (6i+2)2- (6i+3)2- (6i+4)2 + (6i+5)2), 

t=O 

l 22 =~~~(-16 16 - 40 - 14 
og ( ) 8 ~ 64i (6i) 2 + (6i + 1)2 (6i + 2)2 (6i + 3)2 

t=O 

10 1 
- ( 6i + 4 )2 + ( 6i + 5) 2 ) . 

Identities (2.3)-(2-6) are examples of polylogarithmic ladders in the base 1/2 in 
the sense of [16]. As with (1.2) we found them by searching for identities of this 
type using an integer relation algorithm. We have not found them directly in print. 
However (2.5) follows from equation (4.70) of [15] with a= n/3,(3 = n/2 and 1 = 
1r /3. Identity (2.6) now follows from the well known identity 

(2.7) 12£2(1/2) = n2 - 6log2 (2). 

A distinct but similar formula that we have found for n2 is 

2 00 1 16 16 8 16 
7r = L 16i ( (8i + 1 )2 - (8i + 2)2 - (8i + 3)2 - (8i + 4)2 

t=O 

4 4 2 
- (8i+5)2 - (8i+6) 2 + (8i+7)2), 

which can be derived from the methods of section 1. 
There are several ladder identities involving L 3 : 

(2.8) 35/2((3)- n 2log(2) = 36£3 (1/2)- 18£3 (1/4)- 4£3 (1/8) + £ 3 (1/64), 

(2.9) 2log3 (2)- 7((3) = -24£3 (1/2) + 18£3 (1/4) + 4£3 (1/8)- £ 3 (1/64), 

(2.10) 

10 log3 (2)- 2n2log(2) = -48£3 (1/2) + 54£3 (1/4) + 12£3 (1/8)- 3£3(1/64). 

The favored algorithms for 1r of the last centuries involved some variant of 
Machin's 1706 formula: 

(2.11) 
7r 1 1 
- = 4 arctan - - arctan - . 
4 5 239 
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There are many related formulas [15], [16], [17], [20] but to be useful to us all the 
arguments of the arctans have to be a power of a common base, and we have not 
discovered any such formula for 1r . One can however write 

(2.12) 
7f 1 1 
- = 2 arctan !Cl + arctan lo. 
2 v2 v8 

This can be written as 

(2.13) 
00 ( 1)i i 

v'2n = 4f(1/2) + f(1/8) where f(x) := L ; + ~ 
2=1 

and allows for the calculation of v'2n in SC*. 
Another two identities involving Catalan's constant G, 1r and log(2) are: 

(2.14) G _ nlog(2) = ~ ci 

8 ~ 2l !±l J "2 , 
i=l 2 ~ 

[ci] = [1, 1, 1, 0, -1, -1, -1, 0] 

and 

(2.15) 
5 2 log2 (2) ~ di 

96 7f - --8- = ~ 2l !±l J "2 , 
i=l 2 ~ 

[di] = [1,0,-1,-1,-1,0,1,1]. 

These may be found in [17, p. 105, p. 151]. Thus 8G -nlog(2) is also in SC* in 
base 2, but it is open and interesting as to whether G is itself in SC* in base 2. 

A family of base 2 ladder identities exist: 

(2.16) 
Lm(1/64) _ Lm(1/8) _ 2 Lm(1/4) + 4 Lm(1/2) _ 5 ( -log(2))m 

6m--1 3m--1 2m--1 9 _'----c9,_-m_c__;-! -'--'---

7r4(-log(2))m-4 

486 (m- 4)! 

403((5) (-log(2))m-S = O 
1296 (m- 5)! · 

The above identity holds for 1 :S; m :S; 5; when the arguments to factorials are 
negative they are taken to be infinite so the corresponding terms disappear. See 
[16, p. 45]. 

As in the case of formula (1.2) for n, colleagues of the authors have subsequently 
pointed out several other formulas of this type for various constants. Three exam
ples reported by Knuth, which are based on formulas in [13, p. 17, 18, 22, 47, 139], 
are 

2ln 1 2 = = ~ - 1- ~ ~ ~ 
y'2 ( +v'2) L16i(8i+1 +8i+3+8i+5+8i+7), 

,=0 

(X) 1 1 1/2 1/4 1/8 
v'2 arctan(1/v'2) = "'""""-(-- - -- + -- - --) 

~ 16i 8i + 1 8i + 3 8i + 5 8i + 7 , 
2=0 

(X) 1 1 1 1/2 1/4 
arctan(1/ 3) = L 16i (8i + 1 - 8i + 2 - 8i + 4- 8i + 5). 

2=0 

Thus these constants are also in class SC*. Some other examples can be found 
in [18]. 
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3. THE ALGORITHM 

Our algorithm to compute individual base-b digits of certain constants is based 
on the binary scheme for exponentiation, wherein one evaluates xn rapidly by suc
cessive squaring and multiplication. This reduces the number of multiplications to 
less than 2log2 ( n). According to Knuth [14], where details are given, this trick 
goes back at least to 200 B.C. In our application, we need to perform exponentia
tion modulo a positive integer c, but the overall scheme is the same- one merely 
performs all operations modulo c. An efficient formulation of this algorithm is as 
follows. 

To compute r = bn mod c, first set t to be the largest power of two ::=; n, and set 
r = 1. Then 

A: if n 2': t then r +--- br mod c; n +--- n - t; endif 
t +--- t/2 
if t ;:::: 1 then r +--- r 2 mod c; go to A; endif 

Here and in what follows, "mod" is used in the binary operator sense, namely 
as the binary function defined by x mod y := x- [x/y]y. Note that the above 
algorithm is entirely performed with positive integers that do not exceed c2 in size. 
Thus it can be correctly performed, without round-off error, provided a numeric 
precision of at least 1 + 2log2 c bits is used. 

Consider now a constant defined by a series of the form 

00 1 

S = L bckp(k)' 
k=O 

where band care positive integers and p(k) is a polynomial with integer coefficients. 
First observe that the digits in the base b expansion of S beginning at position n+ 1 
can be obtained from the fractional part of bnS. Thus we can write 

(3.4) 
00 bn-ck 

bns mod 1 = L -(k) mod 1 
k=O p 

ln/cJ bn-ck mod p(k) 00 bn-ck 

Lk--O p(k) mod 1 + L -( -) mod 1. 
k=ln/cJ+l p k 

For each term of the first summation, the binary exponentiation scheme is used 
to evaluate the numerator. Then floating-point arithmetic is used to perform the 
division and add the result to the sum mod 1. The second summation, where 
the exponent of b is negative, may be evaluated as written using floating-point 
arithmetic. It is only necessary to compute a few terms of this second summation, 
just enough to insure that the remaining terms sum to less than the "epsilon" of 
the floating-point arithmetic being used. The final result, a fraction between 0 and 
1, is then converted to the desired base b. 

Since floating-point arithmetic is used here in divisions and in addition modulo 
1, the result is of course subject to round-off error. If the floating-point arithmetic 
system being used has the property that the result of each individual floating-point 
operation is in error by at most one bit (as in systems implementing the IEEE 
arithmetic standard), then no more than log2 (2n) bits of the final result will be 
corrupted. This is actually a generous estimate, since it does not assume any 
cancelation of errors, which would yield a lower estimate. In any event, it is clear 
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that ordinary IEEE 64-bit arithmetic is sufficient to obtain a numerically significant 
result for even a large computation, and "quad precision" (i.e. 128-bit) arithmetic, 
if available, can insure that the final result is accurate to several digits beyond 
the one desired. One can check the significance of a computed result beginning 
at position n by also performing a computation at position n + 1 or n - 1 and 
comparing the trailing digits produced. 

The most basic interesting constant whose digits can be computed using this 
scheme is 

00 1 
log(2) = L k2k 

k=l 

in base 2. Using this scheme to compute hexadecimal digits of 1r from identity (1.2) 
is only marginally more complicated, since one can rewrite formula (1.2) using four 
sums of the required form. Details are given in the next section. In both cases, in 
order to compute the n-th binary digit (or a fixed number of binary digits at the 
n-th place) we must sum O(n) terms of the series. Each term requires O(log(n)) 
arithmetic operations and the required precision is O(log(n)) digits. This gives 
a total bit complexity of O(nlog(n)M(log(n))) where M(j) is the complexity of 
multiplying j bit integers. So even with ordinary multiplication the bit complexity 
is O(nlog3 (n)). 

This algorithm is, by a factor of log(log(log( n))), asymptotically slower than the 
fastest known algorithms for generating the n-th digit by generating all of the first 
n digits of log(2) or 1f [7]. The asymptotically fastest algorithms for all the first 
n digits known requires a Strassen-Schi:inhage multiplication [19]; the algorithms 
actually employed use an FFT based multiplication and are marginally slower than 
our algorithm, from a complexity point of view, for computing just the n-th digit. Of 
course this complexity analysis is totally misleading: the strength of our algorithm 
rests mostly on its easy implementation in standard precision without requiring 
FFT methods to accelerate the computation. 

It is clear that the above methods can easily be extended to evaluate digits of 
contstants defined by a formula of the form 

s - ~ __EQ;)__ 
- D bck (k)' 

k=O q 

where p and q are polynomials with integer coefficients and cis a positive integer. 
Similarly if p and q are slowly growing analytic functions of various types the 
method extends. 

4. COMPUTATIONS 

We report here computations of w, log(2), log2 (2), w2 and log(9/10), based 
on the formulas (1.1), (2.2), (2.5), (2.6) and the identity log(9/10) = -£1 (1/10), 
respectively. 

Each of our computations employed quad precision floating-point arithmetic for 
division and sum mod 1 operations. Quad precision is supported from Fortran on 
the IBM RS6000/590 and the SGI Power Challenge (R8000), which were employed 
by the authors in these computations. We were able to avoid the usage of explicit 
quad precision in the exponentiation scheme by exploiting a hardware feature com
mon to these two systems, namely the 106-bit internal registers in the multiply-add 
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operation. This saved considerable time, because quad precision operations are 
significantly more expensive than 64-bit operations. 

Computation of 1r2 and log2(2) presented a special challenge, because one must 
perform the exponentiation algorithm modulo k2 instead of k. When n is larger than 
only 213 , some terms of the series (2.5) and (2.6) must be computed with a modulus 
k2 that is greater than 226 . Squares that appear in the exponentiation algorithm will 
then exceed 252 , which is nearly the maximum precision of IEEE 64-bit floating
point numbers. When n is larger than 226 , then squares in the exponentiation 
algorithm will exceed 2104 , which is nearly the limit of quad precision. 

This difficulty can be remedied using a method which has been employed for 
example in searches for Wieferich primes [10]. Represent the running value r in 
the exponentiation algorithm by the ordered pair (r1, r2), where r = r1 + kr2, and 
where r1 and r2 are positive integers less than k. Then one can write 

r 2 = (r1 + kr2) 2 = ri + 2r1r2k + r~k2 . 

When this is reduced mod k2, the last term disappears. The remaining expression is 
of the required ordered pair form, provided that ri is first reduced mod k, the carry 
from this reduction is added to 2r1r2, and this sum is also reduced mod k. Note 
that this scheme can be implemented with integers of size not exceeding 2k2. Since 
the computation of r 2 mod k2 is the key operation of the binary exponentiation 
algorithm, this means that ordinary IEEE 64-bit floating-point arithmetic can be 
used to compute the n-th hexadecimal digit of 1r2 or log2 (2) for n up to about 
224 . For larger n, we still used this basic scheme, but we employed the multiply
add "trick" mentioned above to avoid the need for explicit quad precision in this 
section of code. 

Our results are given below. The first entry, for example, gives the 106-th through 
106 +13-th hexadecimal digits of 1r after the "decimal" point. In all cases we did the 
calculations twice - the second calculation was similar to the first, except shifted 
back one position. Since this changes all the arithmetic performed, it is a highly 
rigorous validity check. Thus we believe that all the digits shown below are correct. 

These computations were done at NASA Ames Research Center, using worksta
tion cycles that otherwise would have been idle. 

5. LOGS IN BASE 2 

It is easy to compute, in base 2, the d-th binary digit of 

(5.1) log(l- T") = £ 1 (1/2"). 

So it is easy to compute log(m) for any integer m that can be written as 

(5.2) 

In particular the n-th cyclotomic polynomial evaluated at 2 is so computable. A 
check shows that all primes less than 19 are of this form. The beginning of this list 
is: 

{2,3,5, 7,11,13, 17,31,43,57, 73,127,151,205,257}. 

Since 

218 - 1 = 7 . 9 . 19 . 73, 



14. RAPID COMPUTATION OF POLYLOGARITHMIC CONSTANTS (1997) 229

THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS 911 

Constant: Base: Position: Digits from Position: 
7r 16 106 26C65E52CB4593 

107 17 AF5863EFED8D 
108 ECB840E21926EC 
109 85895585A0428B 
1010 921 C73C6838FB2 

log(2) 16 106 418489A9406EC9 
107 815F479E2B9102 
108 E648F40940El3E 
109 B1EEF1252297EC 

Jr2 16 106 685554El228505 
107 9862837 ADSAABF 
108 4861AAF8F861BE 
109 437 A2BA4Al3591 

log2 (2) 16 106 2EC7EDB82B2DF7 
107 3337 4B4 7882B32 
108 3F55150FlAB3DC 
109 SEA 7C885CEFCE8 

log(9 /10) 10 106 80174212190900 
107 21093001236414 
108 01309302330968 
lOg 44066397959215 
1010 82528693381274 

and since 7, yg and 73 are all on the above list we can compute log(19) in SC* 
from 

log(19) = log(218 - 1) -log(7) -log(9) -log(73). 

Note that 211 - 1 = 23 · 89 so either both log(23) and log(89) are in SC* or neither 
is. 

We would like to thank Carl Pomerance for showing that an identity of type 
(5.2) does not exist for 23. This is a consequence of the fact that each cyclotomic 
polynomial evaluated at two has a new distinct prime factor. We would also like 
to thank Robert Harley for pointing out that 29 and 37 are in SC* in base 2 via 
consideration of the Aurefeuillian factors 22n-1 + 2n + 1 and 22n-1 - 2n + 1. 

6. RELATION BOUNDS 

One of the first questions that arises in the wake of the above study is whether 
there exists a scheme of this type to compute decimal digits of 1r. At present 
we know of no identity like (1.2) in base 10. The chances that there is such an 
identity are dimmed by some numerical results that we have obtained using the 
PSLQ integer relation algorithm [3], [12]. These computations establish (with the 
usual provisos of computer "proofs") that there are no identities (except for the 
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case n = 16) of the form 

a1 1 00 1 [ a2 a3 am+ 1 ] 

7r = a0 + ao 2::= n" mk + 1 + mk + 2 + ... + mk + m ' 
k=O 

where n ranges from 2 to 128, where m ranges from 1 to min(n, 32), and where 
the Euclidean norm of the integer vector ( ao, a1, · · • , am+1) is 1012 or less. These 
results of course do not have any bearing on the possibility that there is a formula 
not of this form which permits computation of 1r in some non-binary base. 

In fact, J. P. Buhler has reported a proof that any identity for 1r of the above 
K 

form must have n = 2K or n = .;2 . This also does not exclude more complicated 
formulae for the computation of 1r base 10. 

7. QUESTIONS 

As mentioned in the previous section, we cannot at present compute decimal 
digits of 1r by our methods because we know of no identity like (1.2) in base 10. 
But it seems unlikely that it is fundamentally impossible to do so. This raises the 
following obvious problem: 

1] Find an algorithm for the n-th decimal digit of 1r in SC*. It is not even clear 
that 1r is in SC in base 10 but it ought to be possible to show this. 

2] Show that 1r is in SC in all bases. 
3] Are e and .;2 in SC (SC*) in any base? 
Similarly the treatment of log is incomplete: 
4] Is log(2) in SC* in base 10? 
5] Is log(23) in SC* in base 2? 
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15. Similarities in irrationality proofs for π, ln 2,
ζ(2), and ζ(3) (2001)

Paper 15: Dirk Huylebrouck, “Similarities in irrational proofs for π, ln 2, ζ(2) and
ζ(3),” American Mathematical Monthly, vol. 108 (2001), p. 222–231. Copyright
2001 Mathematical Association of America. All Rights Reserved.

Synopsis:
Ever since antiquity, mathematicians have wondered whether numbers such

as π are rational, the quotient of two integers. In fact, one prime motivations
in computations of π through the centuries was the hope that the digits produced
might provide some insight into this question. In 1761, Lambert settled the question
for π, but the irrationality of some other constants remains in question.

In this paper, the author presents, in a single proof, irrationality proofs for
π, ln 2, ζ(2) =

∑∞
k=1 1/k2 and ζ(3) =

∑∞
k=1 1/k3. These proofs are surprisingly

accessible — for the most part they involve only operations of calculus, together
with some properties of Legendre polynomials.
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Similarities in Irrationality Proofs 
for 1r, ln2, ((2), and ((3) 

Dirk Huylebrouck 

1. FOUR REMARKABLE NUMBERS. The first two numbers, n and ln2, are fa
miliar to high school graduates. Their expressions as series are standard: 

n = 1- ~ + ~- ~ + · · · = 2:C-1Y. - 1-
3 5 7 iO:O 2i + 1 

(Leibniz' series) 

1 1 1 " i-1 1 ln2 = 1-- +--- + · · · = L_.,(-1) ·- = 0.693147 .... 
2 3 4 iO:l i 

Similar expressions define the less familiar ~ (2) and ~ (3): 

1 1 1 1 
~(2) = 1 + 2 + 2 + ... +~+ ... =I:~= 1.64493 ... 

2 3 l iO:I l 

1 1 1 1 
and ~(3) = 1 + 3 + 3 + · · · + ~ + · · · = L ~ = 1.20205 .... 

2 3 l iO:l l 

The irrationality of ;r dominated a good 2000 years of mathematical history, starting 
with the closely related circle-squaring problem of the ancient Greeks. In 1761 Lam
bert proved the irrationality of ;r (Lindemann would complete the transcendence proof 
in 1882 [2, pp. 52 and 172]). The interest in ;r's younger brother ~(3) started only a 
few centuries ago, but the number resisted until 1978, when R. Apery presented his 
'miraculous' proof [14]. Even after Apery's lecture, scepticism remained general, un
til Beukers' simplified version confirmed it [3]. The character of the ~-numbers still 
fascinates the mathematical community, and even very recently it was upset by results 
of Tanguy Rivoal (communication J. Van Geel, University of Ghent). 

Essential in the simplified proofs are the representations of ~(2) and ~(3) as inte
grals. Since 

= L t xi dx t / dy 
io:O Jo Jo 

[ 
i+l ]I [ i+l ]' 1 =I: ;__ · !-- =I: . 2' 

iO:O l + 1 0 l + 1 0 iO:O (! + 1) 

we have 

~(2) = j't - 1-dxdy. Jo 1- xy 
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Similarly for~ (3): 

f·t ~lnxydxdy = j't I>iyilnxydxdy = 2j't Lxi/lnxdxdy 
Jo 1 xy Jo i::co Jo i:::o 

= 2 L t xilnxdx t /dy 
;:::o Jo Jo 

= 2 L -.-1- ([xi+ 1 lnx]~- t xi+i~dx) -. -1-
;:::o 1 + 1 ] 0 x 1 + 1 

-2 -- --- --- -2 - -2 3 1 ( 1 ) 1 1 
- ~i+1 i+1 i+1- ~(i+1)3- ~( ). 

Thus, 

1 !1' 1 ~(3) = -- --lnxydxdy. 
2 0 1- xy 

Incidentally, the integral for ~ (2) can be evaluated very easily. This computation is 
not really needed here, but it provides an illustration of a calculation involving a zeta 
expression. The easiest components of Apostol's, Beuker's, and Kalman's results are 
combined, and except for some elementary knowledge about double integrals, no other 
prerequisites seem needed: see [1], [3], [10]. The combination provides a proof at 
graduate level for Euler's ~ (2) result; see [4] for a more rigorous and general proof. 

First, rewrite the difference of two integrals using the substitution X = x 2 and 
y = y2: 

!11 
( 1 1 ) flo' ( 2xy ) -- - -- dxdy - dxdy 

0 1 - xy 1 + xy - 0 1 - x2y2 

lf'r'( 1 ) = 2 Jo 1 - XY dXdY. (1) 

Next, obtain their sum: 

!1 ! ( 1 1 ) !1' 1 -- + -- dxdy = 2 dxdy. 
0 1 - xy 1 + xy 0 1 - x2y2 

(2) 

Adding (1) and (2) gives 

!1 ! 1 1 !11 1 !1' 1 2 --dxdy =- dXdY +2 2 2dxdy, 
0 1 - xy 2 0 1 - XY 0 1 - x y 

or 

1 !1' 1 2~(2) = -~(2) + 2 2 2dxdy. 
2 0 1- X y 

Thus, 

3 !11 
1 -~(2) = 2 2dxdy. 

4 0 1- X y 
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Substituting X = sine I cos cp and y = sin cp I cos e yields a Jacobian equal to 
1 - tan2 e tan2 cp and this is the denominator of the integrand. 

41 'f 1 'f-8 4 :rr2 :rr2 
=- de dcp = -- = -. 

3 0 0 3 8 6 

This is Euler's well-known result: S"(2) = :rr2 16. 

2. FOUR PROOFS IN ONE. The Borweins collected irrationality proofs for these 
four numbers [5, pp. 353, 366, 369, and 370], in a very rigorous treatise. In order to 
make their similarity more evident, we first summarise the highlights of the demon
strations in general terms. 

Suppose the irrationality of a number~ must be shown. In the four cases we present 
here, a family of integrals (j E N) concerning that number is proposed: 

where Rj and Sj E Q; f is an unknown function. 
Now if~ were a fraction alb, this family of integrals would yield rational expres

sions J0
1 xj f(x)dx = CjiDj, where Cj and Dj E Z. Integer multiples of these inte

grals and their sums would again exhibit this property. Thus, if Pnj E Z and n EN: 

11 n n 11 n C· E 
LPnjXj f(x)dx = LPnj Xj f(x)dx = LPnj-1 = _!':_, 

0 j=O j=O 0 j=O Dj Fn 

with again En and Fn E Z. 
Apply this property to the Legendre polynomials: 

For example, P0 (x) = 0, P1(x) = 1- 2x, P 2 (x) = 2- 12x- 12x2 • Note that 
Pnj E Z. 

Thus, for the given family of integrals, 

11 A 
Pn(x)f(x)dx = _!':_, 

0 Bn 

with An, Bn E Z. 
The choice of Legendre polynomials is inspired by the possibility of performing 

integrations by parts easily. Indeed, since Pn(O) = 0 = Pn(l), and similarly for the 
derivatives of xn(l - x)n up to the order n, many terms can be simplified: 

1
1 11 1 d ( dn-1 ) 

Pn(x)f(x)dx = -- --1 (xn(l- xt) f(x)dx 
o o n! dx dxn-
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[
1 dn-1 ]I 

= ---1 (xn(l- xn f(x) 
n! dxn- o 

11 1 d dn-i df(x) 
- ---- (xn(l-xr) --dx 

o n! dx dxn-l dx 

11 1 dn-1 n n df(x) 
=0- ---(x (1-x) )--dx. 

0 n! dxn-1 dx 

Integrating by parts n times leads to 

11 1 dn f(x) 
-xn(l- x)n---dx. 

o n! dxn 

In the four encountered cases the function f (x) happens to be such that 

\1 1 1 dn f(x) I \1 1 1 I -xn(l- xr--dx = - (g(x)r h(x)dx ' 
o n! dxn 0 n! 

where the maximum value M of g(x) is small enough to ensure that 

In addition, all the integrals J0
1 Pn (x) f (x )dx are non-zero, and this immediately im

plies the irrationality of~: 

Indeed, for any n E N, IAnl is a positive integer so this is impossible; ~ cannot be 
rational. 

Of course, the difficulty in the proofs lies in the appropriate choice of f(x). It 
must yield a family of non-zero integrals whose members are easily expressed as a 
combination rational number and ~. In addition, it should simultaneously be possible 
to maximize their product with an integer that becomes larger and larger, and still 
ensure the indicated convergence to 0. 

3-1. Irrationality of 7T' Take f(x) = sin(rrx). It is a standard calculus exercise 
to show that the members of family of integrals of the form Jd xj sin(rrx)dx are 
polynomials in rr of degree at most j, divided by rrj. The linear combinations 
J0

1 Pn(x) sin(rrx)dx are non-zero, and thus, if rr were the rational number ajb: 

0 < IAnl =\an 11 
Pn(X) sin(rrx)dx\ 

=\an t _!_xn(l- xr~Csinrrx)dx\:::: \an t _!_xn(l- xtnndx\, Jo n! dxn Jo n! 

since the n-th order derivative of sin(rrx) is ±rrn sin(rrx) or ±nn cos(rrx). The max
imum value of x(1 - x) is 1/4, attained at x = 1/2. Thus, the final expression is less 
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than 

which is arbitrary small for large values of n; see [13]. 

3-11. Irrationality ofln2 The choice is f(x) = 1/(1 + x). An Euclidian division of 
xj by 1 + x allows us to compute the family of integrals 

11 xj 1 1 
--dx = - - -- + · · · =r= 1 ± ln2. 

0 1+x j j-1 

Ifln2 were ajb, then 

0 < IAnl = l(bdn) [' Pn(X)-1-dxl 
Jo 1 +x 

(where dn = LCM{1, 2, 3, ... , n}) 

= l(bdn) [' 2._xn(l- xY [!!!:__ (-1 )] dxl 
Jo n! dxn 1 + x 

::,: l(bdn) [' (x(l- x))n -. 1 dxj. 
Jo 1 +x 1 +x 

since the n-th order derivative of 1/(1 + x) is ( -1) ... ( -n)(l/(1 + x)t+1 • Now on 
[0, 1], the maximum value of x(l - x)/(1 + x) is 3- 2v'2, achieved atx = -1 + v"i. 
A rough inequality from number theory is dn = LCM{1, ... , n}::,: 3n. Finally, since 
(3(3 - 2v"i))n < 1, the irrationality of ln2 is established; see [5, p. 370]. 

3-111. Irrationality of ((2) The choice is 

.f(x) = [' (1- y)ndy. 
] 0 1- xy 

Each member of the family of integrals 

11 ·[11(1-y)n J x 1 --- dy dx 
o o 1- xy 

is a sum of integrals of the form 

!1 1 xrys 
--dydx, with r, sEN. 

0 1- xy 

These can again be computed through an Euclidian division of xi yk by 1 - xy, which 
gives a sum of integrals of the form 

!11 !11 xP !11 yq !11 1 xpyqdydx, --dydx, --dydx or --dydx. 
0 0 1 - xy 0 1 - xy 0 1 - xy 

The latter is ~ (2), while the others are sums of fractions, which can be computed using 
partial integration for the integral J xmln xdx. Thus when r ;I= s, 
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fi l xry' 
--dydx 

0 1- xy 

is a sum of fractions whose common denominator is the square ofleast common mul
tiple (LCM) of the first n + 1 integers. When r = s, the integral equals 

Thus, 

11 1 I lA I Pn(x)f(x)dx = +• 
0 dn+l 

where dn+l is the LCM of the first n + 1 natural numbers and An E Z0 . 

Now 

(3) 

On [0, 1], the maximum value of x(1- x)y(l- y)/(1- xy) is (( -1 + .JS)/2)5, and 
is attained for x = y = ( -1 + .JS) /2. Together with dn+ 1 ~ 3n+1, this shows that the 
expression (3) is less than 

which establishes the irrationality of t(2); see [3]. 

3-IV. Irrationality of ((3) Take 

11 Pn(Y) 
f(x) = -. --lnxydxdy. 

0 1- xy 

The members of the family of integrals 

xj _n_lnxydxdy dx 11 [11 p (y) J 
o o 1- xy 

are computed through the derivative of 
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!11 xr+t y'+t 
---dxdy 

0 1-xy 

with respect to t, which is 

!1 1 xr+t ys+t 
---lnxydxdy. 

0 1-xy 

If r f. s, this is a sum offractions since d(r + t)-m fdt = -mf(r + t)-m-l, and the 
LCM of the denominators is (d,+1) 3 . 

When r = s, the result is 

:L :!_ 1 = :L -2 
i>r+t dt (r + t)2 i>r+t (r + t)3 

= -2 (;(3)- (1 + ... + ~ + 1 + ... + 1 )) . 
r 3 (r+1)3 (r+t)3 

Thus, 

It I IAnl 
Jo Pn(x)f(x)dx = ld~+ll, 

where An E Z and dn+1 is the LCM of the first n + 1 natural numbers. 
Now 

!Ani= ~d~+l1l Pn(X) [1 1 t~(~~ lnxydy J dxl 

= ~d~+l ff't Pn(x)Pn(Y) dxdydz\ 
] 0 1 - (1- xy)z 

(integration by parts) 

I !!• t xn (1 - x )n p (y) yn zn I ( 1 z ) 
= d~+l Jo (1- (1- x~)z)n+1 dxdydz put w = 1- (1-- xy)z 

= ld3 ff' t (1 - xt Pn(y)(1 - w)n dxdydw\ (integration by parts) 
n+l }0 1- (1 - xy)w 

I !!• t xn(l - x)nyn(l - y)nwn(l - w)n I 
= d~+l Jo (1 - (1 - xy)w)n+l dxdydw 

= ~d~+~·ff' t (w(l- x)y(l- y)w(l- w))n 1 dxdydwi (4) 
] 0 1 - (1 - xy)w 1 - (1 - xy)w 

The maximum value of x(l- x)y(1- y)w(1- w)/(1- (1- xy)w) on [0, 1] is 
( ..fi - 1 )4, and is attained for x = y = -1 + ..fi and z = 1/ ..fi. Together with 
dn+l ::::; 3n+l, this shows that the expression (4) is less than 

< 1, 

which establishes the irrationality of ;(3), see [3]. 
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4. THE GOLDEN SECTION. In our proofs, the maximum values of certain func
tions play an important role. They were attained at the points 1/2, ( -1 + JS) /2, and 
-1 + -/i. There is a coincidental link since they are all related to the golden section. 

Classically, the golden section¢ arises when a line segment of length x greater than 
1 is divided into two parts. This could be done by cutting it into two halves (recall that 
1/2 popped up in the irrationality proof of n). Or, if unequal segments are desired, 
one could look for two pieces of lengths 1 and x - 1, such that the ratio xI 1 equals 
the ratio 1/(x- 1). This equality produces the quadratic equation x2 - x- 1 = 0, of 
which 1.6180 ... =¢is the positive solution. 

More generally, the positive roots of x 2 - nx - 1 = 0 yield the family of metallic 
means, for various values of n E N. For n = 2, we get the silver mean u Ag = 1 + -/i, 
for n = 3 the bronze mean Usr = (3 + ,Jl3)j2, etc. The properties of these numbers 
have been described in numerous publications; for a comprehensive survey, see [6], 
while [8] and [12] pointed out that some authors often had too much enthusiasm. A 
common misconception is that a rectangle of width 1 and length ¢ would be the "most 
elegant" one and thus is used in various designs. However, no reliable statistical studies 
confirm this statement about the optimal choice provided by the golden number [7]. 

A statement that comes close is the fact that ¢ would be "the most irrational of all 
irrational numbers" because its representation as a continued fraction contains only 1 s: 

1 
c/J=l+ I =[1,1, ... ). 

1+-J+ .. 

The silver mean would be "the second most irrational number" since u Ag = [2, 2, ... ], 
etc.; see [6]. Yet, this again does not provide an interpretation of the golden section an 
optimal solution, in the standard mathematical sense. 

However, the various irrationality proofs lead to a property of these metallic means 
where the expression "optimal solution" has its common mathematical meaning. 
Table 1 illustrates some interesting facts: 

TABLE 1. 

Proof Function used Maximum Attained at Name 

1 1 2-1 7r x(l- x) X=- x=-
4 2 

1n2 
x(1- x) 

3- 2v'2 x=-1+v'2 -1 
(1 +x) 

~aAg 

sC2l 
x(1- x)y(l - y) ( (-l: "") r (-1+v'S) 

-</>-1 
(1 - xy) 

x=y= 
2 

x(1- x)y(1 - y)w(1 - w) 
( -1 + v'2)4 

1 
Wl X= y = -1 + Jl· Z =- -1 

(1- (1 - xy)w) ' v'2 
-UAg 

A substitution of X = -1/x andY= -1/y in x(l - x)y(l - y)/(1 - xy) changes 
the expression into (1 + x)(1 + y)/(xy(xy- 1)). Its extremum is obtained at X= 
Y =¢.Similarly, crAg provides the optimal solution to (X- 1)/((X + 1)X). In these 
cases, the word "optimal" is used in the usual mathematical way, in contrast to the 
loose terms often used in golden section papers. The geometric interpretation of these 
facts is developed in a forthcoming text [9]. 
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There are other links between ~(2) and ~(3), and the metallic means. For example, 
in the easy proof for Euler's ~ (2) result, hyperbolic sines and cosines (x = sinh e 1 
cosh¢ and y = sinh¢ I cosh) can be substituted instead of the similar expressions 
with circular sines and cosines. In that case, 

2 1+oo 
{(2) = (1n ( 1 +h)) + 2 (t- argcosh (sinh t)) dt. 

ln(l+vZ) 

Now the silver section 1 + .J2 appears, while in Table 1, ~(2) was already linked to the 
golden section. More involved computations relate ~(3) to the golden section, too [11, 
p. 156]: 

These relations did not inform us about the "optimal" properties of the metallic num
bers, and we give them here for sake of completeness. 

· Incidentally, since 

!!!11 (1- xy) 1 1 
~(4) = dxdydwdv = 1 +- + - + · · ·, 

0 (1 - (1 - xy)w)(l - (1 - xy)v) 24 34 

a natural generalization of the functions used in the study of the irrationality of ~(2) 
and ~(3) would be 

x(l - x)y(1- y)w(l - w)v(1 - v)(1 - xy) 

(1 - (1 - xy)w)(1 - (1 - xy)v) 

The maximum of this function is 

(s- v'I3f ( -7 + 2v'I3Y 
54( -3 + v'I3)4 

obtained for z = w = (1 - -J(X)i})l(l - xy) and x = y = ( -3 + v'J3)12. Here 
again a metallic mean is found, and it is the next one, -asr - 1 . Unfortunately, it does 
not provide a proof for the irrationality of ~(4) (and by extension for ~(5)) since the 
members of the family of integrals are not combinations of~ ( 4) with rational numbers. 
The quest for these proofs remains open. 
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Solution to Sherwood Forest Puzzle on p. 143 of the February issue: 

The idea of 'singer of a person's song to another' can be taken as an operation *• 
that is, "x * y = z" denotes "x's song is sung toy by z". Thus: 

l) we have closure of* (everyone's song is sung to everyone by a singer), 
2) we have an 'identity' (the priest), 

3) we have 'inverse' for everyone (mates), 

4) the (unavoidably) cryptic third paragraph is the associativity of the opera
tion*· 

Thus we have a group structure. But, 10,201 = 101 x 101 and 101 is a prime, 
and any group of order of square of a prime is abelian. 

Thus, it was Mari<m who sang Little John's song to Robin. For the second 
question, it suffices that we have a group structure since we have Marian = 
Robin * Little John. We should recall Marian and Robin are mates and so we 
can left multiply the equation by Robin's inverse to get Marian* Marian= 
Little John. And so Little John sang to Marian her song. 
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Paper 16: Jeremy Gibbons, “Unbounded spigot algorithms for the digits of pi,”
American Mathematical Monthly, vol. 113 (2006), p. 318–328. Copyright 2006
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Synopsis:
In 1995, Rabinowitz and Wagon presented a “spigot” algorithm for π, in a

paper included earlier in this volume. One limitation of the Rabinowitz-Wagon
algorithm was that the computation was inherently bounded — one has to decide
in advance that one will compute up to a certain number of digits.

In this paper, Gibbons presents a different spigot algorithm, based on the same
infinite series that lies behind the Rabinowitz-Wagon algorithm, but which avoids
this limitation. One does not need to commit in advance to compute a certain
maximum number of digits. In theory, the algorithm could continue to gener-
ate decimal digits of π indefinitely. Gibbon’s algorithm is not as simple as the
Rabinowitz-Wagon algorithm, but it still can be stated (and implemented) very
concisely.
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Unbounded Spigot Algorithms 
for the Digits of Pi 

Jeremy Gibbons 

1. INTRODUCTION. Rabinowitz and Wagon [8] present a "remarkable" algorithm 
for computing the decimal digits of n, based on the expansion 

(1) 

Their algorithm uses only bounded integer arithmetic and is surprisingly efficient. 
Moreover, it admits extremely concise implementations. Witness, for example, the 
following (deliberately obfuscated) C program due to Dik Winter and Achim Flam
menkamp [1, p. 371, which produces the first 15,000 decimal digits of n: 

a[52514] ,b,c=52514,d,e,f=1e4,g,h; 
main() {for (; b=c-=14; h=printf ( "%04d", e+d/f)) 

for(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b] :f/5),a[b]=d%--g;} 

Rabinowitz and Wagon call their algorithm a spigot algorithm, because it yields 
digits incrementally and does not reuse digits after they have been computed. The 
digits drip out one by one, as if from a leaky tap. Tn contrast, most algorithms for 
computing the digits of n execute inscrutably, delivering no output until the whole 
computation is completed. 

However, the Rabinowitz-Wagon algorithm has its weaknesses. In particular, the 
computation is inherently bounded: one has to commit in advance to computing a 
certain number of digits. Based on this commitment, the computation proceeds on an 
appropriate finite prefix of the infinite series (1 ). In fact, it is essentially impossible 
to determine in advance how big that finite prefix should be for a given number of 
digits-specifically, a computation that terminates with nines for the last few digits of 
the output is inconclusive, because there may be a "carry" from the first few truncated 
terms. Rabinowitz and Wagon suggest that "in practice, one might ask for, say, six 
extra digits, reducing the odds of this problem to one in a million" [8, p. 197], a not 
entirely satisfactory recommendation. Indeed, the implementation printed at the end 
of their paper is not quite right [1, p. 82], sometimes printing an incorrect last digit 
because the finite approximation of the infinite series is one term too short. 

We propose a different algorithm, based on the same series (I) for n but avoiding 
these problems. We also show the same technique applied to other characterizations 
of n. No commitment need be made in advance to the number of digits to be com
puted; given enough memory, the programs will generate digits ad infinitum. Once 
more (necessarily, in fact, given the previous property), the programs are spigot algo
rithms in Rabinowitz and Wagon's sense: they yield digits incrementally and do not 
reuse them after producing them. Of course, no algorithm using a bounded amount 
of memory can generate a nonrepeating sequence such as the digits of n indefinitely, 
so we have to allow arbitrary-precision arithmetic, or some other manifestation of dy
namic memory allocation. Like Rabinowitz and Wagon's algorithm, our proposals are 
not competitive with state-of-the-art arithmetic-geometric mean algorithms for com
puting n [2], [9]. Nevertheless, our algorithms are simple to understand and admit 
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almost as concise an implementation. As evidence to support the second claim, here 
is a (deliberately obscure) program that will generate as many digits of n as memory 
will allow: 

>pi = g(1,0,1,1,3,3) where 
> g(q,r,t,k,n,l) = if 4*q+r-t<n*t 
> then n: g(10*q,10*(r-n*t),t,k,div(10*(3*q+r))t-10*n,l) 
> else g(q*k,(2*q+r)*l,t*l,k+1,div(q*(7*k+2)+r*l)(t*l),l+2) 

The remainder of this paper provides a justification for the foregoing program, and 
some others like it. 

These algorithms exhibit a pattern that we call streaming [3]. Informally, a stream
ing algorithm consumes a (potentially infinite) sequence of inputs and generates a 
(possibly infinite) sequence of outputs, maintaining some state as it goes. Based on the 
current state, at each step there is a choice between producing an element of the out
put and consuming an element of the input. Streaming seems to be a common pattern 
for various kinds of representation changers, including several data compression and 
number conversion algorithms. 

The program under discussion is written in Haskell [5], a lazy functional program
ming language. As a secondary point of this paper, we hope to convince the reader 
that such languages are excellent vehicles for expressing mathematical computations, 
certainly when compared with other general-purpose programming languages such as 
Java, C, and Pascal, and arguably even when compared with computer algebra systems 
such as Mathematica. In particular, a lazy language allows direct computations with in
finite data structures, which require some kind of indirect representation in most other 
languages. The Haskell program presented earlier has been compressed to compete 
with the C program for conciseness, so we do not argue that this particular one is easy 
to follow-but we do claim that the later Haskell programs arc. 

2. LAZY FUNCTIONAL PROGRAMMING IN HASKELL. To aid the reader's 
understanding, we start with a brief (and necessarily incomplete) description of the 
concepts of functional programming (henceforth FP) and laziness and their manifesta
tion in Haskell IS], the de facto standard lazy FP language. Further resources, including 
pointers to tutorials and free implementations for many platforms, can be found at the 
Haskell website [6]. 

FP is programming with expressions rather than statements. Everything is a value, 
and there are no assignments or other state-changing commands. Therefore, a pure FP 
language is referentially transparent: an expression may always be substituted for one 
with an equal value, without changing the meaning of the surrounding context. This 
makes reasoning in FP languages just like reasoning in high-school algebra. 

Here is a simple Haskell program: 

> square : : Integer -> Integer 
> square x = x * x 

Program text is marked with a ">" in the left-hand column, and comments are un
marked. This is a simple form of literate programming, in which the emphasis is 
placed on making the program easy for people rather than computers to read. Code 
and documentation are freely interspersed; indeed, the manuscript for this article is 
simultaneously an executable Haskell program. 

The first line in the square program is a type declaration; the symbol ": :" should 
be read "has type." Thus, square has type Integer -> Integer, that is, it is a 
function from Integers to Integers. (Type declarations in Haskell are nearly always 
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optional, because they can be inferred, but we often specify them anyway for clarity.) 
The second line gives a definition, as an equation: in any context, a subexpression of 
the form square x for any x may be replaced safely with x * x. 

Lists are central to FP. Haskell uses square brackets for lists, so [1, 2, 3] has 
three elements, and [] is the empty list. The operator ":" prefixes an element; 
so [1, 2, 3] = 1 : (2 : (3 : [])). For any type a, there is a corresponding 
type [a] of lists with elements drawn from type a, so, for example, [1, 2, 3] : : 
[Integer]. Haskell has a very convenient list comprehension notation, analogous 
to set comprehensions; for instance, [ square x I x <- [1, 2, 3] ] denotes the 
list of squares [1, 4, 9]. 

For the "substitution of equals for equals" property to be universally valid, it is 
important not to evaluate expressions unless their values are needed. For example, 
consider the following Haskell program: 

> three : : Integer -> Integer 
> three x = 3 

> nonsense Integer 
> nonsense = 1 + nonsense 

The first definition is of a function that ignores its argument x and always returns 
the integer 3; the second is of a value of type Integer, but one whose evaluation 
never terminates. For substitutivity to hold, and in particular for three nonsense to 
evaluate to 3 as the equation suggests, it is important not to evaluate the function argu
ment nonsense in the function application three nonsense. With lazy evaluation, 
in which evaluation is demand-driven, no expression is evaluated unless and until its 
value is needed to make further progress. 

A useful by-product of lazy evaluation is the ability to handle infinite data struc
tures: they are evaluated only as far as is necessary. We illustrate this with a definition 
of the infinite sequence of Fibonacci numbers: 

> fibs :: [Integer] 
> fibs = f (0,1) where f (a,b) = a : f (b,a+b) 

(Here, (0, 1) is a pair of Integers, and the where clause introduces a local defini
tion.) Evaluating fibs never terminates, of course, but computing a finite prefix of it 
does. For example, with 

> take .. Integer -> [Integer] -> [Integer] 
> take 0 XS = [] 

> take (n+1) [] = [] 

> take (n+1) (x:xs) = X : take n xs 

(so take takes two arguments, an Integer and a [Integer], and returns another 
[Integer]), we have take 10 fibs= [0,1,1,2,3,5,8,13,21,34], which 
terminates normally. 

Functions may be polymorphic, defined for arbitrary types. Thus, the function take 
in fact works for lists of any element type, since elements are merely copied and 
not further analyzed. The most general type assignable to take is Integer -> [a] 
-> [a] for an arbitrary type a. 

Because this is FP, functions are "first-class citizens" of the language, with all the 
rights of any other type. Among other things, they may be passed as arguments to and 
returned as results from higher-orderfunctions. For example, with the definition 
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> map : : (a->b) -> [a] -> [b] 
> map f [] = [] 

> map f (x:xs) = f x : map f xs 

the list comprehension [ square x I x <- [1, 2, 3] ] is equal to map square 
[1, 2, 3]. Note that map and take are curried. In fact, the function type former -> 
associates to the right, so the type of map is equivalent to (a->b) -> ([a]-> [b]), 
which one might read as saying that map takes a function of type a->b and transforms 
it into one of type [a]-> [b]. 

3. RABINOWITZ AND WAGON'S SPIGOT ALGORITHM. Rabinowitz and 
Wagon's algorithm is based on the series (l) for n, which expands out to the expres
sion 

This expression for n can be derived from the well-known Leibniz series 

n _ ~ (-1)i 
- L....---
4 i=O 2i + 1 

(3) 

using Euler's convergence-accelerating transform, among several other methods [7]. 
One can view expression (2) as representing a number (2; 2, 2, 2, ... ) in a mixed-radix 
base B = ( ~, ~, ~, ... ) , in the same way that the usual decimal expansion 

n = 3 + __!__ (1 + __!__ (4 + __!__ (1 + __!_5 + · · ·))) 
10 10 10 10 

represents (3; I, 4, 1, 5, ... ) in the fixed-radix base :F10 , where Fm = (~, ~, ~, ... ). 
The task of computing the decimal digits of n is then simply a matter of converting 
from base B to base :F10 . 

We consider regular representations. For a regular representation in decimal, every 
digit after the decimal point is in the range [0, 9]. The decimal number (0; 9, 9, 9, ... ) 
with a zero before the point and maximal digits afterwards represents 1. Accordingly, 
regular decimal representations with a zero before the point lie between 0 and 1. 
By analogy, for a regular representation in base B, the digit in position i after the 
point (the first after the point being in position I) is in the range [0, 2i]. The number 
(0; 2, 4, 6, ... ) with zero before the point and maximal digits afterwards represents 2. 
Accordingly, regular base B representations with zero before the point lie between 0 
and 2. (We call the representations "regular" rather than "normal" because they are not 
unique.) 

Conversion from base B to decimal proceeds as one might expect. The integer part 
of the input becomes the integer part of the output. The fractional part of the input 
is multiplied by ten; the integer part of this becomes the first output digit after the 
decimal point, and the fractional part is retained. This is again multiplied by ten; the 
integer part of this becomes the second output digit after the point; and so on. 

Multiplying a number in base B by ten is achieved simply by multiplying each 
digit by ten. However, that yields an irregular result, because some of the resulting 
digits may be too big. Regularization proceeds from right to left, reducing each digit 
as necessary and propagating any carry leftwards. 
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The only remaining problem is in computing the integer part of a number (a0 ; a 1, 

a2 , a3 ) in base B. This is either a0 or a0 + 1, depending on whether the remainder 
(0; a 1, a2 , a3 ) is in [0, 1) or [1, 2). (In principle, the remainder could equal 2; but, in 
practice, this cannot happen in the computation of an irrational such as n .) Therefore, 
Rabinowitz and Wagon's algorithm temporarily buffers any nines that are produced, 
until it is clear whether or not there could be a carry that would invalidate them. 

This whole conversion is performed on a finite number (2; 2, 2, 2, ... , 2) in 
base B-necessarily, as regularization proceeds from right to left. Rabinowitz and 
Wagon provide a bound on the number of base B digits needed to yield a given num
ber of decimal digits. In fact, as mentioned earlier, they underestimate by one in some 
cases: Ll0n/3J digits is usually sufficient, but sometimes Ll0n/3J + 1 input digits 
is necessary (and sufficient) for n decimal digits. (Here, "Lx J" denotes the greatest 
integer not larger than x.) Again, as noted, this does not mean that those n decimal 
digits are all correct digits of JT, only that the n-digit decimal number produced is 
within 5 X ] o-n of the desired result. 

4. STREAMING ALGORITHMS. We tum now to streaming algorithms, by way of 
a simpler example than computing the digits of JT. Consider the problem of converting 
a fraction in the interval [0, 1] from one base to another. We represent fractions as 
digit sequences, and for simplicity (but without loss of generality) we consider only 
infinite sequences. For this reason, we cannot consume all the input before producing 
any output; we must alternate between consumption and production. The computation 
will therefore maintain some state depending on the inputs consumed and the outputs 
produced thus far. Based on that state, it will either produce another output, if that is 
possible given the available information, or consume another input if it is not. This 
pattern is captured by the following higher-order function: 

> stream : : (b->c) -> (b->c->Bool) -> (b->c->b) -> (b->a->b) 
> -> b -> [a] -> [c] 
> stream next safe prod cons z (x:xs) 
> = if safe z y 
> then y : stream next safe prod cons (prod z y) (x:xs) 
> else stream next safe prod cons (cons z x) xs 
> where y = next z 

This defines a function stream taking six arguments. The result of applying stream 
is an infinite list of output terms, each of type c. The last argument x: xs is a list of 
input terms, each of type a; the first element or "head" is x, and the infinite remainder 
or "tail" is xs. The penultimate argument z is the state, of type b. The other four 
arguments (next of type b->c, safe of type b->c->Bool, prod of type b->c->b, 
and cons of type b->a->b) are all functions. From the state z the function produces 
a provisional output term y = next z of type c. If y is safe to commit to from the 
current state z (whatever input terms may come next), then it is produced, and the state 
adjusted accordingly using prod; otherwise, the next term x of the input is consumed 
into the state. This process continues indefinitely: the input is assumed never to run 
out, and, if the process is productive, the output never terminates. 

In the case of conversion from an infinite digit sequence in base Fm to an infinite 
sequence in base :F11 , clearly both the input and output elements are of type Integer. 
The state maintained is a pair ( u, v) of Rationals, satisfying the "invariant" (that 
is, a property that is established before a loop commences and is maintained by each 
iteration of that loop) that the original input 
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is equal to 

when i input terms xo, x1, ••• , Xi-I have been consumed and j output terms Yo. y 1, 

... , y1 _ 1 have been produced. Initially i and j are zero, so the invariant is established 
with u = 0 and v = l. In order to maintain the invariant, the state (u, v) should be 
transformed to (u - y I (n v), n v) when producing an additional output term y and to 
(x + u m, vIm) when consuming an additional input term x. The value of the remain
ing input 

ranges between 0 and I, so the next output term is determined provided that nvu and 
n v (u + 1) have the same integer part or floor. This justifies the following streaming 
algorithm: 

> convert .. (Integer,Integer) -> [Integer] -> [Integer] 
> convert (m,n) xs = stream next safe prod cons init xs 
> where 
> init = (0%1, 1%1) 
> next (u,v) floor (u*v*n') 
> safe (u,v) y (y ==floor ((u+1)*v*n')) 

prod (u,v) y (u - frominteger y/(v*n'), v*n') 
> cons (u,v) x = (frominteger x + u*m', v/m') 
> (m',n') (frominteger m, frominteger n) 

(Here,"%" constructs a Rational from two Integers,"==" is the comparison oper
ator, and the function frominteger coerces Integers to Rationals.) 

For example, 11e is 0.1002210112 ... in base 3 and 0.2401164352 ... in base 7. 
Therefore, applying the function convert (3, 7) to the infinite list [1, 0, 0, 2, 2,1, 
0, 1, 1, 2. . . should yield the infinite list [2, 4, 0, 1, 1, 6, 4, 3, 5, 2 .... The first 
few states through which execution of this conversion proceeds are illustrated in the 
following table: 

input 0 0 2 2 

state 0 I _!_ _!_ 3 _!_ ~ _I_ '.! ]_ 41 ]_ 137 l ~ 7 10 49 10 343 
l' I 1' 3 I' 9 I' 27 7' 27 7 ' 81 7 ' 243 7 ' 729 49' 729 49' 729 

output 2 4 0 

The middle row shows consecutive values of the state (u, v). The upper row shows 
input digits consumed, above the state resulting from their consumption. The lower 
row shows output digits produced, below the state resulting from their production. 
Notice that outputs are produced precisely when the corresponding state (u, v), which 
is in the previous column, is safe; that is, when L7uvj = L7(u + l)vj. For example, 

f 9 I · 9 I . 9 I the ourth state ( 1, 27 ) ts safe, because L 7 x 1 x 27 J = 2 = L 7 x ( 1 + 1) x 27 J. 
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This paper is not the place to make a more formal justification for the correctness 
of this program, although it is not hard to establish from the invariant stated. Neverthe
less, it is possible to derive the streaming program from a specification expressed in 
terms of independent operations for expanding and collapsing digit sequences, using a 
general theory of such algorithms [3]. (In the general case, either the input or the out
put or both may be finite. We have stuck to the simple case of necessarily-infinite lists 
here, because that is all that is needed for computing the digits of n .) We have found 
this pattern of computation in numerous problems concerning changes of data repre
sentation, of which conversions between number formats arc a representative example. 
Consequently, we have been calling such algorithms metamorphisms. 

5. A STREAMING ALGORITHM FOR THE DIGITS OF 7r. The main problem 
with Rabinowitz and Wagon's spigot algorithm is that it is bounded: one must make 
a commitment in advance to the number of terms of the series (1) to use. This com
mitment arises because the process of regularizing a number in base B proceeds from 
right to left, hence works only for finite numbers in that base. 

It turns out that there is a rather simple streaming algorithm for regularizing infinite 
numbers in base B. This means that we can make Rabinowitz and Wagon's algorithm 
unbounded: there is no longer any need to make a prior commitment to a particular 
finite prefix of the expansion of n. However, we will not say any more about this ap
proach, for there is a more direct way of computing the digits of n from the expression 
(2), to which we now turn. 

One can view the expansion (2) as the composition 

of an infinite series of linear fractional tran.~formations or Mobius tramformations. 
These are functions taking x to (qx + r)j(sx + t) for integers q, r, s, and t with 
q t - r s f- O~that is, yielding a ratio of integer-coefficient linear transformations of 
x. Such a transformation can be represented by the four coefficients q, r, s, and t, and 
if they are arranged as a matrix (; ';) then function composition corresponds to matrix 
multiplication. 

> type LFT = (Integer, Integer, Integer, Integer) 

> extr : : LFT -> Integer -> Rational 
> extr (q,r,s,t) x = ((frominteger q) * x + (frominteger r)) I 
> ((frominteger s) * x + (frominteger t)) 
> unit :: LFT 
>unit = (1,0,0,1) 
> comp : : LFT -> LFT -> LFT 
> comp (q,r,s,t) (u,v,w,x) = (q*u+r*w,q*v+r*x,s*u+t*w,s*v+t*x) 

(The first line introduces the abbreviation LFT for the type offour-tuples of Integers.) 
The infinite composition of transformations in ( 4) converges, in the following sense. 

Although the products of finite prefixes of the composition have coefficients that grow 
without bound, the transformations represented by these products map the interval 
[3, 4] onto converging subintervals of itself. (This is easy to see, as each term is a 
monotonic transformation, reduces the width of an interval by at least a factor of two, 
and maps [3, 4] onto a subinterval of itself. Indeed, the same also holds for any tail of 
the infinite composition.) 
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Therefore, equation (4) can be thought of as the representation of some real num
ber, and computing the decimal digits of this number is a change of representation, 
effectable by a streaming algorithm. The streaming process maintains as its state an 
additional linear fractional transformation, representing the required function from the 
inputs yet to be consumed to the outputs yet to be produced. This state is initially 
the identity matrix; consumption of another input term is matrix multiplication; pro
duction of a digit n is multiplication by ( 1~ -liOn), the inverse of the linear fractional 
transformation taking x to n + fa. If the current state is the transformation z, then the 
next digit to be produced lies somewhere in the image under z of the interval [3, 4]; 
if the two endpoints of this image have the same integer part, then that next digit is 
completely determined and it is safe to commit to it. 

> pi = stream 
> init 
> lfts 
> next z 
> safe z n 
> prod z n 
> cons z z' 

next safe prod cons init lfts where 
unit 
[(k, 4*k+2, o, 2*k+1) I k<-[1. .JJ 
floor (extr z 3) 
(n == floor (extr z 4)) 
cornp (10, -10*n, 0, 1) z 
cornp z z' 

The definition of lfts uses a list comprehension, with generator [1 .. ] , the infinite 
list of Integers from 1 upwards. The list consists of the expression (k, 4*k+2, 0, 
2*k+1) to the left of the vertical bar, evaluated for each value of k from l upwards. 
The first few terms are 

For example, the first term (~ ~)represents the transformation taking x to 

or2+~x. 

lxx+6 

Oxx+3' 

The condensed program shown in section I can be obtained from this program by 
making various simple optimizations. These include: unfolding intermediate defini
tions; exploiting the invariant that the bottom left element s of every linear fractional 
transformation (q r) be 0; constructing the input transformations in place; represent-

" I 
ing the sequence of remaining transformations simply by the index k; and simplifying 
away one of the divisions. 

Another optimization that can be performed is the elimination of any factors com
mon to all four entries resulting from a matrix multiplication. This optimization is 
valid, since linear fractional transformations are invariant under scaling of the matrix, 
and helpful, as it keeps the numbers small. (In fact, it is better still to perform this 
cancellation Jess frequently than every iteration.) 

6. MORE STREAMING ALGORITHMS FOR THE DIGITS OF 1r. The expres
sion (2) turns out not to be a very efficient one for computation. Each term shrinks the 
range by a factor of about a half, so more than three terms are required on average 
for every digit of the output. Better sequences are known; the book n Unleashed [1] 
presents many. We conclude this paper with two more applications of the streaming 
technique from section 4 to computing n, using the same approach but based on two 
of these different expressions. 
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Lambert's expression. Here is a more efficient expression for n, due to Lambert in 
1770 [1, eq. (16.99)], that yields two decimal digits for every three terms: 

4 

1 + -------:c---
22 

3 + 32 
5+--

7+··· 

(5) 

Again, one can view this as an infinite composition oflinear fractional transformations: 

After consuming i terms of the input, the remaining terms represent the composition 

(2i- I+ i2-o-)(2i +I+ (i + 1)2-;-)(2i + 3 + (i + 2) 2-;-) · · ·, 

which denotes a value in the range [2i - I, 2i - I + ~ ]. As before, we subject this 
infinite sequence to a streaming process. This time, however, we maintain a state con
sisting of not just a linear fractional transformation (; ~), but also the number i of 
terms consumed thus far (needed in order to determine the next digit to produce, which 
lies between (q ') (2i- I) and (q ') (2i- 1 + m . 

. \ { 5 t .... 
This reasoning justifies the following program: 

> piL = stream next safe 
> init 

prod cons init lfts where 
((0,4,1,0), 1) 

> lfts 
> next 

> safe 
> 
> prod 
> cons 

((q,r,s,t) ,i) 

((q,r,s,t),i) 

(z, i) n 
(z,i) z' 

[(2*i-1, i*i, 1, O) I i<-[1 .. JJ 
floor ((q*x+r) % (s*x+t)) 
where x=2*i-1 

n = (n == floor ((q*x+2*r) % (s*x+2*t))) 
where x=5*i-2 
(comp (10, -10*n, 0, 1) z, i) 
(comp z z', i+1) 

Gosper's series. An even more efficient series for n, yielding more than one decimal 
digit for each term, is due to Gosper [4]: 

n = 3 + x 8 + x · · · 5z - 2 + x · · · . I X I ( 2 X 3 ( . i (2i - I) ) ) 
3x4x5 3x7x8 3(3i+l)(3i+2) 

(6) 

Once more, we can view this as an infinite composition of linear fractional transfor
mations, namely, 

lf= 3+ X 8+ X ( lxl )( 2x3 ) 
3x4x5 3x7x8 

( 
i(2i- I) ) 

. . . 5i - 2 + 3(3i + I )(3i + 2) X .... 
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It is not hard to show that, after consuming i - 1 terms of the input, the remaining 

terms denote a value in the range [¥i -lf, ¥i - 2~~\ which gives rise to the follow
ing program: 

> piG = stream next safe 
> init 
> lfts 
> 
> 
> next ((q,r,s,t),i) 
> 

prod cons init lfts where 
((1,0,0,1), 1) 
[let j = 3*(3*i+1)*(3*i+2) 
in (i*(2*i-1),j*(5*i-2),0,j) 
i<-[1. ,]] 
div (q*x+5*r) (s*x+5*t) where 
X = 27*i+15 

> safe ((q,r,s,t) ,i) n = (n == div (q*x+125*r) (s*x+125*t)) 
> where x=675*i-216 
> prod (z,i) n (comp (10, -10*n, 0, 1) Z, i) 
> cons (z, i) z' (comp z z', i +1) 

(The let here is another form of local definition.) 

A challenge. Gosper's series (6) yields more than one digit per term on average, since 
the scaling factors approach -§ (which is less than ft) from below. This suggests that 
we could dispense with the test altogether and strictly alternate between consumption 
and production, as expressed by the following conjecture. Eliminating the test would 
speed up the algorithm considerably. 

Conjecture 1. Define the following functions: 

For i = 1, 2 ... , let 

l (27i + 15)J n(z, i) = z 5 

p((z, i), n) = (z c~ -~On), i) 
c((z, i),Z') = (z z', i + l) 

( l (675i- 216)J) s((z, i), n) = n = z 125 . 

xi= (i(2i
0
- 1) 3(3i + 1)(3i + 2)(5i- 2)) 

3(3i + 1)(3i + 2) 

u1 = p(v1, y1) 

v1 = c(ui-1, x,) 

Then s ( v1, y1) holds for all i. 

If this conjecture holds, then, in the following program, every value taken by the vari
able v satisfies the condition safe v (next v). 
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> piG2 = process next prod cons init lfts 
> process next prod cons u (x:xs) 
> y : process next prod cons (prod v y) xs 
> where v cons u x 
> y next v 

(Here, next, prod, cons, ini t, and lfts, as well as the predicate safe mentioned 
in the claim, are as in section 6.) 

We have not been able to prove Conjecture 1, although we have verified it for the 
first thousand terms. Perhaps some diligent reader can provide enlightenment. If it is 
valid, then piG2 does indeed produce the digits of n, and the optimizations outlined 
at the end of section 5 can be applied to piG2, yielding the following program: 

> piG3 = g(1,180,60,2) where 
> g(q,r,t,i) = 

> let (u,y)=(3*(3*i+1)*(3*i+2),div(q*(27*i-12)+5*r)(5*t)) 
> in y : g(10*q*i*(2*i-1),10*u*(q*(5*i-2)+r-y*t),t*u,i+1) 

This is of comparable length to the compressed program given in section 1, but ap
proximately five times faster. 
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Synopsis:

Experiment. The first chapter presents an overview of computations
the ages, followed by a summary of computer-age developments, includ-

analysis of the BBP formula and algorithm for computing binary digits
beginning at an arbitrary starting position.
The second selection from our book takes a look at a question that has puzzled

mathematicians from time immemorial (and which has spurred many computations
of π): whether and why the digits of π and other well-known mathematical con-
stants are “normal,” meaning that every m-long string of base-b digits appears,
in the limit, with frequency 1/bm. Included here are some details of some recent
results in this area, such as a proof of normality of the Stoneham numbers, namely
constants of the form

αb,c =
∞∑

k=0

1

ckbck
,

where b ≥ 2 and c ≥ 2 are relatively prime.
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118 3. Pi and Its Friends

Nowadays, this is almost trivial: A “Minpoly” calculation immediately
returns 29−80x−24x2+16x4 = 0 and this has the surd above as its smallest
positive root. At this point, the authors could use known results only to
prove the value of α(1), α(2) and α(3). Those for α(5) and α(7) remained
conjectural. There was, however, an empirical family of algorithms for π:
let α0 = α(N) and k0 = k′N (where k′ =

√
1− k2) and iterate

kn+1 =
1− k′n
1 + k′n

(3.22)

αn+1 = (1 + kn+1)
2αn −

√
N 2n+1kn+1. (3.23)

Then

lim
n→∞

α−1
n = π. (3.24)

Again, (3.24) was provable for N = 1, 2, 3 and only conjectured for
N = 5, 7. In each case the algorithm appeared to converge quadratically
to π. On closer inspection while the provable cases were correct to 5, 000
digits, the empirical ones agreed with π to roughly 100 places only. Now,
in many ways to have discovered a “natural” number that agreed with
π to that level—and no more—would have been more interesting than
the alternative. That seemed unlikely, but recoding and rerunning the
iterations kept producing identical results.

Twenty years ago, very high-precision calculation was less accessible,
and the code was being run in a Berkeley Unix integer package. After
about six weeks of effort, it was found that the square root algorithm in
the package was badly flawed, but only if run with an odd precision of more
than 60 digits! And for idiosyncratic reasons that had only been the case
in the two unproven cases. Needless to say, tracing the bug was a salutary
and somewhat chastening experience.

3.4 Computing Individual Digits of Pi

An outsider might be forgiven for thinking that essentially everything of
interest with regards to π has been discovered. For example, this sentiment
is suggested in the closing chapters of Beckmann’s 1971 book on the history
of π [48, pg. 172]. Ironically, the Salamin–Brent quadratically convergent
iteration was discovered only five years later, and the higher-order conver-
gent algorithms followed in the 1980s. In 1990, Rabinowitz and Wagon
discovered a “spigot” algorithm for π, which permits successive digits of
π (in any desired base) to be computed with a relatively simple recursive
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algorithm based on the previously generated digits (see [239] and Item 15
at the end of this chapter).

But even insiders are sometimes surprised by a new discovery. Prior
to 1996, almost all mathematicians believed that if you want to determine
the d-th digit of π, you have to generate the entire sequence of the first d
digits. (For all of their sophistication and efficiency, the schemes described
above all have this property.) But it turns out that this is not true, at least
for hexadecimal (base 16) or binary (base 2) digits of π. In 1996, Peter
Borwein, Simon Plouffe, and one of the present authors (Bailey) found an
algorithm for computing individual hexadecimal or binary digits of π [33].
To be precise, this algorithm:

(1) directly produces a modest-length string of digits in the hexadecimal
or binary expansion of π, beginning at an arbitrary position, without
needing to compute any of the previous digits;

(2) can be implemented easily on any modern computer;

(3) does not require multiple precision arithmetic software;

(4) requires very little memory; and

(5) has a computational cost that grows only slightly faster than the digit
position.

Using this algorithm, for example, the one millionth hexadecimal digit
(or the four millionth binary digit) of π can be computed in less than a
minute on a 2003-era computer. The new algorithm is not fundamentally
faster than best-known schemes for computing all digits of π up to some
position, but its elegance and simplicity are nonetheless of considerable
interest. This scheme is based on the following remarkable new formula
for π:

Theorem 3.1.

π =
∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
. (3.25)

Proof. First note that for any k < 8,

∫ 1/
√
2

0

xk−1

1− x8
dx =

∫ 1/
√
2

0

∞∑

i=0

xk−1+8i dx

=
1

2k/2

∞∑

i=0

1

16i(8i+ k)
. (3.26)
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Thus one can write

∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)

=

∫ 1/
√
2

0

4
√
2− 8x3 − 4

√
2x4 − 8x5

1− x8
dx, (3.27)

which on substituting y =
√
2x becomes

∫ 1

0

16 y − 16

y4 − 2 y3 + 4 y − 4
dy =

∫ 1

0

4y

y2 − 2
dy −

∫ 1

0

4y − 8

y2 − 2y + 2
dy

= π. (3.28)

�

However, in presenting this formal derivation, we are disguising the
actual route taken to the discovery of this formula. This route is a superb
example of experimental mathematics in action.

It all began in 1995, when Peter Borwein and Simon Plouffe of Simon
Fraser University observed that the following well-known formula for log 2
permits one to calculate isolated digits in the binary expansion of log 2:

log 2 =
∞∑

k=0

1

k2k
. (3.29)

This scheme is as follows. Suppose we wish to compute a few binary digits
beginning at position d + 1 for some integer d > 0. This is equivalent to
calculating {2d log 2}, where {·} denotes fractional part. Thus we can write

{2d log 2} =

{{
d∑

k=0

2d−k

k

}
+

∞∑

k=d+1

2d−k

k

}

=

{{
d∑

k=0

2d−k mod k

k

}
+

∞∑

k=d+1

2d−k

k

}
. (3.30)

We are justified in inserting “mod k” in the numerator of the first summa-
tion, because we are only interested in the fractional part of the quotient
when divided by k.

Now the key observation is this: The numerator of the first sum in
Equation (3.30), namely 2d−k mod k, can be calculated very rapidly by
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means of the binary algorithm for exponentiation, performed modulo k.
The binary algorithm for exponentiation is merely the formal name for the
observation that exponentiation can be economically performed by means
of a factorization based on the binary expansion of the exponent. For
example, we can write 317 = ((((32)2)2)2) · 3, thus producing the result
in only 5 multiplications, instead of the usual 16. According to Knuth,
this technique dates back at least to 200 BCE [188, pg. 461]. In our
application, we need to obtain the exponentiation result modulo a positive
integer k. This can be done very efficiently by reducing modulo k the
intermediate multiplication result at each step of the binary algorithm for
exponentiation. A formal statement of this scheme is as follows:

Algorithm 3.2. Binary algorithm for exponentiation modulo k.

To compute r = bn mod k, where r, b, n and k are positive integers: First
set t to be the largest power of two such that t ≤ n, and set r = 1. Then

A: if n ≥ t then r ← br mod k; n ← n− t; endif

t ← t/2

if t ≥ 1 then r ← r2 mod k; go to A; endif �

Note that the above algorithm is performed entirely with positive inte-
gers that do not exceed k2 in size. Thus ordinary 64-bit floating-point or
integer arithmetic, available on almost all modern computers, suffices for
even rather large calculations. 128-bit floating-point arithmetic (double-
double or quad precision), available at least in software on many systems
(see Section 6.2.1), suffices for the largest computations currently feasible.

We can now present the algorithm for computing individual binary dig-
its of log 2.

Algorithm 3.3. Individual digit algorithm for log 2.

To compute the (d + 1)-th binary digit of log 2: Given an integer d > 0,
(1) calculate each numerator of the first sum in Equation (3.30), using
Algorithm 3.2, implemented using ordinary 64-bit or 128-bit floating-point
arithmetic; (2) divide each numerator by the respective value of k, again
using ordinary floating-point arithmetic; (3) sum the terms of the first
summation, while discarding any integer parts; (4) evaluate the second
summation as written using floating-point arithmetic—only a few terms are
necessary since it rapidly converges; and (5) add the result of the first and
second summations, discarding any integer part. The resulting fraction,
when expressed in binary, gives the first few digits of the binary expansion
of log 2 beginning at position d+ 1. �
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As soon as Borwein and Plouffe found this algorithm, they began seek-
ing other mathematical constants that shared this property. It was clear
that any constant α of the form

α =

∞∑

k=0

p(k)

q(k)2k
, (3.31)

where p(k) and q(k) are integer polynomials, with deg p < deg q and q
having no zeroes at nonnegative integer arguments, is in this class. Further,
any rational linear combination of such constants also shares this property.
Checks of various mathematical references eventually uncovered about 25
constants that possessed series expansions of the form given by Equation
(3.31).

As you might suppose, the question of whether π also shares this prop-
erty did not escape these researchers. Unfortunately, exhaustive searches
of the mathematical literature did not uncover any formula for π of the
requisite form. But given the fact that any rational linear combination of
constants with this property also shares this property, Borwein and Plouffe
performed integer relation searches to see if a formula of this type existed for
π. This was done, using computer programs written by one of the present
authors (Bailey), which implement the “PSLQ” integer relation algorithm
in high-precision, floating-point arithmetic [16, 140]. We will discuss the
PSLQ algorithm and related techniques more in Section 6.3.

In particular, these three researchers sought an integer relation for the
real vector (α1, α2, · · · , αn), where α1 = π and (αi, 2 ≤ i ≤ n) is the
collection of constants of the requisite form gleaned from the literature,
each computed to several hundred decimal digit precision. To be precise,
they sought an n-long vector of integers (ai) such that

∑
i aiαi = 0, to

within a very small “epsilon.” After a month or two of computation, with
numerous restarts using new α vectors (when additional formulas were
found in the literature) the identity (3.25) was finally uncovered. The
actual formula found by the computation was:

π = 4F (1/4, 5/4; 1;−1/4)+ 2 arctan(1/2)− log 5, (3.32)

where F (1/4, 5/4; 1;−1/4) = 0.955933837 . . . is a hypergeometric function
evaluation. Reducing this expression to summation form yields the new π
formula:

π =
∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
. (3.33)

To return briefly to the derivation of Formula (3.33), let us point out
that it was discovered not by formal reasoning, or even by computer-based
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symbolic processing, but instead by numerical computations using a high-
precision implementation of the PSLQ integer relation algorithm. It is
most likely the first instance in history of the discovery of a new formula
for π by a computer. We might mention that, in retrospect, Formula (3.33)
could be found much more quickly, by seeking integer relations in the vector
(π, S1, S2, · · · , S8), where

Sj =
∞∑

k=0

1

16k(8k + j)
. (3.34)

Such a calculation could be done in a few seconds on a computer, even if
one did not know in advance to use 16 in the denominator and 9 terms in
the search, but instead had to stumble on these parameters by trial and
error. But this observation is, as they say, 20-20 hindsight. The process of
real mathematical discovery is often far more tortuous and less elegant than
the polished version typically presented in textbooks and research journals.

It should be clear at this point that the scheme for computing individual
hexadecimal digits of π is very similar to Algorithm 3.3. For completeness,
we state it as follows:

Algorithm 3.4. Individual digit algorithm for π.

To compute the (d+1)-th hexadecimal digit of π: Given an integer d > 0,
we can write

{16dπ} = {4{16dS1} − 2{16dS4} − {16dS5} − {16dS6}}, (3.35)

using the Sj notation of Equation (3.34). Now apply Algorithm 3.3, with

{16dSj} =

{{
d∑

k=0

16d−k

8k + j

}
+

∞∑

k=d+1

16d−k

8k + j

}

=

{{
d∑

k=0

16d−k mod 8k + j

8k + j

}
+

∞∑

k=d+1

16d−k

8k + j

}
(3.36)

instead of Equation (3.30), to compute {16dSj} for j = 1, 4, 5, 6. Combine
these four results, discarding integer parts, as shown in (3.35). The result-
ing fraction, when expressed in hexadecimal notation, gives the hex digit
of π in position d+ 1, plus a few more correct digits. �

As with Algorithm 3.3, multiple-precision arithmetic software is not
required—ordinary 64-bit or 128-bit floating-point arithmetic suffices even
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for some rather large computations. We have omitted here some numer-
ical details for large computations—see [33]. Sample implementations in
both C and Fortran-90 are available from http://www.experimentalmath
.info.

One mystery that remains unanswered is why Formula (3.33) was not
discovered long ago. As you can see from the above proof, there is nothing
very sophisticated about its derivation. There is no fundamental reason
why Euler, for example, or Gauss or Ramanujan, could not have discov-
ered it. Perhaps the answer is that its discovery was a case of “reverse
mathematical engineering.” Lacking a motivation to find such a formula,
mathematicians of previous eras had no reason to derive one. But this still
doesn’t answer the question of why the algorithm for computing individual
digits of log 2 had not been discovered before—it is based on a formula,
namely Equation (3.29), that has been known for centuries.

Needless to say, Algorithm 3.4 has been implemented by numerous re-
searchers. In 1997, Fabrice Bellard of INRIA computed 152 binary digits of
π starting at the trillionth binary digit position. The computation took 12
days on 20 workstations working in parallel over the Internet. His scheme
is actually based on the following variant of 3.33:

π = 4
∞∑

k=0

(−1)k

4k(2k + 1)

− 1

64

∞∑

k=0

(−1)k

1024k

(
32

4k + 1
+

8

4k + 2
+

1

4k + 3

)
. (3.37)

This formula permits individual hex or binary digits of π to be calculated
roughly 43% faster than (3.25).

A year later, Colin Percival, then a 17-year-old student at Simon Fraser
University, utilized a network of 25 machines to calculate binary digits in
the neighborhood of position 5 trillion, and then in the neighborhood of 40
trillion. In September 2000, he found that the quadrillionth binary digit
is “0,” based on a computation that required 250 CPU-years of run time,
carried out using 1,734 machines in 56 countries. Table 3.4 gives some
results known as of this writing.

One question that immediately arises in the wake of this discovery is
whether or not there is a formula of this type and an associated compu-
tational scheme to compute individual decimal digits of π. Searches con-
ducted by numerous researchers have been unfruitful. Now it appears that
there is no nonbinary formula of this type—this is ruled out by a new result
co-authored by one of the present authors (see Section 3.7) [73]. However,
none of this removes the possibility that there exists some completely differ-
ent approach that permits rapid computation of individual decimal digits
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Hex Digits Beginning
Position at This Position
106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

1011 9C381872D27596

1.25× 1012 07E45733CC790B

2.5× 1014 E6216B069CB6C1

Table 3.4. Computed hexadecimal digits of π.

of π. Also, as we will see in the next section, there do exist formulas for
certain other constants that admit individual digit calculation schemes in
various nonbinary bases (including base ten).

3.5 Unpacking the BBP Formula for Pi

It is worth asking “why” the formula

π =

∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
(3.38)

exists. As observed above, this identity is equivalent to, and can be proved
by establishing:

π =

∫ 1/
√
2

0

4
√
2− 8x3 − 4

√
2x4 − 8x5

1− x8
dx.

The present version of Maple evaluates this integral to

−2 log 2 + 2 log(2−
√
2) + π + 2 log(2 +

√
2), (3.39)

which simplifies to π. In any event, one can ask what the individual series
in (3.38) comprise. So consider

Sb =
∞∑

k=0

1

16k(8k + b)
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for 1 ≤ b ≤ 8 and the corresponding normalized integrals

I(b) = 2b/2
∫ 1/

√
2

0

xb−1

1− x8
dx. (3.40)

Again, Maple provides closed forms for I(b) in which the basic quanti-
ties seem to be the following: arctan(2), arctan(1/2),

√
2 arctan(1/

√
2),

log(2), log(3), log(5), and log(
√
2 ± 1). At this point one may use integer

relation methods and obtain:

S1 =
π

8
+

log 5

8
−

√
2 log(

√
2− 1)

4
− arctan(1/2)

4
+

√
2 arctan(

√
2/2)

4

S2 =
log(3)

4
+

arctan(1/2)

2

S3 =
π

4
−

√
2 log(

√
2− 1)

2
− arctan(1/2)

2
−

√
2 arctan(

√
2/2)

2
− log 5

4

S4 =
log 5

2
− log 3

2

S5 = −π

2
−

√
2 log(

√
2− 1) + arctan(1/2) +

√
2 arctan(

√
2/2)− log 5

2
S6 = log 3− 2 arctan(1/2)

S7 = −π + log 5− 2
√
2 log(

√
2− 1) + 2 arctan(1/2)− 2

√
2 arctan(

√
2/2)

S8 = 8 log 2− 2 log 5− 2 log 3. (3.41)

Thus the “simple” hexadecimal formula (3.38) is actually a molecule made
up of more subtle hexadecimal atoms: with the final bond coming from
the simple identity arctan 2 + arctan(1/2) = π/2. As an immediate conse-
quence, one obtains the formula arctan(1/2) = S2 − S6/4.

Furthermore, the facts that

Im

(
log

(
1− 1− i

x

))
= arctan

(
1

1− x

)

2 arctan(1/3) + arctan(1/7) = arctan(1/2) + arctan(1/3)

= arctan1 = π/4 (3.42)

allow one to write directly a base-64 series for arctan(1/3) (using x = 4) and
a base-1024 series for arctan(1/7) (using x = 8). This yields the identity

π

4
=

1

16

∞∑

n=0

(−1)n

64n

(
8

4n+ 1
+

4

4n+ 2
+

1

4n+ 3

)

+
1

256

∞∑

n=0

(−1)n

1024n

(
32

4n+ 1
+

8

4n+ 2
+

1

4n+ 3

)
, (3.43)
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which is similar to, although distinct from, the identity used by Bellard
and Percival in their computations.

3.6 Other BBP-Type Formulas

A formula of the type mentioned in the previous sections, namely

α =

∞∑

k=0

p(k)

bkq(k)
, (3.44)

is now referred to as a BBP-type formula, named after the initials of the
authors of the 1997 paper where the π hex digit algorithm appeared [33].
For a constant α given by a formula of this type, it is clear that individual
base-b digits can be calculated, using the scheme similar to the ones outlined
in the previous section. The paper [33] includes formulas of this type for
several other constants. Since then, a large number of other BBP-type
formulas have been discovered.

Most of these identities were discovered using an experimental ap-
proach, using PSLQ searches. Others were found as the result of educated
guesses based on experimentally obtained results. In each case, these for-
mulas have been formally established, although the proofs are not always
as simple as the proof of Theorem 3.1. We present these results, in part,
to underscore the fact that the approach used to find the new formula for
π has very broad applicability.

A sampling of the known binary BBP-type formulas (i.e., formulas with
a base b = 2p for some integer p) is shown in Table 3.5. Some nonbinary
BBP-type formulas are shown in Table 3.6. These formulas are derived
from several sources: [33,93,94]. An updated collection is available at [19].
The constant G that appears in Table 3.5 is Catalan’s constant, namely
G = 1− 1/32 + 1/52 − 1/72 + · · · = 0.9159655941 . . .

In addition to the formulas in Tables 3.5 and 3.6, there are two other
classes of constants known to possess binary BBP-type formulas. The
first is logarithms of certain integers. Clearly, logn can be written with
a binary BBP formula (i.e. a formula with b = 2m for some integer m)
provided n factors completely using primes whose logarithms have binary
BBP formulas—one merely combines the individual series for the different
primes into a single binary BBP formula. We have seen that the logarithm
of the prime 2 possesses a binary BBP formula, and so does log 3, by the
following reasoning:
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log 3 = 2 log 2 + log

(
1− 1

4

)
= 2

∞∑

k=1

1

k2k
−

∞∑

k=1

1

k4k

=
1

2

∞∑

k=0

1

4k

(
2

2k + 1
+

1

2k + 2

)
− 1

4

∞∑

k=0

1

4k

(
2

2k + 2

)

=

∞∑

k=0

1

4k

(
1

2k + 1

)
. (3.46)

π
√
3 =

9

32

∞∑

k=0

1

64k

(
16

6k + 1
+

8

6k + 2
− 2

6k + 4
− 1

6k + 5

)

π2 =
9

8

∞∑

k=0

1

64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2

+
1

(6k + 5)2

)

log2 2 =
1

32

∞∑

k=0

1

64k

(
64

(6k + 1)2
− 160

(6k + 2)2
− 56

(6k + 3)2
− 40

(6k + 4)2

+
4

(6k + 5)2
− 1

(6k + 6)2

)

π log 2 =
1

256

∞∑

k=0

1

4096k

(
4096

(24k + 1)2
− 8192

(24k + 2)2
− 26112

(24k + 3)2
+

15360

(24k + 4)2

− 1024

(24k + 5)2
+

9984

(24k + 6)2
+

11520

(24k + 8)2
+

2368

(24k + 9)2
− 512

(24k + 10)2

+
768

(24k + 12)2
− 64

(24k + 13)2
+

408

(24k + 15)2
+

720

(24k + 16)2

+
16

(24k + 17)2
+

196

(24k + 18)2
+

60

(24k + 20)2
− 37

(24k + 21)2

)

G =
1

1024

∞∑

k=0

1

4096k

(
3072

(24k + 1)2
− 3072

(24k + 2)2
− 23040

(24k + 3)2
+

12288

(24k + 4)2

− 768

(24k + 5)2
+

9216

(24k + 6)2
+

10368

(24k + 8)2
+

2496

(24k + 9)2
− 192

(24k + 10)2

+
768

(24k + 12)2
− 48

(24k + 13)2
+

360

(24k + 15)2
+

648

(24k + 16)2

+
12

(24k + 17)2
+

168

(24k + 18)2
+

48

(24k + 20)2
− 39

(24k + 21)2

)

Table 3.5. Binary BBP-type formulas.
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log 2 =
2

3

∞∑

k=0

1

9k(2k + 1)

π
√
3 =

1

9

∞∑

k=0

1

729k

(
81

12k + 1
− 54

12k + 2
− 9

12k + 4
− 12

12k + 6

− 3

12k + 7
− 2

12k + 8
− 1

12k + 10

)

log 3 =
1

729

∞∑

k=0

1

729k

(
729

6k + 1
+

81

6k + 2
+

81

6k + 3
+

9

6k + 4

+
9

6k + 5
+

1

6k + 6

)

π2 =
2

27

∞∑

k=0

1

729k

(
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2

− 27

(12k + 5)2
− 72

(12k + 6)2
− 9

(12k + 7)2
− 9

(12k + 8)2

− 5

(12k + 10)2
+

1

(12k + 11)2

)

log

(
9

10

)
=

−1

10

∞∑

k=1

1

k10k

log

(
1111111111

387420489

)
=

1

108

∞∑

k=0

1

1010k

(
108

10k + 1
+

107

10k + 2
+

106

10k + 3

+
105

10k + 4
+

104

10k + 5
+

103

10k + 6
+

102

10k + 7

+
10

10k + 8
+

1

10k + 9

)

25

2
log

(
781

256

(
57− 5

√
5

57 + 5
√
5

)√
5
)

=

∞∑

k=0

1

55k

(
5

5k + 2
+

1

5k + 3

)
(3.45)

Table 3.6. Nonbinary BBP-type formulas.

In a similar manner, it can be shown, by examining the factorization of
2n +1 and 2n − 1, where n is an integer, that numerous other primes have
this property. Some additional primes can be obtained by noting that the
real part of the Taylor series expansion of

α = log

(
1± (1 + i)k

2n

)
(3.47)

yields a BBP-type formula. See [19] for details.
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The logarithms of the following primes are now known to possess binary
BBP formulas [103]:

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 73, 109, 113, 127, 151,

241, 257, 331, 337, 397, 683, 1321, 1429, 1613, 2113, 2731, 5419, 8191,

14449, 26317, 38737, 43691, 61681, 65537, 87211, 131071, 174763,

246241, 262657, 268501, 279073, 312709, 524287, 525313, 599479,

2796203, 4327489, 7416361, 15790321, 18837001, 22366891 (3.48)

This list is certainly not complete, and it is unknown whether or not all
primes have this property, or even whether the list of such primes is finite
or infinite. One can also obtain BBP-type formulas in nonbinary bases for
the logarithms of certain integers and rational numbers. One example is
given by the base ten formula for log(9/10) in Table 3.6. This has been
used to compute the ten billionth decimal digit of log(9/10) [33].

One additional class of binary BBP-type formulas that we will mention
here is arctangents of certain rational numbers. We present here the results
of experimental searches, using the PSLQ integer relation algorithm, which
we have subsequently established formally. The formal derivation of these
results proceeds as follows. Consider the set of rationals given by q =
|Im(T )/Re(T )| or |Re(T )/Im(T )|, where

T =
m∏

k=1

(
1± i

2tk

)uk
(
1± 1 + i

2vk

)wk

(3.49)

for various m-long nonnegative integer vectors t, u, v, w and choices
of signs as shown [74, pg. 344]. For example, setting t = (1, 1), u =
(1, 1), v = (1, 3), w = (1, 1), with signs (1,−1,−1, 1), gives the result
T = 25/32 − 5i/8, which yields q = 4/5. Indeed, one can obtain the
formula

arctan

(
4

5

)
=

1

217

∞∑

k=0

1

220k

(
524288

40k + 2
− 393216

40k + 4
− 491520

40k + 5
+

163840

40k + 8

+
32768

40k + 10
− 24576

40k + 12
+

5120

40k + 15
+

10240

40k + 16

+
2048

40k + 18
+

1024

40k + 20
+

640

40k + 24
+

480

40k + 25

+
128

40k + 26
− 96

40k + 28
+

40

40k + 32
+

8

40k + 34

− 5

40k + 35
− 6

40k + 36

)
. (3.50)
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The set of rationals for which BBP formulas can be obtained in this
way can be further expanded by applying the formula

tan(r + s) =
tan r + tan s

1− tan r tan s
, (3.51)

for rationals r and s for which binary BBP-type formulas are found. By
applying these methods, it can be shown that binary BBP formulas exist
for the arctangents of the following rational numbers. Only those rationals
with numerators < denominators ≤ 25 are listed here.

1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 5/6, 1/7, 3/7,

4/7, 5/7, 6/7, 1/8, 7/8, 1/9, 2/9, 7/9, 8/9, 3/10, 1/11, 2/11,

3/11, 7/11, 8/11, 10/11, 1/12, 5/12, 1/13, 4/13, 6/13, 7/13, 9/13,

11/13, 12/13, 3/14, 5/14, 1/15, 4/15, 8/15, 1/16, 7/16, 11/16, 13/16,

15/16, 1/17, 4/17, 6/17, 7/17, 9/17, 11/17, 15/17, 16/17, 1/18, 13/18,

3/19, 4/19, 6/19, 7/19, 8/19, 9/19, 11/19, 17/19, 9/20, 1/21, 13/21,

16/21, 20/21, 3/22, 7/22, 9/22, 19/22, 21/22, 2/23, 4/23, 6/23, 7/23,

9/23, 10/23, 11/23, 14/23, 15/23, 7/24, 11/24, 23/24, 1/25, 2/25,

13/25, 19/25, 21/25 (3.52)

Note that not all “small” rationals appear in this list. As it turns out, by
applying the methods given in the paper [73] (see the next section), one
can rule out the possibility of Machin-type BBP formulas (as described
in Section 3.6) for the arctangents of 2/7, 3/8, 5/8, 4/9, and 5/9. Thus
we believe the above list to be complete for rationals with numerators
and denominators up to ten. Beyond this level, we do not know for sure
whether this list is complete, or whether applying formula (3.49), together
with addition and subtraction formulas, generates all possible rationals
possessing binary BBP-type formulas.

One can obtain BBP formulas in nonbinary bases for the arctangents of
certain rational numbers by employing an appropriate variant of formula
(3.49).

3.7 Does Pi Have a Nonbinary BBP Formula?

As we mentioned above, from the day that the BBP-formula for π was
discovered, many researchers have wondered whether there exist BBP-type
formulas that would permit computation of individual digits in bases other
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than powers of two (such as base ten). This is not such a far-fetched
possibility, because both base-2 and base-3 formulas are known for π2, as
well as for log 2 (see Tables 3.5 and 3.6). But extensive computations failed
to find any nonbinary formulas for π.

Recently one of the present authors, together with David Borwein (Jon’s
father) andWilliam Galway, established that there are no nonbinaryMachin-
type arctangent formulas for π. We believe that if there is no nonbinary
Machin-type arctangent formula for π, then there is no nonbinary BBP-
type formula of any form for π. We will summarize this result here. Full
details and other related results can be found in [73].

We say that the integer b > 1 is not a proper power if it cannot be
written as cm for any integers c and m > 1. We will use the notation
ordp(z) to denote the p-adic order of the rational z ∈ Q. In particular,
ordp(p) = 1 for prime p, while ordp(q) = 0 for primes q �= p, and ordp(wz) =
ordp(w) + ordp(z). The notation νb(p) will mean the order of the integer
b in the multiplicative group of the integers modulo p. We will say that
p is a primitive prime factor of bm − 1 if m is the least integer such that
p|(bm−1). Thus p is a primitive prime factor of bm−1 provided νb(p) = m.
Given the Gaussian integer z ∈ Q[i] and the rational prime p ≡ 1 (mod 4),
let θp(z) denote ordp(z) − ordp(z), where p and p are the two conjugate
Gaussian primes dividing p, and where we require 0 < �(p) < R(p) to
make the definition of θp unambiguous. Note that

θp(wz) = θp(w) + θp(z). (3.53)

Given κ ∈ R, with 2 ≤ b ∈ Z and b not a proper power, we say that
κ has a Z-linear or Q-linear Machin-type BBP arctangent formula to the
base b if and only if κ can be written as a Z-linear or Q-linear combination
(respectively) of generators of the form

arctan

(
1

bm

)
= � log

(
1 +

i

bm

)
= bm

∞∑

k=0

(−1)k

b2mk(2k + 1)
. (3.54)

We will also use the following theorem, first proved by Bang in 1886:

Theorem 3.5. The only cases where bm − 1 has no primitive prime fac-
tor(s) are when b = 2, m = 6, bm−1 = 32 ·7; and when b = 2N−1, N ∈ Z,
m = 2, bm − 1 = 2N+1(2N−1 − 1).

We can now state the main result of this section:

Theorem 3.6. Given b > 2 and not a proper power, then there is no Q-
linear Machin-type BBP arctangent formula for π.
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Proof. It follows immediately from the definition of a Q-linear Machin-
type BBP arctangent formula that any such formula has the form

π =
1

n

M∑

m=1

nm� log(bm − i) (3.55)

where n > 0 ∈ Z, nm ∈ Z, and M ≥ 1, nM �= 0. This implies that

M∏

m=1

(bm − i)nm ∈ eniπQ× = Q× (3.56)

For any b > 2 and not a proper power we have Mb ≤ 2, so it follows
from Bang’s Theorem that b4M − 1 has a primitive prime factor, say p.
Furthermore, p must be odd, since p = 2 can only be a primitive prime
factor of bm−1 when b is odd andm = 1. Since p is a primitive prime factor,
it does not divide b2M −1, and so p must divide b2M +1 = (bM + i)(bM − i).
We cannot have both p|bM + i and p|bM − i, since this would give the
contradiction that p|(bM + i) − (bM − i) = 2i. It follows that p ≡ 1
(mod 4), and that p factors as p = pp over Z[i], with exactly one of p, p
dividing bM − i. Referring to the definition of θ, we see that we must have
θp(b

M − i) �= 0. Furthermore, for any m < M , neither p nor p can divide
bm − i since this would imply p | b4m − 1, 4m < 4M , contradicting the
fact that p is a primitive prime factor of b4M − 1. So for m < M , we have
θp(b

m − i) = 0. Referring to equation (3.55), using Equation (3.53) and
the fact that nM �= 0, we get the contradiction

0 �= nMθp(b
M − i) =

M∑

m=1

nmθp(b
m − i) = θp(Q

×) = 0. (3.57)

Thus our assumption that there was a b-ary Machin-type BBP arctangent
formula for π must be false. �

3.8 Commentary and Additional Examples

1. The ENIAC Integrator and Calculator. ENIAC, built in 1946
at the University of Pennsylvania, had 18,000 vacuum tubes, 6,000
switches, 10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet
tall, occupied 1,800 square feet, and weighed 30 tons. ENIAC could
perform 5,000 arithmetic operations per second—1,000 times faster
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Figure 3.3. The ENIAC computer. Courtesy of Smithsonian Institution.

than any earlier machine, but a far cry from today’s leading-edge mi-
croprocessors, which can perform more than four billion operations
per second. The first stored-memory computer, ENIAC could store
200 digits, which again is a far cry from the hundreds of megabytes in
a modern personal computer system. Data flowed from one accumu-
lator to the next, and after each accumulator finished a calculation, it
communicated its results to the next in line. The accumulators were
connected to each other manually. A photo is shown in Figure 3.3.

2. Four approximations to pi. Here are two well known, but fasci-
nating, approximations to π:

π ≈ 3√
163

log (640320) ,

correct to 15 decimal places, and

π ≈ 3√
67

log (5280) ,
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correct to 9 decimal places. Both rely on somewhat deeper number
theory (see Section 1.4 in the second volume). Here are two nice
algebraic π approximations:

π ≈ 66

√
2

33
√
29− 148

and

π ≈ 63

25

17 + 15
√
5

7 + 15
√
5
.

3. An arctan series for pi. Find rational coefficients ai such that the
identity

π = a1 arctan
1

390112
+ a2 arctan

1

485298

+a3 arctan
1

683982
+ a4 arctan

1

1984933

+a5 arctan
1

2478328
+ a6 arctan

1

3449051

+a7 arctan
1

18975991
+ a8 arctan

1

22709274

+a9 arctan
1

24208144
+ a10 arctan

1

201229582

+a11 arctan
1

2189376182

holds [10, pg. 75]. Also show that an identity with even simpler
coefficients exists if arctan 1/239 is included as one of the terms on
the RHS. Hint: Use an integer relation program (see Section 6.3), or
try the tools at one of these sites: http://oldweb.cecm.sfu.ca/projects/
IntegerRelations or http://www.experimentalmath.info.

4. Ballantine’s series for pi. A formula of Euler for arccot is

x

∞∑

n=0

(n!)
2
4n

(2n+ 1)! (x2 + 1)
n+1 = arctan

(
1

x

)
. (3.58)

As observed by Ballantine in 1939, ( [49]) this allows one to rewrite
the variant of Machin’s formula, used by Guilloud and Bouyer in 1973
to compute a million digits of π,

π

4
= 12 arctan

1

18
+ 8 arctan

1

57
− 5 arctan

1

239
(3.59)
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in the neat form

π = 864

∞∑

n=0

(n!)
2
4n

(2n+ 1)! 325n+1 + 1824

∞∑

n=0

(n!)
2
4n

(2n+ 1)! 3250n+1

− 20 arctan
1

239
, (3.60)

where the terms of the second series are just decimal shifts of the
terms of the first.

5. Convergence rates for pi formulas. Analyze the rates of con-
vergence of Archimedes iteration (3.1), the Salamin-Brent iteration
(3.16), the Borwein cubic iteration (3.17) and the Borwein quartic
iteration (3.18), by means of explicit computations. Use the high-
precision arithmetic facility built into Maple orMathematica, or write
your own C++ or Fortran-90 code using the ARPREC arbitrary
precision software available at http://www.experimentalmath.info, or
the GNU multiprecision software available at http://www.gnu.org
/software/gmp/gmp.html. Such iterations are discussed more in Sec-
tions 5.6.2 and 5.6.3.

6. Biblical pi. As noted in Section 3.1, the Biblical passages 1 Kings
7:23 and 2 Chronicles 4:2 indicate that π = 3. In spite of the fact the
context of these verses clearly suggests an informal approximation,
not a precise statement of mathematical fact, this discrepancy has
been a source of consternation among Biblical literalists for centuries.
For example, an 18th-century German Bible commentary attempted
to explain away this discrepancy using the imaginative (if pathetic)
suggestion that the circular pool in Solomon’s temple (clearly de-
scribed in 2 Chron. 4:2 as “round in compass”) was instead hexago-
nal in shape [48, pg. 75–76]. Even today, some are still unwilling to
accept that the Bible could simply be mistaken here. One evangelical
scholar, for example, writes:

However, the recorded dimensions are still no problem if we
consider the shape of the vessel. In 1 Kings 7:26, we read that
its “brim was made like the brim of a cup, as a lily blossom.”
Hence, the sea was not a regular cylinder, but had an outward
curving rim. Although we do not know the exact points on
the vessel where the measurements were taken, the main part
of the sea always will be somewhat smaller than the 10 cubits
measured “from brim to brim.” [213]
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Another geometric difficulty in these Biblical passages is that 1 Kings
7:26 (three verses after it gives its dimensions) gives a volume of 2,000
“baths” for the basin, while 2 Chron. 4:5 gives the figure 3,000 baths.
2 Chron. 4:2 gives the height of the basin as five cubits. Using the
accepted conversions that one “cubit” is roughly 46 cm, and that
one “bath” is roughly 23 liters, then assuming Solomon’s pool was
cylindrical in shape, we obtain an actual volume of roughly 1660
baths. If the basin was rounded on the bottom, then its volume was
even lower than this.

7. Exponentiation of pi. Arguably the most accessible transcendental
number to compute is eπ, which can be computed using the following
iteration.

Algorithm 3.7. Computation of exp(π).

Set k0 = 1/
√
2 and for n < N = �log2(D/1.36)� iterate

k′n =
√
1− k2n, kn+1 =

1− k′n
1 + k′n

.

Then return (
kN
4

)−1/2N−1

.

Some care needs to be taken with guard digits. �

8. Algorithms for Gamma values. An algorithm for π may be
viewed as an algorithm for Γ

(
1
2

)
, and there is a quite analogous

iteration for Γ at the values 1/3, 2/3, 1/4, 3/4, 1/6, and 5/6. This,
in turn, allows rapid computation of Γ

(
k
24

)
, for all integer k. We

illustrate with:

Algorithm 3.8. Computation of Γ
(
1
4

)
.

Let x0 = 21/2, y1 = 21/4. Let

xn+1 =

√
xn + 1/

√
xn

2
(3.61)

yn+1 =
yn

√
xn + 1/

√
xn

yn + 1
. (3.62)
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Then

Γ4

(
1

4

)
= 16 (1 +

√
2)3

∞∏

n=1

x−1
n

(
1 + xn

1 + yn

)3

.

This yields a quadratically convergent iteration for Γ
(
1
4

)
. �

No such iteration is known for Γ
(
1
5

)
; see [68, 74].

9. An integral representation of Euler’s constant. While it is
known that Γ

(
1
3

)
and Γ

(
1
4

)
are transcendental, the status of Euler’s

constant

γ = lim
n→∞

n∑

k=1

1

k
− log(n) (3.63)

is unsettled.

Problem: Show that

γ =

∫ ∞

0

(
1

et − 1
− 1

t et

)
dt.

10. Computation of Euler’s constant. Perhaps the most efficient
method of computation, due to Brent and MacMillan ( [74, pg. 336]),
is based on Bessel function identities. It allows one to show that if
γ is rational it must have a denominator with millions of digits. The
underlying identity, known to Euler, is

γ + log(z/2) =
S0(z)−K0(z)

I0(z)
(3.64)

where Iν(z) =
∑∞

k=0(z/2)
2k+ν/(k! Γ(k + ν + 1)), while K0(z) =

∂I0(z)/∂ν and S0(z) =
∑∞

k=0(
∑k

j=1 1/j) (z/2)
2k/(k!)2.

An algorithm follows from knowing the first terms of the asymptotic
expansion for K0 and I0. It is

Algorithm 3.9. Computation of K0 and I0:

A0 = − log(n), B0 = 1, U0 = A0, V0 = 1, and for k = 1, 2, · · · ,

Bk = Bk−1n
2/k2, Ak = (Ak−1n

2/k +Bk)/k,

Uk = Uk−1 +Ak, Vk = Vk−1 +Bk. (3.65)
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Terminate when Uk and Vk no longer change, and return γ ≈ Uk/Vk.
With log(n) computed efficiently, this scheme takes O(D) storage and
approximately 2.07D steps to compute γ to D decimal places. �

11. Buffon’s needle. Suppose we have a lined sheet of paper, and a
needle that is precisely as long as the distance between the lines.
Compute the probability that the needle “thrown at random” on the
sheet of paper will lie on a line. Answer: 2/π. Although this is
certainly not a good way to calculate π (millions of trials would be
required to obtain just a few digits), it is an instructive example of
how π arises in unlikely settings (see also the next two exercises).
Some additional discussion of this problem, plus a computer-based
tool that allows one to perform these trials, is available at the URL
http://www.mste.uiuc.edu/reese/buffon/buffon.html.

12. Putnam problem 1993-B3. If two real numbers x and y are gen-
erated uniformly at random in (0, 1), what is the probability that the
nearest integer to x/y is even? Hint: Ignoring negligible events, for
this to occur either 0 < x/y < 1/2 or (4n− 1)/2 < x/y < (4n+1)/2.
The first occurs in a triangle of area 1/4 and the subsequent in trian-
gles of area 1/(4n− 1)− 1/(4n+1). Now apply the Gregory-Leibniz
formula. Answer: The probability is (5− π)/4 ≈ 0.4646018.

13. Number-theory probabilities. Prove (a) The probability that an
integer is square-free is 6/π2. (b) The probability that two integers
are relatively prime is also 6/π2. This is a good example of π appear-
ing in a number-theory setting. See [163].

14. The irrationality of pi. We reproduce in extenso Ivan Niven’s 1947
very concise proof that π is irrational [224].

Let π = a/b, the quotient of positive integers. We define the polyno-
mials

f(x) =
xn(a− bx)n

n!

F (x) = f(x)− f (2)(x) + f (4)(x)− · · ·+ (−1)nf (2n)(x),

the positive integer n being specified later. Since n!f(x) has integral
coefficients and terms in x of degree not less than n, f(x) and its
derivatives f (j)(x) have integral values for x = 0; also for x = π =
a/b, since f(x) = f(a/b− x). By elementary calculus we have

d

dx
{F ′(x) sinx− F (x) cos x} = F ′′(x) sin x+ F (x) sinx = f(x) sin x
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and
∫ π

0

f(x) sinxdx = [F ′(x) sin x− F (x) cos x]π0 = F (π) + F (0). (3.66)

Now F (π)+F (0) is an integer, since f (j)(0) and f (j)(π) are integers.
But for 0 < x < π,

0 < f(x) sinx <
πnan

n!
,

so that the integral in (3.66) is positive but arbitrarily small for n
sufficiently large. Thus (3.66) is false, and so is our assumption that
π is rational. �

This proof gives a good taste of the ingredients of more subtle irra-
tionality and transcendence proofs.

15. A spigot algorithm for e and pi. A spigot method for a numerical
constant is one that can produce digits one by one (“drop by drop”)
[239]. This is especially easy for e as carries are not a big issue.

(a) The following algorithm, due to Rabinowitz and Wagon, gener-
ates successive digits of e. Initialize an array A of length n+ 1
to 1. Then repeat the following n − 1 times: (a) multiply each
entry in A by ten; (b) Starting from the right, reduce the i-th
entry of A modulo i + 1, carrying the quotient of the division
one place left. The final quotient produced is the next digit of
e. This algorithm is based on the following formula, which is
simply a restatement of e =

∑
1/i!.

e = 1 +
1

1

(
1 +

1

2

(
1 +

1

3

(
1 +

1

4

(
1 +

1

5
(1 + · · · )

))))
.

(b) Implement a parallel spigot algorithm for π, based on showing
that:

π = 2 +
1

3

(
2 +

2

5

(
2 +

3

7

(
2 + · · ·

(
2 +

k

2k + 1
· · ·

))))
.

The last term can be approximated by 2 + 4k/(2k + 1) where
k = log2(10)n to produce n digits of π “drop by drop.” If one
wishes to run the algorithm without a specified end, one must
take more care.
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One may view the iteration (4.7), which we will study in Chapter 4,
as a spectacular (albeit unproven) spigot algorithm for π base 16.

16. Wagon’s BBP identity. Determine the range of validity of the
following identity, which is due to Stan Wagon:

π + 4 arctan z + 2 log

(
1− 2z − z2

z2 + 1

)
=

∞∑

k=0

1

16k

(
4(z + 1)1+8k

1 + 8k
− 2(z + 1)4+8k

4 + 8k
− (z + 1)5+8k

5 + 8k
− (z + 1)6+8k

6 + 8k

)
.

17. Monte Carlo calculation of pi. Monte Carlo simulation was pio-
neered during the Manhattan project by Stanislaw Ulam and others,
who recognized that this scheme permitted simulations beyond the
reach of conventional methods on the systems then available. We il-
lustrate here a Monte Carlo calculation of π, which is a poor method
to compute π, but illustrative of this general class of computation.
Nowadays, Monte Carlo methods are quite popular because they are
well suited to parallel computation on systems such as “Beowulf”
clusters.

(a) Design and implement a Monte Carlo simulation for π, based
on generating pairs of uniformly distributed numbers in the unit
square and testing whether they lie inside the unit circle. Use
the pseudorandom number generator x0 = 314159 and xn =
cxn−1 mod 232, where c = 59 = 1953125. This generator is
of the well known class of linear congruential generators and
has period 230 [188, pg. 21]. It can be easily implemented on a
computer using IEEE 64-bit “double” datatype, since the largest
integer that can arise here is less than 253. Variations with longer
periods can easily be designed, although the implementation is
not as convenient. The results of this generator are normalized,
by 232 in this case, to produce results in the unit interval.

(b) Extend your program to run on a parallel computer system, with
the property that your parallel program generates the same over-
all scheme of pseudorandom numbers, and thus gets the same
result for π, as a serial implementation (you may for conve-
nience assume that n, the total number of pseudorandom num-
bers generated, is evenly divisible by p, the number of proces-
sors). This is a very desirable feature of a parallel program,
because it allows you to certify your parallel results by com-
paring them with a conventional single-processor run, and it
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permits you to take advantage of a range of system sizes. Hint:
Design the program so that processor k (where processors are
numbered from 0 to p − 1) generates the m = n/p members of
the sequence (xkm, xkm+1, xkm+2, · · · , xkm+m−1). Note that the
starting value xkm for processor k can be directly computed as
xkm = 59kmx0 mod 232. This exponentiation modulo 232 may
be performed by using Algorithm 3.2, implemented with 128-bit
floating-point or “double-double” arithmetic (see Section 6.2.1).

(c) Generate the following sequence of pseudorandom numbers and
experimentally determine what distribution they satisfy (i.e., by
computing means, standard deviations, graphs, etc.): Let x1 and
x2 be a pair of uniform (0, 1) pseudorandom numbers generated
as described above. Set v =

√
x2
1 + x2

2 and w =
√
−2 log v/v.

Then produce the results y1 = wx1 and y2 = wx2.

18. Life of Pi. At the end of his story, Piscine (Pi) Molitor [215, pp.316–
7] writes

I am a person who believes in form, in harmony of order. Where
we can, we must give things a meaningful shape. For example—I
wonder—could you tell my jumbled story in exactly one hundred
chapters, not one more, not one less? I’ll tell you, that’s one
thing I hate about my nickname, the way that number runs on
forever. It’s important in life to conclude things properly. Only
then can you let go.

We may not share the sentiment, but we should celebrate that Pi
knows π to be irrational.
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Anyone who wants to make a name for himself can examine the major
issue of whether π is normal, or perhaps more accurately, whether π
is not normal.

– Jörg Arndt and Christoph Haenel, Pi Unleashed, 2001

In this chapter, we address a fundamental problem of mathematics, a para-
dox of sorts: Whereas on one hand it can be proven that “almost all” real
numbers are normal, and whereas it appears from experimental analysis
that many of the fundamental constants of mathematics are normal to
commonly used number bases, as yet there are no proofs, nor even any
solid reason why we should observe this behavior. What we shall show
here is that the theory of BBP constants, which as we have seen is a classic
case study of experimental mathematics in action, opens a pathway into the
investigation of normality, and in fact has already yielded some intriguing
results.

4.1 Normality: A Stubborn Question

Given a real number α and an integer b > 2, we say that α is b-normal
or normal base b if every sequence of k consecutive digits in the base-b
expansion of α appears with limiting frequency b−k. In other words, if
a constant is 10-normal, then the limiting frequency of “3” (or any other
single digit) in its decimal expansion is 1/10, the limiting frequency of
“58” (or any other two-digit pair) is 1/100, and so forth. We say that a
real number α is absolutely normal if it is b-normal for all integers b > 1
simultaneously.

In spite of these strong conditions, it is well known from measure the-
ory that the set of absolutely normal real numbers in the unit interval has
measure one, or in other words, that almost all real numbers are abso-
lutely normal (see Exercise 1 at the end of this chapter). Further, from

143
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numerous analyses of computed digits, it appears that many of the fun-
damental constants of mathematics are normal to commonly used number
bases. By “fundamental constants,” we include π, e,

√
2, the golden mean

τ = (1 +
√
5)/2, as well as logn and the Riemann zeta function ζ(n) for

positive integers n > 1, and many others. For example, it is a reasonable
conjecture that every irrational algebraic number is absolutely normal,
since there is no known example of an irrational algebraic number whose
decimal expansion (or expansion in any other base) appears to have skewed
digit-string frequencies.

Decimal values are given for a variety of well known mathematical con-
stants in Table 4.1 [99,142]. In addition to the widely recognized constants
such as π and e, we have listed Catalan’s constant (G), Euler’s constant
(γ), an evaluation of the elliptic integral of the first kind K(1/

√
2), an eval-

uation of an elliptic integral of the second kind E(1/
√
2), Feigenbaum’s α

and δ constants, Khintchine’s constant K, and Madelung’s constant M3.
Binary values for some of these constants, as well as Chaitin’s Ω constant
(from the field of computational complexity) [99], are given in Table 4.2.
As you can see, none of the expansions in either table exhibits any evident
“pattern.”

The digits of π have been studied more than any other single constant,
in part because of the widespread fascination with π. Along this line,
Yasumasa Kanada of the University of Tokyo has tabulated the number
of occurrences of the ten decimal digits “0” through “9” in the first one
trillion decimal digits of π. These counts are shown in Table 4.3. For
reasons given in Section 3.4, binary (or hexadecimal) digits of π are also of
considerable interest. To that end, Kanada has also tabulated the number
of occurrences of the 16 hexadecimal digits “0” through “F,” as they appear
in the first one trillion hexadecimal digits. These counts are shown in Table
4.4. As you can see, both the decimal and hexadecimal single-digit counts
are entirely reasonable.

Some readers may be amused by the LBNL PiSearch utility, which is
available at http://pisearch.lbl.gov. This online tool permits one to enter
one’s name (or any other modest-length alphabetic string, or any modest-
length hexadecimal string) and see if it appears encoded in the first several
billion binary digits of π. Along this line, a graphic based on a random
walk of the first million decimal digits of π, courtesy of David and Gregory
Chudnovsky, is shown in Figure 4.1 (see Color Plate VIII). It maps the
digit stream to a surface in ways similar to those used by Mandelbrot and
others.

As we mentioned in Section 3.2, the question of whether π, in particular,
or, say,

√
2, is normal or not has intrigued mathematicians for centuries.

But in spite of centuries of effort, not a single one of the fundamental
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Constant Value√
2 1.4142135623730950488 . . .√
3 1.7320508075688772935 . . .√
5 2.2360679774997896964 . . .

φ =
√
5−1
2 0.61803398874989484820 . . .
π 3.1415926535897932384 . . .

1/π 0.31830988618379067153 . . .
e 2.7182818284590452353 . . .

1/e 0.36787944117144232159 . . .
eπ 23.140692632779269005 . . .

log 2 0.69314718055994530941 . . .
log 10 2.3025850929940456840 . . .
log2 10 3.3219280948873623478 . . .
log10 2 0.30102999566398119521 . . .
log2 3 1.5849625007211561814 . . .
ζ(2) 1.6449340668482264364 . . .
ζ(3) 1.2020569031595942854 . . .
ζ(5) 1.0369277551433699263 . . .

G 0.91596559417721901505 . . .
γ 0.57721566490153286060 . . .

Γ(1/2) =
√
π 1.7724538509055160272 . . .

Γ(1/3) 2.6789385347077476336 . . .
Γ(1/4) 3.6256099082219083119 . . .

K(1/
√
2) 1.8540746773013719184 . . .

E(1/
√
2) 1.3506438810476755025 . . .
αf 4.6692016091029906718 . . .
δf 2.5029078750958928222 . . .
K 2.6854520010653064453 . . .

M3 1.7475645946331821903 . . .

Table 4.1. Decimal values of various mathematical constants.

Constant Value
π 11.001001000011111101101010100010001000010110100011000010001 . . .
e 10.101101111110000101010001011000101000101011101101001010100 . . .√
2 1.0110101000001001111001100110011111110011101111001100100100 . . .√
3 1.1011101101100111101011101000010110000100110010101010011100 . . .

log 2 0.1011000101110010000101111111011111010001110011110111100110 . . .
log 3 1.0001100100111110101001111010101011010000001100001010100101 . . .

Ω 0.0000001000000100001000001000011101110011001001111000100100 . . .

Table 4.2. Binary values of various mathematical constants.
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Digit Occurrences
0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1000000000000

Table 4.3. Statistics for the first trillion decimal digits of π.

Digit Occurrences
0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Table 4.4. Statistics for the first trillion hexadecimal digits of π.
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Figure 4.1. A random walk based on one million digits of π (see Color Plate VIII).
Courtesy of David and Gregory Chudnovsky.

constants of mathematics has ever been proven to be b-normal for any
integer b, much less for all integer bases simultaneously. And this is not for
lack of trying—some very good mathematicians have seriously investigated
this problem, but to no avail. Even much weaker results, such as the digit
“1” appears with nonzero limiting frequency in the binary expansion of π,
and the digit “5” appears infinitely often in the decimal expansion of

√
2,

have heretofore remained beyond the reach of modern mathematics.
One result in this area is the following. Let f(n) =

∑
1≤j≤n	log10 j
.

Then the Champernowne number,

∞∑

n=1

n

10n+f(n)
= 0.12345678910111213141516171819202122232425 . . . ,

where the positive integers are concatenated in a decimal value, is known to
be 10-normal (See Exercise 5). There are similar constants and normality
results for other number bases. However, no one, to the authors’ knowl-
edge, has ever argued that this constant and its relatives are “natural” or
“fundamental” constants.

Consequences of a proof in this area would definitely be interesting. For
starters, such a proof would immediately provide an inexhaustible source
of provably reliable pseudorandom numbers for numerical or scientific ex-
perimentation. We also would obtain the mind-boggling but uncontestable
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consequence that if π, for example, is shown to be 2-normal, then the en-
tire text of the Bible, the Koran and the works of William Shakespeare,
as well as the full LATEX source text for this book, must all be contained
somewhere in the binary expansion of π, where consecutive blocks of eight
bits (two hexadecimal digits) each represent one ASCII character. Unfortu-
nately, this would not be much help to librarians or archivists, since every
conceivable misprint of each of these books would also be contained in the
binary digits of π.

Before continuing, we should mention the “first digit” principle, also
known as Benford’s principle. In the 1880s, Simon Newcomb observed a
pattern in the first digits of logarithm tables: A “1” is significantly more
likely to occur than “2,” a “2” more than a “3,” and so on. In other words,
the collection of first digits of data in logarithm tables certainly does not
reflect the statistics expected of 10-normal numbers. In the 20th century,
Frank Benford rediscovered this phenomenon, noting that it applies to
many types of numerical data, ranging from values of physical constants to
census data to the stock market. One can deduce this principle by observing
that natural laws surely cannot be dependent on our choice of units, and
thus must be scale-independent. This suggests that we view numerical data
on a logarithmic scale. In the logarithmic sense, a leading “1” appears
roughly 30% of the time (since log10 2 − log10 1 = 0.30102999 . . .), a “2”
appears roughly 17.6% of the time (since log10 3− log10 2 = 0.1760912 . . .),
and so on. More recently scientists have applied Benford’s principle in
diverse ways, including fraud detection in business accounting [172].

4.2 BBP Constants and Normality

Until recently, the BBP formulas mentioned in Sections 3.4 and 3.6 were
assigned by some to the realm of “recreational” mathematics—interesting
but of no serious consequence. But the history of mathematics has seen
many instances where results once thought to be idle curiosities were later
found to have significant consequences. This now appears to be the case
with the theory of BBP-type constants.

What we shall establish below, in a nutshell, is that the 16-normality
of π (which, of course, is equivalent to the 2-normality of π), as well as the
normality of numerous other irrational constants that possess BBP-type
formulas, can be reduced to a certain plausible conjecture in the theory
of chaotic sequences. At this time we do not know the full implications
of this result. It may be the first salvo in the resolution of this age-old
mathematical question, or it may be merely a case of reducing one very
difficult mathematical problem to another. But at the least, this result
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18. Approximations to π derived from integrals
with nonnegative integrands (2009)

Paper 18: Stephen K. Lucas, “Approximations to π derived from integrals with
nonnegative integrands,” American Mathematical Monthly, vol. 116 (2009), p. 166–
172. Copyright 2009 Mathematical Association of America. All Rights Reserved.

Synopsis:
In this article, Stephen Lucas addresses the classic grade school approximation

π ≈ 22/7. He shows how this venerable approximation can be seen in context with
approximations based on integrals, such as

∫ 1

0

x4(1− x)4

1 + x2
dx =

22

7
− π.

Lucas then exhibits other integrals that yield even better approximations, such as
∫ 1

0

x8(1− x)8(25 + 816x2)

3164(1 + x2)
dx =

355

113
− π.

Keywords: Approximations
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NOTES 
Edited by Ed Scheinerrnan 

Approximations to 1r Derived from 
Integrals with Nonnegative Integrands 

Stephen K. Lucas 

One of the more intriguing results related to approximating JT is the integral 

I= t x4(l-x)4 dx = 22 -JT. 

Jo 1 + x2 7 
(1) 

Since the integrand is nonnegative and "small" (as we shall shortly see) on the interval 
[0, 1], it shows that JT is smaller than 22/7, and that this rational approximation is 
inded a good approximation to it. 

The earliest statement of (l) that we are aware of is Dalzell [6] in 1944. Proving 
(1) was a question on a University of Sydney examination in November 1960 (Bor
wein et al. [4]), and it was apparently shown by Kurt Mahler to his students in the mid 
1960s. Proving ( 1) was also the first question in the William Lowell Putnam mathe
matical competition of December 1968, as published by McKay [10] in 1969. In 1971, 
Dalzell [7] again derived (l) in a larger work published in the Cambridge student jour
nal Eureka. This paper is the one most often cited in connection with the result (1) 
(e.g., Backhouse [2] and Borwein eta!. [ 4]). It was also presented without reference in 
Cornwell [5] in 1980. A more recent reference is Medina [11]. 

In this article we shall look at some features of this integral, including error bounds 
and a related series expansion. Then, we present a number of generalizations, including 
a new series approximation to JT where each term adds as many digits of accuracy 
as desired. We conclude by presenting a number of related integral results for other 
continued fraction convergents of JT. 

1. THE CLASSIC INTEGRAL. Proving (1) is not difficult, if perhaps somewhat 
tedious. A partial fraction decomposition leads to 

x 4(1-x)4 4 
---,---- = x 6 - 4x 5 + 5x4 - 4x2 + 4 - --, 

1 + x 2 1 + x 2 
(2) 

and (1) immediately follows by integration. An alternative is to use the substitution 
X = tan 8, leading to 

11 x 4(l- x) 4 1"14 tan4 1-i(l- tane)4 
---2,---- dx = 2 sec2 e de 

o l+x 0 sece 

rr/4 
= J 0 tan 4 e - 4 tan 5 e + 6 tan 6 e - 4 tan 7 e + tan 8 e de. 

This can be solved using the recurrence relation (tann e = tann -2 8(sec2 e - 1)) 

tann e de = --- tann-l e d8, 1rr/4 ] 1n/4 
o n- 1 o 
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296 18. APPROXIMATIONS TO π DERIVED FROM CERTAIN INTEGRALS (2009)

with 

1rrj4 J[ 

d8 =-
0 4, 

{"14 
Jo ' tan8d8 = lnh, 

which returns the required result after some algebra. Of course, the simplest approach 
today is to verify (1) using a symbolic manipulation package. 

1.1. Error estimation. As well as showing 22/7 > n we can use (1) to get bounds on 
the error. One approach, following Nield [12], is to note that since x (1 - x) :::: 1 I 4 and 
1 + x 2 :::: 1 on [0, 1] with equality only at the endpoints, the integrand takes maximum 
value (1 14)4 = 11256. Combined with the fact that 2217- n is positive, we get the 
error bound 

5625 22 22 
--=--- < J[ < -. 
1792 7 256 7 

However, a better bound can be found by noting that l < 1 + x 2 < 2 for 0 < x < 1, 

and J0
1 x 4(1- x) 4 dx = 11630 (as in Dalzell [6, 7] and Nield [13]). Then 

22 1 1979 22 1 22 1 3959 
-- < - - n < - or -- = - - - < n < - - -- = --. 
1260 7 630 630 7 630 7 1260 1260 

The interval [1979 1630, 3959112601 is of width 7.94 x 10-4 , and is not centered at n. 

1.2. Series expansion. Dalzell [6] also provides a series expansion for n based upon 
(2), which is included in Borwein et al. [4] as an example. After gathering the two 
pieces with 1 + x 2 as the denominator, we can write 

1 + x 2 

x 6 - 4x 5 + 5x4 - 4x 2 + 4 

4+x4 (1-x)4 
or 

4 

1 + x 2 

x 6 - 4x 5 + 5x4 - 4x 2 + 4 

1 + x 4 (1- x)4 14 

Integrating both sides between 0 and 1 and using the Taylor series expansion for 
1/(1 + t) leads to 

(3) 

Applying integration by parts n times reducing the exponent of (1- x), we have 

11 m!n! 
xm(l-x)"dx = ' 

o (m + n + l)! 
(4) 

where m and n are nonnegative integers, which when applied to (3) gives 

J[ = f (- ~)k [ (4k)! (4k + 6)! - 4(4k)! (4k + 5)! + 5(4k)! (4k + 4)! 
k=O 4 (8k + 7)! (8k + 6)! (8k + 5)! 

- 4(4k)! (4k + 2)! 4(4k)!2 J 
(Sk + 3)! + (Sk + l)! . 

(5) 
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The series (5) is equivalent to that derived in Dalzell [6, 7] and Borwein eta!. 14], but 
written in a different form. There the sixth order polynomial in (3) is recognized to 
be unchanged when x is replaced by I - x, and so additional algebra is performed to 
reformulate the integral in (3) as 

1' (3 + x(l- x)- ~x 2 (1- x) 2 - x 3(1- x) 3) x 4"(1- x) 4" dx 

3(4k)!2 (4k + 1)!2 (4k + 2)! 2 (4k + 3)!2 

= (8k + 1)' + (8k + 3)! 2(8k + 5)! (8k + 7)! ' 
(6) 

where we have applied (4) with rn = 11 several times. To show that the bracketed ex
pression in (5) is equivalent to (6), it is easiest to factor both of them, and incidentally 
get a cleaner solution. In both cases, start by giving them the common denominator 
(8k + 7)!, and take out the common factor (4k)!2 . It quickly becomes apparent that 
(4k + 1)(4k + 2)(4k + 3) is also a common factor, and both expressions lead to 

00 (4k)l (4k + 3)1 
rr = L(-1)k42-k . - . (820k3 + 1533k2 + 902k + 165) 

k~O (8k + 7)! 

22 19 543 77 
= 7- 15015 + 594914320- 104187267600 +... . (7) 

The convergence rate can be found by applying Stirling's approximation for the facto
rials (see for example [1, 6.1.37]) and taking the ratios of successive terms, giving that 
each term has magnitude roughly 1/1024 of the previous term, or roughly 3 decimal 
digits of accuracy are added per term. Using just the first two terms, and knowing that 
the error when truncating an alternating series with terms decreasing in magnitude is 
less than or equal to the absolute value of the first term in the truncated part, we can 
form the bound 

22 19 22 19 
7- 15015 <:: Jf <:: 7 + 15015' 

(8) 

which is of width 2.53 x 1 o-3 . This result is poorer than the bound from the previous 
section, but if we use three terms, then 

22 19 543 22 19 543 
7- 15015- 594914320 <:: Jf <:: 7- 15015 + 594914320' (9) 

which is a bound of width ).83 X 1 o-6 , an improvement. 

2. RELATED FAMILIES OF INTEGRALS. There turn out to be a number of fam
ilies of integrals that are similar in style to (1 ). The most obvious is originally due to 
Nield [12] in 1982, who introduces 

(10) 

for positive integers 11. Then I from (1) is equivalent to h Medina [11] has investigated 
this set of integrals in detail, where the upper bound in the integral has been replaced by 
x, and he has used these integrals to develop polynomial approximations to arctan(x) 
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with rational coefficients. From our perspective, one of the most useful results he gives 
is the closed form expression 

x4"(1- x)4" 

1 + x 2 

While this equation is not proven explicitly in [11], a proof by mathematical induction 
is straightforward. Integrating (11) using ( 4) and simplifying leads to 

n-l 24-lk 4k)l (4k + 3)1 
= :rr- 2.:)-1/ ( . . (820k3 + 1533k2 + 902k + 165), 

k=O (8k + 7)! 

where the integration and simplification were already done earlier for Dalzell's series 
expansion. So in fact the closed form expression for ( -1 )" I4n/411 - 1 is equivalent to the 
error when approximating :rr by a truncated version of Dalzell's series expansion! 

In 1995, Backhouse [2] generalized (1) to 

11 x 111 (1- x) 11 

I,. 11 = 2 dx =a+ b:rr + cln(2), 
0 1 +x 

(12) 

where a, b, and care rationals that depend on the positive integers m and n, and a and 
b have opposite sign. In this case, I = I 4,4 . Backhouse [2] showed that if 2m - n = 0 
(mod 4), then c = 0 and approximations to :rr result. In what follows we shall assume 
that this is the case. An integral equal to a + b:rr gives the approximation -a/ h for :rr. 
As m and n increase, the integrand becomes increasingly flat (Backhouse calls them 
"pancake functions") and the approximations to :rr improve as well. Unfortunately, 
there is no straightforward formula relating a and b directly to m and n as in the h 1 

case. However, Weisstein [14] at least states the result 

Im,n = T(m+l1+ll,Jrrr(m + 1)r(n + 1) 

( m+ 1 m+2. m+n+2. m+n+3. ) 
x 3 Fz I' -2-' -2-' 2 ' 2 ' -1 . 

We previously saw that error bounds for I could be found using the bounds 1 < 
1 + x 2 :S 2. The same approach for I 111 11 directly leads to 

m!n! 11 x'"(l-x)" 
----- < a + b:rr = dx < -----
2(m+n+l)! 0 l+x2 (m+n+l)!' 

m!n! 

where a and bare the rationals depending on m and n. As m and n increase, the bounds 
on the error decrease with reasonable rapidity. 

2.1. Series expansion. Given the closed form expression (11), we can follow the 
same process as Dalzell to produce series expansions for :rr, with a specific value of n 

February 2009] NOTES 169 



18. APPROXIMATIONS TO π DERIVED FROM CERTAIN INTEGRALS (2009) 299

leading to 

oo n-1 {I 

lf = L L ( -4) -nm-k Jn (x" - 4x5 + 5x4 - 4x2 + 4 )x4(k+nm) (1 - X )4(k+nm) dx' 

m=O k=O 0 

(13) 

which generalizes (3). Evaluating the integrals as before leads to 

oo n-1 (4 )I (4 + 3)1 
lf=LL(-lt42-" a. a '(820a3 +1533a2 +902a+l65), (14) 

m=O k=O (Sa + ?) ! 

where a = k + nm. With n = 1, (14) is exactly Dalzell's expansion (7). With n = 2 
we have 

co [(8m)1(8m+3)1 
n = L 42-lm · · (6560m 3 + 6132m 2 + 1804m + 165) 

m=O (16m+ 7)! 

- · ·(I 640m 3 + 3993m2 + 3214m + 855) 
(8m + 4)' (Sm + 7) 1 ] 

(16m+ 15)! 

47171 16553 64615651 
= 15015 + 18150270600 + 102659859353904652800 + .... 

Note that this is not an alternating series, and each term is roughly 11220 of the previ
ous, or roughly 6 digits of accuracy are added per term. 

There is no reason why we can't taken as large as we like. While this increases the 
amount of work to find each term in the series, each term is roughly 11210" the size 
of the previous term, or roughly 3n digits of accuracy are added with each term. In 
principle, there is no reason why a series where each term adds one hundred digits or 
more of accuracy cannot be explicitly written down from (14) with n ::0:: 33. 

3. INTEGRALS LEADING TO CONVERGENTS. The main reason for appreci
ating the elegance of (1) surely is that it approximates n by 2217, the classic and most 
well-known rational approximation both within and outside the mathematics commu
nity. The number 2217 is particularly good because it is better than other rational 
approximation pI q for q < 57. In fact it is one of the convergents of the continued 
fraction approximation ton, the first few of which are 3, 2217, 3331106, 3551113, 
103993133102, and 104348133215. There are many excellent texts on continued frac
tions, including Chapter 10 of Hardy and Wright [8]. A natural question, then, is 
whether there are integrals similar to the ones shown here that lead to other convergents 
of n. 

Unfortunately, none of the integrals considered so far lead to approximations to n 
related to the other convergents of n. The 2217 in ( 1) must be considered a happy coin
cidence. However, Lucas [9] developed a set of integrals with nonnegative integrands 
that equalled 355 I 113 - n, where 355 I 113 is the next particularly good approxima
tion to n. Here, we generalize those results, and show how integrals with nonnegative 
integrands can be formed for z - n (if z > n) or n - z (if z < n ), with any real z. 

We begin by noting that Im.n from (12) is a combination of multiples of 1, n, and 
In 2. Now consider the related integral 

(15) 
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which can be evaluated as a combination of 1, n, and In 2, where the coefficients 
depend on a, b, and c. If we want I' to equal z - n, this leads to a set of three linear 
equations in a, b, and c, which is easily solved. However, there is no guarantee that 
our resulting integrand is nonnegative. We need to ensure m and n are large enough 
that a+ bx + cx2 2: 0 for x E [0, 1]. The closer z is ton, the larger m and n will need 
to be. As m and n increase, the coefficients a, b, and c become increasingly large, and 
so a "best" solution can be found, in the sense that the number of characters required 
to form the integrand is minimal. Using Maple code (available from the author) to list 
the various solutions verifies that (1) is the simplest integrand leading to 22/7, and that 
the simplest results for other continued fraction approximations to n are 

t x 5(1- x) 6 (197 + 462x2 ) dx = JT _ 333 
} 0 530(1 + x2 ) 106' 

t x 8(1- x) 8 (25 + 816x 2) dx = 355 _ JT 

Jo 3164(l+x2 ) 113 ' 

t x 14 (1- x) 12 (124360 + 77159x2 ) dx = JT _ 103993 
} 0 755216(1 + x2 ) 33102' 

and 

To conclude, there are a variety of further directions for experimentation. Are there 
other integrals with nonnegative integrands leading to approximations of n apart from 
(15) that are worth considering? Also, are there other constants that can be approxi
mated, and hence new series approximations developed using these techniques? For 
example, (1 5) could be used to find approximations to In 2. 
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New Proofs of Euclid's and Euler's Theorems 
Juan Pablo Pinasco 

In this note we give a new proof of the existence of infinitely many prime numbers. 
There are several different proofs with many variants, and some of them can be found 
in [1, 3, 4, 5, 6]. This proof is based on a simple counting argument using the inclusion
exclusion principle combined with an explicit formula. A different proof based on 
counting arguments is due to Thue (1897) and can be found in [6] together with sev
eral generalizations, and a remarkable variant of it was given by Chaitin [2] using al
gorithmic information theory. Moreover, we prove that the series of reciprocals of the 
primes diverges. Our proofs arise from a connection between the inclusion-exclusion 
principle and the infinite product of Euler. 

Let {p; L be the sequence of prime numbers, and let us define the following recur
rence: 

ao = 0, 
1 - ak 

ak+I = ak + ---. 
Pk+I 

Let us note that the Nth term aN generated by this recurrence coincides with 

" 1 "" 1 " I N+I aN=L--L--+ L -. -- .. ·+(-1) ---
; p; i<j p;pj i<j<k p,pjpk PI ... PN 

and can be given in a closed form as 

which implies that 0 < aN < I, since each factor is strictly positive and less than one. 
Now, we are ready to prove the classical Euclid's theorem: 

Theorem 1. There are infinitely many prime numbers. 

Proof Let us suppose that PI < p2 < · · · < PN are all the primes. For any x ?': 1. 
and for i = 1, ... , N, let A; be the set of integers in [I, x] that are divisible by p;. 
Then, the number of positive integers in [ 1, x] is obtained by applying the inclusion
exclusion formula to find the cardinality of u[:I A;: 

"" [X ] "" [ X ] " [ X ] N+I [ X ] [x] = I + L ----:- - L -. -. + L -.-. - - .. · + (-I) , 
i p, i<j p, PJ i<j<k p, PJ Pk PI ... PN 
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19. Ramanujan’s series for 1/π: A survey (2009)

Paper 19: Nayandeep Deka Baruah, Bruce C. Berndt and Heng Huat Chan,
“Ramanujan’s series for 1/π: A survey,” American Mathematical Monthly, vol. 116
(2009), p. 567–587. Copyright 2009 Mathematical Association of America. All
Rights Reserved.

Synopsis:
In this piece, the authors discuss some formulas for 1/π originally discovered

by Ramanujan. One of these is the formula

1

π
=

√
8

9801

∞∑

n=0

(4n)!(1103 + 26390n)

(n!)43964n
,

which was used by Gosper in 1985 to compute π to compute 17,526,100 decimal dig-
its of π. Using the same mathematical approach, David and Gregory Chudnovsky
subsequently deduced the formula

1

π
= 12

∞∑

n=0

(−1)n(6n)!

(n!)3(3n)!

13591409 + 545140134n

6403203n+3/2
,

which was then used by them to compute 2,260,331,336 digits. Results are presented
here for numerous other series of this general form.

Keywords: Computation, History, Series
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Ramanujan 's Series for 1/ 1r: A Survey* 

Nayandeep Deka Baruah, Bruce C. Berndt, and Heng Huat Chan 

In Memory ofV. Ramaswamy Aiyer, 
Founder of the Indian Mathematical Society in 1907 

When we pause to reflect on Ramanujan's life, we see that there were certain 
events that seemingly were necessary in order that Ramanujan and his mathemat
ics be brought to posterity. One of these was V. Ramaswamy Aiyer's founding 
of the Indian Mathematical Society on 4 April 1907, for had he not launched the 
Indian Mathematical Society, then the next necessary episode, namely, Ramanu
jan's meeting with Ramaswamy Aiyer at his office in Tirtukkoilur in 1910, would 
also have not taken place. Ramanujan had carried with him one of his notebooks, 
and Ramaswamy Aiyer not only recognized the creative spirit that produced its 
contents, but he also had the wisdom to contact others, such as R. Ramachandra 
Rao, in order to bring Ramanujan's mathematics to others for appreciation and 
support. The large mathematical community that has thrived on Ramanujan's 
discoveries for nearly a century owes a huge debt to V. Ramaswamy Aiyer. 

1. THE BEGINNING. Toward the end of the first paper [57], [58, p. 36] that 
Ramanujan published in England, at the beginning of Section 13, he writes, "I shall 
conclude this paper by giving a few series for 1/rr." (In fact, Ramanujan concluded 
his paper a couple of pages later with another topic: formulas and approximations for 
the perimeter of an ellipse.) After sketching his ideas, which we examine in detail 
in Sections 3 and 9, Ramanujan records three series representations for 1 /rr. As is 
customary, set 

(a)o := 1, (a). := a(a + 1) ···(a+ n - 1), n~l. 

Let 

A ·- <!)~ 
n .- nP ' n ~ 0. 

Theorem 1.1. If An is defined by (1.1), then 

4 00 1 
- = L(6n + 1)A.-, 
7r n=O 4" 

16 00 1 - = ~(42n +5)A-
7r ~ "2~' 

n=O 

( )

8n 
32 00 1 .J5- 1 
-;- = ~ ( (42J5 + 30)n + 5J5- 1) A. 26• - 2-

(1.1) 

(1.2) 

(1.3) 

(1.4) 

*This paper was originally solicited by the Editor of Mathematics Student to commemorate the founding of 
the Indian Mathematical Society in its centennial year. Mathematics Student is one of the two official journals 
published by the Indian Mathematical Society, with the other being the Journal of the Indian Mathematical 
Society. The authors thank the Editor of Mathematics Student for permission to reprint the article in this 
MONTHLY with minor changes from the original. 
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The first two formulas, (1.2) and (1.3), appeared in the Walt Disney film High 
School Musical, starring Vanessa Anne Hudgens, who plays an exceptionally bright 
high school student named Gabriella Montez. Gabriella points out to her teacher that 
she had incorrectly written the left-hand side of (1.3) as 8/rr instead of 16/rr on the 
blackboard. After first claiming that Gabriella is wrong, her teacher checks (possibly 
Ramanujan's Collected Papers?) and admits that Gabriella is correct. Formula (1.2) 
was correctly recorded on the blackboard. 

After offering the three formulas for 1/rr given above, at the beginning of Section 
14 [57], [58, p. 37], Ramanujan claims, "There are corresponding theories in which q 
is replaced by one or other of the functions" 

( 
zFtU.~;1;1-x)) 

qr:=qr(X):=exp -7rCSC(7r/r) (I r-1..) , (1.5) 
zF1 ;:. 7 , 1, X 

where r = 3, 4, or 6, and where 2F1 denotes one of the hypergeometric functions 
pFp-t. p :=:: 1, which are defined by 

lxl < 1. 

(The meaning of q is explained in Section 3.) Ramanujan then offers 14 further series 
representations for 1/rr. Of these, 10 belong to the quartic theory, i.e., for r = 4; 2 
belong to the cubic theory, i.e., for r = 3; and 2 belong to the sextic theory, i.e., for 
r = 6. Ramanujan never returned to the "corresponding theories" in his published 
papers, but six pages in his second notebook [59] are devoted to developing these 
theories, with all of the results on these six pages being proved in a paper [16] by 
Berndt, S. Bhargava, and F. G. Garvan. That the classical hypergeometric function 
2 F1 ( ~, ~; 1; x) in the classical theory of elliptic functions could be replaced by one of 
the three hypergeometric functions above and concomitant theories developed is one of 
the many incredibly ingenious and useful ideas bequeathed to us by Ramanujan. The 
development of these theories is far from easy and is an active area of contemporary 
research. 

All 17 series for 1/rr were discovered by Ramanujan in India before he arrived 
in England, for they can be found in his notebooks [59], which were written prior to 
Ramanujan's departure for England. In particular, (1.2), (1.3), and (1.4) can be found 
on page 355 in his second notebook and the remaining 14 series are found in his third 
notebook [59, p. 378]; see also [14, pp. 352-354]. It is interesting that (1.2), (1.3), 
and (1.4) are also located on a page published with Ramanujan's lost notebook [60, 
p. 370]; see also [3, Chapter 15]. 

2. THE MAIN ACTORS FOLLOWING IN THE FOOTSTEPS OF RAMANU
JAN. Fourteen years after the publication of [57], the first mathematician to address 
Ramanujan's formulas was Sarvadaman Chowla [37], [38], [39, pp. 87-91, 116-119], 
who gave the first published proof of a general series representation for 1/rr and used 
it to derive (1.2) of Ramanujan's series for 1/rr [57, Eq. (28)]. We briefly discuss 
Chowla's ideas in Section 4. 

Ramanujan's series were then forgotten by the mathematical community until 
November, 1985, when R. William Gosper, Jr. used one ofRamanujan's series, namely, 

9801 = ~ (4n)! (1103 + 26390n), 

n .J8 ~ (n !)4 3964" 
(2.1) 
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to calculate 17,526,100 digits of rr, which at that time was a world record. There was 
only one problem with his calculation-(2.1) had not yet been proved. However, a 
comparison of Gosper's calculation of the digits of rr with the previous world record 
held by Y. Kanada made it extremely unlikely that (2.1) was incorrect. 

In 1987, Jonathan and Peter Borwein [23] succeeded in proving all 17 of Ramanu
jan's series for 1/rr. In a subsequent series of papers [24], [25], [29], they established 
several further series for 1 jrr, with one of their series [29] yielding roughly fifty dig
its of rr per term. The Borweins were also keen on calculating the digits of rr, and 
accounts of their work can be found in [30], [28], and [26]. 

At about the same time as the Borweins were devising their proofs, David and Gre
gory Chudnovsky [40] also derived series representations for 1/rr and, in particular, 
used their series 

..!_ = 12 ~(-W (6n)! 13591409+545140134n (2_2) 
7r ~ (n!)3 (3n)! (640320)3n+3/2 

to calculate a world record 2,260,331,336 digits of rr. The series (2.2) yields 14 digits 
of rr per term. A popular account of the Chudnovskys' calculations can be found in a 
paper written for The New Yorker [56]. 

The third author of the present paper and his coauthors (Berndt, S. H. Chan, A. Gee, 
W.-C. Liaw, Z.-G. Liu, V. Tan, and H. Verrill) in a series of papers [19], [31], [33], [34], 
[36] extended the ideas of the Borweins, in particular, without using Clausen's formula 
in [31] and [36], and derived general hypergeometric-like formulas for 1/rr. We devote 
Section 8 of our survey to discussing some of their results. 

Stimulated by the work and suggestions of the third author, the first two authors 
[9], [7] systematically returned to Ramanujan's development in [57] and employed 
his ideas in order not only to prove most of Ramanujan's original representations for 
1/rr but also to establish a plethora of new such identities as well. In another paper 
[8], motivated by the work of Jesus Guillera [48]-[53], who both experimentally and 
rigorously discovered many new series for both 1/rr and 1/rr2, the first two authors 
continued to follow Ramanujan's ideas and devised series representations for 1/rr2. 

In the survey which follows, we delineate the main ideas in Sections 3, 6, 7, 8, 
and 9, where the ideas of Ramanujan, the Borwein brothers, the Chudnovsky brothers, 
Chan and his coauthors, and the present authors, respectively, are discussed. 

3. RAMANUJAN'S IDEAS. To describe Ramanujan's ideas, we need several defi
nitions from the classical theory of elliptic functions, which, in fact, we use throughout 
the paper. The complete elliptic integral of the first kind is defined by 

l rr/2 drp 
K:=K(k):= , 

o J 1 - k2 sin2 rp 
(3.1) 

where k, 0 < k < 1, denotes the modulus. Furthermore, K' := K(k'), where k' := 
.Jf=k2 is the complementary modulus. The complete elliptic integral of the second 
kind is defined by 

(3.2) 
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If q = exp( -n K' I K), then one of the central theorems in the theory of elliptic 
functions asserts that [13, p. 101, Entry 6] 

(3.3) 

where qJ(q) in Ramanujan's notation (or 1J3 (q) in the classical notation) denotes the 
classical theta function defined by 

00 

f{J(q) = 2: qj2. (3.4) 
j=-00 

Note that, in the notation (1.5), q = q2 and x = k2 • The second equality in (3.3) fol
lows from expanding the integrand in a binomial series and integrating term wise. Con
versely, it is also valuable to regard k as a function of q, and so we write k = k(q). 

Let K, K', L, and L' denote complete elliptic integrals of the first kind associated 
with the moduli k, k', f., and f.', respectively. Suppose that, for some positive integer n, 

(3.5) 

A modular equation of degree n is an equation involving k and f. that is induced by 
(3.5). Modular equations are always algebraic equations. An example of a modular 
equation of degree 7 may be found later in (9.18). Alternatively, by (3.3), (3.5) can 
be expressed in terms of hypergeometric functions. We often say that f. has degree n 
over k. Derivations of modular equations ultimately rest on (3.3). If we set K' I K = 
Jn, so that q = e-rrv'fi, then the corresponding value of k, which is denoted by kn := 
k(e-rrv'fi), is called the singular modulus. The multiplier m = m(q) is defined by 

(3.6) 

We note here that, by (3.3), (3.6), and [13, Entry 3, p. 98; Entry 25(vii), p. 40], m(q) 
and k2 (q) can be represented by 

f{J2(q) 
m(q) = f{J2(q") and ec ) = 16 1/1 4 (q 2

) 
q q f{J4(q) , 

respectively, where qJ(q) is defined by (3.4) and 

00 

1/J(q) = Lqj(j+l)/2. 

j=O 

Thus, modular equations can also be written as theta function identities. 
Ramanujan begins Section 13 of [57] with a special case of Clausen's formula [23, 

p. 178, Proposition 5.6(b)], 

4K2 oo (! )3 
- ~ 2 j (2kk')2j - F ( 1 1 I. 1 1· (2kk')2) (3.7) 

-2- - L.. ( "1)3 - 3 2 2' 2' 2' ' ' ' 
n j=O 1· 
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which can be found as Entry 13 of Chapter II in his second notebook [59] [12, p. 58]. 
Except for economizing notation, we now quote Ramanujan. "Hence we have 

(3.8) 

where 

(a; q)oo := (I - a)(l - aq)(I - aq2) •••• (3.9) 

Logarithmically differentiating both sides in (3.8) with respect to k, we can easily shew 
that 

I- 24 ~ jq 2
j = (1- 2k2) ~(3j +I) C!)} (2kk') 2 j 

~ 1 _ 2j ~ ( 't)3 • 
j=l q j=O J. 

(3.10) 

But it follows from 

3 00 j (K)2 
I - - - 24" . = - A(k) 

n 'ii ~ e21rJ..fo - I n 
V" J=l 

(3.11) 

where A(k) is a certain type of algebraic number, that, when q = e-"..rn, n being a 
rational number, the left-hand side of (3.10) can be expressed in the form 

( 2K) 2 B A- +-, 
T! T! 

where A and B are algebraic numbers expressible by surds. Combining (3.7) and 
(3.10) in such a way as to eliminate the term (2K/n)2, we are left with a series for 
Ifn." He then gives the three examples (1.2)-(1.4). 

Ramanujan's ideas will be described in more detail in Section 9. However, in clos
ing this section, we note that the series on the left-hand sides of (3.10) and (3.11) is 
Ramanujan's Eisenstein series P(q 2), with q = e-rr..fo in the latter instance, where 

00 • j 

P(q) := I - 24 L _!_!!___,., 
j=l 1- qJ 

lql <I. (3.12) 

Ramanujan's derivation of (3.11) arises firstly from the transformation formula for 
P(q), which in tum is an easy consequence of the transformation formula for the 
Dedekind eta-function, given in (9.11) below. The second ingredient in deriving (3.11) 
is an identity for nP(q2n)- P(q 2) in terms of the moduli k and l, where l has degree 
n over k. Formula (3.8) follows from a standard theorem in elliptic functions that 
Ramanujan also recorded in his notebooks [59], [13, p. 124, Entry 12(iii)]. 

4. SARVADAMAN CHOWLA. Chowla's ideas reside in the classical theory of 
elliptic functions and are not unlike those that the Borweins employed several years 
later. We now briefly describe Chowla's approach [37], [38], [39, pp. 87-91, 116-
119]. Using classical formulas of Cayley and Legendre relating the complete elliptic 
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integrals K and E, defined by (3.1) and (3.2), respectively, he specializes them by 
setting K I K' = .fii. He then defines 

00 e )3 
S := ""J·r 2: j (2kk')2j 

r ~ ( '1)3 
j=O J. 

and 

00 e)2 
T. := "";·r 4 j (2kk')2j. 

r ~ ( '1)2 
j=O J. 

Chowla then writes "Then it is known that, when k:::; 11.../2," 

2K 
-=l+To 

7r 
and 

4K2 

- 2 = l+So. 
7r 

(4.1) 

(4.2) 

(4.3) 

Chowla does not give his source for either formula, but the second formula in (4.3), as 
noted above, is a special case of Clausen's formula (3.7). The first formula is a special 
case of Kummer's quadratic transformation [23, pp. 179-180], which was also known 
to Ramanujan. Each of the formulas of (4.3) is differentiated twice with respect to k, 
and, without giving details, Chowla concludes that if K I K' = .fii, then 

1 - = a 1 + b1T0 + c1T1, 
K 

K 
- = d1T1 + e1T2, 
7r 

1 
- = azSo + b2S1, 
7r 

1 
K 2 = a3 + b3So + c3S1 + d3S2 , 

"where a 1, b1, ••• are algebraic numbers." He then sets n = 3 and k = sin(rrll2) in 
each of the four formulas above to deduce, in particular, identity (1.2) from the second 
formula above. 

5. R. WILLIAM GOSPER, JR. As we indicated in the Introduction, in November, 
1985, Gosper employed a lisp machine at Symbolics and Ramanujan's series (2.1) to 
calculate 17,526,100 digits of n, which at that time was a world record. (During the 
1980s and 1990s, Symbolics made a lisp-based workstation running an object-oriented 
programming environment. Unfortunately, the machines were too expensive for the 
needs of most customers, and the company went bankrupt before it could squeeze the 
architecture onto a chip.) Of the 17 series found by Ramanujan, this one converges 
the fastest, giving about 8 digits of n per term. At the time of Gosper's calculation, 
the world record for digits of n was about 16 million digits calculated by Y. Kanada. 
Before the Borwein brothers had later found a "conventional" proof of Ramanujan's 
series (2.1), they had shown that either (2.1) yields an exact formula for n or that it 
differs from n by more than 10-3000000• Thus, by demonstrating that his calculation of 
n agreed with that of Kanada, Gosper effectively had completed the Borweins' first 
proof of (2.1). However, Gosper's primary goal was not to eclipse Kanada's record 
but to study the (simple) continued fraction expansion of n for which he calculated 

572 @THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 116 



19. RAMANUJAN’S SERIES FOR 1/π: A SURVEY (2009) 311

17,001,303 terms. In email letters from February, 1992 and May, 1993, Gosper offered 
the following remarks on his calculations: 

Of course, what the scribblers always censor is that the digits were a by-product. 
I wanted to change the object of the game away from meaningless decimal digits. 

I used what I call a resumable matrix tower to exactly compute an enormous 
rational equal to the sum of a couple of million terms of Ramanujan's 99-4n 

series. I then divided to form the binary integer = floor(rr258•000·000). I converted 
this to decimal and sent a summary to Kanada for comparison, and converted the 
binary fraction to a cf using an fft based scheme. 

Gasper's world record was short lived, as in January, 1986, D. H. Bailey used an 
algorithm of the Borweins arising from a fourth-order modular equation to compute 
29,360,000 digits of rr. Gasper's calculation of the continued fraction expansion of 
rr was motivated by the fact that many important mathematical constants do not have 
interesting decimal expansions but do have interesting continued fraction expansions. 
That continued fraction expansions are considerably more interesting than decimal ex
pansions is a view shared by the Chudnovsky brothers [43]. Continued fraction expan
sions can often be used to distinguish a constant from others, while decimal expansions 
likely will be unable to do so. For example, the simple continued fraction of e, namely, 

1 1 1 1 

e= 2 +1 +2+ 1 + 1 +4+ 1 + 1 +6+ 1 +··· 
has a pattern. On the contrary, taking a large random string of digits of e would not 
help one identify e. It is an open problem if the simple continued fraction of rr, namely, 

1111 1II111I 1 
Jr = 3 + 7 + 15 + 1 + 292 + 1 + 1 + 1 + 2 + 1 + 3 + 1 + 14 

II 1 111 I 
- - - - - - - - - - -

+ 2 + 1 + 1 + 2 + 2 + 2 + 2 + I + 84 + 2 + 1 + 1 + 15 

- - - - -
+ 3 + I3 + I + 4 + 2 + 6 + · · · 

has a pattern. 
Gosper also derived a hypergeometric-like series representation for rr, namely, 

00 50j- 6 
Jr = I:-(3j) .. 

j=O j 21 

(5.I) 

which can be used to calculate any particular binary digit of rr. See a paper by 
G. Alrnkvist, C. Krattenthaler, and J. Petersson [1] for a proof of (5.I) as well as 
generalizations, which include the following theorem. 

Theorem 5.1. For each integer k 0:::: 1, there exists a polynomial Sk(j) in j of degree 
4k with rational coefficients such that 

~ Sk(j) 
Jr = ~ (8kj) (-4)kj 0 

J=O 4kJ 
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6. JONATHAN AND PETER BORWEIN. One key to the work of both Ramanu
jan and Chowla in their derivations of formulas for 1/rr is Clausen's formula for the 
square of a complete elliptic integral of the first kind or, by (3.3), for the square of 
the hypergeometric function 2 F 1(k, k; 1; k2). The aforementioned rendition (3.7) of 
Clausen's formula is not the most general version of Clausen's formula, namely, 

zFr (a, b; a+ b + k; z) = 3Fz (2a, 2b, a+ b; a+ b + k· 2a + 2b; z). (6.1) 

Indeed, the work of many authors who have proved Ramanujan-Iike series for 1/rr 
ultimately rests on special cases of (6.1). In particular, squares of certain other hyper
geometric functions lead one to Ramanujan's alternative theories of elliptic functions. 

A second key step is to find another formula for (K/rr)2, which also contains an
other term involving 1/rr. Combining the two formulas to eliminate the term (K/rr)2 

then produces a hypergeometric-type series representation for 1/rr. Evidently, unaware 
of Chow Ia's earlier work, the Borweins proceeded in a similar fashion and used Leg
endre's relation [23, p. 24] 

E(k)K'(k) + E'(k)K(k)- K(k)K'(k) =I 
and other relations between elliptic integrals to produce such formulas. 

Having derived a series representation for 1/rr, one now faces the problem of eval
uating the moduli and elliptic integrals that appear in the formulas. If q = e-rr-./ii, then 
for certain positive integers n one can evaluate the requisite quantities. This leads us 
to the definition of the Ramanujan-Weber class invariants. After Ramanujan, set 

lql < 1, (6.2) 

where (a; q) 00 is defined by (3.9). If n is a positive rational number and q = e-rr-./ii, 
then the class invariants Gn and 8n are defined by 

and (6.3) 

In the notation of H. Weber [63], Gn = 2-114f(J=ii") and 8n = 2- 1/ 4h(J=ii"). As 
mentioned in Section 3, kn := k(e-"-./ii) is called the singular modulus. In his volumi
nous work on modular equations, Ramanujan sets ex := k2 and f3 := £2 . Accordingly, 
we seta.:= k~. Because [13, p. 124, Entries 12(v), (vi)] 

x(q) = 2I/6{cx(l- cx)/q}-I/24 and 

it follows from (6.3) that 

and (6.4) 

In the form (6.4), the class invariant G. appears on the right-hand sides of (3.7) and 
(3.10), and consequently the values of Gn for several values of n are important in de
riving certain series for 1/rr. It is known that if n is square-free and n = I (mod4) then 
G~ is a real unit that generates the Hilbert class field of the quadratic field Q( J=ii") 
[32, Cor. 5.2], and this fact is very useful in evaluating G •. When we say that a series 
for 1/rr is associated with the imaginary quadratic field Q(J=ii"), we mean that the 
constants involved in the series are related to the generators of the Hilbert class field 
ofQ(J=ii"). 
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Singular moduli and class invariants are actually algebraic numbers. In general, as 
n increases, the corresponding series for 1/n converges more rapidly. The series (2.2) 
is associated with the imaginary quadratic field <Ql(v'-163). 

The Borweins' proofs of all 17 of Ramanujan's series for 1/n can be found in their 
book [23]. Their derivations arise from several general hypergeometric-like series rep
resentations for 1/n given in terms of singular moduli, class invariants, and complete 
elliptic integrals [23, pp. 181-184]. Another account of their work, but with fewer de
tails, can be found in their paper [24] commemorating the centenary of Ramanujan's 
birth. Further celebrating the 100th anniversary of Ramanujan's birth, the Borweins 
derived further series for 1/n in [25]. The series in this paper correspond to imaginary 
quadratic fields with class number 2, with one of their series corresponding ton = 427 
and yielding about 25 digits of n per term. In [29], the authors derived series for 1/n 
arising from fields with class number 3, with a series corresponding ton = 907 yield
ing about 37 or 38 digits of n per term. Their record is a series associated with a field 
of class number 4 giving about 50 digits of n per term; here, n = 1555 [28]. The latter 
paper gives the details of what we have written in this paragraph. 

The Borweins have done an excellent job of communicating their work to a wide 
audience. Besides their paper [28], see their paper in this MONTHLY [30], with 
D. H. Bailey, on computing n, especially via work of Ramanujan, and their delightful 
paper in the Scientific American [26], which has been reprinted in [22, pp. 187-199] 
and [11, pp. 588-595]. 

7. DAVID AND GREGORY CHUDNOVSKY. In our Introduction we mentioned 
that the Chudnovsky brothers, Gregory and David, used (2.2) to calculate over 2 billion 
digits of n. They had first used (2.2) to calculate 1, 130,160,664 digits of n in the fall 
of 1989 on a "borrowed" computer. They then built their own computer, "m zero," 
described colorfully in [56], and set a world record of 2,260,321,336 digits of n. The 
world record for digits of n has been broken several times since then, and since it is 
not the purpose of this paper to delineate this computational history, we refrain from 
mentioning further records. 

The Chudnovskys, among others, have extensively examined their calculations for 
patterns. It is a long outstanding conjecture that n is normal. In particular, for each k, 
0:::::: k:::::: 9, 

. # of appearances of k in the first N digits of n 1 

J~oo N 10 

The Chudnovskys' calculations, and all subsequent calculations of Kanada, lend cre
dence to this conjecture. As a consequence, the average of the digits over a long in
terval should be approximately 4.5. The Chudnovskys found that for the first billion 
digits the average stays a bit on the high side, while for the next billion digits, the 
average hovers a bit on the low side. Their paper [ 43] gives an interesting statistical 
analysis of the digits up to one billion. For example, the maximal length of a string of 
identical digits, for each of the ten digits, is either 8, 9, or 10. 

The Chudnovskys deduced (2.2) from a general series representation for 1 /n, which 
we will describe after making several definitions. For r E 1t = {r : Im r > 0} and 
each positive integer k, the Eisenstein series E2k(r) is defined by 

4k 00 . 

E2k(r) := 1-- LCT2k-!(j)q1 , 

B2k j=l 
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where Bko k ~ 0, denotes the kth Bernoulli number and ak(n) = Ldln dk. Klein's ab
solute modular J -invariant is defined by 

J(r) := El(r)- EJ(r)' r E H. (7.2) 

It is well known that if a(q) := k 2 (q), where k is the modulus, then [13, pp. 126-127, 
Entry 13] 

4 (1 - a(q) + a 2 (q) )3 

J (2r) = --'-------'-
27a2(q)(1 - a(q))2 

(7.3) 

Thus, (6.4) and (7.3) show that, when q = e-"../ii, singular moduli, class invariants, 
and the modular J -invariant are intimately related. Now define 

Sz(r) := E4 (r) (E2(r)- - 3-). 
E6(r) n Im r 

We are now ready to state the Chudnovskys' main formula [44, p. 122]. If r = 
(1 + ~)/2, then 

00 
{ 1 } (6t.t)! 1 ,.j-J(r) 1 

{; 6 (1 - Sz(r)) + 1-t (3t.t)! t.t!3 1728~-'l~-'(r) = n v'n(1- J(r)) 

(7.4) 

The Chudnovskys' series (2.2) is the special case n = 163 of (7.4). 
The Chudnovsky brothers developed and extended Ramanujan's ideas in directions 

different from those of other authors. They obtained hypergeometric-like representa
tions for other transcendental constants and proved, for example, that 

and 
rz (~) 

rmrm 
are transcendental [ 42]. Their advances involve the "second" solution of the hyperge
ometric differential equation. Recall from the theory of linear differential equations 
that 2 F 1 (a, b; c; x) is a solution of a certain second-order linear differential equation 
with a regular singular point at the origin [5, p. 1]. A second linearly independent so
lution is generally not analytic at the origin, and in [43] and [44, pp. 124-126], the 
Chudnovsky brothers establish new hypergeometric series identities involving the lat
ter function. Their identities lead to hypergeometric-like series representations for n, 
including Gosper's formula (5.1). In [45], the authors provide a lengthy list of such 
examples, including 

45 644 = ~ 8j(430j2- 6240j- 520) 
n + ~ (4j) . 

]=0 j 

The Chudnovsky brothers have also employed series for 1/n to derive theorems on 
irrationality measures t.t(a), which are defined by 

t.t(a) := inf { t.t > 0 : 0 < Ia - ~I < q1" has only finitely many solutions ~ E Q} . 
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By the famous Thue-Siegel-Roth Theorem [6, p. 66], 

I= I, 
f.L(a) = 2, 

:::2, 

if a is rational, 

if a is algebraic but not rational, 

if a is transcendental. 

Although the Chudnovskys can obtain irrationality measures for various constants, the 
one they obtain for n is not as good as one would like. Currently, the world record 
for the irrationality measure of n is held by M. Hata [54], who proved that f.L(n) :S 
8.016045 .... Their methods are much better for obtaining irrationality measures for 
expressions, such as n I .J 640320, arising in their series (2.2). See also a paper by 
W. Zudilin [ 64]. 

8. RAMANUJAN'S CUBIC CLASS INVARIANT AND HIS ALTERNATIVE 
THEORIES. In Sections 3, 4, 6, and 7, we emphasized how Ramanujan-Weber class 
invariants and singular moduli were of central importance for Ramanujan and others 
who followed in deriving series for 1 In. We also stressed in Section 1, in particular, in 
the discourse after (1.5), that Ramanujan's remarkable idea of replacing the classical 
hypergeometric function 2F1 <!. !; 1; x) by 2 F1 (~, '~ 1 ; 1; x), r = 3, 4, 6, leads to new 
and beautiful alternative theories. On the top of page 212 in his lost notebook [60], 
Ramanujan defines a cubic class invariant An (i.e., r = 3 in (1.5)), which is an ana
logue of the Ramanujan-Weber classical invariants Gn and gn defined in (6.3). Define 
Ramanujan's function 

J(-q) := (q; q)oo, iql < 1, (8.1) 

where (a; q) 00 is defined in (3.9), and the Dedekind eta-function IJ(<) 

00 

1](7:) := e2rrir/24 flO- e2rrijr) =: ql/24/(-q), (8.2) 
j=l 

where q = e2"i' and Im 1: > 0. Then Ramanujan's cubic class invariant An is defined 
by 

where q = e-".fil13, i.e., 1: = !iv'fl13. 
Chan, Liaw, and Tan [34] established a general series representation for lin in 

terms of An that is analogous to the general formulas of the Borweins and Chudnovskys 
in terms of the classical class invariants. To state this general formula, we first need 
some definitions. Define 

1 1 j12(q) 
--:=----+1. 
a*(q) 27q Jl2(q3) 

(8.4) 

Thus, when q = e-rr../il73 and a: := a*(e-".fil13), (8.3) and (8.4) imply that 

__!.._ = 1-Az. 
a~ n 
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In analogy with (3.6), define the multiplier m(q) by 

._ * * ·- 2F1 (t, ~; 1;a*) 
m(q) .-m(a ,{3) .- ( 1 2 •. •)' 

2F1 3• 3• 1, {3 

where {3* = a*(q"). We are now ready to state the general representation of 1/rr de
rived by Chan, Liaw, and Tan [34, p. 102, Theorem 4.2]. 

Theorem 8.1. For n :::: 1, let 

a"=_ a~ (I- a~) dm(a*, {3*) I , 
Jn da* a*=l-ari,.B*=a~ 

bn = 1- 2a;, 

and 

Then 

(8.5) 

We give one example. Let n = 9; then a9 = ~. Then, without providing further 
details, 

-- = ""cs. 1) 2 j 3 j 3 j --4 00 (l) (l) (~) ( 9 )j 
rr../3 f:t 1 + (j!)3 16 ' 

which was discovered by Chan, Liaw, and Tan [34, p. 95]. 
Another general series representation for 1/rr in the alternative theories ofRamanu

jan was devised by Berndt and Chan [19, p. 88, Eq. (5.80)]. We will not state this for
mula and all the requisite definitions, but let it suffice to say that the formula involves 
Ramanujan's Eisenstein series P(q), Q(q) = E4 ('r), and R(q) = E6 (r) at the argu
ment q = -e-".fo and the modular j-invariant, defined by j(r) = 1728J(r), where 
J ( r) is defined by (7 .2). In particular, 

. (3 + J=311) (.A.~- 1)(9).~- 1)3 
1 =-27~--~--

2 ~ , 

a proof of which can be found in [18]. The hypergeometric terms are of the form 

wjwjmj 
(j!)3 

Berndt and Chan used their general formula to calculate a series for 1/rr that yields 
about 73 or 74 digits of rr per term. 
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Lastly, we conclude this section by remarking that Berndt, Chan, and Liaw [20] 
have derived series representations for l /rr that fall under the umbrella of Ramanujan 's 
quartic theory of elliptic functions. Because the quartic theory is intimately connected 
with the classical theory, their general formulas [20, p. 144, Theorem 4.1] involve the 
classical invariants Gn and g" in their summands. Not surprisingly, the hypergeometric 
terms are of the form 

The simplest example arising from their theory is given by [20, p. 145] 

9 00 (32)j -=LBj(7j+1) -
2rr j=O 81 

9. THE PRESENT AUTHORS AS DISCIPLES OF RAMANUJAN. As men
tioned in Section 2, the first two authors were inspired by the third author to continue 
the development of Ramanujan's thoughts. In their first paper [9], Baruah and Berndt 
employed Ramanujan's ideas in the classical theory of elliptic functions to prove 13 
of Ramanujan's original formulas and many new ones as well. In [7], they utilized 
Ramanujan's cubic and quartic theories to establish five of Ramanujan's 17 formu
las in addition to some new representations. Lastly, in [8], motivated by the work 
of J. Guillera, described briefly in Section 10 below, the first two authors extended 
Ramanujan's ideas to derive hypergeometric-like series representations for 1jrr2• For 
example, 

24 00 ( 1 )1<+1 
rr 2 = ~(44571654400tL2 + 5588768408/L + 233588841)8~< 994 , 

where 

In Section 3, we defined Ramanujan's Eisenstein series P(q) in (3.12) and offered 
several definitions from Ramanujan's theories of elliptic functions in giving a brief 
introduction to Ramanujan's ideas. Here we highlight the role of P(q) in more detail 
before giving a complete proof of (1.3). Because these three series representations 
(1.2)-(1.4) can also be found in Ramanujan's lost notebook, our proof here is similar 
to that given in [3, Chapter 15]. 

Following Ramanujan, set 

(9.1) 

The two most important ingredients in our derivations are Ramanujan's representation 
for P(q 2 ) given by [13, p. 120, Entry 9(iv)] 

dz 
P(q2 ) = (l - 2x)z2 + 6x(1- x)z

dx 
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and Clausen's formula (3.7), which, using (9.1), we restate in the form 

00 

z2 = 3F2(!, !, !; 1, 1; X)= L:>jxj, 
j=O 

where, as in ( 1.1 ), 

A- ·- <!)} 
J .- '13 ]. 

and X := 4x(l - x). 

From (9.3) and (9.4), 

dz ~ · 1 
2z- = LAjjX1- • 4(1- 2x). 

dx j=O 

Hence, from (9.2), (9.3), (9.5), and (9.4), 

00 00 

P(q 2 ) = (1- 2x) L AjXj + 3(1- 2x) L AjjXj 
j=O j=O 

00 

= Ew- 2x) + 3(1- 2x)j)AjXj. 
j=O 

For q := e-"..rn, recall (9.1) and set 

and 

Xn = 4xn(l - Xn)• 

For later use, we note that [3, p. 375] 

1- Xn = XJjn and 

With the use of (9.7) and (9.8), (9.6) takes the form 

00 

P(e-2",;n) = L:W- 2xn) + 3(1- 2xn)j}AjX~ 
j=O 

00 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

= (1- 2xn)Z~ + 3 Eo- 2xn)jAjX{ (9.10) 
j=O 

In order to utilize (9.10), we require two different formulas, each involving both 
P(q 2 ) and P(q 2n), where n is a positive integer. The first comes from a transformation 
formula for P(q), which in tum arises from the transformation formula for j(-q) 
defined in (8.1) or the Dedekind eta function defined in (8.2), and is for general n. This 
transformation formula is given by [13, p. 43, Entry 27(iii)] 

(9.11) 

580 @THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 116 



19. RAMANUJAN’S SERIES FOR 1/π: A SURVEY (2009) 319

where af3 = n 2, with a and f3 both positive. Taking the logarithm of both sides of 
(9 .II), we find that 

a 1 00 . f3 I 00 . 

-- + -Ioga + L)og(l- e-21") = -- + -log/3 + L)og(l- e-21!3). 
I2 4 j=1 I2 4 j=1 

(9.I2) 

Differentiating both sides of (9.I2) with respect to a, we deduce that 

I I 00 2je-2j" f3 I 00 (2jf3/a)e-2jf3 
- I2 + 4a + L I - e-2j" = I2a - 4a - L I - e-2jf3 · 

]=1 ]=1 

(9.13) 

Multiplying both sides of (9.13) by I2a and rearranging, we arrive at 

( 
oo · -2ja ) ( oo • -2jf3 ) 

6 - a I - 24 L I ':._ e-2ja = f3 I - 24 L I ':._ e-2jf3 . 
]=1 ]=1 

(9.I4) 

Setting a= nj..fii, so that f3 = n..fii, recalling the definition (3.12) of P(q), and 
rearranging slightly, we see that (9.I4) takes the shape 

(9.I5) 

This is the first desired formula. 
The second gives representations for Ramanujan's function [57], [58, pp. 33-34] 

(9.I6) 

for certain positive integers n. (Ramanujan [57], [58, pp. 33-34] used the notation 
f(n) instead of fn(q).) In [57], Ramanujan recorded representations for fn(q) for I2 
values of n, but he gave no indication of how these might be proved. These formulas 
are also recorded in Chapter 2I ofRamanujan's second notebook [59], and proofs may 
be found in [13]. 

We now give the details for our proof of (1.3), which was clearly a favorite of 
Gabriella Montez, the precocious student in High School Musical. Unfortunately, we 
do not know whether she possessed a proof of her own. We restate (1.3) here for 
convenience. 

Theorem 9.1. If A j• j :::: 0, is defined by (9.4), then 

I6 oo I 
- = L(42j +5)ArT· 
Jr j=O 2 J 

(9.I7) 

Proof The identity (9.I7) is connected with modular equations of degree 7. Thus, our 
first task is to calculate the singular modulus x7 • To that end, we begin with a modular 
equation of degree 7 

(9.I8) 
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due to C. Guetzlaff in 1834 but rediscovered by Ramanujan in Entry 19(i) of Chapter 
19 of his second notebook [59], [13, p. 314]. In the notation of our definition of a 
modular equation after (3.5), we have set x(q) = k2 (q), and so x(q7 ) = l 2(q). Set 
q = e-rr/../7 in (9.18) and use (9.9) and (9.8) to deduce that 

and (9.19) 

Ramanujan calculated the singular modulus x7 in his first notebook [59], [15, p. 290], 
from which, or from (9.19), we easily can deduce that 

3./7 
1-2x7 = - 8-. (9.20) 

In the notation (9.16), from either [57], [58, p. 33], or [13, p. 468, Entry 5(iii)], 

/?(q) = 3z(q)z(q7) ( 1 + Jx(q)x(q7) + Jo- x(q))(1- x(q7))). (9.21) 

Putting q = e-rrf../7 in (9.21) and employing (9.9) and (9.19), we find that 

/?(e-rrf../7) = 3.J7 ( 1 + 2Jx7(1- X7)) d = 3.J7 · ~z~. (9.22) 

Letting n = 7 in (9.15) and (9.10), and using (9.20), we see that 

and 

6./7 = P(e-2rrf..ti) + 7 P(e-2"../7) 
n 

00 

P(e-2"../7) = (1 - 2x1)z~ + 3 LO - 2x7)j A jx4 
j=O 

(9.23) 

(9.24) 

respectively. Eliminating P(e-2"1../7) from (9.22) and (9.23) and putting the resulting 
formula for P(e-2"../7) in (9.24), we find that 

which upon simplification with the use of (9.3) yields (9.17). 

10. JESUS GUILLERA. A discrete function A(n, k) is hypergeometric if 

A(n + 1, k) 

A(n, k) 
and 

A(n,k+1) 

A(n, k) 

• 

are both rational functions. A pair of functions F(n, k) and G(n, k) is said to be a WZ 
pair (after H. S. Wilf and D. Zeilberger) ifF and G are hypergeometric and 

F(n + 1, k)- F(n, k) = G(n, k + 1)- G(n, k). 
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In this case, H. Wilf and D. Zeilberger [55] showed that there exists a rational function 
C(n, k) such that 

G(n, k) = C(n, k)F(n, k). 

The function C(n, k) is called a certificate of (F, G). Defining 

H(n, k) = F(n + k, n + 1) + G(n, n + k), 

Wilf and Zeilberger showed that 

00 00 

L H(n, 0) = L G(n, 0). 
n=O n=O 

Ekhad (Zeilberger's computer) and Zeilberger [46] were the first to use this method to 
derive a one-page proof of the representation 

2 00 (!)3 
-=:L(-l)j(4j+l) ~~~· 
JT j=O (j .) 

(10.1) 

The identity (10.1) was first proved by G. Bauer in 1859 [10]. Ramanujan recorded 
(10.1) as Example 14 in Section 7 of Chapter 10 in his second notebook [59], [12, 
pp. 23-24]. Further references can be found in [9]. In 1905, generalizing Bauer's ap
proach, J. W. L. Glaisher [ 47] found further series for 1/n. 

Motivated by this work, Guillera [48] found many new WZ-pairs (F, G) and de
rived new series not only for 1/n but for 1/n2 as well. One of his most elegant formu
las is 

128 - ~ - j (2j) 5 (820j 2 + 180j + 13) 
2 - ~( 1) . 210j . 

7r j=O J 

Subsequently, Guillera empirically discovered many series of the type 

Most of the series he discovered cannot be proved by the WZ-method; it appears that 
the WZ-method is only applicable to those series for 1/n when His a power of 2. An 
example of Guillera's series which remains to be proved is [49] 

128J5 = ~(-l)j mj wj mj mj mj (5418 ·2 + 693. + 29). 
2 ~ ( 't)s803J 1 1 

7r j=O J. 

For further Ramanujan-like series for 1/n2, see Zudilin's papers [65], [66]. 

11. RECENT DEVELOPMENTS. We have emphasized in this paper that Clausen's 
formula (6.1) is an essential ingredient in most proofs ofRamanujan-type series repre
sentations for 1/Jr. However, there are other kinds of series for 1/n that do not depend 
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upon Clausen's formula. One such series discovered by Takeshi Sato [62] is given by 

(11.1) 

In unpublished work (personal communication to the third author), Sato derived a 
more complicated series for 1/n that yields approximately 97 digits of 1r per term. A 
companion to ( 11.1 ), which was derived by a new method devised by the third author, 
S. H. Chan, and Z.-G. Liu [31], is given by 

(11.2) 

where 

a := t (2JL- 2v) (2v) (JL)
2 

JL v=O JL - V V V 
(11.3) 

We cite three further new series arising from this new method. The first is another 
companion of (11.2), which arises from recent work of Chan and H. Verrill [36] (after 
the work of Alrnkvist and Zudilin [2]), and is given by 

_9_ = f I:c -1)1L-V3JL-3V ( JL) (/.L + V) (3V)! (4JL + 1) (2_)/L 
2.J3Jr JL=O v=O 3v V (v!)3 81 

The second is from a paper by Chan and K. P. Loo [35] and takes the form 

where 

2.J3(3 + 2~) = ~ c ( 1 - ~JZ) (-1 ~JZ)JL 
9Jr L...,JLJL+ 3 +4 , 

JL=O 

The third was derived by Y. Yang (personal communication) and takes the shape 

18 00 JL (JL) 4 4JL + 1 
nv'IS = ~~ v ---w-· 

Motivated by his work with Mahler measures and new transformation formulas for 
sF4 series, M.D. Rogers [61, Corollary 3.2] has also discovered series for 1/n in the 
spirit of the formulas above. For example, if aJL is defined by ( 11.3), then 

2 oo 3JL +I 
- = ~(-1)1La --. 
1f L..., JL 32JL 

JL=O 

This series was also independently discovered by Chan and Verrill [36]. 
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According to W. Zudilin [67], G. Gourevich empirically discovered a hyper
geometric-like series for 1 jn 3, namely, 

32 ~ m: 3 2 
3 = L.. ( 1)7 261-' (168t-t + 16t-t + 14t-t + 1). 
n Jl-=o J.t. 

This series and the search for further series representations for 1/nm, m :::: 2, are de
scribed in a paper by D. H. Bailey and J. M. Borwein [4]. 

12. CONCLUSION. One test of "good" mathematics is that it should generate more 
"good" mathematics. Readers have undoubtedly concluded that Ramanujan's original 
series for l jn have sown the seeds for an abundant crop of "good" mathematics. 
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Synopsis:
An earlier selection (paper #14 in this collection) presented what is now known

as the BBP formula for π, which permits one to calculate binary or base-16 digits
of π beginning at an arbitrary starting point. The original BBP paper presented
a similar formula for π2, permitting arbitrary binary digits of π2 to be calculated
by this same general process. Since the publication of that paper, additional BBP-
type formulas have also been found, among them one that permits arbitrary base-3
digits of π2

Catalan’s constant =
∑∞
n=0(−1)n/(2n+ 1)2 = 0.9159965594 . . . to be calculated.

This paper outlines the history of computing π and other constants through
the ages, and then gives details on three new computations: base-64 digits of π2,
base-729 digits of π2 and base-4096 digits of Catalan’s constant, in each case be-
ginning with position ten trillion. These computations, which required a total of
approximately 1.5 × 1019 floating-point arithmetic operations, and which ran for
tens of “rack-days” on an IBM Blue-Gene computer, are comparable in total cost,
say, to that of generating a state-of-the-art animated movie.
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to be calculated, and another that permits arbitrary binary digits of





The Computation of
Previously Inaccessible
Digits of π2 and
Catalan’s Constant
David H. Bailey, Jonathan M. Borwein, Andrew Mattingly,
and Glenn Wightwick

Introduction
We recently concluded a very large mathematical
calculation, uncovering objects that until recently
were widely considered to be forever inaccessible
to computation. Our computations stem from the
“BBP” formula for π , which was discovered in
1997 using a computer program implementing the
“PSLQ” integer relation algorithm. This formula
has the remarkable property that it permits one
to directly calculate binary digits of π , beginning
at an arbitrary position d, without needing to
calculate any of the first d − 1 digits. Since 1997

David H. Bailey is senior scientist at the Computation Re-
search Department of the Lawrence Berkeley National
Laboratory. His email address is dhbailey@lbl.gov.

Jonathan M. Borwein is professor of mathematics at the Cen-
tre for Computer Assisted Research Mathematics and its
Applications (CARMA), University of Newcastle. His email
address is jonathan.borwein@newcastle.edu.au.

Andrew Mattingly is senior information technology architect
at IBM Australia. His email address is andrew_mattingly@
au1.ibm.com.

Glenn Wightwick is director, IBM Research–Australia. His
email address is glenn_wightwick@au.ibm.com.

The first author was supported in part by the Director,
Office of Computational and Technology Research, Division
of Mathematical, Information, and Computational Sciences
of the U.S. Department of Energy, under contract number
DE-AC02-05CH11231.

DOI: http://dx.doi.org/10.1090/noti1015

numerous other BBP-type formulas have been
discovered for various mathematical constants,
including formulas for π2 (both in binary and
ternary bases) and for Catalan’s constant.

In this article we describe the computation
of base-64 digits of π2, base-729 digits of π2,
and base-4096 digits of Catalan’s constant, in
each case beginning at the ten trillionth place,
computations that involved a total of approximately
1.549 × 1019 floating-point operations. We also
discuss connections between BBP-type formulas
and the age-old unsolved questions of whether and
why constants such as π,π2, log 2, and Catalan’s
constant have “random” digits.

Historical Background
Since the dawn of civilization, mathematicians
have been intrigued by the digits of π [6], more
so than any other mathematical constant. In the
third century BCE, Archimedes employed a brilliant
scheme of inscribed and circumscribed 3 · 2n-gons
to compute π to two decimal digit accuracy.
However, this and other numerical calculations of
antiquity were severely hobbled by their reliance
on primitive arithmetic systems.

One of the most significant scientific devel-
opments of history was the discovery of full
positional decimal arithmetic with zero by an
unknown mathematician or mathematicians in
India at least by 500 CE and probably earlier. Some

844 Notices of the AMS Volume 60, Number 7

20. THE COMPUTATION OF π2 AND CATALAN’S CONSTANT (2013) 329

http://dx.doi.org/10.1090/noti1015


of the earliest documentation includes the Aryab-
hatiya, the writings of the Indian mathematician
Aryabhata dated to 499 CE; the Lokavibhaga, a
cosmological work with astronomical observations
that permit modern scholars to conclude that it was
written on 25 August 458 CE [9]; and the Bakhshali
manuscript, an ancient mathematical treatise that
some scholars believe may be older still, but in
any event is no later than the seventh century [7],
[8], [2]. The Bakhshali manuscript includes, among
other things, the following intriguing algorithm
for computing the square root of q, starting with
an approximation x0:

an =
q − x2

n
2xn

,

xn+1 = xn + an −
a2
n

2 (xn + an)
.(1)

This scheme is quartically convergent in that it
approximately quadruples the number of correct
digits with each iteration (although it was never
iterated more than once in the examples given in
the manuscript) [2].

In the tenth century, Gerbert of Aurillac, who
later reigned as Pope Sylvester II, attempted
to introduce decimal arithmetic in Europe, but
little headway was made until the publication of
Fibonacci’s Liber Abaci in 1202. Several hundred
more years would pass before the system finally
gained universal, if belated, adoption in the West.
The time of Sylvester’s reign was a very turbulent
one, and he died in 1003, shortly after the death of
his protector, Emperor Otto III. It is interesting to
speculate how history would have changed had he
lived longer. A page from his mathematical treatise
De Geometria is shown in Figure 1.

The Age of Newton

Armed with decimal arithmetic and spurred by the
newly discovered methods of calculus, mathemati-
cians computed with aplomb. Again, the numerical
value of π was a favorite target. Isaac Newton
devised an arcsine-like scheme to compute digits of
π and recorded 15 digits, although he sheepishly
acknowledged, “I am ashamed to tell you to how
many figures I carried these computations, having
no other business at the time.” Newton wrote
these words during the plague year 1666, when,
ensconced in a country estate, he devised the
fundamentals of calculus and the laws of motion
and gravitation.

All large computations of π until 1980 relied
on variations of Machin’s formula:

π
4

= 4 arctan
(

1
5

)
− arctan

(
1

239

)
.(2)

The culmination of these feats was a computation of
π using (2) to 527 digits in 1853 by William Shanks,

Figure 1. Excerpt from De Geometria by Pope
Sylvester II (reigned 999–1003 CE).

later (erroneously) extended to 707 digits. In the
preface to the publication of this computation,
Shanks wrote that his work “would add little or
nothing to his fame as a Mathematician, though
it might as a Computer” (until 1950 the word
“computer” was used for a person, and the word
“calculator” was used for a machine).

One motivation for such computations was to
see whether the digits of π repeat, thus disclosing
the fact that π is a ratio of two integers. This
was settled in 1761, when Lambert proved that
π is irrational, thus establishing that the digits
of π do not repeat in any number base. In 1882
Lindemann established that π is transcendental,
thus establishing that the digits of π2 or any
integer polynomial of π cannot repeat, and also
settling once and for all the ancient Greek question
of whether the circle could be squared—it cannot,
because all numbers that can be formed by
finite straightedge-and-compass constructions are
necessarily algebraic.

The Computer Age

At the dawn of the computer age, John von
Neumann suggested computing digits of prominent
mathematical constants, including π and e, for
statistical analysis. At his instigation, π was
computed to 2,037 digits in 1949 on the Electronic
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Figure 2. The ENIAC in the Smithsonian’s
National Museum of American History.

Numerical Integrator and Calculator (ENIAC); see
Figure 2. In 1965 mathematicians realized that
the newly discovered fast Fourier transform could
be used to dramatically accelerate high-precision
multiplication, thus facilitating not only large
calculations ofπ and other mathematical constants
but research in computational number theory as
well.

In 1976 Eugene Salamin and Richard Brent
independently discovered new algorithms for
computing the elementary exponential and trigono-
metric functions (and thus constants such as π
and e) much more rapidly than by using classical
series expansions. Their schemes, based on elliptic
integrals and the Gauss arithmetic-geometric mean
iteration, approximately double the number of
correct digits in the result with each iteration.
Armed with such techniques, π was computed to
over one million digits in 1973, to over one billion
digits in 1989, to over one trillion digits in 2002,
and to over five trillion digits at the present time;
see Table 1.

Similarly, the constants e,φ,
√

2, log 2, log 10,
ζ(3), Catalan’s constantG =

∑∞
n=0(−1)n/(2n+1)2,

and Euler’s γ constant have now been computed
to impressive numbers of digits; see Table 2 [10].

One of the most intriguing aspects of this
historical chronicle is the repeated assurances,
often voiced by highly knowledgeable people, that
future progress would be limited. As recently
as 1963, Daniel Shanks, who himself calculated
π to over 100,000 digits, told Philip Davis that
computing one billion digits would be “forever
impossible.” Yet this feat was achieved less than
thirty years later in 1989 by Yasumasa Kanada
of Japan. Also in 1989, famous British physicist
Roger Penrose, in the first edition of his best-
selling book The Emperor’s New Mind, declared
that humankind likely will never know if a string of

Table 1. Modern Computer-Era π Calculations.

Name Year Correct Digits

Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi Apr. 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000

Table 2. Computations of Other Mathematical
Constants.

Constant Decimal digits Researcher Date
√

2 1,000,000,000,000 S. Kondo 2010
φ 1,000,000,000,000 A. Yee 2010
e 500,000,000,000 S. Kondo 2010

log 2 100,000,000,000 S. Kondo 2011
log 10 100,000,000,000 S. Kondo 2011
ζ(3) 100,000,001,000 A. Yee 2011
G 31,026,000,000 A. Yee and R. Chan 2009
γ 29,844,489,545 A. Yee 2010

ten consecutive 7s occurs in the decimal expansion
of π . This string was found just eight years later,
in 1997, also by Kanada, beginning at position
22,869,046,249. After being advised of this fact
by one of the present authors, Penrose revised his
second edition to specify twenty consecutive 7s.

Along this line, Brouwer and Heyting, exponents
of the “intuitionist” school of mathematical logic,
proposed, as a premier example of a hypothesis
that could never be formally settled, the question
of whether the string “0123456789” appears in the
decimal expansion of π . Kanada found this at the
17,387,594,880-th position after the decimal point.
Even astronomer Carl Sagan, whose lead character
in his 1985 novel Contact (played by Jodi Foster in
the movie version) sought confirmation in base-11
digits of π , expressed surprise to learn, shortly
after the book’s publication, that π had already
been computed to many millions of digits.

The BBP Formula for pi
A 1997 paper [3], [5, Ch. 3] by one of the present
authors (Bailey), Peter Borwein and Simon Plouffe
presented the following unknown formula for π ,
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now known as the “BBP” formula for π :
(3)

π=
∞∑
k=0

1
16k

(
4

8k+ 1
− 2

8k+ 4
− 1

8k+ 5
− 1

8k+ 6

)
.

This formula has the remarkable property that
it permits one to directly calculate binary or
hexadecimal digits of π beginning at an arbitrary
starting position without needing to calculate
any of the preceding digits. The resulting simple
algorithm requires only minimal memory, does not
require multiple-precision arithmetic, and is very
well suited to highly parallel computation. The
cost of this scheme increases only slightly faster
than the index of the starting position.

The proof of this formula is surprisingly
elementary. First note that for any k < 8,

(4)

∫ 1/
√

2

0

xk−1

1− x8
dx =

∫ 1/
√

2

0

∞∑
i=0

xk−1+8i dx

= 1
2k/2

∞∑
i=0

1
16i(8i + k) .

Thus one can write

(5)

∞∑
i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)

=
∫ 1/

√
2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx,

which on substituting y :=
√

2x becomes
(6)∫ 1

0

16y − 16
y4 − 2y3 + 4y − 4

dy

=
∫ 1

0

4y
y2 − 2

dy −
∫ 1

0

4y − 8
y2 − 2y + 2

dy = π,

reflecting a partial fraction decomposition of the
integral on the left-hand side. In 1997 neither Maple
nor Mathematica could evaluate (3) symbolically
to produce the result π . Today both systems can
do this easily.

Binary Digits of log 2

It is worth noting that the BBP formula (3) was not
discovered by a conventional analytic derivation.
Instead, it was discovered via a computer-based
search using the PSLQ integer relation detection
algorithm (see the section “Hunt for a pi Formula”)
of mathematician-sculptor Helaman Ferguson [4]
in a process that some have described as an
exercise in “reverse mathematical engineering”.
The motivation for this search was the earlier
observation by the authors of [3] that log 2 also has
this arbitrary position digit calculating property.
This can be seen by analyzing the classic formula

log 2 =
∞∑
k=1

1
k2k

,(7)

which has been known at least since the time of
Euler and which is closely related to the functional
equation for the dilogarithm.

Let r mod 1 denote the fractional part of a non-
negative real number r , and let d be a nonnegative
integer. Then the binary fraction of log 2 after the
“decimal” point has been shifted to the right d
places can be written as
(8)
(2d log 2)mod 1

=
 d∑
k=1

2d−k

k
mod 1+

∞∑
k=d+1

2d−k

k
mod 1

 mod 1

=
 d∑
k=1

2d−k mod k
k

mod 1

+
∞∑

k=d+1

2d−k

k
mod 1

 mod 1,

where “mod k” has been inserted in the numerator
of the first term since we are only interested in the
fractional part of the result after division.

The operation 2d−k mod k can be performed
very rapidly by means of the binary algorithm
for exponentiation. This scheme is the simple
observation that an exponentiation operation such
as 317 can be performed in only five multiplications
instead of 16 by writing it as 317 = ((((32)2)2)2)·3.
Additional savings can be realized by reducing all
of the intermediate multiplication results modulo
k at each step. This algorithm, together with the
division and summation operations indicated in the
first term, can be performed in ordinary double-
precision floating-point arithmetic or for very
large calculations by using quad- or oct-precision
arithmetic.

Expressing the final fractional value in binary
notation yields a string of digits corresponding to
the binary digits of log 2 beginning immediately
after the first d digits of log 2. Computed results
can be easily checked by performing this operation
for two slightly different positions, say d − 1 and
d, then checking to see that resulting digit strings
properly overlap.

Hunt for a pi Formula

In the wake of finding the above scheme for the
binary digits of log 2, the authors of [3] immediately
wondered if there was a similar formula for π
(none was known at the time). Their approach was
to collect a list of mathematical constants (αi) for
which formulas similar in structure to the formula
for log 2 were known in the literature and then to
determine by means of the PSLQ integer relation
algorithm if there exists a nontrivial linear relation
of the form

(9) a0π + a1α1 + a2α2 + · · · + anαn = 0,
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where ai are integers (because such a relation
could then be solved for π to yield the desired
formula). After several months of false starts, the
following relation was discovered:
(10)

π = 4 · 2F1

1, 1
4

5
4

∣∣∣∣−1
4

+ 2 arctan
(

1
2

)
− log 5,

where the first term is a Gauss hypergeometric
function evaluation. After writing this formula
explicitly in terms of summations, the BBP formula
for π was uncovered:
(11)

π=
∞∑
k=0

1
16k

(
4

8k+ 1
− 2

8k+ 4
− 1

8k+ 5
− 1

8k+ 6

)
.

One question that immediately arose in the
wake of the discovery of the BBP formula for π
was whether there are formulas of this type for π
in other number bases—in other words, formulas
where the 16 in the BBP formula is replaced by some
other integer, such as 3 or 10. These computer
searches were largely laid to rest in 2004, when one
of the present authors (Jonathan Borwein), together
with Will Galway and David Borwein, showed that
there are no degree-1 BBP-type formulas of Machin-
type for π , except those whose base is a power of
two [5, pp. 131–133].

The BBP Formula in Action

Variants of the BBP formula have been used
in numerous computations of high-index digits
of π . In 1998 Colin Percival, then a 17-year-
old undergraduate at Simon Fraser University
in Canada, computed binary digits beginning at
position one quadrillion (1015). At the time, this
was one of the largest, if not the largest, distributed
computations ever done. More recently, in July
2010, Tsz-Wo Sze of Yahoo! Cloud Computing, in
roughly 500 CPU-years of computing on Apache
Hadoop clusters, found that the base-16 digits of
π beginning at position 5× 1014 (corresponding
to binary position two quadrillion) are

0 E6C1294A ED40403F 56D2D764 026265BC
A98511D0 FCFFAA10 F4D28B1B B5392B8

In an even more recent 2013 computation along
this line, Ed Karrels of Santa Clara University used a
system with NVIDIA graphics cards to compute 26
base-16 digits beginning at position one quadrillion.
His result: 8353CB3F7F0C9ACCFA9AA215F2.

The BBP formulas have also been used to
confirm other computations of π . For example, in
August 2010, Shigeru Kondo (a hardware engineer)
and Alexander Yee (an undergraduate software
engineer) computed five trillion decimal digits of
π on a home-built $18,000 machine. They found
that the last thirty digits leading up to position
five trillion are

Figure 3. (T) Shigeru Kondo and his π -computer.
(B) Alex Yee and his elephant.

7497120374 4023826421 9484283852

Kondo and Yee (see Figure 3) used the following
Chudnovsky-Ramanujan series:
(12)
1
π
=12

∞∑
k=0

(−1)k (6k)!(13591409+ 545140134k)
(3k)! (k!)3 6403203k+3/2 .

They did not merely evaluate this formula as
written but instead employed a clever quasi-
symbolic scheme that mostly avoids the need for
full-precision arithmetic.

Kondo and Yee first computed their result in
hexadecimal (base-16) digits. Then, in a crucial
verification step, they checked hex digits near the
end against the same string of digits computed
using the BBP formula for π . When this test passed,
they converted their entire result to decimal. The
entire computation took ninety days, including
sixty-four hours for the BBP confirmation and eight
days for base conversion to decimal. Note that the
much lower time for the BBP confirmation, relative
to the other two parts, greatly reduced the overall
computational cost. A description of their work is
available at [11].
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BBP-Type Formulas for Other Constants
In the years since 1997, computer searches
using the PSLQ algorithm, as well as conven-
tional analytic investigations, have uncovered
BBP-type formulas for numerous other math-
ematical constants, including π2, log2 2, π log 2,
ζ(3),π3, log3 2, π2 log 2, π4, ζ(5) and Catalan’s
constant. BBP formulas are also known for many
arctangents, as well as for log k, 2 ≤ k ≤ 22, al-
though none is known for log 23. These formulas
and many others, together with references, are
given in an online compendium [1].

One particularly intriguing fact is that, whereas
only binary formulas exist for π , there are both
binary and ternary (base-3) formulas for π2:

π2= 9
8

∞∑
k=0

1
64k

(
16

(6k+ 1)2
− 24
(6k+ 2)2

− 8
(6k+ 3)2

(13)

− 6
(6k+ 4)2

+ 1
(6k+ 5)2

)
,

π2 = 2
27

∞∑
k=0

1
729k

(
243

(12k+ 1)2
− 405
(12k+ 2)2

(14)

− 81
(12k+ 4)2

− 27
(12k+ 5)2

− 72
(12k+ 6)2

− 9
(12k+ 7)2

− 9
(12k+ 8)2

− 5
(12k+ 10)2

+ 1
(12k+ 11)2

)
.

Formula (13) appeared in [3], while formula (14)
is due to Broadhurst. There are known binary BBP
formulas for both ζ(3) and π3, but no one has
found a ternary formula for either.

Catalan’s Constant

One other mathematical constant of central interest
is Eugéne Charles Catalan’s (1814–1894) constant,
(15)

G =
∞∑
n=0

(−1)n

(2n+ 1)2
= 0.91596559417722 . . . ,

which is arguably the most basic constant whose
irrationality and transcendence (though strongly
suspected) remain unproven. Note the close
connection to this formula for π2:
(16)
π2

8
=

∞∑
n=0

1
(2n+ 1)2

= 1.2337005501362 . . . .

Formulas (15) and (16) can be viewed as the simplest
Dirichlet L-series values at 2. Such considerations
were behind our decision to focus the computation
described in this paper on these two constants.

Catalan’s constant has already been the sub-
ject of some large computations. As mentioned
above, in 2009 Alexander Yee and Raymond Chan

calculated G to 31.026 billion digits [10]. This
computation employed two formulas, including
this formula due to Ramanujan:

(17) G = 3
8

∞∑
n=0

1(
2n
n

)
(2n+ 1)2

+ π
8

log(2+
√

3),

which can be derived from the fact that

G = −T(π/4) = −3/2 · T(π/12),

where T(θ) :=
∫ θ
0 log tanσ dσ .

The BBP compendium lists two BBP-type formu-
las for G. The first was discovered numerically by
Bailey, but both it and the second formula were
subsequently proven by Kunle Adegoke, based in
part on some results of Broadhurst.

For the present study, we sought a formula forG
with as few terms as possible, because the run time
for computing with a BBP-type formula increases
roughly linearly with the number of nonzero
coefficients. The two formulas in the compendium
have twenty-two and eighteen nonzero coefficients,
respectively. So we explored, by means of a
computation involving the PSLQ algorithm, the
linear space of formulas for G spanned by these
two sets of coefficients, together with two known
“zero relations” (BBP-type formulas whose sum
is zero). These analyses and computations led
to the following formula, which has only sixteen
nonzero coefficients and which we believe to be the
most economical BBP-type formula for computing
Catalan’s constant:

G = 1
4096

∞∑
k=0

1
4096k

(
36864

(24k+ 2)2
− 30720
(24k+ 3)2

(18)

− 30720
(24k+ 4)2

− 6144
(24k+ 6)2

− 1536
(24k+ 7)2

+ 2304
(24k+ 9)2

+ 2304
(24k+ 10)2

+ 768
(24k+ 14)2

+ 480
(24k+ 15)2

+ 384
(24k+ 11)2

+ 1536
(24k+ 12)2

+ 24
(24k+ 19)2

− 120
(24k+ 20)2

− 36
(24k+ 21)2

+ 48
(24k+ 22)2

− 6
(24k+ 23)2

)
.

BBP Formulas and Normality
One prime motivation in computing and analyzing
digits of π and other well-known mathematical
constants through the ages is to explore the age-old
question of whether and why these digits appear
“random”. Numerous computer-based statistical
checks of the digits of π—unlike those of e—so
far have failed to disclose any deviation from
reasonable statistical norms. See, for instance,
Table 3, which presents the counts of individual
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hexadecimal digits among the first trillion hex
digits, as obtained by Yasumasa Kanada.

Given some positive integer b, a real numberα is
said to be b-normal if everym-long string of base-b
digits appears in the base-b expansion of α with
precisely the expected limiting frequency 1/bm. It
follows from basic probability theory that almost
all real numbers are b-normal for any specific
base b and even for all bases simultaneously. But
proving normality for specific constants of interest
in mathematics has proven remarkably difficult.

Interest in BBP-type formulas was heightened by
the 2001 observation, by one of the present authors
(Bailey) and Richard Crandall, that the normality
of BBP-type constants such as π,π2, log 2 and G
can be reduced to a certain hypothesis regarding
the behavior of a class of chaotic iterations [5,
pp. 141–173]. No proof is known for this general
hypothesis, but even specific instances of this
result would be quite interesting. For example, if
it could be established that the iteration given by
w0 = 0 and

(19) wn =
(

2wn−1 +
1
n

)
mod 1

is equidistributed in [0,1) (i.e., is a “good” pseu-
dorandom number generator), then, according to
the Bailey-Crandall result, it would follow that
log 2 is 2-normal. In a similar vein, if it could be
established that the iteration given by x0 = 0 and

(20) xn =
(

16xn−1

+ 120n2 − 89n+ 16
512n4 − 1024n3 + 712n2 − 206n+ 21

)
mod 1

is equidistributed in [0,1), then it would follow
that π is 2-normal.

Giving further hope to these studies is the recent
extension of these methods to a rigorous proof
of normality for an uncountably infinite class of
real numbers. Given a real number r in [0,1), let
rk denote the k-th binary digit of r . Then the real
number

(21) α2,3(r) =
∞∑
k=0

1

3k23k+rk

is 2-normal. For example, the constant α2,3(0) =∑
k≥0 1/(3k23k) = 0.541883680831502985 . . . is

provably 2-normal. A similar result applies if 2
and 3 in this formula are replaced by any pair
of coprime integers (b, c) greater than one [5,
pp. 141–173].

A Curious Hexadecimal Conjecture

It is tantalizing that if, using (20), one calculates
the hexadecimal digit sequence

(22) yn = b16xnc

Table 3. Digit counts in the first trillion
hexadecimal (base-16) digits of π . Note that

deviations from the average value
62,500,000,000 occur only after the first six

digits, as expected.

Hex Digit Occurrences
0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

(where b·c denotes greatest integer), then the

sequence (yn) appears to perfectly (not just

approximately) produce the hexadecimal expansion

of π . In explicit computations, we checked that

the first 10,000,000 hexadecimal digits generated

by this sequence are identical with the first

10,000,000 hexadecimal digits of π − 3. This is a

fairly difficult computation, as it requires roughly

n2 bit-operations and is not easily performed on a

parallel computer system. In our implementation,

computing 2,000,000 hex digits with (22) using

Maple, required 17.3 hours on a laptop. Computing

4,100,000 using Mathematica, with a more refined

implementation, required 46.5 hours. The full

confirmation using a C++ program took 433,192

seconds (120.3 hours) on an IBM Power 780

(model: 9179-MHB, clock speed: 3.864 GHz). All

these outputs were confirmed against stored hex

digits of π in the software section of http:

//www.experimentalmath.info.

Conjecture 1. The sequence b16xnc, where (xn) is

the sequence of iterates defined in equation (20),

generates precisely the hexadecimal expansion of

π − 3.

We can learn more. Let ||x − y|| = min(|x −
y|, |1 − (x − y)|) denote the “wrapped” distance

between reals x and y in [0,1). The base-16
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expansion of π , which we denote πn, satisfies
(23)
||πn − xn||

≤
∞∑

k=n+1

· 120k2−89k+16
16k−n(512k4−1024k3+712k2−206k+21)

≈ 1
64(n+ 1)2

,

so that ,upon summing from some N to infinity,
we obtain the finite value

(24)
∞∑
n=N
||πn − xn|| ≤

1
64(N + 1)

.

Heuristically, let us assume that the πn are inde-
pendent, uniformly distributed random variables
in (0,1), and let δn = ||αn − xn||. Note that an
error (i.e., an instance where xn lies in a subinterval
of the unit interval different from πn so that the
corresponding hex digits don’t match) can only
occur when πn is within δn of one of the points
(0,1/16,2/16, . . . ,15/16). Since xn < πn for all n
(where < is interpreted in the wrapped sense when
xn is slightly less than one), this event has proba-
bility 16δn. Then the fact that the sum (24) has a
finite value implies that, by the first Borel-Cantelli
lemma, there can only be finitely many errors.
Further, the small value of the sum (24), even when
N = 1, suggests that it is unlikely that any errors
will be observed. If we set N = 10,000,001 in (24),
since we know there are no errors in the first
10,000,000 elements, we obtain an upper bound
of 1.563× 10−9, which suggests it is truly unlikely
that errors will ever occur.

A similar correspondence can be seen between
iterates of (19) and the binary digits of log 2. In
particular, let zn = b2wnc, wherewn is given in (19).
Then since the sum of the error terms for log 2,
corresponding to (24), is infinite, it follows by the
second Borel-Cantelli lemma that discrepancies
between (zn) and the binary digits of log 2 can be
expected to appear indefinitely but with decreasing
frequency. Indeed, in computations that we have
done, we have found that the sequence (zn)
disagrees with ten of the first twenty binary digits
of log 2, but in only one position over the range
5,000 to 8,000.

Computing Digits of π2 and Catalan’s
Constant
In illustration of this theory, we now present the
results of computations of high-index binary digits
of π2, ternary digits of π2, and binary digits of
Catalan’s constant, based on formulas (13), (14),
and (18), respectively. These calculations were
performed on a 4-rack BlueGene/P system at IBM’s
Benchmarking Center in Rochester, Minnesota (see
Figure 4). This is a shared facility, so calculations
were conducted over a several-month period during

Figure 4. Andrew Mattingly, Blue Gene/P, and
Glenn Wightwick.

which time, none, some, or all of the system
was available. It was programmed remotely from
Australia, which permitted the system to be used
off-hours. Sometimes it helps to be in a different
time zone!

(1) Base-64 digits of π2 beginning at posi-
tion 10 trillion. The first run, which
produced base-64 digits starting from
position 1012 − 1, required an average
of 253,529 seconds per thread and was
subdivided into seven partitions of 2048
threads each, so the total cost was
7 · 2048 · 253529 = 3.6× 109 CPU-seconds.
Each rack of the IBM system features 4096
cores, so the total cost is 10.3 “rack-days”.

August 2013 Notices of the AMS 851

336 20. THE COMPUTATION OF π2 AND CATALAN’S CONSTANT (2013)



The second run, which produced base-64
digits starting from position 1012, com-
pleted in nearly the same run time (within
a few minutes). The two resulting base-8
digit strings appear in row A of Table X.
(Each pair of base-8 digits corresponds
to a base-64 digit.) Here the digits in
agreement are delimited by |. Note that 53
consecutive base-8 digits (or, equivalently,
159 consecutive binary digits) are in
perfect agreement.

(2) Base-729 digits of π2 beginning at position
10 trillion. In this case the two runs each
required an average of 795,773 seconds
per thread, similarly subdivided as above,
so that the total cost was 6.5 × 109 CPU-
seconds, or 18.4 “rack-days”. The two
resulting base-9 digit strings are found in
row B of Table X. (Each triplet of base-9
digits corresponds to one base-729 digit.)
Note here that 47 consecutive base-9 digits
(94 consecutive base-3 digits) are in perfect
agreement.

(3) Base-4096 digits of Catalan’s constant be-
ginning at position 10 trillion. These two
runs each required 707,857 seconds per
thread, but in this case they were subdi-
vided into eight partitions of 2048 threads
each, so that the total cost was 1.2× 1010

CPU-seconds, or 32.8 “rack-days”. The two
resulting base-8 digit strings are found in
row C of Table X. (Each quadruplet of base-8
digits corresponds to one base-4096 digit.)
Note that 47 consecutive base-8 digits (141
consecutive binary digits) are in perfect
agreement.

These long strings of consecutively agreeing
digits, beginning with the target digit, provide a
compelling level of statistical confidence in the
results. In the first case, for instance, note that
the probability that thirty-two pairs of randomly
chosen base-8 digits are in perfect agreement is
roughly 1.2× 10−29. Even if one discards, say, the
final six base-8 digits as a 1-in-262,144 statistical
safeguard against numerical round-off error, one
would still have twenty-four consecutive base-8
digits in perfect agreement, with a corresponding
probability of 2.1× 10−22. Now strictly speaking,
one cannot define a valid probability measure on
digits of π2, but nonetheless, from a practical
point of view, such analysis provides a very high
level of statistical confidence that the results have
been correctly computed.

For this reason, computations of π and the
like are a favorite tool for the integrity testing for
computer system hardware and software. If either
run of a paired computation of π succumbs to
even a single fault in the course of the computation,

Figure 5. A “random” walk on a million digits of
Catalan’s constant.

then typically the final results will disagree almost
completely. For example, in 1986 a similar pair
of computations of π disclosed some subtle but
substantial hardware errors in an early model of the
Cray-2 supercomputer. Indeed, the calculations we
have done arguably constitute the most strenuous
integrity test ever performed on the BlueGene/P
system. Table 4 gives some sense of the scale of the
three record computations, which used more than
135 “rack-days”, 1378 serial CPU-years, and more
than 1.549×1019 floating point operations. This is
comparable to the cost of the most sophisticated
animated movies as of the present time (2011).

For the sake of completeness, in Table 5 we
also record the one-, two-, and three-bit frequency
counts from our Catalan computation.

Future Directions
It is ironic that, in an age when even pillars
such as Fermat’s Last Theorem and the Poincaré
conjecture have succumbed to the brilliance of
modern mathematics, one of the most elementary
mathematical hypotheses, namely whether (and
why) the digits of π or other constants such
as log 2, π2, or G (see Figure 5) are “random”,
remains unanswered. In particular, proving that
π (or log 2, π2, or G) is b-normal in some integer
base b remains frustratingly elusive. Even much
weaker results, for instance the simple assertion
that a one appears in the binary expansion of π (or
log 2, π2, or G) with limiting frequency 1/2 (which
assertion has been amply affirmed in numerous
computations over the years), remain unproven
and largely inaccessible at the present time.

Almost as much ignorance extends to simple
algebraic irrationals such as

√
2. In this case it

is now known that the number of ones in the
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Table 4. (A) base-4 digits of π2, (B) base-729 digits of π2, and (C) base-4096 digits of Catalan’s
constant, in each case beginning at position 10 trillion.

A
75|60114505303236475724500005743262754530363052416350634|573227604

|60114505303236475724500005743262754530363052416350634|220210566

B
001|12264485064548583177111135210162856048323453468|10565567635862

|12264485064548583177111135210162856048323453468|04744867134524

C
0176|34705053774777051122613371620125257327217324522|6000177545727

|34705053774777051122613371620125257327217324522|5703510516602

Table 5. The scale of our computations. We estimate 4.5 quad-double operations per iteration and
that each costs 266 single-precision operations. The total cost in single-precision operations is given
in the last column. This total includes overhead which is largely due to a rounding operation that we
implemented using bit-masking.

#iters time/iter time with total o’head flops
constant n′ d (×1015) (microsec) (yr) verify (yr) (%) (×1018)
π2 base-26 5 1013 2.16 1.424 97.43 194.87 230.35 18.2 2.58
π2 base-36 9 1013 3.89 1.424 175.38 350.76 413.16 17.8 4.65
G base-46 16 1013 6.91 1.424 311.79 623.58 735.02 17.9 8.26

Table 6. Base-4096 digits of G beginning at position 10 trillion: digit proportions.

Digit 0 1 2 3 4 5 6 7
base-2 (141) 0.454 0.546 - - - - - -
base-4 (70) 0.171 0.329 0.229 0.271 - - - -
base-8 (47) 0.085 0.128 0.213 0.128 0.064 0.128 0.043 0.213

first n binary digits of
√

2 must be at least of
the order of

√
n, with similar results for other

algebraic irrationals [5, pp. 141–173]. But this is
a very weak result, given that this limiting ratio
is almost certainly 1/2, not only for

√
2 but more

generally for all algebraic irrationals.
Nor can we prove much about continued frac-

tions for various constants, except for a few
well-known results for special cases such as
quadratic irrationals, ratios of Bessel functions,
and certain expressions involving exponential
functions.

For these reasons there is continuing interest
in the theory of BBP-type constants, since, as men-
tioned, there is an intriguing connection between
BBP-type formulas and certain chaotic iterations
that are akin to pseudorandom number generators.
If these connections can be strengthened, then
perhaps normality proofs could be obtained for a
wide range of polylogarithmic constants, possibly
including π, log 2, π2, and G.

As settings change, so do questions. Until the
question of efficient single-digit extraction was
asked, our ignorance about such issues was not
exposed. The case of the exponential series

(25) ex =
∞∑
n=0

xn

n!

is illustrative. For present purposes, the conver-
gence rate in (25) is too good.

Conjecture 2. There is no BBP formula for e. More-
over, there is no way to extract individual digits of
e significantly more rapidly than by computing the
first n digits.

The same could be conjectured about
other numbers, including Euler’s constant
γ = 0.57721566490153 . . . . In short, until vastly
stronger mathematical results are obtained in this
area, there will doubtless be continuing interest in
computing digits of these constants. In the present
vacuum, that is perhaps all that we can do.
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Synopsis:
As mentioned earlier, an age-old question (one that has been the motivation

for both ancient and computer-age computations of π and other constants) is that

property of normality: a number α is said to be b-normal if every m-long string in
the base-b expansion of α appears, in the limit, with frequency precisely 1/bm. It
is straightforward to show, using probability and/or measure theory, that almost
all real numbers must be normal, but it has been very difficult to prove normality
for any of the classical constants of mathematics.

In this paper, the authors apply some new computer-based tools to address
these questions. One of these is to cast, say, the base-4 digits of a constant, as a
random walk, where at each step one moves a unit right, up, left or down depending
on whether the digit at the given position is 0, 1, 2 or 3 (with similar extensions to
other number bases). These analyses produce some surprising results, showing, for
instance, that although the Stoneham numbers are provably normal, they exhibit
self-similarity properties atypical of a truly “random” sequence. Numerous results
along this line are presented.
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Walking on Real
Numbers
FRANCISCO J. ARAGÓN ARTACHO, DAVID H. BAILEY, JONATHAN M. BORWEIN,
AND PETER B. BORWEIN

TT
he digit expansions of p; e;

ffiffiffi

2
p

, and other mathemat-
ical constants have fascinated mathematicians from
the dawn of history. Indeed, one prime motivation

for computing and analyzing digits of p is to explore the
age-old question of whether and why these digits appear
‘‘random.’’ The first computation on ENIAC in 1949 of p to
2037 decimal places was proposed by John von Neumann
so as to shed some light on the distribution of p (and of e)
[15, pg. 277–281].

One key question of some significance is whether (and
why)numbers suchaspand e are ‘‘normal.’’ A real constanta is
b-normal if, given the positive integer b C 2, every m-long
string of base-b digits appears in the base-b expansion of a
with precisely the expected limiting frequency 1/bm. It is a
well-established, albeit counterintuitive, fact that given an
integer b C 2, almost all real numbers, in the measure theory
sense, are b-normal. What’s more, almost all real numbers are
b-normal simultaneously for all positive integer bases (a
property known as ‘‘absolutely normal’’).

Nonetheless, it has been surprisingly difficult to prove
normality for well-known mathematical constants for any
given base b, much less all bases simultaneously. The first
constant to be proven 10-normal is the Champernowne
number, namely theconstant 0:12345678910111213141516. . .,
produced by concatenating the decimal representation of all
positive integers in order. Some additional results of this sort
were established in the 1940s by Copeland and Erd}os [26].

At present, normality proofs are not available for any well-
known constant such asp; e; log 2;

ffiffiffi

2
p

. We donot even know,
say, that a 1 appears one-half of the time, in the limit, in the
binary expansion of

ffiffiffi

2
p

(although it certainly appears to), nor
do we know for certain that a 1 appears infinitely often in the
decimal expansion of

ffiffiffi

2
p

. For that matter, it is widely believed

that every irrational algebraicnumber (i.e., every irrational root
of an algebraic polynomial with integer coefficients) is
b-normal to all positive integer bases b, but there is no proof,
not for any specific algebraic number to any specific base.

In 2002, one of the present authors (Bailey) and Richard
Crandall showed that given a real number r in [0,1), with rk

denoting the k-th binary digit of r, the real number

a2;3ðrÞ :¼
X

1

k¼1

1

3k23kþrk
ð1Þ

is 2-normal. It can be seen that if r = s, then a2,3(r) = a2,3(s),
so that these constants are all distinct. Since r can range over
the unit interval, this class of constants is uncountable. So, for
example, the constant a2;3 ¼ a2;3ð0Þ ¼

P

k � 1 1=ð3k23k Þ ¼
0:0418836808315030. . . is provably 2-normal (this special
case was proven by Stoneham in 1973 [43]). A similar result
applies if 2 and 3 in formula (1) are replaced by any pair of
coprime integers (b, c) with b C 2 and c C 2 [10]. More
recently, Bailey and Michal Misiurewicz were able to
establish 2-normality of a2,3 by a simpler argument, by uti-
lizing a ‘‘hot spot’’ lemma proven using ergodic theory
methods [11].

In 2004, two of the present authors (Bailey and Jonathan
Borwein), together with Richard Crandall and Carl Pomer-
ance, proved the following: If a positive real y has algebraic
degree D [1, then the number #(y, N) of 1-bits in the binary
expansionof y throughbit positionN satisfies #(y,N)[CN1/D,
for a positive number C (depending on y) and all sufficiently
large N [5]. A related result has been obtained by Hajime
Kaneko of Kyoto University in Japan [37]. However, these
results fall far short of establishing b-normality for any irra-
tional algebraic in any base b, even in the single-digit sense.
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1 Twenty-First Century Approaches
to the Normality Problem

In spite of such developments, there is a sense in the field that
more powerful techniques must be brought to bear on this
problem before additional substantial progress can be
achieved. One idea along this line is to study directly the
decimal expansions (or expansions in other number bases) of
various mathematical constants by applying some techniques
of scientific visualization and large-scale data analysis.

In a recent paper [4], by accessing the results of several
extremely large recent computations [46, 47], the authors tes-
ted the first roughly four trillion hexadecimal digits of p by
means of a Poisson process model: in this model, it is
extraordinarily unlikely that p is not normal base 16, given its
initial segment. During that work, the authors of [4], like many
others, investigated visual methods of representing their large
mathematical data sets. Their chosen tool was to represent
these data as walks in the plane.

In thiswork, based inpart on sources such as [22, 23, 21, 19,
14], we make a more rigorous and quantitative study of these
walks on numbers. We pay particular attention to p, for which
we have copious data and which—despite the fact that its
digits can be generated by simple algorithms—behaves
remarkably ‘‘randomly.’’

The organization of the article is as follows. In Section 2 we
describe and exhibit uniform walks on various numbers, both
rational and irrational, artificial and natural. In the next two
sections, we look at quantifying two of the best-known fea-
tures of random walks: the expected distance traveled after
N steps (Section 3) and the number of sites visited (Section 4)
In Section 5 we describe two classes for which normality and
nonnormality results are known, and one for which we have
only surmise. In Section 6 we show various examples and
leave some open questions. Finally, in Appendix 7 we collect

the numbers we have examined, with concise definitions and
a few digits in various bases.

2 Walking on Numbers

2.1 Random and Deterministic Walks

One of our tasks is to compare deterministic walks (such as
those generated by the digit expansion of a constant) with
pseudorandom walks of the same length. For example, in
Figure 1 we draw a uniform pseudorandom walk with one
million base-4 steps, where at each step the path moves one
unit east, north, west, or south, depending on the whether the
pseudorandom iterate at that position is 0, 1, 2, or 3. The color
indicates the path followed by the walk—it is shifted up the
spectrum (red-orange-yellow-green-cyan-blue-purple-red)
following an HSV scheme with S and V equal to one. The HSV
(hue, saturation, and value) model is a cylindrical-coordinate
representation that yields a rainbow-like range of colors.

Figure 1. A uniform pseudorandom walk.
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Let us now compare this graph with that of some rational
numbers. For instance, consider these two rational numbers
Q1 and Q2:

At first glance, these numbers look completely dissimilar.
However, if we examine their digit expansions, we find that
they are very close as real numbers: the first 240 decimal digits
are the same, as are the first 400 base-4 digits.

But even more information is exhibited when we view a
plot of the base-4 digits of Q1 and Q2 as deterministic
walks, as shown in Figure 2. Here, as above, at each step

the path moves one unit east, north, west, or south,
depending on the whether the digit in the corresponding
position is 0, 1, 2, or 3, and with color coded to indicate the
overall position in the walk.
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The rational numbers Q1 and Q2 represent the two possi-
bilities when one computes a walk on a rational number:
either the walk is bounded as in Figure 2(a) (for anywalkwith
more than 440 steps one obtains the same plot), or it is
unbounded but repeating some pattern after a finite number
of digits as in Figure 2(b).

Of course, not all rational numbers are that easily identified
by plotting their walks. It is possible to create a rational
number whose period is of any desired length. For example,
the following rational numbers from [39],

Q3 ¼ 3624360069

7000000001
and Q4 ¼ 123456789012

1000000000061
;

have base-10 periodic parts with length 1,750,000,000 and
1,000,000,000,060, respectively. A walk on the first million
digits of both numbers is plotted in Figure 3. These huge
periods derive from the fact that the numerators and
denominators of Q3 and Q4 are relatively prime, and the
denominators are not congruent to 2 or 5. In such cases, the
period P is simply the discrete logarithm of the denomi-
nator D modulo 10; or, in other words, P is the smallest
n such that 10n mod D ¼ 1.

Graphical walks can be generated in a similarway for other
constants in various bases—see Figures 2 through 7. Where
the base b C 3, the base-b digits can be used to a select, as a
direction, the corresponding base-b complex root of unity—a
multipleof 120� forbase three, amultipleof90� forbase four, a
multiple of 72� for base 5, etc. We generally treat the case
b = 2 as a base-4 walk, by grouping together pairs of base-2
digits (we could render a base-2 walk on a line, but the
resulting images would be much less interesting). In Figure 4
the origin has been marked, but since this information is not
that important for our purposes, and can be approximately
deduced by the color in most cases, it is not indicated in the
others. Thecolor scheme for Figures 2 through7 is the sameas

the above, except that Figure 6 is colored to indicate the
number of returns to each point.

2.2 Normal Numbers as Walks

As noted previously, proving normality for specific constants
of interest in mathematics has proven remarkably difficult.
The tenor of current knowledge in this arena is illustrated by
[45, 14, 34, 38, 40, 39, 44]. It is useful to know that, while small
in measure, the ‘‘absolutely abnormal’’ or ‘‘absolutely non-
normal’’ real numbers (namely those that are not b-normal for
any integer b) are residual in the sense of topological category
[1]. Moreover, the Hausdorff–Besicovitch dimension of the set
of real numbers having no asymptotic frequencies is equal to
1. Likewise the set of Liouville numbers has measure zero but
is of the second category [18, p. 352].

(a) (b)

Figure 2. Walks on the rational numbers Q1 and Q2.

Figure 4. A million-step base-4 walk on e.

(a) (b)

Figure 3. Walks on the first million base-10 digits of the rationals Q3 and Q4 from [39].
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One question that has possessed mathematicians for cen-
turies is whether p is normal. Indeed, part of the original
motivation of the present study was to develop new tools for
investigating this age-old problem.

In Figure 5 we show a walk on the first 100 billion base-4
digits of p. This may be viewed dynamically in more detail
online at http://gigapan.org/gigapans/106803, where the full-
sized image has a resolution of 372,224 9 290,218 pixels
(108.03 gigapixels in total). This must be one of the largest
mathematical images ever produced. The computations for
creating this image took roughly a month, where several parts
of the algorithm were run in parallel with 20 threads on
CARMA’s MacPro cluster.

By contrast, Figure 6 exhibits a 100 million base-4 walk on
p, where the color is coded by the number of returns to the
point. In [4], the authors empirically tested the normality of its
first roughly four trillion hexadecimal (base-16) digits using a
Poisson process model, and they concluded that, according to
this test, it is ‘‘extraordinarily unlikely’’ that p is not 16-normal
(of course, this result does not pretend to be a proof).

In what follows, we propose various methods of analyzing
real numbers and visualizing them as walks. Other methods
widely used to visualize numbers include the matrix repre-
sentations shown in Figure 8, where each pixel is colored

depending on the value of the digit to the right of the decimal
point, following a left-to-right up-to-down direction (in base 4
the colors used for 0, 1, 2, and 3 are red, green, cyan, and
purple, respectively). This method has been mainly used to
visually test ‘‘randomness.’’ In some cases, it clearly shows the
features of some numbers; as for small periodic rationals, see
Figure 8(c). This scheme also shows the nonnormality of the
numbera2,3—seeFigure 8(d) (where the horizontal redbands
correspond to the strings of zeroes)—and it captures some of
the special peculiarities of the Champernowne’s number C4

(normal) in Figure 8(e). Nevertheless, it does not reveal
the apparently nonrandom behavior of numbers such
as the Erd}os–Borwein constant; compare Figure 8(f) with
Figure 7(e). See also Figure 21.

Aswewill see inwhat follows, the studyofnormalnumbers
and suspected normal numbers as walks will permit us to
compare them with true random (or pseudorandom) walks,
obtaining in this manner a new way to empirically test ‘‘ran-
domness’’ in their digits.

3 Expected Distance to the Origin
Let b 2 f3; 4; . . .g be a fixed base, and let X1;X2;X3; . . . be a
sequence of independent bivariate discrete random variables
whose common probability distribution is given by

P X ¼ cos 2p
b k
� �

sin 2p
b k
� �

� �� �

¼ 1

b
for k ¼ 1; . . .; b: ð2Þ

Then the random variable SN:=
P

m=1
N Xm represents a

base-b random walk in the plane of N steps.
The following result on the asymptotic expectation of the

distance to the origin of a base-b random walk is probably
known, but being unable to find any reference in the litera-
ture, we provide a proof.

TH E O R E M 3.1 The expected distance to the origin of a

base-b random walk of N steps is asymptotically equal

to
ffiffiffiffiffiffiffi

pN
p

=2.

PR O O F . By the multivariate central limit theorem, the ran-

dom variable 1=
ffiffiffiffi

N
p

PN
m¼1ðXm � lÞ is asymptotically

bivariate normal with mean
0
0

� �

and covariance matrix M,

where l is the two-dimensional mean vector of X and M is its

2 9 2 covariance matrix. By applying Lagrange’s trigono-

metric identities, one obtains

l ¼
1
b

Pb
k¼1 cos 2p

b k
� �

1
b

Pb
k¼1 sin 2p

b k
� �

 !

¼ 1

b

�1
2 þ

sin ðbþ1=2Þ2p
bð Þ

2 sinðp=bÞ

1
2 cotðp=bÞ � cos ðbþ1=2Þ2p

bð Þ
2 sinðp=bÞ

0

B

@

1

C

A

¼
0

0

� �

: ð3Þ

Thus,

M ¼ 1

b

Pb
k¼1 cos2 2p

b k
� �

Pb
k¼1 cos 2p

b k
� �

sin 2p
b k
� �

Pb
k¼1 cos 2p

b k
� �

sin 2p
b k
� �

Pb
k¼1 sin2 2p

b k
� �

" #

:

ð4Þ

Figure 5. A walk on the first 100 billion base-4 digits of p
(normal?).

Figure 6. A walk on the first 100 million base-4 digits of p, col-

ored by number of returns (normal?). Color follows an HSV model

(green-cyan-blue-purple-red)dependingon thenumberof returns

to each point (where the maxima show a tinge of pink/red).
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Since

X

b

k¼1

cos2 2p
b

k

� �

¼
X

b

k¼1

1 þ cos 4p
b k
� �

2
¼ b

2
;

X

b

k¼1

sin2 2p
b

k

� �

¼
X

b

k¼1

1 � cos 4p
b k
� �

2
¼ b

2
;

X

b

k¼1

cos
2p
b

k

� �

sin
2p
b

k

� �

¼
X

b

k¼1

sin 4p
b k
� �

2
¼ 0; ð5Þ

formula (4) reduces to

M ¼
1
2 0
0 1

2

� �

: ð6Þ

Hence, SN=
ffiffiffiffi

N
p

is asymptotically bivariate normal with mean

0
0

� �

and covariance matrix M. Because its components

ðSN
1 =

ffiffiffiffi

N
p

; SN
2 =

ffiffiffiffi

N
p

ÞT are uncorrelated, then they are inde-

pendent random variables, whose distribution is (univariate)

(a) (b)

(c) (d)

(e) (f)

Figure 7. Walks on various numbers in different bases.
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normal with mean 0 and variance 1/2. Therefore, the random
variable

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

2
p
ffiffiffiffi

N
p SN

1

� �2

þ
ffiffiffi

2
p
ffiffiffiffi

N
p SN

2

� �2
s

ð7Þ

converges in distribution to a v random variable with two
degrees of freedom. Then, for N sufficiently large,

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSN
1 Þ

2 þ ðSN
2 Þ

2
q

� �

¼
ffiffiffiffi

N
p
ffiffiffi

2
p E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

2
p
ffiffiffiffi

N
p SN

1

� �2

þ
ffiffiffi

2
p
ffiffiffiffi

N
p SN

2

� �2
s

0

@

1

A

�
ffiffiffiffi

N
p
ffiffiffi

2
p Cð3=2Þ

Cð1Þ ¼
ffiffiffiffiffiffiffi

pN
p

2
; ð8Þ

where Eð�Þ stands for the expectation of a random
variable. Therefore, the expected distance to the

(a) (b)

(c) (d)

(e) (f)

Figure 8. Horizontal color representation of a million digits of various numbers.
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origin of the random walk is asymptotically equal to
ffiffiffiffiffiffiffi

pN
p

=2.

As a consequence of this result, for any random walk of
N steps inanygivenbase, theexpectationof thedistance to the
origin multiplied by 2=

ffiffiffiffiffiffiffi

pN
p

(which we will call normalized
distance to the origin) must approach 1 as N goes to infinity.
Therefore, for a ‘‘sufficiently’’ big random walk, one would
expect that the arithmetic mean of the normalized distances

(which will be called average normalized distance to the
origin) should be close to 1.

We have created a sample of 10,000 (pseudo)random
walks base-4 of one million points each in Python1, and we
have computed their average normalized distance to the ori-
gin. The arithmetic mean of these numbers for the mentioned
sample of pseudorandom walks is 1.0031, whereas its stan-
darddeviation is0.3676, so theasymptotic result fitsquitewell.
We have also computed the normalized distance to the origin
of 10,000walks ofonemillion steps eachgenerated by the first
ten billion digits of p. The resulting arithmetic mean is 1.0008,
whereas the standard deviation is 0.3682. In Table 1 we show
the average normalized distance to the origin of various
numbers. There are several surprises in there data, such as the

Table 1. Average of the normalized distance to the origin of the walk of

various constants in different bases

Number Base Steps Average normalized

distance to the origin

Normal

Mean of 10,000

random walks

4 1,000,000 1.00315 Yes

Mean of 10,000 walks

on the digits of p

4 1,000,000 1.00083 ?

a2,3 3 1,000,000 0.89275 ?

a2,3 4 1,000,000 0.25901 Yes

a2,3 5 1,000,000 0.88104 ?

a2,3 6 1,000,000 108.02218 No

a4,3 3 1,000,000 1.07223 ?

a4,3 4 1,000,000 0.24268 Yes

a4,3 6 1,000,000 94.54563 No

a4,3 12 1,000,000 371.24694 No

a3,5 3 1,000,000 0.32511 Yes

a3,5 5 1,000,000 0.85258 ?

a3,5 15 1,000,000 370.93128 No

p 4 1,000,000 0.84366 ?

p 6 1,000,000 0.96458 ?

p 10 1,000,000 0.82167 ?

p 10 10,000,000 0.56856 ?

p 10 100,000,000 0.94725 ?

p 10 1,000,000,000 0.59824 ?

e 4 1,000,000 0.59583 ?
ffiffiffi

2
p

4 1,000,000 0.72260 ?

log 2 4 1,000,000 1.21113 ?

Champernowne C10 10 1,000,000 59.91143 Yes

EB(2) 4 1,000,000 6.95831 ?

CE(10) 4 1,000,000 0.94964 ?

Rational number Q1 4 1,000,000 0.04105 No

Rational number Q2 4 1,000,000 58.40222 No

Euler constant c 10 1,000,000 1.17216 ?

Fibonacci F 10 1,000,000 1.24820 ?

fð2Þ ¼ p2

6
4 1,000,000 1.57571 ?

fð3Þ 4 1,000,000 1.04085 ?

Catalan’s constant G 4 1,000,000 0.53489 ?

Thue–Morse TM2 4 1,000,000 531.92344 No

Paper-folding P 4 1,000,000 0.01336 No

Table 2. Number of points visited in various N-step base-4 walks. The

values of the two last columns are upper and lower bounds on the

expectation of the number of distinct sites visited during an N-step

random walk; see [31, Theorem 2] and [32]

Number Steps Sites visited Bounds on the expectation

of sites visited by a random

walk

Lower

bound

Upper

bound

Mean of 10,000

random walks

1,000,000 202,684 199,256 203,060

Mean of 10,000

walks on the

digits of p

1,000,000 202,385 199,256 203,060

a2,3 1,000,000 95,817 199,256 203,060

a4,3 1,000,000 68,613 199,256 203,060

a3,2 1,000,000 195,585 199,256 203,060

p 1,000,000 204,148 199,256 203,060

p 10,000,000 1,933,903 1,738,645 1,767,533

p 100,000,000 16,109,429 15,421,296 15,648,132

p 1,000,000,000 138,107,050 138,552,612 140,380,926

e 1,000,000 176,350 199,256 203,060
ffiffiffi

2
p

1,000,000 200,733 199,256 203,060

log 2 1,000,000 214,508 199,256 203,060

Champernowne

C4

1,000,000 548,746 199,256 203,060

EB(2) 1,000,000 279,585 199,256 203,060

CE(10) 1,000,000 190,239 199,256 203,060

Rational number

Q1

1,000,000 378 199,256 203,060

Rational number

Q2

1,000,000 939,322 199,256 203,060

Euler constant c 1,000,000 208,957 199,256 203,060

fð2Þ 1,000,000 188,808 199,256 203,060

fð3Þ 1,000,000 221,598 199,256 203,060

Catalan’s

constant G

1,000,000 195,853 199,256 203,060

TM2 1,000,000 1,000,000 199,256 203,060

Paper-folding P 1,000,000 21 199,256 203,060

1Python uses the Mersenne Twister as the core generator and produces 53-bit precision floats, with a period of 219937 - 1 & 106002. Compare the length of this period to the

comoving distance from Earth to the edge of the observable universe in any direction, which is approximately 4:6 � 1037 nanometers, or to the number of protons in the universe,

which is approximately 1080.
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fact that by this measure, Champernowne’s number C10 is far
from what is expected of a truly ‘‘random’’ number.

4 Number of Points Visited during an N-Step
base-4 Walk

The number of distinct points visited during a walk of a given
constant (on a lattice) can be also used as an indicator of how
‘‘random’’ the digits of that constant are. It is well known that
the expectation of the number of distinct points visited by an
N-step random walk on a two-dimensional lattice is asymp-
totically equal to p N/log(N); see, for example, [36, pg. 338] or
[13, pg. 27]. This result was first proven by Dvoretzky and
Erd}os [33, Thm. 1]. The main practical problem with this
asymptotic result is that its convergence is rather slow; spe-
cifically, it has order of O N log log N=ðlog N Þ2

� �

. In [31, 32],
Downhamand Fotopoulos show the followingbounds on the
expectation of the number of distinct points,

 

pðN þ 0:84Þ
1:16p � 1 � log 2 þ logðN þ 2Þ;

pðN þ 1Þ
1:066p � 1 � log 2 þ logðN þ 1Þ

!

;

ð9Þ

which provide a tighter estimate on the expectation than the
asymptotic limit p N/log(N). For example, for N = 106, these
bounds are (199256.1, 203059.5), whereas pN/log(N) =

227396, which overestimates the expectation.
InTable 2wehave calculated thenumber of distinct points

visited by the base-4 walks on several constants. One can see
that the values for different step walks on p fit quite well the
expectation.On theother hand, numbers that areknown tobe
normal such as a2,3 or the base-4 Champernowne number
substantially differ from the expectation of a random walk.
These constants, despite being normal, do not have a ‘‘ran-
dom’’ appearance when one draws the associated walk, see
Figure 7(d).

At first look, the walk on a2,3 might seem random, see
Figure 7(c). A closer look, shown in Figure 12, shows a more
complex structure: the walk appears to be somehow self-
repeating. This helps explain why the number of sites visited
by the base-4 walk on a2,3 or a4,3 is smaller than the

expectation for a random walk. A detailed discussion of the
Stoneham constants and their walks is provided in Section 5.2,
where the precise structure of Figure 12 is conjectured.

5 Copeland–Erd}os, Stoneham, and Erd}os–
Borwein Constants

As well as the classical numbers—such as e, p, c—listed in the
Appendix, we also considered various other constructions,
which we describe in the next three subsections.

5.1 Champernowne Number and Its Concatenated

Relatives

The first mathematical constant proven to be 10-normal is
the Champernowne number, which is defined as the concat-
enation of the decimal values of the positive integers, that
is, C10 ¼ 0:12345678910111213141516. . . Champernowne
proved that C10 is 10-normal in 1933 [24]. This was later
extended to base-b normality (for base-b versions of the
Champernowne constant) as in Theorem 5.1. In 1946,
Copeland and Erd}os established that the corresponding
concatenation of primes 0:23571113171923. . . and the con-
catenation of composites 0:46891012141516. . ., among
others, are also 10-normal [26]. In general they proved that
concatenation leads tonormality if the sequence grows slowly
enough. We call such numbers concatenation numbers:

THEOREM 5.1 ([26]). If a1;a2; . . . is an increasing sequence

of integers such that for every h\ 1 the number of ai’s up

to N exceeds Nh provided N is sufficiently large, then the

infinite decimal

0:a1a2a3 � � �

is normal with respect to the base b in which these integers
are expressed.

This result clearly applies to the Champernowne numbers
(Fig. 7(d)), to the primes of the form ak + c with a and c rel-
ativelyprime, in anygivenbase, and to the integers that are the
sum of two squares (since every prime of the form 4k + 1 is

(a) (b)

Figure 9. Number of points visited by 104 base-4 million-step walks.
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included). In further illustration, using the primes in binary
leads to normality in base 2 of the number

CEð2Þ ¼ 0:101110111110111101100011001110111111011

1111100101101001101011. . .2;

shown as a planar walk in Figure 10.

5.1.1 Strong Normality

In [14] it is shown that C10 fails the following stronger test of
normality,whichwenowdiscuss. The test is is a simpleone, in
the spirit of Borel’s test of normality, as opposed to other more
statistical tests discussed in [14]. If the digits of a real number a
are chosen at random in the base b, the asymptotic frequency
mk(n)/n of each 1-string approaches 1/b with probability 1.
However, the discrepancy mk(n) - n/b does not approach
any limit, but fluctuates with an expected value equal to the
standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb � 1Þn
p

=b. (Precisely mkðnÞ :¼
#fi:ai ¼ k; i�ng when a has fractional part 0:a0a1a2 � � � in
base b.)

Kolmogorov’s law of the iterated logarithm allows one to
make a precise statement about the discrepancy of a random
number. Belshaw and P. Borwein [14] use this to define their
criterion and then to show that almost every number is
absolutely strongly normal.

DEFINITION 5.2 (Strong normality [14]). For real a, and

mk (n) as above, a is simply strongly normal in the base b if for

each 0 B k B b - 1 one has

lim sup
n!1

mkðnÞ � n=b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p ¼

ffiffiffiffiffiffiffiffiffiffiffi

b � 1
p

b
and

lim inf
n!1

mkðnÞ � n=b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p ¼ �

ffiffiffiffiffiffiffiffiffiffiffi

b � 1
p

b
:

ð10Þ

A number is strongly normal in base b if it is simply

strongly normal in each base bj ; j ¼ 1; 2; 3; . . ., and is abso-

lutely strongly normal if it is strongly normal in every base.

In paraphrase (absolutely) strongly normal numbers are
those that distributionally oscillate as much as is possible.

Belshaw and Borwein show that strongly normal numbers
are indeed normal. They also make the important observation
thatChampernowne’sbase-bnumber isnot stronglynormal in
base b. Indeed, there are bm-1 digits of length m and they all start
with a digit between 1 and b - 1 whereas the following

m - 1 digits take values between 0 and b - 1 equally. In
consequence, there is a dearth of zeroes. This is easiest to
analyze in base 2. As illustrated below, the concatenated
numbers start

1; 10; 11; 100; 101; 110; 111; 1000; 1001; 1010; 1011;
1100; 1101; 1110; 1111

For m = 3 there are 4 zeroes and 8 ones, for m = 4 there are
12 zeroes and 20 ones, and for m = 5 there are 32 zeroes
and 48 ones.

Because the details were not provided in [14], we present
them here.

THEOREM 5.3 (Belshaw and P. Borwein) Champer-

nowne’s base-2 number is is not 2-strongly normal.

PROOF . In general, let nk: = 1 + (k - 1)2k for k C 1. One

has m0(nk) = 1 + (k - 1)2k and so

m1ðnkÞ � m0ðnkÞ ¼ nk � 2m0ðnkÞ ¼ 2k � 1:

In fact m1(n)[ m0(n) for all n. To see this, suppose it true
for n B nk, and proceed by induction on k. Let us arrange
the digits of the integers 2k; 2k þ 1; . . .; 2k þ 2k�1 � 1 in a
2k-1 by k + 1 matrix, where the i-th row contains the digits
of the integer 2k + i - 1. Each row begins 10, and if we
delete the first two columns we obtain a matrix in which
the i-th row is given by the digits of i - 1, possibly pre-
ceded by some zeroes. Neglecting the first row and the
initial zeroes in each subsequent row, we see the first nk-1

digits of Champernowne’s base-2 number, where by our
induction hypothesis m1(n)[ m0 (n) for n B nk-1.

If we now count all the zeroes as we read the matrix in the

natural order, any excess of zeroes must come from the initial

zeroes, and there are exactly 2k-1 - 1 of these. As shown

above, m1(nk) - m0(nk) = 2k - 1, so m1(n)[m0(n) +

2k-1 for every n B nk + (k + 1) 2k-1. A similar argument for

the integers from 2k + 2k-1 to 2k+1 - 1 shows that

m1(n)[m0(n) for every n B nk+1. Therefore, 2m1(n)[
m0(n) + m1(n) = n for all n, and so

lim inf
n!1

m1ðnÞ � n=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p � 0 6¼ � 1

2
;

and, as asserted, Champernowne’s base-2 number is not
2-strongly normal.

It seems likely that by appropriately shuffling the integers,
one should be able to display a strongly normal variant. Along
this line, Martin [40] has shown how to construct an explicit
absolutely nonnormal number.

Finally, although the log log limiting behavior required by
(10) appears difficult to test numerically to any significant
level, it appears reasonably easy computationally to check
whether other sequences, such as many of the concatenation
sequences of Theorem 5.1, fail to be strongly normal for
similar reasons.

Heuristically, we would expect the number CE(2) above to
fail to be strongly normal, because eachprime of length k both
starts and ends with a one, whereas intermediate bits should

Figure 10. A walk on the first 100,000 bits of the primes

(CE(2)) base two (normal).
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show no skewing. Indeed, for CE(2) we have checked that
2m1(n)[n for all n B 10 , see also9 Figure 11(a). Thus
motivated, we are currently developing tests for strong nor-
mality of numbers such as CE(2) and a2,3 below in binary.

For a2,3, the corresponding computation of the first 109

values of m1ðnÞ�n=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p leads to the plot in Figure 11(b) and leads

us to conjecture that it is 2-strongly normal.

5.2 Stoneham Numbers: A Class Containing Provably

Normal and Nonnormal Constants

Giving further motivation for these studies is the recent pro-
vision of rigorous proofs of normality for the Stoneham
numbers, which are defined by

ab;c :¼
X

m� 1

1

cmbcm ; ð11Þ

for relatively prime integers b, c [10].

TH E O R E M 5.4 (Normality of Stoneham constants [3]). For

every coprime pair of integers (b, c) with b C 2 and c C 2,

the constant ab,c =
P

mC1 1/(cm bcm

) is b-normal.

So, for example, the constant a2;3 ¼
P

k � 1 1=ð3k23k Þ ¼
0:0418836808315030. . . is provably 2-normal. This special
case was proven by Stoneham in 1973 [43]. More recently,
Bailey and Misiurewicz were able to establish this normality
result by a much simpler argument, based on techniques of
ergodic theory [11] [16, pg. 141–173].

Equally interesting is the following result:

TH E O R E M 5.5 (Nonnormality of Stonehamconstants [3] ).

Given coprime integers b C 2 and c C 2, and integers p,

q, r C 1, with neither b nor c dividing r , let B = bp cq r.

Assume that the condition D = cq/pr1/p/bc-1 \ 1 is satisfied.

Then the constant ab;c ¼
P

k � 0 1=ðckbck Þ is B-nonnormal.

In variousof theFigures andTables,weexplore the striking
differences of behavior—proven and unproven—for ab,c as
we vary the base. For instance, the nonnormality of a2,3 in

base-6 digits was proved just before we started to draw walks.
Contrast Figure 7(b) to Figure 7(c) and Figure 7(a). Now
compare the values presented in Table 1 and Table 2. Clearly,
fromthis sort ofvisual andnumeric data, thediscoveryofother
cases of Theorem 5.5 is very easy.

As illustrated also in the ‘‘zoom’’ of Figure 12, we can use
these images to discover more subtle structure. We conjecture
the following relations on the digits of a2,3 in base 4 (which
explain the values in Tables 1 and 2):

CO N J E C T U R E 5.6 (Base-4 structure of a2,3). Denote

by ak the kth digit of a2,3 in its base-4 expansion; that

is, a2;3 ¼
P1

k¼1 ak=4
k,with ak 2 f0; 1; 2; 3g for all k. Then,

for all n ¼ 0; 1; 2; . . . one has:

(i)
P

3
2ð3nþ1Þþ3n

k¼3
2ð3nþ1Þ

eakpi=2 ¼ ð�1Þnþ1�1
2 þ ð�1Þn�1

2 i ¼ � i; n odd
1; n even

	

;

(ii) ak ¼ akþ3n ¼ akþ2�3n for all k ¼ 3
2ð3n þ 1Þ; 3

2ð3n þ 1Þ þ 1;
. . .; 3

2ð3n þ 1Þ þ 3n � 1.

In Figure 13, we show the position of the walk after
3
2ð3n þ 1Þ; 3

2ð3n þ 1Þ þ 3n and 3
2ð3n þ 1Þ þ 2 � 3n steps for

(a) (b)

Figure 11. Plot of the first 109 values of m1ðnÞ�n=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p .

Figure 12. Zooming in on the base-4 walk on a2,3 of

Figure 7(c) and Conjecture 5.6.
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n ¼ 0; 1; . . .; 11, which, together with Figures 7(c) and 12,
graphically explain Conjecture 5.6. Similar results seem to
hold for other Stoneham constants in other bases. For
instance, for a3,5 base 3 we conjecture the following.

CO N J E C T U R E 5.7 (Base-3 structure of a3,5). Denote by

ak the kth digit of a3,5 in its base-3 expansion; that is,

a3;5 ¼
P1

k¼1 ak=3
k, with ak 2 f0; 1; 2g for all k. Then, for

all n ¼ 0; 1; 2; . . . one has:

(i)
P

2þ5nþ1þ4�5n

k¼2þ5nþ1

eakpi=2 ¼ ð�1Þn �1þ
ffiffi

3
p

i
2


 �

¼ eð3nþ2Þpi=3;

(ii) ak ¼ akþ4�5n ¼ akþ8�5n ¼ akþ12�5n ¼ akþ16�5n for k ¼
5nþ1 þ j; j ¼ 2; . . .; 2 þ 4 � 5n.

Along this line, Bailey and Crandall showed that, given a
real number r in [0,1), and rk denoting the k-th binary digit of r,
the real number

a2;3ðrÞ :¼
X

1

k¼0

1

3k23kþrk
ð12Þ

is 2-normal. It can be seen that if r = s, then
a2,3(r) = a2,3(s), so that these constants are all distinct.
Thus, this generalized class of Stoneham constants is un-
countably infinite. A similar result applies if 2 and 3 in this
formula are replaced by any pair of co-prime integers
(b, c) greater than 1, [10] [16, pg. 141–173]. We have not yet
studied this generalized class by graphical methods.

5.3 The Erd}os–Borwein Constants

The constructions of the previous two subsections exhaust
most of what is known for concrete irrational numbers. By
contrast, we finish this section with a truly tantalizing case:

In a base b C 2, we define the Erd}os–(Peter) Borwein
constant EB(b) by the Lambert series [18]:

EBðbÞ :¼
X

n� 1

1

bn � 1
¼
X

n� 1

sðnÞ
bn

; ð13Þ

where s(n) is the number of divisors of n. It is known that
the numbers

P

nC1 1/(bn - r) are irrational for r a nonzero
rational and b ¼ 2; 3; . . . such that r = bn for all n [20].

Whence, as provably irrational numbers other than the
standard examples are few and far between, it is interesting
to consider their normality.

Crandall [27] has observed that the structure of (13) is
analogous to the ‘‘BBP’’ formula for p (see [7, 16]) and used
this, as well as some nontrivial knowledge of the arithmetic
properties of s, to establish results such as that the googol-th
bit (namely, the bit in position 10100 to the right of the ‘‘deci-
mal’’ point) of EB(2) is a 1.

In [27] Crandall also computed the first 243 bits (one Tbyte)
of EB(2), which required roughly 24 hours of computation,
and found that there are 4359105565638 zeroes and
4436987456570ones. There is a corresponding variation in the
second and third place in the single-digit hex (base-16) dis-
tributions. This certainly leaves some doubt as to its normality.
Likewise,Crandall finds that in thefirst 1,000decimalpositions
after thequintillionthdigit (1018), the respectivedigit counts for
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are 104, 82, 87, 100, 73, 126,
87, 123, 114, 104. Our own more modest computations of
EB(10) base-10 again leave it far from clear that EB(10) is
10-normal. See also Figure 7(e) but contrast it to Figure 8(f).

We should note that for computational purposes, we
employed the identity

X

n� 1

1

bn � 1
¼
X

n� 1

bn þ 1

bn � 1

1

bn2 ;

for |b|[ 1, due to Clausen, as did Crandall [27].

6 Other Avenues and Concluding Remarks
Let us recall two further examples used in [14], that ofXðnÞ, the
Liouville function, which counts the parity of the number of
prime factors of n (see Figure 14), and the human genome
taken from the UCSC Genome Browser at http://hgdownload.
cse.ucsc.edu/goldenPath/hg19/chromosomes/ (see Fig. 15).
Note the similarity of the genome walk to the those of con-
catenation sequences. We have explored a wide variety of
walks on genomes, but we will reserve the results for a future
study.

We should emphasize that, to the best of our knowledge,
the normality and transcendence status of the numbers
explored is unresolved other than in the cases indicated in
sections 5.1 and 5.2 and indicated in Appendix 7. Although
one of the clearly nonrandom numbers (say Stoneham or
Copeland–Erd}os)maypassmuster ononeorothermeasureof
the walk, it is generally the case that it fails another. Thus, the
Liouville number k2 (see Fig. 14) exhibits a much more
structured drift than p or e, but looks more like them than like
Figure 15(a).

This situation provides hope for more precise future anal-
yses. We conclude by remarking on some unresolved issues
and plans for future research.

6.1 Fractal and Box-Dimension

Another approach is to estimate the fractal dimensions of
walks, which is an appropriate toolwithwhich tomeasure the
geometrical complexity of a set, characterizing its space-filling
capacity (see, e.g., [6] for a nice introduction about fractals).
The box-counting dimension, also known as the Minkowski–

Figure 13. A pattern in the digits of a2,3 base 4. We show

only positions of the walk after 3
2ð3n þ 1Þ; 3

2ð3n þ 1Þ þ 3n and
3
2ð3n þ 1Þ þ 2 � 3n steps for n ¼ 0; 1; . . .; 11.
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Bouligand dimension, permits us to estimate the fractal
dimension of a given set and often coincides with the fractal
dimension. The box-dimension of the walk of numbers such
as p turns out to be close to 2, whereas for nonrandom num-
bers as a2,3 in base 6 or Champernowne’s number, the box-
dimension is nearly 1.

6.2 Three Dimensions

We have also explored three-dimensional graphics—using
base-6 for directions—both in perspective and in a large
passive (glasses-free) three-dimensional viewer outside the
CARMA laboratory; but we have not yet quantified these
excursions.

6.3 Genome Comparison

Genomes are made up of so-called purine and pyrimidine
nucleotides. InDNA, purine nucleotidebases are adenine and
guanine (A and G), whereas the pyrimidine bases are thymine
and cytosine (T and C). Thymine is replaced by uracyl in RNA.
The haploid human genome (i.e., 23 chromosomes) is

estimated to hold about 3.2 billion base pairs and so to contain
20,000-25,000 distinct genes. Hence there are many ways of
representing a stretch of a chromosome as a walk, say as a
base-4 uniform walk on the symbols (A, G, T, C) illustrated in
Figure 15 (where A, G, T, and C draw the new point to the
south, north, west, and east, respectively, and we have not
plotted undecoded or unused portions), or as a three-
dimensional logarithmic walk inside a tetrahedron.

We have also compared random chaos games in a square
with genomes and numbers plotted by the same rules.2 As an
illustration, we show twelve games in Figure 16: four on a
triangle, four on a square, and four on a hexagon. At each step
we go from the current point halfway toward one of the ver-
tices, chosen depending on the value of the digit. The color
indicates the number of hits, in a similarmanner as in Figure 6.
The nonrandom behavior of the Champernowne numbers is
apparent in the coloring patterns, as are the special features of
the Stoneham numbers described in Section 5.2 (the non-
normality ofa2,3 and a3,2 in base 6 yields a paler color,whereas
the repeating structureofa2,3 anda3,5 is theoriginof thepurple
tone, see Conjectures 5.6 and 5.7).

(a) (b)

Figure 14. Two different rules for plotting a base-2 walk on the first two million values of k(n) (the Liouville number k2).

(a) (b)

Figure 15. Base-4 walks on 106 bases of the X-chromosome and 106 digits of log 2.

2The idea of a chaos game was described by Barnsley in his 1988 book Fractals Everywhere [6]. Games on amino acids seem to originate with [35]. For a recent summary see

[17, pp. 194–205].

54 THE MATHEMATICAL INTELLIGENCER

21. WALKING ON REAL NUMBERS (2013) 355



6.4 Automatic Numbers

We have also explored numbers originating with finite state
automata, such as those of the paper-folding and the Thue–
Morse sequences,P andTM2, see [2] and Section7. Automatic
numbers arenever normal andare typically transcendental; by
comparison, the Liouville numberk2 is not p-automatic for any
prime p [25].

The walks on P and TM2 have a similar shape, see
Figure 17, butwhile theThue–Morse sequencegenerates very
large pictures, the paper-folding sequence generates very
small ones, because it is highly self-replicating; see also the
values in Tables 1 and 2.

A turtle plot on these constants, where each binary digit
corresponds to either ‘‘forward motion’’ of length 1 or

‘‘rotate the Logo turtle’’ in a fixed angle, exhibits some of
their striking features (see Fig. 18). For instance, drawn
with a rotating angle of p=3; TM2 converges to a Koch
snowflake [41]; see Figure 18(c). We show a corresponding
turtle graphic of p in Figure 18(d). Analogous features
occur for the paper-folding sequence as described in [28,
29, 30], and two variants are shown in Figures 18(a) and
18(b).

6.5 Continued Fractions

Simple continued fractions often encode more information
than base expansions about a real number. Basic facts are that
a continued fraction terminates or repeats if and only if the

Figure 16. Chaos games on various numbers, colored by frequency. Row 1: C3, a3,5, a (pseudo)random number, and a2,3. Row 2:

C4, p, a (pseudo)random number, and a2,3. Row 3: C6, a3,2, a (pseudo)random number, and a2,3.

(a) (b)

Figure 17. Walks on two automatic and nonnormal numbers.
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number is rational or a quadratic irrational, respectively; see
[16, 7]. By contrast, the simple continued fractions for p and
e start as follows in the standard compact form:

p ¼½3; 7; 15; 1; 292; 1; 1; 1; 2; 1; 3; 1; 14; 2; 1;

1; 2; 2; 2; 2; 1; 84; 2; 1; 1; 15; 3; 13; 1; 4; . . .�

e ¼½2; 1; 2; 1; 1; 4; 1; 1; 6; 1; 1; 8; 1; 1; 10; 1; 1; 12; 1; 1; 14; 1;

1; 16; 1; 1; 18; 1; 1; 20; 1; . . .�;

from which the surprising regularity of e and apparent
irregularity of p as continued fractions is apparent. The
counterpart to Borel’s theorem—that almost all numbers
are normal—is that almost all numbers have ‘‘normal’’
continued fractions a ¼ ½a1;a2; . . .;an; . . .�, for which the
Gauss–Kuzmin distribution holds [16]: for each
k ¼ 1; 2; 3; . . .

Probfan ¼ kg ¼ � log2 1 � 1

ðk þ 1Þ2

 !

; ð14Þ

so that roughly 41.5% of the terms are 1, 16.99% are 2,
9.31% are 3, etc.

In Figure 19, we show a histogram of the first 100 million
terms, computed by Neil Bickford and accessible at http://
neilbickford.com/picf.htm, of the continued fraction of p.
We have not yet found a satisfactory way to embed this in
awalkonacontinued fraction,but inFigure 20weshowbase-
4 walks on p and e where we use the remainder modulo 4 to
build the walk (with 0 being right, 1 being up, 2 being left, and
3 being down). We also show turtle plots on p, e.

Andrew Mattingly has observed that:

PR O P O S I T I O N 6.1 With probability 1, a mod-4 random

walk (with 0 being right, 1 being up, 2 being left, and 3 being

down) on the simple continued fraction coefficients of a real

number is asymptotic to a line making a positive angle with

the x-axis of:

arctan
1

2

log2ðp=2Þ � 1

log2ðp=2Þ � 2 log2 C 3=4ð Þð Þ

� �

� 110:44�:

(a) (b)

(d)(c)

Figure 18. Turtle plots on various constants with different rotating angles in base 2—where ‘‘0’’ gives forward motion and ‘‘1’’

rotation by a fixed angle.
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PR O O F . The result comes by summing the expected

Gauss–Kuzmin probabilities of each step being taken as

given by (14).

This is illustrated in Figure 20(a) with a 90� anticlockwise
rotation; thus making the case that one must have some
a priori knowledge before designing tools.

It is also instructive to compare digits and continued frac-
tions of numbers as horizontal matrix plots of the form already

used in Figure 8. In Figure 21, we show six pairs of million-
term digit-strings and the corresponding continued fraction.
In some cases both look random, in others one or the other
does.

Inconclusion,wehaveonly scratched the surfaceofwhat is
becoming possible in a period in which data—for example,
five-hundred million terms of the continued fraction or five-
trillion binary digits of p, full genomes, and much more—can
be downloaded from the Internet, then rendered and visually
mined, with fair rapidity.

(a) (b)

Figure 19. Expected values of the Gauss–Kuzmin distribution of (14) and the values of 100 million terms of the continued fraction

of p.

(a) (b)

(d)(c)

Figure 20. Uniform walks on p and e based on continued fractions.
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7 Appendix Selected Numerical Constants
In what follows, x :¼ 0:a1a2a3a4. . .b denotes the base-
b expansion of the number x, so that x ¼

P1
k¼1 akb�k. Base-

10 expansions are denoted without a subscript.

Catalan’s constant (irrational?; normal?):

G :¼
X

1

k¼0

ð�1Þk

ð2k þ 1Þ2
¼ 0:9159655941. . . ð15Þ

Champernowne numbers (irrational; normal to correspond-
ing base):

Cb :¼
X

1

k¼1

Pbk�1
m¼bk�1 mb�k m�ðbk�1�1Þ½ �

b
Pk�1

m¼0 mðb � 1Þbm�1
ð16Þ

C10 ¼ 0:123456789101112. . .

C4 ¼ 0:1231011121320212223. . .4

Copeland–Erd}os constants (irrational; normal to
corresponding base):

CEðbÞ :¼
X

1

k¼1

pkb� kþ
Pk

m¼1
blogb pmc

� �

;

where pk is the kthprime number

ð17Þ

CEð10Þ ¼ 0:2357111317. . .

CEð2Þ ¼ 0:1011101111. . .2

Exponential constant (transcendental; normal?):

e :¼
X

1

k¼0

1

k!
¼ 2:7182818284. . . ð18Þ

Erd}os–Borwein constants (irrational; normal?):

EBðbÞ :¼
X

1

k¼1

1

bk � 1
ð19Þ

EBð2Þ ¼ 1:6066951524. . . ¼ 1:212311001. . .4

Euler–Mascheroni constant (irrational?; normal?):

c :¼ lim
m!1

X

m

k¼1

1

k
� log m

 !

¼ 0:5772156649. . . ð20Þ

Fibonacci constant (irrational [12, Theorem 2]; normal?):

F :¼
X

1

k¼1

Fk10� 1þkþ
Pk

m¼1
blog10 Fmc

� �

;where

Fk ¼
1þ
ffiffi

5
p

2


 �k

� 1�
ffiffi

5
p

2


 �k

ffiffiffi

5
p

¼ 0:011235813213455. . .

Liouville number (irrational; not p-automatic):

k2 :¼
X

1

k¼1

kðkÞ þ 1

2

� �

2�k ð22Þ

Figure 21. Million-step comparisons of base-4 digits and continued fractions. Row 1: a2,3 (base 6) and C4. Row 2: e and p. Row 3:

Q1 and pseudorandom iterates; as listed from top left to bottom right.
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where kðkÞ :¼ ð�1ÞXðkÞ and XðkÞ counts prime factors of k

¼ 0:5811623188. . . ¼ 0:10010100110. . .2

Logarithmic constant (transcendental; normal?):

log 2 :¼
X

1

k¼1

1

k2k
ð23Þ

¼ 0:6931471806. . . ¼ 0:10110001011100100001. . .2

Pi (transcendental; normal?):

p :¼ 2

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p

dx ¼ 4
X

1

k¼0

ð�1Þk

2k þ 1
ð24Þ

¼ 3:1415926535. . . ¼ 11:00100100001111110110. . .2

Riemann zeta function at integer arguments (transcen-
dental for n even; irrational for n = 3; unknown for n C 5
odd; normal?):

fðsÞ :¼
X

1

k¼1

1

ks
ð25Þ

In particular:

fð2Þ ¼ p2

6
¼ 1:6449340668. . .

fð2nÞ ¼ ð�1Þnþ1ð2pÞ2n

2ð2nÞ!B2n

ðwhere B2n are Bernoulli numbersÞ

fð3Þ ¼ Apery’s constant ¼ 5

2

X

1

k¼1

ð�1Þkþ1

k3 2k
k

� �

¼ 1:2020569031. . .

Stoneham constants (irrational; normal in some bases; non-
normal in different bases; normality still is unknown other
bases):

ab;c :¼
X

1

k¼1

1

bck ck
ð26Þ

a2;3 ¼ 0:0418836808. . . ¼ 0:0022232032. . .4

¼ 0:0130140430003334. . .6

a4;3 ¼ 0:0052087571. . . ¼ 0:0001111111301. . .4

¼ 0:0010430041343502130000. . .6

a3;2 ¼ 0:0586610287. . . ¼ 0:0011202021212121. . .3

¼ 0:0204005200030544000002. . .6

a3;5 ¼ 0:0008230452. . . ¼ 0:00000012101210121. . .3

¼ 0:002ba00000061d2. . .15

Thue–Morse constant (transcendental; 2-automatic, hence
nonnormal):

TM2 :¼
X

1

k¼1

1

2tðnÞ where tð0Þ ¼ 0; while tð2nÞ ¼ tðnÞ

and tð2n þ 1Þ ¼ 1 � tðnÞ ð27Þ

¼ 0:4124540336. . .

¼ 0:01101001100101101001011001101001. . .2

Paper-folding constant (transcendental; 2-automatic, hence
nonnormal):

P :¼
X

1

k¼0

82k

22kþ2 � 1
¼ 0:8507361882. . .

¼ 0:1101100111001001. . .2 ð28Þ
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22. Birth, growth and computation of pi to ten
trillion digits (2013)

Paper 22: Ravi Agarwal, Hans Agarwal and Syamal K. Sen, “Birth, growth
and computation of pi to ten trillion digits,” Advances in Di�erence Equations,
2013:100, p. 1–59.

Synopsis:
This paper presents one of the most complete and up-to-date chronologies of the

analysis and computation of π through the ages, from approximations used by In-
dian and Babylonian mathematicians, well before the time of Christ, to Archimedes
of Syracuse, “who ranks with Newton and Gauss as one of the three greatest mathe-
maticians who ever lived,” to mathematicians in the Islamic world during the “dark
ages,” and on to mathematicians in Renaissance Europe, including Francois Viete,
Ludolph van Ceulen, John Wallis, Isaac Newton, John Machin, Leonard Euler,
William Shanks and many others.

In the twentieth century, the chronology continues with summaries of the work
of Ramanujan, then computer-age calculations beginning with Wrench and Smith,
Guilloud and Fillatre, and, in more recent years, the work of Gosper, Brent, Salamin
and others who either development new mathematics related to π or performed
prodigious computer-based calculations of πm right up to and including the com-
putation of π to ten trillion digits by Kondo and Yee, which, as of this writing,
is almost the state-of-the-art (Kondo and Yee have subsequently computed twelve
trillion digits).

The paper includes many formula and techniques used, all of which is spelled
out in considerable detail.

Keywords: Algorithms, Computation, Curiosities, History, Series
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Abstract
The universal real constant pi, the ratio of the circumference of any circle and its
diameter, has no exact numerical representation in a finite number of digits in any
number/radix system. It has conjured up tremendous interest in mathematicians and
non-mathematicians alike, who spent countless hours over millennia to explore its
beauty and varied applications in science and engineering. The article attempts to
record the pi exploration over centuries including its successive computation to ever
increasing number of digits and its remarkable usages, the list of which is not yet
closed.

Keywords: circle; error-free; history of pi; Matlab; random sequence; stability of a
computer; trillion digits

All circles have the same shape, and traditionally represent the infinite, immeasurable and
even spiritual world. Some circles may be large and some small, but their ‘circleness’, their
perfect roundness, is immediately evident. Mathematicians say that all circles are similar.
Before dismissing this as an utterly trivial observation, we note by way of contrast that not
all triangles have the same shape, nor all rectangles, nor all people. We can easily imag-
ine tall narrow rectangles or tall narrow people, but a tall narrow circle is not a circle at
all. Behind this unexciting observation, however, lies a profound fact of mathematics: that
the ratio of circumference to diameter is the same for one circle as for another. Whether
the circle is gigantic, with large circumference and large diameter, or minute, with tiny
circumference and tiny diameter, the relative size of circumference to diameter will be ex-
actly the same. In fact, the ratio of the circumference to the diameter of a circle produces,
the most famous/studied/unlimited praised/intriguing/ubiquitous/external/mysterious
mathematical number known to the human race. It is written as pi or as π [–], sym-
bolically, and defined as

pi =
distance around a circle

distance across and through the center of the circle
=
C
D

= π .

Since the exact date of birth of π is unknown, one could imagine that π existed before
the universe came into being and will exist after the universe is gone. Its appearance in
the disks of the Moon and the Sun, makes it as one of the most ancient numbers known
to humanity. It keeps on popping up inside as well as outside the scientific community,
for example, in many formulas in geometry and trigonometry, physics, complex analysis,
cosmology, number theory, general relativity, navigation, genetic engineering, statistics,

© 2013 Agarwal et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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fractals, thermodynamics, mechanics, and electromagnetism. Pi hides in the rainbow, and
sits in the pupil of the eye, and when a raindrop falls into water π emerges in the spreading
rings. Pi can be found in waves and ripples and spectra of all kinds and, therefore, π occurs
in colors andmusic. The double helix of DNA revolves around π . Pi has lately turned up in
super-strings, the hypothetical loops of energy vibrating inside subatomic particles. Pi has
been used as a symbol for mathematical societies and mathematics in general, and built
into calculators and programming languages. Pi is represented in the mosaic outside the
mathematics building at the Technische Universität Berlin. Pi is also engraved on amosaic
at Delft University. Even a movie has been named after it. Pi is the secret code in Alfred
Hitchcock’s ‘Torn Curtain’ and in ‘The Net’ starring Sandra Bullock. Pi day is celebrated
on March  (which was chosen because it resembles .). The official celebration be-
gins at : p.m., to make an appropriate . when combined with the date. In ,
the United States House of Representatives supported the designation of Pi Day. Albert
Einstein was born on Pi Day ( March ).
Throughout the history of π , which according to Beckmann () ‘is a quaint little mir-

ror of the history of man’, and James Glaisher (-) ‘has engaged the attention of
many mathematicians and calculators from the time of Archimedes to the present day,
and has been computed from so many different formula, that a complete account of its
calculation would almost amount to a history of mathematics’, one of the enduring chal-
lenges for mathematicians has been to understand the nature of the number π (ratio-
nal/irrational/transcendental), and to find its exact/approximate value. The quest, in fact,
started during the pre-historic era and continues to the present day of supercomputers.
The constant search by many including the greatest mathematical thinkers that the world
produced, continues for new formulas/bounds based on geometry/algebra/analysis, re-
lationship among them, relationship with other numbers such as π =  cos–(φ/), π �
/

√
φ, where φ is the Golden section (ratio), and eiπ +  = , which is due to Euler and

contains  of the most important mathematical constants, and their merit in terms of
computation of digits of π . Right from the beginning until modern times, attempts were
made to exactly fix the value of π , but always failed, although hundreds constructed cir-
cle squares and claimed the success. These amateur mathematicians have been called the
sufferers of morbus cyclometricus, the circle-squaring disease. Stories of these contribu-
tors are amusing and at times almost unbelievable. Many came close, some went to tens,
hundreds, thousands, millions, billions, and now up to ten trillion () decimal places,
but there is no exact solution. The American philosopher and psychologistWilliam James
(-) wrote in  ‘the thousandth decimal of Pi sleeps there though no one may
ever try to compute it’. Thanks to the twentieth and twenty-first century, mathematicians
and computer scientists, it sleeps no more. In , Hermann Schubert (-), a
Hamburg mathematics professor, said ‘there is no practical or scientific value in knowing
more than the  decimal places used in the foregoing, already somewhat artificial, appli-
cation’, and according toArndt andHaenel (), just  decimal placeswould be enough
to compute the circumference of a circle surrounding the known universe to within the
radius of a hydrogen atom. Further, an expansion of π to only  decimal places would
be sufficiently precise to inscribe a circle around the visible universe that does not deviate
from perfect circularity by more than the distance across a single proton. The question
has been repeatedly asked why so many digits? Perhaps the primary motivation for these
computations is the human desire to break records; the extensive calculations involved
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have been used to test supercomputers and high-precision multiplication algorithms (a
stress test for a computer, a kind of ‘digital cardiogram’), the statistical distribution of the
digits, which is expected to be uniform, that is, the frequency with which the digits ( to
) appear in the result will tend to the same limit (/) as the number of decimal places
increases beyond all bounds, and in recent years these digits are being used in applied
problems as a random sequence. It appears experts in the field of π are looking for sur-
prises in the digits of π . In fact, the Chudnovsky brothers once said: ‘We are looking for the
appearance of some rules that will distinguish the digits of π from other numbers. If you
see a Russian sentence that extends for a whole page, with hardly a comma, it is definitely
Tolstoy. If someone gave you a million digits from somewhere in π , could you tell it was
from π ’? Some interesting observations are: The first  digits of π add up to  (which
many scholars say is ‘the mark of the Beast’); Since there are  degrees in a circle, some
mathematicians were delighted to discover that the number  is at the th digit posi-
tion of π . A mysterious  crop circle in Britain shows a coded image representing the
first  digits of π . The Website ‘The Pi-Search Page’ finds a person’s birthday and other
well-known numbers in the digits of π . Several people have endeavored to memorize the
value of π with increasing precision, leading to records of over , digits.
We believe that the study and discoveries of π will never end; there will be books, re-

search articles, new record-setting calculations of the digits, clubs and computer programs
dedicated to π . In what follows, we shall discuss the growth and the computation of π

chronologically. For our ready reference, we also give some digits of π ,

π = .

.

About  BC. The meaning of the word sulv is to measure, and geometry in ancient
India came to be known by the name sulba or sulva. Sulbasutras means ‘rule of chords’,
which is another name for geometry. The Sulbasutras are part of the larger corpus of texts
called the Shrautasutras, considered to be appendices to the Vedas, which give rules for
constructing altars. If the ritual sacrificewas to be successful, then the altar had to conform
to very precise measurements, so mathematical accuracy was seen to be of the utmost
importance. The sulbas contain a large number of geometric constructions for squares,
rectangles, parallelograms and trapezia. Sulbas also contain remarkable approximations

√
 �  +



+


 ·  –


 ·  ·  ,

which gives
√
 = . . . . , and

π � ( – 
√
) =

(


 +
√


)

,

which gives π = . . . . .
About  BC. Aryabhatta was born in  BC in Patliputra in Magadha, modern

Patna in Bihar (India). He was teaching astronomy andmathematics when he was  years
of age in  BC. His astronomical knowledge was so advanced that he could claim that
the Earth rotated on its own axis, the Earth moves round the Sun and the Moon rotates
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round the Earth; incredibly he believed that the orbits of the planets are ellipses. He talks
about the position of the planets in relation to its movement around the Sun. He refers to
the light of the planets and the Moon as reflection from the Sun. He explains the eclipse
of the Moon and the Sun, day and night, the length of the year exactly as  days. He
calculated the circumference of the Earth as , miles, which is close to modern day
calculation of , miles. In his Aryabhattiyam, which consists of the  verses and
 introductory verses, and is divided into four padas or chapters (written in the very
terse style typical of sutra literature, in which each line is an aid to memory for a com-
plex system), Aryabhatta included  verses giving  mathematical rules ganita on pure
mathematics. He described various original ways to perform different mathematical op-
erations, including square and cube roots and solving quadratic equations. He provided
elegant results for the summation of series of squares and cubes. He made use of dec-
imals, the zero (sunya) and the place value system. To find an approximate value of π ,
Aryabhatta gives the following prescription: Add  to ,multiply by  and add to ,.
This is ‘approximately’ the circumference of a circle whose diameter is ,. Thismeans
π = ,/, = .. It is important to note that Aryabhatta used the word asanna
(approaching), to mean that not only is this an approximation of π , but that the value is
incommensurable or irrational, i.e., it cannot be expressed as a ratio of two integers.
About  BC. Great pyramid at Gizeh was built around  BC in Egypt. It is one

of themostmassive buildings ever erected. It has at least twice the volume and thirty times
the mass (the resistance an object offers to a change in its speed or direction of motion)
of the Empire Sate Building in New York, and built from individual stones weighing up to
 tons each. From the dimensions of the Great Pyramid, it is possible to derive the value
of π , namely, π = half the perimeter of the base of the pyramid, divided by its height = +
/� . . . . .
About  BC. In a tablet found in  in Susa (Iraq), Babylonians used the value


π

=



+


()
,

which yields π =  / = .. They were also satisfied with π = .
About  BC. Ahmes (around - BC) (more accurately Ahmose) was an

Egyptian scribe. A surviving work of Ahmes is part of the Rhind Mathematical Papyrus,
 BC (named after the Scottish Egyptologist Alexander Henry Rhind who went to
Thebes for health reasons, became interested in excavating and purchased the papyrus
in Egypt in ) located in the British Museum since . When new, this papyrus was
about  feet long and  inches high. Ahmes states that he copied the papyrus froma now-
lost Middle Kingdom original, dating around  BC. This curious document entitled
directions for knowing all dark things, deciphered by Eisenlohr in , is a collection of
problems in geometry and arithmetic, algebra, weights andmeasures, business and recre-
ational diversions. The  problems are presented with solutions, but often with no hint as
to how the solutionwas obtained. In problemno. , Ahmes states that a circular fieldwith
a diameter of  units in area is the same as a square with sides of  units, i.e., π (/) = ,
and hence the Egyptian value of π is

π = ×
(



)

= . . . . ,
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which is only very slightlyworse than theBabylonians value, and in contrast to the latter, an
overestimation. We have no idea how this very satisfactory result was obtained (probably
empirically), although various justifications are available. Maya value of π was as good as
that of the Egyptians.
About  BC. The earliest Chinese mathematicians, from the time of Chou-Kong

used the approximation π = . Some of those who used this approximation were mathe-
maticians of considerable attainments in other respects. According to theChinesemythol-
ogy,  is used because it is the number of the Heavens and the circle.
About  BC. In the Old Testament (I Kings vii., and  Chronicles iv.), we find

the following verse: ‘Also, he made a molten sea of ten cubits from brim to brim, round in
compass, and five cubits the height thereof; and a line of thirty cubits did compass it round
about’. Hence the biblical value of π is / = . The Jewish Talmud, which is essentially a
commentary on theOldTestament, was published about AD.This shows that the Jews
did not pay much attention to geometry. However, debates have raged on for centuries
about this verse. According to some, it was just a simple approximation, while others say
that ‘. . . the diameter perhaps was measured from outside, while the circumference was
measured from inside’.
About  BC. Shatapatha Brahmana (Priest manual of  paths) is one of the prose

texts describing the Vedic ritual. It survives in two recensions, Madhyandina and Kanva,
with the former having the eponymous  brahmanas in  books, and the latter 
brahmanas in  books. In these books, π is approximated by / = . . . . .
About  BC. Anaxagoras of Clazomanae (- BC) came to Athens from near

Smyrna, where he taught the results of the Ionian philosophy.He neglected his possessions
in order to devote himself to science, and in reply to the question, what was the object of
being born, he remarked: ‘The investigation of the Sun, Moon and heaven’. He was the
first to explain that the Moon shines due to reflected light from the Sun, which explains
the Moon’s phases. He also said that the Moon had mountains and he believed that it was
inhabited. Anaxagoras gave some scientific accounts of eclipses, meteors, rainbows, and
the Sun, which he asserted was larger than the Peloponnesus: this opinion, and various
other physical phenomena, which he tried to explain which were supposed to have been
direct action of the Gods, led him to a prosecution for impiety. While in prison he wrote a
treatise on the quadrature of the circle. (The general problem of squaring a figure came to
be known as the quadrature problem.) Since that time, hundreds of mathematicians tried
to find a way to draw a square with equal area to a given circle; some maintained that they
have found methods to solve the problem, while others argued that it is impossible. We
will see that the problem was finally laid to rest in the nineteenth century.
About  BC. Hippocrates of Chios was born about  BC, and began life as a mer-

chant. About  BC he came to Athens from Chios and opened a school of geometry,
and began teaching, thus became one of the few individuals ever to enter the teaching pro-
fession for its financial rewards. He established the formula πr for the area of a circle in
terms of its radius. It means that a certain number π exists, and is the same for all circles,
although his method does not give the actual numerical value of π . In trying to square
the circle (unsuccessfully), Hippocrates discovered that two moon-shaped figures (lunes,
bounded by pair of circular arcs) could be drawn whose areas were together equal to that
of a right-angled triangle. Hippocrates gave the first example of constructing a rectilinear
area equal to an area bounded by one or more curves.
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About  BC. Antiphon of Rhamnos (around - BC) was a sophist who at-
tempted to find the area of a circle by considering it as the limit of an inscribed regu-
lar polygon with an infinite number of sides. Thus, he provided preliminary concept of
infinitesimal calculus.
About  BC. Bryson of Heraclea was born around  BC. He was a student of

Socrates. Bryson considered the circle squaring problem by comparing the circle to poly-
gons inscribed within it. He wrongly assumed that the area of a circle was the arithmetical
mean between circumscribed and inscribed polygons.
About  BC. Hippias of Elis was born about  BC. He was a Greek Sophist, a

younger contemporary of Socrates. He is described as an expert arithmetician, but he is
best known to us through his invention of a curve called the quadratrix (x = y cot(πy/)),
by means of which an angle can be trisected, or indeed divided in any given ratio. It is not
known whether Hippias realized that by means of his curve the circle could be squared;
perhaps he realized but could not prove it. He lectured widely on mathematics and as
well on poetry, grammar, history, politics, archeology and astronomy. Hippias was also a
prolific writer, producing elegies, tragedies and technical treatises in prose. His work on
Homer was considered excellent.
 BC. Aristophanes (- BC) in his play The Birdsmakes fun of circle squarers.
Around  BC. Plato of Athens (around - BC) was one of the greatest Greek

philosophers, mathematicians, mechanician, a pupil of Socrates for eight years, and
teacher of Aristotle. He is famous for ‘Plato’s Academy’. ‘Let no man ignorant of math-
ematics enter here’ is supposed to have been inscribed over the doors of the Academy. He
is supposedly obtained for his day a fairly accurate value for π =

√
 +

√
 = . . . . .

About BC. Eudoxus of Cnidus (around -BC)was themost celebratedmath-
ematician. He developed the theory of proportion, partly to place the doctrine of in-
commensurables (irrationals) upon a thoroughly sound basis. Specially, he showed that
the area of a circle is proportional to its diameter squared. Eudoxus established fully the
method of exhaustions of Antiphon by considering both the inscribed and circumscribed
polygons. He also considered certain curves other than the circle. He explained the ap-
parent motions of the planets as seen from the earth. Eudoxus also wrote a treatise on
practical astronomy, in which he supposed a number of moving spheres to which the Sun,
Moon and stars were attached, and which by their rotation produced the effects observed.
In all, he required  spheres.
About  BC. Dinostratus (around - BC) was a Greekmathematician. He used

Hippias quadratrix to square the circle. For this, he proved Dinostratus’ theorem. Hippias
quadratrix later became known as the Dinostratus quadratrix also. However, his demon-
stration was not accepted by the Greeks as it violated the foundational principles of their
mathematics, namely, using only ruler and compass.
About  BC. Archimedes of Syracuse (- BC) ranks with Newton and Gauss

as one of the three greatest mathematicians who ever lived, and he is certainly the
greatest mathematician of antiquity. Galileo called him ‘divine Archimedes, superhu-
man Archimedes’; Sir William Rowan Hamilton (-) remarked ‘who would not
rather have the fame of Archimedes than that of his conqueror Marcellus’?; Alfred North
Whitehead (-) commented ‘no Roman ever died in contemplation over a geomet-
rical diagram’; Godfrey Harold Hardy (-) said ‘Archimedes will be remembered
when Aeschylus is forgotten, because languages die and mathematical ideas do not’; and
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Figure 1 Circle with diameter 1.

Voltaire remarked ‘there was more imagination in the head of Archimedes than in that of
Homer’. His mathematical work is so modern in spirit and technique that it is barely dis-
tinguishable from that of a seventeenth-century mathematician. Among his mathemati-
cal achievements, Archimedes developed a general method of exhaustion for finding ar-
eas bounded by parabolas and spirals, and volumes of cylinders, parabolas, segments of
spheres, and specially to approximate π , which he called as the parameter to diameter. His
approach to approximate π is based on the following fact: the circumference of a circle lies
between the perimeters of the inscribed and circumscribed regular polygons (equilateral
and equiangular) of n sides, and as n increases, the deviation of the circumference from
the two perimeters becomes smaller. Because of this fact, manymathematicians claim that
it is more correct to say that a circle has an infinite number of corners than to view a circle
as being cornerless. If an and bn denote the perimeters of the inscribed and circumscribed
regular polygons of n sides, and C the circumference of the circle, then it is clear that {an}
is an increasing sequence bounded above byC, and {bn} is a decreasing sequence bounded
below by C. Both of these sequences converge to the same limit C. To simplify matters,
suppose we choose a circle with the diameter , then from Figure  it immediately follows
that

an = n sin
π

n
and bn = n tan

π

n
. ()

It is clear that limn→∞ an = π = limn→∞ bn. Further, bn is the harmonic mean of an and
bn, and an is the geometric mean of an and bn, i.e.,

bn =
anbn
an + bn

and an =
√
anbn. ()

From () for the hexagon, i.e., n =  it follows that a = , b = 
√
. Then Archimedes

successively took polygons of sides , ,  and , used the recursive relations (), and
the inequality




<
√
 <

,


,

which he probably found by what is now called Heron’s method, to obtain the bounds

. . . . = 



< π < 


= . . . . . ()
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It is interesting to note that during Archimedes time algebraic and trigonometric no-
tations, and our present decimal system were not available, and hence he had to de-
rive recurrence relations () geometrically, and certainly for him the computation of a
and b must have been a formidable task. The approximation / is often called the
Archimedean value of π , and it is good for most purposes. If we take the average of the
bounds given in (), we obtain π = . . . . . The above method of computing π by
using regular inscribed and circumscribed polygons is known as the classical method of
computing π . It follows that an inscribed regular polygon of n sides takes up more than
 – /n– of the area of a circle. Heron of Alexandria (about  AD) in hisMetrica, which
had been lost for centuries until a fragmentwas discovered in , followed by a complete
copy in , refers to an Archimedes work, where he gives the bounds

. . . . =
,
,

< π <
,
,

= . . . . .

Clearly, in the above right inequality, there is a mistake as it is worse than the upper bound
/ found by Archimedes earlier. Heron adds ‘Since these numbers are inconvenient
for measurements, they are reduced to the ratio of the smaller numbers, namely, /’.
Archimedes’ polygonal method remained unsurpassed for  centuries. Archimedes also
showed that a curve discovered by Conon of Samos (around - BC) could, like Hip-
pias’ quadratrix, be used to square the circle. The curve is today called the Archimedean
Spiral.
About  BC. Daivajna Varahamihira (working  BC) was an astronomer, math-

ematician and astrologer. His picture may be found in the Indian Parliament along
with Aryabhata. He was one of the nine jewels (Navaratnas) of the court of legendary
king Vikramaditya I (- BC). In  BC, Varahamihira wrote Pancha-Siddhanta
(The Five Astronomical Canons), in which he codified the five existing Siddhantas,
namely, Paulisa Siddhanta, Romaka Siddhanta, Vasishtha Siddhanta, Surya Siddhanta and
Paitamaha Siddhanta. He also made some important mathematical discoveries such as
giving certain trigonometric formulae; developing new interpolation methods to produce
sine tables; constructing a table for the binomial coefficients; and examining the pandiag-
onal magic square of order four. In his work, he approximated π as

√
.

BC. Marcus Vitruvius Pollio (about - BC), a Romanwriter, architect and engineer,
in his multi-volume work De Architectura (On Architecture) used the value π =  / =
., which is the same as Babylonians had used , years earlier. He was the first to
describe direct measurement of distances by the revolution of a wheel.
About BC. Liu Xin (LiuHsin) (about  BC-AD)was an astronomer, historian and

editor during the Xin Dynasty (- AD). Liu created a new astronomical system, called
Triple Concordance. He was the first to give a more accurate calculation of π as .,
the exact method he used to reach this figure is unknown. This was first mentioned in the
Sui shu (-). He also found the approximations ., . and ..
Around  AD. Liu Xin ( BC-AD ) was a Chinese astronomer, historian and editor

during the Xin Dynasty (- AD). He was the son of Confucian scholar Liu Xiang (-
BC). Liu created a catalog of , stars, where he used the scale of  magnitudes. He was
the first in China to give a more accurate calculation of π as .. The method he used
to reach this figure is unknown.
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 AD. Brahmagupta (born  BC) wrote two treatises on mathematics and astron-
omy: the Brahmasphutasiddhanta (The Correctly Established Doctrine of Brahma) but
often translated as (The Opening of the Universe), and the Khandakhadyaka (Edible Bite)
which mostly expands the work of Aryabhata. As a mathematician he is considered as
the father of arithmetic, algebra, and numerical analysis. Most importantly, in Brahmas-
phutasiddhanta he treated zero as a number in its own right, stated rules for arithmetic
on negative numbers and zero, and attempted to define division by zero, particularly he
wrongly believed that / was equal to . He used a geometric construction for squaring
the circle, which amounts to π =

√
.

. Zhang Heng (- AD) was an astronomer, mathematician, inventor, geogra-
pher, cartographer, artist, poet, statesman and literary scholar. He proposed a theory of
the universe that compared it to an egg. ‘The sky is like a hen’s egg and is as round as a
crossbow pellet. The Earth is like the yolk of the egg, lying alone at the center. The sky is
large and the Earth is small’. According to him the universe originated from chaos. He said
that the Sun, Moon and planets were on the inside of the sphere and moved at different
rates. He demonstrated that the Moon did not have independent light, but that it merely
reflected the light from the sun. He is most famous in the West for his rotating celestial
globe, and inventing in  the first seismograph formeasuring earthquakes. He proposed√
 (about .) for π . He also compared the celestial circle to the width (i.e., diameter)

of the earth in the proportion of  to , which gives π as ..
. Claudius Ptolemaeus (around - AD) known in English as Ptolemy, was a

mathematician, geographer, astrologer, poet of a single epigram in the Greek Anthology,
and most importantly astronomer. He made a map of the ancient world in which he em-
ployed a coordinate system very similar to the latitude and longitude of today. One of his
most important achievements was his geometric calculations of semichords. Ptolemy in
his famous Syntaxis mathematica (more popularly known by its Arabian title of the Al-
magest), the greatest ancient Greek work on astronomy, obtained, using chords of a circle
and an inscribed -gon, an approximate value of π in sexagesimal notation, as  ′ ′′,
which is the same as / = . . . . . Eutocius of Ascalon (about -) refers
to a book Quick delivery by Apollonius of Perga (around - BC), who earned the
title ‘The Great Geometer’, in which Apollonius obtained an approximation for π , which
was better than known to Archimedes, perhaps the same as /.
. Wang Fan (-) was a mathematician and astronomer. He calculated the dis-

tance from the Sun to the Earth, but his geometric model was not correct. He has been
credited with the rational approximation / for π , yielding π = ..
. Liu Hui (around -) wrote two works. The first one was an extremely im-

portant commentary on the Jiuzhang suanshu, more commonly called Nine Chapters on
theMathematical Art, which came into being in the Eastern Han Dynasty, and believed to
have been originally written around  BC. (It should be noted that very little is known
about the mathematics of ancient China. In  BC, the emperor Shi Huang of the Chin
dynasty had all of the manuscript of the kingdom burned.) The other was a much shorter
work called Haidao suanjing or Sea Island Mathematical Manual. In Jiuzhang suanshu,
Liu Hui used a variation of the Archimedean inscribed regular polygon with  sides to
approximate π as . and suggested / = . as a practical approximation.
About . Pappus of Alexandria (around -) was born in Alexandria, Egypt, and

either he was a Greek or a Hellenized Egyptian. The written records suggest that, Pappus
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lived in Alexandria during the reign of Diocletian (-). His major work is Synagoge
or the Mathematical Collection, which is a compendium of mathematics of which eight
volumes have survived. Pappus’ Book IV contains various theorems on circles, study of
various curves, and an account of the three classical problems of antiquity (the squaring
of the circle, the duplication of a cube, and the trisection of an angle). For squaring the
circle, he used Dinostratus quadratrix and his proof is a reductio ad absurdum. Pappus is
remembered for Pappus’s centroid theorem, Pappus’s chain, Pappus’s harmonic theorem,
Pappus’s hexagon theorem, Pappus’s trisection method, and for the focus and directrix of
an ellipse.
. He Chengtian (-) gave the approximate value of π as ,/, =

. . . . .
. Tsu Ch’ung-chih (Zu Chongzhi) (-) created various formulas that have

been used throughout history. With his son he used a variation of Archimedes method
to find . < π < .. He also obtained a remarkable rational approximation
/, which yields π correct to six decimal digits. In Chinese this fraction is known as
Milü. To compute this accuracy for π , he must have taken an inscribed regular  × -
gon and performed lengthy calculations. Note that π = / can be obtained from the
values of Ptolemy and Archimedes:




=
 – 
 – 

.

He declared that / is an inaccurate value whereas / is the accurate value of π .
We also note that π = / can be obtained from the values of LiuHui andArchimedes.
In fact, by using the method of averaging, we have

 + (× )
 + (× )

=



.

. Bhaskara II or Bhaskaracharya (working ) wrote Siddhanta Siromani (crown
of treatises), which consists of four parts, namely, Leelavati Bijaganitam, Grahaganitam
and Goladhyaya. The first two exclusively deal with mathematics and the last two with
astronomy. His popular text Leelavati was written in  AD in the name of his daugh-
ter. His contributions to mathematics include: a proof of the Pythagorean theorem, solu-
tions of quadratic, cubic, and quartic indeterminate equations, solutions of indeterminate
quadratic equations, integer solutions of linear and quadratic indeterminate equations,
a cyclic Chakravala method for solving indeterminate equations, solutions of the Pell’s
equation and solutions of Diophantine equations of the second order. He solved quadratic
equations with more than one unknown, and found negative and irrational solutions, pro-
vided preliminary concept of infinitesimal calculus, along with notable contributions to-
ward integral calculus, conceived differential calculus, after discovering the derivative and
differential coefficient, stated Rolle’s theorem, calculated the derivatives of trigonometric
functions and formulae and developed spherical trigonometry. He conceived the modern
mathematical convention that when a finite number is divided by zero, the result is in-
finity. He speculated the nature of the number / by stating that it is ‘like the Infinite,
Invariable God who suffers no change when old worlds are destroyed or new ones cre-
ated, when innumerable species of creatures are born or as many perish’. He gave several
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approximations for π . According to him ,/, is an accurate value, / is an in-
accurate value, and

√
 is for ordinary work. The first value may have been taken from

Aryabhatta. This approximation has also been credited to Liu Hui and Zu Chongzhi. He
also gave the value / = ., which is of uncertain origin; however, it is the same
as that by Ptolemy.
. Anicius Manlius Severinus Boethius (around -) introduced the public use

of sun-dials, water-clocks, etc. His integrity and attempts to protect the provincials from
the plunder of the public officials brought on him the hatred of the Court. King Theodoric
sentenced him to death while absent from Rome, seized at Ticinum (now Pavia), and in
the baptistery of the church there tortured by drawing a cord round his head till the eyes
were forced out of the sockets, and finally beaten to death with clubs on October , .
His Geometry consists of the enunciations (only) of the first book of Euclid, and of a few
selected propositions in the third and fourth books, but with numerous practical appli-
cations to finding areas, etc. According to him, the circle had been squared in the period
since Aristotle’s time, but noted that the proof was too long.
. Abu JafarMohammed IbnMusa al-Khwarizmi (around -) ‘Mohammed the

father of Jafar and the son of Musa’ was a scholar in the academy Bait al-Hikma (House
of Wisdom) founded by Caliph al-Mamun (-). His task (along with several other
scholars) was to translate the Greek and Sanskrit scientific manuscripts. They also stud-
ied, and wrote on algebra, geometry and astronomy. There al-Khwarizmi encountered the
Hindu place-value system based on the numerals , , , , , , , , , , including the first
use of zero as a place holder in positional base notation, and he wrote a treatise around
 AD, on what we callHindu-Arabic numerals. The Arabic text is lost but a Latin trans-
lation, Algoritmi de numero Indorum (that is, al-Khwarizmi on the Hindu Art of Reckon-
ing), a name given to the work by Baldassarre Boncompagni in , much changed from
al-Khwarizmi’s original text (of which even the title is unknown) is known. The French
Minorite friarAlexander deVillaDei, who taught in Paris around ,mentions the name
of an Indian king named Algor as the inventor of the new ‘art’, which itself is called the
algorismus. Thus, the word ‘algorithm’ was tortuously derived from al-Khwarizmi (Alch-
warizmi, al-Karismi, Algoritmi, Algorismi, Algorithm), and has remained in use to this
day in the sense of an arithmetic operation. This Latin translation was crucial in the in-
troduction of Hindu-Arabic numerals to medieval Europe. Al-Khwarizmi used π = /
in algebra, π =

√
 in geometry, and π = ,/, = . in astronomy.

. Mahavira (-) in his workGanita Sara Samgraha summarized and extended
the works of Aryabhatta, Bhaskara, Brahmagupta and Bhaskaracharya. This treatise con-
tains: a naming scheme for numbers from  up to , formulas for obtaining cubes of
sums; techniques for least common denominators (LCM), techniques for combinations
nCr = n(n – )(n – ) · · · (n – r + )/r!, techniques for solving linear, quadratic as well higher
order equations, arithmetic and geometric series, and techniques for calculating areas and
volumes. He was the first person to mention that no real square roots of negative num-
bers can exist. According to Mahavira whatever is there in all the three worlds, which are
possessed of moving and non-moving beings, all that indeed cannot exist without math-
ematics. He used the approximate value of π as

√
. He also mentions that the approxi-

mate volume of a sphere with diameter d is (/)(d/), i.e., π = ., and exact volume
is (/)(/)(d/), i.e., π = ..
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About . Franco von Lüttich (around -) claimed to have contributed the
only important work in the Christian era on squaring the circle. His works are published
in six books, but only preserved in fragments.
. Fibonacci (Leonardo of Pisa) (around -) after the Dark Ages is consid-

ered the first to revive mathematics in Europe. He wrote Liber Abbaci (Book of the Aba-
cus) in . In this book, he quotes that ‘The nine Indian numerals are. . . with these
nine and with the sign  which in Arabic is sifr, any desired number can be written’. His
Practica geometria, a collection of useful theorems from geometry and (what would even-
tually be named) trigonometry appeared in , which was followed five years later by
Liber quadratorum, a work on indeterminate analysis. A problem in Liber Abbaci led to
the introduction of the Fibonacci sequence for which he is best remembered today; how-
ever, this sequence earlier appeared in the works of Pingala (about  BC) and Virahanka
(about  AD). In Practica geometriae, Fibonacci used a -sided polygon, to obtain the
approximate value of π as / = . . . . .
. Johannes Campanus (around -) was chaplain to three popes, Pope Ur-

ban IV, Pope Nicholas IV and Pope Boniface VIII. He was one of the four greatest contem-
porary mathematicians. Campanus wrote a Latin edition of Euclid’s Elements in  books
around . He used the value of π as /.
About . Zhao Youqin (born ) used a regular polygon of ×  sides to derive

π = ..
About . Albert of Saxony (around -) was a German philosopher known

for his contributions to logic and physics. He wrote a long treatise De quadratura circuli
(Question on the Squaring of the Circle) consisting mostly philosophy. He said ‘following
the statement ofmany philosophers, the ratio of circumference to diameter is exactly /;
of this, there is proof, but a very difficult one’.
. Madhava of Sangamagramma’s (-) work has come to light only very re-

cently. Although there is some evidence of mathematical activities in Kerala (India) prior
to Madhava, e.g., the text Sadratnamala (about ), he is considered the founder of the
Kerala school of astronomy and mathematics. Madhava was the first to have invented the
ideas underlying infinite series expansions of functions, power series, trigonometric series
of sine, cosine, tangent and arctangent, which is

tan– x = x –
x


+
x


–
x


+ · · · + (–)n–

xn–

n – 
+ · · · . ()

This series is valid for – < x < , and also for x = . He also gave rational approximations
of infinite series, tests of convergence of infinite series, estimate of an error term, early
forms of differentiation and integration and the analysis of infinite continued fractions.
He fully understood the limit nature of the infinite series. Madhava discovered the solu-
tions of transcendental (transcends the power of algebra) equations by iteration, and found
the approximation of transcendental numbers by continued fractions. He also gave many
methods for calculating the circumference of a circle. The value of π correct to  decimal
places is attributed to Madhava. However, the text Sadratnamala, usually considered as
prior toMadhava, while some researchers have claimed that it was compiled byMadhava,
gives the astonishingly accurate value of π correct to  decimal places.
. Jemshid al-Kashi (around -), astronomer royal to Ulugh Beg of Sam-

arkand, wrote several important books Sullam al-sama (The Stairway of Heaven),
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Mukhtasar dar ‘ilm-i hay’at (Compendium of the Science of Astronomy), Khaqani Zij on
astronomical tables, Risala dar sharh-i alat-i rasd (Treatise on the Explanation of Obser-
vational Instruments), Nuzha al-hadaiq fi kayfiyya san’a al-ala almusamma bi tabaq al-
manatiq (TheMethod of Construction of the Instrument Called Plate of Heavens), Risala
al-muhitiyya (Treatise on the Circumference), The Key to Arithmetic, and The Treatise on
the Chord and Sine. In these works al-Kashi showed a great venality in numerical work.
In , he calculated π to  decimal places, and later in  to  decimal places. For
this, he used classical polygon method of ×  sides.
. George Pürbach (-) whose real surname is unknown, was born in

Pürbach, a town upon the confines of Bavaria and Austria. He studied under Nicholas
de Cusa, and one of his most famous pupils is Regiomontanus. Pürbach wrote a work on
planetary motions which was published in ; an arithmetic, published in ; and a
table of eclipses, published in . He calculated tables of sines for every minute of arc
for a radius of , units. This table was published in . He approximated π by the
rational ,/,, which is exactly the same as given by Aryabhatta.
. Nicholas of Cusa (-) is often referred to as Nicolaus Cusanus and

Nicholas of Kues (Cusa was a Latin place-name for a city on theMosel). He was a German
cardinal of the Roman Catholic Church, a philosopher, jurist, mathematician and an as-
tronomer. Most of his mathematical ideas can be found in his essays,De Docta Ignorantia
(Of Learned Ignorance), De Visione Dei (Vision of God) and On Conjectures. He made
important contributions to the field of mathematics by developing the concepts of the in-
finitesimal and of relative motion. He gave the approximations of π as (/)(

√
 +

√
)

and 
√
/ = . . . . . Nicholas thought this to be the exact value. Nicholas said,

if we can approach the Divine only through symbols, then it is most suitable that we use
mathematical symbols, for these have an indestructible certainty. He also said that no per-
fect circle can exist in the universe. In accordance with his wishes, his heart is within the
chapel altar at the Cusanusstift in Kues.
. Johann Regiomontanus (Johannes Müller) (-) is considered as one of

the most prominent mathematicians of his generation. He was the first to study Greek
mathematical works in order to make himself acquainted with the methods of reasoning
and results used there. He also well read the works of the Arab mathematicians. In most
of this study, he compiled in his De Triangulis, which was completed in , however,
was published only in . Regiomontanus used algebra to find solutions of geometrical
problems. He criticized Nicholas of Cusa’s approximations and methods to approximate
the value of π and gave the approximation ..
About . Nilakanthan Somayaji’s (around -) most notable work Tantra-

sangraha elaborates and extends the contributions of Madhava. He was also the author
of Aryabhatiya-Bhashya, a commentary of the Aryabhatiya. Of great significance in
Nilakanthan’s work includes the inductive mathematical proofs, a derivation and proof of
the arctangent trigonometric function, improvements and proofs of other infinite series
expansions by Madhava, and in Sanskrit poetry the series

π


=  –



+


–


+


–




+ · · · , ()

which follows from Madhava’s series () when x = . In the literature () is known as
Gregory-Leibniz series. He also gave sophisticated explanations of the irrationality of
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π , the correct formulation for the equation of the center of the planets, and a helio-
centric model of the solar system. If sn denotes the nth partial sum of (), then s = ,
s = . . . . , s = . . . . , s, = . . . . , s, = . . . . and RoyNorth
showed that s, = . (where under-
lined digits are incorrect) indicating an annoyingly slow convergence of the partial sums.
Since this is an alternating series, the error committed by stopping at the nth term does
not exceed /(n + ) in absolute value. Thus, to compute π/ to eight decimals from ()
would require n >  terms. Hence, although it is only of theoretical interest, the expres-
sions on the right are arithmetical, while π arises from geometry. We also note that the
series () can be written as

π


=  – 

(


 ·  +


 ·  +


 ·  + · · ·
)
.

The following expansion of π is also due to Nilakanthan

π =  +


 ·  ·  –


 ·  ·  +


 ·  ·  –


 ·  ·  + · · · .

This series converges faster than ().
Before . Leonardo da Vinci (-) was an Italian painter, sculptor, architect,

musician, scientist, mathematician, engineer, inventor, anatomist, geologist, cartographer,
botanist and writer. He briefly worked on squaring the circle, or approximating π .
. Michael Stifel (-) served in several different Churches at different posi-

tions; however, every time due to bad circumstances had to resign and flee. He made the
error of predicting the end of the world on  October , and other time used a clever
rearrangement of the letters LEO DECIMVS to ‘prove’ that Leo X was , the number
of the beast given in the Book of Revelation. He was forced to take refuge in a prison af-
ter ruining the lives of many believing peasants who had abandoned work and property to
accompany him to heaven. In the later part of his life, he lectured onmathematics and the-
ology. He invented logarithms independently of Napier using a totally different approach.
His most famous work is Arithmetica integra which was published in . This work
contains binomial coefficients, multiplication by juxtaposition, the term ‘exponent’, and
the notation +, – and √ , and the opinion that the quadrature of π is impossible. Ac-
cording to him ‘the quadrature of the circle is obtained when the diagonal of the square
contains  parts of which the diameter of the circle contains ’. Thus, π �  /.
. Albrecht Dürer (-) was a famous artist and mathematician. His book

Underweysung der Messung mit dem Zirckel und Richtscheyt provides measurement of
lines, areas and solids by means of compass and ruler, particularly there is a discussion of
squaring the circle.
. Oronce Fińe (-) was a prolific author of mathematical books. He was

imprisoned in , probably for practicing judicial astrology. He approximated π as
 / = . . . . . Later, he gave  / = . . . . and, in ,  / =
. . . . .
. Johannes Buteo (-), a French scholar published a book De quadratura

circuli, which seems to be the first book that accounts the history of π and related prob-
lems.
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. ValentinOtho (around -)was aGermanmathematician and astronomer.
In , he came toWittenberg and proposed to Johannes Praetorius the Tsu Ch’ung-chih
approximate value of π as /.
. Tycho Brahe was an astronomer and an alchemist and was known for his most

accurate astronomical and planetary observations of his time. His data was used by his
assistant, Kepler, to derive the laws of planetary motion. He observed a new star in 
and a comet in . In , when he was just , he lost his nose partially in a duel with
another student in Wittenberg and wore throughout his life a metal insert over his nose.
His approximation to π is /

√
 = . . . . .

. Simon Duchesne finds π = (/) = . . . . .
About . Zhu Zaiyu (-), a notedmusician, mathematician and astronomer-

calendarist, Prince of the Ming Dynasty, obtained the twelfth root of two. He also gave
the approximate value of π as

√
/. = . . . . . Around the same time Xing Yunlu

adopted π as . and ., while Chen Jinmo and Fang Yizhi, respectively, took
as . and /.
. Simon van der Eycke (Netherland) published an incorrect proof of the quadrature

of the circle. He approximated π as ,/ = . . . . . In , he gave the value
..
. Adriaen Anthoniszoon (-) was a mathematician and fortification engi-

neer. He rediscovered the Tsu Ch’ung-chih approximation / to π . This was appar-
ently lucky incident, since all he showedwas that / > π > /.He then averaged
the numerators and the denominators to obtain the ‘exact’ value of π .
. Francois Viéte (-) is frequently called by his semi-Latin name of Vieta.

In relation to the three famous problems of antiquity, he showed that the trisection of an
angle and the duplication of a cube problems depend upon the solution of cubic equa-
tions. He has been called the father of modern algebra and the foremost mathemati-
cian of the sixteenth century. In his  book, Supplementum geometriae, he showed
. < π < ., i.e., gave the value of π correct to  places. For this, he
used the classical polygon of ×  = , sides. He also represented π as an infinite
product


π

= cos
π


cos

π


cos

π


cos

π


· · · =

√



√
( +

√
)



√
( +

√
( +

√
))


· · · . ()

For this, we note that

sinx = cos
x


·  sin x

= cos

x

cos

x


·  sin x


= · · · =
( n∏

k=

cos
x
k

)
k sin

x
k

and hence

sinx
x

=

( n∏
k=

cos
x
k

)
sinx/k

x/k
,

which as k → ∞, and then x = π/ gives


π

= cos
π


cos

π


cos

π


cos

π


· · · .
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Finally, note that

cos
π


=

√



(
 + cos

π



)
=

√



,

cos
π


=

√



(
 + cos

π



)
=

√



(
 +

√



)
=



√
 +

√
, . . . .

The above formula () is one of the milestones in the history of π . The convergence of
Vieta’s formula was proved by Ferdinand Rudio (-) in . It is clear that Vieta’s
formula cannot be used for the numerical computation of π . In fact, the square roots are
much too cumbersome, and the convergence is rather slow. It is clear that if we define
a =

√
/ and an+ =

√
( + an)/, then () is the same as aaa · · · = /π .

. Adrianus van Roomen (-), more commonly referred to as Adrianus
Romanus, successively professor of medicine and mathematics in Louvain, professor of
mathematics at Würzburg, and royal mathematician (astrologer) in Poland, proposed a
challenge to all contemporary mathematicians, to solve a certain th degree equation.
The Dutch ambassador presented van Roomen’s book to King Henry IV with the com-
ment that at present there is no mathematician in France capable of solving this equation.
The King summoned and showed the equation to Vieta, who immediately found one so-
lution to the equation, and then the next day presented  more. However, negative roots
escaped him. In return, Vieta challenged van Roomen to solve the problem of Apollonius,
to construct a circle tangent to three given circles, but he was unable to obtain a solution
using Euclidean geometry. When van Roomen was shown proposer’s elegant solution, he
immediately traveled to France tomeet Vieta, and a warm friendship developed. The same
year Rooman used the classical methodwith  sides, to approximate π to  correct dec-
imal places.
. Joseph Justus Scaliger (-) was a religious leader and scholar. He is known

for ancient Greek, Roman, Persian, Babylonian, Jewish and Egyptian history. In his work,
Cyclometrica elementa duo he claimed that π is equal to

√
.

. Ludolph van Ceulen (-) was a German who emigrated to the Nether-
lands. He taught Fencing and Mathematics in Delft until , when he moved to Leiden
and opened a Fencing School. In , he was appointed to the Engineering School at
Leiden, where he spent the remainder of his life teaching Mathematics, Surveying and
Fortification. He wrote several books, including Van den Circkel (On The Circle, ),
in which he published his geometric findings, and the approximate value of π correct to
 decimal places. For this, he reports that he used classical method with  × , i.e.,
,,, sides. This book ends with ‘Whoever wants to, can come closer.’
. Ludolph van Ceulen (-) in his work De Arithmetische en Geometrische

fondamenten, which was published posthumously by his wife in , computed π correct
to  decimal places by using classical method with  sides. This computational feat was
considered so extraordinary that his widow had all  digits of die Ludolphsche Zahl (the
Ludolphine number) was engraved on his tombstone in St. Peter’s churchyard in Leiden.
The tombstone was later lost but was restored in . This was one of the last major
attempts to evaluate π by the classical method; thereafter, the techniques of calculus were
employed.
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. Willebrord Snell (Snellius) (-) was a Dutch astronomer and mathemati-
cian. At the age of , he is said to have been acquainted with the standard mathematical
works, while at the age of , he succeeded his father as Professor of Mathematics at Lei-
den. His fame rests mainly on his discovery in  of the law of refraction, which played a
significant role in the development of both calculus and the wave theory of light. However,
it is now known that this lawwas first discovered by Ibn Sahl (-) in . Snell clev-
erly combined Archimedean method with trigonometry, and showed that for each pair of
bounds on π given by the classical method, considerably closer bounds can be obtained.
By his method, he was able to approximate π to seven places by using just  sides, and
to van Ceulen’s  decimal places by using polygons having only  sides. The classical
method with such polygons yields only two and fifteen decimal places.
. Yoshida Mitsuyoshi (-) was working during Edo period. His  work

named as Jinkoki deals with the subject of soroban arithmetic, including square and cube
root operations. In this work, he used . for π .
. Christoph (Christophorus) Grienberger (-) was an Austrian Jesuit as-

tronomer. The crater Gruemberger on the Moon is named after him. He used Snell’s re-
finement to compute π to  decimal places. This was the last major attempt to compute
π by the Archimedes method.
. Celiang quanyi (Complete Explanation of Methods of Planimetry and Stere-

ometry) gives without proof the following bounds . < π <
., i.e., π correct to  digits.
. William Oughtred (-), an English mathematician offered free mathe-

matical tuition to pupils, which included evenWallis. His textbook, Clavis Mathematicae
(TheKey toMathematics) on arithmetic published in was used byWallis andNewton
amongst others. In this work, he introduced the× symbol for multiplication, and the pro-
portion sign (double colon ::). He designated the ratio of the circumference of a circle to
its diameter by π/δ. His notation was used by Isaac Barrow (-) a few years later,
and David Gregory (-). Before him, mathematicians described π in round-about
ways such as ‘quantitas, in quam cum multipliectur diameter, proveniet circumferential’,
whichmeans ‘the quantity which, when the diameter is multiplied by it, yields the circum-
ference’.
. Grégoire de Saint-Vincent (-), a Jesuit, was amathematicianwho discov-

ered that the area under the hyperbola (xy = k) is the same over [a,b] as over [c,d] when
a/b = c/d. This discovery played an important role in the development of the theory of log-
arithms and an eventual recognition of the natural logarithm. In , Nicolaus Mercator
(Kauffmann) (-) wrote a treatise entitled Logarithmo-technica, and discovered
the series

ln( + x) = x –


x +



x –



x + · · · ; ()

however, the same series was independently discovered earlier by Saint-Vincent. In his
book, Opus geometricum quadraturae circuli et sectionum coni he proposed at least four
methods of squaring the circle, but none of them were implemented. The fallacy in his
quadrature was pointed out by Huygens.
. René Descartes (-) was a thoughtful child who asked so many ques-

tions that his father called him ‘my little philosopher’. In , he published his Discourse
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on Method, which contained important mathematical work, and three essays, Meteors,
Dioptrics and Geometry, produced an immense sensation and his name became known
throughout Europe. The rectangular coordinate system is credited to Descartes. He is re-
garded as a genius of the firstmagnitude. Hewas one of themost important and influential
thinkers in human history and is sometimes called the founder of modern philosophy. Af-
ter his death, a novel geometric approach to approximate π was found in his papers. His
method consisted of doubling the number of sides of regular polygons while keeping the
perimeter constant. In modern terms, Descartes’ method can be summarized as

π = lim
k→∞

k tan
(

π

k

)
.

If we let ak = k tan(π/k), k ≥ , then in view of tanθ =  tan θ/( – tan θ ), xk = /ak
satisfies the relation

xk+(xk+ – xk) = –k–,

and hence

xk+ =


(
xk +

(
xk + –k

)/), k ≥ , x = /.

The sequence {xk} generated by the above recurrence relation converges to /π .
. John Wallis (-) in  was appointed as Savilian professor of geome-

try at the University of Oxford, which he continued for over  years until his death. He
was the most influential English mathematician before Newton. In his most famous work,
Arithmetica infinitorum, which he published in , he established the formula

π =  · 


· 


· 


· 


· 


· 


· 


· 


· · · . ()

This formula is a great milestone in the history of π . Like Viéte’s formula (), Wallis had
found π in the form of an infinite product, but he was the first in history whose infinite
sequence involved only rational operations. In hisOperaMathematica I (),Wallis in-
troduced the term continued fraction. He rejected as absurd the now usual idea of a nega-
tive number as being less than nothing, but accepted the view that it is something greater
than infinity, specially showed that – >∞. He had great ability to do mental calculations.
He slept badly and often did mental calculations as he lay awake in his bed. On  De-
cember , he when in bed, occupied himself in finding the integral part of the square
root of  × ; and several hours afterward wrote down the result from memory. Two
months later, he was challenged to extract the square root of a number of  digits; this he
performedmentally, and amonth later he dictated the answer which he had notmeantime
committed to writing. Wallis’ life was embittered by quarrels with his contemporaries in-
cluding Huygens, Descartes, and the political philosopher Hobbes, which continued for
over  years, ending only with Hobbes’ death. Hobbes called Arithmetica infinitorum ‘a
scab of symbols’, and claimed to have squared the circle. It seems that to some, individual’s
quarrels give strength, encouragement and mental satisfaction. To derive (), we note that
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In =
∫ π/
 sinn xdx satisfies the recurrence relation

In =
n – 
n

In–. ()

Thus, in view of I = π/ and I = , we have

Im =
m – 
m

· m – 
m – 

· · · 


· 


· 


· π



and

Im+ =
m

m + 
· m – 
m – 

· · · 


· 


· 

.

From these relations, a termwise division leads to

π


=

(
 ·  ·  · · ·m
 ·  · · · (m – )

) 
m + 

Im
Im+

.

Now, it suffices to show that

lim
m→∞

Im
Im+

= . ()

We know that for all x ∈ (,π/) the inequalities sinm– x > sinm x > sinm+ x hold. Thus,
an integration from  to π/ gives Im– ≥ Im ≥ Im+, and hence

Im–

Im+
≥ Im

Im+
≥ . ()

Further, from (), we have

Im–

Im+
=
m + 
m

,

thus, it follows that

lim
m→∞

Im–

Im+
= lim

m→∞
m + 
m

= . ()

Finally, a combination of () and () immediately gives (). If we define an = – /(n),
then () is equivalent to aaa · · · = /π . We also note that


aa · · ·an =

π


+O

(

n

)
.

. William Brouncker, nd Viscount Brouncker (-) was one of the founders
and the second President of the Royal Society. His mathematical contributions are: repro-
duction of Brahmagupta’s solution of a certain indeterminate equation, calculations of the
lengths of the parabola and cycloid, quadrature of the hyperbola which required approx-
imation of the natural logarithm function by infinite series and the study of generalized
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continued fractions. He undertook some calculations to verify formula (), and showed
that . . . . < π < . . . . , which is very satisfactory. He also con-
verted Wallis’ result () into the continued fraction

π =


 +


 +


 +


 + · · ·

. ()

Neither of the expressions (), and (); however, later has served for an extensive calcu-
lation of π .
Another continued fraction representation of π which follows from the series () is

π =


 +


 +


 +


 + · · ·

.

. Christiaan Huygens (-) is famous for his invention of the pendulum
clock, which was a breakthrough in timekeeping. He formulated the second law of mo-
tion of Newton in a quadratic form, and derived the now well-known formula for the
centripetal force, exerted by an object describing a circular motion. Huygens was the
first to derive the formula for the period of an ideal mathematical pendulum (with mass-
less rod or cord), T = π

√
�/g . For the computation of π , he gave the correct proof of

Snell’s refinement, and using an inscribed polygon of only  sides obtained the bounds
. < π < ., for the same accuracy the classical method requires
almost , sides.
. Muramatsu Shigekiyo (-) published Sanso, or Stack of Mathematics, in

which he used classical polygon method of  sides to obtain π = ..
. Sir Isaac Newton (-), hailed as one of the greatest scientist-mathemati-

cians of the English-speaking world, had the followingmoremodest view of his ownmon-
umental achievements: ‘. . . to myself I seem to have been only like a boy playing on the
seashore, and diverting myself in now and then finding a smoother pebble or a prettier
shell than ordinary, whilst the great ocean of truth lay all undiscovered before me’. As he
examined these shells, he discovered to his amazement more and more of the intricacies
and beauties that lay in them, which otherwise would remain locked to the outside world.
At the age of , he succeededBarrow as Lucasian professor ofmathematics at Cambridge.
About him, Aldous Huxley (-) had said ‘If we evolved a race of Isaac Newtons,
that would not be progress. For the price Newton had to pay for being a supreme intellect
was that he was incapable of friendship, love, fatherhood andmany other desirable things.
As a man he was a failure; as a monster he was superb’. Newton made some of the greatest
discoveries the world ever knew at that time. Newton discovered: . The nature of colors.
. The law of gravitation and the laws of mechanics. . The fluxional calculus. Most of the
history books say that to compute π Newton used the series

sin– x = x +
 · x
 ·  +

 ·  · x
 ·  ·  +

 ·  ·  · x
 ·  ·  ·  + · · · ,
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Figure 2 Half-circle.

which for x = / gives

π


= sin–

(



)
=

(


+


 ·  ·  +

 · 
 ·  ·  ·  + · · ·

)
;

however, he actually used twenty-two terms to obtain  decimal places of the following
series

π =

√



+ 

(


 ·  –


 ·  –


 ·  –


 ·  – · · ·
)
. ()

Later, hewrote ‘I am ashamed to tell you to howmany figures I carried these computations,
having no other business at the time’. His result was not published until  (posthu-
mously).
Using analysis and geometry, the series () can be obtained as follows: From Figure ,

the equation of the upper half circle is y = x/( – x)/. Thus, binomial expansion gives

y = x/ –


x/ –



x/ –




x/ –



x/ –



x/ – · · · .

Thus, the area of the sector ABD is (integrating the above series from  to /)

�ABD =


 ·  –


 ·  –


 ·  –


 ·  – · · · . ()

Also, from geometry the area of the sector ABD is

�ABD =�ABCD –�BCD

=



(


π

(



))
–



(



)√(



)

–
(



)

=
π


–

√



. ()

Equating () and (), we immediately get ().
. Thomas Hobbes of Malmesbury (-) was an English philosopher, best

known today for his work on political philosophy. He also contributed in several other di-
verse fields, including history, geometry, the physics of gases, theology, ethics and general
philosophy. He approximated π by  / = ., which was refuted by Huygens andWallis.
In , he also gave the approximation

√
.

. James Gregory (-) published two books Vera circuli et hyperbolae
quadratura in , and Geometriae pars universalis in . In the first book partic-
ularly, he showed that the area of a circle can be obtained in the form of an infinite con-
vergent series only, and hence inferred that the quadrature of the circle was impossible.
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In the second book, he attempted to write calculus systematically, which perhaps made
the basis of Newton’s fluxions. This book also contains series expansions of sin(x), cos(x),
arcsin(x) and arccos(x); however, as we have seen earlier these expansions were known
to Madhava. Gregory anticipated Newton in discovering both the interpolation formula
and the general binomial theorem as early as . In early , he discovered Taylor’s
theorem (published by Taylor in ); however, he did not publish. Later in , he redis-
coveredNilakanthan’s arctangent series (). In hisVera circuli et hyperbolae quadratura of
, Gregory tried to show that π was a transcendental number, but his attempt, though
very interesting, was not successful. Huygens made detailed and rather biased criticisms
of it.
. Pietro Mengoli (-) studied at the University of Bologna, and became a

professor there in  for the next  years of his life. Besides proposing Basel problem,
he proved that the harmonic series does not converge, established that the alternating har-
monic series is equal to the natural logarithm of , published on the problem of squaring
the circle, and provided a proof that Wallis’ product () for π is correct.
. GottfriedWilhelmvonLeibniz (-)was a universal geniuswhowon recog-

nition in many fields - law, philosophy, religion, literature, politics, geology, metaphysics,
alchemy, history and mathematics. He shares credit with Newton in developing calculus
independently. He popularized and gave several mathematical symbols. Leibniz tried to
reunite the Protestant and Catholic churches. He in binary arithmetic saw the image of
Creation. He imagined that Unity represented God, and Zero the void; that the Supreme
Being drew all beings from the void, just as unity and zero express all numbers in the bi-
nary system of numeration. He communicated his idea to the Jesuit Grimaldi, who was
the President of the Chinese tribunal for mathematics in the hopes that it would help con-
vert to Christianity the Emperor of China, who was said to be very fond of the Sciences.
Later Leibniz became an expert in the Sanskrit language and the culture of China. For
calculating π , he developed a method without any reference to a circle. In , he also
rediscoveredNilakanthan’s arctangent series (), whose beauty he described by saying that
Lord loves odd numbers. Leibniz even invented a calculating machine that could perform
the four operations and extract roots.
. Isomura Yoshinori (-) employed a -sided inscribed polygon to obtain

. for π , but for some reason he wrote only π = ..
. Father Adam Adamad Kochansky (-) was librarian of the Polish King

John III. He was the first to utilize a steel spring for suspension of the pendulum of a
clock. He used a new approximate geometric construction for π to obtain

π �
√



– 
√
 = . . . . .

His method was later quoted in several geometrical textbooks.
. Takebe Katahiro (-) also known as Takebe Kenko played a critical

role in the development of a crude version of the calculus. He also created charts for
trigonometric functions. He used polygon (just , sides) approximation and a numer-
ical method which is essentially equivalent to the Romberg algorithm (rediscovered by
Sigmund Romberg, -) to compute π to  digits. In , Takebe obtained power
series expansion of (sin– x),  years earlier than Euler. Around , essentially the same
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series was rediscovered by Oyama Shokei who used it to find the expansion

π = 

(
 +

∞∑
n=

n+(n!)

(n + )!

)
= 

(
 +




· 

+



·  · 
 ·  +




·  ·  · 
 ·  ·  + · · ·

)
.

The above expansion of π was also given by Yamaji Nushizumi (-) around .
. Abraham Sharp (-) was a mathematician and astronomer. In , he

joined the Greenwich Royal Observatory and did notable work, improving instruments
and showing great skill as a calculator. He also worked on geometry and improved log-
arithmic tables. In the supervision of Edmund Halley (-), he realized that by
putting x =  in () (see ()) we lose the benefit of the powers x,x,x, . . . , which tend
to increase the rapidity of convergence for smaller values of x. He substituted x = /

√
 in

(), to obtain

π


=

√


(
 –


 ·  +


 ·  –


 ·  + · · ·

)
. ()

Sharp used () to calculated π to  decimal places out of which  digits are correct. In
(), the th term is /(

√
 ·  ·), which is less than ., and hence we have at least

 places correct after just  terms. It is believed that Madhava of Sangamagramma used
the same series in the fourteenth century to compute the value of π correct to  decimal
places.
. Seki Takakazu also known as Seki Kowa (-) is generally regarded as the

greatest Japanese mathematician. He was a prolific writer, and a number of his publica-
tions are either transcripts of mathematics from Chinese into Japanese, or commentaries
on certain works of well-known Chinese mathematicians. His interests in mathematics
ranged recreational mathematics, magic squares and magic circles, solutions of higher-
order and indeterminate equations, conditions for the existence of positive and negative
roots of polynomials, and continued fractions. He discovered determinants ten years be-
fore Leibniz, and the Bernoulli numbers a year before Bernoulli. He used polygon of 

sides and Richardson extrapolation (rediscovered by Alexander Craig Aitken, -)
to compute π to  digits. Some authors believe that he also used the formula

π = lim
n→∞


n

n∑
j=

√
n – j.

About . Oliver de Serres believed that by weighing a circle and a triangle equal to
the equilateral triangle inscribed he had found that the circle was exactly double of the
triangle, not being aware that this double is exactly the hexagon inscribed in the same
circle. Thus, according to him π = .
. William Jones (-), an obscure English writer, represented the ratio of the

circumference of a circle to its diameter byπ in his Synopsis PalmariorumMatheseos (New
Introduction to the Mathematics). He used the letter π as an abbreviation for the Greek
word perimetros (periphery) (of a circle with unit diameter). In his book, he published the
value of π correct to  decimal places.
. JohnMachin (-) was a professor of astronomy at GreshamCollege, Lon-

don. He also served as secretary of the Royal Society during -. Machin is best
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remembered for computing the value of π to  decimal places by using the formula

π


=  tan–

(



)
– tan–

(




)
, ()

which in view of () is the same as

π


= 

(


–


 ·  +


 ·  – · · ·

)
–

(



–


 ·  +


 ·  – · · ·

)
. ()

To establish (), we let tan θ = /, so that

tanθ =
 tan θ

 – tan θ
=




and tanθ =
 tanθ

 – tan θ
=



.

Thus, it follows that

tan

(
θ –

π



)
=
tanθ – 
 + tanθ

=




and hence

tan–
(




)
= θ –

π


=  tan–

(



)
–

π


.

The proof of () also follows by comparing the angles in the identity (the idea originally
goes back to CasparWessel (-) who presented his work in  to the Royal Dan-
ish Academy of Sciences)

( + i)(– + i) = –,( + i),

i.e.,

 tan–
(



)
+ π – tan–

(




)
= π + tan– .

The series () certainly converges significantly faster than () and (). In fact, taking six
terms of the first series and two terms of the second and paying attention to the remainders
and round-off errors, we get the inequalities . < π < .. Thus, the
value of π correct to seven decimals is ..
Several other Machin-type formulas are known, e.g.,

π


=  tan–

(



)
– tan–

(



)

=  tan–
(



)
–  tan–

(



)
–  tan–

(



)

=  tan–
(




)
+  tan–

(



)
–  tan–

(




)
–  tan–

(


,

)
.

For a long list of such type of formulas with a discussion of their relative merits in com-
putational work, see Lehmer ().
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. Chapter  of Shu li jing yun (Collected Basic Principles of Mathematics), which
was commissioned by the Emperor Kang Xi and edited byMei Gucheng andHeGuozong,
gives π = ., which is correct to eight decimal places.
. Thomas Fantet de Lagny (-) was a French mathematician who is well

known for his contributions to computational mathematics. He used the series () to
determine the value of π up to  decimal places; however, only  are correct.
. Alexander Pope (-) was an English poet. He is the third-most frequently

cited writer in The Oxford Dictionary of Quotations, after Shakespeare and Tennyson. In
his Dunciad it is mentioned that ‘The madMathesis, now, running round the circle, finds
it square’. This explains the wild and fruitless attempts of squaring the circle.
. Sieur Malthulon (France) offered solutions to squaring the circle and to perpet-

ual motion. He offered , crowns reward in legal form to anyone proving him wrong.
Nicoli, who proved him wrong, collected the reward and abandoned it to the Hotel Dieu
of Lyons. Later, the courts gave the money to the poor.
. Toshikiyo Kamata (-) used both the circumscribed and inscribed

polygons and gave the bounds . < π <
..
. AbrahamDeMoivre (-) was an intimate personal friend of Newton, and

was elected an FRS of London in . In , he was appointed to the Commission set
up by the Royal Society to solve the Newton-Leibniz dispute concerning which of them
invented calculus first. He is best known for his memoirDoctrine of Chances: Amethod of
calculating the probabilities of events in play, whichwas first printed in  and dedicated
to Newton. In , he published his famous theorem (cosx + i sinx)n = cosnx + sinnx. In
hisMiscellanea Analytica published in , appears the formula for very large n,

n!� (πn)/e–nnn,

which is known today as Stirling’s formula. In , DeMoivre used this formula to derive
the normal curve as an approximation to the binomial.
. Leonhard Euler (-) was probably the most prolific mathematician who

ever lived. He was born in Basel (Switzerland), and had the good fortune to be tutored one
day a week in mathematics by a distinguished mathematician, Johann Bernoulli (-
). Euler’s energy and capacity for work were virtually boundless. His collected works
form about  to  quarto-sized volumes and it is believed that much of his work has
been lost. What is particularly astonishing is that Euler became virtually sightless in his
right eye during the mid-s, and was blind for the last  years of his life, and this was
one of the most productive periods. In , Mengoli asked for the precise summation
of the infinite series

∑∞
n= n–. The series is approximately equal to . . . . . In the

literature, this problem has been referred after Basel, hometown of Euler as well as of the
Bernoulli family who unsuccessfully attacked the problem.Basel problem appears in num-
ber theory, e.g., if two positive integers are selected at random and independently of each
other, then the probability that they are relatively prime is (

∑∞
n= n–)– (R. Chartres, ).

An integer that is not divisible by the square of any prime number is said to be square free.
The probability that a randomly selected integer is square free is also (

∑∞
n= n–)–. Euler

considered the function sinx/x, x 	=  which has the roots at ±nπ , n = , , . . . . Thus, it
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follows that

sinx
x

=  –
x

!
+
x

!
–
x

!
+ · · ·

=
(
 –

x

π

)(
 –

x

π

)(
 –

x

π

)
· · · . ()

Thus, on equating the coefficients of x, we get



=


π +


π +


π + · · · ,

which is the same as




+



+



+ · · · = π


. ()

The above proof of Euler is based onmanipulations that were not justified at the time, and
it was not until  that he was able to produce a truly rigorous proof. It is interesting to
note that () with x = π/ immediately gives Wallis’ formula (). Today, several different
proofs of () are known in the literature. Euler also established the following series:


∞∑
m=


m

(m
m

) =
π


,




+



+



+ · · · = π


,




–



+



–



+ · · · = π


.

Later, Euler generalized the Basel problem considerably, in fact, for all positive integers
k = , , . . . , he established the series


k

+

k

+

k

+ · · · = (π )k(–)n+Bk

(n)!
,

where Bk are Bernoulli numbers: B = /,B = –/,B = /,B = –/,B =
/, . . . . In particular, he established




+



+



+ · · · =  × ,,
!

π.

Euler’s ideaswere taken up years later byGeorge Friedrich BernhardRiemann (-)
in his seminal  paper, On the Number of Primes Less Than a Given Magnitude, in
which he defined his zeta function

ζ (s) =  +

s

+

s

+

s

+ · · · , s = σ + it,

and proved its basic properties, and in a sovereign way simply stated a number of oth-
ers without proof. After his death, many of the finest mathematicians of the world have
exerted their strongest efforts and created new branches of analysis in attempts to prove
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these statements. Since then with one exception, every statement has been settled in the
sense Riemann expected. This exception is the famous Riemann hypothesis: that all the ze-
ros of ζ (s) in the strip ≤ σ ≤  lie on the central line σ = /. It stands today as the most
important unsolved problem of mathematics, and perhaps the most difficult problem that
the mind of man has ever conceived.
. The letter π was first used by Euler in  in his Variae observationes circa se-

ries infinitas. Until that time, he had been using the letters p (), or c (). In ,
Christian Goldbach (-) also used π . After the publication of Euler’s treatise: In-
troductio in Analysin Infinitorum (), π became a standard symbol, as was the case
with other notations he adopted. In , Euler also showed that both e and e are irra-
tional and gave several continued fractions for e. In another paper, De variis modis circuli
quadraturam numeris proxime exprimendi of , Euler derived the formulas

tan–
(

p

)
= tan–

(


p + q

)
+ tan–

(
q

p + pq + 

)
()

and

tan–
(
x
y

)
= tan–

(
ax – y
ay + x

)
+ tan–

(
b – a
ab + 

)
+ tan–

(
c – b
cb + 

)
+ · · ·

and these give rise to any amount of relations for π ; for example, if x =  = y, and the odd
numbers are substituted for a,b, c, . . . , we obtain

π


= tan–

(



)
+ tan–

(



)
+ tan–

(



)
+ · · · .

The proof of () immediately follows by comparing the angles in the identity

(p + q + i)
(
p + pq +  + iq

)
=

[
(p + q) + 

]
(p + i).

. Matsunaga Yoshisuke (died in ) was a prolific writer. In modern terms, he
used the hypergeometric series

F(a,b, c,x) =  +
abx
!c

+
a(a + )b(b + )x

!c(c + )
+
a(a + )(a + )b(b + )(b + )x

!c(c + )(c + )
+ · · ·

for a = /, b = /, c = /, and x = /, i.e., the series

π = F
(


,


,


,



)
= 

(
 +



 ·  ·  +


 ·  ·  ·  ·  +
 · 

 ·  ·  ·  ·  ·  ·  + · · ·
)

to compute π correct to  digits. He also gave the following series:

π = 
(
 +



 ·  +
 · 

 ·  ·  ·  +
 ·  · 

 ·  ·  ·  ·  ·  + · · ·
)
.

. The following expansion of π is due to Euler

π =  +


+


+


–


+


+


+


+


–




+



+



–



+ · · · ,
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where the signs are determined following the rule: If the denominator is a prime of the
form m – , the sign is positive; if the denominator is  or a prime of the form m + ,
the sign is negative; for composite numbers, the sign is equal to the product of signs of its
factors. The following curious infinite product was also given by Euler:

π


=



· 


· 


· 


· 


· 


· 


· 


· 


· 


· · · ,

where the numerators are the odd primes and each denominator is the multiple of four
nearest to the numerator.
. Henry Sullamar, a real Bedlamite, found the quadrature of the circle in the number

 inscribed on the forehead of the beast in the Revelations. He published periodically
every two or three years some pamphlet in which he endeavored to prop his discovery.
. M. de Causans of the Guards cut a circular piece of turf, squared it and from the

result deduced original sin and the Trinity. He found that the circle was equal to the square
in which it is inscribed, i.e., π = . He offered a reward for the detection of any error, and
actually deposited , francs as earnest of ,. But the courts did not allow any
one to recover.
. Jean ÉtienneMontucla (-) was an early French historian of mathematics.

He published an anonymous treatise entitledHistoire des récherches sur la quadrature du
cercle, and in  the first part of his great work Histoire des mathématiques.
. Euler in his treatise De relatione inter ternas pluresve quantitates instituenda,

which was published ten years later, wrote ‘It appears to be fairly certain that the periphery
of a circle constitutes such a peculiar kind of transcendental quantities that it can in noway
be compared with other quantities, either roots or other transcendentals’. This conjecture
haunted mathematicians for  years. The following expansion is due to Euler:

tan– x =
y
x

(
 +



y +

 · 
 ·  y

 +
 ·  · 
 ·  ·  y

 + · · ·
)
, ()

where y = x/( + x). It converges rapidly.
. Georges Louis Leclerc (Comte of Buffon -) was a naturalist, mathemati-

cian, cosmologist and encyclopedic author. Suppose a number of parallel lines, distance a
apart, are ruled on a horizontal plane, and suppose a homogeneous uniform rod of length
� < a is dropped at random onto the plane. Buffon showed that the probability that the rod
will fall across one of the lines in the plane is given by p = (�/πa). In the literature, this
problem is known as Buffon’s needle problem. This was the earliest problem in geometric
probability to be solved. By actually performing this experiment, a large number of times
and noting the number of successful cases, we can compute an approximation for π .
. Johann Heinrich Lambert (-) was the first to introduce hyperbolic func-

tions into trigonometry. He wrote landmark books on geometry, the theory of cartog-
raphy, and perspective in art. He is also credited for expressing Newton’s second law of
motion in the notation of the differential calculus. Lambert used the properties of con-
tinued fractions to show that π is irrational. He published a more general result in .
Lambert also showed that the functions ex and tanx cannot assume rational values if x is
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a non-zero rational number. He also gave an interesting continued fraction for π ,

π =  +


 +


 +


 +


 +


 +


 +


 +


 + · · ·

.

Some inverse convergents of this continued fraction are as follows:



,



,




,



,
,
,

,
,
,

,
,
,

,

,
,

,
,
,

,
,,
,

,
,,
,,

.

. Arima Yoriyuki (-) was a Japanese mathematician of the Edo period. He
found the following rational approximation of π , which is correct to  digits

π =
,,,,
,,,,

.

. The French Academy of Sciences passed a resolution henceforth not to examine
any more solutions of the problem of squaring the circle. In fact, it became necessary to
protect its officials against thewaste of time and energy involved in examining the efforts of
circle squarers. A few years later, the Royal Society in London also banned consideration of
any further proofs of squaring the circle. This decision of the Royal Society was described
by Augustus De Morgan (-) about  years later as the official blow to circle-
squarers.
. Charles Hutton (-) was an English mathematician. He wrote several

mathematical texts. In , he was elected a fellow of the Royal Society of London. He
suggested Machin’s stratagem in the form

π =  tan–
(



)
+  tan–

(



)
; ()

however, he did not carry computations far enough. Euler also developed the formula ().
. M. de Vausenville, one of the deluded individuals, brought an action against the

French Academy of Sciences to recover a reward to which he felt himself entitled. It ought
to be needless to say that there was no reward offered for squaring the circle.
. Euler used his expansion () to evaluate right terms of (), to calculate π to 

decimal places in one hour!
About . Franz Xaver Freiherr von Zach (-) discovered a manuscript by an

unknown author in the Radcliffe Library, Oxford, which gives the correct value of π to 
decimal places. Zach was elected a member of the Royal Swedish Academy of Sciences in
, a Fellow of the Royal Society in , and an honorary member of the Hungarian
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Academy of Sciences in . Asteroid  Zachia and the crater Zach on the Moon are
named after him.
. Baron Jurij Bartolomej Vega (Georg Vega -) was a Slovene mathemati-

cian, physicist and artillery officer. He wrote six scientific papers. The record of de Lagny
of  digits seems to have stood until , when Vega, using a new series for the arctan-
gent discovered by Euler in , calculated  decimal places ( correct). Vega’s result
showed that de Lagny’s string of digits had a  instead of an  in the th decimal place.
His article was not published until six years later, in  ( correct). Vega retained his
record for  years until .
. Adrien-Marie Legendre (-) is remembered for Legendre functions, law

of quadratic reciprocity for residues, standardizing weights and measures to the metric
system, supervising the major task of producing logarithmic and trigonometric tables,
least squares method of fitting a curve to the data available, proof of Fermat’s last theorem
for the exponent n = , Gauss-Legendre algorithm, Legendre’s constant, Legendre’s equa-
tion, Legendre polynomials, Legendre’s conjecture, and Legendre transformation. The
Legendre crater on the Moon is named after him. Legendre, in his Elements de Géometrie
() used a slightly modified version of Lambert’s argument to prove the irrationality of
π more rigorously, and also gave a proof that π is irrational. He writes: ‘It is probable that
the number π is not even contained among the algebraic irrationalities, i.e., that it cannot
be the root of an algebraic equation with a finite number of terms, whose coefficients are
rational. But, it seems to be very difficult to prove this strictly’.
. Ajima Naonobu (-), also known as Ajima Chokuyen, was a Japanese

mathematician of the Edo period. The series he developed can be simplified as

π


= F

(
, ,



,



)
=

(
 +

!

+

!
 ·  +

!
 ·  ·  +

!
 ·  ·  ·  · · ·

)

=
∞∑
i=

i!
(i + )!!

=
∞∑
i=

(i!)i

(i + )!
.

It is interesting to note that the above series follows from () by using an acceleration
technique known in the literature as Euler’s transform. It can also be derived from the
Wallis product formula ().
. Jean-Charles Callet (-) in his tables gave  ( correct) decimal digits

of π .
. LorenzoMascheroni (-) was educated with the aim of becoming a priest

and he was ordained at the age of . In , he calculated Euler’s constant to  ( cor-
rect) decimal places. Lorenzo dedicated his book, Geometria del compasso, to Napoleon
Bonaparte. In this work, he proved that all Euclidean constructions can be made with
compasses alone, so a straight edge in not needed. However, it was proved earlier in 
by the Danish mathematician Georg Mohr (-). He claimed that compasses are
more accurate then those of a ruler.
. Karl Friedrich Gauss (-) was one of the greatest mathematicians of all

time. Alexander von Humboldt (-), the famous traveler and amateur of the sci-
ences, asked Pierre Simon de Laplace (-) who was the greatest mathematician in
Germany, Laplace replied Johann Friedrich ‘Pfaff’ (-). ‘But what about Gauss’ the
astonished von Humboldt asked, as he was backing Gauss for the position of director at
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the Göttingen observatory. ‘Oh’, said Laplace, ‘Gauss is the greatest mathematician in the
world’. Gauss suggested to his teacher Pfaff to study the sequences {xn} and {yn} generated
by the recurrence relations

xn+ =


(xn + yn), yn+ =

√
xn+yn, n≥ . ()

In his reply, Pfaff showed that for any positive numbers x and y these sequences converge
monotonically to a common limit given by

B(x, y) =

{
(y – x)// cos–(x/y),  ≤ x < y,
(x – y)// cosh

–(x/y),  < y < x.
()

Pfaff’s letter was unpublished. In , CarlWilhelmBorchardt (-) workwas pub-
lished in which he rediscovered this result which now bears his name. For this, it suffices
to note that:
. {xn} and {yn} converge monotonically to the same limit.
. The ratio rn = xn/yn satisfies rn+ = ( + rn)/.
. If x < y, let θ = cos– r. Then, sn = n cos– rn = θ and cn = n(xn – yn) = (x – y)

are independent of n.
. limn→∞ yn = limn→∞ –n|cn|/

sin–(–n|cn|//yn) = limn→∞ |cn|/
sn = (y–x


)

/

θ
.

If y < x, we let θ = cosh– r, and follow similarly.
Now we let xn = /an, yn = /bn, then () and () take the form

an+ =
anbn
an + bn

, bn+ =
√
an+bn, n ≥  ()

and

A(a,b) =


B(/a, /b)
=

{
ab(a – b)–/ cos–(b/a), a > b ≥ ,
ab(b – a)–/ cosh

–(b/a), b > a > .
()

Clearly, the recurrence relations () are different from (). In fact, () minimize the count
of arithmetic operations. In particular, if we let a = 

√
, b = , then () in view of ()

converges to π .
In what follows, we let the constant c = n(xn – yn) = (x – y), then we can uncouple ()

and (), respectively, to obtain

xn+ =
xn


+
((

xn


)

– –n–c
)/

, yn+ =
yn


(
 +

(
 + –ncy–n

)/) ()

and

an+ =
n+

can

(
 –

(
 – –ncan

)/), bn+ =
n+

c
((
 + –ncbn

)/ – 
)
. ()

From () and (), several known and new recurrence relations can be obtained.
Gauss also developed the Machin-type formula

π


=  tan–

(



)
+  tan–

(



)
–  tan–

(




)
. ()
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He also estimated the value of π by using lattice theory and considering a lattice inside a
large circle, but he did not pursue it further.
. Sakabe Kohan (-) developed the series

π


=  –



–

 · 
 ·  ·  –

( · )( · )
 ·  ·  ·  ·  –

( ·  · )( ·  · )
 ·  ·  ·  ·  ·  ·  – · · · .

. Wada Yenzo Nei (known as Wada Yasushi, -) developed over one hun-
dred infinite series expressing directly or indirectly π . One of his series can be written
as

π = F
(


,


,


, 

)
= 

(
 +



!
+
 · 
!

+
 ·  · 

!
+ · · ·

)
.

. Malacarne of Italy published a geometric construction in Géométrique (Paris),
which leads to the value of π less than .
. C.G. Specht of Berlin published a geometric construction in Crelle’s Journal, Vol-

ume , p., which leads to π = 
√
/ = . . . . .

. Karl Heinrich Schellbach (-) began with the relation

π i


= ln(i) = ln

(
 + i
 – i

)
= ln( + i) – ln( – i),

which is due to Giulio Carlo Fagnano dei Toschi (-), and used the logarithm ex-
pansion (), to obtain

π i
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(
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i –
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i +



– · · ·

)
–

(
–i +
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i –



–


i +



+ · · ·
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= i –


i +



i – · · · ,

which immediately gives Nilakanthan series (). He also considered the relation

π i


= ln(i) = ln

(
( + i)( + i)
( – i)( – i)

)

=
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 +



i
)
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 –



i
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{
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i
)
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(
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)}

and used the expansion (), to obtain, compare to (), a fast converging expansion

π


=

(


+



)
–



(



+



)
+



(



+



)
– · · · .

. William Baddeley in his work Mechanical quadrature of the circle, London Me-
chanics’ Magazine, August,  writes ‘From a piece of carefully rolled sheet brass was
cut out a circle  / inches in diameter, and a square  / inches in diameter. Onweigh-
ing them, they were found to be exactly the same weight, which proves that, as each are of
the same thickness, the surfaces must also be precisely similar. The rule, therefore, is that
the square is to the circle as  to ’. We believe for the square it must be the side (not the
diameter). Then it follows that π = ,/ = . . . . .
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. Joseph LaComme ‘at a time when he could neither read nor write being desirous
to ascertain what quantity of stones would be required to prove a circular reservoir he
had constructed, consulted a mathematics professor. He was told that it was impossible to
determine the full amount, as no one had yet found the exact relation between the circum-
ference of a circle and its diameter. The well-sinker thereupon, full of self-confidence in
his powers, applied himself to the celebrated problem and discovered the solution, which
lead to π = / by mechanical process. He then taught himself to read and write, and
managed to acquire some knowledge of arithmetic by which he verified his mechanical
solution’. Joseph was honored for his profound discovery with several medals of the first
class, bestowed by Parisian societies.
. William Rutherford (-) was an English mathematician. He calculated π

to  places of which  were later found to be correct. For this, he employed Euler’s
formula

π


=  tan–

(



)
– tan–

(



)
+ tan–

(



)

and Madhava’s series expansion ().
. Johann Martin Zacharias Dase (-) was a calculating prodigy. At the

age of , he gave exhibitions in Germany, Austria and England. His extraordinary cal-
culating powers were timed by renowned mathematicians including Gauss. He multi-
plied ,, × ,, in  seconds; two -digit numbers in  minutes; two
-digit numbers in  minutes; and two -digit numbers in  hours  minutes. In
, he made acquaintance with Viennese mathematician L.K. Schulz von Strasznicky
(-) who suggested him to apply his powers to scientific purposes. When he was
, Strasznicky taught him the use of the formula

π


= tan–

(



)
+ tan–

(



)
+ tan–

(



)
,

and asked him to calculate π . In two months, he carried the approximation to  places
of decimals, of which  are correct. He next calculated a -digit logarithm table of the
first ,, numbers; he did this in his off-time from  to , when occupied by
the Prussian survey. His next contribution of two years was the compilation of hyperbolic
table in his spare time which was published by the Austrian Government in . Next, he
offered tomake a table of integer factors of all numbers from ,, to ,,; for
this, on the recommendation of Gauss the Hamburg Academy of Sciences agreed to assist
him financially, but Dase died shortly thereafter in Hamburg. He also had an uncanny
sense of quantity. That is, he could just tell, without counting, how many sheep were in a
field, or words in a sentence, and so forth, up to about .
. HiromuHasegawa (-) and his father Hiroshi Hasegawa (-) pub-

lished many Wasan books. Hiromu developed the series

π


=  –


 ·  –


 ·  –


 ·  –


 ·  – · · · .

This series can be written as

π =


F
(


,


,


, 

)
.
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. ThomasClausen (-) wrote over  papers on puremathematics, applied
mathematics, astronomy and geophysics. He used the formula

π


=  tan–

(



)
+ tan–

(



)

to calculate π to  decimal places, but only  are correct. In , he factored the
sixth Fermat number as  +  = ,,,,× ,. Clausen also gave a new
method of factorising numbers.
. Jacob deGelder (-) amathematical ideologist proposed a geometric con-

struction which gives π correct to  decimal places. His method is based on the fact that
π = / =  + /( + ). Gelder’s result was published in .
. Joseph Liouville (-) was a highly respected professor at the Collége de

France in Paris, and the founder and for  years the editor of the Journal des Mathé-
matiques Pures et Appliquées. His ingenious theory of fractional differentiation answered
the long-standing question of what reasonable meaning can be assigned to the symbol
dny/dxn when n is not a positive integer. In , Liouville showed that e is not a root
of any quadratic equation with integral coefficients. This led him to conjecture that e is
transcendental. In , Liouville showed, by using continued fractions, that there are an
infinite number of transcendental numbers, a result which had previously been suspected
but had not been proved. He produced the first examples of real numbers that are provably
transcendent. One of these is

∞∑
n=


n!

=



+



+



+ · · · = . . . . .

His methods led to extensive further research.
. Lehmann correctly calculated  decimal places of π . For this, he used Euler’s

formula

π


= tan–

(



)
+ tan–

(



)
. ()

. Rutherford obtained  correct decimal places.
. William Shanks (-) was a British amateur mathematician. He used

Machin formula () to calculate π to  decimal places. He was assisted by Rutherford
in checking first  digits.
-. Richter in  published  digits ( correct), and in  (after his

death in )  decimal places.
. James Smith published the value of π as  / and argued that it is exact and

correct. He attempted to bring it before the British Association for the Advancement of
Science. Interestingly, even DeMorgan and Hamilton could not convince him for his mis-
take.
. Philip H. Vanderweyde published an essay discussing the subject π . He also used

several constructions, resulting π = . . . . .
. Lawrence Sluter Benson published about  pamphlets on the area of the cir-

cle, three volumes on philosophic essays, and one on geometry The Elements of Eu-
clid and Legendre. He demonstrated that the area of the circle is equal to R, or the
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arithmetical square between the inscribed and circumscribed squares. According to him√
 = . . . . is the ratio between the diameter of a circle and the perimeter of its

equivalent square. The ratio between the diameter and circumference, he believed, is not
a function of the area of the circle. He accepted the value of π = . . . . .
. S.M. Drach proved that the circumference of a circle can be obtained as follows:

From thrice diameter, deduct /, and /,, of a diameter, and add % to the
result, i.e.,

π =  –


,
–


,,

+




(
 –


,

–


,,

)
,

which gives π = ..
. Cyrus Pitt Grosvenor (-) was an American anti-slavery Baptist minis-

ter. In his retirement, he worked on the problem of squaring the circle. He described his
method in a pamphlet titled The circle squared, New York: Square the diameter of the
circle; multiply the square by ; extract the square root of the product; from the root sub-
tract the diameter of the circle; square the remainder; multiply this square by four fifths;
subtract the square from the diameter of the circle, i.e.,

πD


=D –




(√
D –D

) =D
[
 –



(
√
 – )

]
=D(. . . .),

which gives π = . . . . .
. Augustus De Morgan (-) was born in Madura (India), but his family

moved to England when he was seven months old. He lost the sight of his right eye shortly
after birth. Hewas an extremely prolificwriter. Hewrotemore than , articles formore
than  periodicals. De Morgan also wrote textbooks on many subjects, including logic,
probability, calculus and algebra. In , he was a co-founder of the London Mathemat-
ical Society and became its first President. His book A Budget of Paradoxes of  pages,
which was edited and published by his wife in , is an entertaining text. This book
contains the names of  writers on π . In this work, DeMorgan reviewed the works of 
of these writers, bringing the subject down to . He once remarked that it is easier to
square the circle then to get round a mathematician. He was the first to point out that in
the decimal expansion of π one should expect each of the  digits appear uniformly, i.e.,
roughly one out of ten digits should be a , etc.
. Asaph Hall (-) was an astronomer. He published the results of an ex-

periment in random sampling that Hall had convinced his friend, Captain O.C. Fox, to
perform when Fox was recovering from a wound received at the Second Battle of Bull
Run. The experiment was based on Buffon’s needle problem. After throwing his needles
eleven hundred times, Fox was able to derive π � .. This work is considered as a very
early documentation use of random sampling (which Nicholas Constantine Metropolis
(-) named as the Monte Carlo method during the Manhattan Project of World
War II).
. Charles Hermite (-) in  was appointed to a professorship at the Sor-

bonne, where he trained a whole generation of well-known French mathematicians. He
was strongly attracted to number theory and analysis, and his favorite subject was elliptic
functions, where these two fields touch in many remarkable ways. His proof of the tran-
scendence of e was high point in his career.
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-. William Shanks again used Machin formula () to calculate π to  dec-
imal places (published in the Proceedings of the Royal Society, London), but only 
decimal places are correct. For this, he used mechanical desk calculator and worked for
almost  years. For a long time, this remained the most fabulous piece of calculation ever
performed. In the Palais de la Découverte (a science museum in Paris), there is a circular
room known as the ‘pi room’. On its wall are inscribed these  digits of π . The digits are
large wooden characters attached to the dome-like ceiling. Shanks also calculated e and
the Euler-Mascheroni constant γ to many decimal places. He published a table of primes
up to , and found the natural logarithms of , ,  and  to  places.
. Tseng Chi-Hung (died in ) finds  digits of π in a month. For this, he used

the formula ().
. John A. Parker in his book The Quadrature of the Circle. Containing Demonstra-

tions of the Errors of Geometers in Finding Approximations in Use published by JohnWiley
& Sons, New York claims that π = ,/, exactly. He exclaims, ‘all the serial and al-
gebraic formula in the world, or even geometrical demonstration, if it be subjected to any
error whatever, cannot overthrow the ratio of circumference to diameter which I have es-
tablished’. He praises Metius (lived in the sixteenth century) for using the ratio /.
His book also contains practical questions on the quadrature applied to the astronomical
circles.
. Alick Carrick proposed in his book, The Secret of the Circle, its Area Ascertained,

the value of π as  /.
. Pliny Earle Chase (-) was a scientist, mathematician, and educator who

mainly contributed to the fields of astronomy, electromagnetism and cryptography. In his
pamphlet, Approximate Quadrature of the Circle, he used a geometric construction to
obtain π = . . . . .
. Carl Louis Ferdinand von Lindemann (-) worked on non-Euclidean ge-

ometry. He followed the method of Hermite to show that π is also transcendental. His re-
sult showed at last that the age-old problem of squaring the circle by a ruler-and-compass
construction is impossible. Lindemann’s paper runs to  pages of tough mathematics.
Karl Wilhelm Weierstrass (-), the apostle of mathematical rigor, simplified the
proof of Lindemann’s theorem somewhat in , and it was further simplified in later
years by renowned mathematicians (Stieltjes, Hurwitz, Hilbert, and others). The inter-
ested reader is referred to the comparatively easy version given by Hobson. Nonetheless,
there are still some amateur mathematicians who do not understand the significance of
this result, and futilely look for techniques to square the circle.Next, Lindemann spent sev-
eral years to provide the proof of Fermat’s Last Theorem, which is unfortunately wrong.
He also worked on projective geometry, Abelian functions and developed a method of
solving equations of any degree using transcendental functions.
. Sylvester Clark Gould (-) was the editor of Notes and Queries, Manch-

ester, New Hampshire. He compiled the bibliography entitled What is the Value of Pi. It
contains  titles and gives the result of  authors. In this work the diagram  claims
that π =  ,/, exactly.
. A writer announced in theNew York Tribune the rediscovery of a long-lost secret

that gives . as the exact value of π . This announcement caused considerable discussion,
and even near the beginning of the twentieth century . had its advocates as against the
value /.
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. Fredrik Carl Mülertz Störmer (-) was a mathematician and physicist,
known for his work in number theory. He gave the following Machin-like formulas for
calculating π

π


=  tan–

(



)
+  tan–

(




)
–  tan–

(




)
+  tan–

(


,

)
()

and

π


=  tan–

(



)
+  tan–

(



)
+ tan–

(




)
. ()

. In the State of Indiana, the House of Representatives unanimously passed the Bill
No.  (known as the ‘π bill’) introducing a newmathematical truth ‘Be it enacted by the
General Assembly of the State of Indiana: It has been found that a circular area is to the
square on a line equal to the quadrant of the circumference, as the area of an equilateral
rectangle is to the square on one side. . . ’ (π = .). The author of the bill was a physician,
Edwin J. Goodman (-), M.D., of Solitude, Posey County, Indiana, and it was in-
troduced in the Indiana House on  January , byMr. Taylor I. Record, representative
from Posey County. Edwin offered this contribution as a free gift for the sole use of the
State of Indiana (the others would evidently have to pay royalties). Copies of the bill are
preserved in the Archives Division of the Indiana State Library. The bill was sent to the
Senate for approval. Fortunately, during the House’s debate on the bill, Purdue University
Mathematics Professor Clarence Abiathar Waldo (-) was present. When Profes-
sor Waldo informed the Indiana Senate of the ‘merits’ of the bill, the Senate, after some
ridicule at the expense of their colleagues, indefinitely postponed voting on the bill and let
it die.
. H.S. Uhler used Machin’s formula () to compute π to  decimal places.
. Mario Lazzarini an Italian mathematician performed the Buffon’s needle experi-

ment. Tossing a needle , times, he obtained the well-known estimate / for π .
Although it is an impressive observation, but suspiciously good. In fact, statisticians Sir
Maurice George Kendall (-) and Patrick Alfred Pierce Moran (-) FRS
have commented that one can do better to cut out a large circle and use a tape to mea-
sure to find its circumference and diameter. On the same theme of phoney experiments,
Gridgeman, in , pours scorn on Lazzerini and others, created some amusement by
using a needle of carefully chosen length k = ., throwing it twice, and hitting a line
once. His estimate for π was thus given by ×./π = / fromwhich he got the highly
creditable value of π = .. Of course, he was not being serious.
. Duarte used Machin’s formula () to compute π to  decimal places.
. Various mnemonic devices have been given for remembering the decimal digits

of π . The most common type of mnemonic is the word-length mnemonic in which the
number of letters in each word corresponds to a digit, for example, How I wish I could
calculate pi (by C. Heckman),May I have a large container of coffee (by Martin Gardner),
and How I want a drink, alcoholic of course, after the heavy lectures involving quantum
mechanics (by Sir James Jeans), respectively, give π to seven, eight, and fifteen decimal
places. Adam C. Orr in Literary Digest, vol.  (), p. published the following poem
which gives π to  decimal places:
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Now I, even I, would celebrate
In rhymes inapt, the great
Immortal Syracusan, rivaled nevermore
Who in his wondrous lore,
Passed on before
Left men his guidance,
How to circles mensurate.

Several other such poems not only in English, but almost in every language including Al-
banian, Bulgarian, Czech, Dutch, French, German, Italian, Latin, Polish, Portuguese, Ro-
manian, Spanish and Swedish are known. However, there is a problem with this type of
mnemonic, namely, how to represent the digit zero. Fortunately, a zero does not occur
in π until the thirty-second place. Several people have come up with ingenious methods
of overcoming this, most commonly using a ten-letter word to represent zero. In other
cases, a certain piece of punctuation is used to indicate a naught.Michael Keith (with such
similar understanding) in his work Circle digits: a self-referential story,Mathematical In-
telligencer, vol.  (), -, wrote an interesting story which gives first  decimals
of π .
. Ernest William Hobson (-) was Sadleirian Professor at the University

of Cambridge from  to . His  work on real analysis was very influential in
England. In his book, Squaring the circle: A History of the Problem, he used a geometrical
construction to obtain π = . . . . .
. Srinivasa Ramanujan (-) was a famous mathematical prodigy. He col-

laborated with Hardy for five years, proving significant theorems about the number of
partitions of integers. Ramanujan also made important contributions to number theory
and also worked on continued fractions, infinite series and elliptic functions. In , he
became the youngest Fellow of the Royal Society. According to Hardy, ‘the limitations of
Ramanujan’s knowledge were as startling as its profundity’. Here was a man who could
workout modular equations and theorems of complex multiplication, to orders unheard of,
whose mastery of continued fractions was, beyond that of any mathematician in the world,
who had found for himself the functional equation of the zeta-function, and the dominant
terms of the many of the most famous problems in the analytic theory of numbers; and
he had never heard of a doubly periodic function or of Cauchy’s theorem, and had indeed
but the vaguest idea of what a function of a complex variable was. Ramanujan considered
mathematics and religion to be linked. He said, ‘an equation for me has nomeaning unless
it expresses a thought of God’. He was endowed with an astounding memory and remem-
bered the idiosyncrasies of the first , integers to such an extent that each number
became like a personal friend to him. Once Hardy went to see Ramanujan when he was in
a nursing home and remarked that he had traveled in a taxi with a rather dull number, viz
,,Ramanujan exclaimed, ‘No,Hardy, , is a very interesting number. It is the small-
est number that can be expressed as the sum of two cubes viz , =  + =  +, and
the next such number is very large’. His life can be summed up in his own words, ‘I really
love my subject’. His  paper on ‘Modulus functions and approximation to π ’ contains
several new innovative empirical formulas and geometrical constructions for approximat-
ing π . One of the remarkable formulas for its elegance and inherent mathematical depth
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is
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∞∑
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. ()

It has been used to compute π to a level of accuracy, never attained earlier. Each additional
term of the series adds roughly  digits. He also developed the series


π

=
∞∑
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(
m
m

) m + 
m+ and
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=
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(–)m(m + )[(m – )!!]
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.

The first series has the property that it can be used to compute the second block of k
(binary) digits in the decimal expansion of π without calculating the first k digits. The
following mysterious approximation which approximates π to  correct decimal places
is also due to Ramanujan

π � √


ln
(
(

√
 +

√
)( +

√
)

)
.

. T.M.P. Hughes in his work A triangle that gives the area and circumference of
any circle, and the diameter of a circle equal in area to any given square, Nature , ,
doi:./a uses a geometric construction to obtain π = . . . . .
. In March , the University of Minnesota was notified that Gottfried Lenzer (a

native of Germany who lived in St. Paul formany years) had bequeathed to the university a
series of  drawings from - and explanatory notes concerning the three classical
problems of antiquity. He used a geometrical construction for squaring the circle to obtain
π = . . . . .
. Alexander Osipovich Gelfond (-) was a Soviet mathematician. He

proved that eπ (Gelfond’s constant) is transcendental, but nothing yet is known about
the nature of any of the numbers π + e, πe or π e.
. Helen AbbotMerrill (-) earned her Ph.D. fromYale in  on the thesis

OnSolutions of Differential Equations which Possess anOscillationTheorem. She served as
an associate editor of The American Mathematical Monthly during -, and was a
vice-president from  to  of the Mathematical Association of America. Her book
Mathematical Excursions: Side Trips Along Paths not Generally Traveled in Elementary
Courses in Mathematics, Bruce Humphries, Inc., Boston,  was a text for the general
public. In this book, a geometric construction is given (perhaps by an earlier author) which
leads to π = . . . . .
. Edmund Georg Hermann (Yehezkel) Landau (-) was a child prodigy. In

, he gave a simpler proof of the prime number theorem. His masterpiece of  was a
treatiseHandbuch der Lehre von der Verteilung der Primzahlen a two volume work giving
the first systematic presentation of analytic number theory. Landau wrote over  papers
on number theory, which had a major influence on the development of the subject. De-
spite his outstanding talents as both a teacher and researcher, Landau annoyedmany of his
colleagues at Göttingen. He started criticizing privately, and often publicly, their results.
Landau in his work defined π/ as the value of x between  and  for which cosx vanishes.
One cannot believe this definition was used, at least as an excuse, for a racial attack on
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Landau. This unleashed an academic dispute which was to end in Landau’s dismissal from
his chair at Göttingen. Ludwig Georg Elias Moses Bieberbach (-) famous for his
conjecture, explained the reasons for Landau’s dismissal: ‘Thus the valiant rejection by the
Göttingen student body which a great mathematician, Edmund Landau, has experienced
is due in the final analysis to the fact that the un-German style of this man in his research
and teaching is unbearable to German feelings. A people who have perceived how mem-
bers of another race are working to impose ideas foreign to its ownmust refuse teachers of
an alien culture’. Hardy replied immediately to Bieberbach about the consequences of this
un-German definition of π : ‘There are many of us, many Englishmen andmany Germans,
who said things during theWar which we scarcely meant and are sorry to remember now.
Anxiety for one’s own position, dread of falling behind the rising torrent of folly, deter-
mination at all cost not to be outdone, may be natural if not particularly heroic excuses.
Professor Bieberbach’s reputation excludes such explanations of his utterances, and I find
myself driven to the more uncharitable conclusion that he really believes them true.’
. A Cleveland businessman Carl Theodore Heisel published a book Mathemati-

cal and Geometrical Demonstrations in which he announced the grand discovery that π

was exactly equal to /, a value that the Egyptians had used some , years ago.
Substituting this value for calculations of areas and circumferences of circles with diam-
eters , , . . . up to , he obtained numbers which showed consistency of circumference
and area, ‘thereby furnishing incontrovertible proof of the exact truth’ of his ratio. He also
rejected decimal fractions as inexact (whereas ratios of integers as exact and scientific),
and extracted roots of negative numbers thus:

√
–a =

√
a–,

√
a– = –a. He published this

book on his own expense and distributed to colleges and public libraries throughout the
United States without charge.
. Miff Butler claimed discovery of a new relationship between π and e. He stated

his work to be the first basic mathematical principle ever developed in USA. He convinced
his congressman to read it into the Congressional Record on  June .
. H.S. Uhler used Machin’s formula () to compute π to  decimal places.
-. D.F. Ferguson of England used the formula

π


=  tan–

(



)
+ tan–

(



)
+ tan–

(


,

)

to find that his value disagreed with that ofWilliam Shanks in the th place. In , he
approximated π to  decimal places, and in January  to  decimal places. In the
same month William Shanks used Machin’s formula () to compute -place value of
π , but Ferguson soon found an error in the rd place. For all the calculations, he used
desk calculator.
. Ivan Morton Niven (-) gave an elementary proof that π is irrational.
. Ferguson and JohnWilliamWrench, Jr. (-) using a desk calculator, com-

puted , decimal digits of π . This record was broken only by the electronic computers.
September . John Wrench and L.R. Smith (also attributed to George Reitwiesner

et al.) were the first to use an electronic computer Electronic Numerical Integrator and
Computer (ENIAC) at the Army Ballistic Research Laboratories in Aberdeen, Maryland,
to calculate π to , decimal places. For this, they programed Machin’s formula ().
It took  hours, a pitifully long time by today’s standards. In this project, John Louis
von Neumann (-), one of the most versatile and smartest mathematicians of the
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twentieth century, also took part. In , The ENIAC became obsolete, and it was dis-
membered and moved to the Smithsonian Institution as a museum piece.
. Konrad Knopp gave the following two expansions of π :

π


=

∞∑
k=

tan–
(


k + k + 

)
and

π


=
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k=

(–)k

k + 

(
 +



+ · · · + 

k + 

)
.

. Kurt Mahler (-) showed that π is not a Liouville number: A real number
x is called a Liouville number if for every positive integer n, there exist integers p and q
with q >  and such that

 <
∣∣∣∣x – p

q

∣∣∣∣ < 
qn

.

A Liouville number can thus be approximated ‘quite closely’ by a sequence of rational
numbers. In , Liouville showed that all Liouville numbers are transcendental.
. S.C. Nicholson and J. Jeenel programmed NORC (Naval Ordnance Research Cal-

culator) atDahlgren, Virginia to computeπ to , decimals. For this, they usedMachin’s
formula (). The run took only  minutes.
. John Gurland established that for all positive integers n,

n + 
(n + )

(
(n)!!

(n – )!!

)

< π <


n + 

(
(n)!!

(n – )!!

)

. ()

March . G.E. Felton used the Ferranti Pegasus computer to find , decimal
places of π in  hours. The program was based on Klingenstierna’s formula

π =  arctan
(




)
–  arctan

(




)
–  arctan

(



)
. ()

However, a subsequent check revealed that a machine error had occurred, so that ‘only’
, decimal places were correct. The run was therefore repeated in May , but the
correction was not published.
January . Francois Genuys programmed an IBM  at the Paris Data Processing

Center. He usedMachin’s type formula (). It yielded , decimal places of π in  hour
and  minutes.
July . Genuys programmed an IBM  at the Commissariat á l’Energie Atomique

in Paris to compute π to , decimal places. He used Machin’s type formula (). It
took  hours and  minutes.
July . Daniel Shanks (-) and William Shanks used Störmer’s formula ()

on an IBM  (at the IBMData Processing Center, New York) to compute π to ,
digits, of which the first , digits were published by photographically reproducing
the print-out with , digits per page. The time required for this computation was 
hours and  minutes. They also checked the calculations by using Gauss’ formula (),
which required  hours and  minutes.
. Machin’s formula () was also the basis of a program run on an IBM  at the

London Data Center in July , which resulted in , decimal places and required
only  minutes running time.
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February . Jean Guilloud and J. Filliatre used an IBM  at the Commissariat á
l’EnergieAtomique in Paris to obtain an approximation ofπ extending to , decimal
places on a STRETCH computer. For this, they used Störmer’s and Gauss’ formulas ()
and (). It took almost  hours.
February . Guilloud and M. Dichampt used CDC (Control Data Corporation)

 in Paris to approximate π to , decimal places. For this, they used Störmer’s
and Gauss’ formulas () and (). The computer that churned out half a million digits
needed only  hours and  minutes (plus  hour and  minutes to convert that final
result from binary to decimal notation).
. In the Putnam Competition, the first problem was

π =



–
∫ 



x( – x)

 + x
dx.

This integral was known to Mahler in the mid-s, and has later appeared in several
exams. It is also discussed by Borwein, Bailey, and Girgensohn in their book on p..
. K.Y. Choong, D.E. Daykin andC.R. Rathbone used , digits ofDaniel Shanks

and William Shanks () to generate the first , partial quotients of the continued
fraction expansion of π .
. Ralph William Gosper, Jr. (born ), known as Bill Gosper, is a mathematician

and programmer. He is best known for the symbolic computation, continued fraction rep-
resentations of real numbers, Gosper’s algorithm, andGosper curve. He used a refinement
of Euler transform on () to obtain the series

π =  +



 +



 · 
 ·  ·  +




 · 
 ·  · 

 · 
 ·  · 

+



 · 
 ·  · 

 · 
 ·  · 

 · 
 ·  ·  + · · · .

. Guilloud withMartine Bouyer (Paris) used formulas () and () on a CDC 
to compute π to ,, digits. The run time required for this computation was 
hours and  minutes, of which  hour  minutes was used to convert the final result from
binary to decimal. Results of statistical tests, which generally support the conjecture that
π is simply normal (in , Félix Édouard Justin Émil Borel (-) defined: A real
number a is simply normal in base b if in its representation in base b all digits occur, in an
asymptotic sense, equally often) were also performed.
. Louis Comtet developed the following Euler’s type expansion of π :

π


=



∞∑
m=


m

(m
m

) .
. Richard Brent and Eugene Salamin independently discovered an algorithm which

is based on an arithmetic-geometric mean and modifies slightly Gauss-Legendre algo-
rithm. Set a = , b = /

√
 and s = /. For k = , , , . . . compute

ak =
ak– + bk–


,

bk =
√
ak–bk–,
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ck = ak – bk , ()

sk = sk– – kck ,

pk =
ak
sk

.

Then pk converges quadratically to π , i.e., each iteration doubles the number of accurate
digits. In fact, successive iterations must produce , , , , , , ,  and 
correct digits of π . The twenty-fifth iteration must produce  million correct decimal
digits of π .
. Kazunori Miyoshi and Kazuhika Nakayama of the University of Tsukuba, Japan

calculated π to ,, significant figures in . hours on a FACOM M- com-
puter. They used Klingenstierna’s formula () and checked their result withMachin’s for-
mula ().
. Guilloud computed ,, decimal digits of π .
. Rajan Srinivasan Mahadevan (born ) recited from memory the first ,

digits of π . This secured him a place in the  Guinness Book ofWorld Records, and he
has been featured on Larry King Live and Reader’s Digest.
. KikuoTakano (-)was a Japanese poet andmathematician. He developed

the following Machin-like formula for calculating π :

π


=  tan–

(



)
+  tan–

(



)
–  tan–

(




)
+  tan–

(


,

)
. ()

. Yoshiaki Tamura on MELCOM II computed ,, decimal places of π .
For this, he used the Salamin-Brent algorithm ().
. Yoshiaki Tamura and Yasumasa Kanada (born , life-long ‘pi digit-hunter’, set

the record  of the past  times) onHITACM-H computed ,, decimal places
of π . For this, they used the Salamin-Brent algorithm ().
. Yoshiaki Tamura and Yasumasa Kanada on HITACM-H computed ,,

decimal places of π . For this, they used the Salamin-Brent algorithm ().
October . Yasumasa Kanada, Yoshiaki Tamura, Sayaka Yoshino and Yasunori

Ushiro on HITAC S-/ computed ,, decimal places of π . For this, they used
the Salamin-Brent algorithm (). In this work to gather evidence that π is simply nor-
mal, they also performed statistical analysis. It showed expected behavior. In the first
ten million digits, the frequencies for each ten digits are ,; ,; ,,;
,; ,,; ,,; ,; ,,; ,; and ,,. Further, the
rate at which the relative frequencies approach / agrees with theory. As an exam-
ple, for the digit  relative frequencies in the first i, i = , , , , , , ,  digits are
, ., ., ., ., ., ., which seem to be approaching / at
rate predicted by the probability theory for random digits, i.e., a speed approximately pro-
portional to /

√
n. But this is far from a formal proof of simple normalcy perhaps for a

proof the current mathematics is not sufficiently developed. In spite of the fact that the
digits of π pass statistical tests for randomness, π contains some sequences of digits that,
to some, may appear non-random, such as Feynman point, which is a sequence of six con-
secutive s that begins at the nd decimal place. A number is said to be normal if all
blocks of digits of the same length occur with equal frequency. Mathematicians expect π

to be normal, so that every pattern possible eventually will occur in the digits of π .
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. Yasumasa Kanada, Sayaka Yoshino and Yoshiaki Tamura on HITAC M-H
computed ,, decimal places of π . For this, they used the Salamin-Brent algo-
rithm ().
. Jonathan Borwein and Peter Borwein gave the following algorithm. Set x =

√
,

y =  and α =  +
√
. Iterate

xk+ = (
√
xk + /

√
xk)/,

yk+ =
√
xk

(
 + yk
yk + xk

)
, ()

αk+ = αkyk+
(
 + xk+
 + yk+

)
.

Then αk converges to π quartically. The algorithm is not self-correcting; each iteration
must be performed with the desired number of correct digits of π .
. Morris Newman and Daniel Shanks proved the following: Set

a =
,


+ 
√
 +




√
, + ,

√
,

b =
,


+ 
√
 +




√
,, + ,

√
,

c =  + 
√
 + 

√
, + ,

√
,

d =



+ 
√
 +




√
, + ,

√
,

then ∣∣∣∣π –
√
,

ln(abcd)
∣∣∣∣ < .× –.

. Gosper used Symbolics , and Ramanujan’s formula () to compute π to
,, decimal digits.
. Jonathan Borwein and Peter Borwein gave the following algorithm. Set a =  –


√
 and y =

√
 – . Iterate

yk+ =
 – ( – yk )/

 + ( – yk )/
,

ak+ = ak( + yk+) – k+yk+
(
 + yk+ + yk+

)
.

()

Then ak converges quartically to /π , i.e., each iteration approximately quadruples the
number of correct digits.
. The following is not an identity, but is correct to over  billion digits

(



∞∑
n=–∞

e–n
/

)

� π .

. Carl Sagan in his novel deals with the theme of contact between humanity and a
more technologically advanced, extraterrestrial life form. He suggests that the creator of
the universe buried a message deep within the digits of π .
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January . David H. Bailey used Borweins’ algorithms () and () on CRAY- to
compute ,, decimal places of π .
September . Yasumasa Kanada and Yoshiaki Tamura on HITAC S-/ com-

putes ,, decimal places of π . For this, they used algorithms () and ().
October . Yasumasa Kanada and Yoshiaki Tamura on HITAC S-/ computed

,, decimal places of π . For this, they used algorithm ().
January . Yasumasa Kanada, Yoshiaki Tamura, Yoshinobu Kubo and others on

NEC SX- computed ,, decimal places of π . For this they used algorithms ()
and ().
. Jonathan Borwein and Peter Borwein gave the following algorithm. Set x = /,

y = / and p =  + /. Iterate

xk =


(
x/k– + x–/k–

)
,

yk =
yk–x/k– + x–/k–

yk– + 
,

pk = pk–
xk + 
yk + 

.

Then pk decreases monotonically to π and |pk – π | ≤ –k+ for k ≥ .
. Hideaki Tomoyori (born ) recited π from memory to , places taking

 hours  minutes, including breaks totaling  hours  minutes, at Tsukuba University
Club House.
January . Yasumasa Kanada on HITAC S-/ computed ,, decimal

places of π . For this, he used algorithms () and ().
. Jonathan Borwein and Peter Borwein developed the series


π

= 
∞∑
n=

(–)n(n)!
(n!)(n)!

(A + Bn)
Cn+/ ,

where

A = ,,,
√
 + ,,,,,

B = ,,,,
√
 + ,,,,,

C =
[
,(, + ,

√
)

].
Each additional term of the series adds roughly  digits.
. Dario Castellanos gave the following approximation:

π �
(
,


)/

= . . . . .

May . David Volfovich Chudnovsky (born ) and Gregory Volfovich Chud-
novsky (born ) have published hundreds of research papers and books on number
theory and mathematical physics. Gregory solved Hilbert’s tenth problem at the age of .
They on CRAY- and IBM /VF computed ,, decimal places of π .
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June . David and Gregory Chudnovsky on IBM  computed ,, dec-
imal places of π .
July . Yasumasa Kanada and Yoshiaki Tamura on HITAC S-/ computed

,, decimal places of π . For this, they used algorithm ().
August . David and Gregory Chudnovsky developed the following rapidly conver-

gent generalized hypergeometric series:


π

= 
∞∑
n=

(–)n
(n)!

(n!)(n)!
,, + ,,n

(,)n+/
. ()

Each additional termof the series adds roughly  digits. This series is an improved version
to that of Ramanujan’s (). It was used by theChudnovsky brothers to calculatemore than
one billion (to be exact ,,,) digits on IBM .
November . Yasumasa Kanada and Yoshiaki Tamura on HITAC S-/ com-

puted ,,, decimal places of π . For this, they used algorithms () and ().
August . David and Gregory Chudnovsky used a home made parallel computer

(they called it m zero, where m stands for machine, and zero for the success) to obtain
,,, decimal places of π . For this they used series ().
. David Boll discovered an occurrence of π in the Mandelbrot set fractal.
. Jonathan Borwein and Peter Borwein improved on the Salamin-Brent algorithm

(). Set a = / and s = (
√
 – )/. Iterate

rk+ =


 + ( – sk)/
,

sk+ =
rk+ – 


,

ak+ = rk+ak – k
(
rk+ – 

)
.

Then /ak converges cubically to π , i.e., each iteration approximately triples the number
of correct digits.
Among the several other known iterative schemes, we list the following two which are

easy to implement on a computer: Set a = / and s = (
√
 – ). Iterate

xn+ = /sn – ,

yn+ = (xn+ – ) + ,

zn+ =
(


xn+

(
yn+ +

√
yn+ – xn+

))/

,

an+ = snan – n
(
sn – 


+
√
sn

(
sn – sn + 

))
,

sn+ =


(zn+ + xn+/zn+ + )sn
.

Then ak converges quintically to /π , i.e., each iteration approximately quintuples the
number of correct digits, and  < an – /π <  · n · e–nπ .
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Set a = /, r = (
√
 – )/ and s = ( – r)/. Iterate

tn+ =  + rn,

un+ =
(
rn

(
 + rn + rn

))/,
vn+ = tn+ + tn+un+ + un+,

wn+ =
( + sn + sn)

vn+
,

an+ = wn+an + n–( –wn+),

sn+ =
( – rn)

(tn+ + un+)vn+
,

rn+ =
(
 – sn+

)/.
Then ak converges nonically to /π , i.e., each iteration approximately multiplies the num-
ber of correct digits by nine.
. Jonathan Borwein and Peter Borwein developed the series

√
–C

π
=

∞∑
m=

(m)!
(m)!(m!)

A +mB
Cm ,

where

A = ,,,,,,,,

+ ,,,,,,,,
√


+ 
√
(,,,,,,,,,,,,,,,

+ ,,,,,,,,,,,,,,,
√
)

/
,

B = ,,,,,,,,,

+ ,,,,,,,,,
√


+ ,,
√
,(,,,,,,,,,,,,,

+ ,,,,,,,,,,,,,
√
)

/

and

C = –,,,,, – ,,,,,
√


– ,
√
(,,,,,,,,,

+ ,,,,,,,,,
√
)

/
.

Each additional term of the series adds approximately  digits. However, computation of
this series on a computer does not seem to be easy.
May . David and Gregory Chudnovsky used a home made parallel computer m

zero to obtain ,,, decimal places of π . For this they used series ().
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June . Yasumasa Kanada and Daisuke Takahashi on HITAC S-/ (dual
CPU) computed ,,, decimal places of π . For this, they used algorithms ()
and ().
August . Yasumasa Kanada and Daisuke Takahashi on HITAC S-/ (dual

CPU) computed ,,, decimal places of π . For this, they used algorithms ()
and ().
October . Yasumasa Kanada and Daisuke Takahashi on HITAC S-/ (dual

CPU) computed ,,, decimal places of π . For this, they used algorithms ()
and ().
. David Bailey, Peter Borwein and Simon Plouffe developed the following formula

(known as BBP formula) to compute the nth hexadecimal digit (base ) of π without
having the previous n –  digits

π =
∞∑
m=


m

(


m + 
–


m + 

–


m + 
–


m + 

)
. ()

To show the validity of (), for any k < , we have

∫ /
√




xk–

 – x
dx =

∫ /
√




∞∑
m=

xk–+m dx =


k/

∞∑
m=


m(m + k)

,

therefore

∞∑
m=


m

(


m + 
–


m + 

–


m + 
–


m + 

)

=
∫ /

√





√
 – x – 

√
x – x

 – x
dx. ()

Substituting u =
√
x in equation (), we obtain

∫ 



u – 
u – u + u – 

du =
∫ 



u
u – 

du –
∫ 



u – 
u – u + 

du = π .

The discovery of this formula came as a surprise. For centuries, it had been assumed that
there was no way to compute the nth digit of π without calculating all of the preceding
n –  digits. Since this discovery, many such formulas for other irrational numbers have
been discovered. Such formulas have been called as spigot algorithms because, like water
dripping from a spigot, they produce digits that are not reused after they are calculated.
. Simon Plouffe discovered an algorithm for the computation of π in any base. Later

he expressed regrets for having shared credit for his discovery of this formula with Bailey
and Borwein.
March . David and Gregory Chudnovsky used a home made parallel computer m

zero to obtain ,,, decimal places of π . For this, they used series (). They said
‘we are looking for the appearance of some rules that will distinguish the digits of π from
other numbers, i.e., if someone were to give you a million digits from somewhere in π ,
could you tell it was fromπ? The digits ofπ form themost nearly perfect random sequence
of digits that has ever been discovered.However, each digit appears to be orderly. If a single
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digit in π were to be changed anywhere between here and infinity, the resulting number
would no longer be π , it would be garbage. Around the three-hundred-millionth decimal
place of π , the digits go -eight eights pop up in a row. Does this mean anything?
It appears to be random noise. Later, ten sixes erupt: .What does this mean?
Apparently nothing, only more noise. Somewhere past the half-million mark appears the
string . It is an accident, as it were. We do not have a good, clear, crystallized
idea of randomness. It cannot be that π is truly random. Actually, a truly random sequence
of numbers has not yet been discovered’.
. Gosper posted the following fascinating formula

lim
n→∞

n∏
m=n

π

 tan–m
= /π = . . . . .

April . Yasumasa Kanada and Daisuke Takahashi on HITACHI SR (,
CPU) computed ,,, decimal places of π . For this, they used algorithms ()
and ().
July . Yasumasa Kanada and Daisuke Takahashi on HITACHI SR (, CPU)

computed ,,, decimal places of π . The computation tool just over  hours,
at an average rate of nearly , digits per second. For this, they used algorithms ()
and ().
. Fabrice Bellard developed the following formula:

π =



∞∑
m=

(–)m

m

×
(
–



m + 
–


m + 

+


m + 
–



m + 
–



m + 
–



m + 
+


m + 

)
,

which can used to compute the nth digit of π in base . It is about % faster then ().
The following exotic formula is also due to him:

π =


,

[ ∞∑
m=

P(m)(m
m

)
m–

– ,,

]
,

where

P(m) = –,,m + ,,,m – ,,,m

+ ,,,m – ,,m + ,,.

April . Yasumasa Kanada and Daisuke Takahashi on HITACHI SR ( of 
nodes) computed ,,, decimal places of π . For this, they used algorithms ()
and ().
September . YasumasaKanada andDaisukeTakahashi onHITACHI SR/MPP

( nodes) computed ,,,, i.e.,  billion decimal places of π . For this, they
used algorithms () and ().
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. Leo Jerome Lange developed the following continued fraction of π :

π =  +


 +


 +


 +


 + · · ·

.

. J. Munkhammar gave the following formula which is related to Viéte’s ():

π = lim
n→∞n+

√√√√√
 –

√
 +

√
 +

√
 + · · · +√



n
,

which as a recurrence relation can be written as π = limn→∞ n+an, where a =
√
, and

an =

√√√√(


an–

)

+
[
 –

√
 –

(


an–

)]

.

Another closely related formula is

π =  lim
n→∞

n∑
m=

√√√√[√
 –

(
m – 
n

)

–

√
 –

(
m
n

)]

+

n

.

. Robert Palais believes that the notation π is wrongly used right from the begin-
ning. According to him, some suitable symbol (now popular as tau τ ) must have been used
for π . He justifies his claim by giving several formulas where τ appears naturally rather
than just π . For some people, June , is Tau’s Day and they celebrate.
November . Yasumasa Kanada used Machin-like formulas () and () to com-

pute the value of π to ,,,, decimal places. The calculation took more than
 hours on  nodes of a HITACHI SR/MPP supercomputer. The work was done
at the Department of Information Science at the University of Tokyo. For this, he used
arctangent formulas () and ().
. Daniel Tammet, at age , recited , decimal places of π , scoring the Euro-

pean record. For an audience at the Museum of the History of Science in Oxford, he said
these numbers aloud for  hours and  minutes. Unfortunately, he made his first mistake
at position , and did not correct this error immediately and without outside help, but
only after he was told that there was a mistake.
. Stephen K. Lucas found that

π =



–
∫ 



x( – x)( + x)
,( + x)

dx.

Several other integral formulas of this type are known, here we give the following:

π =
,,,
,,,

–
∫ 



x( – x)

( + x)
dx,
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which gives . < π . If we substitute x =  in the above integral and note
that

∫ 






x( – x) dx =


,,,,

then it follows that π < ..
November . Chao Lu, a chemistry student, at age , broke the Guiness record by

reciting π from memory to , places. For this, he practiced for  years. The attempt
lasted  hrs  min and was recorded on  video tapes. The attempt was witnessed by 
officials, math professors and  students.
. Kate Bush in the song π (in her album Aerial) sings the number to its th dec-

imal place (though she omits the th to th decimal places).
October . Akira Haraguchi a retired engineer from Chiba recited π frommemory

to , digits in September , , digits in December , , digits in July
, and , digits in October . He accomplished the last recitation in  /-
hours in Tokyo. He says memorization of the digits of π is ‘the religion of the universe’.
. Simon Plouffe found the following curious formula:

π = 
∞∑
k=


k(ekπ – )

– 
∞∑
k=


k(ekπ – )

+ 
∞∑
k=


k(ekπ – )

.

. In Midnight (tenth episode of the fourth series of British science fiction tele-
vision series Doctor Who), the character, the businesswoman, Sky Silvestry mimics
the speech of The Doctor by repeating the square root of π to  decimal places
..
. Syamal K. Sen and Ravi P. Agarwal suggested four Matlab based procedures,

viz, (i) Exhaustive search, (ii) Principal convergents of continued fraction based proce-
dure, (iii) Best rounding procedure for decimal (rational) approximation, and (iv) Contin-
ued fraction based algorithm with intermediate convergents. While the first procedure is
exponential-time, the remaining three are polynomial-time. Roughly speaking, they have
demonstrated that the absolute best k-digit rational approximation of π will be as good as
k-digit decimal approximation of π . The absolute best k-digit rational approximation is
most desired for error-free computation involving π /any other irrational number.
. Syamal K. Sen, Ravi P. Agarwal and Ghoolam A. Shaykhian have demonstrated

through numerical experiment using Matlab that π has always scored over φ (golden ra-
tio), as a source of uniformly distributed randomnumbers, statistically in one-dimensional
MonteCarlo (M.C.) integration;whetherπ fares better thanφ for double, triple andhigher
dimensional M.C. integration or not deserves exploration.
. Syamal K. Sen, Ravi P. Agarwal and Ghoolam A. Shaykhian compared the four

procedures they proposed in () for computing best k-digit rational approximations
of irrational numbers in terms of quality (error) and cost (complexity). They have stressed
on the fact that ultra-high-speed computing along with abundance of unused computing
power allows employing an exponential-time algorithm for most real-world problems.
This obviates the need for acquiring and employing themathematical knowledge involving
principal and intermediate convergents computed using a polynomial-time algorithm for
practical problems. Since π is the most used irrational number in the physical world, the
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simple conciseMatlab programwould do the job wherever π /any other irrational number
is involved.
. Syamal K. Sen, Ravi P. Agarwal and Raffela Pavani have provided, using Matlab,

the best possible rational bounds bracketing π /any irrational number with absolute er-
ror and the time complexity involved. Any better bounds are impossible. In these rational
bounds, either the lower bound or the upper bound will always be the absolute best ratio-
nal approximation. The absolute error computed provides the overall error bounds in an
error-free computational environment involving π /any other irrational number.
. Tue N. Vu has given Machin-type formula (http://seriesmathstudy.com/sms/

machintypetv): For each positive integer n,

π


= tan–

(


 + n

)
+ tan–

(


 + n

)
+
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[
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(
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)
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( + k)
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. Cetin Hakimoglu-Brown developed the following expansion:
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which can be written as
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where (x)k = x(x + )(x + ) · · · (x + k – ) is the Pochhammer notation. He also gave the
expansion
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August . Daisuke Takahashi et al. used amassive parallel computer called the TK
Tsukuba System to compute π to ,,,, decimal places in  hours  min-
utes. For this, they used algorithms () and ().
December . Fabrice Bellard used Chudnovsky brothers series () to compute

,,,,, i.e., . trillion decimal places of π in  days. For this, he used a
single desktop PC, costing less than $,.
August . Shigeru Kondo and Alexander J. Yee used Chudnovsky brothers series

() to compute ,,,,, i.e.,  trillion decimal places of π in  days. For
this, they used a server-class machine running dual Intel Xeons, equipped with  GB of
RAM.
. Michael Keith used , digits of π to establish a new form of constrained

writing, where theword lengths are required to represent the digits of π . His book contains
a collection of poetry, short stories, a play, a movie script, crossword puzzles and other
surprises.
. Syamal K. Sen and Ravi P. Agarwal in their monograph systematically organized

their work of  and  on π and other irrational numbers. They also included sev-
eral examples to illustrate the importance of their findings.
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. During the auction for Nortel’s portfolio of valuable technology patents, Google
made a series of strange bids based onmathematical and scientific constants, including π .
October . Shigeru Kondo and Alexander J. Yee used Chudnovsky brothers series

() to compute ,,,,, i.e.,  trillion decimal places of π in  days.
. Cristinel Mortici improved Gurland’s bounds () to αn < π < βn, n ≥  where
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It follows that

αn = π +O
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and βn = π +O
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. Long Lin has improved Mortici’s bounds to λn < π < μn, n≥  where
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It follows that
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He has also obtained the higher order bounds δn < π < ωn, n ≥  where
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It follows that

δn = π +O
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and μn = π +O
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Conclusions
No number system can capture π exactly. We are deeply and almost completely involved
in the conventional decimal number system in representing any real quantity. This is not
the only number system for the representation. There are other number systems such
as binary, octal, hexadecimal, binary-coded decimal, negative radix, p-adic and modular
number systems. If the circumference of a circle is exactly represented, then its diameter
will not have exact representation and vice versa.
Reading the mathematicians in pre-computer days. An important focus of this paper is

that the reader besides, however, knowing the usual chronology of the events in the life of
π , could get a feel and also read how the mind of a mathematician has been working when
he ponders over π either independently without much knowledge/concern of what has
been done in the past or with considerable knowledge of the work done by his predeces-
sors. Hyper-computers ( flops) of  were completely non-existence and even be-
yond the imagination of all the mathematicians/scientists until almost the mid-twentieth
century. Also, publication machinery was too poor until the beginning of the twentieth
century. Consequently, all the work on π that has been carried out during thousands of
years prior to the twentieth century was not a monotonic improvement in the π value
as well as in the exploration of its wonderful character. Many have worked on π stand-
alone while others have contributed with some prior knowledge of the earlier work. All
of them were severely handicapped due to the non-existence of today’s ultra-high speed
computers. They entirely depended on their ingenuity and on whatever negligible com-
puting device they had. It is really interesting under this environment to read these scien-
tists/mathematicians and realize how fortunate we are in the gigantic computer age. All
that has been done during the last  years (-) amounts tomuchmore than what
has been achieved during the past several millennia.
Matlab is well-suited to check/evaluate merits of all past π formulas. Widely used user-

friendlyMatlab that needs no formal programming knowledge alongwith the vpa (variable
precision arithmetic) and format long g commands can be used to easily and readily check
all that has been done during the past several thousand years and possibly appreciate the
inherent intellectual import of the bygone scientists (having practically no computing de-
vice) and their expected pitfalls, bias and incorrect beliefs.
Checking exactness of billions of digits of π is difficult. Are all the billions of digit of π

computed % error-free? We are familiar with the age-old proverb that ‘To err is hu-
man (living being)’. Maybe a new proverb ‘Not to err is computer (non-living being)’ can
be taken as true in the modern computer age. Here, ‘err’ means mistake. The arithmetic
operations, particularly subtraction operations of two nearly equal numbers, involved in
a formula could be sometimes error introducer. However, different computers with dif-
ferent formulas used to compute π would help verification and obviate possible error in
computation.
Computing nth decimal digit exactly always without preceding digits seems yet an open

computational problem.While probabilistically onemaydetermine the nth digit ofπ with-
out computing the preceding n–  digits, obtaining nth digit exactly (correctly) always for
any n does not seem to be possible without a large precision. It seems yet an open com-
putational problem that needs exploration. Thus, formulas such as () seem more of
theoretical/academic interest than of practical usage as of now.
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PI for testing performance and stability of a computer. Super PI is a computer program
that calculates π to a specified number of digits after decimal point up to a maximum
of  million digits. It uses the Gauss-Legendre algorithm and is a Windows port of the
program used by Yasumasa Kanada in  to compute π to  digits. Super PI is used by
many overclockers to test the performance and stability of their computers. Overclocking
is the process of making a computer run faster than the clock frequency specified by the
manufacturer by modifying system parameters.
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Rights Reserved.

Synopsis:
This paper, which appeared, appropriately enough, on Pi day (March 14, or

3/14 in North American notation) of 2014, discusses the enduring appeal of π in
both the popular media and also in serious state-of-the-art mathematical research.

The article provides a brief review of the origins of decimal arithmetic, the
original formulas found to compute π, recent formulas by Ramanujan, Salamin,
Brent and others, the BBP formula for computing binary digits of π beginning at
an arbitrary starting position, and new computer-based techniques for analyzing
the digits of π, such as the graphical techniques discussed in paper #21 of this
collection, recent results on normality and, in conclusion, a list of unanswered
questions regarding π.
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Pi Day Is Upon Us Again and We Still Do Not
Know if Pi Is Normal

David H. Bailey and Jonathan Borwein

Abstract. The digits of π have intrigued both the public and research mathematicians from
the beginning of time. This article briefly reviews the history of this venerable constant, and
then describes some recent research on the question of whether π is normal, or, in other words,
whether its digits are statistically random in a specific sense.

1. PI AND ITS DAY IN MODERN POPULAR CULTURE. The number π ,
unique among the pantheon of mathematical constants, captures the fascination both
of the public and of professional mathematicians. Algebraic constants such as

√
2 are

easier to explain and to calculate to high accuracy (e.g., using a simple Newton itera-
tion scheme). The constant e is pervasive in physics and chemistry, and even appears
in financial mathematics. Logarithms are ubiquitous in the social sciences. But none
of these other constants has ever gained much traction in the popular culture.

In contrast, we see π at every turn. In an early scene of Ang Lee’s 2012 movie
adaptation of Yann Martel’s award-winning book The Life of Pi, the title character
Piscine (“Pi”) Molitor writes hundreds of digits of the decimal expansion of π on a
blackboard to impress his teachers and schoolmates, who chant along with every digit.1

This has even led to humorous take-offs such as a 2013 Scott Hilburn cartoon entitled
“Wife of Pi,” which depicts a 4 figure seated next to a π figure, telling their marriage
counselor “He’s irrational and he goes on and on.” [22].

This attention comes to a head on March 14 of each year with the celebration of “Pi
Day,” when in the United States, with its taste for placing the day after the month, 3/14
corresponds to the best-known decimal approximation of Pi (with 3/14/15 promis-
ing a gala event in 2015). Pi Day was originally founded in 1988, the brainchild of
Larry Shaw of San Francisco’s Exploratorium (a science museum), which in turn
was founded by Frank Oppenheimer (the younger physicist brother of Robert Op-
penheimer) after he was blacklisted by the U.S. Government during the McCarthy era.

Originally a light-hearted gag where folks walked around the Exploratorium in
funny hats with pies and the like, by the turn of the century Pi Day was a major educa-
tional event in North American schools, garnering plenty of press.2 In 2009, the U.S.
House of Representatives made Pi Day celebrations official by passing a resolution
designating March 14 as “National Pi Day,” and encouraging “schools and educators
to observe the day with appropriate activities that teach students about Pi and engage
them about the study of mathematics.” [23].3

As a striking example, the March 14, 2007 New York Times crossword puzzle fea-
tured clues, where, in numerous locations, π (standing for PI) must be entered at the

http://dx.doi.org/10.4169/amer.math.monthly.121.03.191
MSC: Primary 01A99, Secondary 11Z05

1Good scholarship requires us to say that in the book Pi contents himself with drawing a circle of unit
diameter.

2Try www.google.com/trends?q=Pi+ to see the seasonal interest in ‘Pi’.
3This seems to be the first legislation on Pi to have been adopted by a government, though in the late 19th

century Indiana came embarrassingly close to legislating its value, see [12, Singmaster, Entry 27] and [14].
This MONTHLY played an odd role in that affair.
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intersection of two words. For example, 33 across “Vice president after Hubert” (an-
swer: SπRO) intersects with 34 down “Stove feature” (answer: πLOT). Indeed, 28
down, with clue “March 14, to mathematicians,” was, appropriately enough, PIDAY,
while PIPPIN is now a four-letter word. The puzzle and its solution are reprinted with
permission in [15, pp. 312–313].

π Mania in popular culture. Many instances are given in [14]. They include the
following:

1. On September 12, 2012, five aircraft armed with dot-matrix-style skywriting
technology wrote 1000 digits of π in the sky above the San Francisco Bay area
as a spectacular and costly piece of piformance art.

2. On March 14, 2012, U.S. District Court Judge Michael H. Simon dismissed a
copyright infringement suit relating to the lyrics of a song by ruling that “Pi is a
non-copyrightable fact.”

3. On the September 20, 2005 edition of the North American TV quiz show Jeop-
ardy!, in the category “By the numbers,” the clue was “‘How I want a drink,
alcoholic of course’ is often used to memorize this.” (Answer: What is Pi?).

4. On August 18, 2005, Google offered 14,159,265 “new slices of rich technology”
in their initial public stock offering. On January 29, 2013 they offered a πmillion
dollar prize for successful hacking of the Chrome Operating System on a specific
Android phone.

5. In the first 1999 Matrix movie, the lead character Neo has only 314 seconds to
enter the Source. Time noted the similarity to the digits of π .

6. The 1998 thriller “Pi” received an award for screenplay at the Sundance film fes-
tival. When the authors were sent advance access to its website, they diagnosed
it a fine hoax.

7. The May 6, 1993 edition of The Simpsons had Apu declaring “I can recite pi to
40,000 places. The last digit is 1.” This digit was supplied to the screenwriters
by one of the present authors.

8. In Carl Sagan’s 1986 book Contact, the lead character (played by Jodie Foster
in the movie) searched for patterns in the digits of π , and after her mysterious
experience sought confirmation in the base-11 expansion of π .

With regards to item #3 above, there are many such “pi-mnemonics” or “piems”
(i.e., phrases or verse whose letter count, ignoring punctuation, gives the digits of π )
in the popular press [12, 14]. Another is “Sir, I bear a rhyme excelling / In mystic force
and magic spelling / Celestial sprites elucidate / All my own striving can’t relate.” [13,
p. 106]. Some are very long [12, Keith, Entry 59, pp. 560–561].

Sometimes the attention given to π is annoying, such as when on August 14th, 2012,
the U.S. Census Office announced the population of the country had passed exactly
314,159,265. Such precision was, of course, completely unwarranted. Sometimes the
attention is breathtakingly pleasurable.4,5

Poems versus piems. While piems are fun they are usually doggerel. To redress this,
we include examples of excellent π poetry and song.6 In Figure 1 we present the much
anthologised poem “PI,” by Polish poet Wislawa Szymborska (1923–2012) who won

4See the 2013 movie at http://www.youtube.com/watch?v=Vp9zLbIE8zo.
5A comprehensive Pi Day presentation is lodged at http://www.carma.newcastle.edu.au/jon/

piday.pdf.
6See also [12, Irving Kaplansky’s “A song about Pi.”].
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the 1996 Novel prize for literature [29, p. 174]. In Figure 2 we present the lyrics of
“Pi” by the influential British singer songwriter Kate Bush [18]. The Observer review
of her 2005 collection Aerial, on which the song appears, wrote that it is

a sentimental ode to a mathematician, audacious in both subject matter and treat-
ment. The chorus is the number sung to many, many decimal places.7

The admirable number pi:
three point one four one.
All the following digits are also just a start,
five nine two because it never ends.
It can’t be grasped, six five three five, at a glance,
eight nine, by calculation,
seven nine, through imagination,
or even three two three eight in jest, or by comparison
four six to anything
two six four three in the world.
The longest snake on earth ends at thirty-odd feet.
Same goes for fairy tale snakes, though they make it a little longer.
The caravan of digits that is pi
does not stop at the edge of the page,
but runs off the table and into the air,
over the wall, a leaf, a bird’s nest, the clouds, straight into the sky,
through all the bloatedness and bottomlessness.
Oh how short, all but mouse-like is the comet’s tail!
How frail is a ray of starlight, bending in any old space!
Meanwhile two three fifteen three hundred nineteen
my phone number your shirt size
the year nineteen hundred and seventy-three sixth floor
number of inhabitants sixty-five cents
hip measurement two fingers a charade and a code,
in which we find how blithe the trostle sings!
and please remain calm,
and heaven and earth shall pass away,
but not pi, that won’t happen,
it still has an okay five,
and quite a fine eight,
and all but final seven,
prodding and prodding a plodding eternity
to last.

Figure 1. “PI,” by Wislawa Szymborska

2. PRE-DIGITAL HISTORY. π is arguably the only mathematical topic from
very early history that is still being researched today. The Babylonians used the
approximation π ≈ 3. The Egyptian Rhind Papyrus, dated roughly 1650 BCE, sug-
gests π = 32/18 = 3.16049 . . . . Early Indian mathematicians believed π =

√
10 =

3.162277 . . . . Archimedes, in the first mathematically rigorous calculation, employed
a clever iterative construction of inscribed and circumscribed polygons to establish that

3 10/71 = 3.14084 . . . < π < 3 1/7 = 3.14285 . . .
7She sings over 150 digits but errs after 50 places. The correct digits occurred with the published lyrics.
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Sweet and gentle sensitive man
With an obsessive nature and deep fascination
For numbers
And a complete infatuation with the calculation
Of PI

Oh he love, he love, he love
He does love his numbers
And they run, they run, they run him
In a great big circle
In a circle of infinity

3.1415926535 897932
3846 264 338 3279

Oh he love, he love, he love
He does love his numbers
And they run, they run, they run him
In a great big circle
In a circle of infinity
But he must, he must, he must
Put a number to it

50288419 716939937510
582319749 44 59230781
6406286208 821 4808651 32

Oh he love, he love, he love
He does love his numbers
And they run, they run, they run him
In a great big circle
In a circle of infinity

82306647 0938446095 505 8223. . .

Figure 2. “Pi,” by Kate Bush

This amazing work, done without trigonometry or floating point arithmetic, is charm-
ingly described by George Phillips [12, Entry 4].

Life after modern arithmetic. The advent of modern positional, zero-based decimal
arithmetic, most likely discovered in India prior to the fifth century [4, 27], signifi-
cantly reduced computational effort. Even though the Indo-Arabic system, as it is now
known, was introduced to Europeans first by Gerbert of Aurillac (c. 946–1003, who
became Pope Sylvester II in 999) in the 10th century, and again, in greater detail and
more successfully, by Fibonacci in the early 13th century, Europe was slow to adopt
it, hampering progress in both science and commerce. In the 16th century, prior to the
widespread adoption of decimal arithmetic, a wealthy German merchant was advised,
regarding his son’s college plans,

If you only want him to be able to cope with addition and subtraction, then
any French or German university will do. But if you are intent on your son going
on to multiplication and division—assuming that he has sufficient gifts—then
you will have to send him to Italy. [24, p. 577]

Life after calculus. Armed with decimal arithmetic and modern calculus, 17th-,
18th-, and 19th-century mathematicians computed π with aplomb. Newton recorded
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16 digits in 1665, but later admitted, “I am ashamed to tell you how many figures I
carried these computations, having no other business at the time.” In 1844 Dase, under
the guidance of Strassnitzky, computed 212 digits correctly in his head [14]. These
efforts culminated with William Shanks (1812–1882), who employed John Machin’s
formula

π

4
= 4 arctan

(
1

5

)
− arctan

(
1

239

)
, (1)

where arctan x = x − x3/3 + x5/5 − x7/7 + x9/9 − · · · , to compute 707 digits in
1874. His 1853 work to 607 places was funded by 30 subscriptions from such notables
as Rutherford, De Morgan (two copies), Herschel (Master of the Mint and son of the
astronomer) and Airy.8

Alas, only 527 digits were correct (as Ferguson found nearly a century later in 1946
using a calculator), confirming the suspicions of De Morgan at the time, who asserted
that there were too many sevens in Shanks’ published result (although the statistical
deviation was not as convincing as De Morgan thought [26]). A brief summary of this
history is shown in Table 1. We note that Sharp was a cleric, Ferguson was a school
teacher, and Dase a “kopfrechnenner.” Many original documents relating to this history
can be found in [12].

Table 1. Brief chronicle of pre-20th-century π calculations

Archimedes 250? BCE 3 3.1418 (ave.)
Liu Hui 263 5 3.14159
Tsu Ch’ung Chi 480? 7 3.1415926
Al-Kashi 1429 14
Romanus 1593 15
Van Ceulen 1615 39 (35 correct)
Newton 1665 16
Sharp 1699 71
Machin 1706 100
De Lagny 1719 127 (112 correct)
Vega 1794 140
Rutherford 1824 208 (152 correct)
Strassnitzky and Dase 1844 200
Rutherford 1853 440
Shanks 1853 607 (527 correct)
Shanks 1873 707 (527 correct)

Mathematics of Pi. Alongside these numerical developments, the mathematics be-
hind π enjoyed comparable advances. In 1761, using improper continued fractions,
Lambert [12, Entry 20] proved that π is irrational, thus establishing that the digits of
π never repeat. Then in 1882, Lindemann [12, Entry 22] proved that eα is transcen-
dental for every nonzero algebraic number α, which immediately implied that π is
transcendental (since eiπ = −1). This result settled in decisive terms the 2000-year-
old question of whether a square could be constructed with the same area as a circle,
using compass and straightedge (it cannot, because if it could then π would be a geo-
metrically constructible number and hence algebraic).

8He had originally intended to present only about 500 places, and evidently added the additional digits while
finishing the galleys a few months later [12, Entry 20]. Errors introduced in a rush to publish are not new.
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3. THE TWENTIETH CENTURY AND BEYOND. With the development of
computer technology in the 1950s and 1960s, π was computed to thousands of digits,
facilitated in part by new algorithms for performing high-precision arithmetic, notably
the usage of fast Fourier transforms to dramatically accelerate multiplication.

Ramanujan-type series for 1/π . Even more importantly, computations of π began
to employ some entirely new mathematics, such as Ramanujan’s 1914 formula

1

π
=

2
√

2

9801

∞∑
k=0

(4k)! (1103+ 26390k)

(k!)4 3964k
, (2)

each term of which produces an additional eight correct digits in the result [16]. David
and Gregory Chudnovsky employed the variant

1

π
= 12

∞∑
k=0

(−1)k(6k)! (13591409+ 545140134k)

(3k)! (k!)3 6403203k+3/2
, (3)

each term of which adds 14 correct digits. Both of these formulas rely on rather deep
number theory [14] and related modular-function theory [16].

Reduced complexity algorithms [17] for 1/π . Another key development in the mid
1970s was the Salamin–Brent algorithm [12, Entries 46 and 47] for π : Set a0 =

1, b0 = 1/
√

2, and s0 = 1/2. Then for k ≥ 1, iterate

ak =
ak−1 + bk−1

2
bk =

√
ak−1bk−1

ck = a2
k − b2

k sk = sk−1 − 2kck pk =
2a2

k

sk
. (4)

The value of pk converges quadratically to π—each iteration approximately doubles
the number of correct digits.

A related algorithm, inspired by a 1914 Ramanujan paper, was found in 1986 by
one of us and Peter Borwein [16]: Set a0 = 6 − 4

√
2 and y0 =

√
2 − 1. Then for

k ≥ 0, iterate

yk+1 =
1− (1− y4

k )
1/4

1+ (1+ y4
k )

1/4
(5)

ak+1 = ak(1+ yk+1)
4
− 22k+3yk+1(1+ yk+1 + y2

k+1).

Then ak converges quartically to 1/π—each iteration approximately quadruples the
number of correct digits. Just twenty-one iterations suffices to produce an algebraic
number that agrees with π to more than six trillion digits (provided all iterations are
performed with this precision).

With discoveries such as these, combined with prodigious improvements in com-
puter hardware (thanks to Moore’s Law) and clever use of parallelism, π was computed
to millions, then billions, and, in 2011, to 10 trillion decimal digits. A brief chronicle
of π computer-age computations is shown in Table 2.9

9It is probably unnecessary to note that the Shanks of this table is not the Shanks of Table 1.
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Table 2. Brief chronicle of computer-age π calculations

Ferguson 1945 620
Smith and Wrench 1949 1,120
Reitwiesner et al. (ENIAC) 1949 2,037
Guilloud 1959 16,167
Shanks and Wrench 1961 100,265
Guilloud and Bouyer 1973 1,001,250
Kanada, Yoshino and Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Jan. 1988 201,326,551
Kanada and Tamura Nov. 1989 1,073,741,799
David and Gregory Chudnovsky Aug. 1991 2,260,000,000
Kanada and Takahashi Apr. 1999 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada and 9 others Nov. 2002 1,241,100,000,000
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000
Kondo and Yee Oct. 2011 10,000,000,000,000

4. COMPUTING DIGITS OF π AT AN ARBITRARY STARTING POSITION.
A recent reminder of the folly of thinking that π is fully understood was the 1996
discovery of a simple scheme for computing binary or hexadecimal digits of π , begin-
ning at an arbitrary starting position, without needing to compute any of the preceding
digits. This scheme is based on the following formula, which was discovered by a
computer program implementing Ferguson’s “PSLQ” algorithm [9, 20]:

π =

∞∑
k=0

1

16k

(
4

8k + 1
−

2

8k + 4
−

1

8k + 5
−

1

8k + 6

)
. (6)

The proof of this formula (now known as the “BBP” formula for π ) is a relatively sim-
ple exercise in calculus. It is perhaps puzzling that it had not been discovered centuries
before. But then no one was looking for such a formula.

How bits are extracted. The scheme to compute digits of π beginning at an arbi-
trary starting point is best illustrated by considering the similar (and very well known)
formula for log 2:

log 2 =
∞∑
k=1

1

k2k
. (7)

Note that the binary expansion of log 2 beginning at position d + 1 is merely the frac-
tional part of 2d log 2, so that we can write (where {·} denotes fractional part):

{
2d log 2

}
=

{{
d∑

k=1

2d−k mod k

k

}
+

{
∞∑

k=d+1

2d−k

k

}}
. (8)

Now note that the numerators of the first summation can be computed very rapidly
by means of the binary algorithm for exponentiation, namely the observation, for ex-
ample, that 317 mod 10 = ((((32 mod 10)2 mod 10)2 mod 10)2 mod 10) · 3 mod 10.
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This same approach can be used to compute binary or hexadecimal digits of π us-
ing (6).

This scheme has been implemented to compute hexadecimal digits of π begin-
ning at stratospherically high positions. In July 2010, for example, Tsz-Wo Sze
of Yahoo! Cloud Computing computed base-16 digits of π beginning at position
2.5× 1014. Then on March 14 (Pi Day), 2013, Ed Karrels of Santa Clara University
computed 26 base-16 digits beginning at position one quadrillion [25]. His result:
8353CB3F7F0C9ACCFA9AA215F2.

Beyond utility. Certainly, there is no need for computing π to millions or billions of
digits in practical scientific or engineering work. A value of π to 40 digits is more than
enough to compute the circumference of the Milky Way galaxy to an error less than
the size of a proton. There are certain scientific calculations that require intermediate
calculations to be performed to higher than standard 16-digit precision (typically 32 or
64 digits may be required) [3], and certain computations in the field of experimental
mathematics have required as high as 50,000 digits [6], but we are not aware of any
“practical” applications beyond this level.

Computations of digits of π are, however, excellent tests of computer integrity—
if even a single error occurs during a large computation, almost certainly the final
result will be in error, resulting in disagreement with a check calculation done with
a different algorithm. For example, in 1986, a pair of π -calculating programs using
(4) and (5) detected some obscure hardware problems in one of the original Cray-
2 supercomputers.10 Also, some early research into efficient implementations of the
fast Fourier transform on modern computer architectures had their origins in efforts to
accelerate computations of π [2].

5. NEWTECHNIQUES TO EXPLORENORMALITY ANDRELATED PROP-
ERTIES. Given an integer b ≥ 2, a real number α is said to be b-normal or normal
base b if every m-long string of base-b digits appears in the base-b expansion of α
with limiting frequency 1/bm . It is easy to show via measure theory that almost all real
numbers are b-normal for every b ≥ 2 (a condition known as absolute normality), but
establishing normality for specific numbers has proven to be very difficult.

In particular, no one has been able to establish that π is b-normal for any integer b,
much less for all bases simultaneously. It is a premier example of an intriguing mathe-
matical question that has occurred to countless schoolchildren as well as professional
mathematicians through the ages, but which has defied definitive answer to the present
day. A proof for any specific base would not only be of great interest worldwide, but
would also have potential practical application as a provably effective pseudorandom
number generator. This ignorance extends to other classical constants of mathematics,
including e, log 2,

√
2, and γ (Euler’s constant). Borel conjectured that all irrational

algebraic numbers are absolutely normal, but this has not been proven in even a single
instance, to any base.

Two examples where normality has been established are Champernowne’s number
C10 = 0.12345678910111213 . . . (constructed by concatenating the positive integers),
which is provably 10-normal, and Stoneham’s number α2,3 =

∑
k≥0 1/(3k23k ), which

is provably 2-normal—see below [10, 11, 28]. One relatively weak result for algebraic
numbers is that the number of 1-bits in the binary expansion of a degree-D algebraic
number α must exceed Cn1/D for all sufficiently large n, for a positive number C that

10Cray’s own tests did not find these errors. After that, these π algorithms were included in Cray’s test suite
in the factory.
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depends on α [8]. Thus, for example, the number of 1-bits in the first n bits of the
binary expansion of

√
2 must exceed

√
n.

In spite of these intriguing developments, it is clear that more powerful techniques
must be brought to bear on the question of normality, either for π or other well-known
constants of mathematics, before significant progress can be achieved. Along this line,
modern computer technology suggests several avenues of research.

Statistical analysis. One approach is simply to perform large-scale statistical analyses
on the digits of π , as has been done, to some degree, on nearly all computations since
ENIAC. In [7], for example, the authors empirically tested the normality of its first
roughly four trillion hexadecimal (base-16) digits using a Poisson process model, and
concluded that, according to this test, it is “extraordinarily unlikely” that π is not 16-
normal (of course, this result does not pretend to be a proof).

Graphical representations. Another fruitful approach is to display the digits of π or
other constants graphically, cast as a random walk [1]. For example, Figure 3 shows a
walk based on one million base-4 pseudorandom digits, where at each step the graph
moves one unit east, north, west, or south, depending on the whether the pseudoran-
dom iterate at that position is 0, 1, 2, or 3. The color indicates the path followed by the
walk—shifted up the spectrum (red-orange-yellow-green-cyan-blue-purple-red) fol-
lowing an HSV scheme with S and V equal to one. The HSV (hue, saturation, and
value) model is a cylindrical-coordinate representation that yields a rainbow-like range
of colors.

Figure 3. A uniform pseudorandom walk

Figure 4 shows a walk on the first 100 billion base-4 digits of π . This may be viewed
dynamically in more detail online at http://gigapan.org/gigapans/106803,
where the full-sized image has a resolution of 372,224×290,218 pixels (108.03 billion
pixels in total). This is one of the largest mathematical images ever produced and,
needless to say, its production was by no means easy [1].
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Figure 4. A walk on the first 100 billion base-4 digits of π

Although no clear inference regarding the normality of π can be drawn from these
figures, it is plausible that π is 4-normal (and thus 2-normal), since the overall ap-
pearance of its graph is similar to that of the graph of the pseudorandomly generated
base-4 digits.

The Champernowne numbers. We should emphasize what a poor surrogate for ran-
domness the notion of normality actually is. The base-b Champernowne number, Cb, is
formed by concatenating the natural numbers base b as a floating-point number in that
base. It was the first type of number proven to be normal and fails stronger normality
tests [1]. Thus,

Cb :=

∞∑
k=1

∑bk−1
m=bk−1 mb−k

[
m−(bk−1

−1)
]

b
∑k−1

m=0 m(b − 1)bm−1

C10 = 0.123456789101112 . . .

C4 = 0.1231011121320212223 . . .4 . (9)

In Figure 5 we show how far from random a walk on a normal number may be—
pictorially or by many quantitative measures—as illustrated by C4.11

Stoneham numbers. This same tool can be employed to study the digits of Stone-
ham’s constant, namely

α2,3 =

∞∑
k=0

1

3k23k
. (10)

This constant is one of the few that is provably 2-normal (and thus 2n-normal, for every
positive integer n) [10, 11, 28]. What’s more, it is provably not 6-normal, so that it is

11The subscript four denotes a base-four representation.
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Figure 5. A walk on Champernowne’s base-4 number

an explicit example of the fact that normality in one base does not imply normality
in another base [5]. For other number bases, including base 3, its normality is not yet
known one way or the other.

Figures 6, 7, and 8 show walks generated from the base-3, base-4, and base-6 digit
expansions, respectively, of α2,3. The base-4 digits are graphed using the same scheme
mentioned above, with each step moving east, north, west, or south, according to
whether the digit is 0, 1, 2, or 3. The base-3 graph is generated by moving unit dis-
tance at an angle 0, π/3, or 2π/3, respectively, for 0, 1, or 2. Similarly, the base-6
graph is generated by moving unit distance at angle kπ/6 for k = 0, 1, . . . , 5.

Figure 6. A walk on the base-3 digits of Stoneham’s constant (α2,3)
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Figure 7. A walk on the provably normal base-4 digits of Stoneham’s constant (α2,3)

Figure 8. A walk on the abnormal base-6 digits of Stoneham’s constant (α2,3)

From these three figures, it is clear that while the base-3 and base-4 graphs appear
to be plausibly random (since they are similar in overall structure to Figures 3 and 4),
the base-6 walk is vastly different, mostly a horizontal line. Indeed, we discovered the
fact that α2,3 fails to be 6-normal by a similar empirical analysis of the base-6 digits—
there are long stretches of zeroes in the base-6 expansion [5]. Results of this type are
given in [1] for numerous other constants besides π , both “man-made” and “natural.”

Such results certainly do not constitute formal proofs, but they do suggest, of-
ten in dramatic form, as we have seen, that certain constants are not normal, and
can further be used to bound statistical measures of randomness. For example, re-
markable structure was uncovered in the normal Stoneham numbers [1]. Moreover,
many related quantitative measures of random walks were examined, as were other
graphical representations. Much related information, including animations, is stored at
http://carma.newcastle.edu.au/walks/.

6. OTHER UNANSWERED QUESTIONS.

Mathematical questions. There are, of course, numerous other unanswered mathe-
matical questions that can be posed about π .

1. Are the continued fraction terms of π bounded or unbounded? The continued
fraction expansion provides information regarding how accurately π can be writ-
ten as a fraction.
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2. Is the limiting fraction of zeroes in the binary expansion of π precisely 1/2?
Is the limiting fraction of zeroes in the decimal expansion precisely 1/10? We
do not know the answers to these questions even for simple algebraic constants
such as

√
2, much less π .

3. Are there infinitely many ones in the ternary expansion of π? Are there infinitely
many sevens in the decimal expansion of π? Sadly, we cannot definitively an-
swer such basic questions one way or the other.

Meta-mathematical questions. For that matter, there are numerous historical ques-
tions that are worth asking, if only rhetorically.

1. Why was π not known more accurately in ancient times? It could have been
known to at least two-digit accuracy by making careful measurements with
a rope.

2. Why did Archimedes, in spite of his astonishing brilliance in geometry and cal-
culus, fail to grasp the notion of positional, zero-based decimal arithmetic? This
would have greatly facilitated his computations (and likely would have changed
history as well).

3. Why did Indian mathematicians fail to extend their system of decimal arithmetic
for integers to decimal fractions? Decimal fraction notation was first developed
in the Arabic world in the 12th century. They managed by scaling their results,
but missed the obvious.

4. Why did Gauss and Ramanujan fail to exploit their respective identities for π?
After all, the Salamin-Brent quadratically convergent algorithm for π is derived
directly from some identities of Gauss, and other algorithms for π follow from
(then largely unproven) formulas of Ramanujan. For that matter, why was the
notion of an algorithm, fundamental in our computer age, so foreign to their
way of thinking?

5. Why did centuries of mathematicians fail to find the BBP formula for π , namely
formula (6), not to mention the associated “trick” for computing digits at an
arbitrary starting position? After all, as mentioned above, it can be proven in just
a few steps with freshman-level calculus.

In any event, it is clear that modern computer technology has changed the game for
π . Modern systems are literally billions of times faster and more capacious than their
predecessors when the present authors began their careers, and advances in software
(such as fast Fourier transforms for high-precision numerical computation and sym-
bolic computing facilities for algebraic manipulations) have improved computational
productivity just as much as hardware improvements.

And computers are no longer merely passive creatures. A computer program dis-
covered the BBP formula for π , as well as similar formulas for numerous other
constants. Other formulas for π have been discovered by computer in a similar way,
using high-precision implementations of the PSLQ algorithm or related integer rela-
tion algorithms.

Two unproven facts. In some of these cases, such as the following two formulas,
proofs remain elusive:
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4

π 3

?
=

∞∑
k=0

r 7(k)
(
1+ 14k + 76k2

+ 168k3
)

82k+1
, (11)

2048

π 4

?
=

∞∑
k−0

( 1
4 )k (

1
2 )

7
k (

3
4 )k

(1)9k 212k

(
21+ 466k + 4340k2

+ 20632k3
+ 43680k4

)
, (12)

where, in the first (due to Gourevich in 2001), r(k) = 1/2 · 3/4 · · · · · (2k − 1)/(2k),
and, in the second (due to Cullen in 2010), the notation (x)n = x(x + 1)(x +
1) · · · (x + n − 1) is the Pochhammer symbol.

7. CONCLUSION. The mathematical constant π has intrigued both the public and
professional mathematicians for millennia. Countless facts have been discovered about
π and published in the mathematical literature. But, as we have seen, much misunder-
standing abounds. We must also warn the innocent reader to beware of mathematical
terrorists masquerading as nice people, in their evil attempt to replace π by τ = 2π
(which is pointless in any event, since the binary expansion of τ is the same as π ,
except for a shift of the decimal point).12

Yet there are still very basic questions that remain unanswered, among them
whether (and why) π is normal to any base. Indeed, why do the basic algorithms
of arithmetic, implemented to compute constants such as π , produce such random-
looking results? And can we reliably exploit these randomness-producing features for
benefit, say, as commercial-quality pseudorandom number generators?

Other challenges remain as well. But the advent of the computer might at last give
humankind the power to answer some of them. Will computers one day be smarter than
human mathematicians? Probably not any time soon, but for now they are remarkably
pleasant research assistants.
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Haiku 2:57

I will come to bed
when all three numbers in the

clock are prime . . . again.

—Submitted by Terry Trowbridge
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Synopsis:
This paper presents the panorama of π through the ages, with a brief summary

of π from Archimedes and others of antiquity to Renaissance times and finally to
the computer age. Significant mathematical detail is provided, including a reprise
of Ivan Niven’s 1947 elegant proof that π is irrational, numerous formulas that
have been used to compute π, quadratically convergent algorithms for π, the BBP
formula and algorithm for π and various curiosities, such as the fact that

∫ t

0

(1− x)4x4

1 + x2
dx =

t7

7
− 2t6

3
+ t5 − 4t3

3
+ 4t− 4 arctan t,

from which one can prove the age-old approximation

0 <

∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
π.
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1 Preamble: π and Popular Culture

The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π,
the ratio of the circumference of a circle to its diameter, has challenged mathematicians–great and less great—for
many centuries. It has also, especially recently, provided compelling examples of computational mathematics.
π, uniquely in mathematics, is pervasive in popular culture and the popular imagination.

I shall intersperse this largely chronological account of π’s mathematical status with examples of its ubiquity.
More details will be found in the selected references at the end of the chapter—especially in Pi: a Source Book
[9]. In [9] all material not otherwise referenced may be followed up upon, as may much other material, both
serious and fanciful. Other interesting material is to be found in [21], which includes attractive discussions of
topics such as continued fractions and elliptic integrals.

Fascination with π is evidenced by the many recent popular books, television shows, and movies—even
perfume—that have mentioned π. In the 1967 Star Trek episode “Wolf in the Fold,” Kirk asks “Aren’t there
some mathematical problems that simply can’t be solved?” And Spock ‘fries the brains’ of a rogue computer by
telling it: “Compute to the last digit the value of Pi.” (Figure 1 illustrates how much more is now known, see
also http://carma.newcastle.edu.au/piwalk.shtml.) The May 6, 1993 episode of The Simpsons has the
character Apu boast “I can recite pi to 40,000 places. The last digit is one.”

In November 1996, MSNBC aired a Thanksgiving Day segment about π, including that scene from Star
Trek and interviews with the present author and several other mathematicians at Simon Fraser University. The
1997 movie Contact, starring Jodie Foster, was based on the 1986 novel by noted astronomer Carl Sagan. In
the book, the lead character searched for patterns in the digits of π, and after her mysterious experience found
confirmation—that the universe had meaning— in the base-11 expansion of π. The 1997 book The Joy of Pi [11]
has sold many thousands of copies and continues to sell well. The 1998 movie entitled Pi began with decimal
digits of π displayed on the screen. And in the 2003 movie Matrix Reloaded, the Key Maker warns that a door
will be accessible for exactly 314 seconds, a number that Time speculated was a reference to π.

As a striking example, imagine the following excerpt from Yann Mandel’s 2002 Booker Prize winning novel
Life of Pi being written about any other transcendental number:

“My name is

Piscine Molitor Patel

known to all as Pi Patel.

For good measure I added
π = 3.14

and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of
geometry.”

Equally, National Public Radio reported on April 12, 2003 that novelty automatic teller machine withdrawal
slips, showing a balance of $314, 159.26, were hot in New York City. One could jot a note on the back and,

1This paper is an updated and revised version of [13] and is made with permission of the editor.
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apparently innocently, let the intended target be impressed by one’s healthy saving account. Scott Simon, the
host, noted the close resemblance to π. Correspondingly, according to the New York Times of August 18 2005,
Google offered exactly “14, 159, 265 New Slices of Rich Technology” as the number of shares in its then new
stock offering. Likewise, March 14 in North America has become π Day, since in the USA the month is written
before the day (‘314’). In schools throughout North America, it has become a reason for mathematics projects,
especially focussing on π.

In another sign of true legitimacy, on March 14, 2007 the New York Times published a crossword in which
to solve the puzzle, one had first to note that the clue for 28 down was “March 14, to Mathematicians,” to
which the answer is piday. Moreover, roughly a dozen other characters in the puzzle are pi—for example, the
clue for 5 down was “More pleased” with the six character answer hapπer. The puzzle is reproduced in [14].

Other and more recent examples—including the US Congressional House Resolution 224 designating of
National Pi Day in 2009—may be found at http://www.carma.newcastle.edu.au/jon/piday.pdf which is
annually updated.

It is hard to imagine e, γ or log 2 playing the same role. A corresponding scientific example [4, p. 11] is

“A coded message, for example, might represent gibberish to one person and valuable information to
another. Consider the number 14159265... Depending on your prior knowledge, or lack thereof, it is
either a meaningless random sequence of digits, or else the fractional part of pi, an important piece
of scientific information.”

Again, a scientist can use π confident that it is part of shared societal knowledge—even if when pressed his
definition might not be as good as Pi’s.

For those who know The Hitchhiker’s Guide to the Galaxy, it is amusing that 042 occurs at the digits ending
at the fifty-billionth decimal place in each of π and 1/π—thereby providing an excellent answer to the ultimate
question of ‘life, the universe and everything‘, which was “What is forty two?” A more intellectual offering is
“The Deconstruction of Pi” given by Umberto Eco on page three of his 1988 book Foucault’s Pendulum, [9, p.
658]. The title says it all.

Pi. Our central character
π = 3.14159265358979323 . . .

is traditionally defined in terms of the area or perimeter of a unit circle, but see Figure 4 where the subtlety
of showing the two are the same is illustrated. The notation of π itself was introduced by William Jones in
1737, replacing ‘p’ and the like, and was popularized by Leonhard Euler who is responsible for much modern
nomenclature. A more formal modern definition of π uses the first positive zero of the sine function defined as
a power series. The first thousand decimal digits of π are recorded in Figure 2.

Despite continuing rumours to the contrary, π is not equal to 22/7 (see End Note 1). Of course 22/7 is one
of the early continued fraction approximations to π. The first six convergents are

3,
22

7
,
333

106
,
355

113
,
103993

33102
,
104348

33215
.

The convergents are necessarily good rational approximations to π. The sixth differs from π by only 3.31 10−10.
The corresponding simple continued fraction starts

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, . . .],

using the standard concise notation. This continued fraction is still very poorly understood. Compare that for
e which starts

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, . . .].

2
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Figure 1: A 100 billion step planar walk on the binary digits of π. Colors change from red and orange to violet
and indigo as we proceed (snapshot taken from image in [1])

3 . 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196

4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273

7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094

3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912

9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132

0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235

4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859

5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303

59825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893

Figure 2: 1,001 Decimal digits of π with the ‘3’ included

Figure 3: A pictorial proof of Archimedes’ inequalities

3
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Figure 4: Construction showing uniqueness of π, taken from Archimedes’ Measurement of a Circle

A proof of this observation shows that e is not a quadratic irrational since such numbers have eventually periodic
continued fractions.

Archimedes’ famous computation discussed below is:

3
10

71
< π < 3

10

70
.(1)

Figure 3 shows this estimate graphically, with the digits shaded modulo ten; one sees structure in 22/7, less
obviously in 223/71, and presumptively not in π.

2 The Childhood of π

Four thousand years ago, the Babylonians used, among other values, the approximation 31
8 = 3.125. Then,

or earlier, according to ancient papyri, Egyptians assumed a circle with diameter nine has the same area as a
square of side eight, which implies π = 256/81 = 3.1604 . . . . Some have argued that the ancient Hebrews were
satisfied with π = 3:

“Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits
the height thereof; and a line of thirty cubits did compass it round about.” (I Kings 7:23; see also 2
Chronicles 4:2)

One should know that the cubit was a personal not universal measurement. In Judaism’s further defense,
several millennia later, the great Rabbi Moses ben Maimon Maimonedes (1135–1204), also known as the RaM-
BaM, is translated by Langermann, in “The ‘true perplexity’ [9, p. 753] as fairly clearly asserting the irrational
nature of π:

4
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“You ought to know that the ratio of the diameter of the circle to its circumference is unknown, nor
will it ever be possible to express it precisely. This is not due to any shortcoming of knowledge on
our part, as the ignorant think. Rather, this matter is unknown due to its nature, and its discovery
will never be attained.” (Maimonedes)

In each of these three cases the interest of the civilization in π was primarily in the practical needs of
engineering, astronomy, water management and the like. With the Greeks, as with the Hindus, interest was
centrally metaphysical and geometric.

Archimedes and π. Around 250 BCE, Archimedes of Syracuse (287–212 BCE) is thought to be the first to
show that the “two possible Pi’s” are the same. Clearly for a circle of radius r and diameter d, Area= π1 r

2

while Perimeter = π2 d, but that π1 = π2 is not obvious, and is often overlooked. Figure 4. reproduces his
proof (construction) showing the coincidence of the two constants.

Archimedes’ Method. The first rigorous mathematical calculation of π was also due to Archimedes, who
used a brilliant scheme based on doubling inscribed and circumscribed polygons

6 7→ 12 7→ 24 7→ 48 7→ 96

and computing the perimeters to obtain the bounds 310
71 < π < 3 1

7 , that we have recapitulated above. The
case of 6-gons and 12-gons is shown in Figure 5; for n = 48 one already ‘sees’ near-circles. Arguably no
computational mathematics approached this level of rigour again until the 19th century. Phillips [9, pp. 15-19]
calls Archimedes the ‘first numerical analyst’.

Archimedes’ scheme constitutes the first true algorithm for π, in that it is capable of producing an arbitrarily
accurate value for π. It also represents the birth of numerical and error analysis—all without positional notation
or modern trigonometry. As discovered severally in the 19th century, this scheme can be stated as a simple,
numerically stable, recursion, as follows [15].

Archimedean Mean Iteration (Pfaff-Borchardt-Schwab). Set a0 = 2
√
3 and b0 = 3—the values for

circumscribed and inscribed 6-gons. Then define

an+1 =
2anbn
an + bn

(H) bn+1 =
√
an+1bn (G).(2)

This converges to π, with the error decreasing by a factor of four with each iteration. In this case the error is
easy to estimate, the limit somewhat less accessible but still reasonably easy [14, 15].

Variations of Archimedes’ geometrical scheme were the basis for all high-accuracy calculations of π for the
next 1800 years—well beyond its ‘best before’ date. For example, in fifth century CE China, Tsu Chung-Chih
used a variation of this method to get π correct to seven digits. A millennium later, al-Kāsh̄i in Samarkand
“who could calculate as eagles can fly” obtained 2π in sexagecimal:

2π ≈ 6 +
16

601
+

59

602
+

28

603
+

01

604
+

34

605
+

51

606
+

46

607
+

14

608
+

50

609
,

good to 16 decimal places (using 3·228-gons). This is a personal favourite; reentering it in my computer centuries
later and getting the predicted answer gave me horripilation (‘goose-bumps’).

3 Pre-calculus Era π Calculations

In Figures 6, 8, and 11 we chronicle the main computational records during the indicated period, only com-
menting on signal entries.

5
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Figure 5: Archimedes’ method of computing π with 6- and 12-gons

Little progress was made in Europe during the ‘dark ages’, but a significant advance arose in India (450 CE):
modern positional, zero-based decimal arithmetic—the “Indo-Arabic” system. This greatly enhanced arithmetic
in general, and computing π in particular. The Indo-Arabic system arrived with the Moors in Europe around
1000 CE. Resistance ranged from accountants who feared losing their livelihood to clerics who saw the system
as ‘diabolical’—they incorrectly assumed its origin was Islamic. European commerce resisted into the 18th
century, and even in scientific circles usage was limited until the 17th century. This is, of course a greatly
simplified version of extraordinary events, for a recent article on the matter see [6].

The prior difficulty of doing arithmetic is indicated by college placement advice given a wealthy German
merchant in the 16th century:

“A wealthy (15th Century) German merchant, seeking to provide his son with a good business edu-
cation, consulted a learned man as to which European institution offered the best training. ‘If you
only want him to be able to cope with addition and subtraction,’ the expert replied, ’then any French
or German university will do. But if you are intent on your son going on to multiplication and
division—assuming that he has sufficient gifts—then you will have to send him to Italy.’” (George
Ifrah, [14])

Discussions about Roman arithmetic continue. Claude Shannon (1916–2001) had a mechanical calculator
wryly called Throback 1 built to compute in Roman, at Bell Labs in 1953 to show that it was practicable, if a
tad messy, to compute using Roman numerals!

Ludolph van Ceulen (1540–1610). The last great Archimedean calculation, performed by van Ceulen using
262-gons—to 39 places with 35 correct—was published posthumously. The number is still called Ludolph’s
number in parts of Europe and was inscribed on his head-stone. This head-stone disappeared centuries ago but
was rebuilt, in part from surviving descriptions, recently as shown in Figure 7. It was reconsecrated on July
5th 2000 with Dutch royalty in attendance. Ludolph van Ceulen, a very serious mathematician, was also the
discoverer of the double angle formula for the cosine.

6
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Name Year Digits
Babylonians 2000? BCE 1
Egyptians 2000? BCE 1
Hebrews (1 Kings 7:23) 550? BCE 1
Archimedes 250? BCE 3
Ptolemy 150 3
Liu Hui 263 5
Tsu Ch’ung Chi 480? 7
Al-Kashi 1429 14
Romanus 1593 15
van Ceulen (Ludolph’s number∗) 1615 35

Figure 6: Pre-calculus π Calculations

4 Pi’s Adolescence

François Viéte (1540–1603). The dawn of modern mathematics appears in Viéte’s or Viéta’s product (1579)

2

π
=

√
2

2

√
2 +
√
2

2

√
2 +

√
2 +
√
2

2
· · ·

considered to be the first truly infinite product; and in the first infinite continued fraction for 2/π given by Lord
Brouncker (1620–1684), first President of the Royal Society of London:

2

π
=

1

1 +
9

2 +
25

2 +
49

2 + · · ·

.

This was based on the following brilliantly ‘interpolated’ product of John Wallis2 (1616–1703):

∞∏

k=1

4k2 − 1

4k2
=

2

π
,(3)

which led to the discovery of the Gamma function (see End Note 2) and a great deal more. Variations on these
formulas of Vı́ete and Wallis continue to be published.

A flavour of Viéte’s writings can be gleaned in this quotation from his work, first given in English in [9, p.
759]. What we now take for granted was reason for much passionate argument.

“Arithmetic is absolutely as much science as geometry [is]. Rational magnitudes are conveniently
designated by rational numbers, and irrational [magnitudes] by irrational [numbers]. If someone
measures magnitudes with numbers and by his calculation get them different from what they really
are, it is not the reckoning’s fault but the reckoner’s.

Rather, says Proclus, arithmetic is more exact than geometry.3 To an accurate calculator,
if the diameter is set to one unit, the circumference of the inscribed dodecagon will be the side of the
binomial [i.e. square root of the difference] 72−

√
3888. Whosoever declares any other result, will be

mistaken, either the geometer in his measurements or the calculator in his numbers.” (Viéte)

2One of the few mathematicians whom Newton admitted respecting, and also a calculating prodigy!
3The capitalized phrase was written in Greek.
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Figure 7: Ludolph’s rebuilt tombstone in Leiden

This fluent rendition is due to Marinus Taisbak, and the full text is worth reading. It certainly underlines how
influential an algebraist and geometer Viéte was—as an early proponent of methods we now take for granted.
Viéte, who was the first to introduce literals (‘x’ and ‘y’) into algebra, nonetheless rejected the use of negative
numbers.

Leonard Euler (1707–1783). Not surprisingly the great Euler ‘master of us all’ [20] made many contributions
to the literature on π. Equation (3) may be derived from Euler’s product formula for π, given below in

(4), with x = 1/2, or by repeatedly integrating
∫ π/2

0
sin2n(t) dt by parts. One may divine (4) as Euler did

by considering sin(πx) as an ‘infinite’ polynomial and obtaining a product in terms of the roots—which are
0, {1/n2 : n = ±1,±2, · · · }. It is thus plausible that

sin(π x)

x
= c

∞∏

n=1

(
1− x2

n2

)
.(4)

Euler in 1735, full well knowing that the whole argument was heuristic, argued that, as with a polynomial,
c was the value at zero, 1, and the coefficient of x2 in the Taylor series must be the sum of the roots. Hence, he
was able to pick off coefficients to evaluate the zeta-function at two:

ζ(m) :=
∑

n≥1

1

nm
and marvellously ζ(2) =

π2

6
.

The explicit formula for ζ(2) solved the so called Basel problem posed in 1644. This method also leads to the
evaluation of ζ(2n) as a rational multiple of π2n:

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, . . .

Indeed, it produces:

ζ(2m) = (−1)m−1 (2π)
2m

2 (2m)!
B2m,

in terms of the Bernoulli numbers, Bn, where t/(exp(t) − 1) =
∑

n≥0 Bnt
n/n!, gives a generating function for

the Bn which are perforce rational; see also [28].

8

452 24. THE LIFE OF π (2014)



Much less is known about odd integer values of ζ, though they are almost certainly not rational multiples of
powers of π. More than two centuries later, in 1976 Roger Apéry, [9, p. 439], [15], showed ζ(3) to be irrational,
and we now also can prove that at least one of ζ(5), ζ(7), ζ(9) or ζ(11) is irrational, but we cannot guarantee
which one. All positive integer values of ζ are strongly believed to be irrational. Though it is not relevant to
our story, Euler’s work on the zeta-function also lead ultimately to the celebrated Riemann hypothesis [14].

5 Pi’s Adult Life with Calculus

In the later 17th century, Newton and Leibniz founded the calculus, and this powerful tool was quickly exploited
to find new formulae for π. One early calculus-based formula comes from the integral:

tan−1 x =

∫ x

0

dt

1 + t2
=

∫ x

0

(1− t2 + t4 − t6 + · · · ) dt

= x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · ·

Substituting x = 1 formally proves the well-known Gregory-Leibniz formula (1671–74)

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·(5)

James Gregory (1638–75) was the greatest of a large Scottish mathematical family. The point, x = 1, however,
is on the boundary of the interval of convergence of the series. Justifying substitution requires a careful error
estimate for the remainder or Lebesgue’s monotone convergence theorem, but most introductory texts ignore
the issue, as they do the issue of Figure 4. The arctan integral and series was known centuries earlier to the
Kerala school: identified with Madhava (c. 1350 – c. 1425) of Sangamagrama near Kerala, India, who may well
have computed 13 digits of π by methods similar to those described in the next section.

A Curious Anomaly in the Gregory Series. In 1988, it was observed that Gregory’s series for π,

π = 4
∞∑

k=1

(−1)k+1

2k − 1
= 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·

)
(6)

when truncated to 5,000,000 terms, differs strangely from the true value of π:

3.14159245358979323846464338327950278419716939938730582097494182

230781640...

3.14159265358979323846264338327950288419716939937510582097494459

230781640...

2 -2 10 -122 2770

Values differ as expected from truncating an alternating series, in the seventh place—a “4” which should be a
“6.” But the next 13 digits are correct, and after another blip, for 12 digits. Of the first 46 digits, only four differ
from the corresponding digits of π. Further, the “error” digits seemingly occur with a period of 14, as shown
above. Such anomalous behavior begs for explanation. A great place to start is by using Neil Sloane’s Internet-
based integer sequence recognition tool, available at www.research.att.com/~njas/sequences. This tool has
no difficulty recognizing the sequence of errors as twice Euler numbers. Even Euler numbers are generated by
secx =

∑∞
k=0(−1)kE2kx

2k/(2k)!. The first few are 1,−1, 5,−61, 1385,−50521, 2702765. This discovery led to
the following asymptotic expansion:

π

2
− 2

N/2∑

k=1

(−1)k+1

2k − 1
≈

∞∑

m=0

E2m

N2m+1
.(7)
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Name Year Correct Digits
Sharp (and Halley) 1699 71
Machin 1706 100
Strassnitzky and Dase 1844 200
Rutherford 1853 440
Shanks 1874 (707) 527
Ferguson (Calculator) 1947 808
Reitwiesner et al. (ENIAC) 1949 2,037
Genuys 1958 10,000
Shanks and Wrench 1961 100,265
Guilloud and Bouyer 1973 1,001,250

Figure 8: Calculus π Calculations

Now the genesis of the anomaly is clear: by chance the series had been truncated at 5,000,000 terms—exactly
one-half of a fairly large power of ten. Indeed, setting N = 10, 000, 000 in Equation (7) shows that the first
hundred or so digits of the truncated series value are small perturbations of the correct decimal expansion for
π. And the asymptotic expansions show up on the computer screen, as we observed above.

On a hexadecimal computer with N = 167 the corresponding strings and hex-errors are:

3.243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C8

9452821E...

3.243F6A6885A308D31319AA2E03707344A3693822299F31D7A82EFA98EC4DBF6

9452821E...

2 -2 A -7A 2AD2

with the first being the correct value of π. (In hexadecimal or hex one uses ‘A,B, . . ., F’ to write 10 through 15
as single ‘hex-digits’.) Similar phenomena occur for other constants. (See [9].) Also, knowing the errors means
we can correct them and use (7) to make Gregory’s formula computationally tractable, notwithstanding the
following discussion of complexity!

6 Calculus Era π Calculations

Used naively, the beautiful formula (5) is computationally useless—so slow that hundreds of terms are needed
to compute two digits. Sharp, under the direction of Halley4, (see Figure 8) actually used tan−1(1/

√
3) which

is geometrically convergent. Moreover, Euler’s (1738) trigonometric identity

tan−1 (1) = tan−1

(
1

2

)
+ tan−1

(
1

3

)
(8)

produces the geometrically convergent rational series

π

4
=

1

2
− 1

3 · 23 +
1

5 · 25 −
1

7 · 27 + · · ·+ 1

3
− 1

3 · 33 +
1

5 · 35 −
1

7 · 37 + · · ·(9)

An even faster formula, found earlier by John Machin, lies similarly in the identity

π

4
= 4 tan−1

(
1

5

)
− tan−1

(
1

239

)
.(10)

4The astronomer and mathematician who largely built the Greenwich Observatory and after whom the comet is named.
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Figure 9: Newton’s method of computing Pi: “I am ashamed to tell you to how many figures I carried these
computations, having no other business at the time.” Issac Newton, 1666.

This was used in numerous computations of π, given in Figure 8, starting in 1706 and culminating with
Shanks’ famous computation of π to 707 decimal digits accuracy in 1873 (although it was found in 1945 to
be wrong after the 527-th decimal place, by Ferguson, during the last adding machine-assisted pre-computer
computations5).

Newton’s arcsin computation. Newton discovered a different more effective—actually a disguised arcsin—
formula. He considering the area A of the left-most region shown in Figure 9. Now, A is the integral

A =

∫ 1/4

0

√
x− x2 dx.(11)

Also, A is the area of the circular sector, π/24, less the area of the triangle,
√
3/32. Newton used his newly

developed binomial theorem in (11):

A =

∫ 1
4

0

x1/2(1− x)1/2 dx =

∫ 1
4

0

x1/2

(
1− x

2
− x2

8
− x3

16
− 5x4

128
− · · ·

)
dx

=

∫ 1
4

0

(
x1/2 − x3/2

2
− x5/2

8
− x7/2

16
− 5x9/2

128
· · ·
)

dx

Integrate term-by-term and combining the above produces

π =
3
√
3

4
+ 24

(
1

3 · 8 −
1

5 · 32 −
1

7 · 128 −
1

9 · 512 · · ·
)
.

Newton used this formula to compute 15 digits of π. As noted, he later ‘apologized’ for “having no other
business at the time.” (1665-1666 was the year of the great plague which closed Cambridge, and of the great
fire of London of September 1666.). It was also directly after Newton’s Annus mirabilis that led ultimately to
his Principia.) A standard chronology ([26] and [9, p. 294]) says “Newton significantly never gave a value for
π.” Caveat emptor, all users of secondary sources.

The Viennese computer. Until quite recently—around 1950—a computer was a person. As a teenager, this
computer, one Johan Zacharias Dase (1824–1861), would demonstrate his extraordinary computational skill by,
for example, multiplying

79532853× 93758479 = 7456879327810587

5This must be some sort a record for the length of time needed to detect a mathematical error.

11

24. THE LIFE OF π (2014) 455



in 54 seconds; two 20-digit numbers in six minutes; two 40-digit numbers in 40 minutes; two 100-digit numbers
in 8 hours and 45 minutes. In 1844, after being shown

π

4
= tan−1

(
1

2

)
+ tan−1

(
1

5

)
+ tan−1

(
1

8

)

he calculated π to 200 places in his head in two months, completing correctly—to my mind—the greatest
mental computation ever. Dase later calculated a seven-digit logarithm table, and extended a table of integer
factorizations to 10,000,000. On Gauss’s recommendation Dase was hired to assist this project, but Dase died
not long afterwards in 1861 by which time Gauss himself already was dead.

An amusing Machin-type identity—meaning an equation that expresses π as a linear combination of
arctan’s—due to the Oxford logician Charles Dodgson is

tan−1

(
1

p

)
= tan−1

(
1

p+ q

)
+ tan−1

(
1

p+ r

)
,

valid whenever 1 + p2 factors as qr. Dodgson is much better known as Lewis Carroll, the author of Alice in
Wonderland.

7 The Irrationality and Transcendence of π

One motivation for computations of π was very much in the spirit of modern experimental mathematics: to
see if the decimal expansion of π repeats, which would mean that π is the ratio of two integers (i.e., rational),
or to recognize π as algebraic—the root of a polynomial with integer coefficients—and later to look at digit
distribution. The question of the rationality of π was settled in the late 1700s, when Lambert and Legendre
proved (using continued fractions) that the constant is irrational.

The question of whether π was algebraic was settled in 1882, when Lindemann proved that π is transcenden-
tal. Lindemann’s proof also settled, once and for all, the ancient Greek question of whether the circle could be
squared with straight-edge and compass. It cannot be, because numbers that are the lengths of lines that can be
constructed using ruler and compasses (often called constructible numbers) are necessarily algebraic, and squar-
ing the circle is equivalent to constructing the value π. The classical Athenian playwright Aristophanes already
‘knew’ this and perhaps derided ‘circle-squarers’ (τετραγωσιειν) in his play The Birds of 414 BCE. Likewise,
the French Academy had stopped accepting proofs of the three great constructions of antiquity—squaring the
circle, doubling the cube and trisecting the angle—centuries before it was proven impossible.

We next give, in extenso, Ivan Niven’s 1947 short proof of the irrationality of π. It well illustrates the
ingredients of more difficult later proofs of irrationality of other constants, and indeed of Lindemann’s proof of
the transcendence of π building on Hermite’s 1873 proof of the transcendence of e.

8 A Proof that π is Irrational

Proof. Let π = a/b, the quotient of positive integers. We define the polynomials

f(x) =
xn(a− bx)n

n!

F (x) = f(x)− f (2)(x) + f (4)(x)− · · ·+ (−1)nf (2n)(x)

the positive integer being specified later. Since n!f(x) has integral coefficients and terms in x of degree not
less than n, f(x) and its derivatives f (j)(x) have integral values for x = 0; also for x = π = a/b, since
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f(x) = f(a/b− x). By elementary calculus we have

d

dx
{F ′(x) sinx− F (x) cosx} = F ′′(x) sinx+ F (x) sinx = f(x) sinx

and
∫ π

0

f(x) sinx dx = [F ′(x) sinx− F (x) cosx]π0

= F (π) + F (0).(12)

Now F (π) + F (0) is an integer, since f (j)(0) and f (j)(π) are integers. But for 0 < x < π,

0 < f(x) sinx <
πnan

n!
,

so that the integral in (12) is positive but arbitrarily small for n sufficiently large. Thus (12) is false, and so is
our assumption that π is rational. QED

Irrationality measures. We end this section by touching on the matter of measures of irrationality. The
infimum µ(α) of those µ > 0 for which

∣∣∣∣α−
p

q

∣∣∣∣ ≥
1

qµ

for all integers p, q with sufficiently large q, is called the Liouville-Roth constant for α and we say that we have
an irrationality measure for α if µ(α) <∞.

Irrationality measures are difficult. Roth’s theorem, [15], implies that µ(α) = 2 for all algebraic irrationals,
as is the case for almost all reals. Clearly, µ(α) = 1 for rational α and µ(α) =∞ if and only if α is a so-called
Liouville number such as

∑
1/10n!. It is known that µ(e) = 2 while in 1993 Hata showed that µ(π) ≤ 8.02.

Similarly, it is known that µ(ζ(2)) ≤ 5.45, µ(ζ(3)) ≤ 4.8 and µ(log 2) ≤ 3.9.

A consequence of the existence of an irrationality measure µ for π, is the ability to estimate quantities such
as lim sup | sin(n)|1/n = 1 for integer n, since for large integer m and n with m/n→ π, we have eventually

| sin(n)| = | sin(mπ)− sin(n)| ≥ 1

2
|mπ − n| ≥ 1

2mµ−1
.

Related matters are discussed at more length in [2].

9 π in the Digital Age

With the substantial development of computer technology in the 1950s, π was computed to thousands and
then millions of digits. These computations were greatly facilitated by the discovery soon after of advanced
algorithms for the underlying high-precision arithmetic operations. For example, in 1965 it was found that the
newly-discovered fast Fourier transform (FFT) [15, 14] could be used to perform high-precision multiplications
much more rapidly than conventional schemes. Such methods (e.g., for ÷,√x see [15, 16, 14]) dramatically
lowered the time required for computing π and other constants to high precision. We are now able to compute
algebraic values of algebraic functions essentially as fast as we can multiply, OB(M(N)), where M(N) is the
cost of multiplication and OB counts ‘bits’ or ‘flops’. To convert this into practice: a state-of-the-art processor
in 2010, such as the latest AMD Opteron, which runs at 2.4 GHz and has four floating-point cores, each of
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which can do two 64-bit floating-point operations per second, can produce a total of 9.6 billion floating-point
operations per second.

In spite of these advances, into the 1970s all computer evaluations of π still employed classical formulae,
usually of Machin-type, see Figure 8. We will see below methods that can compute N digits of π with time
complexity OB(M(N)) logOB(M(N)). Proving that the log term is unavoidable, as seems likely, would yield
an algorithmic proof—quite different from current proofs—that π is not algebraic. Such a proof would be a
significant contribution to number theory and complexity theory.

Electronic Numerical Integrator and Calculator. The first computer calculation of π was performed
on ENIAC—a behemoth with a tiny brain from today’s vantage point. The ENIAC was built in Aberdeen,
Maryland by the US Army:

Size/weight. ENIAC had 18,000 vacuum tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors,
1,500 relays, was 10 feet tall, occupied 1,800 square feet and weighed 30 tons.
Speed/memory. A, now aged, 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000, three
orders faster than earlier machines. The first stored-memory computer, ENIAC stored 200 digits.
Input/output. Data flowed from one accumulator to the next, and after each accumulator finished
a calculation, it communicated its results to the next in line. The accumulators were connected to
each other manually. The 1949 computation of π to 2,037 places on ENIAC took 70 hours in which
output had to be constantly reintroduced as input.

A fascinating description of the ENIAC’s technological and commercial travails is to be found in [25]. Note that
ENIAC as a child of the 1940’s was called a ‘calculator’ not a computer.

Ballantine’s (1939) Series for π. Another formula of Euler for arccot is

x
∞∑

n=0

(n!)
2
4n

(2n+ 1)! (x2 + 1)
n+1 = arctan

(
1

x

)
.

This, intriguingly and usefully, allowed Guilloud and Boyer to reexpress the formula, used by them in 1973 to
compute a million digits of π, viz, π/4 = 12 arctan (1/18) + 8 arctan (1/57) − 5 arctan (1/239) in the efficient
form

π = 864
∞∑

n=0

(n!)
2
4n

(2n+ 1)! 325n+1 + 1824
∞∑

n=0

(n!)
2
4n

(2n+ 1)! 3250n+1 − 20 arctan

(
1

239

)
,

where the terms of the second series are now just decimal shifts of the first.

Ramanujan-type elliptic series. Truly new types of infinite series formulae, based on elliptic integral
approximations, were discovered around 1910 by Srinivasa Ramanujan (1887–1920) (shown in Figure 10) but
were not well known (nor fully proven) until quite recently when his writings were fully decoded and widely
published. They are based on elliptic functions and are described at length in [9, 15, 14].

G.N. Watson (see [14]) elegantly describes his feelings on viewing formulae of Ramanujan, such as (13) below:

“... a thrill which is indistinguishable from the thrill which I feel when I enter the Sagrestia
Nuova of the Cappella Medici and see before me the austere beauty of the four statues
representing ‘Day’, ‘Night’, ‘Evening’, and ‘Dawn’ which Michelangelo has set over the
tomb of Giuliano de’Medici and Lorenzo de’Medici”

One of these series is the remarkable:

1

π
=

2
√
2

9801

∞∑

k=0

(4k)! (1103 + 26390k)

(k!)43964k
.(13)
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Figure 10: Ramanujan’s seventy-fifth birthday stamp (courtesy Naomi Borwein-Yao

Each term of this series produces an additional eight correct digits in the result. When Gosper used this formula
to compute 17 million digits of π in 1985, and it agreed to many millions of places with the prior estimates,
this concluded the first proof of (13). As described in [17], this computation can be shown to be exact enough
to constitute a bona fide proof ! Actually, Gosper first computed the simple continued fraction for π, hoping
to discover some new things in its expansion, but found none. At the time of writing 500 million terms of the
continued fraction for π have been computed by Neil Bickford (a teenager) without shedding light on whether
the sequence is unbounded (see [1]).

At about the same time, David and Gregory Chudnovsky found the following rational variation of Ramanu-
jan’s formula. Amazingly one can show that it exists because

√
−163 corresponds to an imaginary quadratic

field with class number one:

1

π
= 12

∞∑

k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
(14)

Each term of this series produces an additional 14 correct digits. The Chudnovskys, shown in Figure 14,
implemented this formula using a clever scheme that enabled them to use the results of an initial level of
precision to extend the calculation to even higher precision. They used this in several large calculations of π,
culminating with a then record computation of over four billion decimal digits in 1994. Their remarkable
story was told compellingly by Richard Preston in a prizewinning New Yorker article “The Mountains of Pi”
(March 2, 1992).

While the Ramanujan and Chudnovsky series are in practice considerably more efficient than classical for-
mulae, they share the property that the number of terms needed increases linearly with the number of digits
desired: if you want to compute twice as many digits of π, you must evaluate twice as many terms of the series.

Relatedly, the Ramanujan-type series

1

π
=

∞∑

n=0

((
2n
n

)

16n

)3
42n+ 5

16
(15)

allows one to compute the billionth binary digit of 1/π, or the like, without computing the first half of the series,
and is a foretaste of our later discussion of Borwein-Bailey-Plouffe (or BBP) formulae.
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Name Year Correct Digits
Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi April. 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000

Figure 11: Post-calculus π Calculations

10 Reduced Operational Complexity Algorithms

In 1976, Eugene Salamin and Richard Brent independently discovered a reduced complexity algorithm for π. It is
based on the arithmetic-geometric mean iteration (AGM) and some other ideas due to Gauss and Legendre
around 1800, although neither Gauss, nor many after him, ever directly saw the connection to effectively
computing π.

Quadratic Algorithm (Salamin-Brent). Set a0 = 1, b0 = 1/
√
2 and s0 = 1/2. Calculate

ak =
ak−1 + bk−1

2
(Arithmetic) bk =

√
ak−1bk−1 (Geometric)(16)

ck = a2k − b2k, sk = sk−1 − 2kck and compute pk =
2a2k
sk

.(17)

Then pk converges quadratically to π. Note the similarity between the arithmetic-geometric mean iteration (16),
(which for general initial values converges quickly to a non-elementary limit) and the out-of-kilter harmonic-
geometric mean iteration (2) (which in general converges slowly to an elementary limit), and which is an
arithmetic-geometric iteration in the reciprocals (see [15]).

Each iteration of the algorithm doubles the correct digits. Successive iterations produce 1, 4, 9, 20, 42, 85, 173, 347
and 697 good decimal digits of π, and takes logN operations for N digits. Twenty-five iterations computes π
to over 45 million decimal digit accuracy. A disadvantage is that each of these iterations must be performed to
the precision of the final result. In 1985, my brother Peter and I discovered families of algorithms of this type.
For example, here is a genuinely third-order iteration6:

6A fourth-order iteration might be a compound of two second-order ones; this third order one can not be so decomposed.
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Cubic Algorithm. Set a0 = 1/3 and s0 = (
√
3− 1)/2. Iterate

rk+1 =
3

1 + 2(1− s3k)
1/3

, sk+1 =
rk+1 − 1

2
and ak+1 = r2k+1ak − 3k(r2k+1 − 1).

Then 1/ak converges cubically to π. Each iteration triples the number of correct digits.

Quartic Algorithm. Set a0 = 6− 4
√
2 and y0 =

√
2− 1. Iterate

yk+1 =
1− (1− y4k)

1/4

1 + (1− y4k)
1/4

and ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2k+1).

Then 1/ak converges quartically to π. Note that only the power of 2 or 3 used in ak depends on k.

Let us take an interlude and discuss:

‘Piems’ or pi-mnemonics. Piems are mnemonics in which the length of each word is the corresponding digit
of π. Punctuation is ignored. A better piem is both longer and better poetry.

Mnemonics for π

“Now I, even I, would celebrate
In rhyme inapt, the great

Immortal Syracusan, rivaled nevermore,
Who in his wondrous lore,

Passed on before
Left men for guidance

How to circles mensurate.” (30)

“How I want a drink, alcoholic of course, after the heavy lectures involving
quantum mechanics.” (15)

“See I have a rhyme assisting my feeble brain its tasks ofttimes resisting.” (13)

There are many more and much longer mnemonics than the famous examples given in the inset box—see
[9, p. 405, p.560, p. 659] for a fine selection. Indeed, there is whole cottage industry around the matter,
http://www.huffingtonpost.com/jonathan-m-borwein/pi-day_b_1341569.html?ref=science.

Philosophy of mathematics. In 1997 the first occurrence of the sequence 0123456789 was found (later than
expected heuristically) in the decimal expansion of π starting at the 17, 387, 594, 880-th digit after the decimal
point. In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has
changed. These challenge the principle of the excluded middle—either a predicate holds or it does not— and
involve classically well-defined objects that for an intuitionist are ill-founded until one can determine when or
if the sequence occurred (see [12]).

For example, consider the sequence which is ‘0’ except for a ‘1’ in the first place where 0123456789 first
begins to appear in order if it ever occurs. Did it converge when first used by Brouwer as an example? Does
it now? Was it then and is it now well defined? Classically it always was and converged to ‘0’. But, until the
computation was done any argument about its convergence relied on the principle of the excluded middle which
intuitionists reject. Intuitionistically, it converges now. Of course, if we redefine the sequence to have its ‘1’ in
the first place that 0123456789101112 first begins, then we are still completely in the dark. But is a sign of how
far computation of π has come recently that this was never thought necessary.
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Figure 12: Yasumasa Kanada in his Tokyo office

11 Back to the Future

In December 2002, Kanada computed π to over 1.24 trillion decimal digits. His team first computed π in
hexadecimal (base 16) to 1,030,700,000,000 places, using the following two arctangent relations:

π = 48 tan−1 1

49
+ 128 tan−1 1

57
− 20 tan−1 1

239
+ 48 tan−1 1

110443

π = 176 tan−1 1

57
+ 28 tan−1 1

239
− 48 tan−1 1

682
+ 96 tan−1 1

12943
.

The first formula was found in 1982 by K. Takano, a high school teacher and song writer. The second formula
was found by F. C. W. Störmer in 1896. Kanada verified the results of these two computations agreed, and
then converted the hex digit sequence to decimal. The resulting decimal expansion was checked by converting
it back to hex. These conversions are themselves non-trivial, requiring massive computation.

This process is quite different from those of the previous quarter century. One reason is that reduced
operational complexity algorithms require full-scale multiply, divide and square root operations. These in turn
require large-scale fast Fourier transform (FFT) operations, which demand huge amounts of memory, and
massive all-to-all communication between nodes of a large parallel system. For this latest computation, even
the very large system available in Tokyo did not have sufficient memory and network bandwidth to perform
these operations at reasonable efficiency levels—at least not for trillion-digit computations. Utilizing arctans
again meant using many more arithmetic operations, but no system-scale FFTs, and so the method can be
implemented using ×,÷ by smallish integer values—additionally, hex is somewhat more efficient!

Kanada and his team evaluated these two formulae using a scheme analogous to that employed by Gosper
and by the Chudnovskys in their series computations, in that they were able to avoid explicitly storing the
multiprecision numbers involved. This resulted in a scheme that is roughly competitive in numerical efficiency
with the Salamin-Brent and Borwein quartic algorithms they had previously used, but with a significantly lower
total memory requirement. Kanada used a 1 Tbyte main memory system, as with the previous computation,
yet got six times as many digits. Hex and decimal evaluations included, it ran 600 hours on a 64-node Hitachi,
with the main segment of the program running at a sustained rate of nearly 1 Tflop/sec.

18

462 24. THE LIFE OF π (2014)



Decimal Digit Occurrences

0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1000000000000

Hex Digit Occurrences

0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Figure 13: Seemingly random behaviour of single digits of π in base 10 and 16

12 Why π?

What possible motivation lies behind modern computations of π, given that questions such as the irrationality
and transcendence of π were settled more than 100 years ago? One motivation is the raw challenge of harnessing
the stupendous power of modern computer systems. Programming such calculations are definitely not trivial,
especially on large, distributed memory computer systems.

There have been substantial practical spin-offs. For example, some new techniques for performing the fast
Fourier transform (FFT), heavily used in modern science and engineering computing, had their roots in attempts
to accelerate computations of π. And always the computations help in road-testing computers—often uncovering
subtle hardware and software errors.

Beyond practical considerations lies the abiding interest in the fundamental question of the normality (digit
randomness) of π. Kanada, for example, has performed detailed statistical analysis of his results to see if there
are any statistical abnormalities that suggest π is not normal, so far the answer is “no” (see Figures 1 and
13). (Kanada reports that the 10 decimal digits ending in position one trillion are 6680122702, while the 10
hexadecimal digits ending in position one trillion are 3F89341CD5.) Indeed, the first computer computation of π
and e on ENIAC, discussed above, was so motivated by John von Neumann. The digits of π have been studied
more than any other single constant, in part because of the widespread fascination with and recognition of π.
Very recent work, suggesting π may well be normal, can be found in and traced from [1].

Changing world views. In retrospect, we may wonder why in antiquity π was not measured to an accuracy
in excess of 22/7? Perhaps it reflects not an inability to do so but a very different mindset to a modern more
experimental one. One can certainly find Roman ampitheatres where more accurate measurement than 22/7
would have been helpful. Bailey and I discuss this issue in more detail in [6].

In the same vein, one reason that Gauss and Ramanujan did not further develop the ideas in their identities
for π is that an iterative algorithm, as opposed to explicit results, was not as satisfactory for them (especially
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Figure 14: The remarkable Chudnovsky brothers π (courtesy D. and G. Chudnovsky)

Ramanujan). Ramanujan much preferred formulae like

π ≈ 3√
67

log (5280) ,
3√
163

log (640320) ≈ π

correct to 9 and 15 decimal places; both of which rely on deep number theory. Contrastingly, Ramanujan in his
famous 1914 paper Modular Equations and Approximations to Pi [9, p.253] found

(
92 +

192

22

)1/4

= 3.14159265258 · · ·

“empirically, and it has no connection with the preceding theory.” Only the marked digit is wrong.

Discovering the π Iterations. The genesis of the π algorithms and related material is an illustrative example
of experimental mathematics. My brother and I in the early 1980’s had a family of quadratic algorithms for
π, [15], call them PN , of the kind we saw above. For N = 1, 2, 3, 4 we could prove they were correct but
were only conjectured for N = 5, 7. In each case the algorithm appeared to converge quadratically to π. On
closer inspection while the provable cases were correct to 5, 000 digits, the empirical versions agreed with π to
roughly 100 places only. Now in many ways to have discovered a “natural” number that agreed with π to that
level—and no more—would have been more interesting than the alternative. That seemed unlikely but recoding
and rerunning the iterations kept producing identical results.

Two decades ago even moderately high precision calculation was less accessible, and the code was being run
remotely over a phone-line in a Berkeley Unix integer package. After about six weeks, it transpired that the
package’s square root algorithm was badly flawed, but only if run with an odd precision of more than sixty digits!
And for idiosyncratic reasons that had only been the case in the two unproven cases. Needless to say, tracing
the bug was a salutary and somewhat chastening experience. And it highlights why one checks computations
using different sub-routines and methods.

13 How to Compute the N-th Digits of π

One might be forgiven for thinking that essentially everything of interest with regards to π has been dealt with.
This is suggested in the closing chapters of Beckmann’s 1971 book A History of π. Ironically, the Salamin–
Brent quadratically convergent iteration was discovered only five years later, and the higher-order convergent
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algorithms followed in the 1980s. Then in 1990, Rabinowitz and Wagon discovered a “spigot” algorithm for
π—the digits ‘drip out’ one by one. This permits successive digits of π (in any desired base) to be computed
by a relatively simple recursive algorithm based on all previously generated digits.

Even insiders are sometimes surprised by a new discovery. Prior to 1996, most researchers thought if you
want to determine the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not
true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, Peter Borwein, Plouffe, and Bailey found
an algorithm for computing individual hex digits of π. It (1) yields a modest-length hex or binary digit string
for π, from an arbitrary position, using no prior bits; (2) is implementable on any modern computer; (3) requires
no multiple precision software; (4) requires very little memory; and (5) has a computational cost growing only
slightly faster than the digit position. For example, the millionth hexadecimal digit (four millionth binary digit)
of π could be found in four seconds on a 2005 Apple computer.

This new algorithm is not fundamentally faster than the best known schemes if used for computing all digits
of π up to some position, but its storage requirements, elegance and simplicity are of considerable interest, and
it is easy to parallelize. It is based on the following at-the-time new formula for π:

π =
∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
(18)

which was discovered using integer relation methods (see [14]), with a computer search that ran over several
months and ultimately produced the (equivalent) relation:

π = 4 · 2F1

(
1, 1

4
5
4

∣∣∣∣−
1

4

)
+ 2arctan

(
1

2

)
− log 5,(19)

where the first term is a generalized Gaussian hypergeometric function evaluation. Maple and Mathematica can
both now prove (18). They could not at the time of its discovery. A human proof may be found in [14].

The algorithm in action. In 1997, Fabrice Bellard at INRIA—whom we shall meet again in Section 15—
computed 152 binary digits of π starting at the trillionth position. The computation took 12 days on 20
workstations working in parallel over the Internet. Bellard’s scheme is based on the following variant of (18):

π = 4
∞∑

k=0

(−1)k
4k(2k + 1)

− 1

64

∞∑

k=0

(−1)k
1024k

(
32

4k + 1
+

8

4k + 2
+

1

4k + 3

)
,

which permits hex or binary digits of π to be calculated somewhat faster than (18) depending on the imple-
mentation. (Most claims of improved speed of algorithms are subject to many caveats.)

In 1998 Colin Percival, then a 17-year-old student at Simon Fraser University (see Figure 15), accessed 25
machines to calculate first the five trillionth hexadecimal digit of π, and then the ten trillionth hex digit. In
September 2000, he found the quadrillionth binary digit is 0, a computation that required 250 CPU-years, using
1734 machines in 56 countries. We record some of Percival’s computational results in Figure 15.

Nor have matters stopped there. As described in [5, 8] in the most recent computation of π using the
BBP formula, Tse-Wo Zse of Yahoo! Cloud Computing calculated 256 binary digits of π starting at the two
quadrillionth bit. He then checked his result using Bellard’s variant. In this case, both computations verified
that the 24 hex digits beginning immediately after the 500 trillionth hex digit (i.e., after the two quadrillionth
binary bit) are: E6C1294A ED40403F 56D2D764.

Kanada was able to confirm his 2002 computation in only 21 hours by computing a 20 hex digit string
starting at the trillionth digit, and comparing this string to the hex string he had initially obtained in over 600
hours. Their agreement provided enormously strong confirmation. We shall see this use of BBP for verification
again when we discuss the most recent record computations of π.
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Hex strings starting
Position at this Position

106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

1011 9C381872D27596

1.25× 1012 07E45733CC790B

2.5× 1014 E6216B069CB6C1

Colin Percival (1998)

Figure 15: Percival’s hexadecimal findings

14 Further BBP Digit Formulae

Motivated as above, constants α of the form

α =
∞∑

k=0

p(k)

q(k)2k
,(20)

where p(k) and q(k) are integer polynomials, are said to be in the class of binary (Borwein-Bailey-Plouffe) BBP
numbers. I illustrate for log 2 why this permits one to calculate isolated digits in the binary expansion:

log 2 =

∞∑

k=0

1

k2k
.(21)

We wish to compute a few binary digits beginning at position d + 1. This is equivalent to calculating
{2d log 2}, where {·} denotes fractional part. We can write

{2d log 2} =

{{
d∑

k=0

2d−k

k

}
+

{ ∞∑

k=d+1

2d−k

k

}}
(22)

=

{{
d∑

k=0

2d−k mod k

k

}
+

{ ∞∑

k=d+1

2d−k

k

}}
.(23)

The key observation is that the numerator of the first sum in (23), 2d−k mod k, can be calculated rapidly by
binary exponentiation, performed modulo k. That is, it is economically performed by a factorization based on
the binary expansion of the exponent. For example,

317 = ((((32)2)2)2) · 3

uses only five multiplications, not the usual 16. It is important to reduce each product modulo k. Thus, 317

mod 10 is done as
32 = 9; 92 = 1; 12 = 1; 12 = 1; 1× 3 = 3.

A natural question in light of (18) is whether there is a formula of this type and an associated computational
strategy to compute individual decimal digits of π. Searches conducted by numerous researchers have been
unfruitful and recently D. Borwein (my father), Gallway and I have shown that there are no BBP formulae of
the Machin-type (as defined in [14]) of (18) for π unless the base is a power of two [14].
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Figure 16: Ferguson’s “Eight-Fold Way” and his BBP acrylic circles. These three ‘subtractive’ acrylic circles
(white) and the black circle represent the weights [4,−2,−2,−1] in Equation (18)

Ternary BBP formulae. Yet, BBP formulae exist in other bases for some constants. For example, for π2

we have both binary and ternary formulae (discovered by Broadhurst):

π2 =
9

8

∞∑

k=0

1

64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2
+

1

(6k + 5)2

)
.

(24)

π2 =
2

27

∞∑

k=0

1

729k

(
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72

(12k + 6)2
− 9

(12k + 7)2
− 9

(12k + 8)2
− 5

(12k + 10)2
+

1

(12k + 11)2

)
.(25)

These two formulae have recently been used for record digit computations performed on an IBM Blue Gene
system in conjunction with IBM Australia [8].

Remarkably the volume V8 in hyperbolic space of the figure-eight knot complement is well known to be

V8 = 2
√
3

∞∑

n=1

1

n
(
2n
n

)
2n−1∑

k=n

1

k
= 2.029883212819307250042405108549 . . .

Surprisingly, it is also expressible as

V8 =

√
3

9

∞∑

n=0

(−1)n
27n

{
18

(6n+ 1)2
− 18

(6n+ 2)2
− 24

(6n+ 3)2
− 6

(6n+ 4)2
+

2

(6n+ 5)2

}
,

again discovered numerically by Broadhurst, and proved in [14]. A beautiful representation by Helaman Ferguson
the mathematical sculptor is given in Figure 16. Ferguson produces art inspired by deep mathematics, but not
by a formulaic approach. For instance, his knowledge of hyperbolic geometry allows him to exploit surfaces of
negative curvature as shown in his“Eight-Fold Way”.

Normality and dynamics. Finally, Bailey and Crandall in 2001 made exciting connections between the
existence of a b-ary BBP formula for α and its normality base b (uniform distribution of base-b digits)7. They

7See www.sciencenews.org/20010901/bob9.asp .
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make a reasonable, hence very hard, conjecture about the uniform distribution of a related chaotic dynamical
system. This conjecture implies: Existence of a ‘BBP’ formula base b for α ensures the normality base b of α.
Illustratively, or log 28, the dynamical system, base 2, is to set x0 = 0 and compute

xn+1 ←↩ 2
(
xn +

1

n

)
mod 1.

15 Pi in the Third Millennium

15.1 Reciprocal series

A few years ago Jesús Guillera found various Ramanujan-like identities for π, using integer relation methods.
The three most basic are:

4

π2
=

∞∑

n=0

(−1)nr(n)5(13 + 180n+ 820n2)

(
1

32

)2n+1

(26)

2

π2
=

∞∑

n=0

(−1)nr(n)5(1 + 8n+ 20n2)

(
1

2

)2n+1

(27)

4

π3

?
=

∞∑

n=0

r(n)7(1 + 14n+ 76n2 + 168n3)

(
1

8

)2n+1

,(28)

where r(n) := (1/2 · 3/2 · · · · · (2n− 1)/(2n))/n!.

Guillera proved (26) and (27) in tandem, using most ingeniously the Wilf–Zeilberger algorithm for formally
proving hypergeometric-like identities [14, 7, 29]. No other proof is known and there seem to be no like formulae
for 1/πd with d ≥ 4. The third (28) is certainly true,9 but has no proof; nor does anyone have an inkling of
how to prove it; especially as experiment suggests that it has no ‘mate’ unlike (26) and (27) [7]. My intuition is
that if a proof exists it is more a verification than an explication and so I stopped looking. I am happy just to
know the beautiful identity is true. A very nice account of the current state of knowledge for Ramanujan-type
series for 1/π is to be found in [10].

In 2008 Guillera [22] produced another lovely pair of third millennium identities—discovered with integer
relation methods and proved with creative telescoping—this time for π2 rather than its reciprocal. They are

(29)

∞∑

n=0

1

22n

(
x+ 1

2

)3
n

(x+ 1)3n
(6(n+ x) + 1) = 8x

∞∑

n=0

(
1
2

)2
n

(x+ 1)2n
,

and

(30)
∞∑

n=0

1

26n

(
x+ 1

2

)3
n

(x+ 1)3n
(42(n+ x) + 5) = 32x

∞∑

n=0

(
x+ 1

2

)2
n

(2x+ 1)2n
.

Here (a)n = a(a + 1) · ·(a + n − 1) is the rising factorial. Substituting x = 1/2 in (29) and (30), he obtained
respectively the formulae

∞∑

n=0

1

22n
(1)3n(
3
2

)3
n

(3n+ 2) =
π2

4
and

∞∑

n=0

1

26n−2

(1)3n(
3
2

)3
n

(21n+ 13) =
π2

3
.

8In this case it is easy to use Weyl’s criterion for equidistribution to establish this equivalence without mention of BBP numbers.
9Guillera ascribes (28) to Gourevich, who used integer relation methods. I ‘rediscovered’ (28) using integer relation methods with

30 digits. I then checked it to 500 places in 10 seconds, 1200 in 6.25 minutes, and 1500 in 25 minutes: with a naive command-line
instruction in Maple on a light laptop.
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15.2 Computational records

The last decade has seen the record for computation of π broken in some very interesting ways. We have already
described Kanada’s 2002 computation in Section 11 and noted that he also took advantage of the BBP formula
of Section 13. This stood as a record until 2009 when it was broken three times—twice spectacularly.

Daisuke Takahashi. The record for computation of π of under 29.37 million decimal digits, by Bailey in
1986 had increased to over 2.649 trillion places by Takahashi in January 2009. Since the same algorithms were
used for each computation, it is interesting to review the performance in each case:

In 1986 it took 28 hours to compute 29.36 million digits on 1 cpu of the then new CRAY-2 at NASA Ames
using (18). Confirmation using the quadratic algorithm (16) took 40 hours. (The computation uncovered
hardware and software errors on the CRAY. Success required developing a speedup of the underlying FFT [14].)
In comparison, on 1024 cores of a 2592 core Appro Xtreme-X3 system 2.649 trillion digits via (16) took 64
hours 14 minutes with 6732 GB of main memory, and (18) took 73 hours 28 minutes with 6348 GB of main
memory. (The two computations differed only in the last 139 places.) In April Takahashi upped his record to
2,576,980,377,524 places.

Fabrice Bellard. Near the end of 2009, Bellard computed nearly 2.7 trillion decimal digits of π (first in
binary) using the Chudnovsky series (14). This took 131 days but he only used a single 4-core workstation with
a lot of storage and even more human intelligence! For full details of this feat and of Takahashi’s most recent
computation one can look at

http://en.wikipedia.org/wiki/Chronology_of_computation_of_pi .

Nor is that the current end of the matter:

Alexander Yee and Shigeru Kondo. In August 2010, they announced that they had used the Chudnovsky
formula to compute 5 trillion digits of π over a 90-day period, mostly on a two-core Intel Xeon system with
96 Gbyte of memory. They confirmed the result in two ways, using the BBP formula (as discussed above),
which required 66 hours, and a variant of the BBP formula due to Bellard, which required 64 hours. Changing
from binary to decimal required 8 days. This was upped to 10 trillion digits in October 2011. Full details are
available at http://www.numberworld.org/misc_runs/pi-5t/details.html.

16 . . . Life of π

Paul Churchland, writing about the sorry creationist battles of the Kansas school board, [19, Kindle ed, loc
1589] observes that:

“Even mathematics would not be entirely safe. (Apparently, in the early 1900’s, one legislator in a
southern state proposed a bill to redefine the value of pi as 3.3 exactly, just to tidy things up.)”

As we have seen, the life of π captures a great deal of mathematics—algebraic, geometric and analytic, both
pure and applied—along with some history and philosophy. It engages many of the greatest mathematicians
and some quite interesting characters along the way. Among the saddest and least-well understood episodes
was an abortive 1896 attempt in Indiana to legislate the value(s) of π. The bill, reproduced in [9, p. 231-235],
is is accurately described by David Singmaster, [27] and [9, p. 236-239].

At the end of the novel, Piscine (Pi) Molitor writes

25

24. THE LIFE OF π (2014) 469

http://en.wikipedia.org/wiki/Chronology_of_computation_of_pi
http://www.numberworld.org/misc_runs/pi-5t/details.html


“I am a person who believes in form, in harmony of order. Where we can, we must give things a
meaningful shape. For example—I wonder—could you tell my jumbled story in exactly one hundred
chapters, not one more, not one less? I’ll tell you, that’s one thing I hate about my nickname, the
way that number runs on forever. It’s important in life to conclude things properly. Only then can
you let go.”

We may well not share the sentiment, but we should celebrate that Pi knows π to be irrational.

17 End Notes

1. Why π is not 22/7. Today, even the computer algebra systems Maple or Mathematica ‘know’ this since

0 <

∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π,(31)

though it would be prudent to ask ‘why’ each can perform the integral and ‘whether’ to trust it. Assuming we
do trust it, then the integrand is strictly positive on (0, 1), and the answer in (31) is an area and so strictly
positive, despite claims that π is 22/7 ranging over millennia.10 In this case, requesting the indefinite integral
provides immediate reassurance. We obtain

∫ t

0

x4 (1− x)
4

1 + x2
dx =

1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) ,

as differentiation easily confirms, and so the Newtonian fundamental theorem of calculus proves (31).

One can take the idea in (31) a bit further, as in [14]. Note that

∫ 1

0

x4 (1− x)
4
dx =

1

630
,(32)

and we observe that

1

2

∫ 1

0

x4 (1− x)
4
dx <

∫ 1

0

(1− x)4x4

1 + x2
dx <

∫ 1

0

x4 (1− x)
4
dx.(33)

Combine this with (31) and (32) to derive: 223/71 < 22/7 − 1/630 < π < 22/7 − 1/1260 < 22/7, and so
re-obtain Archimedes’ famous computation

3
10

71
< π < 3

10

70
.(34)

The derivation above was first popularized in Eureka, a Cambridge student journal in 1971.11 A recent study
of related approximations is [24]. (See also [14].)

2. More about Gamma. One may define

Γ(x) =

∫ ∞

0

tx−1e−t dt

10One may still find adverts in newspapers offering such proofs for sale. A recent and otherwise very nice children’s book “Sir
Cumference and the the Dragon of Pi (A Math Adventure)” published in (1999) repeats the error, and email often arrives in my
in-box offering to show why this and things like this are true.

11(31) was on a Sydney University examination paper in the early sixties and the earliest source I know of dates from the 1940’s
[14].
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for Re x > 0. The starting point is that

xΓ(x) = Γ(x+ 1), Γ(1) = 1.(35)

In particular, for integer n, Γ(n+ 1) = n!. Also for 0 < x < 1

Γ(x) Γ(1− x) =
π

sin(πx)
,

since for x > 0 we have

Γ(x) = lim
n→∞

n!nx

∏n
k=0(x+ k)

.

This is a nice consequence of the Bohr-Mollerup theorem [15, 14] which shows that Γ is the unique log-convex
function on the positive half line satisfying (35). Hence, Γ(1/2) =

√
π and equivalently we evaluate the Gaussian

integral ∫ ∞

−∞
e−x2

dx =
√
π,

so central to probability theory. In the same vein, the improper sinc function integral evaluates as
∫ ∞

−∞

sin(x)

x
dx = π.

Considerable information about the relationship between Γ and π is to be found in [14, 21].

The Gamma function is as ubiquitous as π. For example, it is shown in [18] that the expected length, W3, of
a three-step unit-length random walk in the plane is given by

(36) W3 =
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
.

We recall that Γ(1/2)2 = π and that similar algorithms exist for Γ(1/3),Γ(1/4), and Γ(1/6) [15, 14].

2. More about Complexity Reduction. To illustrate the stunning complexity reduction in the elliptic
algorithms for Pi, let us explicitly provide a complete set of algebraic equations approximating π to well over a
trillion digits.

The number π is transcendental and the number 1/a20 computed next is algebraic;
nonetheless they coincide for over 1.5 trillion places.

Set a0 = 6− 4
√
2, y0 =

√
2− 1 and then solve the system in Figure 17.

This quartic algorithm, with the Salamin–Brent scheme, was first used by Bailey in 1986 [17] and was
used repeatedly by Yasumasa Kanada (see Figure 12), in Tokyo in computations of π over 15 years or so,
culminating in a 200 billion decimal digit computation in 1999. As recorded in Figure 11, it has been used
twice very recently by Takahashi. Only thirty five years earlier in 1963, Dan Shanks—a very knowledgeable
participant—was confident that computing a billion digits was forever impossible. Today it is ‘reasonably easy’
on a modest laptop. A fine self-contained study of this quartic algorithm—along with its cubic confrere also
described in Section 10—can be read in [23]. The proofs are nicely refined specializations of those in [16].

3. Following π on the Web. One can now follow Pi on the web through Wikipedia, MathWorld or elsewhere,
and indeed one may check the performance of π by looking up ‘Pi’ at http://www.google.com/trends. This
link shows very clear seasonal trends. with a large spike around Pi Day. The final spike (F) is for Tau Day
(6.28)—a joke that many seem not have realized is a joke.12

12 www.washingtonpost.com/blogs/blogpost/post/tau-day-replace-pi-make-music-with-tau/2011/06/28/AG6ub6oH_blog.html
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y1 =
1− 4

√

1− y0
4

1 + 4

√

1− y0
4
, a1 = a0 (1 + y1)

4
− 23y1

(

1 + y1 + y1
2
)

y2 =
1− 4

√

1− y1
4

1 + 4

√

1− y1
4
, a2 = a1 (1 + y2)

4
− 25y2

(

1 + y2 + y2
2
)

y3 =
1− 4

√

1− y2
4

1 + 4

√

1− y2
4
, a3 = a2 (1 + y3)

4
− 27y3

(

1 + y3 + y3
2
)

y4 =
1− 4

√

1− y3
4

1 + 4

√

1− y3
4
, a4 = a3 (1 + y4)

4
− 29y4

(

1 + y4 + y4
2
)

y5 =
1− 4

√

1− y4
4

1 + 4

√

1− y4
4
, a5 = a4 (1 + y5)

4
− 211y5

(

1 + y5 + y5
2
)

y6 =
1− 4

√

1− y5
4

1 + 4

√

1− y5
4
, a6 = a5 (1 + y6)

4
− 213y6

(

1 + y6 + y6
2
)

y7 =
1− 4

√

1− y6
4

1 + 4

√

1− y6
4
, a7 = a6 (1 + y7)

4
− 215y7

(

1 + y7 + y7
2
)

y8 =
1− 4

√

1− y7
4

1 + 4

√

1− y7
4
, a8 = a7 (1 + y8)

4
− 217y8

(

1 + y8 + y8
2
)

y9 =
1− 4

√

1− y8
4

1 + 4

√

1− y8
4
, a9 = a8 (1 + y9)

4
− 219y9

(

1 + y9 + y9
2
)

y10 =
1− 4

√

1− y9
4

1 + 4

√

1− y9
4
, a10 = a9 (1 + y10)

4
− 221y10

(

1 + y10 + y10
2
)

y11 =
1− 4

√

1− y10
4

1 + 4

√

1− y10
4
, a11 = a10 (1 + y11)

4
− 223y11

(

1 + y11 + y11
2
)

y12 =
1− 4

√

1− y11
4

1 + 4

√

1− y11
4
, a12 = a11 (1 + y12)

4
− 225y12

(

1 + y12 + y12
2
)

y13 =
1− 4

√

1− y12
4

1 + 4

√

1− y12
4
, a13 = a12 (1 + y13)

4
− 227y13

(

1 + y13 + y13
2
)

y14 =
1− 4

√

1− y13
4

1 + 4

√

1− y13
4
, a14 = a13 (1 + y14)

4
− 229y14

(

1 + y14 + y14
2
)

y15 =
1− 4

√

1− y14
4

1 + 4

√

1− y14
4
, a15 = a14 (1 + y15)

4
− 231y15

(

1 + y15 + y15
2
)

y16 =
1− 4

√

1− y15
4

1 + 4

√

1− y15
4
, a16 = a15 (1 + y16)

4
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√
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√
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√
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√
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4
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(
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2
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.

Figure 17: The system of equations used to compute π to 1.5 trillion places

4. The Difficulty of Popularizing Accurately. Let me finish on this theme. Even after many helpful
comments from readers, errors probably remain in my article. So I tell the story below with no particular
rancour.

Paul Churchland in [19] offers a fascinating set of essays full of interesting anecdotes—which I have no
particular reason to doubt. Nonetheless, the very brief quote at the start of Section 16, regarding the legislation
of values of π, contains four inaccuracies. As noted above: (i) the event took place in 1896/7 and (ii) in Indiana
(a northern state); (iii) the prospective bill, #246, offered a geometric construction with inconsistent conclusions
and certainly offers no one exact value. Finally, (iv) the intent seems to have been pecuniary, not hygienic [27].

As often, this makes me wonder whether mathematics popularization is especially prone to error or if the
other disciplines just seem better described because of my relative ignorance. On April 1, 2009, an article
entitled “The Changing Value of Pi” appeared in the New Scientist with an analysis of how the value of pi has
been increasing over time. I hope but am not confident that all readers noted that April 1st is “April Fool’s
day.” (See also entry seven of http://www.museumofhoaxes.com/hoax/aprilfool/.)

Acknowledgements. Thanks are due to many, especially my close collaborators P. Borwein and D. Bailey.
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Figure 18: Google’s trend line for ‘Pi’
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Synopsis:
This paper, which appeared on Pi Day 2015 (3/14/15 in North American no-

tation), presents a brief summary of papers that have appeared in the American
Mathematical Monthly on the topic of π. The most frequently cited papers are
listed.

The remainder of the article presents a historical overview of π, ranging from a
complete analysis of Archimedes’ technique for approximating π via inscribed and
circumscribed polygons, arctangent-based formulas used in Renaissance times, one

vergent algorithm for π, the Borwein quartic algorithm, spigot algorithms, infinite
product formulas, the curious behavior of erroneous digits in the Gregory series for
π, and more.
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of the numerous proofs that π is irrational, the Salamin-Brent quadratically con-





I Prefer Pi: A Brief History and Anthology
of Articles in the American Mathematical

Monthly

Jonathan M. Borwein and Scott T. Chapman

Abstract. In celebration of both a special “big” π Day (3/14/15) and the 2015 centennial of
the Mathematical Association of America, we review the illustrious history of the constant π

in the pages of the American Mathematical Monthly.

1. INTRODUCTION. Once in a century, Pi Day is accurate not just to three digits
but to five. The year the MAA was founded (1915) was such a year and so is the
MAA’s centennial year (2015). To arrive at this auspicious conclusion, we consider
the date to be given as month–day–two-digit year.1 This year, Pi Day turns 26. For a
more detailed discussion of Pi and its history, we refer to last year’s article [46]. We
do note that “I prefer pi” is a succinct palindrome.2

In honor of this happy coincidence, we have gone back and selected roughly 76
representative papers relating to Pi (the constant not the symbol) published in this
journal since its inception in 1894 (which predates that of the MAA itself). Those
76 papers listed in three periods (before 1945, 1945–1989, and 1990 on) form the core
bibliography of this article. The first author and three undergraduate research students3

ran a seminar in which they looked at the 76 papers. Here is what they discovered.

Common themes. In each of the three periods, one observes both the commonality
of topics and the changing style of presentation. We shall say more about this as we
proceed.

• We see authors of varying notoriety. Many are top-tier research mathematicians
whose names remain known. Others once famous are unknown. Articles come from
small colleges, Big Ten universities, Ivy League schools, and everywhere else. In
earlier days, articles came from people at big industrial labs, but nowadays, those
labs no longer support research as they used to.

• These papers cover relatively few topics.

◦ Every few years a “simple proof” of the irrationality of π is published. Such
proofs can be found in [�58, 26, 29, 31, 39, 52, 59, 62, 76].

◦ Many proofs of ζ(2) := ∑
n≥1 1/n2 = π2/6 appear, each trying to be a bit more

slick or elementary than the last. Of course, whether you prefer your proofs con-
cise and high tech or more leisurely and lower tech is a matter of taste and con-
text. See [�38, �58, 20, 28, 34, 42, 57, 68, 69].

◦ Articles on mathematics outside the European tradition have appeared since the
MONTHLY’s earliest days. See the papers [3, 9, 11, 15].

http://dx.doi.org/10.4169/amer.math.monthly.122.03.195
MSC: Primary 01A99, Secondary 11Z05

1For advocates of τ = 2π , your big day 6/28/31 will come in 2031.
2Given by the Professor in Yöko Ozawa, The Housekeeper and the Professor, Picador Books, 2003. Kindle

location 1095, as is “a nut for a jar of tuna?”
3The students are Elliot Catt from Newcastle and Ghislain McKay and Corey Sinnamon from Waterloo.
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• In the past 30 years, computer algebra begins to enter the discussions – sometimes
in a fundamental way.

• Of course, the compositing style of the MONTHLY has changed several times.
• The process of constructing this selection highlights how much our scholarly life

has changed over the past 30 years. Much more can be found and studied easily, but
there is even more to find than in previous periods. The ease of finding papers in
Google Scholar has the perverse consequence – like Gresham’s law in economics –
of making less easily accessible material even more likely to be ignored.

While our list is not completely exhaustive, almost every paper listed in the bibli-
ography has been cited in the literature. In fact, several have been highly cited. Some
highly used research, such as Ivan Niven’s proof of the irrationality of π in 1947 is
rarely cited as it has been fully absorbed into the literature [76]. Indeed, a quick look
at the AMS’s Mathematical Reviews reveals only 15 citations of Niven’s paper.

We deem as pi-star (or π�) papers from our MONTHLY bibliography that have been
cited in the literature more than 30 times. The existence of JSTOR means that most
readers can access all these papers easily, but we have arranged for the π�s to be
available free for the next year on our website (www.maa.org/amm_supplements).
Here are the π�s with citation numbers according to Google Scholar (as of 1/7/2015).
These papers are marked with a � in the regular bibliography.

1. 133 citations: J. M. Borwein, P. B. Borwein, D. H. Bailey, Ramanujan, modular
equations, and approximations to pi or how to compute one billion digits of pi,
96(1989) 201–219.

2. 119 citations: G. Almkvist, B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-
geometric mean, ellipses, π , and the ladies diary, 95(1988) 585–608.

3. 73 citations: A. Kufner, L. Maligrand, The prehistory of the Hardy inequality,
113(2006) 715–732.

4. 63 citations: J. M. Borwein, P. B. Borwein, K. Dilcher, Pi, Euler numbers, and
asymptotic expansions, 96(1989) 681–687.

5. 56 citations: N. D. Baruah, B. C. Berndt, H. H. Chan, Ramanujan’s series for
1/π : a survey, 116(2009) 567–587.

6. 40 citations: J. Sondow, Double integrals for Euler’s constant and ln π/4 and an
analog of Hadjicostas’s formula, 112(2005) 61–65.

7. 39 citations: D. H. Lehmer, On arccotangent relations for π , 45(1938) 657–664.
8. 39 citations: I. Papadimitriou, A simple proof of the formula

∑∞
k=1 1/k2 = π2/6,

80(1973) 424–425.
9. 36 citations: V. Adamchik, S. Wagon, A simple formula for π , 104(1997) 852–

855.
10. 35 citations: D. Huylebrouck, Similarities in irrationality proofs for π , ln 2, ζ(2),

and ξ(3), 108(2001) 222–231.
11. 35 citations: L. J. Lange, An elegant continued fraction for π , 106(1999) 456–

458.
12. 33 citations: S. Rabinowitz, S. Wagon, A spigot algorithm for the digits of π ,

102(1995) 195–203.
13. 32 citations: W. S. Brown, Rational exponential expressions and a conjecture

concerning π and e, 76(1969) 28–34.

The remainder of this article. We begin with a very brief history of Pi, both math-
ematical and algorithmic, which can be followed in more detail in [80] and [46]. We
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then turn to our three periods and make a very few extra comments about some of
the articles. For the most part the title of each article is a pretty good abstract. We
then make a few summatory remarks and list a handful of references from outside
the MONTHLY, such as David Blattner’s Joy of Pi [79] and Arndt and Haenel’s Pi
Unleashed [78].

2. PI: A BRIEF HISTORY. Pi is arguably the most resilient of mathematical ob-
jects. It has been studied seriously over many millennia and by every major culture,
remaining as intensely examined today as in the Syracuse of Archimedes’ time. Its role
in popular culture was described in last year’s Pi Day article [46]. We also recall the
recent movies Life of Pi ((2012, PG) directed by Ang Lee) and Pi ((1998, R) directed
by Darren Aronofsky)4.

From both an analytic and computational viewpoint, it makes sense to begin with
Archimedes. Around 250 BCE, Archimedes of Syracuse (287–212 BCE) is thought to
have been the first (in Measurement of the Circle) to show that the “two possible Pi’s”
are the same. For a circle of radius r and diameter d, Area= π1 r 2 while Perimeter
= π2 d but that π1 = π2 is not obvious and is often overlooked; see [55].

Archimedes’ method. The first rigorous mathematical calculation of π was also due
to Archimedes, who used a brilliant scheme based on doubling inscribed and circum-
scribed polygons,

6 �→ 12 �→ 24 �→ 48 �→ 96,

and computing the perimeters to obtain the bounds 3 10
71 < π < 3 10

70 = . . . .5 The case
of 6-gons and 12-gons is shown in Figure 1; for n = 48 one already “sees” near-
circles. No computational mathematics approached this level of rigor again until the
19th century. Phillips in [41] or [80, pp. 15-19] calls Archimedes the “first numerical
analyst.”

0.5

–0.5

–0.5–1 10.5
0
0

1

–1

0.5

–0.5

–0.5–1 10.5
0
0

1

–1

Figure 1. Archimedes’ method of computing π with 6- and 12-gons

Archimedes’ scheme constitutes the first true algorithm for π in that it can produce
an arbitrarily accurate value for π . It also represents the birth of numerical and error
analysis – all without positional notation or modern trigonometry. As discovered in the
19th century, this scheme can be stated as a simple, numerically stable, recursion, as
follows [82].

4Imagine, an R–rated movie involving Pi!
5All rules are meant to be broken. Writing 10/70 without cancellation makes it easier to see that 1/7 is

larger than 10/71.
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Archimedean mean iteration (Pfaff–Borchardt–Schwab). Set a0 = 2
√

3 and b0 =
3, which are the values for circumscribed and inscribed 6-gons. If

an+1 = 2anbn
an + bn

(H) and bn+1 =
√
an+1bn (G), (1)

then an and bn converge to π , with the error decreasing by a factor of four with each
iteration. In this case, the error is easy to estimate—look at a2

n+1 − b2
n+1—and the limit

is somewhat less accessible but still reasonably easy to determine [82].
Variations of Archimedes’ geometrical scheme were the basis for all high-accuracy

calculations of π over the next 1,800 years—far after its “best before” date. For ex-
ample, in fifth century China, Tsu Chung-Chih used a variant of this method to obtain
π correct to seven digits. A millennium later, al-Kāshī in Samarkand “who could cal-
culate as eagles can fly” obtained 2π in sexadecimal:

2π ≈ 6 + 16

601
+ 59

602
+ 28

603
+ 01

604
+ 34

605
+ 51

606
+ 46

607
+ 14

608
+ 50

609
,

good to 16 decimal places (using 3 · 228-gons). This is a personal favorite; reentering
it in a computer centuries later and getting the predicted answer gives the authors
horripilation (“goose-bumps”).

Pi’s centrality is emphasised by the many ways it turns up early in new subjects
from irrationality theory to probability and harmonic analysis. For instance, Francois
Viéta’s (1540–1603) formula

2

π
=

√
2

2

√
2 + √

2

2

√
2 +

√
2 + √

2

2
· · · (2)

and John Wallis’ (1616–1703) infinite product [67, 74, 75]

π

2
= 2 · 2 · 4 · 4 · 6 · 6 · 8 · 8

1 · 3 · 3 · 5 · 5 · 7 · 7 · 9
· · · (3)

are counted among the first infinitary objects in mathematics. The latter leads to the
gamma function, Stirling’s formula, and much more [64], including the first infinite
continued fraction6 for 2/π by Lord Brouncker (1620–1684), first president of the
Royal Society of London:

2

π
= 1

1 +
9

2 +
25

2 +
49

2 · · · . (4)

Here, we use the modern concise notation for a continued fraction.

Arctangents and Machin formulas. With the development of calculus, it became
possible to extend calculations of π dramatically as shown in Figure 4. Almost all
calculations between 1700 and 1980 reduce to exploiting the series for the arctangent
(or another inverse trig function) and using identities to require computation only near
the center of the interval of convergence. Thus, one starts with

arctan(x) = x − x3

3
+ x5

5
− x7

7
+ · · · for − 1 ≤ x ≤ 1 (5)

6This was discovered without proof as was (3).
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and arctan(1) = π/4. Substituting x = 1 proves the Gregory–Leibniz formula (1671–
1674)

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ · · · . (6)

James Gregory (1638–1675) was the greatest of a large Scottish mathematical fam-
ily. The point x = 1, however, is on the boundary of the interval of convergence of
the series. Justifying substitution requires a careful error estimate for the remainder or
Lebesgue’s monotone convergence theorem, but most introductory calculus texts ig-
nore the issue. The arctan integral and series were known centuries earlier to the Kerala
school, which was identified with Madhava (c. 1350 – c. 1425) of Sangamagrama near
Kerala, India. Madhava may well have computed 13 digits of π .

To make (5) computationally feasible, we can use one of many formulas such as:

arctan(1) = 2 arctan

(
1

3

)
+ arctan

(
1

7

)
(Hutton) (7)

arctan(1) = arctan

(
1

2

)
+ arctan

(
1

5

)
+ arctan

(
1

8

)
(Euler) (8)

arctan(1) = 4 arctan

(
1

5

)
− arctan

(
1

239

)
(Machin). (9)

All of this, including the efficiency of different Machin formulas as they are now
called, is lucidly described by the early and distinguished computational number the-
orist D.H. Lehmer [�13]. See also [2, 5, 49] and [19] by Wrench, who in 1961 with
Dan Shanks performed extended computer computation of π using these formulas; see
Figure 5.

In [�13] Lehmer gives what he considered to be a best possible self-checking pair
of arctan relations for computing π . The pair was

arctan (1) = 8 arctan

(
1

10

)
− arctan

(
1

239

)
− 4 arctan

(
1

515

)
(10)

arctan (1) = 12 arctan

(
1

18

)
+ 8 arctan

(
1

57

)
− 5 arctan

(
1

239

)
. (11)

In [2], Ballantine shows that this pair makes a good choice since the series for
arctan(1/18) and arctan(1/57) has terms that differ by a constant factor of “0,” a
decimal shift. This observation was implemented in both the 1961 and 1973 computa-
tions listed in Figure 4.

Mathematical landmarks in the life of Pi. The irrationality of π was first shown by
Lambert in 1761 using continued fractions [�63]. This is a good idea since a number α

has an eventually repeating nonterminating simple continued fraction if and only if α

is a quadratic irrational, as made rigorous in 1794 by Legendre. Legendre conjectured
that π is nonalgebraic7, that is, that π is transcendental. Unfortunately, all the pretty
continued fractions for π are not simple [�63, 70, 83]. In [�63], Lange examines various
proofs of

7It can be argued that he was anticipated by Maimonides (the Rambam, 1135–1204) [81].

March 2015] PI IN THE MONTHLY 199

25. I PREFER PI: A BRIEF HISTORY OF ARTICLES IN THE MONTHLY (2015) 481



π = 3 + 12

2 +
32

2 +
52

2 +
72

2 · · · . (12)

Legendre was validated when in 1882 Lindemann proved π transcendental. He did
this by extending Hermite’s 1873 proof of the transcendence of e. There followed a
spate of simplifications by Weierstrass in 1885, Hilbert in 1893, and many others. Os-
wald Veblen’s article [18], written only ten years later, is a lucid description of the
topic by one of the leaders of the early 20th century American mathematical commu-
nity.8 A 1939 proof of the transcendence of π by Ivan Niven [14] is reproduced exactly
in Appendix A since it remains entirely appropriate for a class today.

We next reproduce our personal favorite MONTHLY proof of the irrationality of π .
All such proofs eventually arrive at a putative integer that must lie strictly between
zero and one.

Theorem 1 (Breusch [26]). π is irrational.

Proof. Assume π = a/b with a and b integers. Then, with N = 2a, sin N = 0,
cos N = 1, and cos(N/2) = ±1. If m is zero or a positive integer, then

Am(x) ≡
∞∑
k=0

(−1)k(2k + 1)m
x2k+1

(2k + 1)!
= Pm(x) cos x + Qm(x) sin x

where Pm(x) and Qm(x) are polynomials in x with integral coefficients. (The proof
follows by induction on m : Am+1 = xd Am/dx , and A0 = sin x .) Thus, Am(N ) is an
integer for every positive integer m.

If t is any positive integer, then

Bt(N ) ≡
∞∑
k=0

(−1)k
(2k + 1 − t − 1)(2k + 1 − t − 2) · · · (2k + 1 − 2t)

(2k + 1)!
N 2k+1

=
∞∑
k=0

(−1)k
(2k + 1)t − b1(2k + 1)t−1 + · · · ± bt

(2k + 1)!
N 2k+1

= At(N ) − b1At−1(N ) + · · · ± bt A0(N ).

Since all the bi are integers, Bt(N ) must be an integer too. Break the sum for Bt(N )

into the three pieces

[(t−1)/2]∑
k=0

,

t−1∑
k=[(t+1)/2]

, and
∞∑
k=t

.

In the first sum, the numerator of each fraction is a product of t consecutive integers;
therefore, it is divisible by t! and hence by (2k + 1)! since 2k + 1 ≤ t . Thus, each term
of the first sum is an integer. Each term of the second sum is zero. Thus, the third sum
must be an integer for every positive integer t .

8He was also nephew of Thorstein Veblen, one of the founders of sociology and originator of the term
“conspicuous consumption.”
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This third sum is

∞∑
k=t

(−1)k
(2k − t)!

(2k + 1)!(2k − 2t)!
N 2k+1

= (−1)t
t!

(2t + 1)!
N 2t+1

(
1 − (t + 1)(t + 2)

(2t + 2)(2t + 3)

N 2

2!

+ (t + 1)(t + 2)(t + 3)(t + 4)

(2t + 2)(2t + 3)(2t + 4)(2t + 5)

N 4

4!
− · · ·

)
.

Let S(t) stand for the sum in the parenthesis. Certainly

|S(t)| < 1 + N + N 2

2!
+ · · · = eN .

Thus, the whole expression is absolutely less than

t!

(2t + 1)!
N 2t+1eN <

N 2t+1

t t+1
eN < (N 2/t)t+1eN ,

which is less than 1 for t > t0.
Therefore, S(t) = 0 for every integer t > t0. But this is impossible because

lim
t→∞

S(t) = 1 − 1

22
· N

2

2!
+ 1

24
· N

4

4!
− · · · = cos(N/2) = ±1.

A similar argument shows that the natural logarithm of a rational number must be
irrational. From log(a/b) = c/d would follow that ec = ad/bd = A/B. Then

B ·
∞∑
k=0

(k − t − 1)(k − t − 2) · · · (k − 2t)

k!
ck

would have to be an integer for every positive integer t , which leads to a contradiction.
Irrationality measures, denoted μ(α), as described in [83] seem not to have seen

much attention in the MONTHLY. The irrationality measure of a real number is the
infimum over μ > 0 such that the inequality

∣∣∣∣α − p

q

∣∣∣∣ ≤ 1

qμ

has at most finitely many solutions in p ∈ Z and q ∈ N . Currently, the best irra-
tionality measure known for π is 7.6063. For π2, it is 5.095412, and for log 2, it is
3.57455391. For every rational number, the irrationality measure is 1 and the Thue-
Siegel-Roth theorem states that if α is a real algebraic irrational then μ(α) = 2. Indeed,
almost all real numbers have an irrationality measure of 2, and transcendental numbers
have irrationality measure 2 or greater. For example, the transcendental number e has
μ(e) = 2 while Liouville numbers such as

∑
n≥0 1/10n! are precisely those numbers

having infinite irrationality measure. The fact that μ(π) < ∞ (equivalently π is not
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a Liouville number) was first proved by Mahler [85] in 1953.9 This fact does figure
in the solution of many MONTHLY problems over the years; for instance, it lets one
estimate how far sin(n) is from zero.

The Riemann zeta function10 is defined for s > 1 by ζ(s) = ∑
n≥1 1/ns . The Basel

problem, first posed by Pietro Mengoli in 1644, which asked for the evaluation of
ζ(2) = ∑

n≥1 1/n2, was popularized by the Bernoullis, who came from Basel in
Switzerland and, hence, the name. In 1735, all even values of ζ were evaluated by
Euler. He argued that sin(πx) could be thought of as an infinite polynomial and so

sin(πx)

x
= π

∞∏
n=1

(
1 − x2

n2

)
, (13)

since both sides have the same zeros and value at zero. Comparing the coefficients of
the Taylor series of both sides of (13) establishes that ζ(2) = π 2/6 and then one recur-
sively can determine a closed form (involving Bernoulli polynomials). In particular,
ζ(4) = π4/90, ζ(6) = π6/945, and ζ(8) = π 8/9450 and so on. By contrast, ζ(3) was
only proven irrational in the late 1970s, and the status of ζ(5) is unsettled—although
every one who has thought about this knows it is irrational. It is a nice exercise to con-
firm the values of ζ(4), ζ(6) from (13). A large number of the papers in this collection
center on the Basel problem and its extensions; see [�58, �73, 50, 72]. An especially
nice accounting is in [43]. As is discussed in [�24, 46], it is striking how little more is
known about the number–theoretic structure of π .

Algorithmic high spots in the life of Pi. In the large, only three methods have been
used to make significant computations of π : before 1700 by Archimedes’ method,
between 1700 and 1980 using calculus methods (usually based on the arctangent’s
Maclaurin series and Machin formulas), and since 1980 using spectacular series or
iterations both based on elliptic integrals and the arithmetic–geometric mean. The
progress of this multicentury project is shown in Figures 2, 4, and 5. If plotted on
a log linear scale, the records line up well, especially in Figure 5, which neatly tracks
Moore’s law.

Name Year Digits
Babylonians 2000? BCE 1
Egyptians 2000? BCE 1
Hebrews (1 Kings 7:23) 550? BCE 1
Archimedes 250? BCE 3
Ptolemy 150 3
Liu Hui 263 5
Tsu Ch’ung Chi 480? 7
Al-Kashi 1429 14
Romanus 1593 15
van Ceulen (Ludolph’s number) 1615 35

Figure 2. Pre-calculus π calculations

9He showed μ(π) ≤ 42. Douglas Adams would be pleased. The entire Mahler archive is on line at http://
carma.newcastle.edu.au/mahler/.

10As expressed in Stigler’s law of eponymy, discoveries are often named after later researchers, but in Euler’s
case, he needs no more glory.
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Decimal Digit Occurrences

0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1000000000000

Hex Digit Occurrences

0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Figure 3. Seemingly random behavior of single digits of π in base 10 and 16

Name Year Correct Digits
Sharp (and Halley) 1699 71
Machin 1706 100
Strassnitzky and Dase 1844 200
Rutherford 1853 440
Shanks 1874 (707) 527
Ferguson (Calculator) 1947 808
Reitwiesner et al. (ENIAC) 1949 2,037
Genuys 1958 10,000
Shanks and Wrench 1961 100,265
Guilloud and Bouyer 1973 1,001,250

Figure 4. Calculus π calculations

The “post-calculus” era was made possible by the simultaneous discovery by Eu-
gene Salamin and Richard Brent in 1976 of identities—actually known to Gauss but
not recognized for their value [�24, 37, 82]—that lead to the following two illustrative
reduced complexity algorithms.

Quadratic algorithm (Salamin–Brent). Set a0 = 1, b0 = 1/
√

2, and s0 = 1/2. Cal-
culate

ak = ak−1 + bk−1

2
(Arithmetic), bk =

√
ak−1bk−1 (Geometric), (14)

ck = a2
k − b2

k , sk = sk−1 − 2kck and compute pk = 2a2
k

sk
. (15)

Then pk converges quadratically to π . Note the similarity between the arithmetic–
geometric mean iteration (14) (which for general initial values converges quickly to
a nonelementary limit) and the out-of-kilter harmonic–geometric mean iteration (1)
(which in general converges slowly to an elementary limit) and which is an arithmetic–
geometric iteration in the reciprocals (see [82]).
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Name Year Correct Digits
Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi April. 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000
Kondo and Yee Oct. 2011 10,000,000,000,000
Kondo and Yee Dec. 2013 12,200,000,000,000

Figure 5. Post-calculus π calculations

Each iteration of the Brent–Salamin algorithm doubles the correct digits. Successive
iterations produce 1, 4, 9, 20, 42, 85, 173, 347, and 697 good decimal digits of π , and
take log N operations to compute N digits. Twenty-five iterations compute π to over
45 million decimal digit accuracy. A disadvantage is that each of these iterations must
be performed to the precision of the final result. Likewise, we have the following.

Quartic Algorithm (The Borweins). Set a0 = 6 − 4
√

2 and y0 = √
2 − 1. Iterate

yk+1 = 1 − (1 − y4
k )

1/4

1 + (1 − y4
k )

1/4
and ak+1 = ak(1 + yk+1)

4 − 22k+3yk+1(1 + yk+1 + y2
k+1).

Then 1/ak converges quartically11 to π . Note that only the power of 2 used in ak
depends on k. Twenty-five iterations yield an algebraic number that agrees with π to
in excess of a quadrillion digits. This iteration is nicely derived in [56].

As charmingly detailed in [�21], see also [�47, 82], Ramanujan discovered that

1

π
= 2

√
2

9801

∞∑
k=0

(4k)! (1103 + 26390k)

(k!)43964k
. (16)

Each term of this series produces an additional eight correct digits in the result. When
Gosper used this formula to compute 17 million digits of π in 1985, it agreed to many
millions of places with the prior estimates, this concluded the first proof of (16). As
described in [�24], this computation can be shown to be exact enough to constitute a
bona fide proof! Actually, Gosper first computed the simple continued fraction for π ,

11A fourth-order iteration might be a compound of two second-order ones; this one cannot be so decom-
posed.
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hoping to discover some new things in its expansion, but found none. At the time of
this writing, 500 million terms of the continued fraction for π have been computed
by Neil Bickford (then a teenager) without shedding light on whether the sequence is
unbounded (see [77]).

G. N. Watson, on looking at various of Ramanujan’s formulas such as (16), reports
the following sensations [86]:

...a thrill which is indistinguishable from the thrill I feel when I enter the Sagrestia Nuovo
of the Capella Medici and see before me the austere beauty of the four statues representing
‘Day’, ‘Night’, ‘Evening’, and ‘Dawn’ which Michelangelo has set over the tomb of Guiliano
de‘Medici and Lorenzo de‘Medici. – G. N. Watson, 1886–1965.

Soon after Gosper did his computation, David and Gregory Chudnovsky found the
following even more rapidly convergent variation of Ramanujan’s formula. It is a con-
sequence of the fact that

√−163 corresponds to an imaginary quadratic field with class
number one:

1

π
= 12

∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (17)

Each term of this series produces an extraordinary additional 14 correct digits. Note
that in both (16) and (17), one computes a rational series and has a single multiplication
by a surd to compute at the end.

Some less familiar themes. While most of the articles in our collection fit into one of
the big themes (irrationality [57], transcendence, arctangent formulas, Euler’s product
for sin x , evaluation of ζ(2), π in other cultures), there are of course some lovely
sporadic examples. These include the following.

• Spigot algorithms, which drip off one more digit at a time for πππ and use only
integer arithmetic [�71, 54]. As described in [�44], the first spigot algorithm was
discovered for e. While the ideas are simple, the specifics for π need some care; we
refer to Rabinowitz and Wagon [�71] for the carefully explained details.

• Products for πππ · e and πππ/e [35]. Melzack, then at Bell Labs, proved12 that

π

2e
= lim

N→∞

2N∏
n=1

(
1 + 2

n

)(−1)n+1n

(18)

6

πe
= lim

N→∞

2N+1∏
n=2

(
1 + 2

n

)(−1)nn

. (19)

Melzak begins by showing that limn→∞ V (Cn)/V (Sn) = √
2/(πe), where Sn is the

n-sphere and Cn is the inscribed n-dimensional cylinder of greatest volume. He then
proves (18) and (19), saying the proof follows that of the derivation of Wallis’ for-
mula, and he conjectures that (18) can be used to prove that e/π is irrational. We re-
mind the reader that the transcendentality of eπ follows from the Gelfond–Schneider
theorem (1934) [82] since eπ/2 = i−i , but the statuses of e + π, e/π, e ·π , and π e

are unsettled.

12We correct errors in Melzak’s original formulas.
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Both (18) and (19) are very slowly convergent. To check (19), one may take logs
and expand the series for log then exchange the order of summation to arrive at the
more rapidly convergent “zeta”-series

∞∑
n=2

(−2)n

n
(α (n − 1) − 1) = log

(π e

6

)

where α(s) := ∑
k≥0(−1)k/(k + 1)s is the alternating zeta function, which is well

defined for Re s > 0.
If we consider the partial products for (18), then we obtain

(
2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · 2N

2N + 1

)
·
(

2N + 1

2N + 2

)2N

.

As N → ∞, the left factor yields Wallis’s product for π/2 and the right factor tends
to 1/e, which confirms (18). A similar partial product can be obtained from (19).

• A curious predictability in the error in the Gregory–Liebnitz series (6) for π/4
[�25, 45]. In 1988, it was observed that the series

π = 4
∞∑
k=1

(−1)k+1

2k − 1
= 4

(
1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ · · ·

)
, (20)

when truncated to 5,000,000 terms, differs strangely from the true value of π :

3.14159245358979323846464338327950278419716939938730582097494182230781640...

3.14159265358979323846264338327950288419716939937510582097494459230781640...

2 -2 10 -122 2770.

Values differ as expected from truncating an alternating series: in the seventh place
a “4” that should be a “6.” But the next 13 digits are correct and, after another blip,
for 12 digits. Of the first 46 digits, only four differ from the corresponding digits
of π . Further, the “error” digits seemingly occur with a period of 14. Such anoma-
lous behavior begs for explanation. A great place to start is by using Neil Sloane’s
Internet-based integer sequence recognition tool, available at www.oeis.org. This
tool has no difficulty recognizing the sequence of errors as twice the Euler num-
bers. Even Euler numbers are generated by sec x = ∑∞

k=0(−1)k E2k x2k/(2k)!. The
first few are 1, −1, 5, −61, 1385, −50521, 2702765. This discovery led to the fol-
lowing asymptotic expansion:

π

2
− 2

N/2∑
k=1

(−1)k+1

2k − 1
≈

∞∑
m=0

E2m

N 2m+1
. (21)

Now the genesis of the anomaly is clear: by chance, the series had been trun-
cated at 5,000,000 terms—exactly one-half of a fairly large power of ten. Indeed,
setting N = 10, 000, 000 in equation (21) shows that the first hundred or so digits of
the truncated series value are small perturbations of the correct decimal expansion
for π .

On a hexadecimal computer with N = 167, the corresponding strings and hex
errors are
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3.243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89452821E...

3.243F6A6885A308D31319AA2E03707344A3693822299F31D7A82EFA98EC4DBF69452821E...

2 -2 A -7A 2AD2

with the first being the correct value of π . (In hexadecimal or hex one uses “A,B,
. . ., F” to write 10 through 15 as single “hex-digits.”) Similar phenomena occur for
other constants; see [80]. Also, knowing the errors means we can correct them and
use (21) to make Gregory’s formula computationally tractable.

• Hilbert’s inequality [�61, 48] In its simplest incarnation, Hilbert’s inequality is

∞∑
m,n=1

an bm
n + m

≤ π

√√√√ ∞∑
n=1

a2
n

∞∑
n=1

b2
n (for an, bm ∈ R, an, bm > 0) (22)

with the assertion that the constant π is best possible. Actually, 2π was the best
constant that Hilbert could obtain. Hardy’s inequality, which originated in his suc-
cessful attempt to prove (22) early in the development of the modern theory of
inequalities, is well described in [�61]. One could write a nice book on the places in
which π or ζ(2) arise as the best possible constant in an inequality.

• The distribution of the digits of πππ [46]. Single-digit distribution of the first tril-
lion digits base 10 and 16 is shown in Figure 3. All the counts in these figures are
consistent with π being random.

3. PI IN THIS MONTHLY: 1894–1944. This period yielded 20 papers for our se-
lection. The July 1894 issue of this MONTHLY contained the most embarrassing article
on Pi [10] ever to grace the pages of the MONTHLY. Flagged only by “published by the
request of the author,” who indicated it was copyrighted in 1889, it is the origin of the
famous usually garbled story of the attempt by Indiana in 1897 to legislate the value of
π ; see [81] and [80, D. Singmaster, The legal values of pi]. It contains a nonsensical
geometric construction of π . So π and the MONTHLY got off on a bad footing.

Luckily, the future was brighter. While most early articles would meet today’s crite-
ria for publication, this is not true of all. For example, [20] offers a carefully organized
list of 68 consequences of Euler’s product for sin given in (13) with almost no English.
By contrast, [6] is perhaps the first discussion of the efficiency of calculation in the
MONTHLY.
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4. PI IN THIS MONTHLY: 1945–1989. This second period collects 22 papers. It
saw the birth and evolution of the digital computer with many consequences for the
computation of π . Even old topics are new when new ideas and tools arise. A charming
example is as follows.

Why πππ is not 22/7. Did you know that

0 <

∫ 1

0

(1 − x)4x4

1 + x2
dx = 22

7
− π? (23)

The integrand is strictly positive on (0, 1), so the integral in (23) is strictly positive—
despite claims that π is 22/7 that rage over the millennia.13 Why is this identity true?
We have ∫ t

0

x4 (1 − x)4

1 + x2
dx = 1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t − 4 arctan(t),

as differentiation easily confirms, and so the Newtonian fundamental theorem of cal-
culus proves (23).

One can take the idea in (23) a bit further. Note that∫ 1

0
x4 (1 − x)4 dx = 1

630
, (24)

and we observe that

1

2

∫ 1

0
x4 (1 − x)4 dx <

∫ 1

0

(1 − x)4x4

1 + x2
dx <

∫ 1

0
x4 (1 − x)4 dx . (25)

Combine this with (23) and (24) to derive

223

71
<

22

7
− 1

630
< π <

22

7
− 1

1260
<

22

7
,

and so we re-obtain Archimedes’ famous computation

3
10

71
< π < 3

10

70
. (26)

13One may still find adverts in newspapers offering such proofs for sale. A recent and otherwise very nice
children’s book “Sir Cumference and the the Dragon of Pi (A Math Adventure)” published in 1999 repeats the
error, and email often arrives in our in-boxes offering to show why things like this are true.
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This derivation was popularized in Eureka, a Cambridge University student journal,
in 1971.14 A recent study of related approximations is made by Lucas [65]. It seems
largely happenstance that 22/7 is an early continued fraction approximate to π .

Another less standard offering is in [33] where Y. V. Matiyasevich shows that

π = lim
m→∞

√
6 log fcm(F1, . . . , Fm)

log lcm(u1, . . . , um)
. (27)

Here, lcm is the least common multiple, fcm is the formal common multiple (the
product), and Fn is the n-th Fibonacci number with F0 = 0, F1 = 1, Fn = Fn−1 +
Fn−2, n ≥ 2 (without the square root we obtain a formula for ζ(2)).
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5. PI IN THIS MONTHLY: 1990–2015. In the final period, we have collected 32
papers and see no sign that interest in π is lessening. A new topic [�44, 46, 51, 81] is
that of BBP formulas, which can compute individual digits of certain constants such
as π in base 2 or π2 in bases 2 and 3 without using the earlier digits. The phenomenon

14Equation (23) was on a Sydney University examination paper in the early sixties and the earliest source
we know of dates from the 1940s [65] in an article by Dalzell, who lamentably did not cite himself in [84].
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is based on the formula

π =
∞∑
i=0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
. (28)

On August 27, 2012, Ed Karrel used (28) to extract 25 hex digits of π starting after
the 1015 position. They are 353CB3F7F0C9ACCFA9AA215F2.15 In 1990, a billion digits
had not yet been computed; see [80], and even now, it is inconceivable to compute the
full first quadrillion digits in any base.

Over this period, the use of the computer has become more routine even in pure
mathematics, and concrete mathematics is back in fashion. In this spirit, we record the
following evaluation of ζ(2), which to our knowledge first appeared as an exercise in
[82].

Theorem 2 (Sophomore’s Dream). One may square term-wise to obtain

( ∞∑
n=−∞

(−1)n

2n + 1

)2

=
∞∑

n=−∞

1

(2n + 1)2
. (29)

In particular ζ(2) = π 2/6.

Proof. Let

δN :=
N∑

n=−N

N∑
m=−N

(−1)m+n

(2m + 1)(2n + 1)
−

N∑
k=−N

1

(2k + 1)2
,

and note that δN = ∑N
n=−N

(−1)n

(2n+1)

∑N
n =m=−N

(−1)m

m−n . We leave it to the reader to show
that for large N the inner sum εN (n) is of order 1/(N − n + 1), which goes to zero.

The proof is finished by evaluating the left side of (29) to π 2/4 using Gregory’s
formula (6) and then noting that this means

∑∞
n=0 1/(2n + 1)2 = π2/8.

Another potent and concrete way to establish an identity is to obtain an appropriate
differential equation. For example, consider

f (x) :=
(∫ x

0
e−s2

ds

)2

and g(x) :=
∫ 1

0

exp(−x2(1 + t2))

1 + t2
dt.

The derivative of f + g is zero: in Maple,

f:=x->Int(exp(-s^2),s=0..x)^2;

g:=x->Int(exp(-x^2*(1+t^2))/(1+t^2),t=0..1);

with(student):d:=changevar(s=x*t,diff(f(x),x),t)+diff(g(x),x);

d:=expand(d);

15All processing was done on four NVIDIA GTX 690 graphics cards (GPUs) installed in CUDA; the com-
putation took 37 days. CUDA is a parallel computing platform and programming mode developed by NVIDIA
for use in its graphics processing units (GPUs).
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shows this. Hence, f (x) + g(x) is constant for 0 ≤ x ≤ ∞ and so, after justifying
taking the limit at ∞,

(∫ ∞

0
exp(−t2) dt

)2

= f (∞) = g(0) = arctan(1) = π

4
.

Thus, we have evaluated the Gaussian integral using only elementary calculus and
Gregory’s formula (6). The change of variables t2 = x shows that this evaluation of
the normal distribution agrees with 
(1/2) = √

π .
In similar fashion, we may evaluate

F(y) :=
∫ ∞

0
exp(−x2) cos(2xy) dx

by checking that it satisfies the differential equation F ′(y) + 2y F(y) = 0. We obtain

F(y) =
√

π

2
exp(−y2),

since we have just evaluated F(0) = √
π/2.
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6. CONCLUDING REMARKS.

It’s generally the way with progress that it looks much greater than it really is. – Ludwig
Wittgenstein16

It is a great strength of mathematics that “old” and “inferior” are not synonyms. As we
have seen in this selection, many seeming novelties are actually rediscoveries. That is
not at all a bad thing, but it does behoove authors to write “I have not seen this before”
or “this is to my knowledge new” rather than unnecessarily claiming ontological or
epistemological primacy.
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A. APPENDIX: I. NIVEN - THE TRANSCENDENCE OF πππ [14]. Among the
proofs of the transcendence of e, which are in general variations and simplifications
of the original proof of Hermite, perhaps the simplest is that of A. Hurwitz.17 His
solution of the problem contains an ingenious device, which we now employ to prove
the transcendence of π.

We assume that π is an algebraic number, and show that this leads to a contradiction.
Since the product of two algebraic numbers is an algebraic number, the quantity iπ is
a root of an algebraic equation with integral coefficients

θ1(x) = 0, (30)

whose roots are α1 = iπ, α2, α3, . . . , αn . Using Euler’s relation eiπ + 1 = 0, we have

(eα1 + 1) (eα2 + 1) · · · (eαn + 1) = 0. (31)

17A. Hurwitz, Beweis der Transendenz der Zahl e, Mathematische Annalen, vol. 43, 1893, pp. 220-221 (also
in his Mathematische Werke, vol. 2, pp. 134-135).
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We now construct an algebraic equation with integral coefficients whose roots are
the exponents in the expansion of (31). First consider the exponents

α1 + α2, α1 + α3, α2 + α3, . . . , αn−1 + αn. (32)

By equation (30), the elementary symmetric functions of α1, α2, . . . , αn are rational
numbers. Hence the elementary symmetric functions of the quantities (32) are rational
numbers. It follows that the quantities (32) are roots of

θ2(x) = 0, (33)

an algebraic equation with integral coefficients. Similarily, the sums of the α’s taken
three at a time are the nC3 roots of

θ3(x) = 0. (34)

Proceeding in the same way, we obtain

θ4(x) = 0, θ5(x) = 0, . . . , θn(x) = 0, (35)

algebraic equations with integral coefficients, whose roots are the sums of the α’s taken
4, 5, . . . , n at a time respectively. The product equation

θ1(x)θ2(x) · · · θn(x) = 0, (36)

has roots that are precisely the exponents in the expansion of (31).
The deletion of zero roots (if any) from equation (36) gives

θ(x) = cxr + c1x
r−1 + · · · + cr = 0, (37)

whose roots β1, β2, . . . , βr are the non-vanishing exponents in the expansion of (31),
and whose coefficients are integers. Hence (31) may be written in the form

eβ1 + eβ2 + · · · + eβr + k = 0, (38)

where k is a positive integer.
We define

f (x) = csx p−1 {θ(x)}p
(p − 1)!

, (39)

where s = rp − 1, and p is a prime to be specified. Also, we define

F(x) = f (x) + f (1)(x) + f (2)(x) + · · · + f (s+p+1)(x), (40)

noting, with thanks to Hurwitz, that the derivative of e−x F(x) is −e−x f (x). Hence we
may write

e−x F(x) − e0F(0) =
∫ x

0
−e−ξ f (ξ)dξ.
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The substitution ξ = τ x produces

F(x) − ex F(0) = −x
∫ 1

0
e(1−τ)x f (τ x)dτ.

Let x range over the values β1, β2, . . . , βr and add the resulting equations. Using (38)
we obtain

r∑
j=1

F(β j) + kF(0) = −
r∑
j=1

β j

∫ 1

0
e(1−τ)β j f (τβ j )dτ. (41)

This result gives the contradiction we desire. For we shall choose the prime p to make
the left side a non-zero integer, and make the right side as small as we please.

By (39), we have

r∑
j=1

f (t) = 0, for 0 ≤ t < p.

Also by (39) the polynomial obtained by multiplying f (x) by (p − 1)! has integral
coefficients. Since the product of p consecutive positive integers is divisible by p!, the
pth and higher derivatives of (p − 1)! f (x) are polynomials in x with integral coeffi-
cients divisible by p!. Hence the pth and higher derivatives of f (x) are polynomials
with integral coefficients, each of which is divisible by p. That each of these coeffi-
cients is also divisible by cs is obvious from the definition (39). Thus we have shown
that, for t ≥ p, the quantity f (t)(β j ) is a polynomial in β j of degree at most s, each of
whose coefficients is divisible by pcs . By (37), a symmetric function of β1, β2, . . . , βr

with integral coefficients and of degree at most s is an integer, provided that each
coefficient is divisible by cs (by the fundamental theorem on symmetric functions).
Hence

r∑
j=1

f (1)(β j ) = pkt , (t = p, p + 1, . . . , p + s)

where the kt are integers. It follows that

r∑
j=1

F(β j) = p
n+s∑
t=p

kt .

In order to complete the proof that the left side of (41) is a non-zero integer, we now
show that kF(0) is an integer that is prime to p. From (39) it is clear that

f (t)(0) = 0, (t = 0, 1, . . . , p − 2)

f (p−1)(0) = cscpr ,

f (t)(0) = pKt , (t = p, p + 1, . . . , p + s)

where the Kt are integers. If p is chosen greater than each of k, c, cr (possible since
the number of primes is infinite), the desired result follows from (40).
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Finally, the right side of (41) equals

−
r∑
j=1

1

c

∫ 1

0

{
crβ jθ(τβ j )

}p

(p − 1)!
e(1−r)β j dτ.

This is a finite sum, each term of which may be made as small as we wish by choosing
p very large, because

lim
p→∞

{
crβ jθ(τβ j )

}p

(p − 1)!
= 0.
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I Prefer Pi: Addenda
Jonathan Borwein and Scott Chapman

Abstract. In the rush to prepare our March 2015 article on Pi [1], several infelicities escaped
our eye. Herein we repair the damage.

1. MATHEMATICALCORRIGENDA. Lord Brouckner’s continued fraction given
in [1, (4)], and mentioned in the text above, should have been

4

π
= 1 + 12

2 +
32

2 +
52

2 +
72

2 +
92

2 +
112

2 +
132

2 + · · · ,

and the corresponding identity in [1, (12)] should have been

π = 3 + 12

6 +
32

6 +
52

6 +
72

6 +
92

6 +
112

6 +
132

6 + · · · .

2. BIBLIOGRAPHIC CORRIGENDA.

• References [33] and [74] omit the names of co-authors. The references should read
as follows.

33. R. Guy and Y. Matiyasevich, A new formula for π , Amer. Math. Monthly 93
(1986) 631–635.

74. J. Sondow and H. Yi, New Wallis- and Catalan-type infinite products for pı, e,
and

√
(2 + √

(2)), Amer. Math. Monthly 117 (2010) 912–917.

• The following paper, with 33 Google ciatations, was omitted from the regular bibli-
ography and the special bibliography on p. 196. We offer our apologies to Professor
Osler.

T. J. Osler, The united Vieta’s and Wallis’s products for pi, Amer. Math. Monthly
106 (1999) 774–776.

ACKNOWLEDGMENT. The authors wish to thank the readers who drew our attention to these lacunae.
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