
Chapter 6
On the Stability Analysis of Sampled-Data
Systems with Delays

Alexandre Seuret and Corentin Briat

Abstract Controlling a system through a network amounts to solve certain diffi-
culties such as, among others, the consideration of aperiodic sampling schemes and
(time-varying) delays. Inmost of the existing works, delays have been involved in the
input channel through which the system is controlled, thereby delaying in a contin-
uous way the control input computed by the controller. We consider here a different
setup where the delay acts in a way that the current control input depends on past
state samples, possibly including the current one, which is equivalent to consider-
ing a discrete-time delay, at the sample level, in the feedback loop. An approach
based on the combination of a discrete-time Lyapunov–Krasovskii functional and
a looped-functional is proposed and used to obtain tailored stability conditions that
explicitly consider the presence of delays and the aperiodic nature of the sampling
events. The stability conditions are expressed in terms of linear matrix inequalities
and the efficiency of the approach is illustrated on an academic example.

6.1 Introduction

Sampled-data systems are an important class of systems that have been extensively
studied in the literature [9] as they arise, for instance, in digital control [23] and
networked control systems [16, 38]. The aperiodic nature of the sampling schemes
creates additional difficulties in the analysis and the control of such systems as those
schemes aremuch less understood than their periodic counterpart. Several approaches
have beenproposed in order to characterize the behavior of such systems.Those based
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on the discretization of the sampled-data system have been discussed, for instance,
in [10, 17, 27, 35]. In these works, the sampling-period-dependent matrices of the
discrete-time system are embedded in a convex polytope and the analysis is carried
out using standard robust analysis techniques. This approach leads to efficient and
tractable conditions that can be easily used for control design. A limitation of the
approach, however, is that it only applies to unperturbed linear time-invariant systems.
A second approach is based on the so-called “input-delay approach” which consists
of reformulating the original sampled-data system into a time-delay system subject
to a sawtooth input-delay [11, 12, 20, 29]. This framework allows for the application
of well-known analysis techniques developed for time-delay systems, such as those
based on the Lyapunov-Krasovskii theorem. Its main advantage is its applicability
to uncertain, time-varying and even nonlinear systems. A limitation, however, is the
difficulty of designing controllers with such an approach. Robust analysis techniques
based, for instance, on small-gain results [24], Integral Quadratic Constraints [14, 18,
19] or well-posedness theory [1] have also been successfully applied. Approaches
based on impulsive systems using Lyapunov functionals [25] or clock-dependent
Lyapunov functions [3] also exist. Notably, the latter approach is able to characterize
the stability of periodic and aperiodic sampled-data systems subject to both time-
invariant and time-varying uncertainties. Even more interestingly, convex robust
stabilization conditions for sampled-data systems can also be easily obtained using
this approach. In this regard, this framework combines the advantages of discrete-time
and functional-based approaches. Finally, approaches based on looped-functionals
have been proposed in [7, 8, 31] in order to obtain stability conditions for sampled-
data and impulsive systems. This particular type of functional has the interesting
property of relaxing the positivity requirementwhich is necessary in Lyapunov-based
approaches. Instead of that, one demands the fulfillment of a “looping condition”, a
certain boundary condition that can be made structurally satisfied while constructing
the functional. In this regard, this class of functionals is therefore more general than
Lyapunov(-Krasovsksii) functionals as the looping condition turns out to be a weaker
condition than the positive definiteness condition; see e.g. [7, 8, 31].

We propose to derive here stability conditions for (uncertain) aperiodic sampled-
data systemswith discrete-time input delay.While the delayed sampled-data systems
considered in [22, 30] are subject to a continuous-time delay (the delay is expressed
in seconds), the systems we are interested in here involve a discrete-time delay (the
delay is expressed in a number of samples). A solution to this problem, based on
state augmentation, has been proposed in [32] for the constant delay case. This
approach yields quite accurate results at the expense of a rather high computational
cost, restricting then its application to small delay values. In order to remove this
limitation, an alternative approach relying on the use of a mixture of a Lyapunov–
Krasovskii and a looped-functional has been proposed in [33] in the case of constant
time-delays. The objective of the current chapter is to extend these conditions to the
case of time-varying delays. These conditions are expressed in terms of LMIs and
illustrated on a simple example.

The chapter is organized as follows. Section6.2 states the considered prob-
lem while Sect. 6.3 presents several preliminary results on looped-functionals. The
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main results of the chapter are proved in Sect. 6.4 where the cases of constant and
time-varying discrete delays are considered. An illustrative example and a discussion
of the results are finally treated in Sect. 6.5.

Notations: Throughout the chapter, Rn denotes the n-dimensional Euclidean space
with vector norm | · | and R

n×m is the set of all n × m real matrices. The sets Sn
and S

+
n represent the set of symmetric and symmetric positive definite matrices of

dimension n, respectively. Moreover, for two matrices A, B ∈ Sn , the inequality
A ≺ B means that A − B is negative definite. In symmetric matrices, the ∗’s are
a shorthand for symmetric terms. For any square matrix A ∈ R

n×n , we also define
He(A) := A + AT . Finally, I represents the identitymatrix of appropriate dimension
while 0 stands for the zero-matrix.

6.2 Problem Formulation

Let us consider here linear continuous-time systems of the form

ẋ(t) = Ax(t) + Bu(t), t ≥ 0,
x(0) = x0,

(6.1)

where x, x0 ∈ R
n and u ∈ R

m are the state of the system, the initial condition and the
control input, respectively. Above, the matrices A and B are not necessarily perfectly
known but may be uncertain and/or time-varying. The control input u is assumed to
be given by the following equation

u(t) = Kx(tk−h), t ∈ [tk, tk+1), k ∈ N, (6.2)

where K ∈ R
m×n is a controller gain and the sequence {tk}k∈N is the sequence of

sampling instants. It is assumed that this sequence is strictly increasing and does not
admit any accumulation point, that is, we have that tk → ∞ as k → ∞. We also
make the additional assumption that the difference Tk := tk+1 − tk belongs, for all
k ∈ N, to the interval [Tmin, Tmax ]where 0 ≤ Tmin ≤ Tmax . The delay h will either be
considered to be constant or bounded and time-varying. In the latter case, the delay
will be denoted by hk to emphasize its time-varying nature.

The closed-loop system obtained from the interconnection of (6.1) and (6.2) is
given, for all k in N, by

ẋ(t) = Ax(t) + BK x(tk−h), t ∈ [tk, tk+1),

x(θ) = x0, θ ≤ 0.
(6.3)

The discretized version of the previous system is given by

x(tk+1) = Ad(Tk)x(tk) + Bd(Tk)x(tk−h), k ≥ 0, (6.4)

where Ad(Tk) = eATk and Bd(Tk) = ∫ Tk
0 eAτ BKdτ .
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When the sampling period is fixed and known, the stability of the system (6.4) can
be established by either augmenting the model with past state values and using then
a quadratic discrete-time Lyapunov function, or by using a discrete-time Lyapunov–
Krasovskii functional directly on the delayed system [13, 36]. When the sampling is
aperiodic, however, discrete-time methods can still be used by embedding the uncer-
tain matrices Ad(Tk) and Bd(Tk) into a polytope [10, 15, 17]. Unfortunately, this
approach is only applicable when the matrices (A, B) of the system are constant and
perfectly known. To overcome this limitation, several methods can be applied. The
first one is the so-called input-delay approach [11, 12] and is based on the reformu-
lation of the sampled state into a delayed state with sawtooth delay. The analysis is
then carried out using, for instance, Lyapunov–Krasovskii functionals. The second
one is based on the reformulation of a sampled-data system into an impulsive system.
The stability of the underlying impulsive system can then be established out using
Lyapunov functionals [25], looped-functionals [8, 31] or clock-dependent Lyapunov
functions [3, 4, 6]. In this chapter, we will opt for an approach based on a combi-
nation of a looped-functional and a discrete-time Lyapunov–Krasovskii functional,
and demonstrate its applicability. Note that an approach based on a looped-functional
combinedwith a Lyapunov function has been considered in [32] togetherwith a state-
augmentation approach for the system. A major drawback is that the dimension of
the augmented system is hn and, therefore, LMI-based methods will not scale very
well with the delay size. The consideration of a Lyapunov–Krasovskii functional in
the current chapter aims at overcoming such a difficulty by working directly on the
original system.

Remark 1 It is worth mentioning that the class of systems considered in this chapter
differs from the class of systems described by

ẋ(t) = Ax(t) + BK x(tk − h̄), t ∈ [tk, tk+1),

x(θ) = φ(θ), θ ∈ [−h̄, 0], (6.5)

where h̄ in a positive scalar. Such systems have been extensively studied in the
literature; see e.g. [22, 26, 30]. Note, however, that when the sampling-period T is
constant and the delay h̄ satisfies h̄ = hT , then the two classes of systems coincide
with each other. In this regard, none of these classes is included in the other meaning,
therefore, that distinct methods need to be developed for each class.

6.3 Preliminaries

6.3.1 An Appropriate Modeling Using Lifting

The looped-functional approach relies on the characterization of the trajectories of
system (6.3) in a lifted domain [8, 37]. Therefore, we view the entire state trajectory
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as a sequence of functions {x(tk + τ), τ ∈ (0, Tk]}k∈Nwith elements having a unique
continuous extension to [0, Tk] defined as

χk(τ ) := x(tk + τ) with χk(0) = lims↓tk x(s). (6.6)

Finally we define K[Tmin ,Tmax ] as the set defined by

K[Tmin ,Tmax ] :=
⋃

T∈[Tmin , Tmax ]
C ([0, T ],Rn)

where C ([0, T ],Rn) denotes the set of continuous functions mapping [0, T ] to Rn .
Using this notation, system (6.3) can be rewritten as

χ̇k(τ ) = Aχk(τ ) + BKχk−h(0), τ ∈ [0, Tk), ∀k ∈ N. (6.7)

Looped-functionals consider this state definition for assessing stability in an effi-
cient and flexible manner. Notably, the positivity requirement of the functional can
be shown to be relaxed and the resulting stability condition can be generally written
as a convex expression of the system data, see e.g. [7, 8], allowing then for an easy
application of these results to time-varying systems.

Up to now, looped-functionals have not been used to obtain stability conditions for
sampled-data systems with discrete time-delay h. We, therefore, propose to extend
the results initially proposed in [7, 8, 31] to this case. In what follows, we will denote
by χh

k the function collecting the sampled and delayed values of the state, i.e.,

∀θ = −h,−h + 1, . . . , 0, χh
k (θ) = χk+θ (0) = x(tk+θ ). (6.8)

We, finally, define the set Dh as

Dh = {
X : {−h, . . . , 0} → R

n
}

which contains all possible sequences from {−h, . . . , 0} to Rn .

6.3.2 Functional-Based Results

The following technical definition is necessary before stating the main general result
about looped-functionals result.

Definition 1 [8] Let 0 < Tmin ≤ Tmax < +∞. A functional

f : [0, Tmax ] × K[Tmin ,Tmax ] × [Tmin, Tmax ] → R
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is said to be a looped-functional if the following conditions hold

1. the equality

f (0, z, T ) = f (T, z, T ) (6.9)

holds for all functions z ∈ C([0, T ],Rn) ⊂ K[Tmin ,Tmax ] and all T ∈ [Tmin, Tmax ],
and

2. it is differentiable with respect to the first variable with the standard definition of
the derivative.

The set of all such functionals is denoted by LF([Tmin, Tmax ]).
The idea for proving stability of (6.3) is to look at a positive definite quadratic

form V (x) such that the sequence {V (χk(Tk))}k∈N is monotonically decreasing. This
is formalized below through a functional existence result:

Theorem 1 Let Tmin ≤ Tmax be two finite positive scalars and V : Rn × Dhmax →
R+ be a form verifying

X ∈ Dhmax , μ1||X ||2hmax
≤ V (X (0), X) ≤ μ2||X ||2hmax

, (6.10)

for some scalars 0 < μ1 ≤ μ2. Assume that one of the following equivalent state-
ments hold:

(i) The sequence {V (χk(Tk), χh
k )}k∈N is decreasing

(ii) There exists a looped-functional V ∈ LF([Tmin, Tmax ]) such that the functional
Wk as

Wk(τ, χk, χ
h
k ) := τ

Tk
Λk + V (χk(τ ), χh

k ) + V (τ, χk, Tk), (6.11)

where Λk = V (χk(Tk), χh
k+1) − V (χk(Tk), χh

k ), has a derivative along the tra-
jectories of system χ̇k(τ ) = Aχk(τ ) + BKχk−h(k)(0), τ ∈ [0, Tk]

d

dτ
Wk(τ, χk, χ

h
k ) := 1

Tk
Λk + d

dτ
V (χk(τ ), χh

k ) + d

dτ
V (τ, χk, Tk), (6.12)

which is negative definite for all τ ∈ (0, Tk), Tk ∈ [Tmin, Tmax ], k ∈ N.

Then, the solutions of system (6.3) are asymptotically stable for any sequence
{tk}k∈N satisfying tk+1 − tk ∈ [Tmin, Tmax ], k ∈ N.

Proof The proof is omitted but is similar to the proof provided in [8, 31].

In the remainder of the chapter, wewill propose three stability conditions address-
ing the cases of constant and time-varying delay h for both certain and uncertain
aperiodic sampled-data systems.
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6.4 Main Results

6.4.1 Stability Analysis for Constant Delay h

This section provides a stability result for aperiodic sampled-data systems with a
constant delay h. We have the following result:

Theorem 2 The sampled-data system (6.7) with the delay h and Tk := tk+1 − tk ∈
[Tmin, Tmax ], k ∈ N, is asymptotically stable if there exist matrices R, Q, Z ∈ S

n+,
P, X ∈ S

2n, S ∈ S
n, U ∈ R

n×n and a matrix Y ∈ R
4n×n such that the LMIs

Φ0 :=
[
I
I

]

P

[
I
I

]

� 0,

Φ1(θ) :=
[
F0(θ) θY

� −θ Z

]

≺ 0,

Φ2(θ) := F0(θ) + θF1 ≺ 0,

(6.13)

hold for all θ ∈ {Tmin, Tmax } where

F0(θ) = F00 + F01 + θ He

([
M1

M3

]ᵀ
P

[
M0

0

])

,

F00 = Mᵀ
ΔSMΔ + θMᵀ

T XMT + He(Mᵀ
ΔUMT + MΔY ),

F01 = Mᵀ
2 Φ0M2 − Mᵀ

T PMT + Mᵀ
3 QM3 − Mᵀ

4 QM4 + h2Mᵀ
δ RMδ − Mᵀ

h RMh,

F1 = Mᵀ
0 ZM0 + He(Mᵀ

0 (SMΔ +UMT )) − 2Mᵀ
T XMT ,

(6.14)
with

M0 = [
A 0 0 BK

]
, M1 = [

I 0 0 0
]
, M2 = [

0 I 0 0
]
,

M3 = [
0 0 I 0

]
, M4 = [

0 0 0 I
]
, MΔ = [

I −I 0 0
]
,

Mδ = [
0 I −I 0

]
, Mh = [

0 0 I −I
]
, MT = [

Mᵀ
2 Mᵀ

3

]ᵀ
.

Proof Consider a Lyapunov function for the discrete-time system (6.4) given by

V (χk(τ ), χh
k ) =

[
χk(τ )

χk(0)

]ᵀ
P

[
χk(τ )

χk(0)

]

+
k−1∑

i=k−h
χ

ᵀ
i (0)Qχi (0)

+h
−1∑

i=−h

k−1∑

j=k+i
δ

ᵀ
i (0)Rδi (0),

(6.15)

where δi (0) = χi+1(0) − χi (0). On the other hand, we define the functional V as
follows
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TkV (τ, χk, Tk) = τ(Tk − τ)

[
χk(Tk)
χk(0)

]ᵀ
X

[
χk(Tk)
χk(0)

]

+ τ(χk(τ ) − χk(Tk))ᵀS(χk(τ ) − χk(Tk))

+ 2τ(χk(τ ) − χk(Tk))ᵀU
[

χk(Tk)
χk(0)

]

− τ
Tk∫

τ

χ̇
ᵀ
k (s)Z χ̇k(s)ds,

(6.16)

where the matrices above are such that Z ∈ S
n+, S ∈ S

n , X ∈ S
2n and U ∈ R

n×2n .
This functional has been build in order to satisfy the looped condition. Indeed, one
can easily verify that

V (0, χk, Tk) = V (Tk, χk, Tk) = 0,

for all Tk ∈ [Tmin, Tmax ]. As already highlighted in [8, 31], the consideration of
looped-functionals allows to enlarge the set of acceptable functionals in comparison
to Lyapunov–Krasovskii functionals. Firstly, the matrices S, X and U are sign-
indefinite in the current setting while they would have been required to be positive
definite in usual Lyapunov approaches such as the one in [11, 25]. Second, the pro-
posed functional includes more components than it is usually proposed in the litera-
ture (see for instance [11, 25, 31]). Indeed, looped-functionals allow one to include
terms like χk(Tk) which would have been difficult to consider in the Lyapunov–
Krasovskii framework. Following Theorem 1, let us consider

Ẇk(τ, χk, χ
h
k ) = 1

Tk

(
Λk + Tk V̇ (χk(τ ), χh

k ) + TkV̇ (τ, χk, Tk)
)
, (6.17)

where Λk is defined in Theorem 1. By virtue of the same theorem, the asymptotic
stability of the system (6.7) is then proved if V (χk(0), χh

k ) is positive definite and
Ẇk is negative definite. Note that the necessity is lost by choosing specific forms for
the functionals (6.15)–(6.16). Regarding the first condition, we have that

V (χk(0), χh
k ) = χ

ᵀ
k (0)Φ0χk(0) +

k−1∑

i=k−h
χ

ᵀ
i (0)Qχi (0)

+ h
−1∑

i=−h

k−1∑

j=k+i
δ

ᵀ
i (0)Rδi (0)

which is positive definite provided that the matricesΦ0, Q and R are positive definite
as well. Let us focus now on the condition onWk for which we will provide an upper-
bound expressed in terms of the augmented vector

ξk(τ ) := col(χk(τ ), χk(Tk), χk(0), χk−h(0)).
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By virtue of the above definition, Λk can be rewritten as

Λk =
[

χk+1(0)
χk+1(0)

]ᵀ
P

[
χk+1(0)
χk+1(0)

]

−
[

χk(Tk)
χk(0)

]ᵀ
P

[
χk(Tk)
χk(0)

]

+
k∑

i=k−h+1
χ

ᵀ
i (0)Qχi (0) −

k−1∑

i=k−h
χ

ᵀ
i (0)Qχi (0)

+ h
−1∑

i=−h

(
k∑

j=k+i+1
δ

ᵀ
i (0)Rδi (0) −

k−1∑

j=k+i
δ

ᵀ
i (0)Rδi (0)

)

.

Since χk+1(0) = χk(Tk), the previous expression can be easily expressed in terms
of the augmented vector ξk(τ ). Applying then Jensen’s inequality yields

Λk ≤ ξ
ᵀ
k (τ )

(

Mᵀ
2 Φ0M2 −

[
M2

M3

]ᵀ
P

[
M2

M3

]

+ Mᵀ
3 QM3 − Mᵀ

4 QM4

+ h2Mᵀ
δ RMδ − Mᵀ

h RMh

)

ξk(τ )

= ξ
ᵀ
k (τ )F01ξk(τ ).

(6.18)

Let us focus now on the second term of Ẇ , as defined in (6.17), given by

Tk V̇ (χk(τ ), X) = 2Tk

[
χk(τ )

χk(0)

]ᵀ
P

[
χ̇k(τ )

0

]

= Tkξ
ᵀ
k (τ )He

([
M1

M3

]ᵀ
P

[
M0

0

])

ξk(τ ).

(6.19)

Finally, the last term of Ẇ , as defined in (6.17), is given by

TkV̇ (τ, χk, Tk) = (Tk − 2τ)

[
χk(Tk)
χk(0)

]ᵀ
X

[
χk(Tk)
χk(0)

]

+ (χk(τ ) − χk(Tk))ᵀS(χk(τ ) − χk(Tk)) + 2τ χ̇
ᵀ
k (τ )S(χk(τ ) − χk(Tk))

+ 2(χk(τ ) − χk(Tk))ᵀU
[

χk(Tk)
χk(0)

]

+ 2τ χ̇
ᵀ
k (τ )U

[
χk(Tk)
χk(0)

]

+ τ χ̇
ᵀ
k (τ )Z χ̇k(τ ) −

Tk∫

τ

χ̇
ᵀ
k (s)Z χ̇k(s)ds.

(6.20)

We can rewrite the above expression in terms of the matrices F00, F1, F2 defined
in Theorem 2 to get

TkV̇ (χk, τ ) = ξ
ᵀ
k (τ ) [F00 + τ F1 − He(YMΔ)] ξk(τ ) −

Tk∫

τ

χ̇
ᵀ
k (s)Z χ̇k(s)ds.

(6.21)
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In order to find a convenient upper-bound on the last integral term, we propose to
consider the affine version of Jensen’s inequality, discussed in [2], to get that

−
Tk∫

τ

χ̇
ᵀ
k (s)Z χ̇k(s)ds ≤ ξ

ᵀ
k (τ )

[
He(YMΔ) + (Tk − τ)Y Z−1Y ᵀ]

ξk(τ ),

where Y ∈ R
4n×n is a free matrix. The benefit of the affine version of Jensen’s

inequality is, in essence, only of computational nature. It has indeed been discussed
in [2] that when the interval of integration is uncertain or time-varying, it is preferable
to use the affine version to limit the increase of conservatism. The price to pay is
a moderate increase of the computational complexity through the presence of the
additional matrix Y .

Substituting then this inequality back into (6.21), leads to

TkV̇ (χk, τ ) ≤ ξ
ᵀ
k (τ )

[
F00 + τ F1 + (Tk − τ)Y Z−1Y ᵀ]

ξk(τ ), (6.22)

where F00 and F1 are given in Theorem 2. Summing then (6.18), (6.19) and (6.22)
all together, we get that Ẇk is negative definite if

F0(Tk) + τ F1 + (Tk − τ)Y Z−1Y ᵀ (6.23)

is negative definite for all (τ, Tk) ∈ S where

S := {(τ, T ) ∈ R
2
+ : τ ∈ [0, T ], T ∈ [Tmin, Tmax ]},

and where F0(Tk) is defined in Theorem 2. Exploiting the fact that the matrix (6.23)
is affine in τ and Tk , hence convex in these variables, allows us to easily conclude
that the matrix (6.23) is negative definite for all τ ∈ [0, Tk] and all Tk ∈ [Tmin, Tmax ]
if and only if it is negative definite at the vertices of the set S or, equivalently,
negative definite on the set {(Tmin, Tmin), (Tmax , Tmax ), (0, Tmin), (0, Tmax )}. Each
one of these points leads to one of the following LMI conditions:

Φ1(Tmin) = F00 + Tmin F1 ≺ 0,
Φ1(Tmax ) = F00 + Tmax F1 ≺ 0,
Φ̃2(Tmin) := F00 + TminY Z−1Y ᵀ ≺ 0,
Φ̃2(Tmax ) := F00 + TmaxY Z−1Y ᵀ ≺ 0.

Applying finally the Schur complement with respect to the last term in Φ̃2(·)
yields Φ2(·). The proof is complete.

A similar approach is considered in [33] with the difference that another looped-
functional V is used. Another notable difference is the use of the reciprocally convex
combination lemma of [28] yielding less conservative conditions without the intro-
duction of the slack variable Y .
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6.4.2 Stability Analysis for Time-Varying Delay hk

Interestingly, Theorem 2 can be easily extended to cope with time-varying delays. In
this respect, we now consider that the delay is time-varying and belongs to {0, . . . , h̄},
h̄ ∈ N. This leads to the following result:

Corollary 1 The sampled-data system (6.7)with time-varyingdelay hk ∈ {0, . . . , h̄}
and Tk := tk+1 − tk ∈ [Tmin, Tmax ], k ∈ N, is asymptotically stable if there exist
matrices R, Z ∈ S

n+, P, X ∈ S
2n, S ∈ S

n, U ∈ R
n×n and a matrix Y ∈ R

4n×n such
that the LMIs

Ψ0 :=
[
I
I

]

P

[
I
I

]

� 0,

Ψ1(θ) :=
[
G0(θ) θY

� −θ Z

]

≺ 0,

Ψ2(θ) := G0(θ) + θG1 ≺ 0,

(6.24)

hold for all θ ∈ {Tmin, Tmax } where G00 = F00, G1 = F1 and

G0(θ) = G00 + G01 + θ He

([
M1

M3

]ᵀ
P

[
M0

0

])

,

G01 = Mᵀ
2 Φ0M2 − Mᵀ

T PMT + h̄2Mᵀ
δ RMδ − Mᵀ

h RMh .

(6.25)

Proof As in the proof of Theorem 2, we consider the looped-functional V given
in (6.15). However, we shall consider here the Lyapunov–Krasovskii functional V
given by

V (χk(τ ), χ h̄
k ) =

[
χk(τ )

χk(0)

]ᵀ
P

[
χk(τ )

χk(0)

]

+ h̄
−1∑

i=−h̄

k−1∑

j=k+i

δ
ᵀ
i (0)Rδi (0), (6.26)

where δi (0) = χi+1(0) − χi (0). This functional is nothing else but the one we con-
sidered for establishing Theorem 2 in which the matrix Q has been set to zero. The
proof is now very similar to the one of Theorem 2 and, therefore, only the part
pertaining on Λk is detailed because of its dissimilarity. Simple calculations show
that

Λk =
[

χk(Tk)
χk(Tk)

]ᵀ
P

[
χk(Tk)
χk(Tk)

]

−
[

χk(Tk)
χk(0)

]ᵀ
P

[
χk(Tk)
χk(0)

]

+ h̄2(χk+1(0) − χk(0))ᵀR(χk+1(0) − χk(0)) − h̄
k−1∑

i=k−h̄

δ
ᵀ
i (0)Rδi (0).
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Since hk ≤ h̄ it holds that

Λk ≤
[

χk(Tk)
χk(Tk)

]ᵀ
P

[
χk(Tk)
χk(Tk)

]

−
[

χk(Tk)
χk(0)

]ᵀ
P

[
χk(Tk)
χk(0)

]

+ h̄2(χk+1(0) − χk(0))ᵀR(χk+1(0) − χk(0)) − hk
k−1∑

i=k−hk

δ
ᵀ
i (0)Rδi (0).

Applying Jensen’s inequality to the last summation term, and using the definition
of the matrices M2, M3, Mδ yields

Λk = ξ
ᵀ
k (τ )

(

Mᵀ
2 Φ0M2 −

[
M2

M3

]ᵀ
P

[
M2

M3

]

+ h̄2Mᵀ
δ RMδ − Mᵀ

h RMh

)

ξk(τ )

= ξ
ᵀ
k (τ )G01ξk(τ ).

(6.27)
The rest of the proof is identical to the proof of Theorem 2.

6.4.3 Robust Stability Analysis

One of the main advantages of the proposed method based lies in the possibility of
extending the stability conditions to the case of uncertain systems. Assume now that
the matrices of the system are time-varying/uncertain and can be written as

[
A(t) B(t)

] =
N∑

i=1

λi (t)
[
Ai Bi

]
, (6.28)

where N is a positive integer, Ai and Bi , i = 1, . . . , N , are some matrices of appro-
priate dimensions and the vector λ(t) evolves in the N unit simplex defined as

U :=
{

λ ∈ R
N
+ :

N∑

i=1

λi = 1

}

. (6.29)

This leads us to the following result:

Corollary 2 The sampled-data system (6.7)–(6.28) with constant delay h and
Tk := tk+1 − tk ∈ [Tmin, Tmax ], k ∈ N, is asymptotically stable if there exist matrices
R, Q, Z ∈ S

n+, P, X ∈ S
2n, S ∈ S

n, U ∈ R
n×n and some matrices Yi ∈ R

4n×n such
that the LMIs

Φ0 :=
[
I
I

]

P

[
I
I

]

� 0,

Φ i
1(θ) :=

[
Fi
0(θ) θYi
� −θ Z

]

≺ 0,

Φ i
2(θ) := Fi

0(θ) + θFi
1 ≺ 0,

(6.30)
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hold for all θ ∈ {Tmin, Tmax } where

Fi
0(θ) = Fi

00 + F01 + θ He

([
M1
M3

]ᵀ
P

[
Mi

0
0

])

,

Fi
00 = Mᵀ

ΔSMΔ + θMᵀ
T XMT + He(Mᵀ

ΔUMT + MΔYi )

Fi
01 = Mᵀ

2 Φ0M2 − Mᵀ
T PMT + Mᵀ

3 QM3 − Mᵀ
4 QM4 + h2Mᵀ

δ RMδ − Mᵀ
h RMh,

F1 = Mi
0
ᵀ
ZMi

0 + He(Mi
0
ᵀ
(SMΔ +UMT )) − 2Mᵀ

T XMT ,

(6.31)
with Mi

0 = [
Ai 0 0 Bi K

]
.

Proof The proof is straightforward by noting that the LMI conditions in Theorem 2
are convex in the matrix M0. Remarking also that

M0 = [
A(t) 0 0 B(t)K

] =
N∑

i=1

λi (t)
[
Ai 0 0 Bi K

]

implies that the LMI conditions are convex in the matrices of the system A(t) and
B(t). By virtue of standard results on systems with polytopic uncertainties (see e.g.
[5]), it is enough to check the feasibility of the LMI at the vertices of the set U and
the result directly follows.

Remark 2 The above result can be easily extended to the time-varying delay case
by setting the matrix Q to 0. This is not presented for brevity.

6.5 Example

Example 1 ([39]) Let us consider the sampled-data system (6.3) with matrices

A =
[
0 1
0 −0.1

]

, B =
[

0
−0.1

]

and K = [
3.75 11.5

]
.

Using an eigenvalue-based analysis, theoretical stability-preserving upper bounds
for the constant sampling period canbe determined for anyfixeddelay h. These values
can be understood as a theoretical limit for the upper bounds obtained in the aperi-
odic case. These theoretical upper bounds and the results computed by solving the
conditions of Theorem 2 are given in Tables6.1 and 6.2. More particularly, Table6.1
compares the maximal allowable sampling period T = Tmax = Tmin obtained using
Theorem 2 and previous results of the literature. We can immediately see that the
numerical values obtained using Theorem 2 are slightlymore conservative than those
previously obtained by the same authors. Yet, the obtained numerical values are close
to the theoretical value.

On the other hand, Table6.2 compares the obtained results with those obtained
with the methods developed in [32, 33]. It can be seen again that the results of [32]
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Table 6.1 Maximal allowable sampling period Tmax = Tmin for Example 1 with periodic sam-
plings for several values of h (the symbol -∗ means “untested because of a too high computational
complexity”)

h 0 1 2 5 10

Theoretical bounds 1.729 0.763 0.463 0.216 0.112

[26] (with τ = hT ) 1.278 0.499 0.333 0.166 0.090

[21] (with τ = hT ) 1.638 0.573 0.371 0.179 0.096

[30] (with τ = hT ) 1.721 0.701 0.431 0.197 0.103

[33] 1.728 0.761 0.448 0.199 0.103

[32] 1.729 0.763 0.463 -∗ -∗

Theorem 2 1.720 0.536 0.318 0.146 0.077

Table 6.2 Maximal allowable sampling period Tmax for Example 1 with Tmin = 10−2 and for
several values of h (the symbol -∗ means “untested because of a too high computational complexity”)

h 0 1 2 5 10

[33] 1.708 0.618 0.377 0.176 0.094

[32] 1.729 0.763 0.463 -∗ -∗

Theorem 2 1.245 0.460 0.283 0.132 0.071

Table 6.3 Maximal allowable sampling period Tmax for Example 1 with Tmin = 10−2 and for
several values of the upper bound h̄ of the time-varying delay h

h̄ 0 1 2 5 10

Corollary 1, Tmin = Tmax – 0.465 0.264 0.115 0.059

Corollary 1, Tmin < Tmax – 0.402 0.240 0.109 0.057

are less conservative for small values of the delay h. The main reason for this is
that the current chapter uses Jensen’s inequality, which is more conservative than
the integral inequality considered in [32] for large values of the delay. However, the
computational burden of the approach of [32] increases exponentially with the delay
h, making it inapplicable for systems with large delays.

Finally, Table6.3 shows the results obtained using Corollary 1, which addresses
the case of time-varying delay hk . We can observe a notable decrease of the maximal
allowable sampling period.

6.6 Conclusions

In this chapter, a way for analyzing stability of periodic and aperiodic uncertain
sampled-data systems with discrete-time delays is presented. Instead of using a
discrete-time criterion that would prevent the generalization of the approach to
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uncertain systems with time-varying uncertainties, an alternative approach based
on looped-functionals has been preferred. The main novelty of the method relies on
the stability analysis, which merges the continuous-time and discrete-time criteria
at the same time. This is combination of discrete- and continuous-time approach
has been possible by the introduction of a lifted version of the state vector. Further
extensions aims at reducing the conseratism of the stability conditions by employing
recent and more efficient inequalities such as the reciprocally convex combination
lemma [28] and Wirtinger-based integral inequality [34].
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