
Chapter 4
General Formula for Event-Based
Stabilization of Nonlinear Systems
with Delays in the State

Sylvain Durand, Nicolas Marchand and J. Fermi Guerrero-Castellanos

Abstract In this chapter, a universal formula is proposed for event-based stabiliza-
tion of nonlinear systems affine in the control and with delays in the state. The feed-
back is derived from the seminal law proposed by E. Sontag (1989) and then extended
to event-based control of affine nonlinear undelayed systems. Under the assumption
of the existence of a control Lyapunov–Krasovskii functional (CLKF), the proposal
enables smooth (except at the origin) asymptotic stabilization while ensuring that the
sampling intervals do not contract to zero. Global asymptotic stability is obtained
under the small control property assumption. Moreover, the control can be proved
to be smooth anywhere under certain conditions. Simulation results highlight the
ability of the proposed formula. The particular linear case is also discussed.

4.1 Introduction

The control synthesis problem is quite complex for systems with nonlinearities, par-
ticularly when the control laws have to be implemented on a real-time platform.
Different techniques exist. The most classical way to address a discrete-time feed-
back for nonlinear systems is (i) to implement a (periodic) continuous-time control
algorithm with a sufficiently small sampling period. This procedure is denoted as
emulation. However, the hardware used to sample and hold the plant measurements
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or compute the feedback control action may make impossible the reduce of the
sampling period to a level that guarantees acceptable closed-loop performance, as
demonstrated in [15]. Furthermore, although periodicity simplifies the design and
analysis, it results in a conservative usage of resources. Other methods are (ii) the
application of sampled-data control algorithms based on an approximated discrete-
time model of the process, like in [26], or (iii) the modification of a continuous-time
stabilizing control using a general formula to obtain a redesigned control suitable
for sampled-data implementation, as done in [25]. However, all these techniques are
not generic enough for engineering applications. Finally, (iv) event-triggered con-
trol approaches have also been suggested as a solution in recent decades, where the
control law is event-driven. These novel alternatives are resource-aware implemen-
tations, they overcome drawbacks of emulation, redesigned control and complexity
of the underlying nonlinear sampled-data models.

Whereas the control law is computed and updated at the same rate regardless
whether is really required or not in the classical time-triggered approaches, the
event-based paradigm relaxes the periodicity of computations and communications
in calling for resources whenever they are indeed necessary (for instance when the
dynamics of the controlled system varies). This is clearly an opportunity for embed-
ded and networked control systems. Nevertheless, although event-based control is
well-motivated, only few works report theoretical results about stability, conver-
gence, and performance. Typical event-detection mechanisms are functions on the
variation of the state (or at least the output) of the system, like in [3, 4, 6, 7, 9, 14,
23, 29, 30]. It has notably been shown in [4] that the control law can be updated less
frequently than with a periodic scheme while still ensuring the same performance.
Stabilization of linear and nonlinear systems is analyzed in [1, 8, 24, 34, 35], where
the events are related to the variation of a Lyapunov function or the time derivative
of a Lyapunov function (and consequently to the state too). On the other hand, only
few works deal with time-delay systems (which are of high concern in networked
systems and in general for cyber-physical systems). One can refer to [6, 13, 21,
22] for linear systems for instance. As evidenced by the above reviewed literature,
very little attention has been dedicated to the stabilization of nonlinear time-delayed
systems using an event-based approach. To the authors’ knowledge, this is the first
time that an event-based control strategy is proposed.

Technically, it has been shown that if a control Lyapunov function (CLF) is known
for a nonlinear system that is affine in the control, then the CLF and the system
equations can be used to redesign the feedback by means of so-called universal
formulas. These formulas are called universal because they depend only upon the
CLF and the system equations, and not on the structure of those equations. The
concept of CLF is therefore a useful tool for synthesizing robust control laws for
nonlinear systems. In particular, the present work is based on the Sontag’s universal
formula [33], which event-based versionwas recently proposed in [24] for undelayed
systems. The combination of (i) an event function (based on the time derivative of
the CLF) and (ii) a feedback function (that is only updated when the event function
vanishes) ensures the strict decrease of the CLF and consequently the asymptotic
stability of the closed-loop system. For time-delay systems, the idea of CLF has
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been extended in the form of control Lyapunov–Razumikhin functions (CLRF) and
control Lyapunov–Krasovskii functionals (CLKF), see [16–18]. The latter form is
more flexible and easier to construct than CLRFs. Moreover, if a CLKF is known for
a nonlinear time-delay system, several stabilizing control laws can be constructed
using universal formulas derived for CLFs (such as the Sontag’s one for instance)
to achieve global asymptotic stability of the closed-loop system. Accordingly, the
universal event-based formula developed in [24] for undelayed systems is extended
here for the stabilization of affine nonlinear time-delay systems using CLKF. The
present work extends the results previously presented in [8]. The class of time-delay
systems under consideration is restricted to depend on some discrete delays and a
distributed delay. Moreover, only state delays are considered (delays in the control
signal, i.e., input delays, are not concerned).

The rest of the document is organized as follows. In Sect. 4.2, preliminaries on
classical (time-triggered) stabilization of nonlinear time-delay systems are presented.
CLF and CLKF definitions are recalled as well as well-known universal formulas.
The main contribution is then detailed in Sect. 4.3. The event-based paradigm is first
introduced and then a universal event-based formula, based on the Sontag’s formula,
is proposed for the stabilization of affine nonlinear systems with delays in the state.
The smooth control particular case is also treated. Illustrative examples are given for
both nonlinear and linear cases. A discussion finally concludes the chapter. Proofs
are given in Appendix.

4.2 Preliminaries on Nonlinear Time-Delay System
Stabilization

Stability is an important issue in control theory. For nonlinear dynamical systems, this
ismainly treatedwith the theory of Lyapunov: if the derivative of aLyapunov function
candidate (a scalar positive definite function of the states) can be shown to be negative
definite along the trajectories of a given system, then the system is guaranteed to be
asymptotically stable [19]. For closed-loop systems, thismeans to propose a feedback
function and then search for an appropriate Lyapunov function or, inversely, propose
a Lyapunov function candidate and then find a feedback strategy that renders its
derivative negative [19]. Nevertheless, it can be difficult to find a Lyapunov function
candidate or even to determinewhether or not one exists. Obviously, some techniques
can help for such Lyapunov-based control synthesis.

4.2.1 Control Lyapunov Function

The (Lyapunov-based) control synthesis problem was made more formal with the
introduction of control Lyapunov function (CLF) [2, 32] for systems affine in the
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control input. A CLF is a (smooth) positive definite, radially unbounded function,
which derivative can be made negative definite at each state (except possibly at the
origin) by some feasible input. In addition, one may require that the CLF fulfills the
small control property for global stability.

To summarize, let us consider the affine nonlinear dynamical system

ẋ(t) = f
(
x(t)

) + g
(
x(t)

)
u(t), (4.1)

with x(0) := x0,

with x(t) ∈ X ⊂ R
n and u(t) ∈ U ⊂ R

m the state and input (control) space vectors.
f : X → X and g : X → R

n×m are smooth functions with f vanishing at the
origin. Also, let define X ∗ := X \{0} hereafter. Note that only null stabilization is
considered here and the dependence on t can be omitted in the sequel for the sake of
simplicity.

Definition 1 (Control Lyapunov function [33]). A smooth and positive definite func-
tional V : X → R is a control Lyapunov function (CLF) for system (4.1) if for each
x �= 0 there is some u ∈ U such that

α(x) + β(x)u < 0, (4.2)

with

∣∣∣∣
∣∣∣

α(x) := L f V (x) = ∂V

∂x
f (x),

β(x) := LgV (x) = ∂V

∂x
g(x),

where L f V and LgV are the Lie derivatives of f and g functions respectively.

Property 1 (Small control property [33]). If for any μ > 0, ε > 0 and x in the ball
B(μ)\{0}, there is some u with ‖u‖ ≤ ε such that inequality (4.2) holds, then it is
possible to design a feedback control that asymptotically stabilizes the system.

Furthermore, it has been shown that if a CLF is known for a nonlinear system that
is affine in the control, then the CLF and the system equations can be used to find
some so-called universal formulas that render the system asymptotically stable. Sev-
eral known universal formulas exist, in particular Sontag’s [33] and Freeman’s [10]
formulas are presented in the sequel. Other methods, like the domination redesign
formula [31] is also discussed but it will not be treated in details here.

4.2.2 Control Lyapunov–Krasovskii Functionals

For (nonlinear) time-delay systems, there exist twomainLyapunov techniques, called
the Krasovskii method of Lyapunov functionals [20] and the Razumikhin method
of Lyapunov functions [28]. Motivated by the concept of CLF and the role it plays
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in robust stabilization of nonlinear systems, these methods have also been extended
in the form of control Lyapunov–Razumikhin functions (CLRF) [16] and control
Lyapunov–Krasovskii functionals (CLKF) [17].

Several stabilizing control laws can be constructed to achieve global asymptotic
stability of the closed-loop system using one of the universal formulas derived for
CLFs. For instance, Sontag’s [33] andFreeman’s [10] formulas apply for CLKF [17],
whereas the domination redesign formula [31] applies for CLRF [16]. Note that this
latter formula also applies for an augmented CLKF, as shown in [18]. Moreover, the
CLKF form is more flexible and easier to construct than CLRFs. For these reasons,
only Krasovskii methods are detailed in the sequel (but the proposal can be easily
extended to the Razumikhin version).

Hereafter, the state of a time-delay system is described by xd : [−r, 0] → X
defined by xd(t)(θ) = x(t + θ). This notation, used in [17] in particular, seemsmore
convenient than the more conventional xt (θ). Note that the dependence on t and θ

can be omitted in the sequel for the sake of simplicity, writing xd(θ) – or only xd

– instead of xd(t)(θ) for instance. Let consider the affine (in the control) nonlinear
dynamical time-delay system

ẋ = f (xd) + g(xd)u, (4.3)

with xd(0)(θ) := χ0(θ),

where f : X → X , g : X → R
n×m are smooth functions and χ0 : [−r, 0] → X

is a given initial condition.

Remark 1 Input delays of the form u(t − τ) are not considered in this chapter. How-
ever, the control law is computed using the state xd of the time-delay system.

Note that the class of time-delay systems under consideration in this paper is
restricted to depend on l discrete delays and a distributed delay in the form

ẋ = Φ(xτ ) + g(xτ )u, (4.4)

with Φ(xτ ) := f0(xτ ) +
∫ 0

−r
Γ (θ)F

(
xτ , x(t + θ)

)
dθ,

and xτ := [
x, x(t − τ1), x(t − τ2), . . . , x(t − τl)

]
,

where f0 : X → X , g : X → R
n×m and F : R(l+2)n → R

Γ are smooth functions
of their arguments. Without loss of generality, it is assumed that F(xτ , 0) = 0 and
the matrix Γ : [−r, 0] → R

n×Γ is piecewise continuous (hence, integrable) and
bounded.

Definition 2 (Control Lyapunov–Krasovskii functional [17]). Let defined a smooth
functional V : X → R of the particular form
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V (xd) = V1(x) + V2(xd) + V3(xd), (4.5)

with

∣∣∣∣∣
∣∣∣∣

V2(xd) =
l∑

j=1

∫ 0

−τ j

S j (x(t − ς))dς,

V3(xd) =
∫ 0

−r

∫ t

t+θ

L(θ, x(ς))dςdθ,

where V1 is a smooth, positive definite, radially unbounded function of the current
state x (i.e., the classical control Lyapunov function for undelayed systems, as defined
inDefinition 1), V2 and V3 are nonnegative functionals respectively due to the discrete
delays and the distributed delay in (4.4), Sj : X → R and L : R+ × X → R are
nonnegative integrable functions, smooth in the x-argument. Then V in (4.5) is a
control Lyapunov–Krasovskii functional (CLKF) for system (4.4) if there exists a
function λ, with λ(s) > 0 for s > 0, and two classK∞ functions κ1 and κ2 such that

κ1(|χ0|) ≤ V (χd) ≤ κ2(‖χd‖),

and (see Remark 3 for the definition of L∗
f V )

βd(χd) = 0 ⇒ αd(χd) ≤ −λ(|χ0|), (4.6)

with

∣
∣∣∣
αd(xd) := L∗

f V (xd),

βd(xd) := LgV1(xd),

for all piecewise continuous functions χd : [−r, 0] → X , where χ0 is defined
in (4.3).

Remark 2 The restriction on the class of delay systems (4.4) and the correspond-
ing particular CLKF (4.5) is needed to avoid the problems that arise due to non-
compactness of closed bounded sets in the space

(
C([−r, 0],X )

, ‖ · ‖), where
C([−r, 0],X ) denotes the space of continuous functions from [−r, 0] intoX . This
is discussed in [16, 17].

Remark 3 Whereas the classical Lie derivative notation is used in LgV1(x) =
∂V1
∂x g(x) for the CLKF part V1 which is function of the current state x , an extended
Lie derivative is required for functionals of the form (4.5). L∗

f V , initially defined
in [17], comes from the time derivative of the CLKF V in (4.5) along trajectories of
the system (4.4), that is

V̇ = L∗
f V (xd) + LgV1(xd)u = αd(xd) + βd(xd)u, (4.7)

with L∗
f V (xd) := ∂V1

∂x
Φ +

l∑

j=1

(
Sj (x) − Sj (x(t − τ j ))

)

+
∫ 0

−r

(
L(θ, x) − L(θ, x(t + θ))

)
dθ,

where Φ is defined in (4.4).
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4.2.3 Universal Formulas for the Stabilization of Affine
Nonlinear Time-Delay Systems

Universal formulas derived forCLFs have been extended for the stabilization of affine
nonlinear time-delay systems (4.4) with a CLKF of the form (4.5). In particular, the
Sontag’s [33] and Freeman’s [10] versions are detailed here.

Theorem 1 (Sontag’s universal formula with CLKF [17]). Assume that system (4.4)
admits a CLKF of the form (4.5). For any real analytic function q : R → R such
that q(0) = 0 and bq(b) > 0 for b �= 0, let φs : R2 → R be defined by

φs(a, b) :=
⎧
⎨

⎩

a + √
a2 + bq(b)

b
if b �= 0,

0 if b = 0.
(4.8)

Then, the feedback u : X → U , smooth on X ∗, defined by

u(xd) := −βd(xτ ) φs

(
αd(xd), ‖βd(xd)‖2

)
, (4.9)

with xτ and αd , βd defined in (4.4) and (4.6) respectively, is such that (4.6) is satisfied
for all nonzero piecewise continuous functions χd : [−r, 0] → X .

Theorem 2 (Freeman’s universal formula with CLKF [17]). Assume that sys-
tem (4.4) admits a CLKF of the form (4.5). For any continuous and positive definite
function η : R2 → R, let φ f : R2 → R be defined by

φ f (a, b) :=
{ a + η(a, b)

b
if a + η(a, b) > 0,

0 if a + η(a, b) ≤ 0.
(4.10)

Then, the feedback u : X → U , smooth on X ∗, defined by

u(xd) := −βd(xτ ) φ f

(
αd(xd), ‖βd(xd)‖2

)
, (4.11)

with xτ and αd , βd defined in (4.4) and (4.6) respectively, is such that (4.6) is satisfied
for all nonzero piecewise continuous functions χd : [−r, 0] → X .

Property 2 (Small control property with CLKF [17]). If the CLKF V in Theorem 1
of Theorem 2 satisfies the small control property, then the control is continuous at
the origin and so is globally asymptotically stable the closed-loop system.

Remark 4 Choosing the function η (4.10) as the particular form

η(a, b) =
√

a2 + bq(b),
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where q is a continuous, positive semidefinite function, gives the same function (4.8)
as originally proposed by Sontag.

Remark 5 As already said, the domination redisign formula [31] has also been
extended for time-delay systems usingCLRF in [16] andCLKF in [18]. The feedback
u : X → U , smooth onX ∗, takes the more general form

u(xd) := −βd(xτ ) φd
(
V (xd)

)
, (4.12)

where the scalar function φd is called the dominating function. Also, a particular
choice of this function can lead to the original Sontag’s function (4.8).

4.3 Event-Based Stabilization of Nonlinear Time-Delay
Systems

The idea behind extending the (time-triggered) universal formulas to event-driven
versions is to obtain equivalent but resource-aware strategies, because the control
signal will be computed and updated only when a certain condition is satisfied in
the event-based case. This was already done in [24] for the undelayed case and it is
extended here for time-delay systems. The event-based paradigm is first introduced.
Then, an event-based formula for the stabilization of affine nonlinear time-delay
systems admitting a CLKF is then detailed, derived from the Sontag’s formula [33].
Other universal formulas are not concerned but the extension is trivial since they
are all similarly constructed. An illustrative example highlights the ability of the
proposal. Finally, the particular case of linear systems is discussed.

4.3.1 Event-Based Formalization

The classical discrete-time framework of controlled systems consists in sampling the
system uniformly in time with a constant sampling period. Although periodicity sim-
plifies the design and analysis, it results in a conservative usage of resources (compu-
tation, communication, energy) since the control law is computed and updated at the
same rate regardless it is really required or not. Fortunately, some innovative works
addressed resource-aware implementations of the control law, where the control law
is event driven (when a certain condition is satisfied).

Definition 3 (Event-based feedback ) By event-based feedback we mean a set of
two functions, that are

(i) an event function ε : X × X → R that indicates if one needs (when ε ≤ 0)
or not (when ε > 0) to recompute the control law;

(ii) a feedback function υ : X → U .



4 General Formula for Event-Based Stabilization … 67

The solution of (4.1) with event-based feedback (ε, υ) starting in x0 at t = 0 is
then defined as the solution of the differential system

ẋ(t) = f
(
x(t)

) + g
(
x(t)

)
υ(ti ) ∀t ∈ [ti , ti+1[, (4.13)

where the time instants ti , with i ∈ N, are considered as events (they are determined
when the event function ε vanishes and denote the sampling time instants). Also let
define xi the memory of the state value at the last event, that is

xi := x(ti ). (4.14)

With such a formalization, the control value is updated each time ε becomes
negative. Usually, one tries to design an event-based feedback so that ε cannot remain
negative (and so is updated the control only punctually). In addition, one also wants
that two events are separated with a nonvanishing time interval avoiding the Zeno
phenomenon. All these properties are encompassedwith theMinimal Inter-Sampling
Interval (MSI) property introduced in [24]. In particular:

Property 3 (Semi-uniformly MSI). An event-triggered feedback is said to be semi-
uniformlyMSI if and only if the inter-execution times can be below bounded by some
nonzero minimal sampling interval τ(δ) > 0 for any δ > 0 and any initial condition
x0 in the ball B(δ) centered at the origin and of radius δ.

Remark 6 A semi-uniformly MSI event-driven control is a piecewise constant con-
trol with nonzero sampling intervals (useful for implementation purpose).

A particular event-based feedback has already been proposed in [24] for the
stabilization of affine nonlinear undelayed systems, based on the Sontag’s universal
formula [33]. The idea is to have a control law υ quite similar to the one in the
classical approach and an event function ε related to the time derivative of the CLF
in order to ensure a (global) asymptotic stability of the closed-loop system. In the
present chapter, such an event-based feedback is extended for the stabilization of
affine nonlinear systems with time delay using CLKF. In the sequel, let

xdi := xd(ti ) (4.15)

be the memory of the delayed state value at the last event, by analogy with (4.14).

4.3.2 Event-Based Stabilization of Nonlinear Time-Delay
Systems

Based on the Sontag’s universal formula with CLKF previously introduced in The-
orem 1, an event-based feedback (see Definition 3) that asymptotically stabilizes
affine nonlinear time-delay systems is proposed here.
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Theorem 3 (Event-based universal formula with CLKF). If there exists a CLKF V
of the form (4.5) for system (4.4), then the event-based feedback (ε, υ) defined by

υ(xd) = −βd(xτ )Δ(xτ )γ (xd), (4.16)

ε(xd , xdi ) = −αd(xd) − βd(xd)υ(xdi )

−σ
√

αd(xd)2 + Ω(xd)βd(xd)Δ(xd)βd(xd)T , (4.17)

with

• αd and βd as defined in (4.6);

• Δ : X ∗ → R
m×m (a tunable parameter) and Ω : X → R are smooth positive

definite functions;
• γ : X → R defined by

γ (xd) :=
{

αd (xd )+
√

αd (xd )2+Ω(xd )βd (xd )Δ(xd )βd (xd )T

βd (xd )Δ(xd )βd (xd )T if xd ∈ Sd ,

0 if xd /∈ Sd ,
(4.18)

with Sd := {xd ∈ X | ‖βd(xd)‖ �= 0};
• σ ∈ [0, 1[ a tunable parameter;

where xdi and xτ are defined in (4.15) and (4.4) respectively, is semi-uniformly MSI,
smooth on X ∗ and such that the time derivative of V satisfies (4.6) ∀x ∈ X ∗.

Remark 7 The simplification made with respect to the original result in [24] (for the
stabilization of nonlinear undelayed systems) resides in the assumptions made for
the functions Ω and Δ, that are more restrictive here whereas they are assumed to
be definite only on the set Sd in the original work.

Remark 8 The idea behind the construction of the event-based feedback (4.16)–
(4.17) is to compare the time derivative of the CLKF V (i) in the event-based case,
that is when applying the piecewise feedback υ(xdi ), and (ii) in the classical case,
that is, when applying υ(xd) instead of υ(xdi ). The event function is the weighted
difference between both, where σ is the weighted value. By construction, an event is
enforced when the event function ε vanishes to zero, that is, hence when the stability
of the event-based scheme does not behave as the one in the classical case. Also, the
convergence will be faster with higher σ but with more frequent events in return.
σ = 0 means updating the control when V̇ = 0.

Property 4 (Global asymptotic stability). If the CLKF V in Theorem 3 satisfies the
small control property, then the event-based feedback (4.16)–(4.17) is continuous at
the origin and so is globally asymptotically stable the closed-loop system.
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Property 5 (Smooth control). If there exists some smooth function ω : X → R
+

such that on S ∗
d := Sd\{0}

ω(xd)βd(xd)Δ(xd)βd(xd)
T − αd(xd) > 0, (4.19)

then the control is smooth on X as soon as Ω(xd)‖Δ(xd)‖ vanishes at the origin
with

Ω(xd) := ω(xd)
2βd(xd)Δ(xd)βd(xd)

T − 2αd(xd)ω(xd). (4.20)

Proof All proofs are given in the Appendix section.

4.3.2.1 Example

Consider the nonlinear time-delay system

ẋ1 = u,

ẋ2 = −x2 + x2d + x3
1 + u,

(4.21)

with x2d := x2(t − τ),

that admits a CLKF (proposed in [17])

V (x) = 1

2
(x2

1 + x2
2 ) + 1

2

∫ 0

−τ

x2
2d(θ)dθ, (4.22)

with

∣
∣∣∣
αd = x2(−x2 + x2d + x3

1) + 1
2 (x2

2 − x2
2d),

βd = x1 + x2.

Indeed, setting λ(|x |) = 1
4 |x |4 yields

βd = 0 ⇒ x1 = −x2,

⇒ αd = −1

2
(x2 − x2d)

2 − x4
2 ≤ −x4

2 ≤ −λ(|x |),

which proves that (4.22) is a CLKF for (4.21) using Definition 2.
The time evolution of x ,υ(x) and the event function ε(x, xi ) is depicted in Fig. 4.1,

for Δ = In (the identity matrix), Ω(x) is as defined in (4.20) (for smooth control
everywhere), with ω = 0.1, σ = 0.6, x0 = [

0.5 −1
]T

and a time delay τ = 2 s. One
could remark that only 7 events occurs in the 50 s simulation time (including the first
event at t = 0) when applying the proposed event-based approach (4.16)–(4.17).
Furthermore, x1 and x2 rapidly converge to 0 with the first 4 events.
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Fig. 4.1 Simulation results of system (4.21) with CLKF as in (4.22) and event-based feed-
back (4.16)–(4.17)

4.3.3 Particular Case of Linear Systems

Consider the simple linear system with single delay τ

ẋ(t) = Ax(t) + Ad x(t − τ) + Bu(t). (4.23)

Take P and S the positive definite matrices solution of the linear matrix inequality
(LMI) given by

[
AT P + P A − 4ρ P B R−1BT P + S P Ad − 4ρ P B R−1BT P

AT
d P − 4ρ P B R−1BT P −S

]
< 0, (4.24)

where R is positive definite matrix, and ρ > 0, are tunable parameters. Then the
Lyapunov–Krasovskii functional V defined by

V (xd) = xT (t)Px(t) +
∫ 0

τ

xd(θ)T Sxd(θ)dθ (4.25)
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is a CLKF for system (4.23) since for all x , u = −2ρBT Px renders the time deriv-
ative of V strictly negative for x �= 0.

Remark 9 The particular delay-independent form (4.25) has been proposed for sys-
tem (4.23) without control input. More complex delay-dependent forms also exist
in the literature but are not concerned here, see [11, 12, 27] for instance for further
details.

Remark 10 Remember the first right-hand term in (4.25) is the classical CLF for a
linear system without delay, whereas the second term is added for a single delay. The
third term in the general CLKF form (4.5) is not needed in the present case without
distributed delay.

The (extended) Lie derivatives are then obtained from the expressions in (4.6)–
(4.7), that yields

αd(xd) =
[

x
xd

]T [
AT P + P A + S P Ad

AT
d P −S

] [
x
xd

]
,

βd(xd) = 2

[
x
xd

]T

P B.

(4.26)

Then, with Ω(xd) according to (4.20) for the tunable parameters defined by Δ =
R−1 and ω = ρ, the control given by

υ(xd) = −ωΔ

[
β(x)T

β(xd)
T

]
(4.27)

is smooth everywhere and linear. The event function given by

ε(xd , xdi ) = (σ − 1)αd(xd) + ωβd(xd)Δ

[
β(xi − σ x)T

β(xdi − σ xd)
T

]
(4.28)

is linear.

4.4 Conclusion

In this chapter, an extension of the Sontag’s universal formula was proposed for
event-based stabilization of affine nonlinear systemswith delays in the state.Whereas
the original work deals with control Lyapunov functions for the case of undelayed
systems, some control Lyapunov–Krasovskii functionals (CLKF) are now required
for a global (except at the origin) asymptotic stabilization of time-delay systems. The
sampling intervals do not contract to zero, avoiding Zeno phenomena. Moreover, the
control is continuous at the origin if the CLKF fulfills the small control property.
With additional assumption, the control can be proved to be smooth everywhere.
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Simulation results were provided, highlighting the low frequency of control updates.
The linear case was also discussed.

Next step is to test the proposal in a real-time implementation and also consider
input delays. Another way of investigation could be to develop general universal
event-based formulas for nonlinear (time-delay) systems, in the spirit of [5].

Appendix

Proofs of the present contribution were previously presented in [8]. They are recalled
here.

Proof of Theorem 3

The proof follows the one developed in [24] for event-based control of systems
without delays (4.1). First, let define hereafter

ψ(x) :=
√

αd(x)2 + Ω(x)βd(x)Δ(x)βd(x)T . (4.29)

Let begin establishing γ is smooth onX ∗. For this, consider the algebraic equa-
tion

P(xd , ζ ) := βd(xd)Δ(xd)βd(xd)
T ζ 2 − 2αd(xd)ζ − Ω(xd) = 0. (4.30)

Note first that ζ = γ (x) is a solution of (4.30) for all xd ∈ X . It is easy to prove
that the partial derivative of P with respect to ζ is always strictly positive on X ∗

∂ P

∂ζ
:= 2βd(xd)Δ(xd)βd(xd)

T ζ − 2αd(xd). (4.31)

Indeed, when ‖βd(xd)‖ = 0, (4.6) gives ∂ P
∂ζ

= −2αd(xd) ≥ 2λ(|χ0|) > 0 and

when‖βd(xd)‖ �= 0, (4.18) gives ∂ P
∂ζ

= 2
√

αd(xd)2 + Ω(xd)βd(xd)Δ(xd)βd(xd)T >

0 replacing ζ in (4.31) by the expression of γ (since ζ = γ (x) is a solution of (4.30)).
Therefore ∂ P

∂ζ
never vanishes at each point of the form {(xd , γ (xd))|xd ∈ X ∗}. Fur-

thermore, P is smooth w.r.t. xd and ζ since so are αd , βd , Ω and Δ. Hence, using
the implicit function theorem, γ is smooth on X ∗.

The decrease of the CLKF of the form (4.5) when applying the event-based feed-
back (4.16)–(4.17) is easy to prove. For this, let consider the time interval [ti , ti+1],
that is the interval separating two successive events. Recall that xdi denotes the value
of the state when the i th event occurs and ti the corresponding time instant, as defined
in (4.15). At time ti , when the event occurs, the time derivative of theCLKF, i.e., (4.7),
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after the update of the control, is

dV

dt
(xdi ) = αd(xdi ) + βd(xdi )υ(xdi ) = −ψ(xdi ) < 0

when substituting (4.18) in (4.16), where ψ is defined in (4.29). More precisely,
defining a compact set not containing the origin, that isΣ = {xd ∈ C P([−r, 0],X ) :
d ≤ ‖xd‖ ≤ D}, where C P([−r, 0],X ) denotes the space of piecewise continuous
functions from [−r, 0] into X , d and D are some constant in R

+. If V is a CLKF
for the system of the form (4.4) then for all 0 < δ < D there exists ε > 0 such that
αd(χd) ≥ − 1

2λ(|χ0|) ⇒ |βd(χd)| ≥ ε for χd ∈ Σ . This gives

V̇ ≤ −λ(|x |).

One can refer to Lemma 1 in [17], and [16], for further details. With this updated
control, the event function (4.17) hence becomes strictly positive

ε(xdi , xdi ) = (1 − σ)ψ(xdi ) > 0,

since σ ∈ [0, 1[, where ψ is defined in (4.29). Furthermore, the event function nec-
essarily remains positive before the next event by continuity, because an event will
occur when ε(xd , xdi ) = 0 (see Definition 3). Therefore, on the interval [ti , ti+1], one
has

ε(xd , xdi ) = −αd(xd) − βd(xd)υ(xdi ) − σψ(xd),

= −dV

dt
(xd) − σψ(xd) ≥ 0,

which ensures the decrease of the CLKF on the interval since σψ(xd) ≥ 0, where ψ

is defined in (4.29).Moreover, ti+1 is necessarily bounded since, if not, V should con-
verge to a constant value where dV

dt = 0, which is impossible thanks to the inequality
above. The event function precisely prevents this phenomena detecting when dV

dt is
close to vanish and updates the control if it happens, where σ is a tunable parameter
fixing how “close to vanish” has to be the time derivative of V .

To prove that the event-based control is MSI, one has to prove that for any initial
condition in an a priori given set, the sampling intervals are below bounded. First of
all, notice that events only occur when ε becomes negative (with xd �= 0). Therefore,
using the fact that when βd(xd) = 0, αd(xd) < −λ(|χ0|) (because V is a CLKF as
defined in Definition 2), it follows from (4.17), on {xd ∈ X ∗ | ‖βd(xd)‖ = 0}, that

ε(xd , xdi ) = −αd(xd) − σ |αd(xd)| = (1 − σ)λ(|χ0|) > 0,

because σ ∈ [0, 1[ and λ(s) > 0 for s > 0. Therefore, there is no event on the set
{xd ∈ X |‖βd(xd)‖ = 0} ∪ {0}. The study is then restricted to the set S ∗

d = {xd ∈
X ∗|‖βd(xd)‖ �= 0}, where Ω and Δ are strictly positive by assumption. Rewriting
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the time derivative of the CLKF along the trajectories yields

dV

dt
(xd) = αd(xd) + βd(xd)υ(xdi ),

= −ψ(xd) + βd(xd)
(
υ(xdi ) − υ(xd)

)
, (4.32)

when using the definition of υ(xd) in (4.16) and (4.18), whereψ is defined in (4.29).
Let respectively define the level and the set

ϑi := V (xdi ), ∀xdi ∈ Sd ,

Vϑi := {xd ∈ X |V (xd) ≤ ϑi }.

From the choice of the event function, it follows from (4.32) that xd belongs
to Vϑ ⊂ Vϑi . Note that if xdi belongs to Sd , this is not necessarily the case
for xd that can escape from this set. First see that, since (i) Ω(xd) is such that
αd(xd)

2 + Ω(xd)βd(xd)Δ(xd)βd(xd)
T > 0 for all xd ∈ S ∗

d , and (ii) αd(xd) is nec-
essarily nonzero on the frontier of Sd (except possibly at the origin)

dV

dt
(xdi ) = −ψ(xdi ) ≤ − inf

xdi ∈Sd
s.t.V (xdi )=ϑi

ψ(xdi ) =: −ϕ(ϑi ) < 0. (4.33)

Considering now the second time derivative of the CLKF

V̈ (xd) =
(

∂αd

∂xd
(xd) + υ(xdi )

T ∂βT
d

∂xd
(xd)

)
Θ(xd , xdi ), (4.34)

with Θ(xd , xdi ) := Φ(xτ ) + g(xτ )υ(xdi ),

where Φ is defined in (4.4). By continuity of all the involved functions (except for
Γ in Φ which is piecewise continuous but bounded by assumption), both terms can
be bounded for all xd ∈ Vϑi by the following upper bounds ρ1(ϑi ) and ρ2(ϑi ) such
that

ρ1(ϑi ) := sup
xdi ∈Sd s.t. V (xdi )=ϑi

xd∈Vϑi

∥∥∥∥
∂αd

∂xd
(xd) + υ(xdi )

T ∂βT
d

∂xd
(xd)

∥∥∥∥ ,

ρ2(ϑi ) := sup
xdi ∈Sd s.t. V (xdi )=ϑi

xd∈Vϑi

‖Θ(xd , xdi )‖ ,

where Θ is defined in (4.34). Therefore, V̇ is strictly negative at any event instant ti
and cannot vanish until a certain time τ(ϑi ) is elapsed (because its slope is positive).
This minimal sampling interval is only depending on the level ϑi . A bound on τ(ϑi )

is given by the inequality
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dV

dt
(xd) ≤ dV

dt
(xdi ) + ρ1ρ2(t − ti ), ∀xd ∈ Vϑi ,

that yields

τ(ϑi ) ≥ ϕ(ϑi )

ρ1(ϑi )ρ2(ϑi )
> 0,

where ϕ is defined in (4.33). As a consequence, the event-based feedback (4.16)–
(4.17) is semi-uniformly MSI. This ends the proof of Theorem 3.

Proof of Property 4

To prove the continuity of υ at the origin, one only needs to consider the points in
S since υ(xd) = 0 if ‖βd(xd)‖ = 0. Then (4.16) gives

‖υ(xd)‖ ≤ |αd(xd)|
βd(xd)Δ(xd)βd(xd)T

‖Δ(xd)βd(xd)
T ‖

+ ψ(xd)

βd(xd)Δ(xd)βd(xd)T
‖Δ(xd)βd(xd)

T ‖,

≤ 2|αd(xd)|
βd(xd)Δ(xd)βd(xd)T

‖Δ(xd)βd(xd)
T ‖

+ √
Ω(xd)‖Δ(xd)‖. (4.35)

With the small control property (see Property 1), for any ε > 0, there isμ > 0 such
that for any xd ∈ B(μ)\{0}, there exists some u with ‖u‖ ≤ ε such that L∗

f V (xd) +
[LgV1(xd)]T u = αd(xd) + βd(xd)u < 0 and therefore |αd(xd)| < ‖βd(xd)‖ε. It fol-
lows

‖υ(xd)‖ ≤ 2ε‖βd(xd)‖‖Δ(xd)βd(xd)
T ‖

βd(xd)Δ(xd)βd(xd)T
+ √

Ω(xd)‖Δ(xd)‖.

Since the function (v1, v2) → ‖v1‖‖v2‖
vT
1 v2

is continuous w.r.t. its two variables at the

origin where it equals 1, since Ω and Δ are also continuous, since Ω(xd)‖Δ(xd)‖
vanishes at the origin, for any ε′, there is some μ′ such that ∀xd ∈ B(μ′)\{0},
‖υ(xd)‖ ≤ ε′ which ends the proof of continuity.

Proof of Property 5

With Ω defined as in (4.20), the feedback in (4.16) becomes

υ(xd) = −βd(xd)Δ(xd)ω(xd)
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if the condition (4.19) is satisfied, which is obviously smooth on X . Note that the
expression of Ω in (4.20) comes from the solution of (4.30), where ω only has to be
smooth.
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