
Chapter 12
Delays in Distributed Estimation
and Control over Communication Networks

Pablo Millán, Luis Orihuela and Isabel Jurado

Abstract This chapter introduces a distributed estimation and control technique
with application to networked systems. The problem consists of monitoring and
controlling a large-scale plant using a network of agents which collaborate exchang-
ing information over an unreliable network. We propose an agent-based scheme
based on an estimation structure that combines local measurements of the plant with
remote information received from neighboring agents. We discuss the design of sta-
bilizing distributed controllers and observers when the interagent communication is
affected by delays and packet dropouts. Some simulations will be shown to illustrate
the performance of this approach.

12.1 Introduction

Wireless communication network is a technology that has been attracting interest
in the past decade due to its large variety of applications and utilities. One of the
most important characteristic of this kind of systems is that allows the integration of
different devices, providing flexibility, robustness, and ease of configuration of the
system.

The devices interconnected in the wireless network (WN) are agents that may
have sensing and actuation interfaces, as well as computation and communication
capabilities. These particular systems are very useful in applications as process con-
trol systems [31, 41], mobile vehicles [4, 6, 10], tracking and surveillance [35, 38],
or water delivery control [3, 17].

Among many advantages of this kind of systems [30], the capability of each
agent to cooperate makes WNs a powerful network for facing complex problems.
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Due to the complexity of these problems and to the fact that WNs are usually
large-scale systems, it is not feasible or advisable to control these systems in a cen-
tralized manner. Very often, decentralized techniques are not recommendable either
since they do not include communication between agents. On the contrary, distributed
schemes can provide suitable solutions to be implemented over WNs [26].

The goal of distributed control techniques is to make all the agents in the network
seek for the same system-wide objective [22]. A fundamental aspect of this scheme is
that the agents have to act according to partial measurements of the state and ignoring
the actual control signal that is being applied to the plant. As the performance of the
closed-loop system depends on the decisions of all the agents, communication is a
very important issue in this approach [19].

One of the major difficulties of distributed solutions over WNs is the fact that
transmission channels are not completely reliable due to noises, limited bandwidth,
and large number of concurrent transmitters over the same channel. The most com-
mon consequences of network congestion are packet dropouts and time delays that
can degrade the performance or even destabilize the systems.

On the one hand, many research has been developed to study these effects and
propose centralized solutions, see [14, 15, 23, 34, 39, 40] and references therein.
On the other hand, there exists a vast literature in the field of distributed control
considering ideal networks including MPC-based approaches [2, 5, 8, 18, 25, 32,
33, 37], techniques for large-scale plants [11, 21, 24], and distributed versions of
the Kalman filter [1, 16, 20, 27, 28].

In this chapter, the problem of distributed control and estimation is addressed
together with network-induced delays and dropouts. This work is an extension of the
papers [24, 30], dealing this time with the problem of network-induced delays and
dropouts within this distributed paradigm.

The objective is to control a discrete linear time-invariant (LTI) system using a set
of agents connected through a communication network. These agents must be able to
estimate the state of the system, as well as to control it. However, each one has access
only to some outputs of the plant, which makes the interconnection between agents
(with its associated delays and dropouts) an essential issue to achieve the system-wide
objective. The specific estimation structure implemented in the agents merges a local
Luenberger-like observer with consensus strategies. Since the Separation Principle
does not hold, it is necessary to design the controllers and the observers in a unique
centralized offline step. The stability of the system and estimation errors is ensured
by using a Lyapunov–Krasovskii framework. The synthesis problem is posed as a
matrix inequality which can be solved using the well known cone complementary
algorithm [9].

The chapter is organized as follows. Section 12.2 describes the different elements
involved in the problem, namely: plant, agents, and the communication network.
The dynamics of the state and estimation errors is studied in Sect. 12.3. Section 12.4
presents the design method based on the Lyapunov–Krasovskii theorem. Section 12.5
illustrates the effectiveness of the approach with some simulations. Finally, Sect. 12.6
outlines the main conclusions and future work.
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Fig. 12.1 Distributed scheme for the control of a large-scale plant

12.2 System Description and Problem Formulation

This chapter considers an estimation and control scheme composed by a large-scale
plant, a communication network, and a set of distributed agents, as depicted in
Fig. 12.1. In the following, the different elements composing the distributed system
are described in detail.

12.2.1 Plant

We consider a discrete LTI system described in state-space representation. As
Fig. 12.1 illustrates, the plant is controlled and/or observed by a set of p agents,
each one possibly managing a different control signal. The dynamics of the system
can be described as

x(k + 1) = Ax(k) +
p∑

i=1

Biui(k), (12.1)

where x ∈ R
n is the state of the plant and ui ∈ R

di (i = 1, . . . , p) is the control signal
that agent i applies to the system, and A ∈ R

n×n and Bi ∈ R
n×di are known matrices.

For those agents with no direct access to plant inputs, matrices Bi are set to zero.
Defining an augmented control matrix as

B �
[
B1 B2 . . . Bp

]
(12.2)
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and an augmented control vector

U (k) �
[
uT1 (k) uT2 (k) . . . uTp (k)

]T
, (12.3)

Equation (12.1) can be compactly rewritten as

x(k + 1) = Ax(k) + BU (k), (12.4)

where U (k) ∈ R
d , with d =

p∑
i=1

di. The pair (A,B) in (12.4) is required to be stabi-

lizable.

12.2.2 Network

In the proposed scheme, the agents are linked using a communication network to
make possible the information exchange in real time. Each agent is restricted to
receive information only from neighboring agents.

The resulting communication topology can be represented using a directed graph
G = (V ,E ), with V = 1, 2, . . . , p being the set of nodes (agents) of the graph
(network), and E ⊂ V × V , being the set of links. Assuming that the cardinality of
E is equal to l, and defining L = 1, 2, . . . , l, it is obvious that a bijective function
g : E → L can be built so that a given link can be either referenced by the pair
of nodes it connects (i, j) ∈ E or the link index r ∈ L , so that r = g(i, j). The
set of nodes connected to node i is named the neighborhood of i, and denoted as
Ni � {j ∈ V |(i, j) ∈ E }. Directed communications are considered so that link (i, j)
implies that node i receives information from node j.

Network links are not assumed to be completely reliable. This way, the packets
that the agents exchange may be dropped or delayed. Figure 12.2 illustrates a possible
time scheduling in which both effects appear.

observer j

observer i

kk−1

dropouts

delay
current

instant

k− τi j(k)

τi j(k)

Fig. 12.2 Time scheduling
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The input delay approach [12] makes possible to define artificial delays τij ∈ N

that include the effect of sampling, communication delays, and packet dropouts.
Concretely, τij is the difference between the current time instant k and the last instant
in which a packet from node j was received by node i. It is assumed that the number
of consecutive data dropouts is bounded by np, and the maximum network-induced
delay is bounded by d̄. Under these assumptions, the artificial delay can be bounded
as τij(k) ≤ d̄ + np � τM, ∀k.

Note that each delay τij is directly associated to a link, in such a way that the
following equivalent notation for the delays can be used:

τr(k) = τij(k), r = 1, . . . , l, (12.5)

where r = g(i, j). That is, we can either refer the delays to a pair of nodes (τij) or to
a link (τr).

12.2.3 Agents

As said before, the large-scale plant (12.1) is collectively monitored and controlled
by a network of agents. Each of these agents can be endowed with all or part of the
following capabilities:

• sensing plant outputs,
• computing estimations of the plant state,
• applying control actions,
• communicating with neighboring agents.

The approach adopted in this chapter is a distributed scheme in which every
agent builds its own estimations of the plant’s states based on the information locally
collected by the agent (plant outputs) and that received from neighboring agents.
Based on these estimations, those agents with access to a control channel compute
the control actions to be applied.

Let us define yi as the plant output measured by agent i:

yi(k) = Cix(k) ∈ R
ri , (12.6)

where matrices Ci ∈ R
ri×n are known. If an agent j has no sensing capabilities, then

its corresponding matrix Cj is set to zero. Let C denote an augmented output matrix
defined as

C �
[
CT

1 CT
2 . . .CT

p

]T
.

It is assumed that the pair and (A,C) is detectable.
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On the other hand, the control counterpart of each agent generates an estimation-
based control input to the plant, ui(k), in the form

ui(k) = Kix̂i(k) ∈ R
di , (12.7)

where x̂i ∈ R
n denotes the estimation of the plant state computed by agent i, and

Ki ∈ R
di×n (i ∈ V ) are local controllers to be designed. Let K denote the augmented

control matrix, defined by

K = [
KT

1 KT
2 . . . KT

p

]T
.

Every agent i ∈ V implements an estimator of the plant’s state based on the
following structure:

x̂i(k + 1) = Ax̂i(k) + BUi(k) (12.8)

+ Mi(yi(k) − Cix̂i(k)) local information

+
∑

j∈Ni

Nij[x̂j(k − τij(k)) − x̂i(k − τij(k))], remote information

where Ui(k) = Kx̂i(k) ∈ R
d is the estimation of the whole control action applied to

the plant.
Looking at Eq. (12.8), each agent has two different sources of information to

correct its estimates. The first one is the output measured from the plant, yi(k),
which is used similarly to a classical Luenberger observer, Mi(yi(k) − ŷi(k)), being
Mi, i ∈ V , the observers matrices to be designed. The second source of information
comes from the estimates received from neighboring nodes, which are also used to
correct estimations through the terms Nij(x̂j(k − τij(k)) − x̂i(k − τij(k))), ∀j ∈ Ni,
where Nij, (i, j) ∈ E , are consensus gains to be synthesized. Please notice that the
estimations are sent through the communication network, and thus they are affected
by delays and dropouts modeled through the extended delays τij(k).

It is worth recalling that the individual agents cannot access to all the control
actions being applied to the plant, as each agent implements different control actions
based on its particular state estimation (12.7), that is, BUi(k) �= BU (k).

Ideally, Eq. (12.8) should be implemented using the augmented control vector
U (k) that the network, as a whole, applies to the plant. However, this information
is not available to the agents. To circumvent this difficulty and make Eq. (12.8)
realizable, the proposed solution consists, roughly speaking, in letting each agent
to run its observer with the augmented control vector obtained from its particular
estimate. In general, estimated and actual control inputs are different, but if the
observers are properly designed and the nodes estimations converge to the plant
states, these differences progressively vanish.
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12.2.4 Problem Formulation

Once all the elements of the control scheme have been introduced, this section ends
with the formal definition of the problem to be solved in this chapter. First, let us
define the following sets:

M � {Mi, i ∈ V }, (12.9)

N � {Nij, (i, j) ∈ E }, (12.10)

K � {Ki, i ∈ V }. (12.11)

The goal is to design the set of distributed observers M , consensus matrices
N , and controllers K , in such a way that all the estimation errors of each agent
ei(k) � x(k) − x̂i(k) and the plant x(k) are stabilized in spite of the delays and packet
dropouts affecting the communication.

12.3 Dynamics of the State and Estimation Errors

In order to provide a solution for the previous problem, the dynamics of the state and
of the estimation errors are studied in detail.

Proposition 1 The dynamics of the plant state x(k) is given by

x(k + 1) = (A + BK) x(k) + Υ (K )e(k), (12.12)

where
Υ (K ) = [−B1K1 −B2K2 · · · −BpKp

]
.

The proof is immediate from Eq. (12.4) and the definition of the estimation errors.
The following proposition studies the evolution of the error vector defined as

e(k) � [eT1 (k), . . . , eTp (k)]T ∈ R
np.

Proposition 2 The dynamics of the error vector e(k) is given by

e(k + 1) = (Φ(M ) + Ψ (K )) e(k) + Λ(N )d(k), (12.13)

where d(k) �
[
eT (k − τ1(k)), . . . , eT (k − τr(k))

]T
is a vector stacking l delayed

versions of the error vector and

Φ(M ) = diag{(A − M1C1), . . . , (A − MpCp)},

Ψ (K ) = diag{BK, . . . ,BK} +
⎡

⎢⎣
−B1K1 . . . −BpKp

...
. . .

...

−B1K1 . . . −BpKp

⎤

⎥⎦ ,
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Λ(N ) = [
Θ1(Nij) . . . Θr(Nij . . . Θl(Nij)

]
,

being Θr(Nij) (r = 1, . . . , l) a matrix associated with link r and a couple of agents
(i, j) = g−1(r) with the following structure:

Θ(Nij) =

column i j⎡

⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...

0 · · · −NijCij · · · NijCij · · · 0
...

...
...

...

0 · · · 0 · · · 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦
row i.

Proof The observation error at instant k + 1 can be obtained using Eq. (12.8) and
Proposition 1:

ei(k + 1) = x(k + 1) − x̂i(k + 1)

= (A + BK)x(k) + Υ (K )e(k) − Ax̂i(k)

− BUi(k) − MiCi(x(k) − x̂i(k))

−
∑

j∈Ni

NijCij(x̂j(k − τij(k)) − x̂i(k − τij(k))). (12.14)

After some mathematical manipulations, Eq. (12.14) can be rewritten as

ei(k + 1) = (A − MiCi)ei(k) + BKei(k) + Υ (K )e(k)

−
∑

j∈Ni

NijCij(ei(k − τij(k)) − ej(k − τij(k))).

Finally, since the error vector has been defined as eT (k) = [
eT1 (k) . . . eTp (k)

]
, it

is easy to see that the dynamics of e(k) is (12.13). �

Remark 1 The structure of (2) reveals that, even in the absence of time delays, the
Separation Principle does not hold, for matrix Ψ (K ) depends on the controllers
to be designed. This can be easily justified if we recall that the agents ignore the
actual control signal being applied to the plant, and resort to estimations based on
the knowledge of the distributed controllers. However, despite this drawback, it will
be shown that it is possible to propose an unified design in which all the elements,
namely controllers and observers, can be designed to guarantee the overall stability
of the system.
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12.4 Controller and Observer Design

This sections introduces a result to solve the design problem introduced in Sect. 12.2.
The design method resorts to a Lyapunov–Krasovskii approach to prove asymptotic
stability of the plant state and the estimation errors when network-induced delays
and dropouts exist.

The following theorem proposes a centralized design method through an opti-
mization problem subject to a nonlinear matrix inequality.

Theorem 1 The problem formulated in Sect.12.2 can be solved by finding positive
definite matrices Px, Pe, Z1, Z2, and setsM ,N ,K in (12.9)–(12.11) of observers,
consensusmatrices, and controllers in such away that the followingmatrix inequality
is satisfied: [

W ST

∗ −H−1

]
< 0, (12.15)

where:

W =

⎡

⎢⎢⎣

−Px 0 0 0
∗ −Pe + Z1 − lZ2 1̄ ⊗ Z2 0
∗ ∗ −2I ⊗ Z2 1̄T ⊗ Z2

∗ ∗ ∗ −Z1 − lZ2

⎤

⎥⎥⎦ , (12.16)

S =
⎡

⎣
A + BK Υ (K ) 0 0

0 Φ(M ) + Ψ (K ) Λ(N ) 0
0 Φ(M ) + Ψ (K ) − I Λ(N ) 0

⎤

⎦ , (12.17)

H−1 =
⎡

⎣
P−1
x 0 0
∗ P−1

e 0
∗ ∗ 1

lτ 2
M
Z−1

2

⎤

⎦ . (12.18)

Proof Consider the following quadratic Lyapunov–Krasovskii functional:

V (x(k), e(k)) = xT (k)Pxx(k) + eT (k)Pee(k) +
k−1∑

i=k−τM

eT (i)Z1e(i) (12.19)

+ l × τM

0∑

j=−τM+1

k−1∑

i=k+j−1

ΔeT (i)Z2Δe(i), (12.20)

where Px and Pe are positive definite matrices and Δe(k) � e(k + 1) − e(k).
The forward difference of the functional (12.19) can be expressed in the following

way:
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ΔV (x(k), e(k)) = xT (k + 1)Pxx(k + 1) − xT (k)Pxx(k) + eT (k + 1)Pee(k + 1)

− eT (k)Pee(k) + eT (k)Z1e(k) − eT (k − τM)Z1e(k − τM)

+ l × τ 2
MΔeT (k)Z2Δe(k) − l × τM

k−1∑

j=k−τM

ΔeT (j)Z2Δe(j).

Using Propositions 1 and 2 to substitute the evolution of the plant state and the
estimation error in last equation, it yields

ΔV (x(k), e(k)) = xT
[
(A + BK)TPx(A + BK)

]
x(k)

+ eT (k)
[
Υ T (K )PxΥ (K )

]
e(k)

+ 2xT (k)
[
(A + BK)TPxΥ (K )

]
e(k) − xT (k)Pxx(k)

+ eT (k)
[
(Φ(M ) + Ψ (K ))TPe(Φ(M ) + Ψ (K ))

]
e(k)

+ dT (k)Γ T (N )PeΓ (N )d(k)

+ 2eT (k)(Φ(M ) + Ψ (K ))TPeΓ (N )d(k) − eT (k)Pee(k)

+ eT (k)Z1e(k) − eT (k − τM)Z1e(k − τM)

+ l × τ 2
MΔeT (k)Z2Δe(k) − l × τM

k−1∑

j=k−τM

ΔeT (j)Z2Δe(j).

Note that the last term is included l times, one for each link. To take into account
the delay of each different communication link (τr(k),∀r = 1, . . . , l), we split it in
l terms, each one considering the delay in each specific link:

−τM

k−1∑

j=k−τM

ΔeT (j)Z2Δe(j) = −τM

k−τr(k)−1∑

j=k−τM

ΔeT (j)Z2Δe(j)

− τM

k−1∑

j=k−τr(k)

ΔeT (j)Z2Δe(j),

The resulting terms can be bounded using the Jensen inequality:

−τM

k−τr(k)−1∑

j=k−τM

ΔeT (j)Z2Δe(j) ≤ −
⎡

⎣
k−τr(k)−1∑

j=k−τM

Δe(j)

⎤

⎦
T

Z2

⎡

⎣
k−τr(k)−1∑

j=k−τM

Δe(j)

⎤

⎦ ,

−τM

k−1∑

j=k−τr(k)

ΔeT (j)Z2Δe(j) ≤ −
⎡

⎣
k−1∑

j=k−τr(k)

Δe(j)

⎤

⎦
T

Z2

⎡

⎣
k−1∑

j=k−τr(k)

Δe(j)

⎤

⎦ .
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Consider now the term l × τ 2
MΔeT (k)Z2Δe(k) in (12.21). Using Proposition 2,

this term can be rewritten as

l × τ 2
MΔeT (k)Z2Δe(k) = eT (k)(ΦT (M ) + Ψ (K ) − I)T

[
l × τ 2

MZ2
]

× (Φ(M ) + Ψ (K ) − I)e(k)

+ 2eT (k)(ΦT (M )+ Ψ (K ) − I)T l× τ 2
MZ2Λ(N )d(k).

Thus, it is possible to bound the forward difference of the Lyapunov–Krasovkii
functional as follows:

ΔV (x(k), e(k)) ≤ xT
[
(A + BK)TPx(A + BK)

]
x(k)

+ eT (k)
[
Υ T (K )PxΥ (K )

]
e(k)

+ 2xT (k)
[
(A + BK)TPxΥ (K )

]
e(k) − xT (k)Pxx(k)

+ eT (k)
[
(Φ(M ) + Ψ (K ))TPe(Φ(M ) + Ψ (K ))

]
e(k)

+ dT (k)Γ T (N )PeΓ (N )d(k)

+ 2eT (k)(Φ(M ) + Ψ (K ))TPeΓ (N )d(k) − eT (k)Pee(k)

+ eT (k)Z1e(k) − eT (k − τM)Z1e(k − τM)

+ eT (k)(ΦT (M ) + Ψ (K ) − I)T
[
l × τ 2

MZ2
]

× (Φ(M ) + Ψ (K ) − I)e(k)

+ 2eT (k)(ΦT (M ) + Ψ (K ) − I)T l × τ 2
MZ2Λ(N )d(k)

−
l∑

r=1

⎛

⎝

⎡

⎣
k−τr(k)−1∑

j=k−τM

Δe(j)

⎤

⎦
T

Z2

⎡

⎣
k−τr(k)−1∑

j=k−τM

Δe(j)

⎤

⎦

⎞

⎠

−
l∑

r=1

⎛

⎝

⎡

⎣
k−1∑

j=k−τr(k)

Δe(j)

⎤

⎦
T

Z2

⎡

⎣
k−1∑

j=k−τr(k)

Δe(j)

⎤

⎦

⎞

⎠ .

Defining an augmented state vector as

ξ(k) = [
xT (k) eT (k) dT (k) eT (k − τM)

]T
,

the bound of ΔV (x(k), e(k)) can be rewritten in a compact way using the matrices
W , S, and T defined in Theorem 1:

ΔV (x(k), e(k)) ≤ ξT (k)Wξ(k) − ξT (k)STHSξ(k).

Therefore, if matrix ξT (k)Wξ(k) − ξT (k)STHSξ(k) is negative definite, the state
of the system and the estimation errors are asymptotically stable. Using Schur
complement, this matrix inequality if equivalent to (12.15), and thus the proof is
completed. �



210 P. Millán et al.

The main hindrance of the design method proposed in Theorem 1 is the nonlin-
earity of the the matrix inequality (12.15) because of the presence of the matrix H−1.
Nonetheless, it is possible to adapt the cone complementary algorithm in (see [9]),
which let us address the nonlinearitiesH−1 by introducing some new matrix variables
and constraints.

First, define a new matrix variable T . Then replace the matrix H−1 in (12.15) by
the term T and add the additional LMI H−1 ≥ T , which is equivalent to:

[
H−1 I
I T−1

]
≥ 0.

Then introducing variables T̂ , Ĥ , the original matrix inequality (12.15) can be
substituted by

[
W ST

∗ T

]
< 0,

[
Ĥ I
I T̂

]
≥ 0, T̂ = T−1, Ĥ = H−1.

Using a cone complementarity algorithm, it is possible to obtain feasible solutions
for the optimization problem in Theorem 1 by solving the following problem:

Minimize Tr
(
ĤH + T̂T

)

subject to

⎧
⎪⎪⎨

⎪⎪⎩

[
W ST

∗ T

]
< 0,

[
Ĥ I
I T̂

]
≥ 0,

[
T I
I T̂

]
≥ 0,

[
H I
I Ĥ

]
≥ 0.

(12.21)

In order to find a solution for this problem, the iterative algorithm introduced in
[9] can be applied. See [23] for further details.

Remark 2 Once the observers and controllers are designed, the implementation is
fully distributed, and each agent requires only available local information to operate.
Nonetheless, the design method that stems from Theorem 1 needs to be performed
offline prior to the implementation, which requires that some information is known a
priori, namely: network topology, outputs that every agent can measure, and control
channels they has access to.

As regards the computational complexity in the design phase, the relevant figure
here is the number of variables to be computed, which is N# = n2(6p2 + l + 1

2 ) +
n
(
6p + ∑p

i=1(ri + di) + 1
2

)
. Thus, the number of variables grows rapidly with the

number of agents and the number of states of the plant, which makes it hard to solve
for large systems.
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As an illustrative example, the application example introduced in the next section
has 8 states and outputs, 4 agents, 4 control inputs, and a cycle graph. The number
of variables is N# = 6980 and the computation time to solve the design problem is
approximately 150 min, using Matlab LMI Toolbox on a PC with a 2.5 GHz Intel
Core i5 processor and 8GB RAM.

12.5 Application Example

In this section, the proposed design method is tested on a simulated plant consisting
of a set of coupled oscillators. First, the plant will be described, giving the necessary
considerations with respect to the agents, their observability and control capacities,
and communication delays. Finally, a set of different simulations will be shown.

12.5.1 System Description

We consider a set of N inverted pendulums coupled by springs, as Fig. 12.3 shows.
The pendulums have all the same characteristics, that is, mass m, length l. The
springs are characterized by the same elastic constant k. This mechanical system
has been used as a testbed in engineering and control, see [13]. However, what is
more interesting of this plant is the fact that it represents the dynamics of a set of
coupled oscillators, which has numerous applications in fields as physics, medicine,
or communications, see [7, 36]. The objective is to maintain all the pendulums or
oscillators in their upright unstable equilibrium points.

In the following, we will consider that the pendulums are being controlled around
the upright unstable equilibrium point. Each pendulum is described by two state
variables: angular position θi and angular velocity ωi � θ̇i. It is assumed that the
control signal is a torque applied to the base of the pendulum. With the hypothesis
of small angles, the dynamics of a single pendulum is given by

Fig. 12.3 Set of pendulums
coupled by springs. Agents
and communication graph

θi
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[
θ̇i
θ̈i

]
=

[
0 1

g
l − ai

ml2 0

] [
θi
θ̇i

]
+

[
0
1
ml2

]
ui +

∑

j

[
0 0
hij
ml2 0

] [
θj
θ̇j

]
, (12.22)

where ai is the number of springs connected to pendulum i and hij = 1 if pendulum i
is connected to pendulum j with a spring, and 0 otherwise. Therefore, the third term
represents the influence of the neighborhood in the dynamics of the pendulum i.

The state of the complete system will be the vector stacking all the angular position
and velocities of all the agents, that is, x = [θ1, θ̇1, θ2, θ̇2, . . . , θN , θ̇N ]T . Finally, the
system dynamics are discretized with sampling period Ts to obtain an equivalent
equation to the one in (12.1).

12.5.1.1 Network of Agents

For this system, we will consider a simple network of N agents. Each agent measures
the angular position and velocity of a pendulum and applies a torque to its base. The
communication graph is a cycle, as Fig. 12.3 shows. In order to stabilize the whole
set of pendulums, the agents must apply coordinated control actions. To do so, it
becomes essential for an agent to know the rest of the states.1

The communication between agents is affected by delays. Not only do these
delays come for communication drawbacks (congestion, dropouts, etc.), but also
due to the sampling period. The inverted pendulum is, in general, a system with fast
dynamics that needs very short sampling periods. It is fairly possible that the agents
are not equipped with powerful communication devices to achieve the required rates.
Anyway, even in the case they are, the sampling rate could be artificially enlarged
pursuing a reduction of the energy consumption.

12.5.2 Simulation Results

For the simulations, we have chosen the set of parameters given in Table 12.1.
In the first experiment, it is shown that the distributed controllers achieve the

stabilization of the system for an arbitrary initial condition close to the unstable
equilibrium point (Fig. 12.4).

The figure below presents the estimation performance of agent 1. Concretely, it
shows the angular velocity of pendulums 2, 3, and 4, together with the estimation of
these states from agent 1. As we can see, the agent achieves nice estimations in spite
of the communication delays and the distance in the network (Fig. 12.5).

1The reader may think that, for this particular system, it is only necessary to know the state of the
pendulums in the neighborhood. If the agents do not need the estimations of the whole augmented
state, we could implement here a sort of reduced-order distributed observer, as the one proposed in
[29] for non-delayed systems.



12 Delays in Distributed Estimation and Control … 213

Table 12.1 List of parameters

Parameter Value Unit Description

N 4 Number of pendulums

p 4 Number of agents

m 1 kg Mass of the pendulum

l 2 m Length of the pendulum bar

k 5 N/m Elastic constant of the string

g 9.8 m/s2 Gravity

Ts 0.05 s Sampling period

τM 2 Maximum delay
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Fig. 12.4 Left Evolution of the angular positions. Right Evolution of the angular velocities
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Fig. 12.5 Estimation from agent 1 and actual evolution of the angular velocities of pendulums 2,
3 and 4

The second experiment illustrates the response of the system to external distur-
bances. Consider that, starting from the equilibrium point, the third pendulum is
affected by a disturbance that abruptly changes its position between seconds 5 and 6.
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Fig. 12.6 Left Evolution of angular positions. Right Estimation of angular velocities from agent1

Because of the couplings, both pendulums 2 and 4 are affected as well. Figure 12.6
shows that the response of the controllers and observers are fairly good, despite they
have not been designed to reject any disturbances. As expected, the state of pendulum
2 is estimated faster than the others.

12.6 Conclusions

This chapter has studied the problem of stabilizing a large-scale plant with an agent-
based distributed paradigm. Unreliable networks affected by time-varying delays and
dropouts have been considered. The observers’ structure merges a Luenberger-like
structure with consensus matrices.

The solution presented ensures the stabilization of both the system state and the
observation errors using a Lyapunov–Krasovskii functional. As it has been shown,
the design of the controllers and observers must be done in a unique centralized
step, which constitutes the weak point of the solution. However, once the controllers
and observers are designed, they work in a completely distributed fashion, requiring
minimum computation and memory resources. The authors are currently working
toward the development of a distributed design method.

Some simulations have been presented to show the performance of the obtained
solution.
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