
Chapter 11
Optimal Control Strategies for Load
Carrying Drones

Alicia Arce Rubio, Alexandre Seuret, Yassine Ariba
and Alessio Mannisi

Abstract This chapter studies control strategies for load carrying drones. Load
carrying drones not only have to fly in a cooperative way, but also are mechanically
interconnected. Due to these characteristics, the control problem is an interesting and
challenging issue to deal with. Throughout this chapter, a dynamic model based on
first principle is developed. To that end, it is proposed to model this system as a ball
and beam system lifted by two drones. Afterwards, different control techniques are
implemented and compared by simulations. Specifically, linear-quadratic regulator
(LQR) and model predictive control (MPC) are studied. Both control techniques
belong to the optimal control methodology. This comparison is interesting since
LQR permits to perform an optimal control law with short execution times, while
MPC deals with physical constraints and predictions, being the execution time and
the physical constraints important issues to handle in this kind of systems. Finally,
simulation results and open issues are discussed.
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11.1 Introduction

Interest in using drones (that is, unmanned aerial vehicles—UAVs—with the capac-
ity to fly semi- or fully autonomously thanks to an on-board computer and sensors
[1]) for scientific investigations dates back to the 1970s. Since then, billions of dol-
lars have been poured into research and development of military and experimental
drones. Indeed, during the last years, an increased use of flying drones has been
noticed. The invention of light materials, low energy consumption machines, and
high performance processing units led to the construction of flexible flying robots.
They can be used in a variety of applications such as vehicle tracking, trafficmanage-
ment and fire detection [2, 3]. Within the family of the vertical take-off and landing
(VTOL) drones, unmanned quadrotor helicopters [4] that base their operation in the
appropriate control of four rotors have received a growing attention, mainly due to
their capability to outperform most of other types of helicopters on the issues of
maneuver ability, survivability, simplicity of mechanics, and increased payloads [5].
In fact, there are several advantages to quadcopters over comparably-scaled heli-
copters: the simplicity of their mechanical structure, the use of four small propellers
resulting in a more fault-tolerant mechanical design capable of aggressive maneu-
vers at low altitude, good maneuver ability, and increased payload [6]. Untapping
the potential of quadrotors requires, however, advanced control designs so as to
achieve precise trajectory tracking combined with effective disturbance attenuation,
particularly since quadrotor’s model is highly nonlinear and their flight performance
can be influenced by sudden wind gusts especially during flights in low altitudes.
Moreover, the application studied in this chapter, which is the control of multiple
quadrotor robots that cooperatively grasp and transport a payload in two dimensions,
adds difficulty to the problem. Although the problem associated to quadrotor control
has been addressed by many publications (such as those focused in PID control [7],
sliding mode control [8], H∞ control [9] and bounded control [10]), the novelty of
the work presented herein is the application and subsequent comparison of model
predictive control (MPC) [11] and linear-quadratic regulator (LQR) control tech-
niques. To the best knowledge of the authors of this article this has not been realized
before, a fact which further supports the interest of this work. Such a comparison is
valuable since LQR permits to perform an optimal control law with short execution
times while MPC deals with physical constraints and predictions. Execution time
and physical constraints being important issues to take into account, while facing
the control problem discussed in this chapter, the proposed application and compar-
ison of MPC and LQR techniques therefore represents a useful framework aimed to
provide researchers in the area with additional control possibilities.

To reach these ends, the chapter is organized as follows: Sect. 11.2 describes the
system under study, while Sect. 11.3 presents the dynamic model. In Sect. 11.4, the
control problem is motivated and control methodologies are developed. Section11.5
shows and discusses the simulation results. Finally, the conclusions are exposed in
Sect. 11.6.



11 Optimal Control Strategies for Load Carrying Drones 185

11.2 System Under Study

The system under study is composed of two drones which aim to carry a load. The
main feature of this system is that load carrying drones present mechanic links. These
mechanic links depend on the way the drones carry the load. Therefore, it is proposed
to describe this kind of system as a ball and beam system lifted by the drones. The
mass center of the ball and beam models the load mass center. Figure11.1 shows a
scheme of the proposed system.

As observed in Fig. 11.1, drones are assumed to be quadrotors. The quadrotors
comprises four propellers each one. The quadrotor trajectory is regulated by the
angular speeds of the propellers resulting in a lift force which is referred to as f1 for
drone 1 and f2 for drone 2 in Fig. 11.1. The ball and beam systems are lifted by the
couple of drones by means of rigid cables with a fixed length equal to h. The beam
length is equal to 2L . In addition, it is supposed that the beam is nondeformable.

For sake of simplicity, in this work it is assumed that the drones only move in
the XZ plane. Specifically, the x position of the drones is fixed, while the degree
of freedom is the altitude z1 for drone 1 and z2 for drone 2. Thus, the longitudinal
distance between the drones is fixed to the value of the beam length (2L). The angles
formed by the vertical axis and the rigid cables are denoted as φ1 for drone 1 and φ2

for drone 2 and the angle formed by the beam and the horizontal axis is denoted θ .
It is defined two different coordinate reference systems x0Oz0 and xBOBzB . The

global coordinate reference system x0Oz0 is located in the ground fixed in the x
position corresponding to the middle distance between the drones. The local frame
xBOBzB is located in the beam mass center.

1 1

1

2

2 2

B

B
B

0

0

Fig. 11.1 Drone ball and beam system
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Table 11.1 System
parameters

Parameter Value

Ball mass 0.1kg

Beam mass 4kg

Beam length 2 m

Drone 1 10kg

Drone 2 10kg

Rigid cable length 1m

Damping factor 0.5

Variables related to the gyroscopic effects are not included in this study, since the
control is divided in two levels. The control structure based on two control levels has
been previously proposed for tracking positioning of quadrotors [9]. In our case, the
high-level control calculates the references for the lift forces f1 and f2, while the low-
level control is dedicated to the drone stabilization. Herein, the drone stabilization is
assumed to be perfectly controlled to be focused on the high-level control.

The main parameters of the system are listed in Table11.1.

11.3 Dynamic Model

The systemunder study presgvented in the previous section ismodeledwith first prin-
ciples equations. To that end, the kinematics equations are developed and afterwards
the Lagrange–Euler equations are obtained.

11.3.1 Kinematics Equations

As previously mentioned, two different coordinate reference systems are defined.
The local frame position, OB , at the global frame is

OB =
[
L − hsinφ2 − Lcosθ
z2 − hcosφ2 − Lsinθ

]
. (11.1)

This matrix represents the transformation from local frame to global frame. The local
frame speed, ȮB , at the global frame is obtained by deriving the position with respect
to the time:

ȮB =
[ −h φ̇2 cosφ2 + L θ̇ sinθ

ż2 + h φ̇2 sinφ2 − L θ̇ cosθ

]
. (11.2)

The ball position and speed at local frame are denoted x and ẋ and using the trans-
formation matrices Eqs. (11.1) and (11.2), the position and speed at global frame, x0
and z0, are:
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[
x0
z0

]
=

[
L − hsinφ2 − Lcosθ − xcosθ
z2 − hcosφ2 − Lsinθ − xsinθ

]
,[

ẋ0
ż0

]
=

[ −h φ̇2cosφ2 + (L + x)θ̇sinθ − ẋcosθ
ż2 + hφ̇2sinφ2 − (L + x)θ̇cosθ − ẋsinθ

]
.

(11.3)

Given that the longitudinal distance between the drones is fixed, the angle θ can be
expressed as a function of angles φ1 and φ2:

[
sinθ

cosθ

]
= 1

2L

[
z2 − z1 + hcosφ1 − hcosφ2

2L − hsinφ1 − hsinφ2

]
. (11.4)

Replacing θ in Eq. (11.3), the ball position and speed at global frame result in:

[
x0
z0

]
=

⎡
⎢⎣ x + hsφ1 − hsφ2

2
− x(hsφ1 + hsφ2)

2L
z2 + z1 − hcφ1 − hcφ2

2
+ x(z2 − z1 + hcφ1 − hcφ2)

2L

⎤
⎥⎦ ,

[
ẋ0
ż0

]
=

⎡
⎢⎢⎢⎢⎢⎣

(x − L)hφ̇1cφ1 − (x + L)hφ̇2cφ2

2L
− ẋ(2L + hsφ1 + hsφ2)

2L⎛
⎜⎝

(L + x)(ż2 + hφ̇2sφ2) + (L − x)(ż1 + hφ̇1sφ1)

2L
+

+ ẋ(z2 − z1 + hcφ1 − hcφ2)

2L

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

,

(11.5)

where cθ and sθ correspond to cosθ and sinθ , respectively.

11.3.2 Lagrange–Euler Equations

The motion equations can be expressed by the Lagrange-Euler formulation based on
the kinetic and potential energy concepts:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d

dt

∂L

∂ ẋ
− ∂L

∂x
d

dt

∂L

∂ ż1
− ∂L

∂z1
d

dt

∂L

∂ ż2
− ∂L

∂z2
d

dt

∂L

∂φ̇1
− ∂L

∂φ1

d

dt

∂L

∂φ̇2
− ∂L

∂φ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
f1
f2
0
0

⎤
⎥⎥⎥⎥⎦ , (11.6)
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whereL is the Lagragian of the system. The Lagragian is calculated as the difference
between kinetic and potential energies. The equations are obtained by the software
MAXIMA.

The system kinetic and potential energies are the addition of the ball, beam, and
drone kinetic and potential energies. The ball kinetic energy, Tb, beam kinetic energy,
TB , and drone kinetic energies, Td1 and Td2 are:

Tb = 1

2
mb

[
x0y0

] [
x0
y0

]
TB = 1

2
ρ

∫ l

−l
‖Ṡ0(s)‖2 ds,

Td1 = 1

2
md1 ż

2
1, Td2 = 1

2
md2 ż

2
2,

(11.7)

being mb the ball mass, l the beam volume, md1 the drone 1 mass, md2 the drone 2
mass and ρ the beam density. The beam density ρ is equal to the ratio between the
beam mass, mB , and the beam volume l. The variable ṠO corresponds to the speed
of a generic point of the beam at the global coordinate reference system. The ball
potential energy,Ub, the beam potential energy,UB , and the drone potential energies,
Ud1 and Ud2, are expressed as

Ub = mb g yo, UB = mB g OB,z,

Ud1 = md1 g z1, Ud2 = md2 g z2,
(11.8)

where g is the acceleration of gravity and OB,z is the z position of the local frame
which is placed at the beam mass center.

11.3.3 State-Space Model

The previous model is linearized at an operating point for control purposes. The
operating point corresponds to a ball position equal to (0, 0), drone altitudes z1, z2
equal to 0 and null system speeds (ball, beam, and drones). Moreover, it is considered
as new variables F1 and F2 to represent the lift forces. These variables are equal to
zero at equilibrium, and are calculated as

F1 = f1 − md1 g − mb + mB

2
g,

F2 = f2 − md2 g − mb + mB

2
g.

(11.9)

As a result, the linear model in matrix form is
⎡
⎢⎢⎢⎢⎣

ẍ(t)
z̈1(t)
z̈2(t)
φ̈1(t)
φ̈2(t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Γ̇

= A

⎡
⎢⎢⎢⎢⎣

x(t)
z1(t)
z2(t)
φ1(t)
φ2(t)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Γ

+B
[
F1(t)
F2(t)

]
︸ ︷︷ ︸

U

,
(11.10)
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where matrices A and B are given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
g(2mB + mb)

4LmB
−g(2mB + mb)

4LmB

g(mB + mb)

4mB
−g(mB + mb)

4mB
a1 0 0 0 0

−a2 0 0 0 0

0 − gmb

4LhmB

gmb

4LhmB
−g(mB + mb)

hmB
−g(mB + mb)

2hmB

0
gmb

4LhmB
− gmb

4LhmB
−g(mB + mb)

2hmB
−g(mB + mb)

hmB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
8mB + 3mb + 12md2

p
−4mB + 3mb

p

−4mB + 3mb

p

8mB + 3mb + 12md1

p
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and where

a1 = 3gmb(2mB + mb + 2md2)

p
, a2 = 3gmb(2mB + mb + 2md1)

p
,

p = L(2mBmb + (8mB + 3mb)(md1 + md2) + 12md1md2 + 4m2
B),

From Eq. (11.10), the following state-space model is obtained:
[

Γ̈

Γ̇

]
︸ ︷︷ ︸

Ẋ

=
[
M AT

I 0

]
︸ ︷︷ ︸

Asys

[
Γ̇

Γ

]
︸ ︷︷ ︸

X

+
[
BT

0

]
︸ ︷︷ ︸

Bsys

[
F1

F2

]
︸ ︷︷ ︸

U

.
(11.11)

Vector X is the state vector which contains the speeds and positions of the ball and
drones and the system is represented by matrices Asys and Bsys. Matrix M includes
damping factors which affects the angular movement of the rigid cables modeled
by variables φ1 and φ2. The damping factors avoid infinitive bouncing associated to
ideal pendulum problem. Thus, this matrix is

M =
⎡
⎣0 0

0

[−μ 0
0 −μ

]⎤
⎦ . (11.12)
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11.4 Control Problem

The control objective of this system is to maintain the ball in the equilibrium point
on the beam by means of regulating the drone altitudes. As previously mentioned,
the system control is divided in two levels. The high-level control calculates the lift
force to track an altitude reference that depends on the ball position and the altitude
of the other drone, while the low-level control is dedicated to the drone stabilization.
The low-level control is integrated in each drone and calculates the angular speeds
of the four rotors to obtain a total lift force equal to the reference provided by the
high-level control. The control problem is schemed in Fig. 11.2.

As observed in Fig. 11.2, it is considered that the stabilization controllers are feed-
back control strategies. The angular speeds, ωi , of the four rotors are measured and
the lift force, f1 or f2, is estimated. Then the control loop is closed by obtaining
the error between the reference of the lift force and the estimated lift force. This
work focuses on the high-level control and it is assumed that the drone stabilization
is perfectly controlled. In addition, the closed-loop scheme of the high-level control
receives a reference vector, Yref , to be tracked. The system output vector, Y, com-
prises all the states that are measured. We assumed that all the states included in
vector X are measured, that is, the ball position, x , and speed, ẋ , the drone altitudes,
z1 and z2, and speeds, ż1 and ż2, and the angles φ1 and φ2 and its angular speeds φ̇1

and φ̇2.
It is proposed herein to compare different optimal control techniques to evalu-

ate the difficulties associated to this system. In particular, linear-quadratic regulator
(LQR) and model predictive control (MPC) are developed. LQR allows to solve
online optimization control problems with fast execution time and low computa-
tional effort, while MPC deals with physical constraints and predictions. Both con-
trol methodologies present interesting features for this control problem. For aerial
application, short execution times with low computation effort are demanding but
at the same time, handling physical constraints is required to avoid collisions and
instable scenarios caused by disturbances. These controllers are detailed in the next
subsections.

Moreover, controllers are implemented in CPUs on-board, and therefore discrete
control laws are studied. The sampling time is a design parameter which has to be
appropriately chosen. It is important to remark that in this control scenario composed

High-level
control

Drone 1

Drone 2

+
-

y yU

f

f

Stabilization 
control

Stabilization 
control

ω

ω

Ball and beam

ref

1

2

i

i

Fig. 11.2 Control scheme
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by two control levels, each control level may present different sampling time. Specif-
ically, the low-level control is performed faster than the high-level control for this
application. Accounting for possible hardware limitations, a sampling time of 200
ms is set for this study. Note that the optimal controllers require the system model
for design. The dynamic model presented in Eq. (11.11) is in continuous time and it
has to be discretized for a 200-ms sampling time resulting in

X(k + 1) = Ad X(k) + Bd U(k), (11.13)

Y(k) = Cd X(k) + Dd U(k), (11.14)

11.4.1 Linear-Quadratic Regulator

LQR is an optimal and feedback control law which minimizes every sampling time
the following objective function J :

J =
∞∑
k=0

(
X(k)TQX(k) + U(k)TRU(k)

)
, (11.15)

where X(k) and U(k) are the state and input vectors at instant k and matrices Q and
R are weighting matrices. Given that the system is modeled by the discrete-time
state-space model presented in Eqs. (11.13), (11.14), the analytical optimal control
sequence results in

U(k) = −F (X(k) − Xref(k)) , (11.16)

where

F = (
R + Bd

T P Bd
)−1

Bd
T P Ad, (11.17)

being P the unique positive definite solution to the discrete-time algebraic Riccati
equation (DARE):

P = Q + Ad
T

(
P − PBd

(
R + Bd

TPBd
)−1

BdP
)
Ad. (11.18)

11.4.2 Model Predictive Control

Model predictive control has been successfully applied to many industrial processes
[11] and drone applications such as [9]. The controller calculates the optimal control
action taking future predictions and constraints into account. The optimization is
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repeated each sampling time with a moving horizon. MPC is generally formulated
with state-space models as

min
ε(k+m+1),U(k+m)

N−1∑
m=1

ε(k + m + 1)T Q ε(k + m + 1) + U(k + m)T R U(k + m),

(11.19)
where

ε(k + m + 1) = X(k + m + 1) − Xref(k + m + 1), (11.20)

being N the prediction horizon, Q and R the weighting matrices. The error ε is
defined as the difference between the state vector X and the reference Xref since
the output vector Y is equal to the state vector. The optimization problem is subject
to the system dynamic model presented in Eq. (11.14) and the following system
constraints:

X ≤ X(k) ≤ X, U ≤ U(k) ≤ U, Y ≤ Y(k) ≤ Y. (11.21)

The variable vectors denoted with an over line contain the upper limits, while
the variable vectors with an under line contains the lower limits. Particularly, the
constraints included in this problem are the beam length that limits the ball position,
x , and maximum and minimum values for the lift forces, f1 and f2, imposed by rotor
physical constraints. Values of 30 and −35 N are chosen for the upper and lower lift
force bounds, respectively.

11.5 Simulation Results

This section is dedicated to compare and discuss the simulation results for LQR and
MPC. First, preliminary simulations are performed in order to tune the weighting
matrices,Q and R, for the controllers with the objective to achieve fast performance
with nonaggressive control actions. The best values for both matrices and both con-
trollers correspond to

Q = Inx×nx ,

R = 0.004 Inu×nu .
(11.22)

Furthermore, for the MPC the prediction horizon, N , is another design parameter.
The prediction horizon directly influences on the computational demand, that is, the
higher the prediction horizon the higher the computational demand is. Otherwise,
MPC and LQR have the same performance for a sufficiently higher N . Then it is
achieved a tradeoff with a prediction horizon set at 12 samplings.

Figure11.3 compares LQR and constrained MPC simulated for initial drones
altitudes equal to 4.5 and 3.5 m for drone 1 and drone 2.

Figure11.3a shows the performance of the ball position for LQR in red, for MPC
in blue, and bounds in magenta dash lines. Note that both controllers are able to
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Fig. 11.3 Comparison of LQR and MPC controllers on simulations

regulated the ball position and stabilized the ball in the equilibrium point set at
x = 0. However, LQR violates the constraints imposed by the beam length and at
time 1.75 s the ball falls from the beam. Figure11.3b, c show the drone altitudes,
z1 and z2. The altitude references for both altitudes are maintained constant at 2 m
during all the simulation. LQR andMPC appropriately regulate the altitudes. As seen
in the figures, MPC is slightly slower due to the constraints. Figure11.3d, e present
the simulation results for the drone lift forces. MPC performs inside the bounded
region for all the simulation, while LQR violates the constraints at the beginning of
the simulation imposed to the drone 1 lift force.

In order to test in more detail the LQR, several simulations are performed and
presented in Fig. 11.4. The weighting matrices are modified and the lift forces are
saturated to the maximum and minimum values only for the case of the LQR. In
Fig. 11.4a, the ball position performances are presented where red, magenta, and
green dash lines correspond to the LQRperformancewith aweightingmatrixR equal
to 0.008 Inu×nu , 0.004 Inu×nu , and 0.001 Inu×nu , respectively.MatrixQ is kept constant
and equal to the identity matrix. Moreover, red, magenta, and green solid lines are
the LQR performances for the previous weighting matrices including saturations on
the maximum and minimum values of the lift forces. As observed in the figure, only
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Fig. 11.4 Saturated and nonsaturated LQR with different weighting matrices

the LQR performance for a weighting matrix R of 0.004 Inu×nu without saturation
avoids the ball to fall. However, after studying Fig. 11.4d, e, LQR with a weighting
matrix R of 0.004 Inu×nu requires to implement lift forces for drone 1 out of bounds.
Therefore, it is demonstrated that even though LQR is a good candidate to regulate
this system due to its fast execution time, the system performance under the bounds
is not guaranteed.

11.5.1 Disturbances

LQR andMPC are tested under disturbances. To that end, simulations are performed
with disturbances in the ball position and drone altitudes. In addition, changes in the
references are also included in the simulation. The results are compared in Fig. 11.5.
The initial conditions are the same as presented in the previous simulations. The ball
position is modified to a value of x equal to 0.5 m at time 15s as seen in Fig. 11.5a.
The altitude of drone 1 is modified to values of z1 equal to 1.2 and 2.7 at time 20
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Fig. 11.5 LQR and MPC with disturbances

and 28s as shown in Fig. 11.5b. The altitude references are at the beginning of the
simulation equal to 2m and simultaneously change to a value of 3.5m at time 30 s and
again to 2 m at time 40s. The references are shown in Fig. 11.5b, c as cyan dash lines.
In Fig. 11.5, blue solid lines correspond to the MPC, while red solid lines correspond
to the LQR with lift forces saturated. As mentioned in the previous subsection, LQR
is not able to perform under the bounded region and the ball falls from the beam at
times 1.75, 21, and 29 s. MPC performs under bounds during all the simulation and
faster than the saturated LQR as seen in Fig. 11.5a at time 21 s. For both cases, the
altitude references are perfectly tracked with a similar rise time.

11.5.2 Execution Times

Finally, executions times are obtained during simulation to test the suitability of
the real-time implementation of MPC for this application. Note that the controllers
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Table 11.2 Execution times

Controller Average (ms) Maximum (ms) Minimum (ms)

LQR 0.01225 0.0338 0.00798

MPC 5.8 6.8 4.9

are simulated using MATLAB in PC with i7-260M CPU under 64 bits Windows
platform. Table11.2 lists the average, maximum and minimum execution times for
LQR and MPC. The average time for LQR is 0.01225 ms, while MPC is 5.8 ms.
Both average times are far from 200 ms which is the sampling time, and thus a robust
online implementation is feasible. Note that the hardware on-board with a real-time
software may execute the control laws faster. Due to the fast execution times, the
sampling time could be reduced in order to obtain better performance in terms of
response speed. Then the prediction horizon for MPC needs to be recalculated for
the new sampling time. The prediction horizon depends on the system rise time.
Therefore, if the sampling time is reduced, the prediction horizon increases. Also,
the MPC execute time increases with the prediction horizon. The reduction of the
sampling time needs to be carefully studied.

11.6 Conclusion

In the present chapter we have presented, modeled, and analyzed a novel application
of multiagent drone system dealing with load carrying. The main problem related to
this application comes from the mechanical links between the load and the drones
which carry it. This system was proposed to be modeled as a ball and beam lifted
by to drones and a mathematical model based on first principles was developed.
Under the assumption that all the states are measured, LQR and MPC controllers
have been analyzed by simulations. LQR presented very fast execution times but it is
not guaranteed a performance in the bounded area, that is, that the ball does not fall
from the beam as seen in different simulations. On the other hand, MPC deals with
constraints and regulates the ball position without violating the constraints imposed
in the problem. Moreover, execution times are short enough for this application to
guarantee the online implementation.

This work has presented only a preliminary study with centralized controllers
which have the knowledge of all the states variables. In future work, we aim at con-
sidering a more general setup with a higher number of drones and where only part of
the states are locallymeasured on each drone. In order to reduce the execution time of
theMPC and tomake the problem scalable in an easyway, distributedMPC strategies
should be studied. In addition, a uncertainties and aerodynamic disturbances need to
be included in future studies.
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