
Chapter 10
Stabilization of Networked Control Systems
with Hyper-Sampling Periods

Xu-Guang Li, Arben Çela and Silviu-Iulian Niculescu

Abstract This chapter considers the stabilization of Networked Control Systems
(NCSs) under the hyper-samplingmode. Such a samplingmode, recently proposed in
the literature, appears naturally in the scheduling policies of real-time systems under
constrained (calculation and communication) resources. Meanwhile, as expected,
the stabilization problem under the hyper-sampling mode is much more complicated
than in the case of single-sampling mode. In this chapter, we propose a procedure to
design the feedback gain matrix such that we can obtain a stabilizable region as large
as possible. In the first step, we determine the stabilizable region under the single-
sampling period. This step can be easily obtained by solving some linear matrix
inequalities (LMIs) and from the result we may obtain a stabilizable region for the
hyper-sampling period. Then, in the second step, we further detect the stabilizable
region, based on the one found in the first step, by adjusting the feedback gain
matrices based on the asymptotic behavior analysis. By this step, a larger stabilizable
region may be found and this step can be used in an iterative manner. The proposed
procedure will be illustrated by a numerical example. We can see from the example
that the stabilizable region under the hyper-sampling period may lead to a smaller
average sampling frequency (ASF) guaranteeing the stability of the NCS than the
single-sampling period, i.e., less system resources are required by the hyper-sampling
period.
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10.1 Introduction

The stability of Networked Control Systems (NCSs) is an important research topic
in the area of control, see e.g., [1, 11, 21]. Calculation and communication resources
limitation, the distribution of calculation, actuation, and sensing devices, and the
related scheduling render the analysis and design complex and challenging.

A simplemodel of anNCS is givenby a sampled-data onewith the single-sampling
period (that is, anNCS essentially has one constant or time-varying sampling period).
For such NCSs with single-sampling periods, there exists an abundant literature
devoted to the stability and related problems.

In particular, a lot of recent studies focus on the robust stability and stabilization
problems when NCSs are subject to uncertain sampling periods and/or network-
induced delays (see, for instance, the delayed-input method used in [9], the small
gain approach adopted in [17], and the convex-embedding approach used in [7, 10]).

For nominal NCS models (i.e., when the sampling periods, network-induced
delays, and the system matrices are all fixed), an eigenvalue-based approach was
introduced in [16] for characterizing the stability domain for the sampling period
or network-induced delay. Such an approach represents a novelty in the domain.
Recently, a hyper-sampling period, from a perspective of real-time systems, was
proposed in [2, 5] (see also [4] for a more detailed introduction). Compared with
the single-sampling counterpart, a hyper-sampling period consists of multiple sub-
sampling periods and hence provides with a more flexible and realistic sampling
mechanism for NCSs.

In the hyper-sampling context, stability conditions were studied in [13], where
a discrete-time model and some robust analysis techniques similar to the ones used
in [8, 18, 19] were adopted. It was shown in [13] that an NCS can be asymptot-
ically stable with less system resources consumption. In [13] the feedback gain
matrix is supposed to be designed a priori and the stability region with respect to the
sub-sampling periods are explicitly studied. One may naturally predict that system
resources may be further saved if both the hyper-sampling period and the feedback
gain matrix are considered as free design parameters. This motivates us to consider
in this chapter the following co-design problem:

For an NCS under the hyper-sampling period, design the feedback gain matrices
such that the obtained stabilizable region in the space of sub-sampling parameters
is as large as possible.

For simplicity, we assume in this chapter that the hyper-sampling period has
two sub-sampling periods T1 and T2 which practically means that a control task is
executed twice in each hyper-sampling period. We believe that the method proposed
and the results obtained here may be extended to the case involving more sub-
sampling periods. When the hyper-sampling period is assumed to have two sub-
sampling periods T1 and T2, the value of 1/(T1 + T2) corresponds to an index average
sampling frequency (ASF). It is not hard to see that if an NCS can be stabilized by a
hyper-sampling period with a smaller ASF, then less calculation and communication
resources are consumed (the consumption of resources is in general proportional
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to the ASF). Therefore, in this chapter, we will consider how to find a stabilizable
region for an NCS in the T1 − T2 plane with the values T1 + T2 as large as possible.

Due to the complexity of the problem, we start with the specific case where
T1 = T2 (instead of direct studying the general case) and calculate the maximal
stabilizable bound T , i.e., the NCS can be stabilized by some (not necessary one)
feedback gain matrices if 0 < T1 = T2 < T . We will show that for this specific case
(corresponding to the single-sampling case), themaximal stabilizable bound T can be
easily obtained through a necessary and sufficient condition in terms of linear matrix
inequalities (LMIs) .We next seek the stabilizable region in the hyper-sampling case.
It should be emphasized that, unlike for the single-sampling case, for a given hyper-
sampling period (T1, T2) there does not exist a direct way so far to find a stabilizing
feedback gain matrix K (the corresponding conditions are in terms of nonlinear
matrix inequalities).

In this chapter, wewill propose an eigenvalue-based procedure to iteratively adjust
the feedback gain matrix K . First, from the results for the single-sampling case, we
may obtain a stabilizable region for the hyper-sampling period in the T1 − T2 plane.
This stabilizable region is dented by S(0), whose boundary is denoted by B(0) and
can be detected by parameter sweeping. Each point on B(0) must correspond to a
feedback gain matrix with which the NCS has characteristic roots located on the
unit circle, called critical characteristic roots or eigenvalues.1 Then, we study the
asymptotic behavior of these critical characteristic roots with respect to the elements
of K such that we know the way to adjust K in order to have a larger stabilizable
region. In this way, we will have some new feedback gain matrices leading to a new
stabilizable region S(1), whose boundary is B(1). Next, the above step may be applied
to the points on B(1) and then obtain one more stabilizable region S(2). By repeating
this method in an iterative manner, we may obtain new stabilizable regions S(3),
S(4), . . . Finally, the combination S(0) ∪ S(1) ∪ · · · is the overall stabilizable region
we detect.

The asymptotic behavior analysis is a relatively new approach for the analysis
and design of NCSs (see e.g., [16]), and, to the best of the authors’ knowledge,
was not sufficiently exploited in the community of NCSs. In this chapter, we will
only study the case with only simple critical characteristic roots (i.e., we suppose
that no multiple critical characteristic roots appear). One may refer to [14] for a
general method for asymptotic behavior analysis. The proposed procedure will be
illustrated by a numerical example. In addition, we can see from the example that,
compared with the single-sampling period, a smaller ASF guaranteeing the NCS
stability can be obtained by the hyper-sampling period. That is to say, calculation
and communication resources may be saved by adopting the hyper-sampling period.

This chapter is organized as follows. In Sect. 10.2, some preliminaries are given. In
Sect. 10.3, the stabilization for NCSs under the single-sampling mode is considered.
Aprocedure for designing the feedbackgainmatrices under the hyper-samplingmode

1In this chapter, the words “eigenvalue” and “characteristic root” may be used alternatively.
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is proposed in Sect. 10.4. An illustrative example is given in Sect. 10.5. Finally, some
concluding remarks end this chapter in Sect. 10.6.

Notations: In this chapter, the following standard notations will be used:R (R+) is
the set of (positive) real numbers; N is the set of non-negative integers and N+ is the
set of positive integers. Next, I is the identity matrix with appropriate dimensions.
For a matrix A, A′ denotes its transpose. We denote by ρ(A) the spectral radius of
matrix A. Finally, A > 0 implies that A is positive definite.

10.2 Preliminaries

The controlled plant of a networked control system (NCS) is given by

ẋ(t) = Ax(t) + Bu(t), (10.1)

where x(t) and u(t) denote, respectively, the system state and control input at time t ,
and A and B are constant matrices with appropriate dimensions. It is a trivial assump-
tion that A is not Hurwitz, otherwise the system is open-loop stable and less inter-
esting for study. At a sampling instant tk (k ∈ N), the control input to the plant (1) is
updated to u(tk). Implemented with the Zero-Order-Hold (ZOH) devices, the control
signal is

u(t) = u(tk), tk ≤ t < tk+1. (10.2)

We employ the commonly used state feedback control:

u(tk) = Kx(tk), (10.3)

where K is the feedback gain matrix, to be designed in this chapter. The closed-loop
of the NCS can be expressed by the following discrete-time model

x(tk+1) = Φ(T (k), K )x(tk), k ∈ N, (10.4)

where T (k)
Δ= tk+1 − tk denote the sampling periods andΦ(T (k), K ) is the transition

matrix function defined by

Φ(α, β) = eAα +
∫ α

0
eAθdθBβ. (10.5)

Introducing Ã(T (k)) = eAT (k) and B̃(T (k)) = ∫ T (k)
0 eAθdθB, we may rewrite

Φ(T (k), K ) as

Φ(T (k), K ) = Ã(T (k)) + B̃(T (k))K . (10.6)
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Fig. 10.1 A hyper-sampling period

Fig. 10.2 Sampling instants under the hyper-sampling mode

In the control area, themost used samplingmode is the standard2 single-sampling
mode. In particular, throughout this chapter we focus on the nominal cases and the

sampling periods T (k)
Δ= tk − tk−1 are a constant value, denoted by T , for all k ∈ N+

under the single-sampling mode.
A well-known necessary and sufficient stability condition for the NCS under the

standard single-sampling mode is as follows (see e.g., [1, 6]).

Lemma 1 The networked control system described by (10.1)–(10.3) with a con-
stant sampling period T is asymptotically stable if and only if the transition matrix
Φ(T, K ) is Schur.

The stabilization problem in the single-sampling case is relatively simple to solve
(details will be given in Sect. 10.3). As earlier mentioned, the main objective of this
chapter is to study the stabilization under the hyper-sampling mode. In general, a
hyper-sampling period is composed of n ∈ N+ sub-sampling periods Ti ∈ R+, i =
1, . . . , n, as depicted in Fig. 10.1. The n sub-sampling periods are allowed to be
different from each other.

Under the hyper-sampling mode, the sampling instants tk (k ∈ N) are as depicted
in Fig. 10.2. It follows that t1 − t0 = T1 (t0 = 0), t2 − t1 = T2, . . ., tn − tn−1 = Tn ,
tn+1 − tn = T1, tn+2 − tn+1 = T2, . . .. That is, the sampling periods T (k) are gen-
erated periodically according to hyper-sampling period. More precisely, they are
generated by the following rule:

T (k) = tk+1 − tk =
{
Tk+1 mod n, k + 1 mod n �= 0, k ∈ N,

Tn, k + 1 mod n = 0, k ∈ N,
(10.7)

where the notation ofmodulo operation “a mod b” denotes the remainder of division
of a by b.

2We use the term “standard” simply to differwith the hyper-samplingmode discussed in this chapter.
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Remark 1 It is easy to see that the hype-sampling mode reduces to the single-
sampling mode when n = 1. Thus, we may treat the single-sampling mode as a
special case of the hyper-sampling mode. In general, a larger n offers more design
flexibility of the hyper-sampling period. Meanwhile, the price to be paid for a larger
n is the increased solution complexity of the stabilization problem.

For a hyper-sampling period with n sub-sampling periods T1, . . ., Tn , we define
the Average Sampling Frequency (ASF) as follows:

fA = n
n∑

i=1
Ti

. (10.8)

Remark 2 The concept of ASF is easy to understand: On average, in a unit of time
the system state is sampled fA times (or, equivalently, the system state is sampled
once in 1/ fA units of time). The value of fA corresponds to the calculation and
communication resources consumed by a control task, since a sample instant is
associated with a series of actions including state sampling by sensor, data transition
over network, calculation of control input by controller, and updating of control input
by actuator. The higher the ASF is, more resources are consumed.

For the sake of simplicity, in this chapter we study the case n = 2. That is, the
hype-sampling period is assumed to contain two sub-sampling periods T1 and T2.
In this context, a hyper-sampling period can be denoted by a pair (T1, T2). In our
opinion, the results of this chapter can be extended to the case with more sub-
sampling periods. Following the analysis in [13], we have the following necessary
and sufficient stability condition:

Lemma 2 The networked control system described by (10.1)–(10.3) with two sub-
sampling periods T1 and T2 is asymptotically stable if and only ifΦ(T1, K )Φ(T2, K )

(or, equivalently Φ(T2, K )Φ(T1, K )) is Schur.

Lemma 2 is based on the discrete-time expression of the NCS:

x(tk+2) = Φ(T2, K )Φ(T1, K )x(tk),

if k is evenwhile x(tk+2) = Φ(T1, K )Φ(T2, K )x(tk) if k is odd.Next, the equivalence
(from the stability point of view)betweenΦ(T1, K )Φ(T2, K ) andΦ(T2, K )Φ(T1, K )

is due to the following immediate yet important property:

Propertry 1 For two square matrices Q1 and Q2, the matrices Q1Q2 and Q2Q1

have the same eigenvalues.

In view of Lemma 2, we define

ΦH (T1, T2, K ) = Φ(T1, K )Φ(T2, K ),
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and we know that the NCS is asymptotically stable if and only if ΦH (T1, T2, K ) is
Schur (it is equivalent if we define ΦH (T1, T2, K ) as Φ(T2, K )Φ(T1, K )). Next, we
clarify the notions “stabilizable hyper-sampling period”, “stabilizable point”, and
“stabilizable region”, to be frequently used in this chapter.

A hyper-sampling period (T1, T2) is called a stabilizable one, if there exists a
feedback gain matrix K stabilizing the closed-loop NCS (i.e., there exists a K such
that ΦH (T1, T2, K ) is Schur). The corresponding point, with coordinate (T1, T2) in
the T1 − T2 parameter plane, is called a stabilizable point. A stabilizable region refers
to the set of stabilizable points in the T1 − T2 parameter plane.

Note that a stabilizable regiongenerally corresponds tomultiple different feedback
gain matrices. For instance, if for a feedback gain matrix Kα (Kβ), the NCS is
asymptotically stable when (T1, T2) lies in a region SKα

(SKβ
), then SKα

(SKβ
) is

a stabilizable region. Furthermore, SKα
∪ SKβ

is a larger stabilizable region and a
stabilizing K for all (T1, T2) ∈ SKα

∪ SKβ
does not necessarily exist.

Remark 3 According to Property 1, if (T ∗
1 , T ∗

2 ) is a stabilizable point if and only if
(T ∗

2 , T ∗
1 ) is a stabilizable point. Therefore, it suffices to consider only the domain

with T1 ≤ T2 (T1 > 0, T2 > 0). For an obtained stabilizable region S∗ therein, there
must be a stabilizable region S� in the domain with T2 ≤ T1 (T1 > 0, T2 > 0), such
that S∗ and S� are symmetric with respect to the line T1 = T2.

In the sequel, we will first study the stabilization problem in the case of single-
sampling period. Next, we will study the stabilization problem in the case of hyper-
sampling period based on the obtained results for the single-sampling period case.

10.3 Stabilization of NCS Under Single-Sampling Mode

Although the result given below is not new, it will represent the staring point of our
study in handling the case of hyper-sampling period.

Lemma 3 Consider a networked control system described by (10.1)–(10.3) under
the single-sampling mode. For a given sampling period T , the networked control
system is stabilizable if and only if there exist a positive-definite matrix P and a
matrix Y such that the following linear matrix inequality (LMI) is feasible

( −P Ã(T )P + B̃(T )Y
( Ã(T )P + B̃(T )Y )′ −P

)
< 0. (10.9)

If the LMI (10.9) is feasible, we have a feedback gain matrix K = Y P−1 with
which the networked control system is asymptotically stable.

Proof The condition of Lemma 3 can be easily developed from a standpoint of
discrete-time system. For a given T , the NCS is stabilizable if and only if there exists
a feedback gain matrix K and a positive-definite matrix P such that:
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( Ã(T ) + B̃(T )K )P( Ã(T ) + B̃(T )K )′ − P < 0,

which is equivalent to the condition:

( Ã(T ) + B̃(T )Y )P−1( Ã(T ) + B̃(T )Y )′ − P < 0, (10.10)

where Y = K P . The condition (10.10) can be equivalently transformed into the LMI
form (10.9) by using the Schur complement properties (see [3]). �

Lemma 3 can be easily implemented by using the LMI toolbox in MATLAB.
Thus, for any single-sampling period T , we may precisely determine if the NCS is
stabilizable and obtain a corresponding feedback gain matrix K if stabilizable.

Furthermore, by sweeping T and using Lemma 3, we may accurately find the
stabilizable interval T ∈ (0, T ) under the single-sampling mode (note that this result
is without conservatism). Then, we choose some T0,i such that 0 < T0,1 < T0,2
< · · · < T and for each T0,i we have a stabilizing feedback gain matrix, denoted
by K (0)

i . Each K (0)
i provides with a stabilizable region in the T1 − T2 plane near

(T1 = T0,i , T2 = T0,i ), denoted by S(0)
i . Note that S(0)

i can be obtained by parameter
sweeping.

The combination of all S(0)
i , S(0)

1 ∪ S(0)
2 ∪ · · · , constitute a (larger) stabilizable

region S(0) in the T1 − T2 plane. The boundary of S(0) is denoted by B(0). Note that
S(0) is a stabilizable region for the hyper-sampling mode, though it is obtained from
the results for the stabilization of the single-sampling case.

In the next section, we will further enlarge the stabilizable region for the hyper-
sampling mode based on S(0).

10.4 Stabilization of NCS Under Hyper-sampling Mode

First of all, it should be noticed that, unlike for the single-sampling case, it is difficult
to determine if an NCS is stabilizable for a given hyper-sampling period (T1, T2) and
to find the corresponding stabilizing feedback gain matrix K (if stabilizable). If we
straightforwardly follow the idea in Sect. 10.3, we need to find a positive-definite
matrix P and a feedback gain matrix K such that the following matrix inequality
holds:

ΦH (T1, T2, K )PΦ
′
H (T1, T2, K ) − P < 0. (10.11)

However, the condition (10.11) is a nonlinear matrix inequality and it is not easy
to equivalently transform it into a linear one. To the best of the authors’ knowledge, it
is difficult to directly find a K satisfying condition (10.11). The problemwill become
more involved when n > 2.

Instead of trying to give a direct procedure, in the sequel, wewill take advantage of
the results obtained for the single-sampling case to design the feedback gain matrix
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K for the case of hyper-sampling period. From the results proposed in Sect. 10.3, we
have a stabilizable region S(0) with its boundary B(0) in the T1 − T2 plane. For every
point (T1, T2) on B(0), there is a K with which ΦH (T1, T2, K ) has an eigenvalue
located on the unit circle (such an eigenvalue is called a “critical” one).

To simplify the analysis of this chapter, we adopt the following assumption.

Assumption 1 All the critical eigenvalues of the closed-loop system are simple.

Remark 4 If multiple critical eigenvalues appear, the problemwill generally become
more complicated and we may invoke the Puiseux series to treat such a case (see
e.g., [14] for the analysis of multiple critical roots for time-delay systems).

Remark 5 If λ∗ is a critical eigenvalue, its conjugate λ∗ is also a critical eigenvalue
and the variations of λ∗ and λ∗ as K varies are symmetric with respect to the real
axis. Thus, it is sufficient to analyze either of them.

In the sequel, we will design K through analyzing the asymptotic behavior of the
critical eigenvalues with respect to the elements of K . Without any loss of generality,
suppose K hasm ∈ N+ elements. For instances, a 1 × 3 K has 3 elements and it can
be expressed by ( k1 k2 k3 ); a 2 × 2 K has 4 elements and it can be expressed by(
k1 k2
k3 k4

)
. The elements of K are expressed by kγ , γ = 1, . . . ,m. The characteristic

function for the transition matrix of an NCS under the hyper-sampling mode can be
denoted by:

f (λ, T1, T2, k1, . . . , km) = det(λI − ΦH (T1, T2, K )). (10.12)

By the implicit function theorem (see e.g., [12, 20]), we have the following the-
orem:

Theorem 2 Suppose when λ = λ∗, T1 = T ∗
1 , T2 = T ∗

2 , k1 = k∗
1 , . . . , km = k∗

m,

f (λ, T1, T2, k1, · · · km) = 0

and fλ �= 0. As kγ vary near k∗
γ (γ = 1, . . . ,m), f (λ, T1, T2, k1, . . . , km) = 0

uniquely determines a characteristic root λ(k1, . . . , km) with λ(k∗
1 , . . . , k

∗
m) = λ∗

and λ(k1, . . . , km) has continuous partial derivatives

∂λ

∂k1
= − fk1

fλ
, . . . ,

∂λ

∂km
= − fkm

fλ
.

According to Theorem 2, we may express the asymptotic behavior of λ with
respect to the elements of the feedback gain matrix K by the following (first-order)
Taylor series

Δλ = C1Δ(k1) + · · · + CmΔ(km) + o(Δ(k1), . . . , Δ(km)), (10.13)
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where

Cγ = ∂λ

∂kγ

, γ = 1, . . . ,m.

Remark 6 In this chapter, we only invoke the first-order terms of the Taylor series. If
needed, we may further invoke higher-order terms. One may refer to [15] concerning
the degenerate case for time-delay systems, where invoking the first-order terms is
not sufficient for the stability analysis.

For a critical characteristic root λ (i.e., |λ| = 1), from the stability point of view,
we are interest in the direction of Δλ with respect to the unit circle. If the direction
points inside the unit circle, the variation makes the system asymptotically stable.
Equivalently, we may consider the variation of the norm of the critical characteristic
root λ, i.e., Δ(|λ|). Such an analysis can be fulfilled by computing the projection of
Δλ on the normal line of the unit circle at λ. We have the following theorem.

Theorem 3 Supposewhenλ = λ∗, T1 = T ∗
1 , T2 = T ∗

2 , k1 = k∗
1 , . . . , km = k∗

m, f (λ,

T1, T2, k1, · · · km) = 0 and fλ �= 0. As kγ vary near k∗
γ (γ = 1, . . . ,m), it follows that

Δ(|λ|) = (
Re(λ∗) Im(λ∗)

) · (
Re(Δλ) Im(Δλ)

)
.

We now apply Theorem 3 to adjust K in order to have a larger stabilizable region.
We choose some points on B(0), denoted by (T (0)

1,i , T (0)
2,i ) (i = 1, 2, . . .). Each

(T (0)
1,i , T (0)

2,i ) corresponds to a K (0)
i (whose elements are denoted by k(0)

i,1 , . . . , k(0)
i,m)

and λ
(0)
i with

∣∣∣λ(0)
i

∣∣∣ = 1 such that f (λ(0)
i , T (0)

1,i , T (0)
2,i , k(0)

i,1 , . . . , k(0)
i,m) = 0 . Then, we

may adjust K (0)
i according to Theorem 3 to find a new feedback gain matrix, denote

by K (1)
i such that the NCS with K (1)

i is asymptotically stable near (T (0)
1,i , T (0)

2,i ).
More precisely, for each element kγ wemay know from Theorem 3 the following.

Suppose other elements of K are fixed, a sufficient small increase (decrease) of kγ

at k(0)
i,γ makes λ

(0)
i move inside the unit circle if

(
Re(λ∗) Im(λ∗)

) · (
Re(Cγ ) Im(Cγ )

)
> 0 (< 0).

With this property, we may adjust all elements k(0)
i,γ , γ = 1, . . . ,m, appropriately

to find a new stabilizing feedback gain matrix.
From each K (1)

i we have a new stabilizable region near (T (0)
1,i , T (0)

2,i ), denoted by

S(1)
i . The combination of all S(1)

i , S(1)
1 ∪ S(1)

2 ∪ · · · , constitute a larger stabilizable
region S(1) in the T1 − T2 plane. The boundary of S(1) is denoted by B(1).

The above step can be used iteratively such that a sequence of new stabilizable
regions S(2), S(3), . . . can be obtained. This is the procedure, proposed in this chapter,
for solving the stabilization problem in the hyper-sampling case and can be summa-
rized as below.
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Procedure for stabilization of NCSs with hyper-sampling period:

• Step 1: Using the method proposed in Sect. 10.3, we find the stabilizable region
S(0), and the boundary of S(0), B(0), in the T1 − T2 plane. Let l = 0.

• Step 2: Choose some points on B(l), (T (l)
1,i , T

(l)
2,i ), i = 1, 2, . . . Each (T (l)

1,i , T
(l)
2,i )

corresponds to a K (l)
i such that ρ(ΦH (T (l)

1,i , T
(l)
2,i , K

(l)
i )) = 1. Then, we adjust the

elements of K (l)
i according to Theorem 3 to find a new feedback gain matrix K (l+1)

i

associated with a new stabilizable region S(l+1)
i . The combination of all S(l+1)

i form
a new stabilizable region S(l+1), whose boundary is B(l+1).

• Step 3: If we want to further detect the stabilizable region in the T1 − T2 plane,
let l = l + 1 and return to Step 2. Otherwise or when it is hard to find a larger
stabilizable region by Step 2, the procedure stops. The combination S(0) ∪ · · · ∪
S(l) is the overall stabilizable region we find.

Remark 7 The above procedure is not very simple to use and the computational
effort may further increase if we choose more points ont the boundaries. However,
as the procedure can be implemented off-line, the computational complexity is not
an important issue here.

10.5 Illustrative Example

In the sequel, the procedure proposed in Sect. 10.4 will be illustrated by a numerical
example.

Example 1 Consider an NCS with the controlled plant (10.1) with

A =
[
12 1
1 −9

]
, B =

[
0.1
0

]
.

Wefirst employ Step 1 to find the stabilizable region S(0). The stabilizable interval
under the single-sampling mode is T ∈ (0, 1.26). That is, the minimal stabilizable
ASF under the single-sampling mode is fA = 1

1.26 = 0.79. The stabilizable region
S(0) is shown in Fig. 10.3.

Next, on the boundary of S(0), B(0), we choose some (T (0)
1,i , T (0)

2,i ) and apply Step 2

to adjust the corresponding K (0)
i . As a consequence, wemay find some new feedback

gain matrices K (1)
i and a new stabilizable region S(1) with the boundary B(1).

We may repeat the above step (Step 2), and, as a consequence, we find a sequence
of new stabilizable regions S(2), S(3), S(4), as shown in Fig. 10.3, with the boundaries
B(2), B(3), B(4). If needed, we may obtain more stabilizable regions by repeating step
2 for more times.

We see from Fig. 10.3 that each time a new stabilizable region (with larger
values of T1 + T2) is found, a smaller ASF can be obtained. For instance, we
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Fig. 10.3 Stabilizable
region found for Example 1
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Fig. 10.4 State evolution
x(t) for Example 1 (initial
condition
x(0) = (1.1 − 1.1)′)
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find a hyper-sampling period (T1 = 1.40, T2 = 1.54) with the corresponding K =
(−120.475116 − 5.723971), in the obtained stabilizable region. That is, the ASF
corresponding to this hyper-sampling period is fA = 2

1.40+1.54 = 0.68, smaller than
the minimal ASF under the single-sampling mode, 0.79. To illustrate the asymptotic
stability of the NCS under this hyper-sampling period, we give the state response
with an initial state x(0) = (1.1 − 1.1)′ in Fig. 10.4.

10.6 Concluding Remarks

In this chapter, we proposed a procedure for the stabilization of networked control
systems (NCSs) under the hyper-sampling mode. The procedure consists of two
steps.
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Step 1 is to solve the stabilization problem in the case of single-sampling period
and we can obtain a stabilizable region for the hyper-sampling period from this step.
Step 2 is to find a larger stabilizable region based on the results of Step 1 by using a
method for asymptotic behavior analysis. Step 2 can be used in an iterative manner
such that the stabilizable region can be further detected in the parameter plane.

An example illustrates the proposed procedure and shows that the hyper-sampling
period may lead to a smaller average sampling frequency (ASF) guaranteeing the
asymptotic stability of the NCS than the single-sampling period, which means that
calculation and communication resources of an NCS can be saved by using the
hyper-sampling mode.
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