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Abstract. Given a binary object (2D or 3D), its Betti numbers char-
acterize the number of holes in each dimension. They are obtained alge-
braically, and even though they are perfectly defined, there is no unique
way to display these holes. We propose two geometric measures for the
holes, which are uniquely defined and try to compensate the loss of geo-
metric information during the homology computation: the thickness and
the breadth. They are obtained by filtering the information of the per-
sistent homology computation of a filtration defined through the signed
distance transform of the binary object.

1 Introduction

Homology computation is a very useful tool for the classification and the under-
standing of binary objects in a rigorous way. It provides a class of descriptors
summarizing the basic structure of the considered shape.

A binary object is a set X ⊂ Z
d together with a connectivity relation. We

will assume through this paper that X is a volume (d = 3) and the elements
of X will be called voxels. However, the generalization to higher dimensions is
direct.

Roughly speaking, homology deals with the “holes” of an object. Holes can be
classified by dimensions: 0-holes correspond to connected components, 1-holes
to tunnels or handles and 2-holes to cavities. When computing homology, we
usually expect to find the number of these holes (called the Betti numbers) and a
representative of each hole (called representative cycle of a homology generator).
Nevertheless, the homology computation works at an abstract level (the chain
complex) which ignores the embedding of the object. Thus, the geometry of the
object is in some way neglected.

Moreover, holes are difficult to visualize. We can know how many they are, but
not where they are. This is due to the fact that in homology computation, a choice
for determining a linearly independent set of holes must be done. This is something
difficult to apprehend: for instance, we remind that a cube with its interior and
faces removed (as depicted in Fig. 1) contains five 1-holes instead of six.
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Fig. 1. There are only five 1-holes in this object, and there is no natural way to state
where they are.

The aim of this paper is to endow Betti numbers with an additional informa-
tion containing a geometric interpretation. We define two measures—thickness
and breadth—which, unlike homology generators, are uniquely determined by
the object and can be used as concise topology descriptors. They are obtained
through the persistent homology of the filtration induced by the signed distance
transform of the volume.

Previous efforts have been made to combine homology and geometry. We
cite herein some works that are related to our problem. Erickson and Whittle-
sey founded an algorithm in [EW05] that computes the shortest base for the
first homology group for oriented 2-manifolds. Dey et al. [DFW13] developed
a similar work, but also classifying the 1-holes into tunnels and handles. Chen
and Freedman [CF10] measured the 1-holes of a complex by the “length” of the
homology generators and they also gave an algorithm to compute the smallest
set of homology generators. Zomorodian and Carlsson introduced the localized
homology in [ZC08], which allows to locate each homology class in a subset of a
given cover. This cover, or collection of subcomplexes whose union contains the
complex, successfully give a geometric sense to the Betti numbers.

Contributions

We define two geometric measures that enrich the Betti numbers of a binary
volume. They are uniquely defined up to a choice of connectivity relation and
distance. They can be computed through a distance transform and persistent
homology, so it has matrix multiplication complexity over the number of voxels
in the bounding box of the volume. These measures can be considered as pairs
of numbers associated to each homology generator but also visualized as three-
dimensional balls on the volume.

2 Preliminaries

2.1 Cubical Complexes and Homology

Cubical Complex — This section is derived from [KMM04]. For a deeper under-
standing of these concepts, the reader can refer to it. An elementary interval is
an interval of the form [k, k + 1] or a degenerate interval [k, k], where k ∈ Z.
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An elementary cube in R
n is the Cartesian product of n elementary intervals,

and the number of non-degenerate intervals in this product is its dimension. An
elementary cube of dimension q will be called q-cube.

Given two elementary cubes σ and τ , we say that σ is a face of τ if σ ⊂ τ .
It is a primary face if the difference of their dimensions is 1. Similarly, σ is a
coface of τ if σ ⊃ τ . A cubical complex is a set of elementary cubes with all of
their faces. The boundary of an elementary cube is the collection of its primary
faces.

Chain Complex — A chain complex (C∗, d∗) is a sequence of groups C0, C1, . . .
(called chain groups) and homomorphisms d1 : C1 → C0, d2 : C2 → C1, . . .
(called differential or boundary operators) such that dq−1dq = 0, ∀q > 0.

Given a cubical complex, we define its chain complex as follows:

– Cq is the free group generated by the q-cubes of the complex;
– dq gives the “algebraic” boundary, which is the linear operator that maps

every q-cube to the sum of its primary faces.

The elements of the chain group Cq, which are formal sums of q-cubes with
coefficients in Z2, are called q-chains. They can be seen as sets of cubes of the
same dimension.

Homology Groups — A q-chain x is a cycle if dq(x) = 0, and a boundary if
x = dq+1(y) for some (q+1)-chain y. By the property dq−1dq = 0, every boundary
is a cycle, but the reverse is not true: a cycle which is not a boundary contains a
“hole”. The q-th homology group of the chain complex (C∗, d∗) contains the q-
dimensional “holes”: H(C)q = ker(dq)/im(dq+1). This set is a finitely generated
group, so there is a “base” typically formed by the holes of the cubical complex.
Since our ring of coefficients is Z2, this group is isomorphic to Z

βq and βq is the
q-th Betti number.

Cubical Complex Associated to a Binary Volume — Given a binary volume,
we can define two different associated cubical complexes encoding the 6 or the
26-connectivity relation.

– Primal associated cubical complex (26-connectivity): every voxel x =
(x1, x2, x3) generates the 3-cube [x1, x1 + 1] × [x2, x2 + 1] × [x3, x3 + 1] and
all its faces.

– Dual associated cubical complex (6-connectivity): let us first adapt the notion
of clique to our context. A d-clique is a maximal (in the sense of inclusion) set
of voxels such that their intersection is a d-cube. First, for every voxel (in fact
3-clique) x = (x1, x2, x3) of the volume, we add the 0-cube σ = [x1]×[x2]×[x3].
Then, for every d-clique (d < 3) in the volume, we add to the cubical complex
a (3 − d)-cube such that its vertices are the voxels of the d-clique.

These cubical complexes can be defined for any dimension. Figure 2 illustrates
both complexes.
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Fig. 2. Left: a binary volume. Center: its primal associated cubical complex. Right: its
dual cubical complex

2.2 Persistent Homology

This section introduces the persistent homology. A more rigorous presentation
can be found in [EH08] and the references therein.

A filtration is a finite (or countable) sequence of nested cubical complexes
X1 ⊂ X2 ⊂ · · · Xn. It can also be described by a function f on the final complex
Xn, which assigns to each q-cube the first index at which it appears in the
complex. Since it is a sequence of cubical complexes, a cube cannot appear
strictly before its faces, so the function f must verify

f(σ) ≤ f(τ),∀σ ⊂ τ (1)

Therefore, a function f : X → R defined over a cubical complex is a filtration
function if its image is a finite (or countable) set and if it satisfies Eq. (1).
Given such a function, its filtration is the sequence Ff (X) = {Xi}n

i=0, where
a0 < a1 < · · · < an are the images of f and Xi = f−1(] − ∞, ai]).

As illustrated in Fig. 3, the homology groups of the complex can evolve as
“time” goes on. The persistence diagram [EH08, p. 3] records these changes: a
q-hole being born in Xi and dying (or vanishing) in Xj is represented in the
persistence diagram as the point (i, j). This is also called a P-interval in [ZC05].
A homology generator of Xn, which never dies, is represented by the point (i,∞).
The reader can find some persistence diagrams in Sect. 4. Persistent homology
can also be visualized in terms of barcodes [Ghr08], where each point (i, j) is
represented as an interval in the real line.

We can assign a pair of cubes (σi, σj) to each P -interval (i, j). The first cube
creates the hole (e.g., a point in a new connected component or the edge that
closes a handle) while the second one merges the hole into the set of boundaries
(e.g., the edge that connects two connected components, or the square that fills
a handle). The reader could try to find these pairs of cubes in the filtration
described in Fig. 3.

There has been an extensive research in the computation of persistent homol-
ogy. An algorithm in matrix multiplication time was introduced in [MMS11]. The
algorithms present in [ZC05,MN13] have cubical worst-time complexity, but they
seem to behave better in practice. An algorithm adapted for cubical complexes
was developed in [WCV12].
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X1 X2 X3 X4

Fig. 3. A filtration. X1: there are two 0-holes (connected components). X2: one 0-hole
dies. X3: a 1-hole is born. X3: that 1-hole dies.

Note that in this article we do not use Čech, Vietoris-Rips nor Alpha com-
plexes, as it is usually done in the persistent homology literature. The filtrations
considered are based on a function defined over a cubical complex.

2.3 Distance Transform

Given a binary volume X ⊂ Z
3, its distance transform DTX is the map that

sends every voxel x ∈ X to DTX(x) = miny∈Z3\X d(x, y). It can be seen as
the radius of the maximal ball centered at x and contained in X. Note that
we must consider one specific distance for the volume: Lp metrics such as the
Manhattan distance (L1), the Euclidean distance (L2) or the chessboard distance
(L∞); distances based on chamfer masks [Mon68,Bor84] or sequences of chamfer
masks [MDKC00,NE09], etc.

There exist linear time algorithms for computing the Euclidean distance on
nD binary objects [BGKW95,Hir96,MRH00,MQR03].

We can then consider the signed distance transform, which maps every voxel
x ∈ X to −DTX(x) and x /∈ X to DTZ3\X(x).

3 The Two Measures

3.1 Motivation

The main motivation for this work comes from the desire of comparing binary
volumes obtained from real acquisition of complex structures. Using mere Betti
numbers for this objective can be ineffective, so we thought of enhancing this
basic homological information by defining two geometry-aware measures for
the holes.

In the following we give an intuitive introduction to the two new measures. We
consider two binary images which are repeatedly eroded and dilated respectively,
and we comment what happens to their homology groups. Then we figure out
how we can treat this problem with persistent homology.

When we erode the image in Fig. 4-(a), we observe that a 1-hole disappears
(Fig. 4-(b)), a 0-hole is created (Fig. 4-(c)) and a 0-hole disappears (Fig. 4-(d)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Two images being eroded and dilated. We can notice a change in its homology
at every step.

On the other hand, when we dilate the image in Fig. 4-(e), a new 1-hole appears
(Fig. 4-(f)), a 0-hole vanishes (Fig. 4-(g)) and a 1-hole disappears (Fig. 4-(h)).

Thanks to persistent homology, we can record these events. Given a binary
volume X ⊂ [0,m1] × [0,m2] × [0,m3] ⊂ Z

3, we build the associated primal (or
dual) cubical complex K of the bounding box [0,m1] × [0,m2] × [0,m3]. Then
we compute a filtration function f associated to the signed distance transform
of X: the 3-cubes (0-cubes) are mapped to the value of their associated voxels
(cf. Sect. 2.1). The image of the rest of the cubes is coherently assigned in order
to produce a filtration, that is, each q-cube, for 0 ≤ q ≤ 2 (1 ≤ q ≤ 3), takes the
minimum (maximum) value of its 3-dimensional cofaces (0-dimensional faces).

Let a0 < a1 < · · · < ai = 0 < · · · < an be the different values of f over the
volume. Thus, we can consider the filtration Ff (K):

X0 = f−1(] − ∞, a0]) ⊂ · · · ⊂ X ⊂ · · · ⊂ Xn = f−1(] − ∞, an])

Let us now see how the previously described phenomena are encoded in the
persistent homology of the filtration Ff (K). Note that the eroded images are
now seen in reversed time:

– Figure 4-(b): a 1-hole is born in negative time (1b–);
– Figure 4-(c): a 0-hole dies in negative time (0d–);
– Figure 4-(d): a 0-hole is born in negative time (0b–);
– Figure 4-(f): a 1-hole is born in positive time (1b+);
– Figure 4-(g): a 0-hole dies in positive time (0d+);
– Figure 4-(h): a 1-hole dies in positive time (1d+);

Since we are interested in the homology groups of the given volume, we only
consider the persistent intervals that start at negative time and finish at positive
time. We can give an intuitive and physical interpretation to those events.
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0b– A 0-hole being born at time t0 < 0 means that the maximal ball included
in that connected component has radius −t0;

0d+ A 0-hole dying at time t0 > 0 means that the shortest distance between
that connected component and any other is 2 · t0;

1b– A 1-hole being born at time t0 < 0 means that −t0 is the smallest radius
needed for a ball included in X that, once removed, breaks or vanishes that
hole;

1d+ A 1-hole dying at time t0 > 0 means that the maximal ball that can pass
through that hole has radius t0;

2b– Same as 1b–;
2d+ A 2-hole dying at time t0 > 0 means that the maximal ball that can fit

inside that hole has radius t0;

Thus, for q = 1, 2, the time t at which a q-hole is born can be seen as the
thickness of the hole, or how far it is from being destructible. We will call it
thickness. Also, the time t at which a q-hole dies can be interpreted as a kind
of size or breadth. We choose this second term, since the size of a 2-hole is
better understood as the volume it covers or the area of its boundary. These two
terms are not suitable for dimension 0, so we use the terms breadth (again) and
separability respectively.

3.2 Definitions

Let X ⊂ [0,m1] × [0,m2] × [0,m3] ⊂ Z
3 be a binary volume and d : Z3 → R

+ a
distance. Consider the signed distance transform

sDTX(x) =

{
−min{d(x, y) : y /∈ X}, x ∈ X

min{d(x, y) : y ∈ X}, x /∈ X

Depending on which connectivity relation we use for the volume, we build
its associated cubical complex K (cf. Sect. 2.1) and the filtration function fX

induced by sDTX (cf. Sect. 3.1).
The thickness and breadth of the q-holes of X are the pairs {(−ik, jk)}βq

k=1,
where {(ik, jk)}βq

k=1 are the P -intervals of the filtration fX such that ik < 0 and
jk > 0 for all 1 ≤ k ≤ βq. We can represent these pairs as points in R

2 in the
thickness-breadth diagram.

The final step of the filtration is the full cubical complex associated to the
bounding box of the volume. If the volume is not empty, as the bounding box
has one connected component there exists a P -interval (−i,∞) of dimension
0. We will represent this thickness-breadth pair as (−i,−1) in the thickness-
breadth diagram. As a consequence, a volume has β0 −1 separation values. This
is coherent with its interpretation, as there are only n − 1 shortest distances
between n objects.

Note that the thickness-breadth pairs are uniquely defined for the filtration
and they only depend on the connectivity relation of the volume and the distance
considered.
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3.3 Visualization

The breadth and thickness values of a volume can be visualized in terms of
balls, as it was suggested in Sect. 3.1. Given a thickness-breadth pair (i, j) with
its (non-unique) associated pair of cubes (σ, τ) (cf. Sect. 2.2), we can also assign
a pair of voxels (p, q) to them. For the primal (dual) associated cubical complex,
according to its construction (cf. Sect. 2.1), we choose any coface of dimension
3 (face of dimension 0) with the same image under f for each cube and we take
its associated voxel in the original volume. We call these voxels, which are not
unique, v(i) and v(j).

Therefore, for each hole we can visualize its thickness by the ball centered at
v(i) with radius i, and similarly for its breadth. Figure 5 illustrates this procedure.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Example of visualization of the thickness and the breadth through balls. Top:
a binary image (a) with the balls of H0 (b) and H1 (c). Bottom: a binary volume (d)
which contains two chained volumetric tori, its breadth (e) and its thickness balls (f)
of dimension 0 and 1.

4 Results

Our implementation for computing the breadth and the thickness uses the DGtal
library [DGt] for the distance transform and the Perseus software [Nan] for the
persistent homology. In order to obtain the centers of the balls, we developed a
specific software. The following volumes were voxelized with the Binvox software
[Min,NT03].
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Fig. 6. Left: three binary volumes. Right: their thickness-breadth diagrams. 0-holes
are represented by red circles, 1-holes by green triangles and 2-holes by blue squares
(Color figure online).

Figure 6 shows some examples of thickness-breadth diagrams. For each binary
volume, we show the diagram containing the thickness-breadth pairs of the
homology groups H0 (red circles), H1 (green triangles) and H2 (blue squares).
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Note that we represent the pairs (i,∞), associated to the “broadest” connected
component of the volume, as (i,−1).

We can appreciate the fractal structure of the Menger sponge after three
iterations in its diagram. There are only three possible values for the breadth
and the thickness: (1, 30+1

2 ), (1, 31+1
2 ) and (1, 33+1

2 ). For the lamp [Rey15], we
can easily recognize a lot of similar holes and a bigger one, which traverses the
volume along the z-axis. The small 2-hole follows from a discretization error.
The diagram of the Colosseum volume [Gas15] presents a regular shape. All the
1-holes (i.e., the doors) have similar measures, except for one which has greater
thickness. It corresponds to the ground floor concentric corridor.

Figure 7 illustrates the pertinence of the visualization described in Sect. 3.3.
More examples are available on [GL].

Fig. 7. Examples of thickness (red) and breadth (green) balls. Top: Fertility volume,
available by AIM@SHAPE with the support of M. Couprie. Bottom: Menger sponge,
available on [GL] (Color figure online).

5 Conclusion and Future Work

This paper introduces a concise and rigorous geometrical and topological infor-
mation for binary volumes that extends the Betti numbers. This could be used
for a statistical analysis of the volume or a better understanding of its topological
features.
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An interesting issue that should be addressed in the near future is the stability
of this definition. Are the breadth and thickness stable under small perturbations
of the volume? How much do these values change when we consider different
connectivity relations or distances?

In addition, it seems that the intersection of the thickness and breadth balls
with the volume could provide a heuristic for computing geometry-aware homol-
ogy and cohomology generators.
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[MMS11] Milosavljević, N., Morozov, D., Skraba, P.: Zigzag persistent homology in
matrix multiplication time. In: Proceedings of the Twenty-Seventh Annual
Symposium on Computational Geometry, SoCG 2011, pp. 216–225. ACM,
New York (2011)

http://dgtal.org
https://www.thingiverse.com/thing:962416
https://www.thingiverse.com/thing:962416
http://aldo.gonzalez-lorenzo.perso.luminy.univ-amu.fr/measures.html
http://aldo.gonzalez-lorenzo.perso.luminy.univ-amu.fr/measures.html
http://www.cs.princeton.edu/~min/binvox/
http://www.cs.princeton.edu/~min/binvox/


Two Measures for the Homology Groups of Binary Volumes 165

[MN13] Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient com-
putation of persistent homology. Discrete Comput. Geom. 50(2), 330–353
(2013)

[Mon68] Montanari, U.: A method for obtaining skeletons using a quasi-Euclidean
distance. J. ACM 15(4), 600–624 (1968)

[MQR03] Maurer Jr., C.R., Qi, R., Raghavan, V.: A linear time algorithm for com-
puting exact Euclidean distance transforms of binary images in arbitrary
dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)

[MRH00] Meijster, A., Roerdink, J., Hesselink, W.H.: A general algorithm for com-
puting distance transforms in linear time. In: Goutsias, J., Vincent, L.,
Bloomberg, D.S. (eds.) Mathematical Morphology and its Applications to
Image and Signal Processing. Computational Imaging and Vision, vol. 18,
pp. 331–340. Springer, New York (2000)

[Nan] Nanda, V.: Perseus, the persistent homology software. http://www.sas.
upenn.edu/∼vnanda/perseus. Accessed 7 Oct 2015
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