
Validation of Automated Driving
Functions

Ruben Schilling and Torsten Schultz

Abstract The validation of the development of driver assistance functions over
millions of driven test kilometers finds its limits already today. The systems evolve
rapidly from pure assistants over automated driving maneuvers towards fully
autonomous driving. In the process an explosion of complexity is generated through
interconnection and addition of sensors as well as strongly increased model com-
plexity to represent the environmental aspects relevant for driving dynamics better
and timelier. Here we would like to present an idea how an effort reduction of the
validation can be realized. We propose to start the validation of intelligent systems
before the road test: Features that intelligent systems use to classify the environment
can selectively be varied in regards of test stimuli. The sensor state space is far
easier to handle here than in the road test. Variations can be generated noticeably
more efficient and goal oriented. In conclusion relevant parts of intelligent systems
can be validated in driving dynamics relevant scenarios with less effort.

1 Introduction

A major source of innovation for today’s vehicles is the addition of advanced driver
assistance systems (ADAS) and their improvement over generations. In the big
picture these systems develop from pure assistants over automated driving
maneuvers towards fully automated driving. Fully automated driving is a scenario
that provides whole new opportunities and drastic change for people’s daily lives.

In the validation of driver assistance systems often 100,000 km and more of road
tests scenes are collected for a single system. Driving maneuvers and situations are
usually specified at the start of the development and the tests are recorded to

R. Schilling (&) � T. Schultz
Berner & Mattner Systemtechnik GmbH, Gutenbergstr. 15, Berlin 10587, Germany
e-mail: Ruben.Schilling@berner-mattner.com

T. Schultz
e-mail: Torsten.Schultz@berner-mattner.com

© Springer International Publishing Switzerland 2016
C. Gühmann et al. (eds.), Simulation and Testing for Vehicle Technology,
DOI 10.1007/978-3-319-32345-9_25

377



produce a repeatable benchmark suite for the monitoring of the maturity grade of
the system as it is developed (Fig. 1).

Machine learning techniques are methods that pave the way towards autono-
mous driving. The ability to learn from limited data generalized recognition con-
cepts, that work in an otherwise unexplored world is what makes these technique
very powerful concepts for intelligent or even autonomous vehicles. Yet the con-
cept of generalization is typically phrased in terms of an error. We give an intro-
duction to errors of machine learning models in the next section.

The general architecture of ADAS or intelligent system can often be depicted by
the combination of a pattern recognition chain [1] that sends its recognized classes
to the ADAS function logic. The pattern recognition chain starts with the raw
sensor data. This is followed by a typically sensor specific preprocessing. From
preprocessed data features are extracted. These can then be used to train the system
offline or in the live system to feed a trained classifier. The classes of the classifier
are then often post processed using additional heuristic knowledge to filter false
positives. The final classes are then passed to the ADAS function logic. Typical
example of ADAS function logics are warning zones, warn concepts (timings and
warning levels) combined with specific conditions.

In practical development projects often the test focus lies on vehicle maneuvers
and scenarios relevant for the ADAS function, such as e.g. take over maneuvers.
Systematic testing of the intelligent system’s internals is rarely employed. This leads
to a high risk, as the developers do not know if the system generalizes well, once it is
deployed to customers. Typically this puts a lot of pressure on people who participate
in road tests to manually recognize all abnormal behavior during the road tests. When
driving 100,000 km of road tests or more, keeping track of all issues and their
potential interactions becomes an error prone process. Errors are usually put into a
database and fixed in the progress. If the encountered errors are relevant in the sense
of, that they are representative of situations that will occur in the future use of the
vehicle is hard to estimate. Furthermore during typical road tests often the same routes
are driven. Each drive gives rise to variations of course, as every test drive is somehow
specific. But the opportunities to stress specific aspects of the intelligent system are
strongly limited as only the system as a whole can be stressed from the outside.

Fig. 1 The general architecture of ADAS or intelligent system can often be depicted by the
combination of a pattern recognition chain with an ADAS specific function logic such as zones,
warning or concepts utilizing actuating elements

378 R. Schilling and T. Schultz



Hence the abstraction layer of features for intelligent systems is inefficient to
stimulate when executing testing according to traditional test concepts that typically
comprise hierarchical levels such as unit tests, integration tests, system tests and
road tests. The level of indirection to stimulate this abstraction layer is too high to
efficiently test intelligent systems here. However the variations of features that
would appear under relevant driving conditions are one of the most critical factors
for the performance of intelligent systems.

2 Validation of ADAS Functions Through Simulation
of Features

In real ADAS series development projects the data to train systems can only be
collected piece by piece, as the required kilometers of road driving are time
consuming.

Collecting data to train and validate machine learning models is also generally a
time consuming activity. For intelligent systems this means, that although we
usually have a lot of data in total, it has to serve so many different training purposes,
that for each recognition problem we do not end up in a data rich situation. This has
consequences for the assessment of faults of the intelligent systems.

Generally the error of a machine learning model can be defined as in [2]: During
training a machine learning model is adapted to predict the training data as good as
possible. The training error is the error that remains between the models prediction
and its training data. The generalization error of a machine learning model is the
performance of that model on independent test data, i.e. data that has not been
utilized to train the model. The generalization error is what actually matters in
practice. This error reflects the promise that the system will behave well during
many years of ownership of a customer and while being exposed to unseen con-
ditions and environments.

The textbook picture (see [2]) is to split data into training, validation and if
possible test data. The training data is then used to fit the models, the validation data
to compare alternative models to each other before a final model is chosen and the
test data to predict the final chosen models generalization capability [2]. This is an
ideal case for data rich situations that unfortunately do not happen often in ADAS
development projects.

Therefore we propose in this article to augment the data for testing purposes
through simulation (see Fig. 2). For many scenarios it is possible to come up with
simulations how certain features would behave. This enables goal specific, direct
stimulation of feature variations and helps to validate the system in less time. Also
in sparse data situations (e.g. when learning rare events, such as “20” speed signs in
traffic sign recognition), it may prove practically impossible to stimulate the feature
space through road tests. Here simulation can help to explore real world variations
and test the intelligent systems performance. A low fault level is always the goal as

Validation of Automated Driving Functions 379



todays intelligent systems are either safety relevant or pure comfort functions, that
shouldn’t negatively affect customer experience.

As an example consider said “20” speed sign. Instead of trying to sample this sign
under various conditions we can simulate the sign (see Fig. 3). Here we take the
original sign (left), apply aspect ratio changes, motion blur, white balance adjust-
ments or a combination of these effects (right). This corresponds directly to real world
scenarios that could be encountered. The classification tree method [3] is one typical,
systematic approach to generate test cases and structure the problem. The sensor
space of a gray image sensor has 2561280*720 states. The classification tree in (Fig. 4)
requires two test cases for minimal coverage. The classifications in the classification
tree correspond directly the relevant scenarios and can be simulated as in Fig. 3.

The simulation data can be rich due to the cheap cost to produce them. Testing
with simulated data enables predictions if the developed intelligent system can
generalize from the sparse training data in richer, realistic scenarios.

As described above usually the individual components of the pattern recognition
chain of intelligent systems are not systematically tested for faulty behavior. With
this approach it is possible to do so in a systematic way.

It is often possible to find realistic scenarios and write a sufficient simulation to
replicate their effects on relevant features. Above we show exemplary a rare data for
traffic sign recognition (“20” speed limit), that is hard to sample in the real world. In
the above example we augment the test data by simulating aspect ratios, motion
blur, white balance issues or a combination of these effects. If we were to require
the sampling of all these scenarios on the road this would prove impossible given
the time constraints of real projects. The simulation itself on the other side was
straightforward to do and could be easily extended and refined to cover more

Fig. 2 Testing purposes through simulation

Fig. 3 Simulation of relevant scenarios; from left to right: Original rare sample speed sign;
Change of aspect ratio; (Motion) blur; White balance change; Aspect ratio, blur and white balance
changes combined

380 R. Schilling and T. Schultz



scenarios. Test cases can then be generated by varying the simulation parameters
using standard test methodology, such as limit value checking or generating
representatives.

3 Conclusion

In this article we proposed an alternative way to test intelligent systems in real
world development projects. We exemplified how simulations are often possible
with low effort and how they cover a vast set of test cases. We showed, that this can
be a helpful technique to explore an otherwise complex sensor space and to provide
an assessment method for situations that are hard to sample. Furthermore we
showed, that it is possible to naturally employ standard testing techniques to help
generating test cases, e.g. to cover combinatorial testing needs. We believe this is an
opportunity already for today’s projects to improve the real world quality of
intelligent systems and provides a method to help dealing with increasing com-
plexity of these systems in their evolution towards autonomous driving. We believe,
that for future development, when complexity of the systems rises and their deci-
sion playground is largely increased it will be a necessity to come up with vali-
dation approaches similar to the one we outlined here.

References

1. Theodoridis, S., Koutrumbas, K.: Pattern Recognition, 3rd edn. Academic Press, London
(2006)

2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer
Series in Statistics (2009)

3. Grochtmann, M., Grimm, K.: Classification trees for partition testing. Softw. Test. Verification
Reliab. 3(2), 63–82 (1993)

Fig. 4 A classification tree (without concrete test cases) for some realistic scenarios considered
here

Validation of Automated Driving Functions 381


	25 Validation of Automated Driving Functions
	Abstract
	1 Introduction
	2 Validation of ADAS Functions Through Simulation of Features
	3 Conclusion
	References


