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    Chapter 4   
 Nucleoside Mimetics                     

            Modifi ed nucleosides are useful therapeutic agents being currently used as antitu-
mor, antiviral, and antibiotic agents. Despite the fact that a signifi cant variety of 
modifi ed nucleosides display potent and selective action against cancer, viral and 
microbial diseases, the challenge still attracts full attention since most of them do 
not discriminate between normal and tumor cell and in viral infections resistant 
strains usually appear during the course of the treatment. 

 Synthetic acyclic and carbocyclic  C -nucleosides and modifi ed  N -nucleosides 
have shown remarkable action against AIDS, Hepatitis, and herpes infections 
among others. Some of the nucleosides used as approved  drugs   are: acyclovir, car-
bovir being the treatment of choice against herpes, AZT, ddI, ddC, ddG, abacavir, 
which in combination with protease inhibitors are indicated in the treatment against 
HIV, and  C -nucleoside ribavirin in the treatment against hepatitis [ 1 ,  2 ]. 

 Representative examples of  chemotherapeutic agents   modifi ed at the heterocy-
clic base, the sugar fragment,  L  and  C -nucleosides, carbocyclic and acyclic nucleo-
sides are depicted in Scheme  4.1 .

   A signifi cant number of synthetically modifi ed nucleosides have been designed 
as antiretroviral drugs in the therapy of human immunodefi ciency virus (HIV) 
infection. During retroviral infection, the viral RNA is used as template for proviral 
DNA synthesis, a process mediated by viral DNA polymerase better known as 
reverse transcriptase. Thus, the process involves the initial formation of a RNA–
DNA  hybrid   which is then degraded by an RNAse to release the DNA strand that 
will be the template for the synthesis of the double stranded viral DNA, a process 
also catalyzed by reverse transcriptase [ 3 ]. 

 The proposed mechanism of action of modifi ed agents such as AZT during viral 
infection involves the interruption of the  viral replication process   that occurs 
between the virus and host, particularly the replication inhibition inside T cells, 
monocytes, and macrophages. 
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  Scheme 4.1    Representative synthetically modifi ed nucleosides           
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 When the modifi ed nucleoside is introduced into the cell, a sequential 5′-phos-
phorylation process mediated by kinases occurs on the furanoside ring which is 
subsequently incorporated into the DNA as triphosphate (Scheme  4.2 ).

   An important collection of active nucleosides mimetics has been synthesized and 
classifi ed for better understanding as follows: [ 4 ]

   Modifi ed  N -nucleosides  
   L -nucleosides ( D -isomers)  
   C -nucleosides  
  Carbocyclic nucleosides  
  Acyclic nucleosides  
  Thionucleosides    

4.1     Modifi ed  N -nucleosides 

 A broad number of  modifi ed  N -nucleosides   have been developed and tested on clinical 
trials, some of them being highly promising. The chemical manipulations have been 
made at the heterocyclic base, the sugar of both. Some representative examples of 
chemical modifi cations leading to key intermediates or active nucleosides are: 

 

4 Nucleoside Mimetics



217

HN

S

HO

N

N

NH2

O

O
Thiazolidinone

N

NN

N

NH2

O

O

HO
NH2

DAPD

O

HO

N

NH

O

O

O

HO

N

N

NH2

O

O

HO

N

N

NH2

O

O

OH

HO

HN NH

O

O

Pseudourdine

O

HO

Tiazofurin

NS

OH OH

NH2

O

OH

O

OH

HO

N

NH

O

O

H3C

L-FMAU

F

S

O

HO

N

N

NH2

O

F

L-FTC

Scheme 4.1 (continued)

4.1 Modifi ed N-nucleosides



218

4.1.1     Heterocycle Modifi cations 

4.1.1.1      C-5 Substituted Pyrimidines   

 Several nucleoside analogs bearing modifi cations at the 5-position have been found 
to be active as antiviral and anticancer drugs. Examples of this are BVDU, IDU, and 
FIAU (Scheme  4.3 ) [ 5 ].

    Palladium mediated transformations   are a suitable strategy for introducing sub-
stituents at C-5. Some of the reactions implemented for this purpose are the 
Sonogashira [ 6 ,  7 ], Stille [ 8 ,  9 ], Heck [ 10 ,  136 ], and Hiyama [ 11 ] (Scheme  4.4 ).
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4.1.1.2         C-6 Substituted Pyrimidines   

 By following  palladium-mediated substitutions  , a more limited number of C-6 sub-
stituted pyrimidines have been described in comparison with C-5. For instance, by 
applying the Stille reaction it has been possible to prepare C-6 substituted aryl, 
vinyl, alkynyl derivatives (Scheme  4.5 ) [ 12 ].
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  Scheme 4.2    Phosphorylation of  AZT         
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  Scheme 4.3    Active C-5 substituted pyrimidines       
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  Scheme 4.4    Palladium mediated substitutions at C-5 pyrimidine position       

4.1.1.3         Purine Formation   

 The conventional methods of preparation of C-C purines are based on heterocycli-
zation [ 13 ,  14 ]. The classical procedures involve:

    (a)    2-C-C-purines cyclization of 4-aminoimidazole-5-carboxamides or nitriles 
with carboxylic acid equivalents.   

   (b)    8-C-C-purines from 5,6-diaminopyrimidines and carboxylic acid derivatives; 
and for 6-C-C-purines from 4-alkyl or 4-aryl-substituted 5,6- diaminopyrimidines 
(Scheme  4.6 ) [ 15 ].
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       Other explored methods involve radical [ 16 ,  17 ] or nucleophilic substitution 
[ 18 ], sulfur extrusion [ 19 ], and Wittig type reactions [ 20 ,  21 ]. Despite their usefulness, 
other methods based on the use of organometallic complex are getting particular 
signifi cance especially in the synthesis of substituted purines (Scheme  4.7 ) [ 15 ].
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  Scheme 4.5    Palladium-mediated substitution of  6-C substituted pyrimidines         
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   Usually the cross-coupling reactions involving organometallic compounds 
includes organolithium [ 22 ], magnesium [ 23 ], aluminum [ 24 ], cuprates [ 25 ], zinc 
[ 26 ], stannanes [ 27 ], and boron [ 28 ] reagents, in the presence of palladium catalyst 
and the purine base bearing a good leaving group usually halides or tosyl (Scheme  4.8 ).

    Deazapurines   are pyrrolo[2,3]pyrimidines of natural or synthetic source with 
signifi cant antitumor, antiviral and antibacterial activities. Some compounds 
included in this class are tubercidin, toyocamycin, sangivamycin, and the hyper-
modifi ed nucleoside queuosine. A fl exible route for the preparation of pyrrolo[2,3]
pyrimidines (7-deazapurines) has been developed, consisting in the condensation of 
protected uracil with ethyl  N -( p -nitrophenethyl)glycinate and subsequent treatment 
with acetic anhydride and amine base with heating to provide 5-(acetyloxy)
pyrrolo[2,3-d]-pyrimidine-2,4-dione in 74 % yield (Scheme  4.9 ) [ 29 ].

4.1.2         Sugar Modifi cations 

4.1.2.1     2′-3′- dideo  xysugars 

 A signifi cant number of saturated and unsaturated dideoxysugars have been synthe-
sized and tested as antiviral or anticancer drugs. Remarkably, ddI and ddC are 
approved drugs for the treatment of AIDS [ 3 ], and others such as d4T being currently 
under clinical studies (Scheme  4.10 ) [ 30 ,  31 ].
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  Scheme 4.7    General scheme between purines and organometallic compounds       
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  Scheme 4.9    Synthesis of  7-deazapurine analogs         
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   A method for preparing ddC was described involving  bromoacetylation   with 
HBr in acetic acid of N 4 -acetylcytidine followed by reductive elimination with 
zinc–cooper couple in acetic acid to provide the corresponding 2′3′-unsaturated 
derivative. Final hydrogenation over 10 % palladium on charcoal gave ddC in 95 %.
accompanied by some N-C cleavage in 5 % (Scheme  4.11 ) [ 32 ]. Similar reaction 
conditions were used for preparing 2′3′-dideoxyadenosine in 81 % yield from ade-
nosine [ 33 ].

   The design and synthesis of potent inhibitors for human hepatitis B Virus (HBV) 
2′,3′-dideoxy-2′3′-didehydro-β- L -cytidine (β- L -d4C) and 2′,3′-dideoxy-2′3′-
didehydro-β- L -5-fl uorocytidine (β- L -Fd4C) nucleosides was carried out according 
to the pathway shown in Scheme  4.12  [ 34 ]. The key starting material 
 3′,5′-dibenzoyl- 2′-deoxy-β- L -uridine was submitted to transglycosilation reaction 
with silylated 5-fl uorouracil using TMSOTf as catalyst, providing an anomeric mix-
ture separated by chromatography. After benzoyl deprotection, the anomeric nucle-
osides were treated with mesyl chloride followed by base to form cyclic ethers. 
Further transformation at the pyrimidine ring was followed by potassium  tert -
butoxide treatment to furnish β- L -d4C and β- L -Fd4C.

   Other methods designed for the preparation of 2′3′-unsaturated and saturated 
deoxyfuranosides are based on: (a) Corey–Winter reaction involving cyclic thiono-
carbonate; [ 35 – 37 ], (b) Eastwood olefi nation process in which a fi ve-membered 
cyclic orthoformate suffer a fragmentation to give in the presence of acetic anhy-
dride the desired olefi n (successfully applied in the preparation of ddU) [ 38 ,  39 ], 
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  Scheme 4.11    Synthesis of  anti-AIDS ddC         
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and (c) Barton deoxygenation involving the cyclic thionocarbonate or the bisxanthate, 
and then treated with tributyltin hydride [ 40 ,  41 ], or alternatively diphenylsilane 
[ 42 ] (Scheme  4.13 ).

   The synthesis of modifi ed nucleosides from natural nucleosides is another useful 
alternative for preparing pharmaceutically active dideoxy nucleosides. The potent 
antiviral inhibitors ddC, ddG, d4C, and d4G have been obtained from the corre-
sponding protected natural nucleosides, as shown in Scheme  4.14  [ 43 ].

   The  chemoenzymatic approach   has been also explored for the synthesis of 2′,3′ 
dideoxynucleosides. Such is the case of the antiviral 2′,3′-dideoxyguanosine which 
was synthesized from guanosine in 40 % overall yield using as a key step the com-
mercially available mammalian  adenosine deaminase (ADA)   (Scheme  4.15 ) [ 44 ].

   An strategy for preparing  D - and  L -2′-fl uoro-2′3′-unsaturated nucleosides has 
been described and their anti-HIV activity evaluated. This approach requires 1- acet
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yl- 5- O -benzoyl-2,3-dideoxy-3,3-difl uoro- D -ribofuranose as key starting material 
which was condensed under Vörbruggen’s conditions with purines and pyrimidines 
to provide the corresponding nucleosides. The resulting nucleosides were subjected 
to β-elimination to generate the fl uoro unsaturated nucleosides (Scheme  4.16 ) [ 45 ].

4.1.2.2        2′-deoxynucleosides 

 The  Barton deoxygenation   provides another useful method for preparing 2′- and 
3′-deoxynucleosides (obtained as a mixture), and involves as a key step the 
hydride reduction of the cyclic thionocarbonate with tributyltin hydride [ 42 ]. On 
the other hand, 2′-monotosylate nucleoside when treated with excess of lithium 
triethylborohydride produces the 2′-deoxy-3′β-hydroxy nucleoside in high yield 
(Scheme  4.17 ) [ 46 ].

    2′-deoxynucleosides   have been obtained from starting materials of different 
composition such as α,β-unsaturated aldehydes [ 47 ] chiral epoxy alcohols [ 48 ], 
butenolides [ 49 ,  50 ] and polyfunctionalized acetals among others [ 51 ]. 

 The remarkable 2′-deoxynucleoside AZT widely prescribed as anti-AIDS drug 
was originally prepared from thymidine by Horwitz and coworkers [ 52 ], and since 
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then, several other synthesis have been developed, some of them starting with either 
a nucleoside, or a sugar derivative [ 53 – 56 ], and others relaying on the use of non-
carbohydrate starting materials [ 56 ,  57 ]. 

 The procedure developed by Chu et al. [ 50 ] consisted in the use of mannitol as 
staring material which was subsequently transformed to provide the protected key 
intermediate 3′-azide-2′-deoxyribofuranose. The next step involved the coupling 
reaction with silylated thymine under Vörbruggen’s conditions to produce an ano-
meric mixture of nucleosides in 66 %. Final desilylation and separation by chroma-
tography column provided AZT in overall yield of 25 % from the furanoside 
intermediate (Scheme  4.18 ).

   Another possibility was described by Hager and Liotta involving the coupling 
reaction between the azido diol intermediate and silylated thymine under Vörbruggen 
conditions to yield a diastereomeric mixture of  azido diol nucleoside  . Finally when 
exposed to concentrated acidic conditions the open form is converted into the 
β-anomer of AZT in 67 % yield (Scheme  4.19 ) [ 57 ].
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    Transglycosidic reaction   mediated by a deoxyribosyl transferase obtained from 
 E. coli  has been used in the synthesis of 3′-azido-2′,3′-dideoxyguanosine. The enzy-
matic reaction occurs between AZT which acts as glycosyl donor and substituted 
2-amino-6-purines to generate the desired purine nucleoside and thymine as by- 
product (Scheme  4.20 ) [ 58 ].

4.1.2.3        3′-deoxynucleosides 

 These deoxynucleosides may be readily  pre  pared from 3′- O -tosylate via a 
[1,2]-hydride shift from C3′ to C2′ position with accompanying inversion of the C2′ 
center providing a 3′-ketone which was stereoselectively reduced by the hydride to 
produce 3′-deoxynucleoside (Scheme  4.21 ) [ 2 ,  46 ].

   Also 3′-deoxyguanosine was synthesized by an enzymatic transglycosylation of 
2,6-diaminopurine using 3′-deoxycytidine as a donor of the sugar moiety. The 
diaminopurine nucleoside was transformed to 3′-deoxyguanosine by the action of 
adenosine deaminase (Scheme  4.22 ) [ 59 ].

   Lodenosine [9-(2,3-dideoxy-2-fl uoro-β- D -threo-pentofuranosyl)] adenine (FddA) 
is a reverse transcriptase inhibitor with activity against HIV. This purine analog was 
evaluated as one of the most selective inhibitors in a series of 2′3′-dideoxyadenosines, 
although less active than ddA. An effi cient method was developed starting from 
chloropurine riboside which was tritylated and selectively benzoylated at 3′-position. 
Before fl uorination the 2′-hydroxyl group was converted to imidazolesulfonate or 
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trifl uoromethanesulfonate. Fluorination proceeds smoothly with 6 equiv. of Et 3 N. 3 HF 
at refl ux in 88 % yield. Simultaneous 6-amination and 3′-debenzoylation was done 
with ammonia in high yield. Elimination of the 3′-hydroxy group was carried out 
under the Barton-McCombie procedure involving the formation of the 
3′-O-thiocarbonyl followed by silane treatment. Final removal of trityl group pro-
vided FddA (Scheme  4.23 ) [ 60 ].
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4.1.2.4        4′-substituted Nucleosides 

  4′-substituted nucleosides   have attracted much attention because of the discovery of 
potent anti-HIV agents 4′-azido- and 4′-cyano thymidine (Scheme  4.24 ).

   One procedure involves the epoxidation of the exoglycal with dimethyldioxirane 
and ring opening of the resulting 4′,5′-epoxynucleosides to produce with high 
stereoselectivity the 4′-C-branched nucleosides (Scheme  4.25 ) [ 61 ].

   Likewise, others 4′-substituted nucleosides such as 4′-C-Ethynyl-β- D -arabino- 
and 4′-C-Ethynyl-2′-deoxy-β- D -ribopentofuranosyl pyrimidines have been reported 
by a different approach outlined in Scheme  4.26  [ 62 ].
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  Scheme 4.22    Enzymatic synthesis of  3′-deoxyguanoside         
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  Scheme 4.23    Preparation of  antiviral 2′3′-fl uoro dideoxyadenosine FddA         
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4.1.3         Complex Nucleosides 

 The hypermodifi ed Q base Queuine found in tRNA of plants and animals has been 
strongly associated with tumor growth inhibition. Three different approaches for pre-
paring queuine have been described [ 63 – 65 ], the more recent in 11 steps from ribose. 
Completion of the synthesis involved the condensation of bromo aldehyde interme-
diate with 2,3-diamino-6-hydroxypyrimidine to give the desired heterocyclic product 
in 45 %. Final removal of protecting groups provided Q base (Scheme  4.27 ).

    Capuramycin   is a complex nucleoside antibiotic isolated from  Streptomyces griseus  
446-S3, which exhibit antibacterial activity against  Streptococcus pneumoniae  and 
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  Scheme 4.26    Synthesis of 4′-C-Ethynyl-β- D -arabino- and 4′-C-Ethynyl-2′-deoxy-β- D - ribopen-
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 Mycobacterium smegmatis  ATCC 607. The total synthesis was reported by Knapp 
and Nandan [ 66 ] consisting in the glycosylation reaction between the key thiogly-
coside donor and silylated pyrimidine to produce the corresponding  L - talo - uridine. 
The next glycosidic coupling reaction was carried out with  L - talo -uridine and imi-
date glycosyl donor under TMS-OTf conditions to provide the disaccharide nucleo-
side. Further transformations lead to the target molecule (Scheme  4.28 ).

   Due its promising role as anti-tuberculosis drug, further efforts for preparing 
capuramycin and other analogs have been deployed as described in a more recent 
concise total synthesis [ 67 ]. 

 Moreover,  capuramycin   has been also chemically transformed in an attempt to 
extend the antibacterial spectrum. Thus, radical oxygenation gave unexpected lac-
tone in moderate yield via an intramolecular radical Ar-C glycosylation- lactonization 
reaction (Scheme  4.29 ) [ 68 ].

   Synthestic studies of unique class tunicamycin antibiotics leading to the prepara-
tion of (+)-tunicaminyluracil, (+)-tunicamycin-V, and 5′- epi -tunicamacyn-V were 
described by Myers et al. [ 69 ] The key features are the development and application 
of a silicon-mediated reductive coupling of aldehydes, the allylic alcohols to con-
struct the undecose core of the natural product, and the development of an effi cient 
procedure for the synthesis of the trehalose glycosidic bond within the antibiotic 
(Scheme  4.30 ).
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  Scheme 4.27    Synthesis of  hypermodifi ed base Queuine         
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   An alternative approach for the synthesis of tunicamycins is reported in a stere-
oselective approach, the key reactions being the Mukaiyama aldol reaction, intra-
molecular acetal formation, gold(I)-catalyzed O- and N-glycosylation, and fi nal 
N-acylation (Scheme  4.31 ) [ 70 ].

4.1.3.1        Fused Heterocyclic Nucleosides   

 Selective and potent anti- Varicella Zoster Virus (VZV)   bicyclic furanopyrimidine 
deoxynucleosides were synthesized. The bicyclic formation was performed by 
palladium- catalyzed coupling of aryl acetylenes with 5-iodo-2′-deoxyridine provid-
ing the desired fused furan nucleoside (Scheme  4.32 ) [ 71 ].

    Triciribine   is a tricyclic nucleoside with antineoplastic and antiviral properties, 
synthesized in an improved fashion from 6-bromo-5-cyanopyrrolo [2,3-d] pyrimidin- 
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  Scheme 4.28    Synthesis of Capuramycin       
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4-one intermediate. A series of transformations including  N -glycoside coupling 
reaction provided 4-amino-5-cyano-7-[2,3,5-tri- O -benzoyl-β- D -ribofuranosy] pyr-
rolo [2,3-d] pyrimidine that was then converted to the desired tricyclic nucleoside 
(Scheme  4.33 ) [ 72 ].

4.2            C -nucleosides   

 These modifi ed nucleosides are structurally distinct to their counterparts 
 N -nucleosides because of the presence of a C-C linkage instead of C-N between the 
furanoside and the heterocyclic aglycon. Their source could be either naturally 
occurring (pyrazomycin, showdomycin, formycin) or synthetic (thiazofurin), 
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  Scheme 4.29    Chemical transformations of  capuramycin         

 

4.2 C-nucleosides



238

O

TBSO OTBS

NBoc

N

O

O

CH2

O

BOMO

CbzHN
O

O
Si

H3C CH3

O H
SePh

O

AcHN
TBSO
O

O

O

HO OH

NPMB

N

O

OO

BOMO

CbzHN

OH
OHH

i

O

O

AcHN
TBSO
O

O

O

HO OH

NH

N

O

OO

HO

H2N

OH
OHH

O

O

AcHN
HO

HO
HO

i) triethyborate, Bu3SnH, toluene, 0oC. 2h. b) KF.H2O, MeOH. 60%.

  Scheme 4.30    Key step for the synthesis of  Tunicamycin antibiotic         

having in either case signifi cant antitumor and antiviral activity. Also, some of them 
have been found in tRNA codons (pseudouridine) and others (tiazofurin and oxazo-
furin) designed as competitive inhibitor of cofactor nicotinamide adenine dinucleo-
tide (Scheme  4.34 ).

   An early approximation for the preparation of  C -nucleosides proposed two basic 
possibilities depending on the nature of the atoms surrounding the C–C bond 
(Scheme  4.35 ) [ 73 ].

     (a)    If there is one heteroatom adjacent to the  C -glycosidic bond, for example tiazo-
furin, formycin, Pyrazomycin.   

   (b)    If there is no heteroatom adjacent to the  C -glycosidic bond.    
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  Scheme 4.31    Synthesis of  tunicamycins   mediated by gold complex catalysis         

  Alternatively other authors consider three general pathways for preparing 
 C -nucleosides depending on the precursor employed as starting material [ 74 ]. 

 An early synthesis of modifi ed  C -nucleoside from naturally occurring pseudouri-
dine was carried out via ring opening with ozone to generate intermediate which 
was treated with thiosemicarbazone to provide 6-azathiopseudouridine. Treatment 
with iodomethane in acid medium produces the desired  C -nucleoside as shown in 
Scheme  4.36  [ 75 ].
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   The synthesis of the   C -nucleoside pseudouridine   was reported by Asburn and 
Binkley [ 76 ], involving the condensation between 5- O -acetyl-2,3- O -isopropylidene- 
 D -ribonolactone and 2,4-dibenzyloxypyrimidin-5-il lithium to provide the conden-
sation product which was subjected to hydride reduction and hydrogenolysis to 
yield pseudouridine (Scheme  4.37 ).

    Antitumor  C -nucleoside   tiazofurin was synthesized by Robins et al. [ 77 ], from 
2,3,5-tri- O -benzoyl-β- D -ribofuranosyl cyanide which undergoes ring closure under 
conditions described in Scheme  4.38 .

   A new report for the synthesis of  Tiazofurin   is described, avoiding the use of 
H 2 S gas which is unsafe on large-scale production. The synthesis initiate with the 
preparation of 1-cyano-2,3- O -isopropylidene-5- O -benzoyl-β- D -ribofuranose 
which was reacted with cysteine ethyl ester hydrochloride to give thiazoline 
derivative in 90 %. Further steps including oxidative aromatization under MnO 2  in 
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  Scheme 4.33    Synthesis of tricyclic nucleoside Triciribine       
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benzene and acetonide deprotection with iodide in methanol produced the desired 
 C -nucleoside (Scheme  4.39 ) [ 78 ].

   Another biologically important  C -nucleoside known as showdomycin was 
prepared by Trumnlitz and Moffat [ 79 ]. The aldehyde used as starting material was 
converted fi rst to an α-hydroxyacid and then to α-ketoacid. Wittig reaction on this 
intermediate and Lewis acid catalysis produced ring closure (Scheme  4.40 ).

    Pyrazine riboside   derivative was synthesized by treatment of glycine riboside 
with formaldehyde and cyanide (Strecker conditions) to generate cyanide intermedi-
ate as a mixture of isomers. Sulfenylation and sodium methoxide treatment produce 
the  C -nucleoside (Scheme  4.41 ) [ 80 ].
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   Analogs of antiviral  C -nucleoside  Formycin   have been synthesized by using the 
palladium-mediated glycosidic reaction between the furanoid glycal and the iodin-
ated heterocycle. Similar conditions were used for preparing the pyrimidine analogs 
(Scheme  4.42 ) [ 81 ].

   Radical cyclization of ribo-phenylselenoglycoside tethered with propargyl moi-
eties on C-5 hydroxyl group provided cyclic intermediates potentially useful for the 
synthesis of  C -nucleoside derivatives. Propargyl intermediate was prepared from 
ribo-phenylselenoglycoside via two-step sequence and then under radical reaction 
conditions (Bu 3 SnH/AIBN) transformed to the cyclic intermediates in high yields. 
Further ring opening produce aldehyde intermediate which was subjected to cou-
pling reaction with 1,2-phenylenediamine to produce the pyrazine  C -glycoside 
(Scheme  4.43 ) [ 82 ].

    Polyhalogenated quinoline  C -nucleosides   were synthesized as potential antiviral 
agents. The key step reaction for quinolin-2-one ring formation consisted in the 
condensation between 2-aminophenoneallose derivative and keteneylidene(triphenyl)-
phosphorane in benzene under refl ux to provide the desired 6,7-dichloroquinolin- 2-
one nucleoside in 50 % yield (Scheme  4.44 ) [ 83 ].
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   The novel bicyclic  C -nucleoside malayamycin A from  Streptomyces malaysien-
sis  was elegantly synthesized from  D -ribonolactone which was transformed to the 
target molecule according to the pathway indicated in Scheme  4.45  [ 84 ].

4.3         Carbocyclic Nucleosides   

 This class of modifi ed nucleosides in which the furanose ring has been replaced by 
a cycloalkane ring (mainly cyclopentane) has been prepared by chemical or enzy-
matic methods. Besides their potent antitumor and antiviral activity for some of 
them, they have also shown high resistance to phosphorylases. 

 The use of enzymes particularly lipases for protections and deprotections is an 
important strategy for preparing carbocyclic nucleosides. This approach has been 
advantageous especially for the resolution of enantiomeric forms, leading to high 
enantiomeric purity. Constrained three [ 85 ] and four [ 86 ] member ring carbocyclic 
nucleosides have been obtained by applying chemoenzymatic methodologies 
involving lipase for enantiomeric resolution and stereoselective deprotections. In 
the case of more abundant fi ve member rings the use of lipases for enzymatic reso-
lution and regioselective deprotections have been under intense study. Special atten-
tion has been paid to cyclopentenyl diacetates which have been used as building 
blocks for the preparation of important carbocyclic nucleosides such as Neplanocin 
and Aristeromycin. To achieve this goal, the hydrolase enzyme acetyl- cholinesterase 
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  Scheme 4.45    Total synthesis of   C -nucleoside Malayamycin A           
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  Scheme 4.46    Enantiomeric resolution of  prochiral cyclopentene diacetate         

(EEAC) [ 86 ] showed high effi ciency for obtaining the desired enantiomer (1R,4S)-
4-hydroxy-2-cyclopentenyl derivative in enantiomeric excess (ee) up to 96 % 
(Scheme  4.46 ) [ 87 – 89 ].

    Racemic cyclopentenyl   derivatives have been used as starting material in the 
preparation of the antiviral carbocyclic nucleoside (−)-5′-deoxyaristeromycin. The 
key step reaction was the enzymatic resolution with  Pseudomonas  sp. lipase (PSL) 
of the racemic mixture providing the (+)-enantiomer which was transformed chemi-
cally to the desired carbocyclic nucleoside (Scheme  4.47 ).

   The separation of racemic carbocyclic nucleosides by enzymatic means has been 
reported as an alternative approach. Thus, racemic aristeromycin was treated with 
adenosine deaminase (ADA) to give (−)-carbocyclic inosine and pure dextrorota-
tory enantiomer (Scheme  4.48 ) [ 90 ].
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  Scheme 4.47    Enzymatic resolution of  racemic cyclopentene   building blocks       
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4.3.1        Cyclopropane Carbocyclic Nucleosides   

 Conformationally constrained cyclopropane nucleosides have been prepared fol-
lowing a chemoenzymatic approach [ 85 ]. Thus, the racemic resolution of  trans -1-
(diethoxyphosphyl)difl uoromethyl-2-hydroxymethylcyclopropane followed by 
acetate hydrolysis was carried out with porcine pancreas lipase (PPL) to yield (+)- 
and (−)-cyclopropanes in high enantiomeric excess. Further transformation lead to 
the preparation of the target cyclopropane nucleoside (Scheme  4.49 ).

4.3.2         Cyclobutane Carbocyclic Nucleosides   

 Lubocavir is a synthetic potent inhibitor of DNA polymerase, active against cyto-
megalovirus [ 91 ] (Scheme  4.50 ).

OHCF2P(EtO)2

O

OAc
PPL

THF, 37oC

OAcCF2P(EtO)2

O

OAcCF2P(EtO)2

O

+

PPL
30% iPr2O-buffer
pH 7.3

OHCF2P(EtO)2

O

OHCF2P(EtO)2

O

CF2P(EtO)2

O

NH

NN

N

O

NH2

CF2P(EtO)2

O

NH

NN

N

O

NH2

  Scheme 4.49    Chemoenzymatic syntheses of cyclopropane nucleosides       
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   The carbocyclic four-membered  C -nucleoside cyclobut-A was prepared following 
the Barton decarboxylation method. The method is based on the reaction between 
carboxylic acids and heteroaromatic compounds (Scheme  4.51 ) [ 92 ].

   Other carbocyclic oxetanocin analogs have been prepared from oxetanocin A 
[ 93 ] 3,3-diethoxy-1,2-cyclobutanedicarboxylate [ 94 ], and enantiomeric cyclobutanone 
intermediates [ 95 ] as starting materials.  

4.3.3      Cyclopentane Carbocyclic Nucleosides   

 The Mitsunobu reaction has become a valuable alternative approach for preparing 
cyclopentane carbocyclic nucleosides. This has been demonstrated in the prepara-
tion of conformationally locked carbocyclic AZT triphosphate analogs under these 
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versatile conditions [ 96 ]. The standard procedure usually takes place with diethyl or 
diisipropylazocarboxylate (DEAD or DIAD) with triphenylphosphine (Ph) 3 P in 
THF to yield carbocyclic purines or pyrimidines nucleosides in high yield 
(Scheme  4.52 ) [ 97 ].

   Another example on the applicability of this method was observed in the prepara-
tion of the carbocyclic thymidine nucleoside. It is worth mentioning that the desired 
stereochemistry of the hydroxyl group is obtained also through the Mitsunobu 
reaction (Scheme  4.53 ) [ 98 ].

4.3.4        Palladium Mediated 

 Based on the widespread  palladium-coupling methodologies  , several dideoxy, car-
bocyclic and  C -nucleosides have been effi ciently prepared. For instance the antivi-
ral  C -nucleosides 2′-deoxyformycin B was prepared by condensation reaction 
between the heterocycle iodide intermediate and the glycal, under Pd(dba) 2  as 
palladium catalyst in 62 % yield (Scheme  4.54 ) [ 99 ].

   Solid phase synthesis of carbovir analogs under palladium catalysis was recently 
reported [ 100 ]. The carbocyclic derivative was linked to the Wang resin and then 
coupled with chloropurines under Pd(0) catalyst (Scheme  4.55 ).
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  Scheme 4.52    Synthesis of conformationally locked carbocyclic purine and pyrimidines under the 
Mitsunobu approach       
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   The  Tsuji-Trost approach   was used to prepare (−)-neplanocin A and its analog [ 101 ]. 
This synthesis proceeds via an allylic rearrangement of the hydroxyl group from the 
(+)-allylic alcohol to the (−)-allylic acetate (Scheme  4.56 ).
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  Scheme 4.55    Solid-phase synthesis of carbocyclic nucleosides under palladium catalysis       
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    Carbocyclic nucleoside   aristeromycin with antitumor and antiviral activity was 
prepared by condensation of the carbocyclic diacetate intermediate with the sodium 
salt of adenosine base under Pd(0) in 75 % yield (Scheme  4.57 ) [ 102 ].

   Palladium mediated coupling of purine base with carbocyclic acetates, carbon-
ates or benzoates lead to a mixture of N-7 and N-9 isomers. The regioselectivity of 
purine alkylations depends on the size and nature of the ligands, the most typical 
being Ph 3 P, BINAP, P(OMe) 3 , P(OiPr) 3 , P(OPh) 3  (Scheme  4.58 ) [ 103 ].

   Another straightforward methodology for preparing carbocyclic nucleosides 
involves the direct condensation of mesylated carbocyclic intermediate with the het-
erocyclic base in the presence of potassium carbonate and crown ethers as coupling 
conditions (Scheme  4.59 ) [ 104 ].
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  Scheme 4.57    Palladium catalyzed synthesis of  aristeromycin         
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4.3.5        Enzymatic Synthesis 

 Likewise,  carbocyclic nucleosides   aristeromycin and neplanocin A can be biosyntheti-
cally prepared by using a mutant strain of  S. citricolor  as it is observed in Scheme  4.60 .

   The cyclopropylamino carbocyclic nucleosides (–)-abacavir is a potent anti-HIV 
with promising results on clinical trials [ 105 ]. An improved synthesis has been 
described by Crimmins et al. [ 106 ], involving the treatment of key carbocyclic 
2-amino-6-chloropurine intermediate with cyclopropylamine producing Abacavir 
along its parent anti-HIV carbocyclic nucleoside (−)-Carbovir (Scheme  4.61 ).
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  Scheme 4.59    Preparation of  carbocyclic nucleosides   with mesylated carbocyclic intermediates       
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4.3.5.1       Base Ring Formation 

 Another useful strategy used for preparing carbocyclic nucleosides involves the use 
of intermediates in which the amino group is already attached to the sugar moiety 
and once the coupling reaction is achieved, a ring closure process takes place to 
generate the expected nucleoside. According to this procedure Roberts et al. [ 107 ] 
prepared the potent antiviral inhibitor (−)-carbovir which posses similar activity 
than AZT against HIV in MT-4 cells. Thus, the starting material (±)-2-azabiciclo 
[2.2.1] hept-5-en-3-one was submitted to microbial treatment with  Pseudomonas 
solanacearum  to provide enantiomerically pure (−) isomer. The enantiomerically 
pure carbocyclic amine was then conjugated to 2-amino-4,6-dichloropyrimidine to 
produce the carbocyclic precursor which was ultimately cyclized to provide the 
desired (−)-carbovir (Scheme  4.62 ).

   Antileukemia carboxylic nucleoside  Neplanocin A   has been synthesized by 
Marquez et al., using the ring closure approach mentioned above. Thus, condensation 
of pyrimidine intermediate with isopropylideneaminocyclopentenediol furnished an 
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intermediate which was further cyclized to the purine base with triethylorthoformate. 
Final conversion to adenine ring with ammonia and protecting group removal gave 
rise to neplanocin A (Scheme  4.63 ) [ 108 ].

   Likewise, this procedure was applied for the preparation of the close related 
pyrimidine analog by condensation of the previous carbocyclic amine with the 
unsaturated ether to produce the pyrimidine precursor who was transformed to 
thiopyrimidine and then to carbocyclic cytosine as it can be observed in 
Scheme  4.64 . This compound has been found to be active against leukemia type 
L1210 in vivo [ 109 ].

   An antiviral carbocyclic purine nucleoside was also reported [ 110 ] by following 
a ring closure step for purine formation. Condensation between pyrimidine interme-
diate and carbocyclic amine provided condensation product which is activated with 
diazonium salt for amino introduction. Ring closure was achieved with triethyl 
orthoformate in acid medium (Scheme  4.65 ).

4.3.6          Carbocyclic  C -nucleosides   

 This class of  C -nucleosides in which a methylene group replaces the furan oxygen 
ring has not shown signifi cant biological activity so far; however, there is an interest 
to synthesize  C -nucleoside with natural heterocycle moieties in a stereocontrolled 
fashion. A recent stereocontrolled synthesis of carbocyclic  C -nucleosides has been 
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  Scheme 4.62    Synthesis of (−)-carbovir       
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proposed involving as key starting material the cyano carbocyclic intermediate 
which was condensed to 9-deazapurine to produce saturated and unsaturated carbo-
cyclic 9-deazapurine nucleosides (Scheme  4.66 ) [ 111 ].

4.4          Acyclic Nucleosides   

 Since the discovery of acyclovir as an anti-herpes drug, important efforts have been 
made toward the synthesis of analogs of acyclovir and other acyclic nucleosides. 
A comprehensive review made by Chu and Cutler [ 112 ] summarizes the major 
achievements carried out for preparing acyclonucleosides defi ned as those heterocy-
clic compounds containing one or more hydroxyl groups on the alkyl side chain. 

 At least three representative synthesis of acyclovir have been made, the fi rst by 
Schaeffer et al. [ 113 ] involving a condensation reaction of dichloropurine with 
ether chloride intermediate, and further purine transformation to generate 
9-(2- hydroxyethoxymethyl)guanine (acyclovir) (Scheme  4.67 ).

   An improved version introduced by Barrio et al. [ 114 ,  115 ] consists in the initial 
reaction of 1,3-dioxolane with trimethylsilyl iodide to produce the side chain which 
was then condensed with the halogenated purine, to yield after hydrolysis and 
ammonolysis the target acyclovir (Scheme  4.68 ).
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   Robins and Hatfi eld [ 116 ] employed a chemoenzymatic approach for preparing acy-
clovir consisting initially in the use of mercury salts and hexamethyldisilane (HMDS) 
and in the fi nal step an enzymatic conversion. Thus, the procedure involves the conden-
sation between 2,6-dichloropurine and the bromoether, providing  regioisomer N-7 
shown in Scheme  4.69 . Further amination and fi nal transformation to guanine with the 
enzyme adenosin-deaminase produces the desired antiviral compound.

   The phosphonate acyclic nucleoside 9-(2-phosphonomethoxyethyl)adenine 
(PMEA) was found to be a good antiviral analog with prolonged action [ 117 ]. 
A regio-defi ned synthesis base on the purine ring formation was described involving 
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  Scheme 4.68    Improved synthesis of  acyclovir         
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the initial attachment of the phosphonate amine intermediate by nucleophilic 
substitution to the 5-amino-4,6-dichloropyrimidine base, and then ring formation 
followed by amination to produce the desired phosphonate acyclic adenine PMEA 
(Scheme  4.70 ) [ 118 ].
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   The effectiveness of acyclovir as antiviral drug encouraged different group to 
synthesize more potent acyclic analogs. As a result of this efforts, the acyclic nucle-
oside 9-[(1,3-dihydroxy-2-prpoxy)methyl]guanine (DHPG) [ 119 ] was prepared and 
tested as antiviral nucleoside, showing similar potency as acyclovir against simple 
herpes but stronger against encephalitis and vaginitis herpes. 

 Various report of DHPG were described, one of them involving the use of 
hexamethyldisilazane (HMDS) as condensing agent (Scheme  4.71 ) [ 112 ].

   An alternative route for preparing DHPG involved the condensation reaction of 
acetylguanine base and triacetate derivative in the presence of ethanesulfonic acid, 
at temperatures ranging from 155 to 160 °C. As result two regioisomers were 
obtained from which one of those was converted to the desired antiviral compound 
Scheme  4.72  [ 112 ].

4.5         Thionucleosides   

 Nucleosides having the sugar ring oxygen replaced by sulfur are known as thionu-
cleosides. The synthesis and therapeutic evaluation mainly as antiviral and antican-
cer drugs of these nucleoside mimics has been reviewed [ 120 ]. A comparative 
analysis of thionucleosides and nucleosides showed that sulfur replacement in some 
cases produced equivalent or higher potency [ 9 ,  121 ], and do not undergo enzymatic 
cleavage of the glycosidic bond, although it has been also observed increased toxicity 
as in the case of β-4′-thiothymidine [ 122 ] Some thionucleosides displaying antiviral 
and/or anticancer activity are shown in Scheme  4.73 .
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   Based on their structural features  N -thionucleosides defi ned also as thioribosyl 
sugars are classifi ed into four groups (Scheme  4.74 ):
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4.5.1       Preparation of Thioribofuranosyl Intermediates 

 A number of approaches oriented to replace or insert a sulfur atom instead or besides 
the cyclic oxygen into the ribose ring have been described. One of the earliest methods 
for preparing thioribosyl acetates was described by Reinst et al. [ 123 ,  124 ] involving 
as key steps the conversion of the 4-thiobenzoyl pyranoside into the thioribofuranosyl 
acetate (Scheme  4.75 ).

   Short time later another report introduced the use of sodium in liquid ammonia 
followed by benzoylation to yield tribenzoylated thioribofuranoside as a mixture of 
anomers ( α : β , 1:3) (Scheme  4.76 ) [ 125 ].

   The thioribosyl derivative benzyl 3,5-di- O -benzyl-2-deoxy-1,4-dithio- D - erythro -
pentofuranoside has been prepared and used as glycosyl donor in various thionucleo-
side synthesis [ 125 – 127 ]. The synthesis started from 2-deoxy ribose which was 
transformed to the methylbenzyl derivative by following a standard procedure and 
then treated with benzylmercaptan in acid to produce the dithiobenzylated derivative. 
Next, was to invert the hydroxyl group at 4-position by using the Mitsunobu protocol 
to generate the intermediate with the desired stereochemistry. Final tosyl protection 
and NaI-BaCO 3  treatment provided the desired thiosugar (Scheme  4.77 ) [ 126 ].
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4.5.2         Glycosidic Bond Formation   

 The general methods for preparing  N -thionucleosides are similar as for  N -nucleosides; 
however, variations from slight to signifi cant can be found specially in the prepara-
tion of four ring thietanocin or thiolane analogs [ 127 ,  128 ] Thus, according to a 
comprehensive review [ 120 ], the earliest reports for  N -thionucleoside formation used 
chloromercury salt of purine and chlorine or benzoyl thioriboside as glycosyl donor, 
while more recently the silyl approach has been preferred (Scheme  4.78 ).
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  Scheme 4.78    Common glycosylation reactions for the preparation of thionucleosides [ 122 , 
 129 – 132 ]         
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    Ref. [ 123 ].
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4.5.2.2     Silyl-Mediated Coupling Reactions 

 The preparation of potential anti-HIV  N -isothionucleosides was described starting 
from glucose. The key coupling reaction proceeds in low yield between the pyrimi-
dine base and the mesyl tetrahydrothiophene derivative under potassium conditions 
(Scheme  4.79 ) [ 133 ].
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  Scheme 4.79    Preparation of   N -isothionucleoside         
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     N -thioxonucleosides   are another class of  N -thionucleosides tested as anti-HIV 
agents. The conditions employed for performing the coupling reaction were 
TMSOTf as Lewis acid catalyst, providing a mixture of anomers ( α : β , 1:2) in 64 % 
(Scheme  4.80 ) [ 134 ].

    Thietane nucleoside   was synthesized starting from the benzoyl thietane deriva-
tive which prior to the coupling reaction was treated with peroxide to produce the 
sulfoxide derivative. Then under Lewis acid conditions a Pummerer rearrangement 
process takes place to produce in the presence of thymine the expected thietane 
nucleoside (Scheme  4.81 ) [ 128 ].

   More recently the  stereoselective synthesis   of β-4′-thionucleosides based on 
electrophilic glycosilation of 4-thiofuranoid glycals has been described. Thus, the 
condensation of TBDMS-4-thioglycal with silylated uracil in the presence of 
PhSeCl as electrophile furnished thionucleosides in 88 % as a mixture of anomers 
( α : β ; 1:4) (Scheme  4.82 ) [ 135 ].

   The thio analog of antiviral DHPG with comparable activity to DHPG against 
HSV-1 and human cytomegalovirus was synthesized according to the scheme shown 
below (Scheme  4.83 ) [ 112 ].
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