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    Chapter 3   
  N -glycosides                     

             N -glycosides are generated when a sugar component is attached to an aglycon, 
through a nitrogen atom, establishing as a result a C–N–C linkage. Nucleosides are 
among the most relevant  N -glycosides since they are essential components of DNA, 
RNA, cofactors, and a variety of antiviral and antineoplastic drugs. 

 Usually for  nucleosides  , a pyrimidine or purine base is linked to the anomeric car-
bon of a furanoside ring. The nucleosides responsible for the formation of the genetic 
material DNA and RNA are: adenine, guanine, cytosine, and thymine, the latter 
replaced with uracil in the case of RNA (Scheme  3.1 ). Nucleosides can be classifi ed 
into natural nucleosides such as those involved in the genetic storage of information, 
naturally modifi ed nucleosides, and synthetic nucleosides.

   Naturally  modifi ed nucleosides   include a signifi cant and diverse number of com-
pounds, some of them with slight changes mostly at the base, or major structural 
modifi cations done by enzymes. So far most of them have unknown biochemical 
function [ 1 ], nonetheless they have been strongly associated with antiviral, antitu-
moral, and growth regulation processes (Scheme  3.2 ).

   Representative examples of natural modifi ed nucleosides include  queuosine   (Q) 
and  Wye base   (W) which have been found in the tRNA of some plants and bacteria, 
and they play an important role in the inhibition of tumor processes. Derived from 
this relevant biological function the total synthesis of these unique  nucleosides   has 
been reported for Q [ 2 – 4 ] and W [ 5 ]. 

 Moreover, the synthesis of complex  nucleoside antibiotics   has been reviewed 
[ 6 ,  7 ]. The analysis was focused on the challenging synthetic methods for carbohy-
drate and nucleoside chain elaboration, glycosidation, methods for controlling ste-
reochemistry and for joining subunits. As a result, the total synthesis of  polyoxin J   
[ 8 ],  sinefungin   [ 9 ],  thuringiensin   [ 10 ],  tunicamycin V   [ 11 ],  nikkomycin B,   [ 12 ] 
 octosyl acid A   [ 13 ],  hikizimycin   [ 14 ], and  capuramycin   [ 15 ] was completed 
(Scheme  3.3 ).

   Important cofactors playing a key rule as biological catalysts required by the 
enzymes for the optimal performance of biochemical transformations are nucleotides. 
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Such is the case of  Adenosine triphosphate   ATP and  Nicotinic acid adenine dinucle-
otide   NAD that are constituted by an adenosine nucleoside combined with phos-
phate for the former, and phosphate and nicotinamide for the latter (Scheme  3.4 ).

3.1        Nucleoside Formation   

 Considering a disconnection analysis there are two major general routes for nucleo-
side syntheses [ 16 ]. The fi rst is based on the attachment between the aglycon base 
and the protected sugar activated with a good leaving group at the anomeric posi-
tion. Under these conditions, the  stereoselectivity   is conditioned by the protecting 
group attached at position 2. The second general procedure considers the coupling 
reaction between a base precursor and the sugar derivative which contains the free 
amine linked to the anomeric carbon. The ring closure generally takes place after 
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the glycosidation reaction and the confi guration is predetermined by the nitrogen 
attached to the anomeric carbon. The latter approach has been most effi ciently used 
for preparing carbocyclic nucleosides (Scheme  3.5 ).

3.2         Protecting Groups   

 It has been mentioned in the previous chapter that  protecting groups   are important 
components for most of the general methodologies designed for establishing glyco-
sidic bonds. Usually the methods for glycoside formation require prior protection of 

  Scheme 3.2    Naturally modifi ed nucleosides         
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those elements (usually heteroatoms) within the molecule that are needed to remain 
unaltered. Also important is the fact that the cleavage of the protecting group should 
be carried out under preferentially mild conditions and in the case of complex nucle-
osides the installation and removal of the protecting groups for nitrogen, oxygen, 
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and sulfur should be accomplished under compatible conditions. The protection and 
deprotection of nucleosides can be done by chemical or enzymatic means. Some of 
the most commonly used protecting groups used in the preparation of  O -glycosides 
are also useful in the synthesis of nucleosides (Scheme  3.6 ).

3.2.1        Ribofuranoside Protecting Groups   

 Enzymes have been found to be interesting alternatives for installing protecting 
groups on nucleosides. Some of the enzymes used for this purpose are  subtilisin  
mutant (8350) [ 18 ,  19 ] and lipases mainly from  Pseudomonas  and  Candida  strains 
[ 20 ,  21 ]. Representative protections of purine and pyrimidine nucleosides are indi-
cated in Scheme  3.7 .
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  Scheme 3.4    Structure of nucleoside cofactors ATP and NAD       
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  Scheme 3.6    Common ribose protecting groups [ 17 ]           
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   By using the appropriate lipase it is possible to achieve regioselective acyl pro-
tections on nucleosides. For instance, the enzymatic transesterifi cation reaction of 
5′-fl uorouridine with n-octanoic anhydride catalyzed with  Candida Antarctica  
(CAL),  Pseudomonas  sp. (PS), (KIWI-56), and  Mucor javanicus  (M) lipases was per-
formed, producing 5′-, 3′-, and 2′-acylnucleosides, respectively (Scheme  3.8 ) [ 22 ].

   Regioselective removal of certain protecting groups such as acetates attached to 
the ribosyl moiety of nucleosides might be carried out by enzymes. For instance 
 subtilisin  strain selectively hydrolyzes the 5′-position of purine and pyrimidine tri- 
 O - acylated esters to produce 2′,3′-di- O -acylribonucleosides in 40–92 % 
(Scheme  3.9 ) [ 23 ].

   On the other hand, diastereoselective deacetylation of peracetylated 2′-deoxyri-
bofuranosyl thymine was carried out using wheat germ lipase (WGL) and porcine 
liver esterase (PLE), forming pure β-anomer thymidine in 29 % and 31 %, respec-
tively (Scheme  3.10 ) [ 24 ].

   When  porcine pancreas lipase (PPL)   in phosphate buffer is used for deacety-
lation of 3′,5′-di- O -acetylthymine, the removal of the acetyl group at the 5′- posi-
tion is achieved, leading to the 3′- O -acetylthymidine (Scheme  3.11 ) [ 25 ].
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   Other suitable selective protections and deprotections useful for chemical manip-
ulations which might occur at the ribosyl moiety are illustrated in Scheme  3.12 .

   Regioselective protections and deprotections is often a critical step especially for 
the preparation of complex nucleosides. Some suitable deprotections of complex 
nucleosides which do not alter the original composition of the structure have been 
described (Scheme  3.13 ) [ 6 ,  7 ].
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3.3         General Methods 

 –     Michael reaction  
 –   Fischer–Helferich reaction  
 –   Davol–Lowy reaction  
 –   Silyl mediated reaction  
 –   Sulfur mediated reaction  
 –   Imidate mediated reaction  
 –   Mitsunobu reaction  
 –   Palladium mediated reaction  
 –   Microbial/enzymatic approach    

3.3.1     Michael Reaction 

3.3.1.1     General Scheme and Conditions 
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   It is a classical procedure for preparing nucleosides, and it can be considered a 
modifi ed  O -glycoside approach. In this way, the sugar derivative is an R- O -furanosyl 
halide where R can be acyl, benzoyl, benzyl, tosyl, or silyl, and the halogen is com-
monly chlorine instead of bromine, since it has proved to be more stable for fura-
nose derivatives than its counterpart. The nitrogen base (purine or pyrimidine) is 
reacted under basic conditions, usually NaH or K 2 CO 3  in DMF (Scheme  3.14 ).

   A variety of antibiotics have been prepared according to this method, as in the 
case of the nucleoside known as  methyltubercidine  . For achieving this goal, the 
7-deazaguanine was used as nitrogen base which was condensed to 2,3,5-tri- O - 
benzylribofuranosyl bromide under NaH/DMF conditions to form a 1:1 anomeric 
mixture of  N -glycosides (Scheme  3.15 ) [ 30 ].

   More recently Battaharya [ 31 ] reported the synthesis of fl uoroarabinotubercidine, 
 toyocamicine  , and  sangivamicine  , under the current  N -glycoside formation proce-
dure. Other  deazapurines   have been described by Seela et al. [ 32 ] involving the con-
densation between the purine base and protected ribosyl halides under basic conditions. 

3.3  General Methods
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According to Seela [ 33 ] and Kazimierczuk [ 34 ] the stereoselective glycosylation of 
the sodium salts of halopurines, with 2-deoxy-3,5-di- O - p -tolouyl-α- D -  erytro - 
pentofuranosyl chloride gave β-nucleosides via Walden inversion. This was demon-
strated in the preparation of 2-amino 2′-desoxytubercidine and 2- aminotubercidine 
by condensation of 3,5-di- O -( p -tolyl)-α- D - pentafuranosylchloride and 5- O -[(1,1-
d i m e t h y l e t h y l ) d i m e t h y l s i l y l ] - 2 , 3 -  O  - ( 1 -  m e t h y l e t h y l i d e n ) - α -  D  -
ribofuranosylchloride with the halopurine under Michael conditions. Final ammonia 
treatment provided the target deazanucleoside (Scheme  3.16 ).
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   The 7-deazapurine nucleoside  cadeguomycin   isolated from strain of the actino-
mycete culture fi ltrate  Streptomyces hygroscopicus  was also synthesized under this 
approach. Thus, coupling reaction between protected 7-deazapurine derivative and 
1-chloro-2-deoxy-3,5-ditoluyl-α- D -erythro-pentofuranose was effected with prefer-
ence for the β-isomer. Subsequent transformations provided the target molecule 
2′-deoxycadeguomycin (Scheme  3.17 ) [ 35 ].

3.3.2          Fischer–Helferich Reaction   

3.3.2.1     General Scheme and Conditions 
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   This general procedure consists in the use of an acylfuranoside or acylpyranoside, 
which is reacted with the silver or mercury salts of a nitrogen base. The original 
reaction involves the condensation between silver salt of  theophylline   and aceto-
bromoglucose in hot xylene, giving preferentially the N-7 regioisomer 
(Scheme  3.18 ).

   The feasibility of this method is observed in the synthesis of adenosine and gua-
nosine by condensation of tri- O -acetyl-α- D -ribofuranosyl chloride with the silver 
salt of 2,8-dichloroadenine to generate an intermediate which under the conditions 
described below can generate either adenosine or guanosine (Scheme  3.19 ) [ 36 ].

   The stereochemistry of this reaction can be predicted by applying the “ trans rule  ” 
proposed by Tipson [ 37 ,  38 ] and extended by Baker. The rule establishes that the 
condensation between the purine or pyrimidine salt and the acyl- O -glycosyl halide 
will generate a nucleoside with C1-C2 trans confi guration regardless of the initial 
confi guration of C1-C2 of the sugar. 

N

N

O

O N
H

CO2Me

R1

MOM
+

O
TolO

Cl

TolO

i

N

N

O

O N

CO2Me

R1

MOM

O
TolO

TolO

(a:b; 1:5.5)

R1 = BOM

R1 = H
ii

iii

N

N

O

R2
N

CO2Me
R3

O
TolO

TolO

vi

HN

N

O

H2N N

CO2H

O
HO

HO

R2 = ArSO2O, R3 = CH2OCH3

R2 = PhCONH, R3 = CH2OCH3

iv

R2 = PhCONH, R3 = CH2OCH3
v

i) NaH,CH3CN, 25oC.ii)H2/Ph(OH)2, MeOH,25oC. iii) NaH, THF, TIPBS-Cl. iv) PhCONH2, NaH, THF. v) TFA, CH2C l2.
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 The trans rule is demonstrated in the preparation of thymidine acetoglucopyranose 
and mannopyranose, where -OH at position 2 for the former is equatorial, and for the 
latter axial. By following the rule, the coupling reaction generates β- and α-anomers, 
respectively, both of them having a trans disposition between substituents at 
positions 1 and 2 (Scheme  3.20 ).
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  Scheme 3.18    Fischer–Helferich method       
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3.3.3         The  Davol–Lowy Reaction   

3.3.3.1     General Scheme and Conditions 

    

+

N
H

promoter

X = Cl, Br

O

X
PO

N
O

PO

  

 Promoter  Conditions 

 Hg(CN) 2   CH 3 NO 2 , refl ux 
 Hg(CN) 2   Xylene 

   This method has been also considered a modifi ed Fischer–Helferich procedure and 
involves the use of mercury chloride instead silver salts. Under these conditions the 
useful intermediate  chloropurine nucleoside   has been prepared under mild conditions 
(Scheme  3.21 ).

   The nature of the glycosyl halide is important for determine the regioselectivity 
of the glycosidic linkage. If the condensation reaction occurs between purines and 
acetobromoglucose the N-7 regioisomer is obtained preferentially. On the other 
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  Scheme 3.20    Tipson’s trans rule       
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hand, if acetoribosyl chloride is condensed with the same purine, the N-9 regioisomer 
is the major product observed (Scheme  3.22 ).

   Another purine nucleoside prepared under these conditions is shown in 
Scheme  3.23 , consisting in the coupling reaction between protected guanine and 
protected furanosyl chloride in nitromethane under refl uxing conditions produced 
the corresponding  N -glycoside in 50 % yield [ 39 ].

N

N N
H

N

Cl

HgCl

O
BzO

Cl

OBzOBz

+

N

N N

N

Cl

O
BzO

OBzOBz

i

i) xylene

  Scheme 3.21  
  Davol–Lowy method       
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3.3.4          Silyl Coupling Reaction   

3.3.4.1     General Scheme and Conditions 

    

promoterO

OAc
PO

+

N
N

OTMS
O

O

PO   

 Promoter  Conditions 

 TMS-OTf  CH 3 CN, 0 °C → r.t 
 TMS-OTf  PhNO 2 , 127 °C 
 SnCl 4   CH 3 CN 
 HMDS-TMDS 
 (MeSi) 2 NAc 
 CF 3 (CF 2 ) 3 SO 3 K/HMDS-TMSCl 
 HMDS/(NH 4 ) 2 SO 4  

   Various types of  silyl agents   have been tested as either protecting groups and or 
 N -glycoside promoters. Among them trimethylsilyl chloride (TMS-Cl), 
bis(trimethylsilyl) acetamide, trimethylsilyltrifl ate, and hexamethyldisilazane are 
representative examples. 

 De Clercq et al. [ 40 ] prepared purine and pyrimidine α- D -lyxofuranosylnucleosides 
employing HMDS, TMS, and TMSF as silyl coupling agents. Nucleoside α- D - 
lyxofuranosyl thymine was prepared by condensation between 1,2,3,5-tetra- O - 
acetyl-α- D -lyxose and thymine in the presence of HMDS-TMSCl mixture 
(Scheme  3.24 ).

   Likewise cytidine has been synthesized in 95 % through condensation of silyl 
cytidine obtained from cytosine with bis [trimethylsilyl] acetamide, and sugar deriv-
ative 2,3,5-tri- O -benzoylribose, as represented in Scheme  3.25 .

NH

NN
H

N

O

NHAc

NH

N

N

O

NHAcN

O

OBzOBz

EtHN O
O

OBzOBz

EtHN O
Cl

+
i

i) Hg(CN)2, CH3NO2, reflux, 16 h.

  Scheme 3.23    Glycosidation reaction for preparation of guanine derivative       
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   Hilbert and Johnson [ 41 ] developed a procedure for preparing nucleosides 
employing a mixture of hexamethyldisilane (HMDS), trimethylsilane chloride and 
potassium nonafl ate. According to this procedure 5-methoxyuridine was prepared by 
condensing 5-methoxyuracil, with 1- O -acetyl-2,3,5-tri- O -benzoyl-β- D -ribofuranose 
(Scheme  3.26 ).

   A widespread silyl-based methodology was developed by Vorbrüggen [ 42 ,  43 ] 
which is based in the use of persilylated purines or pyrimidines, which are condensed 
with peracylated sugars in the presence of Lewis acid catalysis. Usually silylation of 
the base is achieved with  hexamethyldisilazane (HMDS)   or N,O- bis(trimethylsilyl)
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acetamide, the latter less diffi cult to remove during the workup process. Among the 
Lewis acids employed as catalysts, trimethylsilyl trifl ate (TMSOTf) has been the 
most suitable condensing agent for this reaction. 

 AZT alkylthioanalogs have been synthesized under the method reported by 
Vorbrüggen. This condition requires hexamethyldisilane for activation of the anomeric 
center, and trimethylsilyltrifl ate as condensing agent (Scheme  3.27 ).

   Vörbruggen-type coupling reaction has been method of choice in the 
 N -glycoside bond formation of various complex nucleosides such as octosyl acid 
A, tunicaminyl- uracil, sinefungin, and hikizimycin. Some of the general condi-
tions reported for the accomplishment of the mentioned synthesis are described in 
Scheme  3.28  [ 6 ,  7 ].

   Likewise by following a variant of this protocol Wang et al. were able to prepare 
2′-deoxy-2′-fl uoro-2′-C-methylcytidine (PSI-6130), a potent and selective inhibitor 
of HCV NS5B polymerase. Thus, the N-glycosylation step was carried out by cou-
pling reaction between 2′-deoxy-2′-fl uoro-2′-methyl ribose acetate and silylated 
 N -benzoylcytosine tin(IV) chloride as a catalyst (Scheme  3.29 ) [ 44 ].

   The N-glycosylation of protected (triethylsilyl)ethynyl furanoside with 
2- fl uoroadenine to produce after deprotection and 2-deoxygenation the remarkably 
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  Scheme 3.29    Synthesis of antiviral 2′-deoxy-2′-fl uoro-2′-C-methylcytidine (PSI-6130)       
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potent anti-HIV nucleoside 4′-ethynyl-2-fl uoro-2′-deoxyadenosine (EfdA) was 
performed with TMSOTf and DBU in MeCN. Another approach for preparing this 
modifi ed nucleoside was described by following a 12-step sequence starting from 
(R)-glyceraldehyde acetonide in 18 % overall yield (Scheme  3.30 ) [ 45 ,  46 ].

  Scheme 3.30    Methods for preparing anti-HIV 4′-Ethynyl-2-fl uoro-2′-deoxyadenosine (EfdA)       
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3.3.5          Sulfur Mediated Reaction   

3.3.5.1     General Scheme and Conditions 
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R = Ph, (=O)Ph   

 Promoter  Conditions 

 NIS-OTf  CH 2 Cl 2  
 TMS- OTf  DCE r.t. 
 Br 2   DMF 

   Derived from their extensive use in the preparation of  O -glycosides, the sulfur 
glycosyl donors have become another standard procedure for N-glycosylations. 
The conditions reported for the coupling reactions involves the sulfur glycosyl 
donor, the silyl protected heterocycle acceptor and usually  N -iodosuccinimide, trifl ic 
acid as catalyst (Scheme  3.31 ) [ 47 ].
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3.3.6         Imidate Mediated Reaction 

 The imidate reaction is by far a method established for preparation of  O -glycosides; 
however, some N-glycosylation has been achieved by following this protocol. An inter-
esting novel step is the incorporation of N,O-bis(trimethylsilyl)trifl uoroacetamide 
(BSTFA) as a silylating reagent when glycosyl trifl uoroacetimidates were used as 
donors, providing the β-nucleoside in 80 % yield (Scheme  3.32 ) [ 48 ].

3.3.7         Mitsunobu Reaction      

 This reaction has been selected as another strategy for preparing N- and carbocyclic 
nucleosides. The mechanism involves a nucleophilic substitution displacement with 
inversion of the confi guration between species bearing poor leaving groups with 
nucleophiles. The reaction mechanism involves the initial reaction of triphenylphos-
phine (Ph 3 P) with diethylazodicarboxylate (DEAD) to produce a dipolar intermedi-
ate which will react with an alcohol to form an alkoxy phosphonium salt and diimide. 
Then the nucleophile will displace triphenylphospine oxide to give the substitution 
product (Scheme  3.33 ) [ 49 ].

  Scheme 3.32    Synthesis o glucopyranosyl pyrimidine from glycosyl trifl uoroacetimidates       

X

OH
X = CH2, O

PO

N
H

EtO2C N N CO2Et EtO2C
N

N
CO2Et

PPh3

H
Ph3P

HX X

EtO2C
N
H

H
N

CO2Et

X

OPPh3
PO

+ X

PO

N

PPh3O+

  Scheme 3.33    Mitsunobu reaction for the construction of glycosidic bond       

 

 

3  N -glycosides



197

   This procedure was used successfully for preparing the  N -glycoside shown in 
Scheme  3.34  by reacting 2,3,4,6-tetraacetyl glucose with the heterocyclic base 
under the Mitsunobu conditions [ 50 ].

3.3.8         Palladium Mediated Reaction   

  Palladium catalysis   is a well-established and versatile methodology for the preparation 
of nucleosides. Also known as the Heck reaction, it was developed initially for C–C 
bond formation and consists in the coupling of an aryl halide with activated olefi n 
in the presence of palladium (0) as catalyst (Scheme  3.35 ) [ 51 ].

   More recently other palladium mediated reaction have been developed with 
great potential for heterocycle coupling reaction with furanosides, to produce an 
interesting variety of nucleosides. The group of reactions includes the Suzuki 
(organoboranes) [ 52 ], Stille (organostannanes) [ 53 ], Negishi (zincated) [ 54 ], 
Sonogashira (alkyne-CuI) [ 55 ], Hiyama (organosilicon) [ 56 ], and Tsuji–Trost 
[ 57 ,  58 ] (Scheme  3.36 ).

   Early reports in the use of Heck-type reactions for the preparation of nucleosides 
were described by Bergstrom [ 59 – 61 ]. More recently a comprehensive overview 
about palladium mediated reactions for  N -glycoside bond formation or modifi ca-
tions at the base or the sugar moieties were described. A general scheme summariz-
ing such possibilities is shown in Scheme  3.37  [ 62 ].
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  Scheme 3.34    Mitsunobu reaction for preparation of  N -glycosides       

X

Pdo

PdX

H2C CH2

PdX

  Scheme 3.35    Heck reaction       

 

 

3.3 General Methods



198

   Palladium-catalyzed reaction was applied for a N-heterocyclic glycosylation, by 
using glycal type donors with methyl isatin through a classic Ferrier rearrangement, in 
the presence of dppb ligand which improved the yield to 50 % (Scheme  3.38 ) [ 63 ].

3.3.9        Ortho- alkynylbenzoates Protocol   

 This method consist in the coupling reaction between ribofuranosyl ortho- 
alkynylbenzoate as donor and purines or pyrimidines in the presence of Ph 3 PAuNTf 2  
providing the  N -glycosides in high β-selectivity. This method can be successfully 
applied in the preparation of complex nucleosides such as antibiotic A201A, and 
tunicamycin (Scheme  3.39 ) [ 64 ,  65 ].
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3.3.10         Microbial/Enzymatic Approach   

 The synthesis of nucleosides by enzymatic methods is another extended possibility, 
and for this purpose the enzyme nucleoside phosphorylase has been selected as one 
of the most appropriate one. Usually the conversion proceeds by the reversible 
formation of a purine or pyrimidine nucleoside and inorganic phosphate from 
ribose- 1- phosphate (R-1-P) and a purine or pyrimidine base. The general approach 
consists in the reaction of R-1-P as glycosyl donor which is condensed with purine 
or pyrimidine analogs. Following this method any heterocycle recognized by this 
enzyme can be glycosylated (Scheme  3.40 ).

   The enzyme synthetase phosphoribosyl pyrophosphate PRPP was used for 
nucleotide synthesis of UMP. The sequence involves the conversion of ribose- 6- 
phosphate with PRPP synthetase to produce phosphoribosyl pyrophosphate which 
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was condensed with orotate in the presence of O5P-Pyrophosphorylase to yield the 
nucleotide intermediate orotidine 5′-phosphate which after decarboxylation pro-
duced by the action of O 5P-decarboxylase the nucleotide Uridine monophosphate 
(Scheme  3.41 ) [ 66 ].

   Bacterial α- D -glucopyranosyl-1-phosphate thymidylyltransferase was assayed as 
a catalyst for the synthesis of furanosyl nucleotides. Thus, fi ve furanosyl-1- 
phosphates were evaluated as potential substrates for the bacterial thymidylyltrans-
ferase to produce only the β-anomer (1,2- cis -phosphate) of the sugar nucleotide as 
confi rmed by proton NMR (Scheme  3.42 ) [ 67 ].

  Scheme 3.38    Synthesis of glycosyl isatin through a classic Ferrier rearrangement       

  Scheme 3.39    Ortho-alkynylbenzoates method catalyzed by gold complex       
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3.4          Oligonucleotide Synthesis   

 Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) are very important 
natural polymers responsible for the processing of the genetic information of all 
organisms. 

 The basic repetitive unit known as nucleotide is composed of a nucleotide base, a 
sugar moiety, and a phosphate. The combinatorial pattern of the four different nucle-
osides constituted by the heterocyclic bases cytosine, thymine, guanine, and adenine 
is the base of DNA structure. In RNA strands uracil replace thymine and the furano-
side is ribose instead of 2-deoxyribose. The phosphate group is attached at position 
3′ of one sugar unit and the 5′ position of the next one forming a 3′–5′ elongation 
chain (Scheme  3.43 ).
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  Scheme 3.41    Enzyme catalyzed synthesis of nucleotide       

  Scheme 3.42    Enzyme catalyzed synthesis of nucleotide by thymidylyltransferase       
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    Oligonucleotide synthesis   does not involve  N -glycoside bond formation, but 
requires the design of nucleoside donors and nucleoside acceptors, following the 
same principle that applies for glycoside coupling reactions where suitable protecting 
groups, glycosyl donors and acceptors are required. 

 Solid phase procedures appear to be of great advantage for the coupling of nucle-
osides, and unlike for oligosaccharide solid phase chemistry, the attachment posi-
tions are always the same (3′ and 5′). The sequence of reactions that occurs in 
oligonucleotide synthesis starts on the attachment of 3′-OH position of 5′-protected 
nucleoside to a resin. Next, is deprotection of 5′-OH and subsequent attachment 
to a nucleoside donor which contains a phosphate precursor which in turn will be 
converted to phosphate group. 

 There are mainly two procedures for oligonucleotide synthesis: The  phosphorami-
dite   and the  phosphonate   method [ 16 ,  68 ]. 
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3.4.1      Phosphoramidite Method   

 This methodology involves the use of the air-sensitive reagent 2-cyanoethyl tetrai-
sopropylphosphorodiamidite {[(CH 3 ) 2 CH] 2 N}POCH 2 CH 2 CN or 2-cyanoethyl  N , N - 
diisopropylchlorophosphoramidite (iPr) 2 NP(Cl)OCH 2 CH 2 CN for activation of 
nucleoside donor [ 69 ]. This intermediate can be obtained by treatment of PCl 3  with 
2 eq of diisopropylamine, and 1 eq of cyanoethylethanol. The general phosphorami-
dite approach, is outlined in Scheme  3.44 , and begins with a nucleoside previously 
protected at the 5′-OH position with 4,4′-dimethoxytrityl group (Tr-), also attached 
to a silica support. The trityl group is then removed from the 5-OH position and 
allowed to react with a nucleoside donor protected at position 5-OH with trityl 
group and activated at position 3′ with 2-cyanoethyl diisopropylphophoroamidite. 
The coupling reaction being the critical step is catalyzed by tetrazol, and the process 

  Scheme 3.44    Phosphoramidite oligonucleotide strategy         
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is repeated for the installation of subsequent nucleoside unit. Once the oligonucleotide 
chain is formed, the phosphoramidite group is transformed to phosphate with I 2 -H 2 O 
and released from resin with ammonia.

3.4.2         HOBt Solid Phase Synthesis   

 This protocol involves the initial attachment of a deoxy nucleoside with a highly cross-
linked polystyrene resin and then reacted with a second phosphoramidite nucleoside in 
the presence of 1-hydroxybenzotriazole (HOBt) as the promoter to the solid-phase 
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synthesis. Further deprotection with I 2 -MeOH, tricholoracetic acid, and ammonia 
provides the desired oligonucleotides in good yields (Scheme  3.45 ) [ 70 ,  71 ].

3.4.3         Phosphonate Method   

 In this method the nucleoside donor is functionalized as a phosphotriester sugar 
derivative which reacts with nucleoside acceptor at 5-OH position which is avail-
able for linkage. An advantage of this method is the possibility of introducing sub-
stituents to the phosphate position giving place to the preparation of modifi ed 
oligonucleotides Scheme  3.46 .

  Scheme 3.45    HOBt solid phase synthesis       
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3.4.4         Phosphorimidazolides Method   

 This method propose a coupling reaction between a phosphate nucleoside attached to 
a resin and adenosine 5′-phosphorimidazolidate, to produce the corresponding pro-
tected AppDNA, which if fi nally debenzoylated with ammonia (Scheme  3.47 ) [ 72 ].

   Another example on the applicability of this method is observed in the solid- 
phase preparation of the solid-phase dinucleotide triphosphate. This report con-
sisted in the treatment of resin bounded phosphoramidite dinucleoside with a 
solution of diphenyl phosphite in pyridine, followed by hydrolysis, forming the 
solid-supported Hp-ON. Next the intermediate was oxidized to an activated 5′-phos-
phoroimidazolidate and subsequently treated with excess of (tri- n -butylammonium) 
pyrophosphate forming solid-phase nucleoside triphosphate (Scheme  3.48 ) [ 73 ].

3.4.5        Modifi ed Oligonucleotides 

 Modifi ed  oligonucleotides   are another important application of solid phase oligo-
nucleotide synthesis. It is known that natural oligonucleotides used as therapeutic 
strategy against viral infections as  antisense  for targeting RNA sequences may 
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  Scheme 3.47    Phosphorimidazolides approach       
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undergo enzymatic hydrolysis by endonucleases. Series of modifi ed oligonucle-
otides carrying the modifi cation either on the base, sugar or phosphate moiety pro-
vides ideally endonuclease resistance as well as high affi nity for complementary 
RNA sequences. 

  Phosphodiester bond   is the primary target for endonuclease breakage; therefore, 
the effort has been focused mainly on the modifi cation of this segment of the chain. 
As a result of this, a fi rst generation of modifi ed phosphorous oligonucleotides such 
as phosphorothioates, methylphosphonates, phosphoramidates, phosphotriesters, 
and phosphodithioates were synthesized. Although these phosphorous derivatives 
showed increased resistance to endonuclease activity, the affi nity for complemen-
tary sequences was decreased [ 74 – 76 ] For instance the synthesis of the antisense 
oligomer phosphorothioate analog of a 28-nucleotide homo-oligodeoxycytidine 
(S-dC 28 ) was achieved, and tested as a potent inhibitor of HIV in vitro, showing 
signifi cant inhibition of reverse transcriptase activity and syncytium formation 
between HIV-1 producing cells and CD4 +  [ 77 ]. 

 A second generation proposed the replacement of phosphodiester group by a 
bioisoster such as amides, urea, and carbamate (Scheme  3.49 ). In general the obser-
vations reveal better enzymatic hydrolysis resistances, but again poor affi nity toward 
RNA complementary sequences.

   Alternatively Dempcy et al., [ 78 ] reported the synthesis of modifi ed guanidine–
thymidine oligonucleotide following the procedure depicted in Scheme  3.50 . The 
reactions involved are the condensation between 3′-amino-5′- O -trityl-3′-
deoxythymidine and 3′-azido-5′-isothiocyano-3′,5′-deoxythymidine, to generate 
5′ → 3′ thiourea–nucleoside dimer. Reduction followed by coupling reaction of 
dimer with the latter nucleoside produced a chain elongation reaction. Guanidine 
conversion was done with aminoiminosulfonic acid and ammonium hydroxide, 
forming guanidinium thymidyl pentamer.

   Another type of modifi ed oligonucleosides more recently described correspond 
to the oligoribonucleoside phosphorothioates (PS-ORNs) which were prepared by 
using ribonucleoside 3′- O -oxazaphospholidine derivatives as monomer unit and 
submitted to react under activating conditions with protected 5′-OH nucleoside 
anchored to a highly cross-linked polystyrene (Scheme  3.51 ) [ 79 ].
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   The unit assemble for oligoribonucleotide synthesis is to some extend similar to 
deoxyribonucleotides synthesis; however, an additional consideration should be 
taken into account, which is the suitable protection of position 2-OH of ribose. The 
use of silyl protecting group, is one of the best choices so far reported, in particular 
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the hindered  tert -butyldimethyl silyl (TBDS) group. The protection of tritylribonu-
cleoside produced a mixture of isomers, being the 2-OH silyl derivative generated 
in between 50 and 90 % yield. Final removal of this protecting group is usually 
achieved with 1 M tetrabutylammonium fl uoride in THF (Scheme  3.52 ).

   Some other choices for 2-OH protection are: tertahydropyran-1-il, 
4- methoxytetrahydropyran-4-il and modifi ed ketal of 1-(2-fl uorophenyl)-4- 
methoxypiperidin- 4- il (Fpmp); however, it has been found that acid conditions for 
removal of these protecting groups are not compatible with trityl protecting group. 

  Scheme 3.51    Preparation of oligoribonucleoside phosphorothioates (PS-ORNs)       
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 Simultaneous protection of position 3′ and 5′ can be achieved by using the silyl 
protecting group tetraisopropyldisiloxychloride (TIPS-Cl) in pyridine. This type of 
protection has been useful in the conversion of adenosine to 2′-deoxyadenosine 
under the conditions reported by Barton and McCombie [ 80 ] (Scheme  3.53 ).
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