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1 Introduction

1.1 Measuring Neuronal Oscillations and Synchronization
in Noninvasive Electrophysiological Recordings

During the past two decades, a number of seminal studies have shown that syn-

chronous neuronal activity and neuronal oscillations can mechanistically support

the coordination of neuronal processing across distributed neuronal assemblies

(Fries 2015; Singer 1999, 2009).

Neuronal oscillations occur in a wide range of frequency bands (at least

0.01�200 Hz) associated with distinct cognitive functions (Buzsaki and Draguhn

2004) and can be characterized by their amplitude, phase, and frequency. Behav-

iorally relevant oscillations characterize all scales of the nervous system and can be

measured at millisecond temporal resolution by electrophysiological recordings.

Spatial resolutions range from macroscopic (1–3 cm) in magneto- and electro-

encephalography (MEG and EEG) over mesoscopic (1–10 mm), such as in

human intracranial EEG (iEEG), to microscopic levels in extracellular field poten-

tials and neuronal membrane potentials accessible with microelectrodes in animal

models. The amplitude of neuronal oscillations in macro- and mesoscopic record-

ings is largely determined by the fraction of local neurons that receive coherent

synaptic inputs or operate coherently as a synchronized assembly among less

coherent neurons. Amplitude, hence, is primarily a measure of local synchroni-

zation. Phase, on the other hand, quantifies the temporal evolution of the oscillatory

cycle (see Fig. 1b) and is essential for the assessment of the phase-locking of local

oscillations to internal or external events. Importantly, it is also critical for
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determining whether signals from two regions have a consistent phase relationship

(i.e., synchronized): a statistically nonrandom inter-areal phase relationship indi-

cates phase synchronization.

1.2 Overview of the Confounds in the Estimation
of Synchrony in Electrophysiological Recordings

While sensor-to-sensor analyses of MEG and EEG data have indicated that task

demands for cognitive integration are associated with long range synchronization of

neuronal oscillations (Palva and Palva 2012), these analyses not only suffer from

confounds introduced by signal mixing and source amplitude modulations but also

yield essentially no information about the anatomical structures generating the

signals. In contrast, invasive recordings provide precise information on the ana-

tomical location of the sources of neuronal oscillations and avoid confounds due to

signal mixing. Their relevance to cortex-wide phase synchrony is, however, limited

due to the sparse sampling of cortical locations that they offer. Despite methodo-

logical challenges that will be detailed below, MEG and EEG recordings can be

used with source reconstruction methods to investigate the cortex-wide networks of

phase synchrony (Palva et al. 2005, 2010, 2011; Palva and Palva 2012). Of these

LF
P

Sp
ik

es

High Excitability

Area A
LF

P
Sp

ik
es

Area B

No synchrony No communication

Coincident spikes

C
oi

nc
i-

de
nc

es

A

B
Synchrony

Low ExcitabilityFig. 1 Oscillations

facilitate intra- and inter-

areal synchronization. (a)

Oscillations reflect local

synchronization of neuronal

spiking within a population.

(b) Synchronization of two

different neuronal

populations at a specific

phase difference enables

communication. In this

example, synchrony is

enabled at zero phase

difference, so neurons in

both populations are spiking

coincidentally and inhibited

at 180� phase difference.
Note that depending on the

distance between the

populations,

synchronization can also

occur at non-zero phase

differences

2 F. Siebenh€uhner et al.



two, MEG offers a better spatial resolution as it is not confounded by the volume

conduction and high resistivity of the skull, but combining MEG and EEG improves

the detectability of some sources because MEG and EEG have distinct sensitivities

(Sharon et al. 2007).

1.3 Problem Statement and Outline

In this chapter, we will first outline the data analysis “pipeline” for MEG and EEG

from preprocessing to filtering and inverse modeling (Sect. 2). We will assess the

basic interaction metrics that can be used to estimate pairwise interactions and their

inherent advantages and disadvantages (Sect. 3). Section 4 will present the causes

and consequences of linear mixing arising from volume conduction and signal

mixing, the most profound challenge arising in MEG/EEG data analysis, and how

sensitive different interaction metrics are to this problem. In Sect. 5, the advantages

and challenges of all-to-all connectivity mapping will be discussed, and in Sect. 6,

we will introduce methods of edge bundling to minimize the effects of

signal mixing and improve the ratio of true to false positives.

2 The MEG/EEG Data Analysis Pipeline

2.1 Preprocessing of MEG/EEG Data

Identifying behaviorally relevant patterns of inter-areal correlations or synchroni-

zation in MEG/EEG data can be confounded by numerous sources of artifacts. We

outline next the preprocessing steps that are essential for excluding extracranial

signal sources and artifacts. MEG/EEG data are usually recorded while participants

are carrying out a cognitive task of interest or, if applicable, are in a resting state. In

a step often referred to as preprocessing, the sensor-space raw data are cleaned or

de-noised using manual and/or automatic procedures. In the next step, the

preprocessed sensor-space time series are filtered in order to estimate their oscil-

latory components in relatively narrow frequency bands. Using an appropriate source

reconstruction technique, the time series of cortical sources are then estimated.

These cortical time series are then used to compute the strength of inter-areal

correlations or synchronization between each pair of cortical areas in time windows

of interest. Finally, statistical thresholding procedures are used to identify which

pairs of cortical areas are truly phase synchronized, yielding the spatial, spectral,

and temporal characteristics of inter-areal phase synchronized networks.

The preprocessing of rawMEG/EEG sensor-space data involves both visual data

inspection and several noise reduction techniques. Raw data are visually inspected

to remove bad channels (sensors with excessive noise or reoccurring artifacts) and
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to mark bad data segments, such as time periods with increased environmental

noise, head movement artifacts, or large-amplitude facial or neck muscle artifacts.

MEG and EEG data are also contaminated by both environmental and participant

noise that cannot be removed by simple manual inspection. Although MEG scan-

ners are set up in shielded rooms designed to minimize noise and interference from

other sources of magnetic fields, it is unavoidable that some extracranial environ-

mental noise will be present in the raw signal. Using signal separation techniques

such as temporal extension of signal space separation (tSSS) (Taulu et al. 2005), the

presence of this type of noise in the data can be minimized. Also, participants

themselves contribute continuous non-cortical noise to the MEG and EEG record-

ings, most often in the form of cardiac artifacts as well as eye blinks or movements.

Using independent component analysis (ICA) (Bell and Sejnowski 1995), electro-

oculography (EOG), and electrocardiography (ECG) measured concurrently with

MEG/EEG, data components resulting from these interferences can be identified

and removed.

2.1.1 Filtering for the Extraction of Narrowband Oscillations from

Broadband Signals

Filtering is necessary to extract the oscillatory components of a signal for different

frequency bands. Classical methods for converting a time-domain signal into the

frequency domain, such as the Fourier transform, are, however, suboptimal here.

These methods assume stationary signals, cannot detect temporal interactions

(Li et al. 2007), and yield fixed bin-sized frequency scaling. In contrast, analyses

of task modulations of neuronal oscillations require techniques that yield estimates

of instantaneous amplitude and phase values of the signals, most often from a time–

frequency transform of the original signal (Bruns 2004). Using such time-resolved

spectral analysis, a time-dependent spectrum s(t, f ) can be computed from a time

series of interest s(t) where t is time and f is frequency. This time–frequency

representation is complex-valued and consists, for each time point, of an instanta-

neous amplitude A(t, f ) and an instantaneous phase θ (t, f ):

S t; fð Þ ¼ A t; fð Þeiθ t; fð Þ

Such complex valued time–frequency representations can be obtained using

wavelet-based filtering. The time-domain signal s(t) is convolved with a series or

family of filter kernels, wavelets w(t, f0), that cover the frequency range of interest.
For each center frequency f0, the wavelet is defined as the product between a

complex-valued oscillation at the frequency of interest and a bell-shaped, real-

valued envelope: w(t, f0)¼A·exp(�t2/2σt
2·2)·exp(2iπf0t) where σt¼m/2πf0 is the

frequency domain standard deviation. The convolution S(t, f0)¼ s(t)� w(t, f0) gives
a complex vector S(t, f0), the angle of which is the phase of the signal s in a

frequency band with a center frequency of f0. The parameter m determines the
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effective number of oscillation cycles used to estimate signal amplitude and phase

and therefore represents the compromise between time and frequency resolutions.

2.1.2 Source Reconstruction

While the magnetic fields generated by known sources can be estimated accurately

from known current sources through forward modeling, estimation of the location

and strengths of current sources in MEG/EEG data is an ill-posed inverse problem

with no unique solutions. Nevertheless, inverse modeling can produce good esti-

mates of those sources through the use of constraints such as minimization of total

current and modeling of source dipoles on individual cortical surfaces obtained

from MRI scans (Palva et al. 2010; Palva and Palva 2012).

Before solving the inverse problem, a forward model must be constructed that

gives the distribution of currents and magnetic fields created by known sources in

the head. For this, volume conduction models of the head are created assuming a

spherical model or spherical harmonics (Mosher et al. 1999), which should be

integrated with individual anatomical information obtained with MRI. For accurate

modeling, co-registration of MEG/EEG and MRI should be as accurate as possible;

subjects’ head movements should be as small as possible (Whalen et al. 2008;

Gross et al. 2013).

The two most common approaches to inverse modeling are the Beamformer

method (Van Veen et al. 1997) and minimum norm estimates (MNE) (Hamalainen

and Sarvas 1989; Lin et al. 2006).

MNEs yield time series of 6000–8000 sources, “vertices,” covering the cortical

surface. Considering that MEG/EEG recordings have only two to three hundreds of

sensors and even fewer degrees of freedom, these sources are highly redundant.

Thus, to decrease redundancy and improve signal-to-noise ratio (SNR), as well as to

analyze MEG/EEG data in a form that is directly comparable with MRI studies, the

MNE vertex time series can be collapsed into time series of a few hundreds of

cortical areas. These “cortical parcels” can be obtained either by computing a

weighted average of the vertex time series (Palva et al. 2010, 2011) or by using

the time series of the vertex with maximum power (Hillebrand et al. 2012).

2.1.3 Parcellations

Anatomical parcellations, such as Desikan-Killiany and Destrieux, are derived from

brain atlases of cortical gyral and sulcal structure revealed in MRI structural

imaging (Dale et al. 1999; Fischl et al. 1999, 2002, 2004). As finer resolutions

and/or more balanced parcel sizes are commonly needed, parcels from these atlases

can be subdivided further (Cammoun et al. 2012; Hagmann et al. 2008;

Palva et al. 2010, 2011). To accurately localize parcels on individual brains,

structural scans can be recorded from all subjects with MRI. Software such as
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FreeSurfer (http://surfer.nmr.mgh.harvard.edu) can then be used for volumetric

segmentation, surface reconstruction, flattening, parcellation, and neuroanatomical

labeling of individual brains.

2.1.4 Fidelity-Optimized Source Solution Collapse Operators

One approach to maximize the source reconstruction accuracy is to use sparse

fidelity-optimized collapse operators for collapsing the source vertex time series

into parcel time series. Simulations are used to select for each parcel the MNE

reconstructed vertex time series that is thought to best represent the true parcel time

series. Simulated time series for each parcel are forward- and inverse modeled to

compute “fidelity,” a measure of how accurately an MNE vertex time series

represents the original time series. Only the vertices with the highest fidelity are

used to compute a parcel’s time series as fidelity-weighed average. The enhanced

time series reconstruction has been shown to improve accuracy of subsequent

analyses of both local dynamics and large-scale interaction mapping while decreas-

ing computational load (Korhonen et al. 2014; Fig. 2).
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Fig. 2 The optimization of inverse collapse weighting operator increases the fidelity of all

parcels, especially on the lateral surface. Adapted from Korhonen et al. (2014). (a) The vertex

and parcel fidelities of inverse solutions collapsed with standard anatomical and fidelity-optimized

weighting operators for one representative subject. Low fidelity ( f< 0.11) parcels are colored

black. (b) Grand-average parcel fidelity for anatomical and fidelity-optimized weighting operators.

The color scale is similarly as in a, and the group level low-fidelity parcels are identified on the

anatomical map (bottom panel). (c) Significant parcel fidelity differences between inverse solu-

tions collapsed with the different operators (opt–anat; p< 0.001, uncorrected, paired t-test across
13 subjects, parcels without a significant change uncolored)
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3 Interaction Metrics, Solutions to the Linear Mixing

Problem, and Residual Challenges

To quantify the connections between signal pairs, various interaction metrics

exist that can be estimated from either the amplitude or the phase of signals’ time

series.

3.1 Amplitude Correlations

The correlations between the amplitude envelopes can be assessed with the Pearson

correlation coefficient (CC). CC will, however, yield inflated values in the presence

of linear mixing. To estimate amplitude correlations in a manner insensitive to

linear mixing, the narrowband time series are orthogonalized for each pair of

cortical parcels or electrode contacts, using linear regression algorithm (Brookes

et al. 2012), and the orthogonalized correlation coefficient (oCC) is computed for

the amplitude envelopes of the orthogonalized time series:

CC ¼ 1

2
corr AX;A

Y
��X

� �
þ corr A

X
��Y ;AY

� �� �
ð2Þ

where AX, AY and A
X
��Y , A

Y
��X are the amplitude envelopes of the original and

orthogonalized time series, respectively.

The narrowband time series X and Y can be orthogonalized as follows:

Y��X ¼ Y � βX ¼ Y � XXT
� ��1

XXT
h i

X ð3Þ

and analogously for X��Y .

3.2 Phase Locking and Phase Lag Index

Phase locking between two sources is statistically indicated by a nonrandom phase

or phase-difference distribution. The most common index is the phase locking value

(PLV) that is given by means of the complex phases θi (Lachaux et al. 1999;

Sinkkonen et al. 1995).
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PLV ¼ 1

Nt

X
eiðθ1�θ2Þ

���
���

where Nt is the number of samples pooled across trials and/or time and i is the

imaginary unit.

PLV is 1 for perfect coupling (delta-function phase distribution) and approaches

0 for a uniform phase distribution when Nt!1. If samples are independent and the

marginal phase distributions are uniform, the no-interaction null hypothesis is

characterized by a uniform distribution and the Rayleigh test can be applied.

When samples are pooled across time, and are not independent, and/or when the

underlying process is not sinusoidal (see Nikulin et al. 2007), statistical testing

needs to be carried out with surrogate data. Further, the PLV is sample-size biased,

and hence sample sizes always need to be equalized across conditions. It is also

helpful to define the complex PLV:

cPLV ¼ 1

Nt

X
eiðθ1�θ2Þ

h i

so that PLV¼ |cPLV|. While PLV is equally sensitive to coupling at all phase

differences, it is also sensitive to inflation of the coupling estimates by linear

mixing. The imaginary part of the cPLV is only sensitive to non-zero phase

differences, and, thus, imaginary PLV (iPLV¼ |im(cPLV)| can be used to estimate

phase coupling in a manner insensitive to linear mixing.

An alternative approach to quantifying phase relationships relies on quantifying

the asymmetry of the distribution of phase differences. For non-phase-coupled time

series, the distribution of phase differencesФ would be flat, so any deviation from a

flat distribution can be taken as evidence of phase synchronization. From this, the

phase lag index (PLI) is derived: PLI ¼ j⟨signðΦÞ⟩j, where ⟨ ⟩ denotes the expec-

tation value (Stam et al. 2007; Stam and van Straaten 2012).

4 Effects of Linear Mixing on Estimates of Phase

and Amplitude Correlations

InMEG/EEG sensor space, interaction analyses can be confounded by signalmixing,

source amplitude changes, and other issues (Gross et al. 2013; Palva and Palva 2012;

Schoffelen and Gross 2009). Identification of the correct anatomical sources is

crucial for appropriate interpretations of the results because even nearby cortical

regions may play very different functional roles. In connectivity analysis, signal

mixing gives rise to two confounders: artificial and spurious connections. Unfortu-

nately, these terms have been used with various definitions in the literature. We will

use here the definition from Palva et al. (Palva and Palva 2012): artificial connections

are a direct result of the source-space signal spread caused by linear signal mixing.
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The reconstructed signal in a given cortical parcel is contaminated by signals

emanating from its neighboring parcels, giving rise to an increase in zero-lag phase

differences, and thus zero-lag synchrony, in the absence of any true interactions.

These are termed false positives of the first order. Spurious connections, or false

positives of the second order, are “false” interactions created by the concurrent

presence of a true interaction and linear mixing. Since the reconstructed time series

of parcels close to the truly connected parcels are contaminated by signals that are

truly phase synchronized, these parcels will appear to also be phase synchronized.

In contrast to artificial connections, spurious connections are only present between

parcels close to true interactions and neither limited to nearby parcels nor to zero-lag

phase differences.

4.1 Influence of Linear Mixing on Interaction Metrics

In contrast to true neuronal interactions that often involve a conduction-delay-

related phase lag, artificial connections are characterized by zero-lag phase differ-

ences. As a consequence, choosing a metric that is not sensitive to zero-lag phase

differences such as iPLV or PLI for phase coupling or oCC for amplitude correl-

ations will suppress the effects of artificial linear mixing. This is, however,

achieved at the cost of missing also any true phase interactions whose lag is zero

or �π. On the other hand, spurious interactions can have any phase lag and are

therefore not generally discarded by such metrics.

In both amplitude- and phase-based analyses, measures have been developed

that are insensitive to the direct effects of signal mixing (Brookes et al. 2012; Hipp

et al. 2012). While the correlation coefficient (CC) reveals artificial connections

caused by linear mixing, as can be seen for simulated data (Fig. 3a), orthogonali-

zation of the real-valued signals x(t) and y(t) before the estimation of their ampli-

tude envelopes and their correlation removes linear dependencies. This

orthogonalized correlation coefficient (oCC) therefore does not yield artificial

correlations between neighboring sensors arising directly from source spread

(Fig. 3c), although it will still pick up long-range spurious connections. Further, it

can been shown that the values of these measures are also sensitive to the value of

phase difference when phase correlations are present (Fig. 3b, d).

Similar to the CC, the PLV is sensitive to artificial connections (Fig. 3e) and

biased by phase differences when signal mixing is strong (Fig. 3f).

Metrics which ignore the real part of the complex phase differences, such as the

iPLV (the imaginary part of complex PLV) and the weighted phase lag index

[wPLI, (Vinck et al. 2011)], are therefore insensitive to direct effects of linear

mixing while revealing phase-lagged interactions (Fig. 3g, i). However, not only

are these insensitive to true interactions at 0 or� π phase lag but also their value is

dependent on the phase difference per se in addition to the strength of the inter-

action (Fig. 3h, j).
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Fig. 3 Interaction metrics are affected by coupling strength, phase difference, and linear mixing.

(a) Correlation coefficient (CC) as a function of amplitude coupling strength cA in the absence of

phase correlations (phase coupling cΘ¼ 0, phase difference nϕxy¼ 0). CC increases with linear

mixing m, leading to false positives. (b) CC between the signals as a function of phase difference

nϕxy, for cΘ¼ 0.4. The horizontal lines visualize the mean CC obtained at cΘ¼ 0. In the presence
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Ultimately, all interaction measures are sensitive to linear mixing effects, albeit

in different manners. While iPLV, wPLI, and oCC do not report artificial connec-

tions, they are still sensitive to spurious connections and to the value of phase

differences. Therefore, one should not expect optimal results solely from choosing

a good interaction measure.

4.2 Interaction of Phase and Amplitude Dynamics

It has been shown that in the analysis of pairwise interactions between signals

containing noise, amplitude and phase dynamics influence each other (Daffertshofer

and vanWijk 2011; Schoffelen and Gross 2009). In real signals, noise levels change

over time, resulting in a fluctuating signal-to-noise ratio (SNR). Not only does this

imply that lower noise levels will result in higher measured phase synchrony but

also that synchrony estimates will increase when the SNR of the sources is corre-

lated. There can even be cases in which a decrease in true connectivity coinciding

with an increase in SNR leads to an increase in measured connectivity (Schoffelen

and Gross 2009). Further, as mentioned in the last paragraph, simulations show that

as a result of signal mixing, phase coupling also influences amplitude correlations.

When phase differences are small, signal mixing increases amplitude corre-

lations measured with the correlation coefficient CC, whereas when signals are

close to anti-phase, signal mixing reduces CC. The orthogonalized correlation

coefficient oCC may be further biased by phase effects because the orthogonal-

ization process uses the real part of the signals, which contains both amplitude and

phase information.

Spontaneous and stimulus-induced changes in the amplitudes of ongoing acti-

vity influence (1) the signal-to-noise ratio of signals from a given source in relation

to environmental and sensor noise and (2) the balance in the mixing of signals from

multiple concurrent sources. Both effects influence the accuracy of phase (and

amplitude) computations and therefore bias interaction estimates.

⁄�

Fig. 3 (continued) of phase coupling, CC is biased by nϕxy. (c) oCC as a function of amplitude

coupling strength cA in the absence of phase correlations (cΘ¼ 0, nϕxy¼ 0). oCC decreases with

linear mixing and does not report false positives. (d) oCC as a function of nϕxy, for cΘ¼ 0.4. Like

CC, oCC is biased by nϕxy, but in a different manner. (e) PLV as a function of phase coupling

strength cΘ for different linear mixing strengthsm. PLV increases with mixing, especially at low or

zero coupling, leading to false positives. Here, nϕxy¼�0.3. (f) PLV as a function of normalized

phase difference nϕxy for different strengths m of linear mixing and for cΘ¼ 0.4. PLV is greatly

affected by the phase difference when signal mixing is strong. (g) iPLV as a function of cΘ for

nϕxy¼�0.3. iPLV decreases with linear mixing and does not report false positives. (h) iPLV as a

function of nϕxy for cΘ¼ 0.4. The strength of iPLV depends highly on phase difference and is

biased towards large phase differences; iPLV is 0 for integer values of nϕxy. (i) wPLI as a function

of cΘ for nϕxy¼�0.3. wPLI is unaffected by linear mixing and does not report false positives. ( j)

wPLI as a function of nϕxy for cΘ¼ 0.4. Like iPLV, wPLI depends highly on phase difference
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5 All-to-All Connectivity Mapping

Connectivity studies have traditionally focused on analyzing a limited set of

interactions between selected regions of interest (ROIs). While this approach has

the advantage of limiting computational complexity, it is not without drawbacks.

First, relevant interactions between ROIs not included in the analysis will be

missed, giving the initial ROI choice a decisive role in the final results. Further-

more, using the same data for ROI selection and connectivity analyses leads to

circular analyses and in turn to invalid statistical inference (Ioannidis 2005;

Kriegeskorte et al. 2009). In contrast, all-to-all connectivity mapping explores

interactions between all possible pairs of cortical parcels. By avoiding selection

bias, it ensures that the strongest interactions will be identified regardless of

their anatomical location, although it leads to increased computational costs and

multiple comparisons, which should be corrected for.

5.1 Statistical Analysis and Thresholding

In all-to-all connectivity matrices, every interaction will have a non-zero value. For

network analysis, it is however preferable to have a sparse matrix with only the

most relevant connections. One simple way to obtain such a sparse matrix is to

discard all connections with values under a chosen threshold. However, it is

preferable to estimate the task-related significance of connections and keep only

those passing a particular statistical test, for example indexing significant increases

in synchrony compared to a chosen baseline. Afterwards, a threshold (or several,

see next paragraph) can still be applied to the resulting connectivity matrix to

further reduce the number of connections.

5.2 Graph Theory and Networks

Graph theory can be used to characterize synchrony networks, quantifying proper-

ties of vertices (parcels), edges (interactions), and whole graphs. Brain connectivity

graphs have high clustering, short average path lengths, dense intramodular con-

nectivity, and sparse intermodular connections (Bullmore and Sporns 2009) that are

the hallmarks of small-world networks (Watts 2004) These small-world networks

are associated with high local and global efficiency in information transmission

as well as facilitated parallel processing within hierarchically organized modules

(Bullmore and Sporns 2009). Not only can graph properties be modulated by

task demands and differ between frequency bands but they also can be significantly

different between pathological vs. healthy participants, for example, in schizophrenia

(Bassett et al. 2008, 2011; Micheloyannis et al. 2006; Siebenh€uhner et al. 2013).
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Graph metrics are, however, biased by connection density, which is artificially

increased by spurious connections (Antiqueira et al. 2010; van Wijk Bernadette

et al. 2010). An approach to account for this could be to analyze graph metrics at

different density levels which can be obtained by thresholding edges at a range of

values of the interaction metric (Bassett et al. 2011; Siebenh€uhner et al. 2013). This
is less problematic for vertex centrality measures such as degree and betweenness

centrality that can be used to identify hubs that are highly connected and/or

important “relay stations” for information transfer. Modularity analyses may be

used to identify subsystems or modules of vertices that are densely connected

among each other and work together to fulfill particular cognitive functions.

5.3 Alternatives to All-to-All Connectivity Mapping

An alternative to inverse modeling of the data and then computing pairwise

interactions between all reconstructed sources is to use a multivariate (MVAR)

approach. Here, an independent component analysis is performed on the sensor-

space signals, and an MVAR model is fitted to the components. The residuals of the

fitted MVAR model contain true interactions between brain regions and are largely

unaffected by signal mixing (Brookes et al. 2012).

6 Using Edge Bundling to Identify True Interactions

in the Presence of Signal Mixing

As detailed above, regardless of source reconstruction approach or chosen inter-

action metric, signal mixing in M/EEG data results in the detection of synchroni-

zation between cortical areas that are not truly connected. In this section, we will

illustrate how these false positives arise and how edge bundling methods can be

used to detect the underlying true interactions. As mentioned in earlier text,

artificial interactions are first order, zero-phase lag, false positives directly caused

by volume conduction and linear mixing (Drakesmith et al. 2013; Palva and Palva

2012). When an interaction metric sensitive to zero-phase lag interactions, such as

PLV, is used to estimate pairwise interactions, the resulting all-to-all connectivity

graphs will contain artificial interactions as edges connecting neighboring sources

in areas where mixing is significant (Fig. 4a). Interaction metrics insensitive to

zero-phase lag interactions, such as iPLV, will not report these (Fig. 4b), albeit at

the cost of also discarding any true zero-phase lag and anti-phase interactions.

Spurious interactions are second-order false positives indirectly caused by linear

mixing. Spurious interactions arise from the signal spread of truly connected

sources to their neighboring sources, which in turn leads to false positive obser-

vations of synchronization between such neighbors, or between these neighbors and

one of the truly connected sources (Fig. 4a and b). Because two true interacting
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neuronal processes can have non-zero-phase lag, the same is true for spurious

interactions.

Simulations using zero-phase lag insensitive interaction metrics show that a

single simulated true interaction can be mirrored into 10–100 of spurious inter-

actions in source-reconstructed cortical networks. Such a large number of false

positives severely confound the neurophysiological interpretability of the graphs

and distorts any network metrics based on the topology of the connectivity network.
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Fig. 4 Using iPLV and edge bundling to detect true positives among artificial and spurious

connections. On a grid toy model, one true interaction (coupling¼ 0.9) was simulated between

two sources U1 and V1 (the centers of the concentric circles), while the rest of sources were

uncorrelated. Linear mixing, i.e., magnetic field spread from true sources, was simulated as a 2D

Gaussian function and its strength is indicated by color gradient. (a) Phase interaction between all

source pairs was estimated with the phase locking value (PLV). Both artificial and spurious

connections are reported by PLV. Signal mixing directly causes zero-phase lag artificial connec-

tions between a true source and its neighbors. Additionally, it indirectly causes non-zero-phase lag

spurious connections between true sources and another source’s neighbors or between neighbors

of the true sources. (b) Using iPLV, the imaginary part of complex PLV, artificial connections are

not reported because iPLV is insensitive to zero-phase lag interactions. However, spurious

connections, which can have non-zero phase lag, are still observed. (c) Hyperedge bundling: an

edge representing a true interaction and the edges representing its neighboring spurious connec-

tions can be bundled into a hyperedge connecting regions U and V. (d) On a realistic cortical

system, 200 edges connecting randomly chosen nodes were simulated and estimated with iPLV

(the ground truth graph has uniform degree distribution K¼ 1). Significant edges were overlaid on

a flattened cortical map. The resulting graph contains 901 significant edges, of which 112 are true

positives (red), and has average path length¼ 4.5 and efficiency¼ 0.22. The color code of the

regions indicates cortical subsystems identified with fMRI-based FC network analysis (Yeo

et al. 2011). (e) The graph in d is transformed into a hypergraph where raw edges were all bundled

into hyperedges, and only hyperedges that contain at least five raw edges are shown
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We have examined an approach to minimize the impact of spurious interactions

using graph and hypergraph theoretical tools. First, we denote a cortical connec-

tivity network as a “raw” graph wherein brain regions or parcels are nodes and

significant interactions are raw edges (Newman 2003; Rubinov and Sporns 2010).

We argue that by transforming a “raw” graph into a hypergraph, in which the

mixing effect is estimated and raw edges are bundled into hyperedges, it is possible

to identify true interactions with high reliability. In such a hypergraph, a true

cortical interaction between parcels U1 and V1 and the spurious interactions involv-

ing neighboring parcels to U1 and V1 would be represented as a hyperedge between

regions U and V (Fig. 4c). These regions U and V would be centered on U1 and V1,

respectively.

This hyperedge bundling solution provides a much improved estimate of the true

underlying neuronal connectivity graph as well as an enhanced visualization that

represents the extent of field spread of the sources. The implementation of

hyperedge bundling requires: (1) a linear mixing function fmix(ui,vj) that quantifies
the amount of signal mixing between all pairs of brain region and (2) a sparse

pairwise interaction matrix as raw graph Graw with n edges resulting from statistical

analysis and/or thresholding. The linear mixing function can be obtained through a

similar process as described in Sect. 3 for fidelity estimation, in which simulated

time series are forward and inverse modeled.

In the bundling procedure, first, an edge-to-edge adjacency matrix EAij is

constructed using fmix(ui,vj) and Graw. EAij is an n� n matrix that describes the

adjacency between all edge pairs in signal mixing, i.e., the closer two edges are in

mixing, the more likely they are to reflect the same underlying true interaction(s).

Next, a hierarchical clustering algorithm is applied to EAij so that the resulting raw

edge clusters become hyperedges, in which all raw edges are close to each other in

signal mixing but far away from the raw edges assigned to other hyperedges.

Further, one can remove small hyperedges whose number of constituent raw

edges is below a threshold. These hyperedges are more likely to represent false

positives, although a small fraction of true positives may also be lost in the process.

This can be seen in simulated data, where this approach can convert a raw graph of

900 edges, of which the vast majority are false positives, into a hypergraph of a few

dozen hyperedges (Fig. 4d, e). Hyperedge bundling hence appears to be a promising

solution to the problem of spurious edges and can theoretically be applied to graphs

obtained with any interaction metric and source reconstruction method.
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