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Preface

The system-level neuronal mechanisms that coordinate temporally, anatomically,

and functionally distributed neuronal activity into coherent cognitive functions in

the human brain have remained poorly understood. Synchronized neuronal activity

coordinates and regulates neuronal processing in local neuronal circuits and could

hence be a system-level biological mechanism governing the coordination of

anatomically distributed processing in perception, action, and cognitive processes.

In humans, neuronal oscillations and synchronization can be recorded

non-invasively with electro- and magnetoencephalography (EEG and MEG) that

have excellent temporal and good spatial resolution when combined with source-

reconstruction methods. Although EEG and MEG recordings have revealed that

local oscillations characterize task-dependent neuronal activity and predict behavior,

less is known of the role of large-scale neuronal synchronization in the coordination of

neuronal processing in support of cognitive processes as the analysis of large-scale

synchrony from noninvasive MEG recording has been slowed down by several

technical challenges. Estimating the role of large-scale synchrony in cognitive pro-

cesses has been hindered by several technical difficulties, and only in recent years has

it been shown that large-scale inter-areal synchronization may have a critical role in

cognitive processing. In this book, the leading authors in the field describe how recent

technical advances have paved the way for several major breakthroughs in the analyses

and observations of human noninvasive MEG data.

In the first chapter, the research of groups of J. Matias Palva and myself describes

the technical challenges in the analyses of large-scale synchronization from MEG

data and approaches to overcome them. In the fourth chapter, we then discuss

empirical data using these novel approaches for MEG data analyses and what they

reveal about the roles of local and large-scale synchronization in visual attention,

working memory, and conscious perception.

The same theme is carried on in the second and third chapters, in which the

dynamical network states and synchronization are discussed as predictors of con-

scious sensory perception by the groups of Nathan Weisz and Lawrence Ward. The

chapter written by Peter Uhlhaas and Frederic Roux takes an additional view of

the topic by discussing the observations of thalamo-cortical oscillations and

v



synchronization in MEG data. A different theme is covered by Fernando Maestu and

colleagues who discuss the role of oscillations and synchronization in

neuroaesthetics.

As discussed in these chapters, neuronal oscillations and large-scale synchroniza-

tion are hence crucial in normal cognitive functioning. However, in several neuro-

psychiatric diseases, development of the nervous system, including neuronal

oscillations and synchronization, is abnormal and thought at least partially to explain

the deficits in the cognitive functions. This aspect is discussed in the chapters

“Development of Human Neurophysiological Activity and Network Dynamics”

and “The Role of Functional Networks in Neuropsychiatric Disorders” by Sam

Doesburg, Fernando Maestu, and Leonides Canuet together with their colleagues.

I would like to warmly thank all the authors for their contributions to this book.

This book covers extensively the functional significance of neuronal oscillations

and synchronization in healthy and diseased human brain.

I wish you a good and instructive time in reading this book.

Helsinki, Finland Satu Palva

March 2016
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Measuring Large-Scale Synchronization

with Human MEG and EEG: Challenges

and Solutions

Felix Siebenh€uhner, Muriel Lobier, Sheng H. Wang, Satu Palva,

and J. Matias Palva

1 Introduction

1.1 Measuring Neuronal Oscillations and Synchronization
in Noninvasive Electrophysiological Recordings

During the past two decades, a number of seminal studies have shown that syn-

chronous neuronal activity and neuronal oscillations can mechanistically support

the coordination of neuronal processing across distributed neuronal assemblies

(Fries 2015; Singer 1999, 2009).

Neuronal oscillations occur in a wide range of frequency bands (at least

0.01�200 Hz) associated with distinct cognitive functions (Buzsaki and Draguhn

2004) and can be characterized by their amplitude, phase, and frequency. Behav-

iorally relevant oscillations characterize all scales of the nervous system and can be

measured at millisecond temporal resolution by electrophysiological recordings.

Spatial resolutions range from macroscopic (1–3 cm) in magneto- and electro-

encephalography (MEG and EEG) over mesoscopic (1–10 mm), such as in

human intracranial EEG (iEEG), to microscopic levels in extracellular field poten-

tials and neuronal membrane potentials accessible with microelectrodes in animal

models. The amplitude of neuronal oscillations in macro- and mesoscopic record-

ings is largely determined by the fraction of local neurons that receive coherent

synaptic inputs or operate coherently as a synchronized assembly among less

coherent neurons. Amplitude, hence, is primarily a measure of local synchroni-

zation. Phase, on the other hand, quantifies the temporal evolution of the oscillatory

cycle (see Fig. 1b) and is essential for the assessment of the phase-locking of local

oscillations to internal or external events. Importantly, it is also critical for
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determining whether signals from two regions have a consistent phase relationship

(i.e., synchronized): a statistically nonrandom inter-areal phase relationship indi-

cates phase synchronization.

1.2 Overview of the Confounds in the Estimation
of Synchrony in Electrophysiological Recordings

While sensor-to-sensor analyses of MEG and EEG data have indicated that task

demands for cognitive integration are associated with long range synchronization of

neuronal oscillations (Palva and Palva 2012), these analyses not only suffer from

confounds introduced by signal mixing and source amplitude modulations but also

yield essentially no information about the anatomical structures generating the

signals. In contrast, invasive recordings provide precise information on the ana-

tomical location of the sources of neuronal oscillations and avoid confounds due to

signal mixing. Their relevance to cortex-wide phase synchrony is, however, limited

due to the sparse sampling of cortical locations that they offer. Despite methodo-

logical challenges that will be detailed below, MEG and EEG recordings can be

used with source reconstruction methods to investigate the cortex-wide networks of

phase synchrony (Palva et al. 2005, 2010, 2011; Palva and Palva 2012). Of these

LF
P

Sp
ik

es

High Excitability

Area A
LF

P
Sp

ik
es

Area B

No synchrony No communication

Coincident spikes

C
oi

nc
i-

de
nc

es

A

B
Synchrony

Low ExcitabilityFig. 1 Oscillations

facilitate intra- and inter-

areal synchronization. (a)

Oscillations reflect local

synchronization of neuronal

spiking within a population.

(b) Synchronization of two

different neuronal

populations at a specific

phase difference enables

communication. In this

example, synchrony is

enabled at zero phase

difference, so neurons in

both populations are spiking

coincidentally and inhibited

at 180� phase difference.
Note that depending on the

distance between the

populations,

synchronization can also

occur at non-zero phase

differences

2 F. Siebenh€uhner et al.



two, MEG offers a better spatial resolution as it is not confounded by the volume

conduction and high resistivity of the skull, but combining MEG and EEG improves

the detectability of some sources because MEG and EEG have distinct sensitivities

(Sharon et al. 2007).

1.3 Problem Statement and Outline

In this chapter, we will first outline the data analysis “pipeline” for MEG and EEG

from preprocessing to filtering and inverse modeling (Sect. 2). We will assess the

basic interaction metrics that can be used to estimate pairwise interactions and their

inherent advantages and disadvantages (Sect. 3). Section 4 will present the causes

and consequences of linear mixing arising from volume conduction and signal

mixing, the most profound challenge arising in MEG/EEG data analysis, and how

sensitive different interaction metrics are to this problem. In Sect. 5, the advantages

and challenges of all-to-all connectivity mapping will be discussed, and in Sect. 6,

we will introduce methods of edge bundling to minimize the effects of

signal mixing and improve the ratio of true to false positives.

2 The MEG/EEG Data Analysis Pipeline

2.1 Preprocessing of MEG/EEG Data

Identifying behaviorally relevant patterns of inter-areal correlations or synchroni-

zation in MEG/EEG data can be confounded by numerous sources of artifacts. We

outline next the preprocessing steps that are essential for excluding extracranial

signal sources and artifacts. MEG/EEG data are usually recorded while participants

are carrying out a cognitive task of interest or, if applicable, are in a resting state. In

a step often referred to as preprocessing, the sensor-space raw data are cleaned or

de-noised using manual and/or automatic procedures. In the next step, the

preprocessed sensor-space time series are filtered in order to estimate their oscil-

latory components in relatively narrow frequency bands. Using an appropriate source

reconstruction technique, the time series of cortical sources are then estimated.

These cortical time series are then used to compute the strength of inter-areal

correlations or synchronization between each pair of cortical areas in time windows

of interest. Finally, statistical thresholding procedures are used to identify which

pairs of cortical areas are truly phase synchronized, yielding the spatial, spectral,

and temporal characteristics of inter-areal phase synchronized networks.

The preprocessing of rawMEG/EEG sensor-space data involves both visual data

inspection and several noise reduction techniques. Raw data are visually inspected

to remove bad channels (sensors with excessive noise or reoccurring artifacts) and

Measuring Large-Scale Synchronization with Human MEG and EEG: Challenges and. . . 3



to mark bad data segments, such as time periods with increased environmental

noise, head movement artifacts, or large-amplitude facial or neck muscle artifacts.

MEG and EEG data are also contaminated by both environmental and participant

noise that cannot be removed by simple manual inspection. Although MEG scan-

ners are set up in shielded rooms designed to minimize noise and interference from

other sources of magnetic fields, it is unavoidable that some extracranial environ-

mental noise will be present in the raw signal. Using signal separation techniques

such as temporal extension of signal space separation (tSSS) (Taulu et al. 2005), the

presence of this type of noise in the data can be minimized. Also, participants

themselves contribute continuous non-cortical noise to the MEG and EEG record-

ings, most often in the form of cardiac artifacts as well as eye blinks or movements.

Using independent component analysis (ICA) (Bell and Sejnowski 1995), electro-

oculography (EOG), and electrocardiography (ECG) measured concurrently with

MEG/EEG, data components resulting from these interferences can be identified

and removed.

2.1.1 Filtering for the Extraction of Narrowband Oscillations from

Broadband Signals

Filtering is necessary to extract the oscillatory components of a signal for different

frequency bands. Classical methods for converting a time-domain signal into the

frequency domain, such as the Fourier transform, are, however, suboptimal here.

These methods assume stationary signals, cannot detect temporal interactions

(Li et al. 2007), and yield fixed bin-sized frequency scaling. In contrast, analyses

of task modulations of neuronal oscillations require techniques that yield estimates

of instantaneous amplitude and phase values of the signals, most often from a time–

frequency transform of the original signal (Bruns 2004). Using such time-resolved

spectral analysis, a time-dependent spectrum s(t, f ) can be computed from a time

series of interest s(t) where t is time and f is frequency. This time–frequency

representation is complex-valued and consists, for each time point, of an instanta-

neous amplitude A(t, f ) and an instantaneous phase θ (t, f ):

S t; fð Þ ¼ A t; fð Þeiθ t; fð Þ

Such complex valued time–frequency representations can be obtained using

wavelet-based filtering. The time-domain signal s(t) is convolved with a series or

family of filter kernels, wavelets w(t, f0), that cover the frequency range of interest.
For each center frequency f0, the wavelet is defined as the product between a

complex-valued oscillation at the frequency of interest and a bell-shaped, real-

valued envelope: w(t, f0)¼A·exp(�t2/2σt
2·2)·exp(2iπf0t) where σt¼m/2πf0 is the

frequency domain standard deviation. The convolution S(t, f0)¼ s(t)� w(t, f0) gives
a complex vector S(t, f0), the angle of which is the phase of the signal s in a

frequency band with a center frequency of f0. The parameter m determines the

4 F. Siebenh€uhner et al.



effective number of oscillation cycles used to estimate signal amplitude and phase

and therefore represents the compromise between time and frequency resolutions.

2.1.2 Source Reconstruction

While the magnetic fields generated by known sources can be estimated accurately

from known current sources through forward modeling, estimation of the location

and strengths of current sources in MEG/EEG data is an ill-posed inverse problem

with no unique solutions. Nevertheless, inverse modeling can produce good esti-

mates of those sources through the use of constraints such as minimization of total

current and modeling of source dipoles on individual cortical surfaces obtained

from MRI scans (Palva et al. 2010; Palva and Palva 2012).

Before solving the inverse problem, a forward model must be constructed that

gives the distribution of currents and magnetic fields created by known sources in

the head. For this, volume conduction models of the head are created assuming a

spherical model or spherical harmonics (Mosher et al. 1999), which should be

integrated with individual anatomical information obtained with MRI. For accurate

modeling, co-registration of MEG/EEG and MRI should be as accurate as possible;

subjects’ head movements should be as small as possible (Whalen et al. 2008;

Gross et al. 2013).

The two most common approaches to inverse modeling are the Beamformer

method (Van Veen et al. 1997) and minimum norm estimates (MNE) (Hamalainen

and Sarvas 1989; Lin et al. 2006).

MNEs yield time series of 6000–8000 sources, “vertices,” covering the cortical

surface. Considering that MEG/EEG recordings have only two to three hundreds of

sensors and even fewer degrees of freedom, these sources are highly redundant.

Thus, to decrease redundancy and improve signal-to-noise ratio (SNR), as well as to

analyze MEG/EEG data in a form that is directly comparable with MRI studies, the

MNE vertex time series can be collapsed into time series of a few hundreds of

cortical areas. These “cortical parcels” can be obtained either by computing a

weighted average of the vertex time series (Palva et al. 2010, 2011) or by using

the time series of the vertex with maximum power (Hillebrand et al. 2012).

2.1.3 Parcellations

Anatomical parcellations, such as Desikan-Killiany and Destrieux, are derived from

brain atlases of cortical gyral and sulcal structure revealed in MRI structural

imaging (Dale et al. 1999; Fischl et al. 1999, 2002, 2004). As finer resolutions

and/or more balanced parcel sizes are commonly needed, parcels from these atlases

can be subdivided further (Cammoun et al. 2012; Hagmann et al. 2008;

Palva et al. 2010, 2011). To accurately localize parcels on individual brains,

structural scans can be recorded from all subjects with MRI. Software such as

Measuring Large-Scale Synchronization with Human MEG and EEG: Challenges and. . . 5



FreeSurfer (http://surfer.nmr.mgh.harvard.edu) can then be used for volumetric

segmentation, surface reconstruction, flattening, parcellation, and neuroanatomical

labeling of individual brains.

2.1.4 Fidelity-Optimized Source Solution Collapse Operators

One approach to maximize the source reconstruction accuracy is to use sparse

fidelity-optimized collapse operators for collapsing the source vertex time series

into parcel time series. Simulations are used to select for each parcel the MNE

reconstructed vertex time series that is thought to best represent the true parcel time

series. Simulated time series for each parcel are forward- and inverse modeled to

compute “fidelity,” a measure of how accurately an MNE vertex time series

represents the original time series. Only the vertices with the highest fidelity are

used to compute a parcel’s time series as fidelity-weighed average. The enhanced

time series reconstruction has been shown to improve accuracy of subsequent

analyses of both local dynamics and large-scale interaction mapping while decreas-

ing computational load (Korhonen et al. 2014; Fig. 2).

0.11 0.2 0.3 0.4 0.5 
Fidelity 

0.11 0.2 0.3 0.4 0.5 
Fidelity 

Ant 

Post 

Med 

Lat 

Lat 

Med 

vertices parcels, anat parcels, opt 

anat, mean 

A 

B C opt- anat opt, mean 

0 0.05 0.1 0.15 0.2 
Fidelity difference 

Fig. 2 The optimization of inverse collapse weighting operator increases the fidelity of all

parcels, especially on the lateral surface. Adapted from Korhonen et al. (2014). (a) The vertex

and parcel fidelities of inverse solutions collapsed with standard anatomical and fidelity-optimized

weighting operators for one representative subject. Low fidelity ( f< 0.11) parcels are colored

black. (b) Grand-average parcel fidelity for anatomical and fidelity-optimized weighting operators.

The color scale is similarly as in a, and the group level low-fidelity parcels are identified on the

anatomical map (bottom panel). (c) Significant parcel fidelity differences between inverse solu-

tions collapsed with the different operators (opt–anat; p< 0.001, uncorrected, paired t-test across
13 subjects, parcels without a significant change uncolored)
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3 Interaction Metrics, Solutions to the Linear Mixing

Problem, and Residual Challenges

To quantify the connections between signal pairs, various interaction metrics

exist that can be estimated from either the amplitude or the phase of signals’ time

series.

3.1 Amplitude Correlations

The correlations between the amplitude envelopes can be assessed with the Pearson

correlation coefficient (CC). CC will, however, yield inflated values in the presence

of linear mixing. To estimate amplitude correlations in a manner insensitive to

linear mixing, the narrowband time series are orthogonalized for each pair of

cortical parcels or electrode contacts, using linear regression algorithm (Brookes

et al. 2012), and the orthogonalized correlation coefficient (oCC) is computed for

the amplitude envelopes of the orthogonalized time series:

CC ¼ 1

2
corr AX;A

Y
��X

� �
þ corr A

X
��Y ;AY

� �� �
ð2Þ

where AX, AY and A
X
��Y , A

Y
��X are the amplitude envelopes of the original and

orthogonalized time series, respectively.

The narrowband time series X and Y can be orthogonalized as follows:

Y��X ¼ Y � βX ¼ Y � XXT
� ��1

XXT
h i

X ð3Þ

and analogously for X��Y .

3.2 Phase Locking and Phase Lag Index

Phase locking between two sources is statistically indicated by a nonrandom phase

or phase-difference distribution. The most common index is the phase locking value

(PLV) that is given by means of the complex phases θi (Lachaux et al. 1999;

Sinkkonen et al. 1995).

Measuring Large-Scale Synchronization with Human MEG and EEG: Challenges and. . . 7



PLV ¼ 1

Nt

X
eiðθ1�θ2Þ

���
���

where Nt is the number of samples pooled across trials and/or time and i is the

imaginary unit.

PLV is 1 for perfect coupling (delta-function phase distribution) and approaches

0 for a uniform phase distribution when Nt!1. If samples are independent and the

marginal phase distributions are uniform, the no-interaction null hypothesis is

characterized by a uniform distribution and the Rayleigh test can be applied.

When samples are pooled across time, and are not independent, and/or when the

underlying process is not sinusoidal (see Nikulin et al. 2007), statistical testing

needs to be carried out with surrogate data. Further, the PLV is sample-size biased,

and hence sample sizes always need to be equalized across conditions. It is also

helpful to define the complex PLV:

cPLV ¼ 1

Nt

X
eiðθ1�θ2Þ

h i

so that PLV¼ |cPLV|. While PLV is equally sensitive to coupling at all phase

differences, it is also sensitive to inflation of the coupling estimates by linear

mixing. The imaginary part of the cPLV is only sensitive to non-zero phase

differences, and, thus, imaginary PLV (iPLV¼ |im(cPLV)| can be used to estimate

phase coupling in a manner insensitive to linear mixing.

An alternative approach to quantifying phase relationships relies on quantifying

the asymmetry of the distribution of phase differences. For non-phase-coupled time

series, the distribution of phase differencesФ would be flat, so any deviation from a

flat distribution can be taken as evidence of phase synchronization. From this, the

phase lag index (PLI) is derived: PLI ¼ j⟨signðΦÞ⟩j, where ⟨ ⟩ denotes the expec-

tation value (Stam et al. 2007; Stam and van Straaten 2012).

4 Effects of Linear Mixing on Estimates of Phase

and Amplitude Correlations

InMEG/EEG sensor space, interaction analyses can be confounded by signalmixing,

source amplitude changes, and other issues (Gross et al. 2013; Palva and Palva 2012;

Schoffelen and Gross 2009). Identification of the correct anatomical sources is

crucial for appropriate interpretations of the results because even nearby cortical

regions may play very different functional roles. In connectivity analysis, signal

mixing gives rise to two confounders: artificial and spurious connections. Unfortu-

nately, these terms have been used with various definitions in the literature. We will

use here the definition from Palva et al. (Palva and Palva 2012): artificial connections

are a direct result of the source-space signal spread caused by linear signal mixing.

8 F. Siebenh€uhner et al.



The reconstructed signal in a given cortical parcel is contaminated by signals

emanating from its neighboring parcels, giving rise to an increase in zero-lag phase

differences, and thus zero-lag synchrony, in the absence of any true interactions.

These are termed false positives of the first order. Spurious connections, or false

positives of the second order, are “false” interactions created by the concurrent

presence of a true interaction and linear mixing. Since the reconstructed time series

of parcels close to the truly connected parcels are contaminated by signals that are

truly phase synchronized, these parcels will appear to also be phase synchronized.

In contrast to artificial connections, spurious connections are only present between

parcels close to true interactions and neither limited to nearby parcels nor to zero-lag

phase differences.

4.1 Influence of Linear Mixing on Interaction Metrics

In contrast to true neuronal interactions that often involve a conduction-delay-

related phase lag, artificial connections are characterized by zero-lag phase differ-

ences. As a consequence, choosing a metric that is not sensitive to zero-lag phase

differences such as iPLV or PLI for phase coupling or oCC for amplitude correl-

ations will suppress the effects of artificial linear mixing. This is, however,

achieved at the cost of missing also any true phase interactions whose lag is zero

or �π. On the other hand, spurious interactions can have any phase lag and are

therefore not generally discarded by such metrics.

In both amplitude- and phase-based analyses, measures have been developed

that are insensitive to the direct effects of signal mixing (Brookes et al. 2012; Hipp

et al. 2012). While the correlation coefficient (CC) reveals artificial connections

caused by linear mixing, as can be seen for simulated data (Fig. 3a), orthogonali-

zation of the real-valued signals x(t) and y(t) before the estimation of their ampli-

tude envelopes and their correlation removes linear dependencies. This

orthogonalized correlation coefficient (oCC) therefore does not yield artificial

correlations between neighboring sensors arising directly from source spread

(Fig. 3c), although it will still pick up long-range spurious connections. Further, it

can been shown that the values of these measures are also sensitive to the value of

phase difference when phase correlations are present (Fig. 3b, d).

Similar to the CC, the PLV is sensitive to artificial connections (Fig. 3e) and

biased by phase differences when signal mixing is strong (Fig. 3f).

Metrics which ignore the real part of the complex phase differences, such as the

iPLV (the imaginary part of complex PLV) and the weighted phase lag index

[wPLI, (Vinck et al. 2011)], are therefore insensitive to direct effects of linear

mixing while revealing phase-lagged interactions (Fig. 3g, i). However, not only

are these insensitive to true interactions at 0 or� π phase lag but also their value is

dependent on the phase difference per se in addition to the strength of the inter-

action (Fig. 3h, j).

Measuring Large-Scale Synchronization with Human MEG and EEG: Challenges and. . . 9
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Fig. 3 Interaction metrics are affected by coupling strength, phase difference, and linear mixing.

(a) Correlation coefficient (CC) as a function of amplitude coupling strength cA in the absence of

phase correlations (phase coupling cΘ¼ 0, phase difference nϕxy¼ 0). CC increases with linear

mixing m, leading to false positives. (b) CC between the signals as a function of phase difference

nϕxy, for cΘ¼ 0.4. The horizontal lines visualize the mean CC obtained at cΘ¼ 0. In the presence
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Ultimately, all interaction measures are sensitive to linear mixing effects, albeit

in different manners. While iPLV, wPLI, and oCC do not report artificial connec-

tions, they are still sensitive to spurious connections and to the value of phase

differences. Therefore, one should not expect optimal results solely from choosing

a good interaction measure.

4.2 Interaction of Phase and Amplitude Dynamics

It has been shown that in the analysis of pairwise interactions between signals

containing noise, amplitude and phase dynamics influence each other (Daffertshofer

and vanWijk 2011; Schoffelen and Gross 2009). In real signals, noise levels change

over time, resulting in a fluctuating signal-to-noise ratio (SNR). Not only does this

imply that lower noise levels will result in higher measured phase synchrony but

also that synchrony estimates will increase when the SNR of the sources is corre-

lated. There can even be cases in which a decrease in true connectivity coinciding

with an increase in SNR leads to an increase in measured connectivity (Schoffelen

and Gross 2009). Further, as mentioned in the last paragraph, simulations show that

as a result of signal mixing, phase coupling also influences amplitude correlations.

When phase differences are small, signal mixing increases amplitude corre-

lations measured with the correlation coefficient CC, whereas when signals are

close to anti-phase, signal mixing reduces CC. The orthogonalized correlation

coefficient oCC may be further biased by phase effects because the orthogonal-

ization process uses the real part of the signals, which contains both amplitude and

phase information.

Spontaneous and stimulus-induced changes in the amplitudes of ongoing acti-

vity influence (1) the signal-to-noise ratio of signals from a given source in relation

to environmental and sensor noise and (2) the balance in the mixing of signals from

multiple concurrent sources. Both effects influence the accuracy of phase (and

amplitude) computations and therefore bias interaction estimates.

⁄�

Fig. 3 (continued) of phase coupling, CC is biased by nϕxy. (c) oCC as a function of amplitude

coupling strength cA in the absence of phase correlations (cΘ¼ 0, nϕxy¼ 0). oCC decreases with

linear mixing and does not report false positives. (d) oCC as a function of nϕxy, for cΘ¼ 0.4. Like

CC, oCC is biased by nϕxy, but in a different manner. (e) PLV as a function of phase coupling

strength cΘ for different linear mixing strengthsm. PLV increases with mixing, especially at low or

zero coupling, leading to false positives. Here, nϕxy¼�0.3. (f) PLV as a function of normalized

phase difference nϕxy for different strengths m of linear mixing and for cΘ¼ 0.4. PLV is greatly

affected by the phase difference when signal mixing is strong. (g) iPLV as a function of cΘ for

nϕxy¼�0.3. iPLV decreases with linear mixing and does not report false positives. (h) iPLV as a

function of nϕxy for cΘ¼ 0.4. The strength of iPLV depends highly on phase difference and is

biased towards large phase differences; iPLV is 0 for integer values of nϕxy. (i) wPLI as a function

of cΘ for nϕxy¼�0.3. wPLI is unaffected by linear mixing and does not report false positives. ( j)

wPLI as a function of nϕxy for cΘ¼ 0.4. Like iPLV, wPLI depends highly on phase difference
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5 All-to-All Connectivity Mapping

Connectivity studies have traditionally focused on analyzing a limited set of

interactions between selected regions of interest (ROIs). While this approach has

the advantage of limiting computational complexity, it is not without drawbacks.

First, relevant interactions between ROIs not included in the analysis will be

missed, giving the initial ROI choice a decisive role in the final results. Further-

more, using the same data for ROI selection and connectivity analyses leads to

circular analyses and in turn to invalid statistical inference (Ioannidis 2005;

Kriegeskorte et al. 2009). In contrast, all-to-all connectivity mapping explores

interactions between all possible pairs of cortical parcels. By avoiding selection

bias, it ensures that the strongest interactions will be identified regardless of

their anatomical location, although it leads to increased computational costs and

multiple comparisons, which should be corrected for.

5.1 Statistical Analysis and Thresholding

In all-to-all connectivity matrices, every interaction will have a non-zero value. For

network analysis, it is however preferable to have a sparse matrix with only the

most relevant connections. One simple way to obtain such a sparse matrix is to

discard all connections with values under a chosen threshold. However, it is

preferable to estimate the task-related significance of connections and keep only

those passing a particular statistical test, for example indexing significant increases

in synchrony compared to a chosen baseline. Afterwards, a threshold (or several,

see next paragraph) can still be applied to the resulting connectivity matrix to

further reduce the number of connections.

5.2 Graph Theory and Networks

Graph theory can be used to characterize synchrony networks, quantifying proper-

ties of vertices (parcels), edges (interactions), and whole graphs. Brain connectivity

graphs have high clustering, short average path lengths, dense intramodular con-

nectivity, and sparse intermodular connections (Bullmore and Sporns 2009) that are

the hallmarks of small-world networks (Watts 2004) These small-world networks

are associated with high local and global efficiency in information transmission

as well as facilitated parallel processing within hierarchically organized modules

(Bullmore and Sporns 2009). Not only can graph properties be modulated by

task demands and differ between frequency bands but they also can be significantly

different between pathological vs. healthy participants, for example, in schizophrenia

(Bassett et al. 2008, 2011; Micheloyannis et al. 2006; Siebenh€uhner et al. 2013).
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Graph metrics are, however, biased by connection density, which is artificially

increased by spurious connections (Antiqueira et al. 2010; van Wijk Bernadette

et al. 2010). An approach to account for this could be to analyze graph metrics at

different density levels which can be obtained by thresholding edges at a range of

values of the interaction metric (Bassett et al. 2011; Siebenh€uhner et al. 2013). This
is less problematic for vertex centrality measures such as degree and betweenness

centrality that can be used to identify hubs that are highly connected and/or

important “relay stations” for information transfer. Modularity analyses may be

used to identify subsystems or modules of vertices that are densely connected

among each other and work together to fulfill particular cognitive functions.

5.3 Alternatives to All-to-All Connectivity Mapping

An alternative to inverse modeling of the data and then computing pairwise

interactions between all reconstructed sources is to use a multivariate (MVAR)

approach. Here, an independent component analysis is performed on the sensor-

space signals, and an MVAR model is fitted to the components. The residuals of the

fitted MVAR model contain true interactions between brain regions and are largely

unaffected by signal mixing (Brookes et al. 2012).

6 Using Edge Bundling to Identify True Interactions

in the Presence of Signal Mixing

As detailed above, regardless of source reconstruction approach or chosen inter-

action metric, signal mixing in M/EEG data results in the detection of synchroni-

zation between cortical areas that are not truly connected. In this section, we will

illustrate how these false positives arise and how edge bundling methods can be

used to detect the underlying true interactions. As mentioned in earlier text,

artificial interactions are first order, zero-phase lag, false positives directly caused

by volume conduction and linear mixing (Drakesmith et al. 2013; Palva and Palva

2012). When an interaction metric sensitive to zero-phase lag interactions, such as

PLV, is used to estimate pairwise interactions, the resulting all-to-all connectivity

graphs will contain artificial interactions as edges connecting neighboring sources

in areas where mixing is significant (Fig. 4a). Interaction metrics insensitive to

zero-phase lag interactions, such as iPLV, will not report these (Fig. 4b), albeit at

the cost of also discarding any true zero-phase lag and anti-phase interactions.

Spurious interactions are second-order false positives indirectly caused by linear

mixing. Spurious interactions arise from the signal spread of truly connected

sources to their neighboring sources, which in turn leads to false positive obser-

vations of synchronization between such neighbors, or between these neighbors and

one of the truly connected sources (Fig. 4a and b). Because two true interacting
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neuronal processes can have non-zero-phase lag, the same is true for spurious

interactions.

Simulations using zero-phase lag insensitive interaction metrics show that a

single simulated true interaction can be mirrored into 10–100 of spurious inter-

actions in source-reconstructed cortical networks. Such a large number of false

positives severely confound the neurophysiological interpretability of the graphs

and distorts any network metrics based on the topology of the connectivity network.
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Fig. 4 Using iPLV and edge bundling to detect true positives among artificial and spurious

connections. On a grid toy model, one true interaction (coupling¼ 0.9) was simulated between

two sources U1 and V1 (the centers of the concentric circles), while the rest of sources were

uncorrelated. Linear mixing, i.e., magnetic field spread from true sources, was simulated as a 2D

Gaussian function and its strength is indicated by color gradient. (a) Phase interaction between all

source pairs was estimated with the phase locking value (PLV). Both artificial and spurious

connections are reported by PLV. Signal mixing directly causes zero-phase lag artificial connec-

tions between a true source and its neighbors. Additionally, it indirectly causes non-zero-phase lag

spurious connections between true sources and another source’s neighbors or between neighbors

of the true sources. (b) Using iPLV, the imaginary part of complex PLV, artificial connections are

not reported because iPLV is insensitive to zero-phase lag interactions. However, spurious

connections, which can have non-zero phase lag, are still observed. (c) Hyperedge bundling: an

edge representing a true interaction and the edges representing its neighboring spurious connec-

tions can be bundled into a hyperedge connecting regions U and V. (d) On a realistic cortical

system, 200 edges connecting randomly chosen nodes were simulated and estimated with iPLV

(the ground truth graph has uniform degree distribution K¼ 1). Significant edges were overlaid on

a flattened cortical map. The resulting graph contains 901 significant edges, of which 112 are true

positives (red), and has average path length¼ 4.5 and efficiency¼ 0.22. The color code of the

regions indicates cortical subsystems identified with fMRI-based FC network analysis (Yeo

et al. 2011). (e) The graph in d is transformed into a hypergraph where raw edges were all bundled

into hyperedges, and only hyperedges that contain at least five raw edges are shown
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We have examined an approach to minimize the impact of spurious interactions

using graph and hypergraph theoretical tools. First, we denote a cortical connec-

tivity network as a “raw” graph wherein brain regions or parcels are nodes and

significant interactions are raw edges (Newman 2003; Rubinov and Sporns 2010).

We argue that by transforming a “raw” graph into a hypergraph, in which the

mixing effect is estimated and raw edges are bundled into hyperedges, it is possible

to identify true interactions with high reliability. In such a hypergraph, a true

cortical interaction between parcels U1 and V1 and the spurious interactions involv-

ing neighboring parcels to U1 and V1 would be represented as a hyperedge between

regions U and V (Fig. 4c). These regions U and V would be centered on U1 and V1,

respectively.

This hyperedge bundling solution provides a much improved estimate of the true

underlying neuronal connectivity graph as well as an enhanced visualization that

represents the extent of field spread of the sources. The implementation of

hyperedge bundling requires: (1) a linear mixing function fmix(ui,vj) that quantifies
the amount of signal mixing between all pairs of brain region and (2) a sparse

pairwise interaction matrix as raw graph Graw with n edges resulting from statistical

analysis and/or thresholding. The linear mixing function can be obtained through a

similar process as described in Sect. 3 for fidelity estimation, in which simulated

time series are forward and inverse modeled.

In the bundling procedure, first, an edge-to-edge adjacency matrix EAij is

constructed using fmix(ui,vj) and Graw. EAij is an n� n matrix that describes the

adjacency between all edge pairs in signal mixing, i.e., the closer two edges are in

mixing, the more likely they are to reflect the same underlying true interaction(s).

Next, a hierarchical clustering algorithm is applied to EAij so that the resulting raw

edge clusters become hyperedges, in which all raw edges are close to each other in

signal mixing but far away from the raw edges assigned to other hyperedges.

Further, one can remove small hyperedges whose number of constituent raw

edges is below a threshold. These hyperedges are more likely to represent false

positives, although a small fraction of true positives may also be lost in the process.

This can be seen in simulated data, where this approach can convert a raw graph of

900 edges, of which the vast majority are false positives, into a hypergraph of a few

dozen hyperedges (Fig. 4d, e). Hyperedge bundling hence appears to be a promising

solution to the problem of spurious edges and can theoretically be applied to graphs

obtained with any interaction metric and source reconstruction method.
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Dynamical Network States as Predisposition
of Perception

Nicholas A. Peatfield, Dawoon Choi, and Nathan Weisz

1 Introduction

One example of an area where the concepts of multimodal oscillation-based

connectivity theory can be applied to is consciousness research. Within this chapter,

we will outline a specific question that regards the broad framework of the neural

correlates of consciousness (NCC; Crick and Koch 2003). Here, NCC does not refer

to the phenomenological state of consciousness, but the measures/states that cor-

relate with the particulars of consciousness (e.g., seen vs. unseen). This chapter will

not go into depth about the philosophical debates that are ongoing in consciousness

research, instead, it will focus initially on two main theories of consciousness, and

then outline the “Windows to Consciousness” [Win2Con; (Weisz et al. 2014)]

framework. It is within this experimental framework where we present our evidence

that consciousness and NCC encompass connectivity dynamics. Specifically, the

theory assigns the connectivity pattern of the brain before the event to be a critical

determinant of the conscious experience of that event. The experimental evidence

presented will primarily focus on the working term of “conscious access” which is

the state in which participants report the observation of the stimulus (i.e., seen

vs. unseen). Towards the conclusion, we will provide some evidence of how

preestablished connectivity patterns prior to stimulus onset also matters for the

“conscious content” (e.g., seen house vs. seen face).

N.A. Peatfield

Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria

Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada

D. Choi

Department of Psychology, University of British Columbia, Vancouver, BC, Canada

N. Weisz (*)

Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria

e-mail: nathan.weisz@sbg.ac.at

© Springer International Publishing Switzerland 2016

S. Palva (ed.), Multimodal Oscillation-based Connectivity Theory,
DOI 10.1007/978-3-319-32265-0_2

19

mailto:nathan.weisz@sbg.ac.at


The question of NCC has been approached by some of the world’s best scien-
tists, and although much progress has been made, there remain some nuances that

need to be addressed. One of the shortcomings of NCC studies is the limited epochs

of analysis investigated in addressing the question of consciousness. With the

classic approach being tied heavily to the event-related averaging in neurophysiol-

ogy, we now have a strong grasp of the correlations between consciousness and

poststimulus effects. Within, we will give a short introduction to the current

understanding of the poststimulus NCC, in particular, focusing on the global

workspace (GW) theory of consciousness (Baars 2002) and later present an outline

of the “gating-by-inhibition” prestimulus effects (Mazaheri and Jensen 2008).

Due to the measurement limitations within fMRI, the research on the timing of

the conscious experience is sparser when measured using fMRI. To provide a scope

of temporally finer aspects of consciousness research, this chapter will focus mainly

on the electro- and magnetoencephalography measures of consciousness and make

inferences about the sources based on our knowledge gleamed from fMRI.

2 Stimulus-Evoked Activity and Local–Global
Connectivity

Using masking paradigms, for example, the attentional-blink task, researchers have

examined the differences in evoked responses between visible and invisible stim-

uli—a measure of conscious access. A seminal piece by Sergent and colleagues

(2005) recorded EEG during the attentional-blink task and contrasted the activation

to an identical stimulus that was either seen or unseen in the task. The critical

finding here was that during the early components (P1:96 ms and N1:180 ms), there

was no difference in the response or the topography (both residing primarily in

occipital cortices) for the contrast of seen vs. unseen, whereas in the later compo-

nents (N2:275 ms; P3a:436 ms; and P3b:576 ms), there was a marked difference in

both the level of response and the topography, with the seen stimulus showing

amplified activity in the parietal/temporal/frontal topographies. This finding was

used as an evidence towards one of the prominent models of consciousness that

Dehaene and Changeux (2011) put forward. One of the main components of the

model proposed by Dehaene and Changeux (2011) is the notion that for conscious

experience to be manifested there needs to be a “global workspace”

(GW) activation, that is, a top-down recurrent, reentrant, or resonant connectivity

state that drives the state of the brain to a coherent form of subjective consciousness

(Dehaene et al. 2003). The model predicts [a progressive model derived from Baars

(1988) GW model] a variety of neural states: sustained activity in the primary

sensory areas (V1, A1, S1); an amplification of perceptual processing; correlations

across distant regions; joint parietal, frontal, and cingulate activation; the P300

waveform; and gamma-band oscillations. Furthermore, in concurrence with the

bottom-up activation and top-down processes, an “ignition” of brain-wide neural
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assembly induces a state of coherent activity involving many neurons distributed.

The relation between the ignited states to the conscious states lies in the core idea

behind the GW that the heavily interconnected brain state allows the active co-

herent brain state to distribute its contents to a number of other brain processes,

allowing for information to be globally available. Such global availability of

information is the subjective experience of a conscious state. Major areas including

the prefrontal cortex, anterior cingulate, and related areas are postulated to form the

global workspace (Dehaene et al. 2006; Baars 2002).

Evidence for this model is shown in a variety of experimental paradigms, such as

the backward masking (Dehaene et al. 2001) and attentional blink (Dehaene

et al. 2003) in the visual domain. Furthermore, evidence has been shown also in

nonhuman primates. Using a figure-ground display, Supèr et al. (2001) demon-

strated that during trials where the figure was present but unseen, there was a

modulation difference in macaque V1 late in processing (>100 ms) suggesting

once again that the reentrant processes drove perception and, thus, conscious access

within macaque monkeys. These findings were further corroborated with MEG

using frequency domain analysis in the beta band power (Gross et al. 2004) where

the contrast showed increased power predominately in the frontal and parietal

cortices during conscious perception as well as increased beta phase synchrony.

3 Prestimulus Effects and Phase

There is a vast array of evidence that suggest that different neural oscillatory

dynamics is present before stimulus onset, which subsequently influence the per-

ception of the upcoming stimulus. In particular, the effects within the alpha range

(8–12 Hz) and the low-beta range (12–20 Hz) have been correlated with conscious

access. Increased low-frequency oscillatory activity is associated with the inhibi-

tion of the respective brain region resulting in decreased stimulus processing

(Haegens et al. 2011; Jensen and Mazaheri 2010; Keil et al. 2014). Although the

inhibitory role of the alpha rhythm in the visual domain has been consistently

shown in the classical alpha range (8–12 Hz), the frequency range can differ from

the classical alpha band in other sensory modalities (Bernasconi et al. 2011; Chen

et al. 2008; Hari and Salmelin 1997; Keil et al. 2014; Siegel et al. 2008).

The low-oscillatory inhibitory effect has been formalized in a variety of working

theories. Take, for example, the alpha gating-by-inhibition theory (Jensen and

Mazaheri 2010), which postulates that effective brain states are driven not by

coupling but by the strong and ubiquitous alpha oscillatory inhibition. This inhibi-

tion blocks irrelevant pathways in the network, which conversely guides the

network into a preferential state. Inhibitory effects of alpha power can also be

seen within the conscious access domain. In a study by Van Dijk et al. (2008), the

authors contrasted “hit” vs. “miss” MEG responses and indeed showed that

prestimulus alpha power correlated with the subjective report of a visual task.

Specifically, the heightened inhibitory alpha was correlated prior to the miss
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condition in the early visual and parietal areas, and this heightened alpha activity

reduced the likelihood of stimulus perception. This task was very robust as it

showed a lateralized effect, which clearly demonstrates a local (in this case, the

visual areas) blocking of the network state.

Prestimulus alpha also alters as a function of visual excitability as shown by a

single pulse transcranial magnetic stimulation (TMS) to the occipital region during

EEG recording (Romei et al. 2008). The authors examined how prestimulus period

predicted the report of the phosphenes as evoked by TMS. Following from other

studies, they replicated that a low power prestimulus low oscillation (alpha band)

determined perception. Specifically, the same intensity TMS pulse evoked a “yes”

report vs. a “no”’ report depending on whether there was lower alpha activity in the
visual cortex at the time of the stimulation, or not.

Not only the power but also the phase of the low-frequency ongoing oscillations

has been shown to influence the perceptual fate during the upcoming task. Cyclic

variation of phase occurs at a much faster timescale than changes in power. Further,

phase could represent a variability in excitability independent of overall power.

Thus, studying phase effects in conjunction to power is advantageous over studying

power effects alone. The literature shows evidence for both entrainments of phase

to stimulus (Lakatos et al. 2008) and stimulus perception correlated to optimal

phases (Busch et al. 2009). One EEG study in humans demonstrated that the phase

~7 Hz oscillation just prior to stimulus onset are aligned differently between

conditions in which subjects report the target to be seen and unseen, thereby

suggesting that the phase of ongoing alpha oscillation influences perception

(Busch et al. 2009).

A number of studies reported prestimulus low-oscillatory effects to occur in the

primary sensory domain, for instance, tasks using illusory percept (Romei

et al. 2008) and NT stimuli (Van Dijk et al. 2008) report alpha phasic effects in

the early visual area. Yet, others report a fronto-central effect of alpha phase (Busch

et al. 2009). For the case of conscious access, the theory goes as follows:

low-frequency oscillation is a signature of inhibition that reflects a dampening of

local excitation within a given area. In other words, the presence of high alpha

dampens the subjective experience of the upcoming stimulus, thus increasing the

likelihood that this stimulus will not be perceived.

3.1 Converging the Windows to Consciousness

These two previous sections have presented opposing predictions of conscious

access. Although the alpha inhibition hypothesis has been predominantly postulated

in the attentional theories, it also must be taken within the context of conscious

access (although consciousness and attention most likely rely on discrete neural

mechanisms; Dehaene et al. 2001; Supèr et al. 2001). A more dynamic model seems

to be evidenced in a number of findings. Take, for example, that in a follow-up

study to the figure-ground effects in macaques (Supèr et al. 2001), the internal state
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of the early visual cortex before stimulus processing has been shown to predict the

report of the figure (Super et al. 2003). The authors suggested that this could be

present due to neural activity strength and functional connectivity. However, this

evidence was limited by the methodology and not much else.

Together, the prestimulus local early inhibition–excitation model of alpha and

the local–global late recurrent GW model can be fused to form a new working

framework of consciousness. This framework, the Win2Con, stipulates a dynamical

network state before stimulus onset, which is the required state for full conscious

access. The model constructs a variety of hypotheses about the brain state in both

the domains of connectivity and oscillatory power. It does not aim to disprove either

alpha inhibition or GW, but proposes an overarching explanatory plug.

3.2 Windows to Consciousness: The Evidence

The first experimental evidence for the Win2Con theory was outlined in Weisz

et al. (2014; see also Ruhnau et al. 2014) in a near-threshold somatosensory study.

The authors extended the analysis of the prestimulus state beyond examining only

the alpha-power effects and critically analyzed the connectivity state of the brain

state that determined stimulus perception. In particular, the study focused on

global and local graph-theoretical models in addition to functional connectivity

differences.

Global network properties (the state of a network as a whole) were first assessed

for differences in prestimulus small-worldness between trials where participants

felt the stimulus (Hit) and trials where they did not (Miss). A small-world network

is seen as a plausible network for neural assemblies (Humphries et al. 2006), and it

is characterized by two properties. (1) Dense interconnectivity within small groups

of nodes: two common neighbors of one node are more likely to be neighbors of

each other than two nodes selected at random. Note that if the nodes exist in

physical space, for example, people or neurons, then the nodes of a highly

interconnected group will tend to be physically close in space. (2) The average

shortest path length is small: to connect any two nodes only a small number of

intermediate nodes are typically traversed due to long-range links between the

small groups of nodes. Although these properties seem finite, the brain state

fluctuates and the network state, which in this case is defined by oscillatory

coherence, can depend on ongoing activity. With this in mind, Weisz

et al. (2014) demonstrated that this measure of small-worldness differed between

Hit and Miss specifically at 17 Hz in which there was an increase in the measure for

Misses. Taken together, the two characteristic properties of small-worldness sug-

gest that there was either an increase in dense interconnectivity or a decrease in the

average shortest path length, or both. To ascertain the contribution of the properties

of small-world networks to the differences observed, Weisz et al. (2014) further

used three global measures: global clustering, distance, and efficiency. The clus-

tering measures the dense interconnectivity and revealed that the network states
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before misses were more clustered than hits. There was no difference in distance,

but in efficiency, there was an indication of shorter path lengths for hits. This last

point critically diverged the two network states that defined the conscious access;

misses were in local integration state (closed windows) and hits were in a global

integration state (open window). These findings cumulatively gave a resounding

idea that ratified a component of the Win2Con framework by demonstrating that an

open state of the network before stimulus onset was important in the participants’
ability to consciously access the sensation of touch.

The framework gained further empirical evidence in the auditory modality

(Leske et al. 2015). Within this study, the authors interrogated the prestimulus

brain state that predisposed participants to perceive an NT auditory signal. Once

again the prestimulus effects in power were observed; however, as is critical with

the framework, the network state was also examined. With essential nodes within

the auditory system (the left auditory cortex) showing a network state of enhanced

node degrees and betweenness centrality. Interestingly, when the authors stratified

the trials to equal out the power effects they were still able to robustly observe the

network effects that they describe. Thus suggesting an independent state of con-

nectivity from that of the state of local power (i.e., local excitatory modulations).

With the two studies in mind, and, in particular, the last, it would seem prudent

to reassess the local excitatory role in the prestimulus period and its role in the

NCC. However, independent of that point, which needs further experimentation,

the connectivity state prior to stimulus seems to necessitate the observers’ con-
scious access and thus can be defined as a constituent of the NCC (Fig. 1).

3.3 Windows to Consciousness: The Future

Within this chapter so far, we have highlighted the empirical evidence for the

Win2Con theory. However, future efforts must be made to question other relevant

features of consciousness and ratify the correlative results with more causal

approaches. The features of consciousness that need to be probed next move beyond

the mere hit and miss reports, and we must interrogate the brain states that invoke

differing states of conscious content. One avenue that could be fruitful in this

endeavor is exploiting stimulus with bistable properties; indeed, we have recently

demonstrated a case for the prestimulus functional connectivity state that predicted

the reported percept of a vase or a pair of houses in the Rubin Vase illusion

(Peatfield et al. Under Review). This evidence could be supported by other forms

of bistable stimulus, for example, binocular rivalry (Blake et al. 2014), or varieties

of binocular rivalry like continuous flash suppression (Tsuchiya and Koch 2005).

Another approach would be to use neural stimulation methods to directly

influence the brain state. While TMS is a plausible option, with its relatively precise

spatial accuracy, it does come with problems such as the impulse-like stimulation

form, the difficulty of creating a sham condition, and technical difficulties in

combined acquisition (these are solved but still not nontrivial). Recently,
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oscillatory forms of transcranial electrical stimulation, in particular transcranial

alternating current stimulation (tACS), have enjoyed an impressive comeback to

neuroscience (Herrmann et al. 2013). In combination with the possibility to assess

the neurostimulation effects even at the actual stimulation frequency using MEG

(Neuling et al. 2015), this enables powerful approaches to scrutinize the causal

relevance of prestimulus brain states. A series of NT experiments using “single”

and “dual” site tACS is currently underway in our laboratory.
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Fig. 1 (a) An example of a small-world graph as the global measure; here you define the networks

whole aspect. (b) An example of a local measure. Here, this node is defined purely by its individual

attributes. For example, note the different path lengths and the number of connections. (c) This
graph taken from Weisz et al. (2014) shows how the difference between miss at hits peaked at

around 17 Hz for the measure of small-worldness. This being a global measure, both d and e show
how to interrogate the effect of this effect on the local graph measures. d highlights how the

clustering measure was lower for hits than misses; whereas, e shows how there was increased state

of efficiency for hits than misses
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Neuronal Synchronization, Attention
Orienting, and Primary Consciousness

Lawrence M. Ward

1 Introduction

How does the brain implement cognitive processes such as perception, attention,

memory, decision-making, and consciousness? Part of the answer is specialization

of function in particular regions. In some cases, a single brain area is critical to the

performance of a specific perceptual or cognitive function. It is well known, for

example, that the right fusiform gyrus appears to be particularly important in face-

specific visual processing (e.g., Kanwisher 2006), and the superior temporal sulcus,

an analogous part of the auditory system, performs an analogous role in voice-

specific processing (Belin et al. 2000), although clearly these regions also perform

other functions. Similarly, the left fusiform gyrus seems to be especially important

for reading (Bedo et al. 2014; Dehaene and Cohen 2011). Complex cognitive

processes involved in attention, memory, reading, and consciousness, however,

appear to require the coordinated activity of at least several of these specialized

regions. For example, several frontal and posterior brain regions have been said to

perform separate specific functions during the implementation of attention

orienting (e.g., Corbetta and Shulman 2002; Corbetta et al. 2008; Wright and

Ward 2008; Fig. 1). Moreover, such specialized regions, including those appearing

to perform a single function alone, must interact with other regions to receive the

information they are acting upon and to send processed information to other areas

including back to the sending area. Strikingly, such specialized areas often

(always?) exhibit different functions depending on the particular subset of other

regions with which they are functionally interacting (e.g., McIntosh 2000; Pessoa

2014). Finally, because cognitive tasks vary dramatically over timescales of
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hundreds of milliseconds to a few seconds, the functionally relevant regional

networks must form and dissolve over these short timescales, which are too short

to accommodate mechanisms such as synaptic modification via spike-timing

dependent plasticity or long-term potentiation. It has been suggested that oscilla-

tory, or rhythmic, synchronization of neural activity provides a mechanism

whereby networks of functionally specialized brain regions could be integrated

and function transiently on such timescales (Varela et al. 2001). This chapter

describes some experiments that begin to uncover how these networks of brain

regions are integrated in the implementation of endogenous attention orienting and

of switching between conscious percepts in binocular rivalry.

A general theory of functional integration of brain regions via oscillatory neural

synchronization requires that at least the following mechanisms be specified. First,

the relevant brain networks must be described. Second, their order of activation

(or causal order, in the sense of Granger causality at least) and/or recurrent or

resonant processing modes must be determined. Third, the mechanism(s) of how

oscillatory rhythms are achieved in the brain must be described. Fourth, the

mechanism(s) by which synchrony (phase locking) is attained and that by which

it is broken (phase scattering) must be described. Fifth, the effects of oscillatory

synchronization on information exchange must be described. Although it is at

present impossible to describe all of these, or even a small subset of them,

Fig. 1 Some brain areas involved in reorienting attention. L, left; R, right; FEF, frontal eye fields;
IPs, intraparietal sulcus; MFG, middle frontal gyrus; TPJ , temporo-parietal junction; VFC/AI,
ventral frontal cortex/anterior insula. Reprinted with permission from Corbetta et al. (2008)
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completely for any particular cognitive process, I will indicate here a sketch of how

such a theory would appear in general, in order to contextualize the specific

mechanisms described in what follows.

fMRI, among other techniques, is illuminating at least part of the functional

anatomy of the brain. Although a few functional networks have been identified,

there is still a paucity of information about them, including the necessary areas that

are common to both baseline and experimental tasks, and especially their subcor-

tical components, which seldom appear in published reports. Two such incomplete

networks are described briefly in what follows: one involves attention orienting and

the other involves consciousness.

How are these networks activated or suppressed? An important general theory

has it that population-coded activity of neurons in one brain area is transmitted via

more or less hardwired neural pathways to neurons in other areas to which it is

connected, including of course back to the initiating areas from the connected areas

(reentrant processing) (e.g., Rolls and Treves 2011). But is the wiring always so

specific that activity in a particular group of neurons can activate only a particular

group of other neurons? This seems to be the case in early sensory areas and in some

subcortical areas. But neural connectivity within and between other cortical areas,

particularly in the so-called association areas of cortex, and also ascending systems

of connections from subcortical areas to the cortex, seems to be more general or

diffuse (e.g., Jones 2001). In the case of such diffuse connections, a subsidiary

selective mechanism is necessary to communicate information and control signals

from relevant neurons in one brain area to those in another area that are involved in

the same functional network. Synchronization at particular oscillatory frequencies

is one mechanism that has been proposed to transiently and, at specifically required

moments, functionally connect groups of neurons engaged in implementing a

particular cognitive process (e.g., Bastos et al. 2015; Fries 2005; Varela et al. 2001).

Most networks involve recurrent processing, and some will display adaptive

resonance between hierarchically arranged processing stages (Grossberg 2000). In

others, a feed-forward sweep will be identifiable in specific experimental situations,

and neural synchrony should appear between the relevant brain regions in a specific

time order (e.g., Lamme and Roelfsema 2000). A compelling example of this

process recorded by EEG is the feed-forward sweep initiated by electrical stimula-

tion of the esophagus: from sensory reception, to thalamus, to primary and second-

ary sensory cortex, and finally to various association areas (Drewes et al. 2006). In

this study, significant coherence of the EEG estimated from neural sources followed

exactly the time course of the feed-forward sweep.

Oscillatory rhythms are ubiquitous in the brain (Buzsáki 2006). There are

several ways in which groups of neurons can generate these oscillatory rhythms.

Most appear to involve reciprocal excitatory or inhibitory connections between

groups of spiking neurons (e.g., Buzsáki andWang 2012; Wilson and Cowan 1972).

One prominent suggestion is that such groups of interconnected neurons act as

resonant filters. That is, the synaptic efficacies and time constants characteristic of

these neurons are such that only a relatively narrow frequency band of their

broadband noisy input appears in their output spike rate, thus generating

Neuronal Synchronization, Attention Orienting, and Primary Consciousness 31



oscillations predominantly at that frequency (Kang et al. 2010). This mechanism

operates even when the spiking of the individual neurons is fairly sparse and does

not reliably follow the generated narrow-band oscillation (Brunel and Hakim 1999).

Mathematical analysis of this model shows that it can account for the bursts of

increased power at particular oscillatory frequencies (e.g., gamma at 30–50 Hz) that

appear in the local field potential recorded both from electrodes in the brain and on

the scalp (Greenwood et al. 2015).

There are also several mechanisms by which oscillatory neural synchronization

can be attained. One important mechanism involves sending bursts of spikes to all

neurons in a downstream population that is to be synchronized (e.g., Fries 2005, but

see Buzsáki and Schomberg 2015). This is easily accomplished by the upstream

neurons if they themselves are synchronized because they tend to fire the most

spikes at the peaks of their own oscillatory cycles. Some brain areas spontaneously

generate synchronized oscillatory activity, for example, the hippocampus generates

a synchronized theta (4–8 Hz) rhythm through the same kinds of excitatory–

inhibitory interactions that generate the oscillations in the first place (Buzsáki

2006). Cortico-thalamic interactions also generate synchronized activity in both

cortex and thalamus, possibly through the actions of special neurons in the thalamus

called “matrix” cells (Jones 2001). Any of these mechanisms might be involved in

particular cases, although timing considerations might determine which is used for

particular cognitive tasks. Sending simultaneous spikes is the fastest mechanism

and might be required for long-distance synchronization, although it is known from

models that local synchronization in an interconnected oscillating population of

relaxation oscillators can be achieved within one or a few cycles (Somers and

Kopell 1993). At present, measurements of long-range synchronization do not

suffice to determine the mechanism in any specific case (Buzsáki and Schomberg

2015).

Finally, Salinas and Sejnowski (2001) have begun to describe the ways in which

neural synchrony can affect the flow of neural information. In particular, they have

described the way in which correlated neural input can affect downstream activity.

It is not simple: input correlations can act as a switch, can enhance gain, can change

overall firing rates, and can change correlations in the target population. Any of

these effects could be important for the communication of information in the brain.

Moreover, Fries (2005) has argued, based on experiments by Azouz and Gray

(2000) and Volgushev et al. (1998), that interactions between communicating

neural groups are most effective when bursts of impulses from one group reach

the dendrites or somas of the other group during the most receptive period of their

subthreshold oscillations. Bastos et al. (2015) extended this argument to include

delays arising from synaptic interactions among hierarchically organized brain

regions. Thus, oscillatory synchronization between interacting groups of neurons

could be important for effective communication in the brain, even between hard-

wired and invariably connected neurons.

It should be noted that synchronization is not the only way in which oscillating

populations of neurons can transmit and receive neurally encoded information.

Multiplexing in oscillatory populations of neurons can achieve information
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transmission in much the same way that AM and FM radio signals work (e.g., Akam

and Kullman 2014). In this case, the oscillatory rhythms can serve as carriers of the

modulations that constitute the information. Complementarily, oscillating

populations at the receiving end can then decode the information and either perform

further computations or pass it along to additional brain areas. In this view, changes

in synchronization associated with information processing could either be a signa-

ture of a special type of multiplexing or could be related to an entirely different

mechanism of information exchange.

The brain networks involved in attention and consciousness are closely related,

involving both frontal and parietal regions in addition to sensory and subcortical

regions. The cognitive processes themselves are also closely related, although there

is no agreement as to the exact nature of the relationship. It is possible that attending

to a perceptual object creates a representation of that object in consciousness, a

position that seems to be reinforced by experiments in change blindness,

inattentional blindness and deafness, and so forth (e.g., Simons and Rensink

2005). Alternatively, it is possible that we are aware of much more than we can

report, and attention merely determines what we can report (e.g., Lamme 2003).

The two might be completely different processes, as argued by Koch and Tsuchiya

(2006), or consciousness might arise from the processes controlling attention, as

suggested by Taylor (2007). Regardless of which view ultimately prevails, it is

clear that both processes require integrated activity in several brain areas and that

the primary object of both processes changes frequently, on a timescale of hundreds

of milliseconds, requiring corresponding changes in the supporting neural network

on the same timescale. In what follows, I will review some experimental work that

provides evidence concerning the dynamic organization of the neural networks

responsible for implementing these two complex cognitive processes. Consistent

with other models (e.g., Gregoriou et al. 2015; Niebur et al. 2002; Srinivasan

et al. 1999), I will argue that oscillatory synchronization of neuronal oscillations

both within and between brain regions is an important mechanism mediating

formation of, and communication within, these neural networks.

2 Neural Synchronization and Attention

Ward (2003) among others reviewed data suggesting that increases in local alpha

power (indexing intra-regional synchronization) in a particular brain region are

associated with active suppression of information processing, whereas increases in

local gamma power in the same region are associated with active information

processing. Ward (2003) also raised the question of whether decreases in local

alpha power were necessary for perceptual binding to occur via a mechanism of

increased gamma-band synchronization. These ideas suggest a reciprocal relation-

ship between intra-regional synchronization in the alpha and gamma bands: when

one is high or increasing, the other should be low or decreasing. A related question

also arises: is the relationship between these two frequency bands the same for
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intra-regional (local power) and interregional synchronization? If not, how are

intra-regional and interregional synchronizations coordinated? Must local condi-

tions in each of two brain regions be in a certain state for interregional synchroni-

zation between them to occur? Also, there are some data that imply that both intra-

regional (e.g., Canolty et al. 2006; Canolty and Knight 2010) and interregional

synchronizations in the gamma band (Sects. 2.2, 3) are modulated by theta oscil-

lations, perhaps being maximum at a preferred theta phase (but see Aru et al. 2015,

for caveats). How do theta phase and alpha power interact to regulate gamma

synchronization, both locally and interregionally? Here, I review several experi-

ments from the laboratories of myself and my collaborators that address these

questions in the context of attention orienting (see Wright and Ward 2008, for a

review of attention orienting in general). Gregoriou et al. (2015) review many other

studies suggesting that oscillatory synchronization is an important mechanism for

attentional selection and integration.

2.1 Interregional Gamma-Band Synchronization
Implements Attention-Relevant Communication

Doesburg et al. (2008) reported an experiment designed to test the hypothesis that

gamma-band synchronization is involved in spatial attention orienting. Subjects

were required to orient their attention to a small box on one side or the other of the

visual field in preparation for a target stimulus that appeared either in the indicated

box or the other box with equal probability from 1000 ms to 1200 ms after cue

onset. If the target appeared in the indicated box (half the time, randomly) and was a

“þ” (half the time, randomly), they were to respond by pressing a button, otherwise

they did not respond. EEG was recorded during the entire experiment, and the

resulting time series were then divided into epochs time locked to cue onset so that

the period between cue onset and target onset could be studied. In order to measure

synchronization, the Laplacian transform was taken on the broadband time series,

creating time series of scalp current density values that represented the activity of

shallow brain sources near each electrode, thus negating to some extent the effects

of volume conduction of the EEG signal from deeper and far away sources. These

signals were then filtered into narrow bands, and the analytic signal was computed

for a subset of 19 evenly spaced electrodes (see Doesburg andWard 2009 andWard

and Doesburg 2009 for detailed descriptions of this approach and a comparison

with others). Phase locking value was then computed from the differences of the

instantaneous phases of each pair of electrodes across all of the epochs available

after artifact rejection for each time point in various frequency bands. We consid-

ered changes in phase locking to be significant if the observed normalized (re -

pre-cue mean and standard deviation) PLV lay outside the 97.5th or 2.5th

percentiles of a surrogate distribution obtained by randomly shuffling the epochs

and recomputing the normalized PLV 200 times. Figure 2 shows the results of this
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analysis for 39 Hz (actually about 37–41 Hz because of the filter bandwidth).

Results for nearby frequencies from about 35–45 Hz were similar.

At the same time as the burst of increased long-distance gamma-band synchro-

nization, local gamma power in the occipital lobes increased and local alpha power

at that location decreased dramatically. Doesburg et al. (2008) interpreted this

pattern of coordinated changes in local and long-distance synchronization to indi-

cate the establishment of a network of interacting brain regions that would effect the

reorienting of attention from the cue location to the location of the impending

target. These results also confirmed the hypothesis that changes in local alpha and

gamma power would be reciprocal and extended this to long-distance gamma-band

synchronization. Subsequent to these changes, local alpha power increased again

and gamma power decreased. Interestingly, beginning at around 800 ms post-cue

onset, the increase in alpha power was greater ipsilateral to the cued location than

contralateral to that location, replicating the data of Worden et al. (2000) and

leading to the conclusion that the local alpha power increase was associated with

readying the brain to respond to a target in the cued location by suppressing the

brain region responsible for initial target processing at the uncued location.

Although the results of Doesburg et al. (2008) are intriguing, they rely on

inferences about synchronization between brain regions based on changes in syn-

chronization between electrodes rather than on changes in synchronization mea-

sured directly between brain regions. A few studies have demonstrated that it is

possible to measure synchronization directly between brain regions from outside

the head (e.g., Cosmelli et al. 2004; Gross et al. 2004; Supp et al. 2007). Each of

these studies used a different, somewhat customized approach to locating brain

sources, however, and these are not readily available. Accordingly, we developed

our own approach in several studies. It involves using a beamformer spatial filter

applied to the EEG recordings to discover the brain regions that are active during a

Fig. 2 (a) Lateralized bursts of gamma-band synchronization (black lines) between scalp current

density at an electrode over visual cortex and that at other, distant, electrodes occur about 300 ms

after a spatial attention-directing cue. (b) More detailed time line reveals desynchronization (white
lines) at around 100 ms after the cue. (c, d) Even more detailed time line reveals a second burst of

lateralized synchronization around 540–560 ms post-cue onset. Reprinted from Doesburg

et al. (2008) with permission from Oxford University Press
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cognitive task, and then using a source montage (Scherg et al. 2002) with dipoles

located in those active regions to generate broadband signals that account for the

observed scalp topography (see Green and McDonald 2009, for a detailed descrip-

tion of this technique). These broadband signals are then filtered into narrow bands

for synchronization analysis as described earlier.

We used this technique in a study of auditory attention orienting designed to

confirm and amplify the results of Doesburg et al. (2008) (Green et al. 2011;

Doesburg et al. 2012). It was based on an earlier successful use of the beamformer

approach to study the sequence of EEG-recorded regional brain activation in a

visual attention orienting task resembling that used by Doesburg et al. (Green and

McDonald 2008). In our experiment, subjects reoriented their attention from central

fixation to the location (left or right) of a subsequent auditory target stimulus based

on an auditory cue. On some trials, the (neutral) cue indicated that they should not

reorient attention but should stay focused on the fixation location. We analyzed the

EEG recordings between cue onset and target onset on the attention-shift trials with

the recordings from the neutral trials subtracted out in order to focus on attention-

shift-related brain activity. The beamformer was used to find bilateral sources of

activity in the theta-frequency band (4–7 Hz), which had been previously found by

Green and McDonald (2008) to be commensurate with other EEG and fMRI studies

of attention reorienting (see Sect. 1). Figure 3 shows an illustrative summary of our

results. Notice that the brain regions indicated as active are highly similar to those
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Fig. 3 Bottom: Colored lines (color code in box) represent activation of theta-band beamformer

sources from cue onset until target onset (based on Green et al. 2011). Top: Representation of brain
regions (colored squares) on right side of brain that was active according to the colored lines at

bottom. Black lines connecting brain regions indicate significant increases in gamma band phase

locking during the 50-ms time interval indicated by a gray bar on timescale at bottom (based on

Doesburg et al. 2012). STG, superior temporal gyrus (audition); SPL, superior parietal lobule; IPL,
inferior parietal lobule; IFG, inferior frontal gyrus
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described by Corbetta et al. (2008) as involved in the attention reorienting networks

based on fMRI data (Fig. 1).

It can be seen from Fig. 3 (bottom) that after the cue (0–100 ms) was presented,

neural activity in the theta band arose first in posterior regions of the brain

responsible for audition (superior temporal gyrus, STG) and in those associated

with attention reorienting (superior parietal lobule, SPL, and inferior parietal

lobule, IPL; 100–200 ms). Then, as theta-band activity in those areas declined,

activity in the inferior frontal gyrus (IFG) increased (200–350 ms), until the IFG

alone was active (350–450 ms). The posterior areas again became active as IFG

activity declined (450–650 ms), followed by a continuing increase in STG activity

until target presentation. These brain areas and their theta-band activation sequence

are nearly identical to those found by Green and McDonald (2008) for a visual cue–

visual target attention reorienting task, indicating that we are addressing a

supramodal attention reorienting network (Green et al. 2011). This activation

sequence is consistent with the following processing progression: first the cue

causes shift-specific activation of STG, and then shift-specific activation of poste-

rior brain regions responsible for attention reorienting occurs, indicating the need

for a shift of attention. These regions in turn give way to activity in IFG that

interprets the cue in terms of where attention must be shifted. Then this information

is conveyed to the posterior regions that initiate the shift, which in turn ready the

auditory cortex for the upcoming target presentation.

In addition, the peak voxels of the sources uncovered by the beamformer

analysis were used as the loci of dipoles in a source montage, whose broad-

band signals were filtered and analyzed as described above, concentrating on

gamma-band phase locking (Doesburg et al. 2012) and theta–gamma cross-

frequency coupling. Gamma band phase locking was considered to be significant

within a 50-ms time bin only if the observed normalized PLV was outside

97.5th or 2.5th percentiles of the surrogate distribution bilaterally for the same

three or more successive time points at least once in a given bin. The top part of

Fig. 3 illustrates that phase locking in the gamma band between the active brain

regions followed fairly closely the progression of activations from posterior to

frontal to posterior again. Phase locking between active posterior regions

increased first, followed by increases between SPL and IPL and IFG. For a

period, no phase locking increases were seen, but then IFG locked with IPL

again and IPL and SPL locked with each other and with STG. Finally, no phase

locking was observed just before target onset. We conjectured that this pattern

of phase locking among a subset of brain regions active in a specific sequence

during reorienting of attention indicates that gamma-band synchronization could

be the mechanism by which distant brain regions coordinate their activity so as

to communicate information or control signals relevant to the accomplishment

of a cognitive task (cf. Gregoriou et al. 2015). This conjecture is supported by

the fact that there is significant coupling between the gamma-band PLV and the

amplitude and the phase of the theta oscillations occurring in the various neural

sources, although this finding is somewhat stronger within posterior areas than

between posterior and frontal regions (Doesburg et al. 2012).
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Although this experiment cannot be compared directly with that of Doesburg

et al. (2008) because of a variety of differences in task and timing, the involvement

of gamma-band synchronization is similar. This study, however, shows more

directly that interregional gamma-band synchronization seems to be indexing

communication among active brain areas, whereas activation in the theta band in

specific brain regions seems to be associated with processing stages. Interestingly,

in this study there was no significant relationship between intraregional activity in

the gamma band and interregional synchronization, although gamma amplitude was

relatively high in the posterior regions early in the cue–target interval as found by

Doesburg et al. (2008). Gamma amplitude in the various regions did bear some

relationship to theta-band activation, however, for IPL and IFG, although it waxed

and waned in an irregular pattern for SPL and STG (Doesburg et al. 2012).

2.2 Alpha-Band (9–14 Hz) Synchronization Maintains
the Attention Network

The results just discussed indicate that interregional gamma-band synchronization

is likely to be associated with communication between brain regions involved in

reorienting attention. But these synchronizations are short lived and only occur at

particular points in the sequence of attention-related processing. Moreover, theta-

band activations also are relatively short lived and time-point specific. What

mechanism might be responsible for maintaining the biased readiness characteristic

of orienting attention to a specific location in space? In a replication of the

Doesburg et al. (2008) study using the magnetoencephalograph, Doesburg and

Ward (2007) discovered that lateralized synchronization between occipital sensors

and other distant sensors in the alpha band persisted over much of the cue–target

interval. They proposed, consistent with other recent evidence (e.g., Palva and

Palva 2007; von Stein and Sarnthein 2000), that long-distance alpha-band synchro-

nization maintains selective attention at a particular spatial locus. A beamformer

analysis of these same data enabled Doesburg et al. (2007) to specify that the long-

distance synchronization was occurring between occipital and parietal cortical loci

at the same time that local alpha power was lateralized in the opposite direction.

We reanalysed the data of Green and McDonald (2008) using the approach I

described earlier to test this hypothesis more directly (Doesburg et al. 2009a).

Green and McDonald’s (2008) experiment was very similar to the experiment of

Green et al. (2011), except that the cues and targets were visual stimuli rather than

auditory stimuli. On some trials, subjects had to shift their attention from fixation to

a cued location and on others a neutral cue indicated that they were to maintain their

attention at fixation. Neutral trial data were subtracted from shift trial data in order

to reveal attention-shift related activity during the cue–target interval. As Green and

McDonald (2008) had already reported a beamformer analysis of theta-band

regions active during their visual attention reorienting task, we created a source

38 L.M. Ward



montage with dipoles located in those active regions. This is preferable to trying to

locate sources active in the alpha band, as these are likely to be regions where

processing is being suppressed. We then extracted the broadband signals from the

source montage and analyzed them for local and long-distance synchrony as

described earlier. In this analysis, we focused on the relationship between sources

in occipital and parietal cortices (IOG, SPL, and IPL), as these are the regions most

likely to reflect maintenance of attention over longer periods of time. A summary of

our findings is shown in Fig. 4.

Whereas reciprocal lateralized changes in synchronization between IOG and

SPL were evident during the entire cue–target interval (Fig. 4), only increased

synchronization between IOG and IPL in both hemispheres was observed (not

shown). Thus, IPL–IOG synchronization seems to represent a more general read-

iness to respond, whereas SPL–IOG synchronization couples visual areas specific

to the attended target location and desynchronization decouples areas specific to

other locations. Importantly, and in replication of many previous results, local alpha

amplitude in the occipital cortex ipsilateral to a cued location was much higher than

that contralateral to a cued location over much of the cue–target interval. Thus,

local and long-distance synchronization seems to play different roles in attention

reorienting: increases in local alpha amplitude suppress processing in regions

receiving input from unattended locations, whereas increases in long-distance

alpha phase locking link regions receiving input from attended locations.

This perspective was confirmed by additional MEG data from the same para-

digm used by Doesburg et al. (2008). We analyzed these data for effective connec-

tivity using narrow-band transfer entropy (NBTE) to measure Granger-like causal

interactions between brain loci involved in orienting visual attention to the cued

location (Doesburg et al. 2016). For these data, we employed an event-related

Fig. 4 Increases in synchronization, relative to the pre-cue baseline and for indicated time

intervals, between inferior occipital gyrus (IOG) and superior parietal lobule (SPL) in the alpha

band (8–12 Hz) during the cue–target interval are indicated by red lines connecting the black
squares located at those brain regions. Decreases in synchronization are indicated by blue lines.
Results are shown separately for shift-left and shift-right trials. Note the opposite lateralization of

the synchronization patterns and also that this trend is evident over nearly the entire cue–target

interval. Reprinted from Doesburg et al. (2009a) with permission from Elsevier
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beamformer to localize brain regions during time periods after cue presentation

during which evoked activity was greatest. We then measured NBTE between the

time series of alpha-band activations from these regions for plausible lags of

30–50 ms. NBTE measures the additional information that can be predicted in a

time series of interest by using a second time series. Granger causality is inferred

because the predictive part of the second time series is lagged with respect to the

predicted part of the time series of interest. We also used a wavelet analysis to

measure the relative power in the alpha band in occipital cortex during the cue–

target interval. Figure 5 shows a summary of some of these results. Around

500–700 ms after cue presentation, there was significantly lateralized NBTE in

the alpha band between frontal and parietal brain regions and occipital cortex. That

is, when the cue indicated that attention was to be oriented to the left side of visual

space, top-down NBTE was greater on that side of the brain. At this same time,

relative alpha power was also greater in occipital cortex on the same side as the

greater NBTE, possibly indicating that the NBTE was indexing a control signal

Fig. 5 Summary of significant NBTE between indicated brain regions in relevant time intervals

(a) and illustration of mean NBTE data in specific cells outlined in white (b) in the matrices of a.
Shaded areas in b indicate the relevant time bin in a. These data were used to construct (c). Arrows
indicate time periods in the cue–target interval during which higher levels of information flow in

the alpha band were observed for the indicated cue condition (see a). Reprinted from Doesburg

et al. (2015) with permission
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eliciting an increase in alpha power on the side of the brain contralateral to the side

that would be analyzing the expected target.

3 Neural Synchronization, Binocular Rivalry, and Primary
Consciousness

Binocular rivalry is one of the most used and one of the most informative paradigms

within which to study primary phenomenal consciousness. When incompatible

images, such as gratings with differently colored stripes that are at right angles to

each other, are presented continuously to the left and right eyes, respectively, rather

than amalgamating the separate images, the visual system presents them alternately

and (mostly) randomly to awareness (Fig. 6). That is, phenomenal consciousness of

the two patterns alternates, with first one and then the other dominating. Quite often

one of the two images is suppressed altogether, although both are present contin-

uously on the retina and the brain continues to respond to both of them. Because this

rivalry occurs in conscious perceptual experience, and can be reported upon by

pressing a button to indicate which percept is presently dominant, it is ideal for

studying the neural correlates of consciousness in the absence of stimulus variation.

Importantly, because the indication of the perceptual switch can be nonverbal,

binocular rivalry can be studied in any animal with two eyes that can make a

discriminative response, making possible invasive neurobiological studies. The

presumption is that the neural correlates of the perceptual switches are plausible

candidates for the neural correlates of primary perceptual awareness.

One of the earliest and most influential studies investigating the neural correlates

of perceptual switching in binocular rivalry was that of Logothetis and Schall

(1989). They trained a monkey to indicate in which direction it perceived gratings,

presented separately to each eye through a stereoscope, to be drifting by making a

saccade to the left or to the right. The direction of perception was also checked by

optokinetic nystagmus, which correlates well with perceived direction of move-

ment. Some trials contained gratings moving in both directions, different in the two

eyes, and were thus rivalrous. In these cases, the direction of the monkey’s eye

movement and optokinetic nystagmus reflected the perceived dominant grating.

Activity of neurons in area MT (contains directionally movement sensitive neu-

rons) reflected the direction of motion when the gratings were the same in the two

eyes, being greater for the preferred direction of movement. Although some

neurons responded only when their preferred direction of movement was present

on the retina, others responded to their preferred direction only when it was

perceived, even when the two eyes were rivalrous. In these latter cases, the neurons

were silent on those trials when the rivalrous stimulus was perceived to move in the

non-preferred direction, even though the preferred motion stimulus was present in

the suppressed eye. The activities of these neurons, thus, are candidates for neural

correlates of perceptual awareness.
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Using a similar design in which the direction of perception was indicated by

optokinetic nystagmus, Fries et al. (1997) demonstrated increased gamma-band

neural synchrony for seen vs suppressed gratings in cat visual cortex. They found

that this synchronization, rather than activity of the neurons per se, was the

important correlate of which stimulus the cats were perceiving. In the same time

frame, Srinivasan et al. (1999) demonstrated greater brain-wide MEG coherence at

the driven frequency of the perceived flickering grating (of the type shown in Fig. 6)

than of the non-perceived grating during binocular rivalry in humans. They also

promulgated the dynamic core theory in which primary consciousness arises from a

synchronously oscillating core of neural activity that both integrates information

from a variety of brain regions and also differentiates the current conscious state

from other possible states (Tononi and Edelman 1998). In an elegant MEG study,

Cosmelli et al. (2004) demonstrated, also in humans, that consciousness of a 5 Hz

oscillating stimulus presented to one eye during binocular rivalry (the other eye

received a non-oscillating face stimulus) took place only when there was increased

phase locking between the diverse brain areas responding to that stimulus. The local

brain regions responding to the 5 Hz stimulus were still active when face was seen,

but they were not significantly phase locked with each other during these periods.

Thus, it seems that synchronously oscillating brain regions are closely associated

with consciousness of an oscillating stimulus during binocular rivalry.

While intriguing, the human studies are limited in generality to stimuli flickering

at relatively slow rates. Doesburg et al. (2005) extended the conclusions of Fries

et al. (1997) to non-flickering stimuli and the gamma band by demonstrating that

endogenous gamma-band synchrony between diverse EEG electrodes was

increased around the time of the perceptual switch between images during

Fig. 6 The paradigm of binocular rivalry illustrating one possible percept (horizontal blue
stripes). Note that rivalry is dynamic and the switching of percepts occurs at random under most

conditions, often following a gamma probability distribution
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binocular rivalry in humans. Their study also utilized gratings similar to those in

Fig. 6 and data analyses similar to those described for attention reorienting. Their

analyses were limited to scalp electrodes, however, and thus the brain regions

participating in the synchronous activity were not identified. Subsequently, we

used beamformer on EEG data collected during binocular rivalry to identify brain

regions active in the gamma band during switching of perceptual awareness

(Doesburg et al. 2009b). In our experiment, subjects again pressed one of two

buttons to indicate which of two rivaling images they were seeing (Fig. 7, left side,

shows the two images). The beamformer identified the regions shown in Fig. 7,

right side, as active in the gamma band during two intervals prior to a button press

in stable epochs (700 ms or longer of one dominant percept) relative to a third

interval between the two during which gamma-band activity was significantly

lower (370–430 ms). A source montage of these regions was used to extract

broadband signals, which were then analyzed for changes in phase locking in the

same way as described above.

Fig. 7 Left: Rivaling images used by Doesburg et al. (2009b). These complex patterns should

induce pattern rivalry rather than eye rivalry. Right: Brain regions with increased activation in the

indicated periods, relative to the baseline period 370–430 ms, before the button press signaling a

change in conscious percept. Black lines connecting regions indicate significant (by surrogate)

increases in phase locking. Reprinted from Doesburg et al. (2009b)
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Figure 7, right side, shows the increases in gamma-band synchronization mea-

sured in those two time intervals relative to a baseline period between them.

Clearly, increased gamma-band synchronization is associated with the change in

perceptual consciousness indicated by the button press and is particularly promi-

nent in the period 220–280 ms before the button press, a time interval approxi-

mately equal to the time it takes to classify a familiar visual stimulus. Moreover,

there was activity in left motor cortex (presumably associated with the right-handed

button press) and in right inferior temporal gyrus (implicated in processing of

complex visual patterns) in this time period that was not evident in the preceding

time period (540–600 ms). This activity indicates that the 220–280 ms period

preceding the button press was the temporal locus of the percept change leading

to the button press.

Because this analysis revealed changes in synchronization relative to a period of

desynchronized gamma-band activity, and based on the overall pattern of waxing

and waning of gamma-band activity and gamma-band synchronization over the

entire epoch preceding the button press that indicated a change in conscious

percept, and also consistent with several previous studies of memory and attention

(Ward 2003), we speculated that both intra- and interregional gamma-band syn-

chronization could be modulated by the phase of theta-band oscillations. To check

this, we sorted gamma amplitudes by the theta phases in the same brain regions and

computed mean gamma amplitudes for each of sixty 0.105-radian-wide bins of

theta phase. We did the same thing for the PLVs between regions in the various

pairs of active regions and also determined the relationship between theta phases for

the regions in each pair. Figure 8 displays some of the results of this analysis. Both

gamma amplitude (local synchronization of gamma oscillations) and interregional

phase locking in the gamma band were modulated by theta phase. Moreover, theta

phases in all of the various region pairs were locked with each other, although they

were not in phase, indicating that although there seems to be no single overarching

theta-frequency rhythm in the brain, the theta oscillations generated by various

functionally distinct regions are relatively tightly phase locked. Theta oscillations

do indeed seem to define the rhythm of consciousness, and the gamma-band

oscillations modulated by these phase-locked theta rhythms are very good candi-

dates for the neural correlates of primary consciousness, given that they are

associated closely with changes in consciousness in the absence of any

corresponding stimulus changes.

4 Dynamic Core of Consciousness

The work discussed above deeply implicates synchronized neural activity in the

implementation of attention and consciousness. Tononi and Edelman (1998) pro-

posed that consciousness, in particular, is created by a dynamic core of synchronous

neural activity that simultaneously integrates diverse information processed by the

brain and also differentiates the current conscious state from a myriad of possible
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other states. I have proposed also that the thalamus of the brain plays a particularly

significant role in the creation, maintenance, and experiential locus of this dynamic

core (Ward 2004, 2011). In my theory, the dynamic core is implemented in the

higher-order nuclei of the thalamus (which receive no direct sensory input and are

dominated by matrix cells; Jones 2001), where the neural activity directly giving

rise to primary consciousness takes place as a consequence of their receiving and

integrating the results of cortical computations. The dynamic core arises from

inhibitory control over the synchronization of the activities of the various higher-

order nuclei exerted by the nucleus reticularis, where lateral inhibitory competition

among these nuclei takes place. Synchronization among activities in a subset of

relevant nuclei willy-nilly synchronizes activity in the cortical areas to which they

are closely and reciprocally connected, allowing them to communicate their

Fig. 8 Left: Red lines indicate relationship between theta phases in indicated active regions in

stable epochs 1000 ms in duration terminated by button press signaling percept switch. Middle:
Red lines indicate relationship between gamma amplitude in indicated region and theta phase in

that region. Right: Red lines indicate relationship between gamma phase locking value (PLV) and

theta phase in the indicated regions. In all panels, thick black lines indicate the means of the

surrogate distributions, and the parallel lines of light black dots indicate the 2.5th and 97.5th

percentiles of those distributions. Theta phase is relative to a cosine wave, one cycle of which is

represented by the thin black lines. Reprinted with permission from Doesburg et al. (2009b)
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contents to each other in a global workspace (e.g., Baars 1997; Dehaene and

Naccache 2001). This proposal is consistent with evidence and models indicating

that the dynamic core is implemented by cortico–thalamic loops (e.g., Lumer

et al. 1997; Llinás et al. 1998). This process has a dynamic that is revealed by the

pattern of cortical synchronization detailed earlier here and in other work (e.g.,

Supp et al. 2007).

5 Implications for the Global Workspace

The research and ideas discussed above have several implications for the global

workspace model of consciousness (Baars 1997; Dehaene and Naccache 2001). The

first is that the dynamic core of consciousness constitutes the global workspace. Its

integrative aspect implements communication between various specialized brain

regions, allowing the results of their computations to interact and giving rise to a

general, context-sensitive understanding of the organism’s current situation in the

world relative to its current goals. The dynamic core, and thus the global

workspace, is established by synchronization between various active processing

modules mediated by the thalamic dynamic core. An alternative and possibly less

controversial possibility is that the dynamic core is established by mutually inhib-

itory competition among active brain regions, either directly or mediated by

thalamic areas such as the pulvinar nucleus, which contains a salience map, and

by parietal and frontal areas, which mediate attentional control, assess value and

goal state, and so forth.

What mechanisms are involved in establishing these transient networks of brain

regions (processing coalitions)? It is highly plausible that these are established by

synchronization of low-frequency oscillations, probably in the theta–alpha range,

among a subset of active regions. I discussed evidence of such low-frequency

synchronization in two different cognitive processes, attention and switching of

conscious percepts in binocular rivalry. Others have discussed similar results (e.g.,

von Stein and Sarnthein 2000). Higher frequency synchronization, especially in the

gamma band, seems to play the role of establishing transient information exchange

between processing areas in necessary temporal sequences. Of course, it also

probably plays other roles as well. For example, there is evidence that gamma

oscillations in the amygdala of the cat can directly drive similar oscillations in the

striatum (adjacent to the amygdala), thereby promoting neural plasticity and learn-

ing (Popescu et al. 2009). This kind of communication is medium range between

functionally and anatomically distinct brain regions that are, nonetheless, nearest

neighbors and probably consists of synaptic modulatory input. And as mentioned in

Sect. 1, synchronized neural oscillations could also function in information

exchange via multiplexing (Akam and Kullman 2014). Thus, there are diverse

roles for neural oscillations in the various frequency ranges, and these are probably

task dependent.
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The Role of Local and Large-Scale Neuronal

Synchronization in Human Cognition

Satu Palva and J. Matias Palva

1 Inter-Areal Synchronization Coordinates Anatomically

Distributed Processing in Local Neuronal Networks

Human perceptual, cognitive, and motor functions are based on neuronal activity

distributed across many brain areas. For example, in the visual modality, neuronal

feature representations of peripheral sensory information are constructed in a

simple-to-complex manner in a network of visual cortex areas with both parallel

and hierarchical organization. Primary sensory cortices process simple sensory

information, and the progressively higher-level sensory and associative cortices

construct higher-level object representations and analyze their identities (Grill-

Spector and Malach 2004; Leaver and Rauschecker 2010; Rauschecker and Scott

2009; Riesenhuber and Poggio 2002). Like sensory processing, also core cognitive

functions such as attention, working memory (WM), and awareness arise from

distributed neuronal activity. These functions largely emerge in a network com-

prising posterior parietal cortex (PPC), temporal cortex (TC), and prefrontal cortex

(PFC) (Corbetta and Shulman 2002; Kastner and Ungerleider 2000; Marois

et al. 2004; Prabhakaran et al. 2000; Todd and Marois 2004).

For identifying the systems-level mechanisms underlying human cognitive

functions, the crucial challenge is to understand what mechanisms coordinate the

communication and integration of the neuronal processing in the distributed cortical

networks and among the set of task-relevant brain structures. Because neurons

effectively respond to temporally coincident spikes, synchronization endows a

neuronal assembly an advantage over a less coherent pool neurons in the compe-

tition of engaging their postsynaptic targets (Singer 1999, 2009). Neuronal
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synchronization, i.e., millisecond-range spike-time correlations, may hence be a

mechanism for the integration of anatomically distributed processing, e.g., for the

binding of sensory features (Konig et al. 1996; Singer 1999). Moreover, neuronal

synchronization is often accompanied by neuronal oscillations and because oscil-

lations directly indicate rhythmic neuronal excitability fluctuations (Pastor

et al. 2002; Schroeder and Lakatos 2009), spiking responses to presynaptic inputs

and synchronization are facilitated during the high-excitability phases of neuronal

oscillations compared to their low-excitability phases. Coupling of neuronal oscil-

lations with an optimal phase difference thus promotes communication between the

assemblies, while the opposite phase difference suppresses it (Fries 2015).

A number of studies from cat and monkey visual cortices have shown that

stimulus-related neuronal activity is synchronized in the gamma-frequency band

(30–80 Hz) when the stimulus features are in line with Gestalt binding criteria, such

as continuity, similarity, colinearity, and common motion and hence when stimulus

is likely to signify a coherent sensory object (Singer 1999). Invasive local field

potential (LFP) and multiunit (MUA) recordings from invasive animal physiology

also show that the strength of gamma-band synchronization is positively correlated

with attentional (Bosman et al. 2012; Buschman and Miller 2007; Womelsdorf

et al. 2007) and working memory (WM) (Buschman et al. 2011; Salazar et al. 2012;

Siegel et al. 2009) task demands. Hence, inter-areal synchronization appears to play

a functional role in perception and cognition, which is in line with the hypothesis

that synchronization underlies the integration and coordination of distributed neu-

ronal processing.

1.1 Challenges in the Analyses of Synchrony from
Noninvasive MEG/EEG Data

In both humans and animal models, invasive recordings yield only a sparse cover-

age of the task-relevant brain areas and are hence limited in the completeness of the

information they yield. Human cognitive operations appear invariably to emerge

from collective neuronal activity in widely distributed large-scale networks. To

assess whether neuronal synchronization coordinates the scattered neuronal

processing underlying perceptual, attentional, and WM functions in humans, net-

work synchronization must be measured noninvasively. Electro- and magnetoen-

cephalography (EEG and MEG) can be acquired during cognitive tasks and yield

millisecond-accurate electrophysiological signals from cortical sources. As an

engineering or mathematical challenge, the estimation of synchronization per se

is straightforward and synchronization among EEG or MEG sensors has indeed

been observed in a number of studies addressing the neuronal correlates of sensory

awareness (Melloni et al. 2007; Rodriguez et al. 1999), attention (Doesburg

et al. 2009), and WM (Freunberger et al. 2008; Kitzbichler et al. 2011; Sauseng

et al. 2005). Large-scale synchronization also characterizes higher-level cognitive
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operations such as mental arithmetic with numbers maintained in WM (Palva

et al. 2005a). These studies are thus supportive of the notion that synchronization

plays a role in the coordination of distributed neuronal processing also in humans.

However, sensor-to-sensor interaction analyses are greatly confounded by volume

conduction and signal mixing and by many other factors such as changes in source

amplitudes or topographies [see (Palva and Palva 2012; Schoffelen and Gross 2009)

and Siebenh€uhner et al. (2016)]. Hence, the utility of sensor–sensor interaction

analyses is, at most, very limited in the study of cortical synchronized networks

(Palva and Palva 2012 and Siebenh€uhner et al. 2016). Crucially, sensor-level

analyses shed no light on the anatomical structures wherefrom the synchronized

oscillations originate and hence leave their functional significance in task perfor-

mance unclear. To overcome these issues, both local and inter-areal synchroniza-

tion in EEG and MEG recordings must be estimated from source-localized data.

Several methods such as beamformers (Gross et al. 2001), low resolution electro-

magnetic tomography (LORETA) (Pascual-Marqui et al. 2011), and minimum-

norm estimation (MNE) (Hamalainen and Ilmoniemi 1994; Lin et al. 2006) have

been developed for source reconstruction. Indeed, a large body of source

reconstruction-based MEG studies have shown that the amplitudes of local cortical

oscillations, which reflect synchronization in the local neuronal populations, are

correlated with attention (Händel et al. 2011; Rouhinen et al. 2013; Zumer

et al. 2014), perception (Haegens et al. 2011; Hirvonen and Palva 2016), and

WM (Bonnefond and Jensen 2012; Honkanen et al. 2015; Palva et al. 2011; Roux

et al. 2012) and hence with many distinct cognitive functions.

2 Does Local Synchrony Reflect Sensory Perception?

In line with invasive animal data, EEG sensor-level analyses have shown that

stimulus-induced gamma oscillations characterize processing of visual stimuli

(Tallon-Baudry et al. 1996, 1997) and that early gamma oscillations that are

phase locked to the stimulus onset reflect sensory representations for well-known

auditory stimuli such as speech (Palva et al. 2002) and chords (Pallesen et al. 2015).

Hence, in humans, the early evoked gamma oscillations could reflect memory

matching of sensory stimuli to feed-forward templates (Cooper et al. 2006) and

initial processing of sensory information.

From neuronal signals, in addition to oscillation amplitudes, also phase locking

to stimulus onset can be measured. Phase locking reflects how well signal is

temporally aligned with stimulus onset across trials. Interestingly, we have found

that both oscillation amplitude and phase locking to stimulus onset are stronger for

chords in musicians compared to nonmusicians (Pallesen et al. 2015). Interestingly,

this effect in phase locking was much more robust than that in oscillation ampli-

tudes showing that specifically temporal precision of neuronal activities imposed by

neuronal oscillations is facilitated by musical training. These data demonstrate that

phase locking of band-limited neuronal oscillations to stimulus onset carries out
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important computational functions in cognitive task processing, which are also

prone to experience-dependent plastic modulations.

Furthermore, sustained phase locking of ongoing neuronal activity to somato-

sensory stimulus and a transient increase in the strength of oscillation amplitudes

predicted also whether weak stimuli presented at the threshold of detection were

consciously perceived (Hirvonen and Palva 2016; Palva et al. 2005b) (Fig. 1a–b).

Importantly, the phase locking and transient amplitude increases were most robust

and sustained from the stimulus onset to the behavioral response in the alpha

(8–12 Hz)-frequency band and observed in lateral prefrontal cortex (LPFC), pos-

terior parietal cortex (PPC), as well as in the middle and anterior cingulate struc-

tures (Fig. 1c–d), which have in prior functional magnetic resonance imaging

(fMRI) studies been found to be positively correlated with conscious sensory

perception (Bar et al. 2001; Grill-Spector et al. 2000; Hesselmann and Malach

2011; Hesselmann et al. 2011; Kouider et al. 2007; Polonsky et al. 2000; Sadaghiani

et al. 2009, 2010; Tong et al. 1998). These data thus reveal that, similarly to studies

in animal models, oscillatory dynamics are correlated with perception. In addition,

it is clear that in the human brains, the correlations of oscillatory activities with

behavioral performance are concurrently observed in multiple frequency bands.

3 Oscillation Amplitudes in Many Frequencies Are

Correlated With Performance in Attention and Memory

Tasks

Attention and WM are core cognitive functions that select behaviorally relevant

information from amongst irrelevant information and maintain it online for further

usage. We have investigated the role of local synchronization, i.e., oscillation

amplitude dynamics in coordinating multi-object visual attention and multi-object

visual WM demands by using concurrent MEG and EEG recordings (M/EEG) and

source localization. Both visual WM and attention have a limited capacity between

two and five objects (Cowan 2001; Luck and Vogel 1997, 2013; Zhang and Luck

2008), although some studies suggest that this capacity is dependent on the com-

plexity of objects (Xu and Chun 2006; Xu and Chun 2009). Several theoretical

frameworks have been advanced to explain the systems-level neuronal mechanisms

determining the individual capacity limitations of these functions as well as on the

intertwined relationship of attention and WM (Chun 2011; Cowan 2001; Drew

et al. 2012; Luck and Vogel 2013; Tsubomi et al. 2013). We have investigated the

role of local and large-scale synchronization in these distinct functions.

In the multi-object visual attention study, the subjects were attending one to four

visual objects that were moving around the visual scene. In one of the conditions,

subjects were attending all objects in the screen (General attention task) and in the

other, only subset of objects while ignoring the others (Selective attention task).

From source-localized MEG data, we investigated the correlation of oscillation
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amplitudes with the attentional load. These data revealed that the strength of

gamma oscillations is increased as a function of attended objects similarly in both

conditions and that these load-effects were positively correlated with individual
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Fig. 1 Conscious somatosensory perception is predicted by strong and stimulus-locked oscilla-

tions. (a) Time–frequency representation (TFR) shows that neuronal oscillations are more phase

locked to perceived than unperceived somatosensory stimuli in all frequency bands between 3 and

30 Hz. Only in the alpha (α, 8–12 Hz) band, phase locking is sustained until behavioral responses

at around 400 ms suggesting that alpha-band phase locking is a crucial component of somatosen-

sory perception. (b) Phase locking in the theta and/or low alpha bands (θ – lα, lα) is observed in the
somatomotor system (SM) as well as in areas of lateral prefrontal and parietal cortices that belong

to fronto-parietal (FP) and dorsal attention (DA) systems. (c) TFR of oscillation amplitude

modulations shows that perception of weak somatosensory stimuli is correlated with an early

increase of theta (θ) and low-beta (l – β) band oscillations and a subsequent wide-band amplitude

suppression. (d) Theta-band amplitude increase is visible in the SM system and in some parcels of

the lateral prefrontal and parietal cortices. Although, beta-band amplitude increase is observed in

the same brain systems, it is present only in few parcels. (e) Template brain defining different brain

systems: SI, primary somatosensory area; SII, secondary somatosensory area; SM, somatomotor

system; FP&DAN, fronto-parietal & dorsal attention network. Modified from ref (Hirvonen and

Palva 2016)
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capacity limitations of visual attention (Fig. 2a) (Rouhinen et al. 2013). The

localization of the load dependency of gamma oscillations revealed a network of

active areas in the visual cortex but even more so also in frontal and posterior
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During visual working memory (WM) task, oscillation amplitudes are load-dependently strength-
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parietal areas that are known to coordinate attention to sensory objects (Corbetta

and Shulman 2002; Kastner and Ungerleider 2000) (Fig. 2b). Importantly, this

effect was much more pronounced in the General attention task than in the Selective

attention task, wherein the effects were more confined. Importantly, subjects with

high attentional capacity had much larger load-dependent recruitment of gamma

oscillations compared to those with low capacity (Fig. 2b). These findings thus

provide evidence for the view of local gamma oscillations coordinating neuronal

processing to support attentional functions in task-relevant cortical areas.

We have also used multi-object WM task that was very similar to that of visual

attention task, but in which subjects memorized the colors and positions of one to six

visual objects. Also, in this case, we analyzed oscillation amplitude modulations from

source-localized MEG data. Interestingly, however, local oscillations not only in the

gamma- but also in alpha- (8–14 Hz) and beta (14–30 Hz)-frequency bands were load

dependently strengthened by the VWM task performance (Palva et al. 2011)

(Fig. 2b). Load-dependent modulations in all frequency bands were observed in the

frontal cortex but in the beta and gamma bands load-dependent modulations were

also observed in visual cortical areas. Yet, similarly to the visual attention task, only

the amplitudes of gamma oscillations but not those of other frequencies were

positively correlated with individual VWM capacity limits (Fig. 2c). In contrast,

also the amplitude of alpha oscillations was correlated with VWM capacity but with

an inverse relationship. Subjects with low VWM capacity, hence, recruited more

load-dependent alpha oscillations than subjects with high capacity, suggesting that

alpha oscillations underlie the recruitment of attentional resources.

Hence, in both visual attention and WM tasks, local gamma oscillations appear

to underlie the maintenance of visual information in visual cortical regions. This

view is supported by observations of the strength of local gamma oscillations

during VWM maintenance being correlated with the maintenance of feature-

specific information and specifically increased for such visual objects which require

the representation of combinations of features, such as color and location, which are

processed in separate functional areas (Honkanen et al. 2015; Tallon-Baudry

et al. 1998) (Fig. 3). These data together are also in line with LFP data and support

the idea that local gamma synchronization underlies the construction or mainte-

nance of feature-integrated sensory object representations in WM and in the focus

of attention.

Visual WM and attention tasks show, however, oscillation amplitude modula-

tions also in lower frequencies. The amplitude of alpha oscillations is strengthened

during the performance of both visual (Bonnefond and Jensen 2012; Honkanen

et al. 2015; Palva et al. 2011; Park et al. 2014) and auditory (Haegens et al. 2010)

WM task. Source localization has revealed that these positive modulations take

place in the parietal and frontal cortical areas, while the amplitude of alpha

oscillations is suppressed in sensory areas. Taken that the frontal and parietal

cortices underlie the attentional and executive control of WM (Linden

et al. 2003; Mohr et al. 2006; Munk et al. 2002; Pessoa et al. 2002; Prabhakaran

et al. 2000; Rowe et al. 2000; Sakai et al. 2002), the amplitude modulations in these

regions likely reflect the attentional control of memorized sensory information.
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In visual attention tasks, the amplitude of alpha oscillations is also decreased in

sensory areas processing the attended sensory information (Lange et al. 2013;

Romei et al. 2008; Rouhinen et al. 2013; Thut et al. 2006; Worden et al. 2000).

This amplitude decrease in sensory areas is thought to reflect enhanced neuronal

excitability that is necessary for efficient information processing. In contrast to WM

tasks, the alpha amplitude is not increased in the frontal cortical areas in attention

task (Rouhinen et al. 2013), demonstrating that the neuronal oscillations may carry

distinct functional roles in attentional control of sensory information in attention

and WM. Taken together, these studies reveal functionally significant local syn-

chronization in both alpha- and gamma-frequency bands in perception, attention,

and WM functions.

4 Inter-areal Synchronization is Correlated with Task

Performance in Humans

In addition to local measure of synchronization reflected in oscillation amplitudes,

during the past decade, a growing number of studies have addressed inter-areal

synchronization, i.e., phase correlations of neuronal oscillations among brain
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Fig. 3 Gamma oscillation amplitudes are correlated with the features maintained in VWM. (a) An

example of the visual WM task in which subjects memorized either shape, location, color, or

conjunction of color and location information of complex visual objects with geometrical shapes.

(b) TFR of oscillation amplitudes shows the correlation between the strength of oscillation

amplitudes and the maintenance of distinct features and reveals that beta- and gamma-band

amplitudes are correlated with the maintenance of distinct features. (c) For the maintenance of

shape information, high-γ oscillations are strengthened in visual ventral stream areas, while the

maintenance of color information is associated with increased β and γ oscillations in early visual

areas V1–V3. Modified from ref (Honkanen et al. 2015)
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regions by using MEG or EEG and source modeling. Several studies have estimated

the interactions among ~2–9 cortical regions of interest (ROIs) and observed

enhanced inter-areal synchrony to correlate with the execution of perceptual and

attentional tasks (Gross et al. 2004; Kujala et al. 2007; Kveraga et al. 2011; Lou

et al. 2010; Siegel et al. 2008). Gross and colleagues revealed beta-band (14–30 Hz)

inter-areal synchronization to be correlated with attention in an attention-blink

paradigm where visual stimuli were presented at a rapid rate and the subjects’
task was to detect target letters presented randomly in the stimulus stream (Gross

et al. 2004). Also gamma-band synchronization between frontal and parietal

regions of interest has been observed to be correlated with spatial visual attention

(Siegel et al. 2008), which is in line with prior observations of a relationship

between gamma synchrony and the allocation of spatial attention in monkey LFP

recordings (Bosman et al. 2012; Buschman and Miller 2007; Womelsdorf

et al. 2007). MEG studies using source reconstruction have also reported alpha-

and beta-band inter-areal synchronization to be correlated with behavioral contex-

tual associations (Kveraga et al. 2011) and sensorimotor integration (Pollok

et al. 2005, 2009). A recent study also revealed that alpha-band synchronization

between the inferior frontal gyrus and somatosensory areas was enhanced for

somatosensory stimuli that were to be ignored, which suggested that the role of

long-range alpha-band synchrony is to inhibit the processing of to be ignored

somatosensory stimuli (Sacchet et al. 2015).

However, ROI-based studies do not reveal whether the observed synchroniza-

tion is a robust component in task processing or whether synchronization among

other frequency bands or between other brain areas than that were investigated

could show significant task-relevant modulations. Specifically, the contribution of

artifactual and spurious synchronization (see chapter “Measuring Large-Scale

Synchronization with Human MEG and EEG: Challenges and Solutions”) con-

founds ROI-based synchrony analyses. In contrast to ROI-based analyses of syn-

chronization, data-driven analyses of synchrony mapping all interregional

interactions are much less confounded by these issues. However, only a handful

of studies (see Palva and Palva 2012), so far, have used the data-driven approach for

assessing inter-areal synchronization. One of the first attempts to map all-to-all

inter-areal synchrony was made by David and colleagues, who used MNE-based

source modeling and data-driven analyses together with a visual task (David

et al. 2002). Later, Kujala and colleagues revealed large-scale cortical networks

during reading (Kujala et al. 2007) and showed that reading is associated with

enhanced coherence in a network comprising of the cerebellum, PFC, temporal

cortical regions, and orbital structures, while comprehension strengthened coher-

ence among cerebellar and temporal regions.

Our study mapped cortex-wide networks of inter-areal synchronization using a

novel data-driven all-to-all analysis of source-reconstructed MEG data. We char-

acterized statistically significant inter-areal connections of synchrony and

represented these data as undirected graphs where cortical areas were the vertices

and interactions the edges (Bullmore and Sporns 2009; Rubinov and Sporns 2009).

We observed that prominent load-dependent inter-areal synchronization in alpha
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Fig. 4 Visual working memory maintenance is associated with concurrent alpha-, beta-, and

gamma-band synchronization in distinct cortical networks. (a) An example of the visual WM task.

(b) Inter-areal synchrony is concurrently observed in alpha, beta, and gamma bands during visual

WM retention period. Frequency is displayed on an x-axis and connection density K that is the

proportion of synchronized connections from all possible connections in the y-axis. (c) Memory

load-dependent increase of synchrony during the WM retention period. (d) Graphs displaying α-,
β-, and γ-band networks show that these networks are localized into distinct cortical structures.

Graphs are displayed in inflated and flattened cortical surface. Color of the surface indicates

different cortical parts: green¼ occipital cortex, blue¼ parietal cortex, red¼ frontal cortex,

gray¼ other regions. (e) Small-worldness (S) is larger for alpha-band network compared to

those of other frequencies. (f) Global efficiency (K) is smaller in the alpha band compared to

other frequency bands. Modified from refs (Palva et al. 2010a, b)
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(8–14 Hz), beta (14–30 Hz), and gamma bands characterized the visual WM

retention period (Palva et al. 2010a, b) (Fig. 4a). These results were in line with

analyses of oscillation amplitudes and suggested that beta- and gamma-band

synchronization among visual regions could indeed underlie the maintenance of

object representations, i.e., the contents of WM, while the strengthened synchrony

concurrently in alpha, beta, and gamma bands among fronto-parietal regions would

be well positioned to support the coordination of attention and the “context” of

WM. As central evidence for large-scale synchronization to be functionally signif-

icant, we found that interindividual variability in the VWM capacity was predicted

by the strength of alpha- and beta-band phase synchronization in networks having

the bilateral intraparietal sulci as most central hubs (Fig. 4b). This finding fits prior

fMRI studies well because the intraparietal sulci are central in mediating visual

attention (Kastner and Ungerleider 2000; Reynolds and Chelazzi 2004) and, impor-

tantly, observed in prior fMRI studies to be key areas in limiting the VWM capacity

(Todd and Marois 2004). These data, therefore, showed that phase synchrony in

large-scale networks is a behaviorally relevant phenomenon and could conceivably

regulate the collective neuronal processing in visual and frontal regions to support

WM functions. Our recent data show that concurrent synchrony in alpha-, beta-, and

gamma-frequency bands characterizes also sustained multi-object attention

(unpublished observations). Hence, similar large-scale patterns of synchronization

may underlie the coordination of attention and WM and their interaction with

sensory systems.

5 The Topology of Synchronized Cortical Networks

Not only the specific anatomical areas connected in synchronized networks but also

their topology is thought to be important factor in understanding how network

synchronization can efficiently mediate the integration and coordination of neuro-

nal processing. The topological structure of synchronized networks can be charac-

terized with graph theoretical network metrics (Bullmore and Sporns 2009) that

yield quantitative insight into the network properties at three levels: edges, vertices,

and the entire graph. At the edge and vertex levels, network metrics can be used to

extract topologically important information from a bulk of connectivity data.

Vertex centrality measures, such as degree and betweenness centrality, reveal

which nodes are most important for network integrity in terms of having many

connections or being a waypoint for many of the shortest paths in the graph,

respectively. At the graph level, several metrics can be used to characterize the

efficiency of information transmission within the graph. Brain connectivity graphs
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have dense intra-modular connectivity and less inter-modular connections, which

leads to high clustering and short average-path lengths (Bullmore and Sporns 2009)

that are the hallmarks of a small-world organization (Watts and Strogatz 1998)

which is, in turn, associated with high local and global efficiency in information

transmission as well as facilitated parallel processing within hierarchically orga-

nized modules (Bassett and Bullmore 2006; Bullmore and Sporns 2009).

Several studies have used signal-space MEG/EEG connectivity analyses to

explore the graph properties of inter-areal networks during task execution (Achard

et al. 2008; Bassett et al. 2006, 2008, 2009; Kitzbichler et al. 2011; Micheloyannis

et al. 2009; Stam 2004) but since the sensor-level synchrony estimates are severely

confounded by signal mixing, the level at which these data reflect the real cerebral

graph properties remains unknown (Antiqueira et al. 2010). We used M/EEG to

assess the topological properties of network synchrony during visual WM retention.

We observed that networks in theta, alpha, beta, and gamma bands have memory

load-dependent truncated power-law degree distributions, small-worldness, effi-

ciency, and clustering (Palva et al. 2010a, b). Even nearby frequency bands can

hence exhibit very different kinds of topologies in task-induced networks (Fig. 4c).

Topological properties have also been assessed for resting-state MEG networks

(de Pasquale et al. 2015; Rutter et al. 2013), which also exhibit truncated power-law

degree distributions but with several shared network hubs across frequencies

(Rutter et al. 2013). These results together suggest that task performance changes

the network topology, which can be correlated with the efficiency of information

processing. These studies pave the way for understanding how global network

properties are related to information processing in the brain and changed by task

execution. Further studies are, however, needed to reveal the role of network

properties in human cognition and behavior.

6 Conclusions

In the past decade, several source reconstruction methods have been advanced to

estimate the amplitude and phase dynamics of local cortical oscillations and their

roles in cognitive processes. These studies have consistently revealed multiple

functional roles for local alpha-, beta-, and gamma-frequency band oscillations in

perception and action, but also that the local phase dynamics shape both the pre-

and poststimulus neuronal processing. Advancements in recent data-analysis

approaches have also begun to elucidate the putative roles of large-scale inter-

areal synchronization in human perception, action, and cognition. In comparison to

fMRI-based functional connectivity analyses, MEG network synchrony analyses

have the potential to reveal a brain dynamic connectome that is much more

complex and information rich because of the time and frequency dimensions

available in MEG and EEG data. However, future studies are required to reveal

both the anatomical and topological network structures of synchronized cortical

networks and hence their role in cortical information processing.
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Thalamo-Cortical Interactions and

Synchronous Oscillations in MEG Data

Peter J. Uhlhaas and Frédéric Roux

1 Introduction

The thalamus has long been established as a central structure in the afferent pathway

that relays inputs from the periphery to the cerebral cortex (Fig. 1a; Sherman and

Guillery 2001, 2006). Most of our knowledge on the operations performed by the

thalamus is based on studies conducted in the so-called sensory nuclei such as the

lateral geniculate nucleus (LGN), which transmits retinal inputs to the primary visual

cortex (V1) with a point-to-point correspondence. Similarly, other sensory nuclei,

such as the medial geniculate (MGN) and posterior ventral nucleus (VPN), relay

acoustic/somatic inputs to corresponding targets in primary auditory/somatosensory

cortices (A1/S1). Our current understanding of thalamic function is, thus, largely

influenced by the notion that the thalamus acts as a central gateway for ascending

peripheral inputs (Sherman and Guillery 2006). More recently, however, several

studies have implicated the pulvinar in the modulation of cortical–cortical communi-

cation during higher cognitive processes, such as attention and working memory

(Wróbel et al. 2007; Saalmann et al. 2012), thereby provoking a renewed interest in

the operations performed by different thalamic nuclei.
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A possible role of the pulvinar in modulating cortico-cortical communication is

compelling (Saalmann and Kastner 2009; Saalmann and Kastner 2011; Saalmann

2014) because it agrees with anatomical studies suggesting that thalamic nuclei can

be subdivided into “first-order” (FO) and “higher-order” (HO) nuclei according to

their drivers (Sherman 2007). A consistent characteristic of FO nuclei is that they

Fig. 1 Anatomy of the thalamus. (a) Overview of first-order and higher-order thalamic nuclei

including the lateral geniculate nucleus (LGN), the medial geniculate nucleus (MGN), the medial

dorsal nucleus (MD), and the pulvinar (Pul). The internal medullary lamina (IML) is composed of

myelinated fiber layers that delineate the dorsomedial and ventral nuclei of the thalamus. (b)

Coronal section of the plane in a showing the anterior intralaminar (green), posterior intralaminar

(yellow), MD (pink), and midline (blue) nuclei [a–b are adapted from (Saalmann 2014)]. (c)

Schematic representation of thalamic and cortical pathways in the mouse [c is adapted from

(Sherman 2012)]. The pulvinar receives inputs from the first-order (FO) brain area “a” via

corticothalamic projection neurons originating in layer 5 (red solid line) and at the same time

sends information to the higher-order (HO) brain area “b” via thalamo-cortical neurons terminat-

ing in layer 4 (blue solid line)
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transmit driving inputs received from subcortical sources to cortical layer 4, thereby

forming the basis for the relay of receptive field properties (Sherman and Guillery

2011; Guillery and Sherman 2011). The majority of these nuclei are constituted by

the main sensory nuclei (LGN, MGN, VPN). HO nuclei such as the pulvinar, by

contrast, receive their driving inputs from layer 5 of one cortical area but send their

projections back to layer 1 of a different cortical region (Sherman and Guillery

2001). This nonreciprocal connectivity pattern has been proposed as an indirect

trans-thalamic pathway for relaying information between distinct cortical areas

(Fig. 1b; Sherman 2012).

Supporting evidence for such an indirect pathway involving the pulvinar has

been obtained recently by Saalmann et al. (2012), who demonstrated that syn-

chronous alpha oscillations were involved in relaying pulvinar inputs between

two functionally coupled distinct visual areas (V4 and TEO). This effect was

modulated by spatial attention, thereby supporting the hypothesis that trans-

thalamic routes are involved in cortico-cortical communication during cognitive

processing (Saalmann 2014; Sherman and Guillery 2011; Guillery and Sherman

2011; Sherman 2012). Another important observation from the study by

Saalmann et al. (2012) showed that the envelope of cortical gamma power in

V4 and TEO was coupled to the phase of cortical alpha oscillations. This suggests

that synchronous TC alpha oscillations generated in higher-order nuclei could

support the emergence of coherent gamma oscillations in cortico-cortical net-

works (Schmid et al. 2012), thereby providing a thalamic mechanism to regulate

cortico-cortical information flow.

Such a mechanism would be in line with the long-standing hypothesis that the

thalamus actively regulates cortico-cortical information processing (Crick 1984;

Sherman and Koch 1986; Singer 1994) as well as with evidence implicating alpha

and gamma oscillations in the routing of information flow in cortico-cortical

networks (Fries 2005, 2009; Jensen and Mazaheri 2010; Jensen et al. 2014).

Along these lines, synchronous oscillations could also regulate the efficacy of

information transmission in first-order TC circuits. The LGN, for instance, has long

been implicated into the generation of synchronized oscillations in the visual cortex

at alpha, beta, and gamma frequencies (Lopes da Silva et al. 1980; Ghose and

Freeman 1992; von Krosigk et al. 1993; Castelo-Branco et al. 1998;

Neuenschwander et al. 2002), thereby suggesting that synchronous oscillations

could play a putative role in mediating the transmission of retinal inputs to primary

visual areas.

This is supported by recent work demonstrating that geniculo-cortical feed-

forward processing is mediated by synchronous oscillations at beta frequencies,

whereas corticothalamic feedback from V1 to LGN is mediated by synchronous

activity in the alpha band (Bastos et al. 2014). Moreover, recent electrophysiolog-

ical recordings and computational models of LGN activity show that during strong

phasic inhibition, spiking of geniculate neurons and pyramidal cells will be phase-

coupled with the trough of the alpha cycle, whereas during weaker inhibition,
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spiking activity will be coupled to the peak of the alpha cycle (Lorincz et al. 2009;

Vijayan and Kopell 2012). As a result, alpha-based synchronization of geniculate

and cortical responses may lead to a temporal framing of neuronal responses that

could modulate the transmission of geniculo-cortical information (Lorincz

et al. 2009). This is supported by studies demonstrating that the phase of the

alpha cycle modulates neural firing (Haegens et al. 2011), perceptual detection

rates (Varela et al. 1981; Dugué et al. 2011), and cerebral blood flow (Scheeringa

et al. 2011), thereby suggesting that synchronous alpha-band oscillations exert

critical influence on the excitability level of TC networks as well as on neuronal

response gains.

2 Subcortical Sources in MEG Data

Current approaches to MEG source reconstruction often rely on distributed source

models to estimate the contribution of simultaneously activated neuronal dipoles in

different brain regions (Van Veen et al. 1997; Gross et al. 2001; Sekihara

et al. 2001). These approaches permit the assessment of functional interactions

between multiple sources of brain activity and have been successfully applied to

study coherent patterns of cortical oscillatory activity in humans during cognitive

processing (Gross et al. 2001; Schoffelen and Gross 2009). One important limita-

tion of these approaches, however, is the fact that the magnetic field strength decays

rapidly with increasing distance from the location of the source, and as a result,

MEG recordings, therefore, tend to be biased by activity from cortical sources and

are less sensitive towards activity in deeper brain structures, such as the thalamus or

the brainstem.

Until recently, the possibility of applying source reconstruction techniques to

assess directed TC interactions in humans has, therefore, remained largely

unexplored. In theory, however, contributions from deeper sources should be

detectable in MEG data, given that their fields are strong enough to propagate to

the sensor array of MEG-SQUIDs. This hypothesis is supported by several studies

that have localized MEG signals in subcortical regions, including the brain stem

(Parkkonen et al. 2009), the amygdala (Dumas et al. 2013; Hung et al. 2010), and

the hippocampus (Staudigl and Hanslmayr 2013), thereby demonstrating that the

activity from subcortical sources can be reconstructed by means of commonly used

source modeling techniques.

First evidence supporting that MEG can monitor thalamic sources was reported

by Ribary et al. (1991), who were able to demonstrate coherent gamma oscillations

between thalamus and cortex in resting-state activity. Subsequent work by Tesche

(1996) reported somatosensory-evoked responses in contralateral thalamus that

were in line with latencies of similar responses obtained from intracranial record-

ings in human thalamus. Finally, two studies by Attal and colleagues (Attal and

Schwartz 2013; Attal et al. 2007) have implicated thalamic sources in the

72 P.J. Uhlhaas and F. Roux



generation of resting-state alpha oscillations, thereby highlighting the possibility

that thalamic sources contribute to a measurable MEG signal during resting state.

In agreement with these findings, a simulation study by Attal et al. (2007)

indicated that thalamic fields may achieve up to 21% (25fT) of the total field

strength produced by cortical sources (120fT), adding further evidence to the

possibility that thalamic structures may indeed significantly contribute to a mea-

surable MEG signal. Finally, from a biophysical perspective, there is anatomical

evidence suggesting that the longitudinal dendritic architecture of the LGN and

TRN may contribute to the generation of tangential fields which can be measured

with MEG (Yelnik et al. 1984). Whether the cytoarchitecture of the pulvinar is

compatible with the generation of tangential fields remains an open question that

requires further investigation.

3 Measuring Thalamic–Cortical Interactions in MEG Data

Recent data show that alpha-band rhythms generated in the LGN are linked with the

temporal coordination of spiking activity in TC circuits (Lorincz et al. 2009;

Vijayan and Kopell 2012), providing important support for the hypothesis that

alpha-phase entrainment may regulate cortical spiking activity (Jensen and

Mazaheri 2010; Klimesch et al. 2007). Moreover, there is emerging evidence that

the pulvinar influences cortical synchrony through rhythmic alpha activity

(Saalmann et al. 2012), raising the possibility that synchronous alpha rhythms in

TC circuits may contribute to establishing coherent gamma-band oscillations in

cortex (Saalmann 2014).

A first step towards testing this hypothesis in humans is to investigate whether

thalamic alpha-based entrainment of cortical gamma oscillations is detectable in

MEG-recorded brain signals. To investigate this possibility, we have recently

recorded resting-state activity in a sample of n¼ 45 healthy participants with

MEG. We focused on interactions between alpha (8–13 Hz) and broadband

gamma (30–70 Hz) activity, as previous work indicates that broadband activity in

the gamma frequency range reflects active neuronal processing such as neuronal

spiking activity (Rasch et al. 2008; Manning et al. 2009; Whittingstall and

Logothetis 2009; Miller 2010; Miller et al. 2010; Buzsáki and Wang 2012) and is

modulated by the phase of task related and spontaneous alpha oscillations

(Saalmann et al. 2012; Chorlian et al. 2006; Osipova et al. 2008; Cohen

et al. 2009; Voytek et al. 2010; Foster and Parvizi 2012; Spaak et al. 2012;

Yanagisawa et al. 2012).

Using a whole-brain analysis, as well as a seed region based analysis of phase–

amplitude coupling (PAC) at source level, we examined the modulation of neocor-

tical gamma-band activity by the phase of cortical and thalamic alpha oscillations.

Consistent with previous work (Saalmann et al. 2012; Chorlian et al. 2006; Osipova
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et al. 2008; Cohen et al. 2009; Voytek et al. 2010; Foster and Parvizi 2012; Spaak

et al. 2012), we observed that local gamma-band activity was coupled to the phase

of the alpha-band rhythm which was most pronounced over the visual cortex,

suggesting that fluctuations of broadband gamma-band activity are linked to the

phase of a local source of alpha oscillations. To investigate the contribution of a

potential thalamic alpha generator, we carried out a seed region-based analysis of

alpha–gamma coupling. This approach consisted of measuring the coupling of

brain-wide broadband gamma power in source space with the phase of thalamic

alpha oscillations as measured by two virtual electrodes at thalamic coordinates.

The results of this approach revealed that TC alpha–gamma coupling became

significant in posterior medial parietal cortex where cortical gamma-band activity

was greatest at the peak of the thalamic alpha rhythm (Fig. 2). In addition, we tested

the physiological validity of our findings using transfer entropy (TE) and addressed

the potential contribution of spatial source leakage using a reversed seed-region

analysis to control for spurious TC interactions (Fig. 3).

Fig. 2 Thalamo-cortical PAC. (a, b) Statistical source maps of t-values ( p< 0.01; dependent t-
test; two sided; corrected) for the comparison of thalamo-cortical alpha–gamma PAC with shifted

data for seed regions in the left (a) and right (b) thalamus. (c, d) Cortical gamma-band amplitude

as a function of thalamic alpha phase averaged over grid points in the left (c) and right (d) posterior
medial parietal cortex. Error bars represent SEM, and the red line represent the fit of a cosine

function (cos(φ)) to the data. (e, f) Same convention as in Figs. 2–3 with the exception that the

histograms are based on thalamic alpha-phase estimates. (g) Phase synchronization between the

thalamus and posterior medial parietal areas in the left (black) and right (red) hemisphere for

frequencies from 1 to 100 Hz. Phase synchronization was measured by means of the phase locking

value (PLV). (h) PDF of thalamo-cortical conduction delays as measured by TE (mean: 15.8 ms;

SD: 2.4 ms)
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Fig. 3 Reversed-seed region analysis.(a) Source maps of normalized MI values for the modula-

tion of 30–70 Hz activity in the left and right posterior medial parietal cortex by the phase of brain-

wide alpha oscillations. The amplitude of broadband gamma activity in posterior medial parietal

cortex was modulated by the phase of alpha oscillations in the left thalamus as well as in the left

and right posterior medial parietal cortex. (b) Same convention as in Fig. 4 with the exception that

the histograms are based on phase estimates of alpha activity in the left and right parietal cortex

(top panel) and left thalamus (bottom panel). (c) Source maps of Pearson correlation coefficients

(r) for the correlation of spatial filters in the left and right thalamus and spatial filters at brain-wide

source locations (left panel). Right panel: histograms showing the distribution of Pearson corre-

lation coefficients across participants for the correlation of spatial filters in the left and right

thalamus and spatial filters in the left and right posterior medial parietal cortex
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4 Impact of NMDA-R Hypofunctioning on TC Networks

in Resting MEG Data

Further evidence for the possibility to reconstruct TC interactions in MEG data

comes from a study in which we examined the impact of NMDA-R receptor

antagonist ketamine on resting-state neural oscillations. In the cortex, networks of

mutually interacting GABAergic neurons and their glutamatergic inputs are cru-

cially involved in the generation of high-frequency oscillations. In the thalamus,

NMDA-R contributes to the excitatory potentials evoked at corticothalamic synap-

ses in both the reticular (de Curtis et al. 1989; Golshani and Jones 1999) and relay

neurons (Hu et al. 1989; Golshani et al. 1998; Scharfman et al. 1990; Deschênes and

Hu 1990; Turner and Salt 1998; Kao and Coulter 1997). Moreover, there is

evidence to suggest that NMDA-R contributes to oscillatory activity in TC path-

ways, in particular at lower frequencies (Jacobsen et al. 2001).

NMDA receptors’ number and functionality have been critically implicated in

the pathophysiology of ScZ (Moghaddam and Javitt 2012; Kirov et al. 2012) and

abnormalities in glutamatergic transmission and are a candidate mechanism for

disturbed high frequency oscillations in the disorder. In vivo and in vitro electro-

physiological studies using NMDA-R antagonists have revealed an increase of

spontaneous power at both low (30–60 Hz) and high (60–130 Hz) gamma-band

ranges as well as at ripple frequencies (130–200 Hz) (Hunt and Kasicki 2013).

More recently, there is increasing evidence that TC interactions are disturbed in

ScZ and could provide a core pathophysiological mechanism for cognitive deficits

and certain symptoms of the disorder (Uhlhaas and Singer 2006; Parnaudeau

et al. 2013).

To examine the possibility that TC networks are critically involved in the

dysregulation of gamma-band oscillations following ketamine application, we

investigated the impact of ketamine on resting-state activity in MEG recordings

in healthy volunteers. In a single-blind crossover design, each participant (n¼ 12)

received, on two different sessions, a subanesthetic dose of S-ketamine (0.006 mg/

Kg) and saline injection. MEG data were analyzed at sensor and source level in the

beta (13–30 Hz) and gamma (30–90 Hz) frequency ranges (Hunt and Kasicki 2013).

In addition, connectivity analysis at source level was performed using TE (Vicente

et al. 2011; Wibral et al. 2011, 2013).

Our data show a pronounced upregulation of gamma-band activity at both sensor

and source level which occurred in subcortical and cortical areas (Figs. 4 and 5).

The largest increases of gamma-band activity were observed in the right hippo-

campus and right/left thalami, followed by parietal, temporal, and frontal structures

(Fig. 5). Decreases in beta band were localized to brain regions that were overall

distinct from gamma-band generators. Maximal reductions in 13–30 Hz were

localized, for example, to the cerebellum, temporal, and visual cortex.

These MEG data are consistent with previous research investigating the effects

of ketamine administration in invasive electrophysiological recordings as well as

with the presence of gamma-band generators in thalamo-cortical circuits. For
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example, Pinault and Deschênes (1992) showed robust 40 Hz activity of neurons in

the reticular thalamic nucleus (RTN), suggesting a pacemaker function of RTN

cells in the generation of 40 Hz oscillations. In addition, 30–100 Hz spontaneous

activity has been recorded in other regions of the thalamus, including the

Fig. 4 Sensor-level analysis. (a) Topoplots representing the average power spectra (fT) of gamma

(top) and beta (bottom) frequency ranges in the placebo (left) and ketamine (right) conditions. (b)
Results of the nonparametric cluster-based statistic highlighting sensors showing a statistically

significant effect for gamma (top) and beta (bottom) frequencies. Red colors indicate a statistically
significant difference in favor of the ketamine condition, whereas blue colors indicate a difference
in favor of the placebo condition (*¼ p< 0.001)

Fig. 5 Summary of significant NBTE between indicated brain regions in relevant time intervals.

Directional arrows indicate time periods in the cue-target interval during which higher levels of

information flow in the alpha band were observed for the indicated cue condition. Reprinted from

Doesburg et al. (2016) with permission
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ventrolateral and the intralaminar centrolateral nuclei (Timofeev and Steriade

1997). Moreover, animal models reported gamma-power increase following keta-

mine application in the thalamus and hippocampus: Zhang et al. (2012) reported

that gamma activity increased after ketamine injection by 308% in the hippocam-

pus and 258% in the thalamus.

To further examine the possibility that ketamine impacts, in particular, on TC

pathways, we estimated source-level functional connectivity between regions

showing spectral changes after ketamine administration with TE (Vicente

et al. 2011; Wibral et al. 2011, 2013). Ketamine administration caused an increase

in the average TE values (see Fig. 6a for uncorrected effects) which particularly

involved connections between the thalamus and temporal and visual regions.

Our results of MEG-informed source localization, furthermore, are consistent

with recent data that have highlighted the importance of thalamo-cortical interac-

tions and hippocampal circuits in the pathophysiology of ScZ. Several resting-state

fMRI studies reported increased functional connectivity between thalamus and

cortical regions (Woodward et al. 2012; Monaghan and Cotman 1985; Schobel

et al. 2013), albeit some report mixed findings (Schobel et al. 2013). In addition, the

increase in gamma-band activity in hippocampal sources, a brain region with a

large number of NMDA receptor sites (Gunduz-Bruce 2009), is consistent with the

findings highlighting the possible contribution of elevated metabolism as a result of

NMDA-R hypofunctioning in the early stages of ScZ (Kocsis 2012).

5 Discussion

The thalamus forms densely connected networks with many regions in the cerebral

cortex (Sherman and Guillery 2001). Thus, MEG-based source reconstruction of

TC interactions may provide important insights into the role of the thalamus in

cognition. Furthermore, if MEG proves to be capable of monitoring thalamic

activity, it may have important clinical implications, as TC dysfunctions have

been centrally involved in the pathophysiology of several severe psychiatric disor-

ders, such as schizophrenia (O’Donnell and Grace 1998; Pinault 2011).

The current data highlight the possibility to reconstruct TC interactions with

MEG during resting state. While previous empirical and modelling data have

suggested the possibility that MEG might be sensitive towards thalamic sources

(Ribary et al. 1991; Tesche 1996; Attal and Schwartz 2013; Attal et al. 2007), the

studies conducted by our group provide additional support towards this hypothesis

through demonstrating that the amplitude of alpha- and gamma-band oscillations in

thalamic regions can be measured with MEG. In addition, our data demonstrate that

directed interactions in TC circuits can be reconstructed using novel measures of

information transfer such as TE (Vicente et al. 2011; Wibral et al. 2013). Accord-

ingly, these results provide important evidence on the contribution of TC interac-

tions in the organization of oscillatory networks which has important implication

for the understanding of large-scale networks during normal and abnormal brain

functioning.
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Fig. 6 Transfer entropy (TE) analysis. TE differences between ketamine and placebo conditions.

Green diamonds indicate MEG sources reactive to ketamine in the gamma band; blue circles
indicate sources reactive in the beta band (see Fig. 3). Arrow colors indicate strength of the

difference. (a) Uncorrected differences in TE. (b) Statistically significant differences (Bonferroni

corrected: p< 2.08� 10–4 the TE differences at a significance threshold of p< 0.0005

uncorrected), for the transfer entropy between (c) sources reactive in the beta frequency band,

(d) in the gamma frequency band, and (e) between beta and gamma sources. Legend: FrontalPole-
L, left frontal pole; MFC, medial frontal cortex; SFG-L, left superior frontal gyrus; ACC, anterior
cingulate cortex; MTG-L, left middle temporal gyrus; FuG-L, left fusiform gyrus; Th-L, left
thalamus; Cb, cerebellum; Prec-L, left precuneus; HI-R, right hippocampus; Th-R, right thalamus;
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5.1 What Are the Requirements to Detect Such Interactions?

To discard spurious effects due to spatial leakage and volume conduction, which

are often encountered in MEG measurements (Nolte et al. 2004), it is important to

assess the validity of source-reconstructed TC interactions. A first step in

establishing the face validity of reconstructed TC interactions is to specifically

test for the existence of information transfer going from the thalamus to cortical

sources. One way to achieve this is by estimating the amount of information

communicated from the thalamus to a cortical source by using information theo-

retical measures such as Granger causality or TE. In the case that TC interactions

are biased by spatial leakage from nearby cortical sources, then this should be

revealed by the absence of a directed influence from thalamus to cortex. On the

other hand, a directed influence from thalamus to cortex can be seen as a strong case

against source leakage, thereby supporting that the measured effects reflect genuine

information transfer from thalamus to cortex.

Secondly, in order to assess the physiological validity of source reconstructed

TC interactions, the measured TC conduction latencies should be compared with

previously reported delays measured by electrophysiological studies. Thirdly, to

cross-validate functional connectivity measures between thalamic and cortical

sources, a reversed seed-region analysis can be performed to further rule out the

possibility of volume conduction or spatial leakage [for more details, see Roux

et al. (2013)]. Finally, the accuracy of spatial filters can be assessed by quantifying

the pair wise correlation between spatial filters at thalamic source coordinates and

spatial filters at other locations in source space, thereby providing a map of spatial

leakage around thalamic source locations.

5.2 Are Thalamic Sources Detectable in Task-Related MEG
Recordings?

One issue that remains to be addressed is the question whether TC interactions can

also be examined with MEG during task-related activity. The study by Attal

et al. (2007) indicates that a large number of trials (400–3500) may be required to

detect thalamic sources in stimulus-evoked activity, whereas thalamic generators of

oscillatory activity at alpha frequencies during resting-state recording can already

be identified from only 30 s of eyes closed resting-state activity. Accordingly, the

sensitivity of MEG towards thalamic sources may significantly deteriorate during

recordings of task-related activity. This difference could result from the shorter

time windows used in cognitive experiments, which typically range between 1 and

Fig. 6 (continued) MTG-R, right medial temporal gyrus; Prec-R, right precuneus; ITG-R, right
inferior temporal gyrus; VisualCortex-R, right visual cortex
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3 s. Indeed, the length of the recorded signals that are used for the computation of

the sensor covariance matrix will determine the accuracy of the forward solution, as

previously reported by Brookes and colleagues (Brookes et al. 2008). Thus, the

length of the time windows used in cognitive experiments may be a critical factor

influencing the detection of thalamic sources in MEG recordings. Another possi-

bility that could influence the detection of thalamic signals in task-related activity is

the fact that cortical sources will produce signals that have a greater signal-to-noise

ratio (SNR) than during resting state, thereby possibly decreasing the detectability

of thalamic generators in MEG signals per se (Attal and Schwartz 2013; Attal

et al. 2007).

From a methodological perspective, one possible way of increasing the sensi-

tivity of source reconstruction techniques for TC interactions in task-related activity

could be to combine measures of functional connectivity and information flow in

TC circuits. This approach could have the advantage of increasing the detectability

of thalamic sources as compared to approaches which rely on measures of relative

signal strength, which could be biased by relative differences in SNR between

cortical and thalamic generators (Attal and Schwartz 2013; Attal et al. 2007).

Furthermore, most actual source reconstruction techniques rely on anatomical

models which do not take into account structural differences in the cytoarchitecture

of subcortical regions. However, recent simulation studies demonstrate that the

sensitivity of MEG for deep brain activity can be substantially improved by using

anatomical priors to build realistic source models for subcortical regions (Attal and

Schwartz 2013; Attal et al. 2007). Thus, future work aiming at reconstructing

thalamic–cortical interactions in MEG data should apply similar techniques to

improve the sensitivity of source models for thalamic sources.

5.3 Future Directions

Simultaneous MEG and intracranial LFP recordings conducted in deep brain

stimulation (DBS) patients may provide an important opportunity of assessing

functional interactions in TC circuits. One possible approach could be to stimulate

subcortical areas such as the subthalamic nucleus (STN), a frequent target of DBS

electrodes in Parkinson’s disease patients (Urrestarazu et al. 2009; Toledo

et al. 2014). The effect of this stimulation should generate a detectable MEG signal

in the STN, given that the biophysical requirements for a measurable field are met

(Ahlfors et al. 2010a, b). One could then use adapted MEG beamforming tech-

niques designed to suppress artifacts generated by the implanted electrodes (Litvak

et al. 2010) to assess how well source activity in the STN can be reconstructed from

MEG recordings.

A more challenging approach could involve optogenetic techniques in

nonhuman primates (Diester et al. 2011) to activate specific thalamic nuclei while

recording simultaneous MEG activity. Previous work suggests that MEG source

reconstruction for cortical sources can be carried out in nonhuman primates using

beamformer techniques (Zumer et al. 2010; Zhu et al. 2009). If optogenetic
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activation of thalamic nuclei proves to be successful in nonhuman primates, then

this approach could provide a promising avenue to study the contribution of specific

thalamic nuclei to MEG signals during resting state and cognitive processing.

6 Summary

The thalamus has long been involved in the modulation of neuronal activity during

primary perceptual processes (Sherman and Guillery 2006; Jones 2001). However,

emerging evidence suggests that in addition to its function as a relay in the afferent

pathway, the thalamus may also play a crucial role in the regulation of neuronal

activity during higher level cognition (Saalmann and Kastner 2009, 2011;

Saalmann 2014). In addition, dysfunctional thalamic interactions have been cen-

trally involved in psychiatric disorders such as schizophrenia (O’Donnell and Grace
1998; Pinault 2011). So far, however, thalamic electrophysiology can only be

investigated on the basis of intracranial recording techniques which offer only a

limited number of recording sites. MEG in turn provides the possibility to recon-

struct whole-brain networks and could thus provide important insights into

corticothalamic and thalamo-cortical interactions at a much larger scale. We have

outlined the existing evidence supporting that MEG may be suitable as a technique

to reconstruct TC interactions. Specifically, we suggest that using advanced source

reconstruction techniques together with information theoretical measures, it is

possible to measure information transfer between the thalamus and the cortex

during resting-state recordings. The spatial resolution with which MEG can detect

thalamic interactions and monitor specific thalamic nuclei, however, remains an

open question that needs to be addressed by future studies.
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Neurocognitive Decoding of Aesthetic
Appreciation

Juan Garcı́a-Prieto, Ernesto Pereda, and Fernando Maestú

1 Evolution of Aesthetics

Historically, art and beauty have been the subjects of impassioned discussions, with

two big questions dominating the scene. Firstly, whether beauty is a concept

actually belonging to this world—often in terms of theological versus

nontheological beauty—and its consequences on the relationship between form

and content and the search for universal patterns of beauty; secondly, the compre-

hension of the fundamental purpose of art.

1.1 Before 1900

It is hard to find a prominent figure in the history of philosophy who has not been

him- or herself concerned with the notion of beauty and aesthetic pleasure, which
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underlines the importance for us, as human beings, of beauty. Yet, the foundation of

aesthetic inquiry as a formal scholarly discipline is relatively recent, when the

philosopher Baumgarten (1714–1762) introduced the modern use of the term in

1739 (Vessel et al. 2012). However, they were Fechner (1801–1887) and Wundt

(1832–1920), two of the precursors of experimental psychology, who carried out

the initial experimental research of aesthetic experience, developing an incipient

methodological setup for an empirical approach to aesthetics.

Since then, a growing body of behavioral studies appears to focus mainly on

artistic visual stimulus while elaborating knowledge on the visual properties of

motivators of aesthetics. But, still the concepts debated by early psychologists—

such as manners or style—stand distant from today’s modern concepts of cognitive

psychology or neuroscience. Authors usually leaned towards the idea that aesthetic

evaluations rely on universal principles while emphasizing the importance of

understanding aesthetic responses as strongly subjective.

1.2 1900–1990

During this period, some preliminary experimental works appeared at the intersec-

tion of philosophy and empirical sciences of perception and studied within the

fledgling experiential science of psychology. After an initial exploration of a

possible test for aesthetic judgment of pictures performed in 1918 (Cattell

et al. 1918), works populate the literature and research began to be more liberated

from academic constraints, a continuous stream of empirical behavioral studies on

aesthetic judgment surged (Peters 1942), especially since the 1950s. Simulta-

neously, the rapid development of numerous artistic styles, sometimes organized

into movements with interesting dynamics (Carbon 2012), produced increased

conceptual complexity in the examples of art while coercing neuroaesthetic to

stretch its models in order to include them. One of the most intriguing of such

movements is the Dadaism—the anti-art or the artworld to be art—where everyday

objects often become difficult to recognize as artworks. In this sense, modern art

becomes a subject of scientific interest, as it involves a different need for interpre-

tation of aesthetics than previous art by integrating the artwork’s abstract interpre-
tation much influenced by the expertise level of the perceiver.

Although already experimental, the field lacked a unified theoretical framework

until the 1970s, when D. Berlyne (1920–1975) introduced a psychobiological

viewpoint of aesthetics (Leder and Nadal 2014). Since then, the accumulation of

experimental evidence and the growth of technical and methodological sophistica-

tion during 1980s and 1990s increased the rigor and versatility of the experimental

designs.

As commented, most examples concentrated on visual features such as symme-

try in artworks (Attneave and Arnoult 1956), complexity, intensity, brightness,

saturation, and size (Berlyne 1970) or even ambiguity (Boselie and Leeuwenberg

1985), color (Zeki 1980), and color harmony (Granger 1955). Other works
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measured how arousal levels and affective state of the participants can play a role in

aesthetic experience (Berlyne 1972) (Cupchik 1995), how the emotional state of

participants affect aesthetic ratings (Konečni and Sargent-Pollock 1977), or studied

the influence of the context around an artistic object (Frijda 1989).

Behavioral differences were observed between experts in art and students,

demonstrating how technical training can affect art valuation and perception

(Eysenck 1972; Gordon 1923; Lund and Anastasi 1928). An extent that was proven

later behaviorally (Chokron and De Agostini 2000; Hekkert and Van Wieringen

1996; Nodine et al. 1993) and in terms of modern neuroscience regarding painting

(Cupchik et al. 2009; Pihko et al. 2011) and music (Bhattacharya and Petsche

2005).

Despite all this effort, studies produced rather unsatisfactory results in terms of

allowing the outline of a general framework. As commented, a high diversity of

valuation of art between individuals has been reported time and again, clearly

suggesting that art training considerably affects aesthetic perception and thereby

a major role of individual differences in aesthetic theories (Peters 1942). Even after

one of the first psychological models for aesthetic experience was proposed (Par-

sons 1987), only vague predictions could be assessed. Aesthetic judgments are not

only subjective but also highly susceptible to cultural norms, education, and

exposure. A point that has very recently been behaviorally verified in twins

(Germine et al. 2015).

1.3 1990 to Today

Numerous neurobiological lines of investigation started much earlier than 1990,

even as early as 1900, with pioneer works by J. M. Flourense (1794–1867),

S. Ramon y Cajal (1852–1934), S. Henschen (1847–1930), or K. Lashley

(1890–1958) (Gross 1999), which led to the basis for our understanding of the

neurobiological basis for human behavior. Yet, it was only recently, with the advent

of advances in neuroimaging such as functional magnetic resonance imaging

(fMRI) technique and the improvement of electrophysiological methods—such as

electroencephalography (EEG) or magnetoencephalography (MEG) among many

others—that a clear progress in the field has been reached. Concerning experimen-

tal aesthetics, the application of these new techniques and fundamental approaches

blossomed into the new field of neuroaesthetics, a term usually attributed to

S. Zeki (1998).

A considerable number of conceptual models of neuroaesthetics have been

proposed throughout the literature. Furthermore, each model is usually not incom-

patible with the rest—although with fundamental differences between their inter-

pretations—and not many hypotheses can be easily tested to falsify each model.

Generally speaking, the different models explain how aesthetic experiences arise

from the interaction among sensorimotor, emotion-valuation, and meaning-

knowledge neural systems (Chatterjee and Vartanian 2014), one main influence
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of these models being that they helped to normalize a sometimes variable set of

keywords. An integrative perspective of the knowledge attained through these

models can be found in Nadal et al. (2008). Henceforth, we briefly describe the

most important ones.

1.3.1 Zeki’s Model

In this model (Zeki 1998), the brain’s and art’s function are in fact the same: to build

up true knowledge about the world around us through asynchronous and parallel

processes, while discarding specific nonessential information and searching for

consistencies. The model explains how artists—whether consciously or uncon-

sciously—use these properties to achieve their goal of triggering specific aesthetic

experiences—an idea sustained by other researchers (Livingstone 2002), yet one

which dodges an explicit description of how cognitive functions intervene during

aesthetic experience.

1.3.2 Ramachandran and Hirstein’s Model

First exposed in Ramachandran et al. (1998) and later explained in Ramachandran

and Hirstein (1999), this model is more elaborated than Zelki’s, including more

neurophysiological support as well as an evolutionary and etiological approach,

although its description of the processing hierarchy among cognitive and emotional

functions during the aesthetic experience itself remains elusive. The model stands

that aesthetic experience is due to a reinforcing mechanism triggered when a certain

feature of the world around us is of special importance. It is a reinforcing signal that
produces limbic activation and draws attention to that feature’s processing, thereby
facilitating the processing while producing pleasurable reward associated with

feature binding.

1.3.3 Chatterjee’s Model

Adapted from the cognitive neuroscience of visual perception, this model (Chat-

terjee 2004) is based on two basic assumptions: the nervous system processes

information both hierarchically and in parallel, while accounting for multiple

components, so that aesthetic experience is derived from responses to such different

components. The model delves into the contrast between visual objects that might

give pleasure by appealing to basic drives such as the desire for food or sex and

aesthetic stimuli that evoke a disinterested interest, one which the observer expe-

riences preference and liking, yet without explicit functional apprehensions.
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1.3.4 Leder’s Model

This model (Leder et al. 2004; Leder and Nadal 2014) is the first to integrate the

previous ones within superior cognitive hierarchies, constituting a comprehensive

psychological model for aesthetic experience. It was committed to the double

proposition that aesthetic experience is the result of multiple perceptual cognitive

and affective processes and that the panoply of possible aesthetic experiences owes

to the virtually unbounded number of ways in which the components interact and to

variations in the relevance of their role in each particular experience (Leder and

Nadal 2014).

Following the model, information processing is divided into five self-rewarding

and overlapping stages, involving perception, implicit classification, explicit clas-

sification, cognitive mastering, and evaluation, all influenced by emotive

processing. Therefore, an aesthetic experience is a cognitive process accompanied

by continuously upgrading affective states, resulting in an aesthetic emotion. The

influence of affective state is of maximal importance, parallel, and distributed over

all previous stages, bearing a strong intrinsic motivational potential. Interestingly,

Leder’s model differentiates between aesthetic emotion and aesthetic judgments as

independent outputs of the aesthetic experience.

1.4 The Role of Brain Connectivity in the Study of Aesthetic
Perception

As it has been the norm throughout the history of aesthetics, the field recruits

concepts from other more fundamental developments. That of human brain net-

works is a good example, where the methodological developments for characteriz-

ing brain connectivity (Sporns 2014), despite not being directly related with

neuroaesthetics, fit particularly well within previous neuroaesthetic theoretical

frameworks. Hence, the number of studies focusing on underlining the interactions

between different brain areas is continuously growing in the literature, although in

general terms, connectivity studies within neuroaesthetics are still not very

common.

The possibility of networks being involved in the aesthetic experience was

already suggested in the early 1990s (Lang et al. 1993), although the idea was not

seriously considered until much later (Cela-Conde et al. 2004; Jacobsen et al. 2005;

Jacobsen 2006). Indeed, Ramachandran and Hirstein’s, Leder’s, and Jacobsen’s
models—though most clearly the former—underline the importance of attentional

and emotional reinforcement of neural processing of the stimulus during aesthetic

experience. We will first review the main brain areas activated during the different

stages of aesthetic perception and will proceed to analyze the main brain connec-

tivity networks involving many of these areas, which has been already found to be

associated with the aesthetic experience.
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2 Neural Activations During Aesthetic Experience

During the last decade, several studies—mainly focused on visual stimuli

processing—described a landscape of different brain regions involved in the aes-

thetic experience. Guided by the conceptual models described above, we can

distinguish four main circuits: sensory regions, attentional and evaluative networks,

memory involvement, and rewarding networks involving cortical and subcortical

regions (and sometimes motor cortices). A recent work has already reviewed many

of these results (Nadal 2013).

2.1 Sensory Regions

Regarding low- and mid-level hierarchical processing, statistically significant acti-

vations have been consistently reported across the literature. Therefore, it is thought

that this processing stage is profoundly influenced by aesthetic quality, and prob-

ably this influence materializes itself through top-down attentional reinforcement of

these early processing stages, although this extent remains to be proved (Cupchik

et al. 2009). Visual processing of stimuli, conceived as a multistage integration of

visual consciousness, is based on the evidence that the visual brain consists of

several parallel multistage processing systems, each specialized in a given attribute

such as color or motion (Cela-Conde et al. 2004).

Occipital cortex activity and fusiform gyri (FFG) correlate with aesthetic ratings

(Calvo-Merino et al. 2010; Vartanian and Goel 2004) (Cupchik et al. 2009; Kirk

et al. 2009a; Lacey et al. 2011) (H€ofel and Jacobsen 2007). Bilateral angular gyrus

(AG) activity also has demonstrated to register greater activation during beautiful

stimuli processing (Cela-Conde et al. 2009) probably as support for enhancement of

spatial processing strategies while viewing images by each subject, such as forms

and color (Bartels and Zeki 2000) or symmetry and complexity (Jacobsen

et al. 2005). Similarly, it has also been reported increased auditory cortex activity

during aesthetic judgment of music (Koelsch et al. 2006).

Hierarchically, higher association areas are also related to aesthetic processing.

Knowledge and experience facilitate the processing of visual stimuli (Solso 2001);

however, results are not simple to interpret, as some areas show decreased activity

as the expertise level increases (Aviv 2014; Solso 2001, 2011). To facilitate

additional analysis of certain features of the perceived stimulus, several processing

cortices can probably signal limbic centers, which subsequently reinforce this

further processing. Although the separation of such processes and their related

cortices among rewarding and attentional evaluative is adventurous, this is usually

the case in neuroaesthetic literature. To complicate things further, motor cortex

activation during aesthetic experience has been also reported (Calvo-Merino

et al. 2008; Calvo-Merino et al. 2010; Ishizu and Zeki 2013; Kawabata and Zeki
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2004; Lacey et al. 2011), particularly in medial premotor supplementary areas such

as the medial superior frontal gyrus and possibly due to processing of potential

actions delaying response time.

2.2 Attentional and Evaluative Networks and Memory

While executive top-down modulatory processes take place and the aesthetic

decision is being made, aesthetic experience triggers networks of cortical regions

related to evaluative judgment based on internally and externally generated infor-

mation, the allocation of resources, and the retrieval of information to contextualize

the stimuli (Nadal 2013). However, a straightforward model that integrates all this

evidence is still missing.

The dorsolateral prefrontal cortex (DLPC)—specifically the left one—is a brain

region that participates as a center of perception–action interface in multiple brain

functions, which presents increased activation during aesthetic experience (Cela-

Conde et al. 2004; Cupchik et al. 2009; Vartanian and Goel 2004; Zeki and Marini

1998). Yet, the eventual implication of prefrontal cortex in aesthetic perception

deserves a more detailed study (Cela-Conde et al. 2004), as anatomical evidence

shows that there is no single area to which all of the specialized visual areas

connect, which would enable to act as an integrator capable of binding signals

coming from all of the different visual sources (Zeki and Bartels 1999).

Apparently, when the decision takes place with increased contextual informa-

tion—and generated externally—the DLPC shows activity, which in addition to the

fact that typically more information leads to more aesthetic experience, makes it

reasonable to associate these cortices to the inherent aesthetic judgment taking

place (Nadal 2013).

The medial prefrontal cortex (Blood et al. 1999; Cela-Conde et al. 2004; Cinzia

and Vittorio 2009; Ishizu and Zeki 2011; Jacobsen 2006; Kawabata and Zeki 2004;

Kirk et al. 2009b; Lacey et al. 2011; Salimpoor et al. 2011; Vartanian and Goel

2004; Vessel et al. 2012), left temporal pole (LTP) (Jacobsen and H€ofel 2003;
Jacobsen 2006), the precuneus (PCUN) (Vartanian and Goel 2004), hippocampus

(HC), and the left parahippocampal cortex (PHC) (Vessel et al. 2012) show

increased activity in association with top-down modulation of attention, memory

recruitment, and self-referential evaluative judgments based on internally generated

information (Cela-Conde et al. 2011). Ventrolateral prefrontal cortex (VPC) activ-

ity is associated with superior attentional loads (Jacobsen 2006; Kirk et al. 2009a)

and probably mediated by the thalamus, which has also been reported to interact in

the process (Vessel et al. 2012). Posterior cingulate cortex and PCUN activity are

associated with semantic memory and familiarity (Jacobsen 2006; Kirk et al. 2009a,

2009b).
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2.3 Rewarding Circuit

The rewarding circuit is usually considered to be formed by the ventral striatum

(VS), the nucleus accumbens (NAcc) extending into the olfactory tubercle,

substantia nigra, ventromedial putamen, and caudate nucleus and interconnected

with prefrontal cortex such as the MPC and the orbitofrontal cortex (OFC), the

insula, the anterior cingular cortex (ACC), amygdala (Am), and dopaminergic

midbrain nuclei (Mbn). In neuroaesthetic literature, it is considered that a key

function of this circuit is the reinforcement of particular goal-related outcomes

under conditions of uncertainty, where the dopamine pathway is a central compo-

nent. This way, the central question regarding the rewarding dimension of aesthetic

experience is to shed light on the difference between “liking” and “wanting”

processes—see (Berridge et al. 2009; Berridge and Robinson 2003) for details.

Findings on aesthetic reward suggest the existence of a mechanism between

desired and achieved reward that maps onto dorsal and VS, respectively (Kirk

et al. 2009a; Vessel et al. 2012). Indeed, it is well known that the VS is engaged

both in coding the reward probability and magnitude; however, ventral STR

activation shows involvement with no explicit gain/loss consequences to viewing

art or nonart images (Lacey et al. 2011), which complicates the model. A suggested

hypothesis is that STR may integrate perceptual, evaluative, and reward compo-

nents of aesthetic response for the purpose of aesthetic judgment (Vessel

et al. 2012).

Salimpoor et al. (2011) have reported increased NAcc and caudate nucleus

activity, a direct evidence that the intense pleasure experienced when listening to

music is associated with dopamine activity in the mesolimbic reward system,

including both dorsal and ventral striatum. It is, nonetheless, hard to imagine the

likelihood of a satisfactory quantitative assessment of aesthetic judgment as a sole

function of reward, for instance, verifying the relationship between executive

rewarding and expectancy. In fact, some authors hypothesize that aesthetic judg-

ment may not be mediated by reward systems at all (Aharon et al. 2001), as they

find dissociation between beauty and quantified measures of reward valuation,

particularly for beautiful male faces—considering all heterosexual male subjects.

A negative deflection in the NAcc is reported when viewing rewarding faces

(beautiful female versus average female) and relative negative deflection for

nonrewarding faces (beautiful male vs average male), distinguishing then “aes-

thetic” beauty and “desirable” beauty and probably approaching an understanding

of the “sublime” (Armstrong and Detweiler-Bedell 2008).

Similarly, the involvement of amygdalar activity has been hesitantly reported

positively in some studies (Aharon et al. 2001; Di Dio et al. 2007; Elliott 2003;

Kawabata and Zeki 2004; Kirk et al. 2009b; Lacey et al. 2011; Nadal et al. 2008)

and negatively in others (Kawabata and Zeki 2004; Kirk et al. 2009a; Lacey

et al. 2011; Vartanian and Goel 2004), which underlines the difficulties of studying

this fundamental aspect of aesthetic experience, especially when related to emo-

tional processing, such as the Am contribution to the detection and attribution of

salience (Liberzon et al. 2003).
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Regarding other areas, the one most profusely mentioned in neuroaesthetic

studies is the OFC, a region known to be involved in representing stimulus-reward

value (Aharon et al. 2001; Ishizu and Zeki 2013; Ishizu and Zeki 2011; Kawabata

and Zeki 2004; Kirk et al. 2009a, b; Lacey et al. 2011; O’Doherty et al. 2003;

Tsukiura and Cabeza 2011; Vessel et al. 2012), along with the ventromedial

prefrontal cortex (Kawabata and Zeki 2004; Kirk et al. 2009a, b), the ACC

(Brown et al. 2004; Cupchik et al. 2009; Petersson et al. 1999; Vartanian and

Goel 2004), the insula (Vartanian and Goel 2004), the right caudate nucleus

(Vartanian and Goel 2004), and the hypothalamus (Lacey et al. 2011). It is,

therefore, reasonable to expect that part of the neural response to art should reflect

the rewarding aspects of this experience by activating the reward circuit (Lacey

et al. 2011).

A subject of major discussion (Ishizu and Zeki 2013) is whether aesthetic

judgments engage areas over and above those that are also engaged in other

judgments such as the medial OFC and lateral OFC, although probably separate

subdivisions within the medial OFC may be active when judgments are made and

beauty is experienced. The medial OFC is heavily connected with the lateral OFC,

and the role of each subdivision is not clear. Almost all the studies of aesthetic

experience tend to underline the medial OFC as an area of major importance, while

the lateral OFC is related to the evaluation of punishers or related to overriding

previously rewarded stimuli.

2.4 Temporal Dynamics of Aesthetic Perception

Typically, a two-phase dynamic has been described as the most probable structure

occurring during an aesthetic appreciation task. It consists of an initial brief and

autonomous—implicit—processing phase of 300–400 ms after stimuli onset, where

the beholder captures low- and mid-level of processing features of the perceived

object. Subsequently, followed by a high-level associated processing stage, where,

most probably, the response decision takes place. This second stage, beginning

close to 600 ms after stimulus presentation, involves a deeper aesthetic evaluation

related to right hemisphere activity (Jacobsen 2002). However, the actual time

ranges might vary due to stimulus-dependent latencies associated with different

modalities. For instance, processing of style starts later and develops more slowly

than the processing of content (50 ms vs 10 ms) (Augustin et al. 2011).

A rather elusive question is whether each process could be decomposed to

identify the contributions of the different hierarchies of processing, all modulated

by previous knowledge and top-down attentional processes and conditioned by

emotional cadence. So much so, considering the evidence, that some properties of

aesthetic objects can be attained in a fraction of a second (Leder and Nadal 2014),

with exposures as short as 50 ms (Locher and Nagy 1996).

From a neurobiological perspective, the dynamics of dopamine release may

contribute to reward processing over time, as it has been found that hemodynamic
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activity in regions showing dopamine release is not constant through the episode,

but is restricted to moments during peak experience, and specifically in the NAcc

and right caudate (RC) (Salimpoor et al. 2011).

3 Aesthetic Brain Networks

Aesthetic experience allows the beholder “to perceive–feel–sense” an artwork,

which in turn implies the activation of sensorimotor, emotional, and cognitive

mechanisms (Cinzia and Vittorio 2009). As we have already seen, the experience

of art is complex and entails multiple cognitive levels, involving a network of

multiple brain cortical and subcortical regions. From this point of view, it is

reasonable to study aesthetic experience within the framework of functional brain

networks. This relatively new field of systems neurosciences is based on a broader,

older scientific discipline termed as complex network science. Understood as the

study of interactions between complex systems, it provides, with the help of tools

borrowed from graph theory, a solid framework for the study of the interaction

between specialized brain’s subsystems, their hierarchy, and their emerging
properties.

The dynamics of neurophysiologic systems and the temporal and spatial vari-

ability of neural signals generated by the cortex make the analysis of brain activity a

challenge that is similar to other complex systems (Bucolo et al. 2008). This way,

this approach is not just a theoretical outset of different cognitive functions being

conceived as a whole, but rather an actual attempt to measure their relationship.

3.1 Measuring Brain Networks

Functional connectivity (Friston 1994) is understood as the existence of statistical

interdependence between neuroimaging data stemming from different brain areas.

It has proven to be a very useful concept to underline interactions between brain

regions and provides a perspective of brain function complementary to that of the

(in)activation of individual areas (Bassett and Bullmore 2009; Sporns 2013; van

den Heuvel and Sporns 2013). In simpler terms, brain connectivity can be under-

stood as a measure of information sharing between functional systems in the brain.

This way, FC aims to underline information flow between two cortical/subcortical

brain regions unveiling brain networks involved in the process. Once such networks

are highlighted, graph theory metrics characterize different properties of the net-

work, like clustering coefficient, characteristic path length, efficiency, and small-

worldness (Rubinov and Sporns 2010).
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3.2 Functional Connectivity During Aesthetic Experience

Amodel of aesthetic processing relies on the interaction between the anterior insula

and the OFC—though in no way restricted to aesthetic processing—which may be

related to the assignment of valence to objects (Brown et al. 2011). This model is

further supported by other structural connectivity-based evidences, which relate

specifically to the possible mechanisms by which OFC might engage during the

task (Cohen et al. 2008).

Another well-established hypothesis is that synchronization of neural oscilla-

tions across brain areas is important for flexibly linking different task-relevant

neuronal populations (Fries 2005; Varela et al. 2001). Recently, using mutual

information as a measure of association, Lin et al. (2013) studied the effect of

artistic training in the features of resting-state functional brain networks. This study

demonstrated that artistic training does not alter the general efficiency of the brain

networks in terms of short- and long-range connectedness and communication

efficiency, with no significant differences in modularity, which agrees with previ-

ous results considering controversial inquiries such as the contribution of the mirror

neural system to aesthetic experience (Casati and Pignocchi 2007). However, when

studying the actual modules, differences in their structure were indeed visible,

mainly in the cerebellum—bilaterally—among other areas. This art-specific orga-

nization in the cerebellum may be determined by control circuitry for complex

voluntary movements associated with each task. This result matches other evi-

dences related to the formation of task-relevant networks during learning when

studied through beta and gamma oscillations (Hipp et al. 2012).

Lacey et al. (2011) used Granger causality applied to fMRI and found that the

VS—bilaterally—selectively engages during aesthetic contemplation of art images.

Yet, the VS is driven by visual cortex but not by regions that were correlated with

aesthetic preference.

Informative as these studies may be, the dynamic nature of the aesthetic appre-

ciation task described above cannot be tackled with the slow fMRI signal. Instead,

MEG data have recently been used for this purpose by means of phase synchroni-

zation FC methods (Cela-Conde et al. 2013). Despite the difficulties inherent to

study fast dynamics during a cognitive task (Roland et al. 2014), a distinctive

functional brain network in the beta frequency band could be identified in each of

two temporal windows used, associated with different processes with fronto-medial

cortex, PCUN, and the posterior cingulate cortex, among other regions, playing a

significant role. Consistently with the two-phase model described in Sect. 2.4, a fast

aesthetic appreciative perception is first formed within the 250- to 750-ms time

window—after the stimulus onset—activating an initial aesthetic network, which is
engaged during both beautiful and non-beautiful stimuli. And then, a delayed
aesthetic network is later highlighted during a 1000- to 1500 ms time window,

more engaged during beautiful stimuli, which involves mainly the left frontal and

parieto-occipital regions.
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Interestingly, the OFC—mainly the left one—along with the anterior medial

prefrontal cortex (MPFC) and the superior frontal gyrus has shown a deep involve-

ment in aversive processing, which could account for these underlined links

(Nitschke et al. 2006) and a step-like response (Aharon et al. 2001; Cupchik

et al. 2009), while probably supporting the analysis of emotional responses and

personal relevance of a perceived object.

3.3 Reinforcing Processing

The straightforward interpretation of the previous results within the different

neuroaesthetic frameworks is the highlighting of the reinforcing effect of attention

modulating hubs and rewarding processes in the frontal lobe. As frontal areas

involved in high integrative functions support the combination of information,

working memory, direction, and maintenance of attention, it is possible that aes-

thetic stimuli are endowed with more attention.

This explanation has been theorized as a possible cause for findings regarding

attentional networks (Lengger et al. 2007). Indeed, during normal brain function-

ing, isolating a single feature of a perceived object, allocating attention, and fully

devoting resources for processing such feature will probably be facilitated if such

feature is pleasing. Such is the actual substrate of Ramachandran and Hirstein’s
model (Ramachandran and Hirstein 1999). Being all properties of the brain geared

towards discovering interesting object-like entities in the world around us. Of

particular interest are the ACC and the left parietal cortex, whose connectivity

was enhanced during the contrast of beautiful vs neutral stimuli (Kawabata and

Zeki 2004) [see also (Cela-Conde et al. 2013)].

Regarding visual stimuli, Vessel et al. (2012) reported a step-like response for

the most moving images of the protocol, frontal regions, and subcortically in the

SN, thalamus, and hippocampus. Likewise, the experience of pleasure while lis-

tening to music is associated with dopamine release in striatal reward systems

(Salimpoor et al. 2011), interestingly in the right caudate and the right NAcc.

3.4 Networks for Aesthetic and Perceptual Judgment

While studies of aesthetic preference are reasonably consistent in their findings,

they may also reveal processes that are not unique to aesthetic preference. Indeed,

aesthetic preference is personal. Thus, it is necessary to question each subject for

his/her individual thought on each stimulus, which unfortunately engages other

processes related to judgment that, while being part of the aesthetic judgment

process, are probably not unique to it. For instance, Jacobsen et al. (2005) found

that networks related to judgment of beauty partially overlap those underlying

evaluative judgments on social and moral cues. Some studies have tried to isolate
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responses attributable to the status of an image as art by focusing on finding neural

responses to art images in contrast to nonart images (Lacey et al. 2011) and,

therefore, verifying if visual art is intrinsically rewarding and thus elicits activity

in the reward centers of the brain, such as the VS. This approach can be considered

as orthogonal to prior ones exploring the neural correlates of aesthetic preference.

Other studies have deliberately avoided using art images and, yet, have found

implication of the VS (Kirk et al. 2009a). The recursive activation of VS might

suggest the involvement of dopaminergic mechanisms (Salimpoor et al. 2011).

Yet, it might also be that these two qualitatively different kinds of judgment are

not completely independent, so that to uncover each process separately, the differ-

ences regarding each stimulus must be as subtle as possible. A recent study tried to

distinguish between the neural networks engaged in aesthetic judgments about

paintings from those concerning their brightness (Ishizu and Zeki 2013). These

authors described two overlapping networks: one involved in perceptual and aes-

thetic judgment formed by the insula, the DLPC, and the intraparietal sulcus and a

second one, involved only in aesthetic judgments, consisting of the medial and

lateral OFC. The study also segregates two different motor pathways: one involved

in both types of judgments and formed by the premotor cortex and supplementary

motor areas and a second system formed by the basal ganglia and the cerebellum.

As for these results, the question is whether the previously reported fronto-parietal

connectivity considered as part of the aesthetic experience is part of the necessary

judgement task that takes place during the aesthetic experiment.

3.5 The Default Mode Network Hypothesis

The default mode network (DMN) is one among several resting-state networks

(RSNs) that include the medial prefrontal cortex, the posterior cingulate cortex, the

temporo-parietal junction, lateral temporal cortex, superior frontal gyrus, and the

hippocampus. The activation/deactivation of the DMN is a matter of much interest

(Greicius et al. 2003). Typically, its coherent activity is reduced when subjects

engage in externally oriented tasks and the beholder performs central-executive

related activities (Sridharan 2008), whereas it is activated in the absence of directed

tasks (resting state) suggesting that the DMN is a network of brain areas associated

with inward contemplation and self-assessment and is probably a prior for task-

driven patterns of activity (Raichle and Jarrett 2009).

RSN can be studied both with fMRI and with EEG/MEG, among other methods,

as several techniques allow to recover the network dynamics (Betti et al. 2013;

Brookes et al. 2011a, b; Liu et al. 2010; Pasquale et al. 2010). This way, it has

become apparent by means of different techniques that networks of brain regions

maintain, even at rest or in the absence of any stimulus, neural activity with a high

degree of temporal correlation (Betti et al. 2013; Biswal et al. 1995; Deco and

Corbetta 2011).
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A bold model presented in Vessel et al. (2012) and later elaborated in Vessel

et al. (2013) suggests that certain artworks may be so well-matched to an individ-

ual’s unique makeup that they obtain access to the neural substrates concerned with

the self and facilitate a sense of being “moved.” The DMN activity may hint this

self-relevance in a physiological sense. Indeed, the anterior MPFC, an area belong-

ing to the DMN, has previously been associated with self-referential mentation.

Vessel’s model is supported by empirical evidence that those artworks, regarded as

the best in terms of aesthetic quality, show a fundamentally different pattern of

neurophysiological activation. This aesthetic experience of objects rated as top

quality is not only revealed by the amount of activation but also by the level of

engagement of additional networks, of which the anterior MPFC, the left PCUN,

and the hippocampus are key nodes. In other words, highly rated images led to

greater correlations than baseline, whereas low-rated images led to decreased

activity with regard to resting baseline. Thus, the anterior MPFC may function as

a gateway into the DMN, signaling personal relevance and allowing a better

integration of external sensations related to an art object and internal evaluative

and emotional states.

It is possible to find reinforcing reports on the validity of the DMN hypothesis in

relation to aesthetics, and the fact that RSN closely resembles that of functional

systems identified during task performance is not unique to this field (Kelly

et al. 2012). When actively looking for the time-course dynamics of aesthetic

experience, similarities with the DMN have been reported to occur only during a

late time window of 1 s after the stimulus onset Cela-Conde et al. 2013). Besides, a

multimodal study using both MEG and fMRI (Lin et al. 2013), when focusing on

non-DMN resting-state networks, found robust decrease in network strength in

alpha and beta bands’ activity, while other task-dependent networks, such as the

occipital visual network, are engaged during the execution. However, hierarchical

modular network organization can be effectively sculpted through long-term inter-

action with artworks (Lin et al. 2013), which can be interpreted as the learning-

related brain neuroplasticity mechanism by which expertise influences aesthetic

responses.

4 Conclusions

We have seen that despite the difficulties inherent to the study of neuroaesthetics

due to the subjective nature of the aesthetic judgement, a series of recent works

have already ventured to analyze it from the point of view of FC and functional

brain networks. Although fMRI has been the technique mostly used in these works,

there have been some MEG and multimodal studies, which have already shed some

light into both the oscillatory nature of FC and its dynamics in aesthetic perception.

In particular, they have shown the existence of two phases in the aesthetic judge-

ment and the predominant role of alpha and beta bands on this complex cognitive

process. Thus, brand new as it is, we believe that these results clearly suggest that
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the paradigm of FC can be successfully applied to uncover the neural mechanisms

associated to aesthetic perception; yet, further studies are necessary to elucidate

whether it will be able to provide insight into which of the current models is closest

to the actual set of processes that takes place in our brain when perceiving a

stimulus and judging it aesthetically.
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Development of Human Neurophysiological

Activity and Network Dynamics

Vasily A. Vakorin and Sam M. Doesburg

1 Neural Oscillations, Synchronization, and Cognitive

Development

Neurophysiological oscillations reflect fluctuations in the excitability of

populations of neurons and are expressed at a variety of timescales. Such rhythms

are understood to reflect temporal windows for integration and to play a critical role

in cortical information processing and computation, supporting cognition, percep-

tion, and motor control (Ward 2003). The coordination of rhythms across brain

areas has been purported to deflect functional interactions among brain areas and to

provide a mechanism for dynamic communication patterns in the central nervous

system (Fries 2015). In this view, the synchronization of neural oscillations across

brain areas allows action potentials to arrive at peak windows of excitability,

thereby increasing their impact.

Complex cognitive acts require the coordinated activity of many groups of

neurons which are often distributed in the brain. Moreover, the same group of

neurons may play different functional roles at different times, which is largely

defined by other neurons which are coactive and interacting at any given time

(McIntosh 2000). Neural oscillations and their synchronization provide a spatial

and temporal architecture for the selection and integration of relevant neuronal

elements into a task-dependent large-scale functional ensemble supporting cogni-

tive, perceptual, and/or motor control process required at any given moment

(Varela et al. 2001). Theoretically, neural oscillations and synchronization provide

a mechanism for network integration and dynamics supporting the diverse reper-

toire of human cognition and behavior. The emergence of these neurophysiological

V.A. Vakorin • S.M. Doesburg (*)

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby,

Canada

e-mail: sam_doesburg@sfu.ca

© Springer International Publishing Switzerland 2016

S. Palva (ed.), Multimodal Oscillation-based Connectivity Theory,
DOI 10.1007/978-3-319-32265-0_7

107

mailto:sam_doesburg@sfu.ca


processes plays a critical role in neurocognitive development. This chapter reviews

the research on the development of brain oscillations, their synchronization among

brain areas, and their relation to aspects of human neurophysiological activity such

as complexity and metastability. From such a perspective, the maturation of local

brain oscillations, reflected in spectral power, provides fluctuations in excitation/

inhibition which provide temporal windows for integration within and among brain

areas. Accordingly, examination of the maturation of neurophysiological networks

should rightly begin with an understanding of the developmental trajectory of

spectral power.

2 Spectral Power and Development

Local spontaneous neurophysiological oscillations are reflected in the spectral

power of electroencephalographic (EEG) and magnetoencephalographic (MEG)

recordings. A number of studies have characterized human brain development by

tracking the changes in EEG and MEG spectral power, which reflects the average

amplitude of the brain signals at specific frequencies. Two main effects have been

identified. First, studies have observed the redistribution of frequencies around the

alpha band toward higher frequencies. Second, the report included both increases

and decreases in the signal power at lower and higher frequencies, respectively,

defined with respect to the alpha band. Specifically, Stroganova et al. (1999)

explored the properties of the 5–10 Hz occipital EEG rhythm in infants. They

found that it expressed the classical properties of alpha rhythm, a spectral peak at

approximately 10 Hz in the adult EEG, with the group mean of alpha peak

frequency increasing approximately from 6 Hz at 8 months to 7 Hz at 11 months

of age. Similar results were obtained by Marshall et al. (2002) who studied infants

and children up to 51 months of age.

A maturational shift of the alpha peak toward higher frequencies can also be

observed in adolescence. To determine developmental changes of quantitative EEG

development, Martinović et al. (1998) investigated the EEG power spectra in

healthy twins (with approximately equal number of girls and boys) ranging in age

from 7 to 15 years. The authors reported a progressive increase of higher alpha

power inversely related to lower alpha and theta power. In addition, the mean

frequency of activity increased with age, with females showing a significantly

higher mean frequency of higher alpha power. In a longitudinal study, Cragg

et al. (2011) explored the development of the EEG power spectra covering 10–13

years of age. A small but significant increase in peak alpha frequency was detected

with age. Interestingly, males demonstrated higher alpha power than females, but

the method was not sensitive enough to detect possible gender differences in peak

frequency. The view that such maturational shifts in peak alpha frequency corre-

spond to development of brain function relevant for cognitive abilities is supported

by observations that peak alpha oscillatory frequency is “slowed” in school-age
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children born very preterm and that slower peak frequency was correlated with

lower visual–perceptual abilities in this group (Doesburg et al. 2011, 2013).

Another important observation regarding the maturation of neurophysiological

activity was made by Marshall et al. (2002), who studied infants and children and

described the general developmental decrease in EEG signal power at lower

frequencies (<6 Hz) and a increase at higher frequencies (>6 Hz). This trend

continues into adolescence. A number of studies have replicated the findings of

decreases at lower, and increases at higher, frequencies with age. In the longitudinal

study by Cragg et al. (2011), it was shown that delta and theta frequencies power

decreased as a function of age and higher alpha and beta frequencies increased.

Similar results have been reported by Gasser et al. (1988) and McIntosh

et al. (2008) based on evoked EEG activity. Gómez et al. (2013) also reported an

increase in power at gamma frequencies of resting-state MEG recordings. Impor-

tantly, maturation of such power spectra has been linked to development of abilities

such as language with such associations being observed as early as infancy

(Benasich et al. 2008; Gou et al. 2011).

3 The Development of Spontaneous Neurophysiological

Network Connectivity

The development of local oscillatory activity is relevant for spontaneous expressions

in the periodic excitability of neuronal groups and is accordingly relevant for the

maturation of neurophysiological interactions among brain areas. Specifically,

alignment of oscillatory phase between neural populations can promote communi-

cation by allowing bursts of action potentials to be exchanged during the depolarized

phase of fluctuations in the receiving neuron’s membrane potentials (Fries 2015).

A recent study of developmental changes of such resting phase synchrony in a large

group of children 5–7 years of age with scalp EEG revealed a shift toward decreased

synchronization in all analyzed frequency ranges with coincident with increasing

tendency toward “small-world” network topologies (Boersma et al. 2011). Subse-

quent study using the “minimum spanning tree” technique indicated increasing the

regularity of brain networks with age and suggested that girls may be ahead of boys

in the restructuring of neurophysiological networks (Boersma et al. 2013). Analysis

of developmental changes in resting phase locking among scalp EEG electrodes in

infants and children between 1 and 66 months revealed increasing synchrony in the

theta and alpha bands, together with decreasing connectivity in the higher beta and

lower gamma bands (Vakorin et al. 2011a). Analysis of resting MEG amplitude

correlations among regions comprising fMRI-defined resting-state networks indi-

cates increasing connectivity with age, particularly in the beta and alpha bands,

across childhood, adolescence, and early adulthood (Schäfer et al. 2014). No

differences between maturational changes were observed between intra-network

and inter-network connections. This stands in contrast to fMRI studies that indicate
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that development involves a shift from a local to a distributed pattern of connectivity

(Fair et al. 2009), characterized by a strengthening of within-network connections

and a weakening of connectivity between regions involved in different resting-state

networks (Dosenbach et al. 2010).

4 Task-Dependent Network Synchronization, Cognition,

and Development

Considerable evidence indicates that modulation of local neural oscillations, as well

as interregional oscillatory synchronization, supports transient network connectiv-

ity supporting a plethora of cognitive, perceptual, and motor processes (Ward

2003). From this point of view, maturation of neurophysiological oscillations

contributes critical to the development of functional cortical networks (Uhlhaas

et al. 2010). Such phenomena are expressed at multiple scales (Varela et al. 2001),

and large-scale network dynamics are most effectively noninvasively measured

using MEG as it is a direct measure of neural activity with an unparalleled

combination of spatial and temporal resolution (Palva and Palva 2012). The func-

tional roles of synchronization in different frequency ranges remain a subject of

ongoing research. It has been proposed that oscillations at different frequencies

correspond to different scales of integration (von Stein and Sarnthein 2000) or to

feed-forward and feed-back interactions (Donner and Siegel 2011). This view is

complicated by observations that synchronous oscillations may play different roles

at different cortical scales. For example, alpha oscillations are thought to reflect

inhibition locally but may mediate integration in large-scale brain networks (Palva

and Palva 2007). Oscillations in specific frequency ranges have also been associ-

ated with specific brain systems and cognitive processes. For example, alpha

rhythms are prominent in visual cortex and are associated with visual attention

and working memory and can also be strongly modulated by opening and closing

the eyes. Further complicating the interpretation of oscillatory network coherence,

it is becoming clear that interregional cross-frequency phase synchronization

(Palva et al. 2005), amplitude correlations (Engel et al. 2013), and phase-amplitude

coupling (Canolty and Knight 2010) play a role in cognitive processing. Though the

precise mechanics of how neurophysiological network interactions support cogni-

tion remains incompletely understood, it is clear that processes that require the

coordinated participation of numerous brain regions are associated with increased

interregional oscillatory coherence.

The recruitment of neurophysiological synchronization among brain regions

changes with development. Using a well-characterized response of synchronization

among brain areas during perceptual integration, Uhlhaas et al. (2009) demon-

strated a complex maturational course for perception-dependent network synchro-

nization which involved multiple frequency ranges and suggested late restructuring

of integrative network responses in adolescence. Expressive language processing
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has also been associated with increasing MEG network synchronization with age,

particularly in the theta band, and this increased recruitment of task-dependent

synchronization associated with the development of language abilities (Doesburg

et al. 2010). Reduced network task-dependent network synchronization is also

associated with selective developmental difficulties in school-age children born

very preterm suggesting that the maturation of task-dependent neurophysiological

network integration is pertinent for both typical and atypical cognitive develop-

ments (Doesburg et al. 2011).

5 Neurophysiological Signal Complexity and Development

Signal complexity relates to the information content or unpredictability of a signal

and potentially also provides information regarding interactions among brain

rhythms at different frequencies (Vakorin and McIntosh 2012). Moreover, signal

complexity has been linked with the connectivity of a brain region in a neurophys-

iological network (Mišić et al. 2011, Vakorin et al. 2011b). In general, signal

complexity is notoriously difficult to define. In practice, the definition of complex-

ity is essentially reduced to an interpretation of a specific measure used to estimate

the signal complexity. One popular type of measure is based on nonlinear dynam-

ics. In this case, one assumes that time series is viewed as a realization of a

nonlinear dynamic system, which is, in general, multidimensional and is potentially

interacting with other systems. Under this assumption, signal complexity can be

understood as a global property of a dynamic system underlying the observed time

series. Examples of such approach can include information-theoretic estimates of

complexity, such as all kind of entropy measures, or chaos-based estimates of

complexity.

The modeling of dynamical systems is based on the concept of a phase space,

which is defined as a set of all possible states of a dynamic system. Each state of a

dynamic system can be characterized by a unique point in the phase space. In a

nonlinear analysis of EEG or MEG, mathematical descriptions of dynamical

models are unknown. Thus, the state space has to be reconstructed. One typical

approach is based on the procedure called time delay embedding, wherein an

observed EEG or MEG time series is converted to a sequence of vectors in a

multidimensional space. In doing so, the ultimate goal is not to reconstruct an

orbit in the phase space that is closest to the true one, but rather to estimate the

macro-characteristics of a dynamic such as complexity. Takens’ embedding theo-

rem provides the conditions under which this can be done (Takens 1981).

One popular measure to estimate complexity of a nonlinear dynamical system is

sample entropy (Richman and Randall Moorman 2000). Sample entropy is a refined

version of approximate entropy (Pincus 1991), which was proposed to quantify the

Kolmogorov entropy from short and noisy time series. In turn, the Kolmogorov

entropy is a measure of the mean rate of information generated by a dynamical

system (Kolmogorov 1959; Sinai 1959). It measures the unpredictability of the
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system. In particular, it represents the uncertainty that remains in the next state

under the condition that the complete history of all the previous states of the

dynamical system is known. Sample entropy and approximate entropy are exam-

ples of the information-theoretic approach to estimate signal complexity.

Among chaos-based measures of complexity, Lyapunov’s components and

correlation dimension have been used in EEG analysis. The largest Laypunov

exponent of a dynamical system reflects the rate at which two nearby trajectories

of the system separate over time, thus indicating the system unpredictability.

Correlation dimension is a measure for the dimensionality of the space occupied

by the points in the phase space and, thus, can provide insights into the variability of

the dynamic repertoire of neural activity.

Several studies have demonstrated developmental changes in the complexity of

neurophysiological signals which can be observed quite early in life. Meyer-

Lindenberg (1996) estimated the Laypunov exponent and correlation dimension

to analyze the marked changes in resting-state EEG of healthy infants and children

(from newborns to 14 years old) during normal development. The study provided

the evidence for the presence of nonlinear dynamics, even in newborns. Also, brain

development was characterized by increases in correlation dimension. Janjarasjitt

et al. (2008) explored the relations between the correlation dimension of sleep EEG

and neurodevelopment for premature and full-term neonates up to 43 weeks of

postmenstrual age (PMA). The EEG signals were low-passed filtered with a cut-off

frequency of 29 Hz. First, the authors found that EEG complexity increased with

age. Second, the brain dynamics of neonates born prematurely was found to be less

complex than that of full-term neonates even at the same PMA. Similar results were

previously found by Scher et al. (2005) and Pereda et al. (2006) who studied the

topography of neonatal EEG as a function of PMA and sleep stage. Specifically, the

same trends were reported for age-related increases in dimensional complexity

during active and quite sleep. Also, dimensional complexity was higher in the

state of active sleep than during quite sleep in central and temporal channels.

The results obtained in neonates using the dimensional complexity have been

complimented by the results based on sample entropy. For example, Zhang

et al. (2009) explored the changes in sample entropy of EEG recorded from

newborns with PMA ranging from 25 to 60 weeks. Importantly, they studied not

only the age-related changes in mean values but also age-related changes in the

variability (interquartile range) of sample entropy. They reported higher sample

entropy values (higher information content) during active sleep than during quite

sleep, similar to studies based on dimensional complexity. At the same time, sample

entropy was first increasing, but after approximately 42 weeks this trend was

stopped in quite sleep, and even was reversed in active sleep as newborns were

reaching term age. In addition, a district increase in the variability of sample

entropy was reported from 25 to 50 weeks of PMA, followed by maintenance of

lower fluctuations in sample entropy.

One disadvantage of the above-mentioned studies is that the signal complexity

was estimated using the broadband signals, and thus it lacks temporal specificity, as

it is not clear which frequency bands contribute the most to the reported effects.
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However, signal complexity can be estimated at different scales. Zhang (1991)

introduced a complexity measure based on entropy (or more specifically, Shannon

entropy or, as it is defined in the information theory, an expected amount of

information contained in a message) of various scales. Essentially, coarse-grained

signals were generated through down-sampling the original time series by averag-

ing adjacent data points within nonoverlapping windows of varying lengths. Such

approach is in essence equivalent to applying the low-pass filter with a lower and

lower cut-off frequency. Then, entropy is calculated for each of the coarse-grained

signals. Costa et al. (2002) proposed to unify sample entropy with an idea of coarse-

grained time series. This approach is known as multi-scale entropy (MSE).

McIntosh et al. (2008) applied MSE to characterize the relationships between the

brain development and variability of EEG signals in children (6–16 years) and young

adults (20–33 years). EEG was recorded from the typically developing participants

performing a rapid face recognition task, when a novel or familiar face was present,

and the participants responded by pressing one of two buttons depending on whether

or not they recognized the face. Changes in EEG were characterized in terms of

complexity estimated as MSE, and the pre- and post-dimensionality of trial-to-trial

variability, defined as the number of principal components that capture 90% of the

variance across trials. A robust gradual increase both inMSE and principal component

analyses was observed across age groups. The maturation-related increase in sample

entropy was widely distributed across almost all the electrodes at all scales. Given

similar age-related changes in SampEn across the scales, a cumulative index of

maturational changes in the complexity of EEG signals was computed as the area

under the MSE curve. McIntosh et al. (2008) found that signal complexity negatively

correlated with response times and positively with accuracy. In other words, higher

complexity (information content) was associated with more stable and accurate

behavior. Atypical task modulation of source-resolved neuromagneticMSEmeasures

has also been reported in adolescents with autism, suggesting that altered development

of neurophysiological complexity may be linked to developmental difficulties in

pediatric populations (Mišić et al. 2015).

Changes in EEG signal complexity were obtained during early development.

Specifically, Lippé et al. (2009) studied typically developing infants and children

from 1 to 60 months of age, as well as young adults between 20 and 30 years old.

The visual- and auditory-evoked potentials were measured in response to a black

and white checkerboard presented binocularly and broadband noise presented

binaurally in a soundproof room. Typically, in such studies, morphological differ-

ences in the waveforms of the event-related responses prevent direct comparison of

the developmental trajectories between the visual and auditory systems. Complex-

ity measures, however, do not depend on these specific features and, thus, provide

tools to directly compare the different sensory systems. For both conditions,

age-related differences were found significant and robustly expressed across all

the studied scales. Meanwhile, differences in signal complexity between the visual

and auditory systems were significant only for children, but not for adults, with

values of signal complexity for the responses to visual stimuli.
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Thus, complexity can be a very sensitive measure to characterize the brain

signals, adding richer interpretations to data, which may also reflect the presence

of nonlinear effects. Caution should be exercised, however, when interpreting the

results based on statistics that presumably can capture nonlinear dynamics. Com-

plexity measures can represent not only the information generated by deterministic

nonlinear systems as models for neural dynamics but also the variability related to

the instrumental or physiological noise described as stochastic processes. It is worth

noting here that some stochastic processes such as filtered noise can mimic

low-dimensional deterministic nonlinear dynamics (Rapp et al. 1993).

One of the confounding factors for interpreting differences in complexity

between groups or conditions is spectral power. A number of studies have reported

correlations between spectral power and complexity measures. For example, sam-

ple entropy computed on the original time series was found to be negatively

correlated with the power at the lowest frequencies (delta band) and positively

correlated with the power at the highest frequencies explored (beta band) in a study

comparing middle-aged and elderly female adults during different stages of sleep

(Bruce et al. 2009). A better predictor of sample entropy was the power ratio of the

higher frequencies (alpha and beta) over lowest frequencies (delta and theta). As

discussed in Kaffashi et al. (2008), linear properties of a signal may significantly

contribute to sample entropy computed at the original, not coarse-grained, signals.

A number of studies on development and aging reported similar observations. As

previously discussed, McIntosh et al. (2008) showed that brain maturation was

characterized by increases and decreases in spectral power at higher (<15 Hz) and

lower (<10 Hz) frequencies, respectively, and simultaneously age-related increases

in complexity. In particular, increasing the magnitude of the Fourier coefficients of

EEG in adults at low frequencies led to the MSE curves that were close to those in

children. Similar results were found by Lippé et al. (2009), wherein age-related

changes in sample entropy were accompanied by both increases and decreases in

power at higher (>7 Hz) and lower (<5 Hz) frequencies, respectively. Several

studies on the neuropathology of aging reported analogous correlations between

sample entropy and power (Park et al. 2007; Mizuno et al. 2010).

A question remaining from such studies is whether differences in complexity

measures between groups or conditions can be reduced to or fully explained by

corresponding differences in spectral power. Vakorin and McIntosh (2012) tested

normalized age-related changes in sample entropy in a longitudinal study on brain

development in adolescence. The authors explored how differences in multi-scale

entropy computed on the original EEG and on surrogated data, which were nor-

malized to the MSE computed for the surrogate signals, evolve from 10 to 13 years

of age. Artificial or surrogate signals were constructed through a procedure,

wherein spectral and cross-spectral power remains unchanged, but interactions

between frequencies, if any, are destroyed. Specifically, surrogate signals were

generated by applying Fourier transform, randomizing the phase of Fourier coeffi-

cients, and then applying the inverse Fourier transform. Two effects were reported.

First, there were significant differences between the MSE curves computed from

the original and surrogate data, the differences increasing toward the coarse scales.
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Expectedly, the sample entropy was higher for the surrogate data than for the

original signals, as with phase randomization the signals become more unpredicted.

Second, the relative differences in the MSE curves between the original and

surrogate data decreased with age (Fig. 1). One possible interpretation is that both

linear (individual frequencies) and nonlinear (interactions between frequencies)

components contribute to overall complexity; however, linear components by

themselves become more complex in brain development.

Finally, it is noteworthy that signal complexity is highly reflective of functional

connectivity. For example, in a study of adolescents, Mišić et al. (2015) explored

correlations between the complexity of individual EEG channels (MSE) and the

structure of a functional network defined by the same channels. Signal complexity

was estimated as MSE. Network structure was characterized by node strength, that

is, overall connectivity for a given node (channel) averaged across all its connec-

tions, and regional efficiency estimated as minimum path length between the

channels. The authors found positive correlations between signal complexity and

these two properties of the EEG network. In other words, the more connectivity a

node of functional network has, the higher the complexity of this node. These results

would indicate that the complexity of regional neural dynamics represents not only

local information but also reflects the properties of the entire functional network.

Conceptually, similar results were found in a study by Vakorin et al. (2011b)

who considered a network of neuromagnetic sources activated in reaction to a face

recognition task. Specifically, the amount of information transferred from one

source to another was correlated with the difference in complexity between the

dynamics of these two sources. This asymmetry in information transfer was scale

dependent. It is interesting to note that in a simulated network, at the scales of

characteristic frequencies of coupled oscillatory systems, the directionality of

Fig. 1 Age-related changes in sample entropy, normalized with respect to sample entropy

computed from surrogate data (original signals with destroyed interactions between frequencies)
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coupling defined the directionality of net information transfer between the systems.

In other words, propagation of information in a network can be described as

accumulation of complexity of the brain signals.

Finally, Vakorin et al. (2011a) proposed a method for decomposing the total

complexity of regional neural activity into information processed locally and infor-

mation shared with other regions (functional connectivity), which was also used for

studying healthy brain aging (McIntosh et al. 2013). They applied this approach to

characterize age-related changes in infants and children between 1 and 66 months.

This was an attempt to distinguish two key mechanisms, which may contribute to

increasing complexity of the brain signals. Specifically, both a larger repertoire of the

physiological states of individual regions that become more specialized and increased

integration between distributed neuronal populations can lead to increased signal

complexity. The authors showed that the integration mechanism is a main factor

contributing the increased complexity during brain development.

6 Development of Metastability in Human

Neurophysiological Activity

The concept of complexity is close to that of metastability. These two frameworks

are complimentary, as they both are thought to reflect the dynamic repertoire of

neural ensembles. In general, metastability is the principle describing the ability of

a neural system to deviate from equilibrium and to stay in another state for an

extended period of time. In the resting state, patterns of short oscillatory sequences

can be mixed with periods of what seems to be stochastic activity. The oscillatory

sequences are thought to be a result of the interaction and integration of local

circuits exhibiting tendencies to function autonomously. From a computational

perspective, the metastability of the EEG or MEG signals can be described by

exploring nonstationarity phenomena.

There was a long tradition of defining EEG microstates as transient quasi-stable

patterns based on the analysis of the spatial configuration scalp electric fields

(Lehmann 1971). A state would be defined by the topography maps showing the

distribution of signals at a given moment of time. Koenig et al. (2002) applied this

approach for analysis of EEG microstates in a resting state obtained from several

databases of subjects between the age of 6 and 80 years. The authors identified and

quantified 4 brain microstates (the number was specified a priori) as subsecond time

epochs with stable field topography. It was found that the mean microstate duration

decreased with brain development. In other words, EEG signals became more

nonstationary with age. It should be noted that the above-mentioned analysis is

essentially based on the concept of stationarity as it is used in the theory of

stochastic processes. There are two definitions of a stationary process: in a strict

and weak sense. In analysis of finite time series, a weaker form of stationarity is

routinely used. A weak stationary process is characterized by constant mean and
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variance, with autocorrelation function depending only on a time lag. A signal with

constant spectral power is an example of stationarity in a weak sense.

Another approach to look into nonstationarity can be based on nonlinear dynam-

ics. Similar to what we discussed on complexity, a key assumption in nonlinear

analysis of EEG or MEG is that there exists a deterministic dynamic system which

underlies the observed brain signals. From a theoretical point of view, single

oscillators were considered reasonable candidates to model the activity of neural

ensembles (Haken 2013), which can be coupled together with long-range connec-

tions forming a large-scale network. In particular, realistic fluctuations of the

resting-state network dynamics were modeled using coupled nonlinear systems

with time delays in coupling (Ghosh et al. 2008; Deco et al. 2009).

A number of studies on nonlinear properties of brain signals coined a term of

dynamical nonstationarity (Dikanev et al. 2005), which, in contrast to stochastic

nonstationarity, implies the existence of a nonlinear system associated with an

observed signal. Mathematical models to describe multi-stability can be constructed

focusing on either complexity ofmodel themselves or complexity of parameters of the

models. The first approach is based on choosing a priori a nonlinear system, which is

relatively complex and is able to express nonstationary chaotic behavior for a given set

of parameter values. For example, using chaos theory, Freyer et al. (2011) modeled

bi-stability of the alpha rhythms, which was manifested as switching between high-

and low-amplitude oscillations, as arising from a bifurcation wherein a dynamical

system loses stability. The bursts of two types of activity thus corresponded to two

noise-induced attractors or sets of states in the phase space, toward which a system

tends to evolve from awide variety of starting points. The second approach is based on

an idea that although the nonlinear system underlying the observed neural activity, in

general, remains unknown, it can be approximated with a set of basis functions.

Furthermore, parameters of a model can be estimated by fitting a combination of

relatively simple functions to different segments of brain signals. Within such

approach, dynamical nonstationarity can be understood as external or internal events

that are causing abrupt changes or drifts in the parameters of the model.

A number of studies have been proposed to explore nonstationarity by breaking

relatively long time series into small, possibly overlapping, presumably stationary

segments, with subsequent classification of these segments into the classes of similar

dynamics (Manuca and Savit 1996; Schreiber and Schmitz 1997). Such approach has

been used to characterize EEG in healthy and clinical populations such as in epilepsy

(Dikanev et al. 2005), Alzheimer’s disease (Latchoumane et al. 2008), or during

different sleep changes (Kohlmorgen et al. 2000). Vakorin et al. (2013) used a similar

approach to describe age-related changes in eyes closed and open resting-state EEG

recorded from adolescents between 10 and 13 years of age. In contrast to Koenig

et al. (2002), wherein the number of map classes was fixed a priori, Vakorin

et al. (2013) estimated both the number of microstates and their mean durations. It

should be noted that, in general, these two measures are not necessarily correlated. For

example, if we assume that the number of microstates is constant, higher segment

alteration leads to a smaller mean duration (segment length), that is, to higher

nonstationarity (Fig. 2a). At the same time, the number of microstates can be increased
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without modifying their durations, as illustrated in Fig. 2b. It was found that

nonstationarity becomes stronger with age during early adolescence. More specifically,

the mean duration of stationary states increased with age and correlated with spectral

power at lower frequencies. These effects were widely distributed across almost all the

electrodes (Fig. 3a). At the same time, the number of states increased with age as well

and correlated with spectral power at the alpha frequency band. These effects were

localized to the parieto-occipital channels (Fig. 3b).

Neural oscillations are relevant for information processing and provide temporal

windows for coherent interactions among brain areas to dynamically coordinate

information flow supporting cognition, perception, and behavior. This capacity for

neurophysiological activity and communication to dynamically explore its reper-

toire is reflected in the metastability and complexity of EEG and MEG. In sum,

development is accompanied by coordinated shifts in spectral power, network

synchrony, complexity, and metastability of neurophysiological activity. This, in

turn, reflects the maturation of the set of apparatus necessary to support function,

Fig. 2 Schematic illustration of two mechanisms showing how nonstationary effects can become

stronger: (a) by increasing the number of microstates and (b) by shortening the duration of the

microstates
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and conversely, disruption of the normal maturation of such mechanism often

heralds dysfunction in development.
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The Role of Functional Networks

in Neuropsychiatric Disorders

Leonides Canuet, Yasunori Aoki, Ryouhei Ishii, and Fernando Maestú

1 Introduction

The impact of neurological and psychiatric diseases on the functional organization

of the brain has been a topic of growing interest in the last decade. Looking for new

explanations and better understanding of neuropsychiatric diseases such as epi-

lepsy, Alzheimer’s Disease (AD), or schizophrenia, different research groups have

started to apply the network theory to these disorders.

The study of neurological diseases has suffered the consequences of a long-lasting

discussion about the functional and structural organization of the brain. Two main

theories have been considered: segregation and integration. The first approach claims

that brain regions are functionally segregated supporting specific functions. Initially,

the idea was proposed by Joseph Gall in the nineteenth century in the theory called

phrenology. The influential work of Paul Broca and Karl Wernicke on the study of

productive or receptive aphasia provided additional support for the notion of func-

tional specialization in the human brain. The use of electrocortical stimulation later on,

producing transient motor or language impairments, constituted a further evidence of

the predictions of the segregation model. Because segregation predicts a certain grade
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of collaboration between functionally separated brain regions to efficiently process

external stimuli, the integration model remained in the background.

Norman Geschwind was one of the first to indicate that some of the neurological

diseases could be considered as disconnection syndromes (Geschwind 1965). In fact,

he literally said “disconnection of cortical regions can be achieved by lesions involv-

ing eitherwhitematter connections or by damage to association areas which constitute

obligatory way stations between the primary sensory, motor, and limbic regions of the

brain in primates” (page 290). What he called at that time “obligatory way stations” is

what we are probably calling nowadays structural hubs. A hub can be defined as a

brain regionwith high density of structural or functional connections whichmay serve

as a facilitator for interregional communication in the brain. A lesion in a brain region

considered a hub may cause the loss of a particular brain function supported by a

particular brain network in which that hub plays a crucial role for an efficient

communication. Therefore, these two apparently contradictory theories are probably

being reconciliated nowadays by highlighting the importance of certain brain regions

in the functional organization of the brain. Cognitive abilities can be represented in

particular brain networks, and a lesion of a hub could devastate a particular cognitive

function (see Crossley et al. 2014). That may be why during more than 100 years, hub

lesions have been misinterpreted as a demonstration of brain functional segregation.

AD may represent a perfect example of how these two theories lead to a

completely different perspective. The segregation theory predicts that the atrophy

of particular brain regions, such as the medial temporal lobe, is responsible for the

cognitive symptoms of the disease. However, the functional integration approach or

what is called the “network theory” predicts that AD is a disconnection syndrome,

and the progressive loss of connections between brain regions is responsible for the

main cognitive symptoms seen in this disease. These two perspectives lead to two

completely different views of the disease which influence on the development of

intervention approaches. We will come back later to these ideas in AD.

The integration model, related to the network theory, is based on the idea that the

brain is a complex system of interacting units, composed of a series of functional and

structural connections organized under a particular architecture. The assessment of

functional connections is based on the statistical dependency between time series or

the evaluation of the information directionality (effective connectivity). This approach

far from just constituting a nice theoretical hypothesis is changing the way we

understand neurological and psychiatric diseases. Unanswered questions such as

how local lesions (e.g., tumors), focal epilepsy, or local strokes can affect the

organization of thewhole functional network or how some diseases are using networks

to spread their histopathological abnormalities (Nath et al. 2012) have attracted much

attention and will help develop this new brain network perspective.

This chapter focuses on two main neurological disorders: Alzheimer’s Disease
and epilepsy and on three psychiatric disorders: schizophrenia, autism, and major

depressive disorder. The main purpose is to provide the readers with recent evi-

dence of how this new network approach can shed some light to the pathophysio-

logical mechanisms underlying neuropsychiatric disorders.
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2 Functional Networks in the Alzheimer’s Disease
Continuum

The network theory is changing the way we understand AD. From the idea of the

disease starting in local regions of the brain (such as medial temporal lobe) to

considering that the disease affects and develops through brain circuits. Based on this

assumption, the cause of cognitive symptoms, including progressive episodic memory

loss, could be due to the progressive loss of connections between brain regions.

Therefore, AD can be viewed as a disconnection syndrome (Morrison et al. 1986;

Delbeuck et al. 2003). The phosphorylation of the Tau protein, the accumulation of the

amyloid protein, or the progressive loss of dendritic spines and neurons affect brain

structural connectivity affecting the functional organization (Pineda-Pardo et al. 2014a;

Garcés et al. 2014). In addition, the network theory is helping in the understanding of

how the pathology spreads across the brain. It seems that amyloid neuropathology

spreads by neuronal to neuronal connections using well-established neuronal circuits

(Nath et al. 2012). Furthermore, amyloid protein tends to accumulate through the nodes

of the default mode network (DMN; Myers et al. 2014), a network mainly active at

resting state (see Fig. 1). Thus, it seems that the study of the network organization has

important consequences not just to understand the development of cognitive symptoms

but also to unravel how the disease spreads through the brain.

A seminal MEG study showing connectivity impairment between brain regions

was published byBerendse et al. (2000). They noted lower inter- and intrahemispheric

coherence in all frequency bands inADpatients compared to controls. Similarly, Stam

et al. (2002) showed lower synchronization values in AD patients in the upper alpha

band, the upper beta band, and the gamma band, which tend to be located over the left

frontotemporal/parietal long distance intrahemispheric interactions in the alpha 1 and

beta band (Stam et al. 2006). In a subsequent study, Stam et al. (2009) applied the

graph theory approach toMEG data in AD patients. AD patients showed a decrease in

the clustering coefficient and path length in the lower alpha band, indicating a loss of

the small world architecture, which represents the most efficient functional organiza-

tion. They also developed a computational model where they demonstrate that by

attacking targeted links, the functional network become disrupted. Following this

vein, De Haan et al. (2012a) assessed the role of functional subnetworks (modules) in

AD patients. The overall modular strength and the number of modules changed

significantly in Alzheimer patients. The parietal cortex showed the strongest

intramodular losses. However, intermodular connectivity losses were strongly related

to cognitive impairment. Then, network connectivity, synchronizability, and node

centrality were assessed (De Haan et al. 2012b). A global loss of network connectivity

and disrupted synchronizability was found along with centrality disruption of hubs at

parietal and temporal regions. All these series of studies led this group to develop a

computational model (De Haan et al. 2012c) based on the notion that increased brain

activity in certain cortical hubs induces hub vulnerability. An interesting insight from

this study was to coin the term “activity dependent degeneration” (ADD). This term is

referring to the fact that by lowering synaptic strength of excitatory neurons they were
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able to reproduce the majority of the previous findings in the literature of MEG-AD,

such as oscillatory slowing, loss of spectral power and long-range synchronization,

hub vulnerability, and disrupted functional network topology.

One way to demonstrate that functional connectivity is a kind of reflection of the

cognitive symptoms of the disease (i.e., lower functional connectivity is associated

with memory loss) is to experimentally induce amnesia to healthy elderly subjects

and test the effects on the functional architecture of the brain. To answer this

question, Osipova et al. (2003) recorded MEG activity before and after the injection

of scopolamine, an anticholinergic agent, in healthy elders. Scopolamine adminis-

tration resulted in a desynchronization of the alpha band (8–13 Hz) in the posterior

regions. In addition, interhemispheric and left intrahemispheric coherence was

significantly decreased in the theta band (4–8 Hz). In a subsequent analysis of

these data done in the source space, Bajo et al. (2015) showed decreased functional

connectivity between several brain areas in the scopolamine condition compared to

placebo in most frequency bands analyzed. In particular, it was found a reduced

connectivity in the alpha band between the left superior frontal and left angular

cortex, the left superior temporal pole and the right precentral cortex, and between

the right angular and the left lingual cortex. In the beta band, it was found a

significantly reduced connectivity, specifically between the left medial superior

frontal and the left superior parietal cortex, the left precuneus and the right lingual

Fig. 1 Representation of resting-state networks. (a) Cortical nodes of functional resting-state

networks. (b) Anatomical representation of modular architecture of the human brain functional

network (He et al. 2009). (c) Major brain networks analyzed with fMRI (Raichle 2011)
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cortex, and between the left superior parietal and right fusiform cortex. Finally, in

the gamma band, there was significantly reduced connectivity between the right

middle frontal cortex and the left rolandic operculum and between the right middle

orbitofrontal cortex and the right precuneus. It was also found that gamma-band

connectivity of the left inferior frontal operculum with the right lingual and left

paracentral lobule was reduced. However, in the delta band, scopolamine condition

showed increased connectivity between the left parahippocampal and the right

inferior occipital cortex. The functional connectivity in this frequency band is

normally enhanced in the injured brain, reflecting cognitive impairment

(Castellanos et al. 2010). As for the network architecture indices, clustering (local

connectivity) showed a significant reduction in the alpha band, while shortest path

length (long distance connections) significantly increased also in alpha band both

after scopolamine administration. This profile could mirror a random configuration.

All these neurophysiological signs were associated with transient amnesia in

healthy elderly subjects, eliciting similar cognitive and functional connectivity

profiles as those observed in AD patients.

The comparison between different dementia conditions is crucial to better

understand the sensitivity and specificity of these findings. Franciotti et al. (2006)

showed that coherence in the alpha band was disrupted in AD and Lewy Body

Dementia patients, which mainly involved long connections. This paper remains as

one of the few studies comparing biomagnetic activity in different types of demen-

tia syndromes.

As indicated above, AD is a continuum formed by different stages, from

preclinical stages to very early clinical stages. Patients with mild cognitive impair-

ment (MCI) convert to dementia with a rate of about 15% per year. Those with

amnestic MCI, with memory impairment as the main cognitive symptom, tend to

develop specifically AD. In this population, Bajo et al. (2010) assessed the integrity

of functional networks during performance of a memory task. These patients

showed an increase in synchronization over the prefrontal and central regions in

several frequency bands. This increased synchronization pattern achieved 82%

correct classification of the MCI patients in the beta band. An important question

was whether this increased synchronization represents compensatory activity or

not. To try to answer this question Buldú et al. (2011) evaluated the functional

architecture of those networks with increased synchronizability by using a graph

theory approach. MCI subjects showed a reduction of the clustering values along

with an increase in the outreach parameter. All these reveals a tendency toward a

random structure with a high energy cost and increased link strength, which is not

an ideal architecture for information processing, and it suggests an early network

disruption in the continuum of AD.

Healthy elders with subjective memory complaints (SMC) or any other cognitive

complaints constitute a group of subjects with an increased risk for the development

of dementia (Jessen et al. 2014). They perform neuropsychological tests within the

normal range. Thus, there is no objective sign for considering them as having a

medical condition. If neuropsychological tests are not sensitive enough to evaluate

clinical impairment, it might be possible to assess disruptions at the
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neurophysiological level. In an attempt to answer this question, Bajo et al. (2012a;

see also Maestú et al. 2011) assessed functional network organization in SMC

subjects and healthy elders without SMC. Subjects with SMC exhibited weaker

synchronization in the alpha 2, beta 1, and beta 2 frequency bands in frontal regions,

indicating an early connectivity disruption not detected by neuropsychological

tests. This likely reflects a preclinical deflection of the strength of the brain function

connectivity.

An important clinical issue is whether these functional connectivity profiles can

predict subsequent stages in the AD continuum. This idea was evaluated by Bajo

et al. (2012b). By analyzing data recorded during a memory task they reported

increased synchronization values in the alpha 1 and 2 frequency bands over the

posterior parieto-occipital regions and in prefrontal regions in MCI patients who

subsequently convert to AD, in comparison to non-converters. In a subsequent

study, López et al. (2014) assessed whether these profiles can be reproduced during

a resting-state condition. MCI converters showed increased connectivity between

the anterior cingulate cortex and the posterior brain regions. These two studies

indicate that the higher the synchronization, the higher the likelihood for develop-

ing dementia. Thus, these MEG profiles may serve as a potential biomarker for the

prediction of the development of dementia.

In order to evaluate all these findings from a multilevel approach, functional

connectivity findings were combined with genetic profiles, white matter disruption,

and the accumulation of amyloid and phospho-tau (p-Tau) proteins in the cerebrospi-

nal fluid (CSF). Cuesta et al. (2015) study indicated that being carrier of the APOE-ε4
modifies the functional network organization. Controls carrying the APOE-ε4 allele

showed increased synchronization compared with healthy elderly noncarriers,

although these results did not achieve statistically significant values. However,

patients with MCI carrying the APOE-ε4 allele showed lower synchronization values
than any of the healthy control groups (carriers or noncarriers) and MCI noncarriers.

This lower synchronization affectsmainly connections between prefrontal regions and

parietal regions. Thus, it seems that MCI carriers are closer to show a typical AD

profile in comparison to the other groups. This hypersynchronization profile was as

well found in an international multicenter blind-study (Maestú et al. 2015).

The evaluation of how white matter integrity affects the organization of the

functional network was assessed by combining information from diffusion tensor

imaging and MEG. Pineda-Pardo et al. (2014a) showed the dependency of the

Fractional Anisotropy (FA; a measure of white matter integrity) with the random

normalized graph metrics in MCI patients. These comparison revealed a higher

clustering coefficient loss, in delta, theta, and alpha frequency bands, as a function

of the lower white matter integrity over different regions such as the cingulum of

the medial temporal lobe, inferior longitudinal fasciculus, anterior thalamic radia-

tion, forceps minor, and the inferior fronto-occipital fasciculus. This means that the

lower the white matter integrity in these regions, the lower the clustering values in

the whole functional network. This may indicate that the random structure found by

Buldú et al. (2011) could be due to the loss of white matter integrity in certain white

matter regions. The assessment of specific brain networks such as the DMN
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revealed interesting results. Garcés et al. (2014) showed a reduced structural

connectivity between the nodes of the default mode network in MCI patients

along with a reduced functional connectivity in the same anteroposterior regions

(Fig. 2). This can be an indication of how functional brain properties can be

influenced by the structural connectivity. To further explore this hypothesis,

Pineda-Pardo et al. (2014b) showed how functional connections in MCI patients

can be predicted by the structural connectivity matrix. All these combinations of the

structural and functional networks were done with resting-state MEG data, thus if

functional networks during task mirrored the disruptions found in the structural

connections is a question which remain unresolved.

A relevant issue was to test whether MEG functional connectivity at resting

depends on the values of amyloid protein and tau protein at the CSF. Given that

amyloid tends to accumulate in the brain with disease progression, its values in the

CSF are lower than in healthy subjects. The opposite is true for the total tau and

phosphorylated tau (p-tau) derived from axonal filaments. High values of the tau

protein at the CSF are associated with neuronal loss and, therefore, are considered

as a neuronal injury biomarker. Canuet et al. (2015) evaluated how anatomo-

functional networks were modulated by CSF concentration of p-tau and amyloid

proteins in MCI patients. Patients with abnormal CSF p-tau and Aβ42 levels

exhibited both reduced and increased functional connectivity affecting limbic

structures such as the anterior/posterior cingulate cortex, orbitofrontal cortex, and

medial temporal areas in different frequency bands. A reduction in posterior

cingulate functional connectivity mediated by p-tau was associated with impaired

axonal integrity of the hippocampal cingulum. It was found that several connectiv-

ity abnormalities were predicted by CSF biomarkers and cognitive scores. These

preliminary results indicate that CSF markers of amyloid deposition and neuronal

injury in early AD are associated with a dual pattern of cortical network disruption,

affecting key regions of the default mode network and the temporal cortex.

Fig. 2 Functional and anatomical connectivity of nodes within the default mode network that are

disrupted in patients with MCI compared to controls (Garcés et al. 2014)
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3 Functional Networks in Epilepsy

Epilepsy is a disorder of the brain characterized by an enduring predisposition to

generate epileptic seizures and by the neurobiologic, cognitive, psychological, and

social consequences of this condition. An epileptic seizure, the defining element of

the disorder, is a transient occurrence of signs and/or symptoms due to abnormal

excessive or synchronous neuronal activity in the brain (Fisher et al. 2005). Based

on the increased interneuronal synchrony in epileptic seizures, it can be assumed

that connectivity is at the center of the problem of epilepsy (Lemieux et al. 2011). In

support to this view, abnormal functional connectivity within brain networks has

been found in association with transient epileptic discharges (Constable

et al. 2013). In addition, increasing evidence indicates that epilepsy is due to a

dysfunction within an epileptic network rather than due to pathological activity of

single cortical sources (Fig. 3). Epileptic networks underlying focal epilepsies and

specific epileptic syndromes may be of great importance both for localizing the

seizure onset or the epileptogenic zone and for predicting postsurgical cognitive

impairment (Pittau and Vulliemoz 2015). Furthermore, functional connectivity may

help understand clinically relevant issues in epilepsy such as ictal activity spread-

ing, variations in seizure semiology, and the persistence of seizures after surgical

resection (Lemieux et al. 2011).

Fig. 3 Source connectivity analysis of magnetoencephalographic interictal spikes in temporal

lobe epilepsy. Epileptiform activity propagates from the right temporal lobe to ipsilateral anterior

and posterior frontal regions. The identified primary source overlapped with the clinically resected

zone. R, right view and t, time points around the peak of an interictal spike (Dai et al. 2012)
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3.1 Functional Connectivity in the Clinical Diagnosis
of Epilepsy

Functional connectivity has been proposed to play a role in the diagnosis of

epilepsy in clinical practice, at least in some cases. It is well established that the

diagnosis of epilepsy is based on clinical criteria (ILAE—English International

League Against Epilepsy). The identification of ictal or interictal epileptiform

discharges using EEG, video-EEG, or MEG aids in the diagnosis of epilepsy and

additionally allows for a correct classification of the seizure type (focal

vs. generalized) and the epileptic syndrome. However, the first EEG recording is

not sensitive enough, allowing for a detection of epileptiform activity in about

30–50% of the patients (Douw et al. 2010). Moreover, up to 18% of patients do not

show EEG epileptiform activity in repeated recordings and up to 0.5% of the

general population may have EEG spikes without clinical significance. It is,

therefore, necessary to use other analysis tools that do not depend exclusively on

epileptic discharges to support the diagnosis or to predict the development of

epilepsy after a first seizure. Preliminary studies have shown that in patients who

do not show interictal epileptiform discharges on their first EEG recording, a

pronounced increase in theta-band connectivity may be used as predictor of a

diagnosis of epilepsy combined with seizure semiology. A precise localization of

the epileptogenic focus in patients with neocortical epilepsy who underwent sur-

gery has been possible using connectivity analysis of resting-state MEG data

irrespective of the presence or absence of epileptic spikes (Krishnan et al. 2015).

Furthermore, functional connectivity networks have successfully been used to

discriminate children with epilepsy from controls blindly to clinical data, with an

accuracy of 88.8%, a sensitivity of 81.8%, and 100% specificity (Sargolzaei

et al. 2015). Although more research is needed, it is promising that brain connec-

tivity analysis can provide valuable information for an early diagnosis of epilepsy

or for identification of the epileptogenic zone in patients without epileptiform

discharges or without structural lesions.

3.2 Generalized Epilepsies

Network disruption in generalized epilepsy has mainly been investigated in the

most common types of idiopathic or genetic epileptic syndromes, in particular in

childhood absence epilepsy (CAE) and juvenile mioclonic epilepsy (JME). Results

of recent functional connectivity studies, however, provide compelling evidence

that the concept of “generalized epilepsy” may be outdate. Even in cases of CAE,

JME, and idiopathic epilepsy with generalized tonic–clonic seizures there is evi-

dence that the seizures may start in a defined brain area and spread rapidly to

connected brain areas, recruiting specific neuronal networks into typical oscillatory

behavior. For instance, the distribution of 3-Hz generalized spike-wave discharges
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in patients with CAE involved the prefrontal–insular–thalamic network. In patients

with myoclonic components, the dominant networks appear to be frontal (motor)–

insular–thalamic (Stefan and Lopes da Silva 2013). Patients with CAE also exhibit

an altered integration among three resting-state networks: dorsal attention (DAN),

salience (SN), and DMN networks (Fig. 1). This functional connectivity abnormal-

ity is thought to represent a pathological mechanism associated with the accumu-

lative influence of epileptic activity. Based on the role of these networks in the

intrinsic organization of the brain, as well as in behavior and cognition, this

functional network disintegration may contribute to behavioral abnormalities that

are seen in some patients, including executive and attentional deficits

(Li et al. 2015). Other idiopathic generalized epilepsies, in particular that charac-

terized by generalized tonic–clonic seizures have been associated with a disrupted

brain network organization derived from abnormal functional interactions among

resting-state networks, including the DMN, attentional network (ATN), and

frontoparietal central executive network (CEN) (Fig. 1). This is thought to contrib-

ute to the mild behavioral and attentional deficits seen in some patients with these

generalized epilepsies (Wei et al. 2015).

In patients with JME, interictal, and preictal disruption of network dynamics in

different frequency bands have been found using EEG. Compared to controls, these

patients were mainly characterized by an interictal increase in slow-frequency (i.e.,

delta, theta, alpha 1) functional connectivity, with a concomitant decrease in alpha

2 and beta bands affecting cortical areas involved in sensorimotor integration. A

further increase in delta connectivity between frontal nodes occurred during the

preictal state (Clemens et al. 2013). These results suggest a frontal epileptic

network in JME, which is consistent with the presence of dominant spike-wave

discharges in frontal areas, frontal lobe dysfunction, and abnormal thalamo-frontal

functional connectivity in patients with this epileptic syndrome (O’Muircheartaigh

et al. 2012). Niso et al.’s (2015) MEG study using graph analysis found that brain

networks of patients with JME are characterized by lower eccentricity for higher

frequency bands (i.e., beta and gamma), with no clear topography compared with

healthy subjects. Based on the idea that JME might actually represents a fast

spreading frontal epilepsy, these authors also performed graph analysis in patients

with focal frontal epilepsy, reporting that JME and frontal epilepsy have different

network dynamics and organization. These data support the notion of a network

disruption underlying clinical manifestations in JME, and that functional connec-

tivity and graph theoretical analysis are valuable for understanding pathophysio-

logical mechanisms in generalized and focal epilepsies.

In symptomatic forms of generalized epilepsy like the West syndrome,

oscillation-based functional connectivity appears to play a role in the development

of clinical manifestations. Compared to age-matched healthy controls, children

with infantile spasms and hypsarrhythmia have a marked increase in long-distance

connectivity, as measured with coherence in delta, theta, alpha, and beta frequency

bands during sleep. This occurred in association with a decrease in theta and beta

connectivity in the frontal region at short interelectrode distances. Children with

persistent abnormalities in coherence were those with continued seizures and severe
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developmental delay. This likely indicates a lack of functional differentiation in

wide cortical regions in patients with West syndrome having a better local integra-

tion of frontal regions (Burroughs et al. 2014).

3.3 Focal Epilepsies

As mentioned above, a potential clinical application of functional connectivity in

epilepsy lies in a precise localization of the epileptogenic zone in patients with focal

and drug-resistant epilepsy. This step is essential for planning epilepsy surgery,

which is often the only therapeutic option to reduce or eliminate seizures in these

patients. To date, high-frequency oscillations in intracranial recordings, in partic-

ular the so-called fast ripples (250–500 Hz), are considered to be markers for the

epileptogenic zone. This is why the removal of the cortex generating these oscil-

lations which occur in association with epileptic discharges or preceding seizures is

generally linked to a good surgical outcome (Lemieux et al. 2011). However, recent

evidence suggests that functional connectivity results may be associated with

epileptogenicity as well. Imaginary coherence of MEG epileptic activity has proven

to be as reliable as spike localization methods, namely, equivalent current dipoles

(ECDs) and synthetic aperture magnetometry (SAM), to identify the seizure onset

and epileptogenic zones. In a study performed by Wu et al. (2014), the locations of

abnormal imaginary coherence, ECDs, and SAM were in agreement with intra/

extraoperative EEG in 76.7%, 56.7%, and 66.7% of the patients, respectively.

Others have found that the application of source connectivity analysis to MEG

interictal spikes using directed transfer function allows for estimation of the

propagation of epileptiform activity along the interconnected neuronal networks

in patients with focal epilepsy and drug-resistant epilepsy (Fig. 3). Interestingly, the

results of this connectivity analysis were consistent with the location of surgically

resected areas (Dai et al. 2012). These findings suggest the feasibility of using

functional connectivity of MEG interictal spikes as part of the presurgical evalua-

tion of patients with focal epilepsy refractory to medical treatment.

Focal cortical dysplasia is an intrinsically epileptogenic lesion that is commonly

associated with drug-resistant epilepsy and, therefore, requires surgical resection to

achieve seizure freedom. There is evidence obtained from MEG studies indicating

that cortical dysplasia is linked to a pattern of increased resting-state functional

connectivity in the beta and gamma frequency bands compared to controls. In

addition, patients exhibit different network characteristics depending on the type

of cortical dysplasia, and these abnormalities can be observed even in the absence

of prominent interictal spike activity (Jeong et al. 2014). EEG studies have also

reported an abnormal functional connectivity pattern, mainly in the gamma band,

which allows us to identify the epileptogenic zone during the ictal event, as well as

during the inter and preictal periods, even when the structural lesion is not detected

by MRI scanning. These results suggest that the lesional nodes play a leading role in

the generation and propagation of ictal activity by acting as hubs of the epileptic
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network. Furthermore, the cortical regions beyond the dysplasia involved in the

ictal activity appear to act as “secondary” generators of synchronous activity

(Varotto et al. 2012). Hippocampal sclerosis is another epileptogenic lesion that

is associated with the most frequent type of symptomatic focal epilepsy, the mesial

temporal epilepsy. MEG studies revealed that this cortical lesion induces local and

remote changes in the dynamic organization of a frontotemporal network

subserving working memory processing. This can explain a variety of memory

disturbance and other neuropsychological deficits seen in patients with hippocam-

pal sclerosis (Campo et al. 2013). Overall, this evidence indicates that resting-state

functional connectivity may potentially be used in clinical setting to identify

epileptic networks associated with cortical dysplasia or other epileptogenic lesions.

The benign epilepsy with centro-temporal spikes (BECTS) or Rolandic epilepsy

is a very common form of idiopathic focal epilepsy in childhood that generally has a

benign course (e.g., good response to treatment and cure in adolescence). However,

despite their favorable seizure outcome, some children show attention deficits. This

has led researchers to believe that beyond seizure activity other functional abnor-

malities may be implicated in the pathophysiology of this disorder. Functional

connectivity analysis has shed light to this problem. It has been found that the

global topologic organization of the functional brain network is disrupted in

patients with BECTS, as manifested by a reduction in clustering coefficient and

local and global efficiency, and by an increased path length. Reduced mean

functional connectivity is mainly observed between the sensorimotor areas; this

abnormality correlates with altered global small-world properties. In addition, these

patients show reduced nodal centralities, predominantly in central regions and the

superior temporal cortex and in areas related to linguistics and attention control that

associate with language or behavioral disturbance (Xiao et al. 2015a). Patients with

BECTS that develop attention deficit hyperactivity disorder (ADHD) show

decreased functional connectivity of the DAN and ventral attention network

(VAN), as well as increased connectivity of the DMN. These findings indicate

that network disruption underlies language and behavioral problems in children

with BECTS that presents with a less benign form of the disorder (Xiao

et al. 2015b).

DMN connectivity is also altered in patients with temporal lobe epilepsy, the

most common type of symptomatic focal epilepsy. Using resting-state MEG during

spike-free periods and imaginary coherence, a measure of linear functional con-

nectivity, patients with drug-resistant temporal lobe epilepsy have shown increased

connectivity between the DMN and the right medial temporal cortex in the delta

band. In addition, increased connectivity has been found between the DMN and the

bilateral anterior cingulate cortex in the theta band (Hsiao et al. 2015). In patients

with temporal lobe epilepsy and interictal psychosis, the chronic psychotic symp-

toms have been attributed to abnormal theta-band oscillations in the DMN and to

resting-state beta-band connectivity disruption. This network abnormality affects

particularly the connections of the medial temporal cortex with DMN regions or

with prefrontal areas implicated in psychopathological dysfunction (Canuet

et al. 2011). Taken together, the DMN connectivity abnormalities reported in
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these patients indicate that an intrinsic functional disintegration of the brain plays a

role in the pathophysiology of temporal lobe epilepsy.

4 Functional Networks in Psychiatric Disorders

Neuroimaging studies of human brain activities have elucidated many functional

networks which engage in specific motor, sensory, or cognitive functions (Fig. 1).

The CEN is involved in frontal executive functions and activated during perfor-

mance of a variety of cognitive tasks (Koechlin and Summerfield 2007). The DMN

is composed of a set of regions that are particularly active in resting state and

temporally interrupted or desynchronized during sensory, motor, or cognitive tasks.

The DMN shows anti-correlation with other networks and exerts a strong influence

on functions of their anti-correlated networks (Uddin et al. 2009). The SN has an

important role in attributing salience to perceived stimuli and has shown a close

association with auditory verbal hallucination (AVH) and delusions (Wotruba

et al. 2014). These three networks (triple network model) are supposed to be

essential for understanding pathogenic mechanisms of psychiatric diseases, includ-

ing schizophrenia, autism spectrum disorder (ASD), and major depressive disorder

(MDD) (Menon 2011; Wotruba et al. 2014).

The CEN is a frontoparietal system anchored in the dorsolateral prefrontal cortex

(DLPFC) and the lateral posterior parietal cortex (PPC). This network is involved in

manipulating information of working memory in goal-directed behavior (Koechlin

and Summerfield 2007; Menon 2011). The DMN is anchored in the medial PFC

(mPFC) and posterior cingulate cortex (PCC), with nodes in the lateral inferior

parietal cortex, including the angular gyrus, and some consider the medial temporal

lobe (MTL) as part of this functional network. The DMN is involved in internally

focused activities such as self-referential thoughts, mind wandering, envisioning

one’s future, and autobiographical memory retrieval (Raichle et al. 2001). How-

ever, there is a functional specificity within the DMN (Aoki et al. 2015): mPFC is

associated with self-referential processing (Kim 2012), whereas PCC, MTL, and

angular gyrus are associated with autobiographical memory retrieval (Spreng

et al. 2009) and episodic memory retrieval (Sestieri et al. 2011). The SN is a

cingulate-frontal operculum system anchored by the anterior insula, ventrolateral

PFC, and the dorsal anterior cingulate cortex (dACC) with robust connectivity with

subcortical and limbic structures, including the amygdala, substantia nigra/ventral

tegmental area, and thalamus (Seeley et al. 2007). This network is involved in

detecting, integrating, and filtering relevant internal (interoceptive, autonomic, and

emotional information) and external information (stimulus driven information) and

attribution of salience to this information (Menon 2011). Causality analysis has

revealed that the SN, in particular the right anterior insula, plays a crucial role in

network switching, activating the CEN, and deactivating the DMN (Sridharan

et al. 2008).
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Neuroimaging connectivity studies have revealed that psychiatric diseases show

disruption in these three networks and that this network disruption associates with

symptoms of these diseases. This may explain underlying pathogenic mechanisms

in schizophrenia (e.g., increased SN–DMN internetwork connectivity and its rela-

tion with positive symptom), in ASD (e.g., hypoactivation in the SN and the DMN

during social processes), and in MDD (e.g., enhanced internetwork connectivity of

the DMN and PFC-thalamo-limbic pathway and its relation with rumination and the

length of the current depressive episode).

4.1 Schizophrenia

Schizophrenia is a chronic and severe brain disorder characterized by positive

symptoms (e.g., auditory verbal hallucinations and delusions), negative symptoms

(e.g., diminished emotional expression or avolition), and cognitive deficits (e.g.,

poor executive function). fMRI connectivity studies of resting states in patients

with schizophrenia showed that configuration of functional networks is mostly

preserved, but connectivity within the DMN appears to be disturbed (i.e., reduced

connectivity of the hippocampus with the DMN) (Alonso-Solı́s et al. 2015;

Rotarska-Jagiela et al. 2010). In addition, the connectivity of the hippocampus

with the DMN is negatively correlated with positive symptoms (Rotarska-Jagiela

et al. 2010). This finding suggesting the involvement of hippocampus in positive

symptoms fits with MEG evidence that AVH in schizophrenia is initiated by a short

reduction of theta-band activity in the right hippocampus, followed by a reduction

of beta-band activity in left temporal language areas during the experience of AVH

(van Lutterveld et al. 2012). Additionally, schizophrenia patients with AVH

showed disturbed internetwork connectivity between the SN and the DMN com-

pared to non-hallucination patients and healthy controls (Alonso-Solı́s et al. 2015).

Moreover, subjects with ultra-high risk and high risk for psychosis showed that the

typically observed antagonistic relationship of the DMN with the CEN and the SN

was absent in both at-risk groups. Importantly, the internetwork connectivity of the

SN with the DMN, measured by right anterior insula–PCC connectivity, was

increased during disease progression and was positively correlated with positive

symptom sum scores and body perception disturbances. On the other hand, in line

with previous findings of internetwork connectivity of the DMN, DMN–CEN

internetwork connectivity was negatively correlated with the quality of perfor-

mance on a selective attention task and the performance on executive function

tasks (Wotruba et al. 2014). Taking these findings into consideration, it can be

speculated that functional deficits of the SN attribute excessive salience to internal

information, which may lead to AVH and delusions in schizophrenia (Menon 2011;

Wotruba et al. 2014). In addition to disturbance of intranetwork connectivity of the

DMN and internetwork connectivity between the SN and the DMN, Sommer

et al. (2012) reported a reduced connectivity of the left superior temporal gyrus

(language areas) with the left hippocampus and its negative correlation with the
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severity of AVH. Consistent with this finding, EEG coherence analysis revealed

that beta coherence of the left frontal (F7)–temporal (T5) electrode pair was less

than that of the corresponding right pair (F8–T6) at the time of hospital admission

for acute exacerbation of schizophrenia. After symptoms improved due to antipsy-

chotic medication, the left frontal–temporal beta coherence increased, resulting in

disappearance of the laterality. This change in beta coherence of the left frontal–

temporal pair correlated negatively with the changes in the positive symptom score

(Higashima et al. 2007).

EEG connectivity between cortical regions in first-episode schizophrenia has

been investigated using exact low-resolution electromagnetic tomography

(eLORETA) source estimation (Pascual-Marqui et al. 2011) and imaginary

coherence-based multivariate interaction measure. Patients with schizophrenia

displayed increased theta connectivity across midline, sensorimotor, orbitofrontal

regions, and the left temporoparietal junction. High-risk individuals displayed

intermediate left hemisphere theta connectivity between schizophrenia and healthy

controls. The mean theta connectivity within the above network correlated nega-

tively with the verbal memory factor score in all subjects, i.e., increased theta

connectivity in left hemisphere regions reflects worse verbal memory performance

(Andreou et al. 2015). This finding is in line with the hemispheric specification of

cortical functions, i.e., word deficits in negative symptoms have close link with

functional deficit in the left hemisphere, while face deficits in positive symptoms

have close link with functional deficit in the right hemisphere (Burgess and

Gruzelier 1997).

Alterations in EEG connectivity during various tasks at high frequency bands

(beta and gamma) have been reported. Schizophrenia patients have a selective

deficit in Gestalt perception, i.e., grouping stimulus elements into a meaningful

percept. Uhlhaas et al. (2006) using phase locking value of EEG data and Gestalt

perception task (Mooney face test) demonstrated reduced mean beta-band connec-

tivity for all electrodes compared to healthy controls during Gestalt perception in

upright Mooney face presentation. Mulert et al. (2011) using eLORETA lagged

phase synchronization of EEG data and stimuli of 40 Hz binaural click trains

investigated gamma-band connectivity of the auditory steady-state evoked poten-

tials between the left and right auditory cortices and its association with auditory

hallucination. The gamma band interhemispheric connectivity was reduced in

patients compared to healthy controls for the primary auditory cortices. Further-

more, the gamma band interhemispheric connectivity of the primary auditory

cortices in patients had positive correlation with AVH. Consistent with this result,

the auditory fibers link the auditory cortices of both hemispheres through the corpus

callosum. Also, speech stimuli entering the right auditory cortices need callosal

transfer to the left auditory cortex for language comprehension. This is related to

the fact that emotional prosody is processed in the right hemisphere, whereas

identification of phonemes, words, and the syntactic relation between them is

processed mainly in the left hemisphere (Bamiou et al. 2007). Thus, disturbed

interhemispheric connectivity between the primary auditory cortices may cause

miscomprehension of language, leading to AVH.
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4.2 Autism Spectrum Disorder

ASD is a neurodevelopmental disorder characterized by persistent deficits in social

communication and cognitive flexibility (i.e., restricted, repetitive patterns of

behavior and interests). fMRI connectivity studies in young adults with ASD

showed reduction of resting-state connectivity within the DMN, particularly at

the mPFC (Kennedy and Courchesne 2008a, b). Consistently, fMRI studies showed

that in young adults with ASD had absence of deactivation of the DMN during task

performance (Stroop Task vs Rest and self-referential process vs other-referential

process). Importantly, deactivation of the ventral mPFC (anterior hub of the DMN)

during tasks correlated with social symptom severity, i.e., the lower the deactiva-

tion of the ventral mPFC, the worse the social behavior (Kennedy et al. 2006).

Finally, recent meta-analysis of 24 neuroimaging studies in ASD examining social

processes (e.g., theory of mind, face perception) revealed that the mPFC and the

PCC (anterior and posterior hub of the DMN) and right anterior insula (hub of the

SN) were hypoactive relative to controls (Di Martino et al. 2009).

An EEG resting-state connectivity study using synchronization likelihood of

delta frequency band in young adults with ASD demonstrated decreased long-range

connectivity, with the most prominent deficits being found in fronto-occipital

connections and increased short-range connectivity affecting lateral–frontal con-

nections. Both decreased long-range connections and increased short-range con-

nections correlated with ASD symptom severity. Additionally, graph analysis

demonstrated less clustering coefficient and greater characteristic path length than

controls. These results indicate that ASD network topology is different from that of

a small world network which has been shown to be optimal for information transfer

and storage (Barttfeld et al. 2011). Taking into account these findings, it can be

assumed that ASD has an atypical network with enhanced local connections lacking

central nodes and hubs and a more modular structure. This network structure has

strength in parallel processing of information and weakness in proper integration of

information. This may explain the ASD core symptom, a lack of cognitive flexi-

bility (Barttfeld et al. 2011). MEG resting state connectivity studies in young adults

with ASD, using robust interdependence measure, mutual information, and partial

directed coherence, also displayed reduced long-range connectivity in broadband

frequency band. Furthermore, robust interdependence measure showed that con-

nectivity of frontal sensors and temporal sensors with other sensors were attenuated

(Tsiaras et al. 2011). It is noteworthy that Kikuchi et al. (2015) found that the

reduced long-range connectivity (6 Hz coherence between the left-anterior sensor

and the right-posterior sensor) was already seen in young children with ASD.

Alterations in connectivity during tasks at low frequency bands have also been

reported. ASD cognitive inflexibility can be assessed with intradimensional–

extradimensional shift task. Extradimensional attentional shifts demand greater

cognitive flexibility to successfully perform the task than intradimensional shifts.

MEG connectivity during this task in children with ASD was investigated using

beamformer source estimation and phase lag index. Children with ASD showed
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reduced long-range theta connectivity during extradimensional set-shifting com-

pared to controls (Doesburg et al. 2013). These findings are consistent with the

supposed role of connectivity in low frequency band (delta and theta) long-distance

communication among brain regions (Bhattacharya 2001). Our group investigated

young adults with ASD measuring post-movement MEG beta rebound during

observation and execution of hand actions. We found reduced post-movement

beta rebound in mirror neuron system areas and the mPFC exclusively during the

observation condition in patients relative to controls (Fig. 4). These results demon-

strated a dysfunction of execution/observation matching system related to mirror

neuron system, which may explain the difficulty in understanding other people’s
intentions or emotions in ASD (Honaga et al. 2010).

4.3 Major Depressive Disorder

MDD is a mood disorder characterized by a persistent depressed mood and mark-

edly diminished interest or pleasure in all or most activities. fMRI connectivity

studies in patients with MDD showed enhanced resting-state connectivity of the

subgenual cingulate cortex and the thalamus with the DMN. Importantly, the

subgenual cingulate cortex connectivity with the DMN is correlated with rumina-

tion (recurrent thinking about the self, past upsetting events, and unsolved con-

cerns) and the length of the current depressive episode (Berman et al. 2011). The

subgenual cingulate cortex and the thalamus are part of the PFC-thalamo-limbic

pathway which is engaged in emotional processing (Drevets et al. 2008). Therefore,

the increased connectivity between the subgenual cingulate cortex and the thalamus

may reflect enhanced emotional processing in patients with MDD.

Functional connectivities between alpha band activity in the PFC and the

metabolism in the thalamus before and after repetitive transcranial magnetic stim-

ulation (rTMS) treatment were investigated using combined MEG and positron

emission tomography (PET). Patients with drug treatment-resistant depression

showed absence of the PFC–thalamic connectivity and its recovery after successful

rTMS treatment. This result may indicate deficits of inhibitory function of the PFC

to the thalamus and its recovery with symptomatic improvement in this disorder

(Li et al. 2013). In addition, MEG connectivity between the amygdala, ACC,

inferior frontal gyrus, and visual cortex in response to sad facial stimuli has been

investigated using multiple sparse prior source estimation and Granger causality

analysis. Relative to controls, MDD was characterized by an enhanced connectivity

of the amygdala after exposure to sad facial stimuli in the early stage and reduced

inhibitory connectivity from the inferior frontal cortex to the amygdala in the late

stage (Lu et al. 2013). Taking these findings into consideration, abnormal connec-

tivity of the amygdala and the thalamus with the DMN appears to be a key feature

of MDD and may reflect the increased emotional processing seen in MDD, includ-

ing rumination and brooding.
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Fig. 4 Statistical maps of post-movement beta rebound during movement observation. Significant

activation (increased beta rebound) can be seen in (a) the contralateral sensorimotor cortex, (b)

right premotor area, (c) anterior cingulate cortex, and (d) right posterior–superior and middle

temporal cortex in normal subjects relative to patients with autistic spectrum disorder (ASD). R,
right; L, left; A, anterior; P, posterior (Honaga et al. 2010)
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5 Summary

This chapter attempts to show the utility of a network approach for a better

understanding of neurological and psychiatric disorders. In the study of the func-

tional networks in the AD continuum, we can conclude that network analysis

revealed specific profiles that could discriminate AD patients as well as MCI

patients from controls. Furthermore, using this approach it is possible to predict

which of the MCI patients will develop AD or not. Preclinical stages such as SMC

have also been characterized by an early disruption of functional networks. In

particular, the preclinical stage is characterized by an early decrease in functional

connectivity between certain regions followed by an increase in intrinsic connec-

tivity at the MCI stage. In fact, those patients that progress to dementia show the

higher synchronization values. Later on, at the AD stage the network decreases its

synchronization. These increased and decreased functional networks tend to show a

random configuration indicating lower network efficiency in association with

cognitive impairment. All these profiles can be modulated by anatomical connec-

tivity disruption, being carrier of the APOE-ε4 as well as by the accumulation of

amyloid beta and p-tau protein.

The functional network approach is also changing our view of epilepsy. Given

that seizure, the defining feature of epilepsy, is related to an abnormal excessive or

synchronous neuronal activity in the brain, connectivity is at the center of this

disorder. Epileptic networks underlying focal epilepsies are of great value for

localizing the epileptogenic zone and, therefore, are crucial for the presurgical

mapping of epilepsy. This is particularly important in the case of intrinsically

epileptogenic focal cortical dysplasia, where oscillation-based connectivity abnor-

malities in the gamma band may precisely define the epileptogenic zone, leading to

good surgical outcomes. It is promising that brain connectivity analysis can also

provide valuable information for an early diagnosis of epilepsy in patients without

epileptiform discharges in initial interictal or ictal EEG recordings or in those

without structural lesions on MRI. Of note, disruption in resting-state networks

may help understand functional, behavioral, and cognitive deficits in patients with

symptomatic epilepsies and in some cases of idiopathic focal/generalized epilepsy.

Overall, resting-state functional connectivity is considered as an important tool for

understanding functional brain organization in epilepsy. In addition, functional

connectivity may potentially be used in clinical setting as part of the presurgical

evaluation and for prediction of cognitive impairment.

With regard to psychiatric disorders, fMRI, EEG, and MEG connectivity ana-

lyses have elucidated disturbances of the connectivity between specific brain

regions and their associations with psychiatric symptoms in schizophrenia, ASD,

and MDD. These findings suggest that each psychiatric disease has specific patterns

of disruption of functional networks, particularly for the CEN, the DMN, and the

SN. These disease-specific disturbances of functional networks characterize the

psychiatric diseases and reveal core pathogenic mechanisms. Therefore, network

theory perspective may be helpful in the objective assessment of psychiatric
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symptoms, differential diagnosis of psychiatric diseases, and investigation of

underlying pathogenic mechanisms.

Overall, in these neurological and psychiatric disorders, the study of brain

functional networks is providing a new perspective for diagnosis and for achieving

a better understanding of these disorders. However, whether this new approach will

be useful in the clinical scenario is still a matter of debate and more clinical research

is needed. Multicenter and blind studies are particularly encouraged. In addition,

the high technical background needed to compute fMRI, EEG, or MEG temporal

series with functional connectivity metrics is also making harder the use of this

approach in a clinical environment. Friendly interfaces are still needed. However,

the valuable information provided by functional connectivity and network analyses

could inspire new therapeutical approaches and new views for diagnosis and

prognosis. Thus, the difficulties mentioned above will probably be overcome in

the near future because of the clear benefits of a network approach, particularly in

neuropsychiatric disorders.
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Montejo P, Bajo R, Maestú F (2014) Alpha-band hypersynchronization in progressive mild

cognitive impairment: a magnetoencephalography study. J Neurosci 34(44):14551–14559

Lu Q, Bi K, Liu C, Luo G, Tang H, Yao Z (2013) Predicting depression based on dynamic regional

connectivity: a windowed Granger causality analysis of MEG recordings. Brain Res

1535:52–60
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Maestú F, Peña JM, Garcés P, González S, Bajo R, Bagic A, Cuesta P, Funke M, Mäkelä JP,
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