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Abstract. In this work we present a programming philosophy and a
template code for achieving computational scalability when using mul-
tiple graphics processing units (GPUs) in the numerical solution of any
mathematical system of equations found in continuum dynamic simula-
tions. The programming philosophy exploits the principal characteristics
of the GPU hardware, with emphasis in the delivering of threads with
massive memory fetches, intense calculations using local registers and
limited writes to global memory. The philosophy requires explicit for-
mulas for calculations for which domain decomposition is trivial. The
domains are decomposed in regions that use the local central process-
ing unit (CPU) to communicate common interfaces using the message
passing interface (MPI). A template code for the heat equation is estab-
lished and tested for scalability. The novelty is that we show a series
of codes, constructed from the basic template, that solve all the basic
model equations found in continuum dynamics, and present illustrative
results. The model equations are the heat equation, the Poisson equa-
tion, the shallow-water equations, the flow in porous media equations
and the vorticity equations.

1 Introduction

The last decade has been witness to radical changes in number crunching hard-
ware [1,2]. The graphics processing unit (GPU) has reached approximately an
order of magnitude in peak, double precision, floating point operations per sec-
ond (FLOPS), compared to the central processing unit (CPU). Today, the GPU
can deliver more than 3000 GFLOPS, while the CPU delivers just above 500
GFLOPS. Additionally, the peak memory bandwidth, the velocity to fetch data
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from memory, is around 500 GB/s for the GPU compared to under 80 GB/s for
the CPU. And the trends are getting steeper for every new processor gener-
ation presented [3]. At the present time, the GPUs double their performance
approximately every year while the CPUs do it almost every two years.

Supercomputers are increasingly relying upon the GPUs each year [2], mostly
to increase the FLOPS delivered given a fixed monetary budget. Besides their
highest performance, the GPUs bring savings because they deliver the best
cost/operation and energy/operation ratios. Surprisingly, the transition to GPUs
has been slow in the programming side and supercomputers are still dominated
by distributed, multi-core applications. One of the main reasons behind the slow
implementation of algorithms into the GPU is that the methodologies need to be
adapted to the GPU architecture following a theoretical ideal GPU-programming
philosophy [3]. Perhaps, the applied mathematics community has not paid suf-
ficient attention to the changes in the hardware and has produced a series of
methodologies that might be suited for some GPU acceleration [4,5], but not for
exclusive, multiple GPU, scalable performance.

In the field of continuum dynamics, theoretical research has been mainly
focused in weak formulations of partial differential equations and their discretiza-
tion using finite elements [6–8] . The research groups in applied mathematics have
produced a great variety of theorems and applications for this particular formula-
tion [9–13]. The finite elements are highly attractive because complex geometries
and a mixed systems of equations, including constrains, can be discretized and
solved using implicit formulations, reducing stability constrains for the time steps.
Once the numerical engine for the discretization and the inversion of the matrix
has been implemented, the extension of the method to new applications is rela-
tively simple, and new research can be directed to find the numerical convergence
of the algorithms and the best choice for the preconditioning of the matrix. The
finite element method produces a great sparse matrix with mixed entries that in
most cases is solved using a General Minimum Residual (GMRES) algorithm [14].

The applied mathematician often overlooks the use of the GMRES algorithm
as a black box and focuses mainly in establishing the weak formulation of the
partial differential equations. Here is where we find the greatest obstacle for
scalable simulations. The community argues that sooner or later they will have
a general sparse matrix inverter, GMRES or else, working on multi-processors
and they will be able to simply change the matrix inversion engine in their codes.
The community had some success using domain decomposition for the inversion
of the sparse matrix in systems of multiple processors but, to this date, this is
still one of the most important open themes in the field [15,16].

Unfortunately for the domain decomposition of matrices, many-core archi-
tectures like GPUs are quite different than multi-cores. Multi-cores can assign
a large region of elements in the sparse matrix to each core and use iterative
matchings to achieve convergence. The GPU requires one code applied indepen-
dently to each element, using massive memory fetches for the discretization and
writing its result to memory, fully in parallel.

The use of methods like GMRES makes sense in GPUs for systems of linear or
non-linear equations to be solved for every element, independently. That is, a local
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inversion of a small matrix per thread. But large matrix inversions are not easy to
implement in parallel. The main problem is that GMRES was designed and opti-
mized as a sequential algorithm. It requires matrix-vector multiplications, rota-
tions and the creation of a basis using the Gram-Schmidt algorithm. Matrix-vector
multiplications can be implemented in parallel, but the rotations and creation of
the basis vectors is always sequential [17]. Additionally, the domain decomposition
of matrices using iterative algorithms faces a fundamental problem, the slow trans-
mission of the long distance components of the solutions. For example, when solv-
ing a Poisson equation, the potential has always local components due to sources
located at very long distances. Numerically, the computation must be able to com-
municate those sources rapidly when solving for the corrections at the intersection
of the domains. Given the algorithm in its current form, only partial accelerations
can be achieved for a large number of cores, computing matrix multiplications in
the GPUs and reductions in the CPUs [17].

Intensive research is being done in the field and the reader must not loose
attention to new developments. Finite elements can adapt to the GPU program-
ming philosophy with some modifications of the general matrix strategy. Some
alternatives are to produce explicit finite element methods and to reduce the
equations complexity to allow the use of multigrid. Successful implementations
can be found in this direction [18–23].

Other methods have evolved under relative isolation during the fertile
decade of finite elements, these include finite differences, finite volumes [24] and
Lagrangian advection [25,26]. The algorithms are popular among engineers but
are ignored or regarded as low order by most mathematicians. In this direction,
our team has been successful in producing new high-order numerical schemes
that combine the best features of these methods, exploiting explicit integration,
full multi-dimensionality, fast memory fetches and fine grain parallel processing,
while avoiding memory latencies with a fixed memory model.

In this paper we show that the development of high-order, moment pre-
serving, semi-Lagrangian schemes [27], combined with the explicit solution of
diffusion equations and multigrid or multiscale algorithms [28], provide a high-
order convergent framework for incompressible, compressible and constrained
continuum dynamics, ideally scalable in an array of many-core architectures.

First, we present a general programming philosophy and a heat equation
template for multiple GPUs, showing its scalability using a large number of
units. After that, the programming philosophy is applied to a series of model
equations that contain all the possible systems of equations found in continuum
dynamics. These are pure hyperbolic systems like the shallow-water equations,
elliptic-hyperbolic systems like the vorticity equations, and parabolic-hyperbolic
systems like the porous media equations.

2 Programming Model

The programming model must exploit the hardware characteristics of the GPUs
to achieve peak performance in each card, and communicate several GPUs
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efficiently to obtain scalability. It is possible that we obtain acceleration using
several GPUs, but the main goal must be the run of very large problems with
small time penalties. We must be able to run a multiple sized problem in the
same multiple number of GPUs for approximately the same computing time as
the unit problem run in one. Therefore, we need to observe how the computa-
tional time varies with the number of mesh points for a fixed problem size per
GPU, known as weak scalability.

Each GPU has a very large memory bandwidth and a very large number
of low power processors. The programming model for each GPU must encour-
age the massive parallelization of the work space into the maximum number of
threads, each using of the maximum number of memory fetches, intense com-
putations in local registers and a few memory writes. If global iterations are
needed, the iterations are better implemented on top of the GPU routines, after
full workspace operations are finished.

L2 fetch

GPU RAM

computations
in registers

(0,0,0) (1,0,0)

(0,1,0) (0,1,1)

MPI

Fig. 1. Programming model for a single GPU (left) and message passing model for
many GPUs (right). For each node in the numerical domain, massive L2 memory
fetches are combined with intensive operations in registers and limited writes to global
memory. The data missing in each face is transferred by the CPUs with MPI.

Figure 1 (left) shows the programming model for a single GPU. The run is
carried out entirely on the GPU without large data transfers to the CPU. Inside
the GPU, each thread represents a node of the numerical grid. For every thread,
there are many memory reads using a read-only array, allowing the state-of-the-
art compiler to assign a fast L2-memory transfer without the need to declare
texture transfer arrays. This allows fast and massive memory transfers to local
registers. Then the registers are used for the numerical operations and the results
are written back to a write-only array in global memory. Every algorithm must be
converted in every possible way to this philosophy in order to efficiently exploit
the capabilities of the GPUs.

The multiple GPU model is based on domain decomposition of the compu-
tational domain and communication using the message passing interface MPI.
Domain decomposition of continuum dynamics problems always involve commu-
nications between domains to update the domain border data. Depending on the
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approximation order of the algorithm, more than one line of border data can be
communicated. The border data is stored in a special array that is transferred
to the local CPU and communicated to the corresponding neighbor CPU using
MPI. Once the data has been transferred between CPUs, each CPU loads the
border data to their respective slave GPU.

Figure 1 (right) shows a three-dimensional domain decomposition and a sketch
of the communication model using MPI. The domain decomposition can be done
in one, two or three dimensions, as desired, but it must be kept in mind that
it could be important to minimize the area to be communicated. A full three-
dimensional domain decomposition provides the minimal area of communication.

Bounded irregular domains can be handled including the irregular domain in
a bounding box and eliminating the unnecessary nodes. Infinite domains must be
handled using adequate boundary conditions.

3 Template Code

We establish a template code for the chosen programming philosophy. A pro-
grammable building block, basis of all the algorithms presented here, used for
diagnostics of performance and scalability.

The model problem chosen for the template is parabolic, known as the heat
diffusion equation

∂u

∂t
+ κ∇2u = f, (1)

where u = u(x, t), x ∈ [0, L1] × [0, L2] × [0, L3], t = [0,∞], u(x, 0) = u0(x), and
the given source f = f(x, t).

We use first order forward differences in time and second order, 27-point
stencil finite differences in space. We obtain an explicit algorithm that reads the
values of 27 nodes, operates the finite differences and writes the solution for the
next time step.

This algorithm is stable for time steps Δt < (Δx)2

2κ , with Δx = maxi(Δxi),
and therefore has a strong time step restriction. We use two arrays to distinguish
present and future and use them only for reading and writing, respectively, at
every time step. Given the characteristics of the algorithm, threaded for every
node in the domain, a single GPU achieves peak performance and the penalties
of the time step are reduced in the overall computational time. The algorithm
is also perfectly scalable for GPUs with different numbers of processors.

For multiple GPUs, the computational domain is partitioned in N1×N2×N3

cubes or parallelepipeds, assigning a subdomain to every GPU. After a full mesh
time iteration, the faces of the subdomains are loaded to the local CPU and
communicated with MPI using send and receive commands. The corresponding
neighboring CPU receives the data and loads it to its slave GPU. The transfer
of the data is done in an ordered way for every direction.

We fix the spatial discretization and increase the number of nodes. The code
is first run in one Tesla C2075 card and the results are shown in Fig. 2 with a light
grey colored line. It shows a linear relation between the number of mesh points
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Fig. 2. Computational time against number of mesh points for one, two and four GPUs
Tesla C2075. The dotted line shows the almost perfect scalability slope. Runs for 8
million mesh points can be performed by four GPUs almost in the same computational
time than 2 million mesh points in one GPU. The small slope of the dotted line indicates
the penalization of the message passing between GPUs.

and the computational time. Reaching approximately 20 s for 6400 time steps and
two million mesh points. We run the code for two (grey line) and four (black lines)
GPUs. We observe that for the same two million mesh points, two GPUs need
almost half the computational time than one, accelerating the computation. But
four GPUs are not able to do it in a fourth of the time. Accelerating computations
using several GPUs is possible but it’s not our main goal.

The use of several GPUs is needed to run problems with a large number of
mesh points. In Fig. 2, the dotted line shows practically perfect scalability. The
little slope shows the penalization time of the message passing to bind the sub-
domains. It means that we can run more than eight million mesh points in four
GPUs, using the same computational time than two million points in one GPU.
The slope of the dotted line could be used to estimate the computational time
using many GPUs. The black line is double because the run in four GPUs is per-
formed with one- (upper) and two-dimensional subdomain partitions, showing
no considerable differences.

When using clusters with a large number of GPUs, we have observed perfect
scalability as long as the GPUs share a motherboard. A large penalty can result
of the message passing to distributed motherboards depending on the type of
network. In such cases, perfect scalability is sacrificed against the possibility
of a very large computation. Abacus I, an SGI cluster in Cinvestav, Mexico,
achieves perfect scalability for two Tesla K40 cards that share motherboard.
The computational time for the 20 s benchmark increases ten times for 27 cards
in 14 nodes, computing 56 million points; and fifty times for 64 cards in 32 nodes,
computing 134 million points.

4 Model Equations and Algorithms

We show a set of model equations that cover the whole range of the systems
found in continuum dynamics simulations. The numerical algorithms are original
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and have been developed following the programming model presented for several
GPUs. Therefore the algorithms have the same scalability properties of the heat
equation template. The heat equation template was our model for parabolic
equations. Here, we extend the programming philosophy to elliptic equations,
using a multiscale method close to a multigrid [28]; to hyperbolic equations, using
a moment preserving high-order semi-Lagrangian scheme [27]; and to mixed
systems of equations with constraints.

4.1 Elliptic Equations

The chosen model for elliptic systems of PDEs is the three-dimensional Poisson
equation

∇2u = f, (2)

for u ∈ [0, Lx] × [0, Ly] × [0, Lz], given f = f(x, y).
This equation is solved using the multiscale algorithm described in [28],

closely related to a multigrid. The multiscale algorithm consists of solving heat
equations iteratively, using coarse nested discretizations, helped by interpola-
tions to the rest of the mesh, in a descending cycle, until the heat equation
is solved in the whole mesh. The process has been seen to converge to machine
precision when full cycles are repeated a few more times for the residual function.

In Fig. 3, we show an illustration for the elliptic equation’s solver constructed
from the template. It shows the solution of the Poisson equation for a singular
source with the shape of Mexico. Neumann boundary conditions are used because
the solution is used to deform a mesh. The mesh is deformed using equations of
motion for each mesh point, with a force computed from the potential found as
solution to the Poisson equation.

Fig. 3. Potential function, solution of the Poisson equation with Neumann boundary
conditions and a singular one-dimensional source with the shape of Mexico. Illustrative
for a multigrid, elliptic equation’s solver constructed from the template. The solution
is used as the potential of a force to move the mesh points of a regular grid and obtain
adaptivity.
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4.2 Hyperbolic Equations

The chosen model for hyperbolic equations are the two-dimensional shallow-
water equations: the conservation of water volume

Dh

Dt
= −h∇ · v, (3)

and the acceleration of the water column
Dv

Dt
= −∇h, (4)

where h is the height of the water column, and v its velocity. The total time
derivate, known as the material derivative D/Dt = ∂/∂t + v · ∇, requires the
solution of the trajectories dx/dt = v.

The equations are solved using a semi-Lagrangian, moment preserving,
numerical scheme described in [27]. The scheme makes use of fluid elements that
move and deform, starting from a Cartesian set, the corners of the elements are
treated as movable nodes that travel in space following the given equations with
total derivatives in time. As the points travel, the element that they describe
deforms, and after a few time steps a non-linear exact map is performed to see
the new element in a space where coordinates are orthogonal, where high-order,
moment preserving interpolations are performed to restart the mesh points in a
reference mesh.

The algorithm requires 216 neighbors. It uses arrays for the position of the
nodes and computes trajectories and interpolations explicitly. It has a very
relaxed CFL time step restriction, as long as the trajectory is well integrated.

In Fig. 4, we present the dynamic solution to the shallow water waves in a
tank with variable floor. The floor has an obstacle, a transverse bump with a
centered aperture. The solution shows the formation of a diffraction pattern.
The waves are originated at the left face, moving the wall with an oscillating
piston. The end of the channel has a dissipation zone to kill the waves.

4.3 Model for a Parabolic-Hyperbolic Systems of Equations

The chosen model for a parabolic-hyperbolic system of equations is the three-
dimensional flow in porous media: the conservation of mass

Dn

Dt
+ n∇ · v = q, (5)

for the effective density n = φρ, where φ is the porosity, v is the intrinsic velocity,
and q is a mass source; and the pressure equation

[(1 − φ)Cr + φCf ]
∂P

∂t
= φ

(
−∇ · v +

q

n

)
, (6)

where Cr and Cf are the compressibiity of the solid and the fluid, respectively.
The system is closed using Darcy’s law for the intrinsic velocity

v = K · (−∇P + f), (7)
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Fig. 4. Height of the water column for shallow water waves in a tank, illustrative of a
hyperbolic system of equations’ solver constructed from the template. The left wall is
moved with an oscillating piston, and the opposite side has a dissipation zone to kill
the waves. The floor has a transverse bump with a centered aperture. The waves show
diffraction.

Fig. 5. Solution to the porous media equations for one fluid. (a) Graph of the contours
of pressure for an extraction point in the top. (b) Graph of the streamlines colored
with the velocity magnitude.
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where K is the permeability over the porosity and f is an external force.
We solve the equations using a heat equation solver for the parabolic pressure

equation combined with the semi-Lagrangian scheme for the hyperbolic part. In
Fig. 5, we show the contours of pressure and the streamlines for a flow in porous
media with a sink at the top’s face center.

4.4 Model for an Elliptic-Hyperbolic Systems of Equations

The chosen model for an elliptic-hyperbolic system of equations is the two-
dimensional vorticity equation

Dω

Dt
= 0, (8)

coupled to the Poisson equation

∇2φ = −ω, (9)

with the velocity vector given by v = ∇ × φk̂.
These equations represent the motion of incompressible fluids. The vorticity

is advected using the semi-Lagrangian scheme and the potential is found solving
the Poisson equation with multigrid.

Fig. 6. Snapshot of the vorticity, illustration of the numerical solution of elliptic-
hyperbolic systems of equations like those found in incompressible flow simulations,
using a code based on the template. We solve the two-dimensional vorticity dynamic
equations for an initial random distribution of Gaussian bell vortices with both signs.
The box has slip wall boundary conditions.

In Fig. 6, we show a snapshot of vorticity, represented by the height of the
mesh, starting from a random distribution of Gaussian bell vortices in positive
and negative directions. The box has Dirichlet boundary conditions and therefore
the walls have normal velocity equal to zero.
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5 Conclusion

We presented a programming model using trivial domain decomposition with
message passing for computations using multiple GPUs. The programming
model has been proven to be perfectly scalable for GPUs that share a mother-
board. In that case, the computational times remain in the same range for runs
with increasing number of nodes using a large and fixed number of nodes in each
GPU. For clusters of many GPUs in distributed motherboards, we have found a
variable penalty associated to the message passings between nodes, dependent on
the network. Problems of hundreds of millions of nodes can be solved sacrificing
perfect scalability. The novelty of the work is that the programming philoso-
phy is used to implement a diffusion equation solver for parabolic equations, a
multiscale solver for elliptic equations, and a semi-Lagrangian advection scheme
for hyperbolic equations. The three models are combined in schemes to solve
systems of equations that model all the types of systems found in continuum
dynamics, for incompressible, compressible and constrained flows.
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21. Banaś, K., Plaszewski, P., Maciol, P.: Numerical integration on GPUs for higher
order finite elements. Comp. Math. Appl. 67(6), 1319–1344 (2014)

22. Huthwaite, P.: Accelerated finite element elastodynamic simulations using the
GPU. J. Comp. Phys. 257(Part A), 687–707 (2014)

23. Mart́ınez-Frutos, J., Mart́ınez-Castejón, P.J., Herrero-Pérez, D.: Fine-grained GPU
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