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Abstract. In astronomy there have been big changes in the availability
of data, much of it provided freely and publicly via internet, allowing
people to access the same data as used by professional astronomers for
their own investigations. The data obtained from different telescopes
have increased in size too, forcing the community to boost the perfor-
mance of algorithms for image processing, pattern recognition, and, in
particular, tasks for finding and characterizing astronomical objects. One
of such packages is DAOPHOT designed to deal with crowded astro-
nomical fields. However, the tasks are computationally intensive because
they require the execution of many floating point operations. In order
to face such computational challenge, we propose an implementation of
DAOPHOT’s particular task FIND, using massive parallel computation
architecture supported by GPUs, which allows us to process large images
at least two times faster. This work presents the analysis and comparison
of time complexity between the implementations of the FIND algorithm
both in CPU and GPU.

1 Introduction

Automatic source extraction from astronomical images started in the middle
of the 60’s, with the first automatic machines GALAXY in Edinburg [6] and
APMS in Minneapolis [7] that allowed simple flux and position measurements
better than what could be done by hand. Since then, software for detection and
classification has evolved at a relatively slow pace, mainly because simple tech-
niques meet most scientific specifications. Over the years the popularity of the
difficult art of stellar photometry in crowded fields has derived in many computer
programs which extract information from two-dimensional digital images. One of
those computer programs is DAOPHOT [1], which continues being developed at
the Dominion Astrophysical Observatory and allows performing tasks like find-
ing objects by measuring the signal intensity enhancement over the background
and Point Spread Function (PSF) fitting [5]. The program shows good accuracy
and robustness but is relatively slow [2].

The increasing use of internet and massive databases allows anyone to have
access to raw data for astronomy research. Web sites like SkyView [12] provide
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images of any part of the observed sky at wavelengths ranging from Radio to
Gamma-Ray. Through its simple web interface, it is possible to acquire images
and to perform investigation by our own, but it is still necessary to support
those investigations with packages and software to process and extract infor-
mation from images. As mentioned before, DAOPHOT helps to perform such
tasks and with the access to modern computer technology this process becomes
increasingly easier and it is possible to analyse large amounts of data in a short
period of time. However, it is necessary to make an effort to implement algo-
rithms and routines in a way that exploits all capabilities of such technology.

The necessary operations for finding objects in astronomical images are com-
putationally intensive, mainly because of the size of the images which increase
due to the advance of technology of detectors. For example, the Large Synoptic
Survey Telescope (LSST) is expected to produce several terabytes of data every
night using its 3200 megapixel camera [3]. In addition, many automatic tele-
scopes acquire raw data in real time and the matter of speed is crucial for image
processing. Rapid processor development allowed the execution of a continu-
ously increasing number of operations, and the processors became faster every
year until 2005, when a physical limit was reached by the fact that energy con-
sumption varies as the cube of clock rate [8], not only because of the operations
of the processors themselves, but the energy needed to cool down the chip too.
To overcome this obstacle, multi-core technology emerged as a new direction to
improve performance without increasing the clock rate of processors. The impli-
cations of this new direction are found in the development of new software. The
vast majority of the software written for astronomy before 2005 is designed to
run sequentially, and for this reason it is necessary to make an effort to rewrite
the algorithms to take full advantage of the capabilities of this new hardware.

Along with the development of multi-core CPUs, the powerful gaming indus-
try had devised its own processors called Graphics Processing Units or GPUs,
which are based on different principles than those of CPUs [8]. A GPU is an spe-
cialized processor that is equipped with a large number of special hardware units
for mathematical and fast floating point operations. The primary goal of GPUs
is to provide high-performance for gaming and rich 3D experience [9], but the
demand for high performance computation has caused this processors to have a
more general purpose, having recently burst onto the scientific computing scene
as an innovative technology that has demonstrated substantial performance and
energy efficiency improvements [10].

In this paper we present a modification of a popular stellar photometry pack-
age DAOPHOT that makes use of GPU hardware. In particular, the task FIND
devoted to finding the stars in the images was optimized. We show that substan-
tial time reduction can be obtained, although there is still space for improvement.

2 FIND Algorithm

DAOPHOT package deals with the difficult problem of performing accurate
photometry in crowded fields. It consists of several routines and algorithms to
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perform tasks that include finding objects, aperture photometry, obtaining the
point spread function among others. The focus of this work is on the first task
mentioned, and we briefly describe the FIND algorithm. More details can be
found in the documentation made by Stetson [1], the reference guide by Davis [4],
and in the original code itself which is well commented. We use the latest version
of Daophot II package (v1.3-6) included as a part of Starlink software available
at [13].

The FIND algorithm attempts to find stars in a two-dimensional image by
going through the image pixel by pixel asking the question, “If there is a star
centred in this pixel, how bright is it?”. The answer for this question is estimated
numerically by fitting a truncated Gaussian profile to the values in a surrounding
sub-array of pixels (sub-picture). To explain the operations performed, let the
brightness in the (i, j) − pixel represented by Di,j and let G represent the unit-
height, circular, bivariate Gaussian function:

G(Δi,Δj;σ) = e−(Δi2+Δj2)/2σ2
, (1)

where σ is the standard deviation. Then the central brightness which best fits
the pixels around the point (i0, j0) in the sub-picture Hi0j0 is given by:

Dij
.= Hi0j0G(i − i0, j − j0;σ) + b (i, j) near (i0, j0) (2)

Where b is the estimated value of the background of the image which can be
obtained from the images in several ways, DAOPHOT’s implementation uses a
function mode to calculate this value. The symbol “ .=” denotes a least-squares fit
to the data for some set of pixels (i, j) in a defined region around and including
(i0, j0). Then the numerical value of Hi0j0 can be obtained by a simple linear
least squares using the number of pixels, n, involved in the fit as:

Hi0j0 =
Σ(GD) − (ΣG)(ΣD)/n

Σ(G2) − (ΣG)2/n
(3)

Equation 3 is the arithmetic equivalent of convolving the original image with
the kernel function. Having calculated the H array of the same size of the orig-
inal data D the routine runs through H looking for positions of local maxima,
producing a list of positive brightness enhancements. There are two other criteria
for detecting objects performed by the routine, the first one is a sharpness crite-
rion that compares Hi0,j0 to the height of a two-dimensional delta-function, d,
defined by taking the observed intensity difference between the central pixel of
the presumed star and the mean of the remaining pixels used in the fits of Eq. 3:

di0,j0 ≡ Di0,j0/〈Di,j〉, (i, j) �= (i0, j0), sharp ≡ di0,j0/Hi0,j0 (4)

The second one is a roundness criterion; images of stars are strongly peaked
functions of both x and y so that for round, well-guided images hx ≈ hy. The
roundness criterion readily distinguishes stars (round ≈ 0) from bad rows and
columns (round ≈ ±2):

round ≡ 2
(

hy − hx

hy + hx

)
(5)
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3 Implementation

The FIND algorithm was implemented both in GPU and CPU in order to com-
pare the response time between implementations and to identify reduction on
time complexity. For the CPU implementation, the source code of DAOPHOT-
FIND was translated from the original Fortran language to C language and
compiled with GCC version 4.9.2 by adding the flag −O3 in order to turn on all
optimizations provided by the compiler, and ran on a Intel Core i7 of 2.5 GHz. In
the same way, GPU implementation was made by translating the original code to
CUDA C language. The NVCC compiler provided with the NVIDIA Toolkit 7.0
was used including flags sm 50 and fast math library −use fast math. This new
code was executed in a GeForce GTX 860M with 5 streaming multiprocessors
and 640 CUDA Cores.

The difference between CPU and GPU code can be easily illustrated through
the following snippet of code, representing the construction of the kernel for the
profile fitting according to Eq. 1.

void constructKernel(
float *kernel, int nbox, int nhalf, float sigsq) {

int i, j, id;
float rsq;

for(i=0; i<nbox; i++) {
for(j=0; j<nbox; j++) {

id = i * nbox + j;
rsq = (j-nhalf)*(j-nhalf) + (i-nhalf)*(i-nhalf);
kernel[id] = expf(-0.5*rsq/sigsq);

}
}

}

The GPU code looks almost the same, the main difference is the absence of loop
instructions for; instead there is an index composed by the variables blockIdx.x
and threadIdx.x provided by CUDA to identify each process as unique. By map-
ping this index to the position of the kernel, it is possible to calculate all their
values in parallel. For this part of the FIND algorithm, the process for GPU
was launched with as many blocks and threads as the dimensions of the kernel,
<<<nbox, nbox>>>. The rest of the tasks, including convolution and criteria for
roundness and sharpness were transformed in a similar way.

__global__ void constructKernel(
float *kernel, int nhalf, float hsigsq) {

int id = blockIdx.x * blockDim.x + threadIdx.x;
float rsq;
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rsq = (blockIdx.x-nhalf)*(blockIdx.x-nhalf);
rsq += (threadIdx.x-nhalf)*(threadIdx.x-nhalf);
kernel[id] = __expf(rsq*hsigsq);

}

There are two details that can improve the performance of calculation for the
Gaussian function. First, the arguments of expf(rsq*hsigsq) differ since the
value of hsigsq = −1/(2 ∗ sigsq) can be calculated on the CPU before passing
it as the argument. The second detail is the use of the function expf(), which
is optimized for GPU execution in combination with the flag −use fast math
mentioned before.

Another way to use indexes provided by CUDA, is by launching the GPU
kernel with threads distributed in two dimensions as shown in the next snippet
of code. In this case the kernel should be called with just one block and as many
threads as pixels of the kernel for profile fitting <<<1, dim3(nbox, nbox)>>> or
<<<1, nbox*nbox>>>. Since this part of the process is made only once, and the
space of the kernel is really small (7 × 7 pixels used for the tests), no important
difference was detected in the response time between the different forms for
launching this GPU kernel.

Launching <<<1, dim3(nbox, nbox)>>>
id = threadIdx.x * nbox + threadIdx.y;
rsq = (threadIdx.x-nhalf)*(threadIdx.x-nhalf);
rsq += (threadIdx.y-nhalf)*(threadIdx.y-nhalf);
kernel[id] = __expf(rsq*hsigsq);

Launching <<<1, nbox*nbox>>>
id = threadIdx.x;
rsq = (id/nbox-nhalf)*(id/nbox-nhalf);
rsq += (id%nbox-nhalf)*(id%nbox-nhalf);
kernel[id] = __expf(rsq*hsigsq);

According to Eq. (3), the image convolution is the next step in the image
analysis of FIND algorithm. In this process another important aspect of GPUs
can be considered which is memory management. Since Shared memory resides
on chip it’s i/o operations are much faster than operations in Global memory.
One of the implementations proposed basically splits the image in tiles, each of
them launched as blocks of threads. With this approach, each thread is respon-
sible for loading data from Global to Shared memory and perform mathematical
operations for the convolution. One limitation of this approach, is the size of the
tile, where the threads of one block are used for mapping the data needed for
a single tile. A GPU such as GM107 having a limit of 1024 threads per block,
could manage tiles of 32 × 32 pixels maximum (1024 elements).

The approach we use for this work is a little bit different. By analysing FIND
algorithm in the part of convolution, there are many conditional statements
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in the convolution process to ensure the correct values for each pixel. A GPU
executes threads in groups of 32 (warp), which are efficiently used if all 32 threads
follow the same execution path, but conditional branches diverge the threads,
since the warp serially executes each branch path leading to poor performance.
The other important thing about the operations of FIND, is data access which is
made just once for each pixel of the image and once for the values of the kernel.
This means that improving performance by using shared memory to load data
(as splitting the image in tiles) may not be a good idea, because FIND does not
perform a simple convolution and the operations are made over variables, rather
than data stored in Global memory.

For these reasons, the approach used for testing executes as many threads as
pixels in the image, while fixes the number of threads per block, and changes the
number of blocks according to the image size <<<ImageSize/128, 128>>>, and
each thread performing all operations needs to convolve a single pixel. We found
that in the testing process the use of 128 threads per block produces better results
than other configurations. Within the code, the index of each thread is mapped
to each pixel of the image as given by the following sequence of instructions

id = blockIdx.x * blockDim.x + threadIdx.x;
jx = id / ncol;
jy = id % ncol;

Furthermore, in order to improve performance based on the same concept of
using different segments of GPU memory, a modification of this last approach
was made. This new implementation takes advantage of Constant Memory by
copying the values of the kernel for profile fitting, reducing operations on Global
Memory. However, the implementation does not show much improvement, and
in fact, we found that the complexity of FIND resides in the calculations and
decision making rather than on the data access.

The testing procedure uses seven square images with different resolutions
taken from the SkyView database [12] and centered on the galaxy Malin 1.
Figure 1 shows an example of the image with a resolution of 512 pixels per side.
We chose a rather uncrowded field since here we are more interested in the
measurement of the performance than in the accuracy of the method. The range
of the resolution of each image goes from 64 to 4096 pixels per side. Over this
set of images, both CPU and GPU implementations of FIND use the same size
of kernel in order to compare the execution time between them. The size of the
kernel is calculated according to description of DAOPHOT [1] by applying the
formula 2 ∗ max(2.0, 0.637 ∗ FWHM) + 1, where the value of FWHM is set
to 5, resulting in a kernel size of 7 pixels. Table 1 shows the obtained results. In
order to ensure that the results are not influenced by operating system processes
or other operations of CPU or GPU, each test is executed five times and the
averaged results are displayed.
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Fig. 1. DSS Blue image of sky 2 × 2 ◦ centred at Malin 1, a giant low surface brightness
(LSB) spiral galaxy (Color figure online).

4 Results

Table 1 shows the difference between time consumed among the implementations
in CPU, GPU without splitting the images in tiles and GPU by splitting the
images in tiles. This difference is directly proportional to the size of the image.
For large source images such as 2048 or 4096 pixels the CPU time starts to
increase faster than GPU time. One would expect that by splitting the image
in tiles and using the Shared and Constant Memory of a GPU, the performance
should increase against GPU without splitting, but very surprisingly this is not
the case. The analysis of the FIND algorithm shows that there are many more
operations than in traditional convolution, including many branch statements
and few memory access operations. In this case, the number of launched threads
is the main cause for the low response time of the GPU that uses splitting of
the image, when comparing with the GPU implementation without splitting.

Every time the image is processed using the splitting in tiles approach, blocks
with a number of (tileSize+kernelSize)2 threads each are launched to load data
and perform operations, but actually only tileSize2 threads perform operations,
the rest of threads just load data. This means that for an image of 4096 pixels
by side, using a kernel of 7 pixels by side and split in tiles of 16 pixels, there are
40962/232 = 65, 536 blocks each of them with 232 threads, but only 162 threads
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Table 1. Results of the experiments over the 7 uncrowded images. The kernel size
was fixed to require the same number of calculations in both implementations. Size of
images and kernel are in pixels by side and the execution time is in seconds.

Input data Average time/second

Image Size Kernel size CPU GPU GPU (Tiles)

64 7 0.00038 0.00239 0.00048

128 7 0.00198 0.00413 0.00133

256 7 0.00562 0.00769 0.00502

512 7 0.02627 0.01524 0.01741

1024 7 0.09047 0.04563 0.06869

2048 7 0.33287 0.16260 0.25277

4096 7 1.32711 0.63014 1.01233

are really working, implying that less than 50% of the threads of the block,
perform the operations of FIND.

In a formal way, time complexity for the above implementations is analysed
by fitting the following polynomial function with three parameters a, b and c

t = axb + c (6)

In Eq. (6), t is the time consumption of the implementation as a function of
the pixels per side of the image, x. Since the variable x represents the resolution
per side of the image and the real input of the implementations is the com-
plete image, then one should expect that a nonlinear regression will produce an
approximated value of 2 and 0 for the parameters b and c, respectively. Table 2
shows the coefficients of the best fitted function for the obtained data through
the conducted experiment.

Table 2. Results of the best fitted function in the experiment over the 7 images, the
kernel size was fixed to have same number of calculations needed in all the implemen-
tations.

Implementation a b c

CPU 8.58E-8 1.989 0.0021

GPU 4.63E-8 1.974 0.0040

GPU (Tiles) 6.22E-8 1.996 0.0010

The reduction in time is mainly obtained through the parameter a and Table 2
shows that the implementation on GPU consumes a smaller time, which is rep-
resented by the value of the parameter a. The parameter b, which is of major
interest, was reduced too, but not in such a large amount. Figure 2 illustrates
the behaviour of the equation using the parameters calculated in the CPU case
and the two approaches in GPU.
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Fig. 2. Time consumption for CPU and GPU implementations of FIND task for differ-
ent sizes of the images. The symbols represent the experimental data, while the lines
correspond to the respective fitted functions.

5 Conclusions

This work presents advances in the implementation of DAOPHOT package on
parallel GPU architecture using CUDA programming platform. As a first step
we implemented the FIND algorithm and compared its performance against the
sequential CPU version. The performed test shows that it is possible to reduce
the time consumption of the FIND algorithm, through the implementation on a
GPU architecture that is commonly found in modern computers. The time con-
sumption reduction gives an advantage to perform the task of finding objects,
specially when dealing with large image resolutions and image sequences. How-
ever, our results do not show a reduction in time complexity of GPU as large as
expected. Our simple implementation of FIND is a demonstration of how easy
is to exploit GPU architecture, but some additional programming changes are
needed in order to get their full capabilities. It is possible to improve the perfor-
mance of this parallel implementation by using nearly all the blocks and thread
dimensions available to calculate all independent operations, and subsequently
reducing the results [11]. On the other hand, the effort to do these improvements
must analyse which of the operations can be calculated independently, and how
they can be classified in order to perform the required reductions. This is a point
that needs special attention because, as we have shown, reductions cannot be
implemented as a trivial program on a GPU, and it is necessary to keep the
way in which data are arranged along the whole task execution. Finally, it is
necessary to consider that using the Shared Memory of a GPU, does not better
performance in all cases. The identification of the kind of operations performed
by the algorithm and the detection of memory interactions, rather than calcula-
tions with variables in a thread, are necessary conditions to further improve the
performance of the algorithm.
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