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Abstract. We explore a structure optimization strategy that is anal-
ogous to how bones are formed in embryos, where shape and strength
are mostly defined. The strategy starts with a rectangular grid of ele-
ments of uniform thickness with boundary displacements and force con-
ditions. The thickness of each element can grow or shrink depending on
the internal strain, this process is done iteratively. The internal strain is
found using the finite element method solving a solid mechanics problem.
The final shape depends only on five parameters (von Mises threshold,
thickness grow and shrink factors, maximum and minimum thickness).
An evolutionary algorithm is used to search an optimal combination of
these five parameters that gives a shape that uses the minimal amount
of material but also keeps the strain under a maximum threshold. This
algorithm requires to test thousands of shapes, thus super-computing is
needed. Evaluation of shapes are done in a computer cluster. We will
describe algorithms, software implementation and some results.

Keywords: Shape optimization · Evolutionary algorithms · Finite
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1 Introduction

Our goal is to create solid structures (see Fig. 1) that work under certain condi-
tions (forces or imposed displacements), while weight, displacement, and strains
are minimized.

To do such, we will apply meta-heuristics with a minimum of assumptions
about the problem and its geometry. The evaluation of the structure is done
using solid analysis with Finite Element Method [1].

1.1 Topological Optimization

When a topological optimization is applied, a domain can be divided in a grid of
elements, each element is a degree of freedom (DOG), Fig. 1 shows an example.
A problem with a 2D domain can have thousands of DOG, for a 3D problem
the number raises to millions. A strategy to reduce the complexity of the search
space is to use binary elements (Fig. 2).

The aim of the method described below is to work with just a few degrees of
freedom, following the idea of how bone shape is defined in mammals.
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Fig. 1. Bridge structure that support a load using a minimum of material.

Fig. 2. Example of a grid used for topological optimization.

1.2 Bone Shape

The shape of a bone is mostly defined during embryonic development. A study
[2] explains that at first the bone has a very basic shape, then it grows and
adapts itself to have an almost optimal shape to support loads.

In [2] it is demonstrated that the bone reacts to the force created by the
growing muscles. Because of external load forces inside the bone strains are
generated. In the bone cells where the strain is bigger the osteoblasts make the
concentration of calcium increase, otherwise it is reduced. This procedure makes
bones attain a more resistant shape, with a tendency towards an optimal (Fig. 3).

If the muscles, attached to a bone, are paralyzed no strain is generated and
a bone will not develop an optimal shape (Fig. 4).

2 Structure Optimization Using Internal Strain

The Finite element method is used to model the structure, it starts with an
empty rectangular domain. The measurement used for internal strain is the von
Mises stress or equivalent tensile stress.

Some research has been done on creating a simple method that uses internal
strains to optimize structures [3].

– This method does not use binary elements, instead the thickness of elements
variates in a continuous way.

– How thickness will grow or shrink will depend on the von Mises stress inside
each element.

– Optimization is done iteratively.
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Fig. 3. Model of mouse embryonic bone development, image from [2] (with permission).

Fig. 4. Osteoblast distribution is controlled by mechanical load, image from [2] (with
permission).

– There is not a fitness function.
– The method works as a cellular automaton.
– There are only five degrees of freedom to control the optimization process.

2.1 Cellular Automaton

The rules to control the thickness te of the element (cell) are simple: The thick-
ness can grow by a factor fup or be reduced by a factor fdown.

Let σvM the von Mises strain inside the element and σ*
vM a threshold criteria.

if σvM > σ*
vM then

te ← fupte, with 1 < fup

else
te ← fdownte, with fdown < 1



Structure Optimization 191

There are top ttop and bottom tbottom limits for the thickness:

if te > ttop then te ← ttop
if te < tbottom then te ← toff, where toff ≈ 0.0001

The evolution process of the cellular automaton depends on five parameters:

– von Mises threshold σ*
vM.

– Increase thickness factor fup.
– Reduction of thickness factor fdown.
– Top thickness value ttop.
– Bottom thickness value tbottom.

3 Example: Arc

This is piece of steel with two fixed corners that has to support a force applied
on a point, see Fig. 5.

Fig. 5. Geometry of the arc problem.

Table 1. Parameters used to obtain a valid structure.

Parameter Value

von Mises threshold σ*
vM 2.00

Increase factor fup 1.02

Reduction factor fdown 0.91

Top limit ftop 8.00

Bottom limit fbottom 0.25

3.1 Successful Arc Structure

For the parameters in Table 1, a successful structure is generated.
The evolution of the cellular automaton is shown in the sequence of images,

warmer colors indicate more thickness, cooler colors less thickness. If thickness
falls below fbottom the element is not shown.
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step 0 step 5 step 10

step 15 step 20 step 25

step 30 step 35 step 40

step 45 step 50 step 55

step 60 step 65 step 70

step 75 step 80 step 85

step 90 step 95 step 100

The final result is shown in Fig. 6.

Table 2. Parameters used to obtain an invalid structure.

Parameter Value

von Mises threshold σ*
vM 2.00

Increase factor fup 1.01

Reduction factor fdown 0.92

Top limit ftop 7.38

Bottom limit fbottom 0.50
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3.2 Invalid Arc Structure

The parameters used are in Table 2. In this case the top and bottom limits
have been changed. In particular the bottom limit has been increased, with this
changes, structure development fails.

Looking at the evolution of the cellular automaton, in both cases success
and failure, at early iterations the thickness of the right part of the structure is
reduced. In the successful case thickness of this side is increased in the following
iterations, until it creates the right part of the structure. If the bottom limit is
raised too much the evolution of the right side will be cut too soon, producing
an invalid arc structure.

step 0 step 5 step 10

step 15 step 20 step 25

step 30 step 35 step 40

step 45 step 50 step 55

step 60 step 75 step 70

step 75 step 80 step 85

step 90 step 95 step 100
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Fig. 6. Final shape.

Fig. 7. Final shape.

The final result is shown in Fig. 7.

4 Differential Evolution

To search for structures that tend to an optimal shape, a meta-heuristics has to
be used. What we have to find are the parameters that improve the structure
(in terms of weight, displacement, and internal strain).

The search space will have five dimensions that correspond to the five para-
meters used to control the cellular automaton.

– von Mises threshold σ*
vM.

– Increase thickness factor fup.
– Reduction of thickness factor fdown.
– Top thickness limit ttop.
– Bottom thickness limit tbottom.

The search of parameters that produce a good shape is done using differential
evolution [4]. The fitness function will measure the weight of the structure w,
maximum displacement d and the maximum von Mises in the structure σvM, we
propose a very simple fitness function

F := w · d · σvM.
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The number of steps of the cellular automaton will be determined heuristically
based on some test cases. For our experiments, 100 is the number of steps chosen.
Each evaluation of the fitness function will have to complete this amount of steps.

Parameters of the differential evolution will be: population size N ∼ 64,
crossover probability Cr = 0.8, and differential weight D = 0.5.

The algorithm of differential evolution is:

Let xi ∈ R
5 the i-th individual of the population x ∈ R

5×N

for each xi ∈ x

xd
i ← U

(
vd
min, vd

max

)
, d ← 1, 2, . . . , 5

for g ← 1, 2, . . . , gmax

for i ← 1, 2, . . . , N
a ← U (1, N), b ← U (1, N), c ← U (1, N) with i �= a �= b �= c, b �= a, c �= a, c �= b
k ← U (1, 5)
for d ← 1, 2, . . . , 5

if U (0, 1) < Cr ∨ d = k

yd
i ← xd

a + D · (xd
b − xd

c

)

else

yd
i ← xd

i

if F (xi) > F (yi) then xi ← yi

if F (best) > F (xi) then best ← xi

4.1 Implementation

The program to run this method was programed in C++ using the MPI (Message
Passing Interface) library for communication between computers in a cluster.
The finite element library used to solve each iteration of the cellular automaton
was FEMT1.

The cluster used to test this method has 64 cores (Fig. 8), to maximize the
usage, the population size was chosen to be 64. Solution speed was increased

Fig. 8. Diagram of the cluster used to run the optimizer.

1 http://www.cimat.mx/∼miguelvargas/FEMT.

http://www.cimat.mx/~miguelvargas/FEMT
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Fig. 9. Geometry of the problem.

by loading all data for the structure on each core, only the elemental matrix is
assembled for each step of the cellular automaton.

The solver used was Cholesky factorization for sparse matrices. Reordering of
the matrix is done once and only the Cholesky factors are updated, this calculus
is done in parallel using OpenMP [5].

For the examples shown the solution of the finite element problem takes
approximately 200 ms.

The cellular automaton uses 100 iterations, so the calculation of each gener-
ation of the differential evolution algorithm takes approx 20 s.

5 Global Optimization Example: Bridge

A steel bar that has two supports on opposite sides, it has to support its own
weight and also a force concentrated in the middle (Fig. 9).

The next table shows some the best individual after n evaluations, an its
fitness function.
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Evaluations: 101
w = 3.47 × 105

dmax = 1.27 × 10−4

sigmamax = 1.57 × 107

F (x) = 6.918833×108

Evaluations: 110
w = 9.17 × 104

dmax = 3.24 × 10−4

σmax = 1.30 × 107

F (x) = 3.862404×108

Evaluations: 204
w = 9.06 × 104

dmax = 3.87 × 10−4

σmax = 1.03 × 107

F (x) = 3.6114066 ×
108

Evaluations: 214
w = 1.20 × 105

dmax = 2.43 × 10−4

σmax = 1.14 × 107

F (x) = 3.32424 × 108
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Evaluations: 253
w = 2.22 × 105

dmax = 1.35 × 10−4

σmax = 8.99 × 106

F (x) = 2.694303×108

Evaluations: 304
w = 1.27 × 105

dmax = 2.19 × 10−4

σmax = 7.66 × 106

F (x) = 2.1304758 ×
108

Evaluations: 600
w = 9.59 × 104

dmax = 3.12 × 10−4

σmax = 6.83 × 106

F (x) = 2.04359064 ×
108

Evaluations: 789
w = 1.00 × 105

dmax = 2.73 × 10−4

σmax = 6.75 × 106

F (x) = 1.84275 × 108

The final structure is shown in Fig. 10, the corresponding von Mises is shown
in Fig. 11.

The parameters for the final structure are:

x =
(
σ*

vM = 4.55 × 106, fup = 1.03, fdown = 0.96, ftop = 5, fbottom = 0.2
)
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Fig. 10. Geometry of the problem.

Fig. 11. Final von Mises.

The resulting fitness function:

w = 1.03 × 105, dmax = 2.79 × 10−4, σmax = 1.06 × 107

F (x) = 3.046122 × 108.
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6 Conclusions

We have presented a bio-inspired method to search for optimal structures under
load conditions.

It is interesting to see that in mammals the shape and internal structure of
the bone is not codified in the genes. Only some thresholds associated with the
behavior of bone cells are codified. With this idea we can reduce an optimization
problem with thousands or millions of degrees of freedom (the state of each
element in the geometry) to an optimization with just a few degrees of freedom
(the parameters used for the cellular automaton).

The evaluation of the fitness functions is expensive because we have to leave
the cellular automaton to operate for many steps, we used parallelization in a
cluster to overcome this, each core on the cluster evaluates an individual.

Some interesting research can be done in the future, for instance we used a
very simple fitness function, a more intelligent selection of this function could
be useful to get better and faster results. Also, more complex methods can be
used for the optimization, like Estimation of Distribution Algorithms. In the
near future we will test this method on 3D structures.
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