
Chapter 8
Linear Parameter Varying FTC Scheme
Using Integral Sliding Modes

This chapter describes an extension of the FTC scheme described in Chap.3 and
considers Linear Parameter Varying (LPV) systems rather than LTI systems. LPV
systems can be considered as an extension or generalisation of LTI systems. They
represent a certain class of finite dimensional linear systems, in which the entries
of the state-space matrices continuously depend on a time varying parameter vector
which belongs to a bounded compact set. The objective is to synthesise an FTC
scheme which will work over a wider range of operating conditions. To design the
virtual control law, the varying input distribution matrix is factorised into a fixed and
a varying matrix. As discussed earlier in the text, the virtual control law, designed
using the ISM technique, is translated into the actual actuator commands using a
CA scheme. In this way the controller is automatically ‘scheduled’ and closed-loop
stability is established throughout the entire operating envelope. The FTC scheme
can maintain closed-loop stability even in the presence of total failures of certain
actuators, provided that redundancy is available in the system. The FTC scheme
takes into account imperfect estimation of the actuator effectiveness levels and also
considers an adaptive scheme for the nonlinear modulation gains to account for this
estimation error. The efficacy of the FTC scheme is tested in simulation by applying it
to an LPV model of a benchmark transport aircraft, previously used in the literature.

8.1 Problem Formulation

LPV methods are appealing for nonlinear plants which can be modelled as time
varying systems with state dependent parameters which are measurable online. An
LPV system can be defined in state-space representation form as

ẋ(t) = A(ρ)x(t) + B(ρ)u(t) (8.1)

y(t) = C(ρ)x(t) + D(ρ)u(t) (8.2)
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150 8 Linear Parameter Varying FTC Scheme Using Integral Sliding Modes

where the matrices are of appropriate dimensions and the time varying parameter
vector ρ(t) lies in a specified bounded compact set. In (8.1) and (8.2), the matrix
entries change according to the parameter vector ρ(t). If all the system states are
available, then a suitable state feedback controller u(t) = −Fx(t) can be designed
in order to achieve the desired performance (and closed-loop stability) of the system

ẋ(t) = (A(ρ) − B(ρ)F)x(t)

for all the admissible values of ρ(t) in a compact set. To account for actuator faults
or failures, the linear parameter varying plant in (8.1) can be represented as

ẋ(t) = A(ρ)x(t) + B(ρ)W (t)u(t) (8.3)

where A(ρ) ∈ IRn×n , B(ρ) ∈ IRn×m and W (t) ∈ IRm×m is a diagonal semi-positive
definite weighting matrix whose diagonal entries w1(t), . . . ,wm(t) model the effi-
ciency level of the actuators. As throughout the text, if wi(t) = 1 it means that the
ith actuator is working perfectly and is fault-free, whereas if 1 > wi(t) > 0 some
level of fault is present (and that particular actuator works at reduced efficiency). If
wi(t) = 0 it means the ith actuator has completely failed and the actuator does not
respond to the control signal ui(t).

Assumption 8.1 The time varying parameter vector ρ(t) is assumed to lie in a
specified bounded compact set Ω ⊂ IRr and is assumed to be available for the
controller design.

Assumption 8.2 Further assume that the varying plant matrices A(ρ) and B(ρ)

depend affinely on the parameter ρ(t), that is

A(ρ) = A0 +
r∑

i=1

ρi Ai, B(ρ) = B0 +
r∑

i=1

ρiBi

Assumption 8.3 To design the virtual control law, which is explained in the sequel,
assume that the parameter varying matrix B(ρ) can be factorised as

B(ρ) = B f E(ρ) (8.4)

where B f ∈ IRn×m is a fixed matrix and E(ρ) ∈ IRm×m is a matrix with varying
components and is assumed to be invertible for all ρ(t) ∈ Ω . This of course is a
restriction on the class of systems for which the results in this chapter are applicable,
but for example many aircraft systems fall into this category.

As discussed in Chap. 3, to resolve actuator redundancy, assume that by permuting
the states, the matrix B f can be partitioned as

B f =
[
B1

B2

]
(8.5)

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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where B1 ∈ IR(n−l)×m, and B2 ∈ IRl×m is of rank l < m.

Assumption 8.4 It is assumed that ‖B2‖ � ‖B1‖ so that B2 provides the dominant
contribution of the control action within the system as compared to B1.

Furthermore scale the last l states to ensure that B2BT
2 = Il . This can be done without

loss of generality.
Using (8.4) and (8.5), the system in (8.3) can be written as

ẋ(t) = A(ρ)x(t) +
[
B1E(ρ)W (t)
B2E(ρ)W (t)

]
u(t) (8.6)

The design of the virtual control will be based on the fault-free system i.e. when
W (t) = I . Define the virtual control input signal as:

ν(t) := B2E(ρ)u(t) (8.7)

where ν(t) ∈ IRl is the total control effort produced by the actuators. Using the fact
B2BT

2 = Il , one particular choice for the physical control law u(t) ∈ IRm which is
used to distribute the control effort among the actuators is

u(t) := (E(ρ))−1BT
2 ν(t) (8.8)

Note the expression in (8.8) satisfies (8.7) since (E(ρ))−1BT
2 is a right pseudo-inverse

of B2E(ρ).

Remark 8.1 The control structure in (8.8) is different from Chaps. 3 and 4, since it
involves the varying matrix E(ρ).

Substituting (8.8) into (8.6) yields the state-space representation

ẋ(t) = A(ρ)x(t) +
[
B1E(ρ)W (t)(E(ρ))−1BT

2
B2E(ρ)W (t)(E(ρ))−1BT

2

]

︸ ︷︷ ︸
Bw(ρ)

ν(t) (8.9)

in terms of the virtual control ν(t). In the nominal case, when there is no fault in the
system, i.e. when W (t) = I , Eq. (8.9) simplifies to

ẋ(t) = A(ρ)x(t) +
[
B1BT

2
Il

]

︸ ︷︷ ︸
Bν

ν(t) (8.10)

exploiting the fact that B2BT
2 = Il .

Assumption 8.5 The pair (A(ρ),Bν) is controllable for all values of ρ(t) ∈ Ω .

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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In this chapter all the states are assumed to be available for the controller design,
therefore a state feedback law ν(t) = −Fx(t) can be designed in order to stabilise
the nominal system

ẋ(t) = (A(ρ) − BνF)x(t)

for all values ofρ(t) ∈ Ω , aswell as to achieve the desired closed-loop performance.1

The nominal fault-free system in (8.10) is used in the next section to design the virtual
control law.

8.2 Integral Sliding Mode Controller Design

This section focuses initially on the design of the sliding surface and then subse-
quently the control law, so that the sliding motion on the sliding surface can be
sustained for all time.

8.2.1 Design of Integral Switching Function

Here the switching function suggested in Eq. (3.21) from Sect. 3.2.1 is extended to
LPV plants. Choose the sliding surface as

S = {x ∈ IRn : σ(t) = 0}

where

σ(t) := Gx(t) − Gx(0) − G
∫ t

0
(A(ρ) − BνF) x(τ )dτ (8.11)

and G ∈ IRl×n represents design freedom. Here

G := B2
(
BT

f B f
)−1

BT
f (8.12)

is suggested where B f is defined in (8.4). With this choice ofG, and using the special
properties of matrix B2 (i.e. B2BT

2 = Il), it is easy to verify that

GBν = B2
(
BT

f B f
)−1

BT
f B f B

T
2 = Il (8.13)

1This may be viewed from a controllability viewpoint, and in the literature, the concept of parameter
varying invariant subspaces [1] has been proposed to compute the controllable subspaces for LPV
systems with affine parameter dependence.

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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which means that nominally when there are no faults in the system and W = Im, the
special choice of G in (8.12) serves as a left pseudo-inverse of the matrix Bν . Also
from Eq. (8.9)

GBw(ρ) = B2
(
BT

f B f
)−1

BT
f B f E(ρ)W (t)(E(ρ))−1BT

2

= B2E(ρ)W (t)(E(ρ))−1BT
2 (8.14)

which will be used in the sequel when defining the control law.
Taking the time derivative of the switching function σ(t) along the trajectories of
(8.9) yields

σ̇ (t) = Gẋ(t) − GA(ρ)x(t) + GBνFx(t) (8.15)

and after substituting from (8.9)

σ̇ (t) = GBw(ρ)ν(t) + GBν︸︷︷︸
Il

Fx(t) (8.16)

Therefore the expression for the equivalent control (associated with σ̇ (t) = 0) can
be written as

νeq(t) = − (
B2E(ρ)W (t)(E(ρ))−1BT

2

)−1
Fx(t) (8.17)

provided the matrixW (t) is such that det(B2E(ρ)W (t)(E(ρ))−1BT
2 ) �= 0. Substitut-

ing (8.17) into (8.9) yields the expression for the sliding motion as

ẋ(t) = A(ρ)x(t) − Bw(ρ)
(
B2E(ρ)W (t)(E(ρ))−1BT

2

)−1
Fx(t) (8.18)

By adding and subtracting the termBνFx(t) to the right hand side of Eq. (8.18) yields

ẋ(t) = (A(ρ) − BνF) x(t) +
[

Φ̃(t, ρ)

0l

]
Fx(t) (8.19)

where the term which models the uncertainty is

Φ̃(t, ρ) := B1B
T
2 − B1E(ρ)W (t)(E(ρ))−1BT

2

(
B2E(ρ)W (t)(E(ρ))−1BT

2

)−1

(8.20)

Remark 8.2 From Eq. (8.20) it is clear that when there are no actuator faults in
the system (i.e. W (t) = Im), then Φ̃(t, ρ) ≡ 0 . However in the case of faults or
failures (i.e. whenW (t) �= Im), then Φ̃(t, ρ) �= 0 which will be treated as unmatched
uncertainty while sliding.
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The closed-loop stability of the motion while sliding must be ensured in the pres-
ence of ‘uncertainty’ Φ̃(t, ρ). To facilitate the closed-loop stability analysis, notice
Eq. (8.19) can be written as

ẋ(t) = (A(ρ) − BνF) x(t) + B̃Φ̃(t, ρ)Fx(t) (8.21)

where

B̃ :=
[
In−l

0

]
(8.22)

Now in order to define the class of faults or failures which the FTC scheme in this
chapter can mitigate, let the diagonal entries of W (t) belong to the set

Wε = {(w1, . . . ,wm) ∈ [
0 1

] × · · · × [
0 1

]
︸ ︷︷ ︸

m times

: (GBw(ρ))T (GBw(ρ)) > ε I }

(8.23)
where ε is a small positive scalar satisfying 0 < ε � 1. Note when W (t) = Im,
(GBw(ρ))T (GBw(ρ)) = I > ε I and therefore Wε �= ∅. If the actuator effectiveness
matrix W (t) = diag(w1(t), . . . ,wm(t))∈ Wε then by construction

‖(GBw(ρ))−1‖ = ‖ (
B2E(ρ)W (t)(E(ρ))−1BT

2

)−1 ‖ <
1√
ε

The set Wε will be shown to constitute the class of faults/failures for which closed-
loop stability can be maintained. From (8.20) note that for any W (t) ∈ Wε

‖Φ̃(t, ρ)‖ ≤ γ1

(
1 + c√

ε

)
(8.24)

where c = maxρ∈Ω ‖E(ρ)‖‖(E(ρ))−1‖ (i.e. theworst case condition number associ-
atedwith E(ρ)); andγ1 = ‖B1‖, which is small by hypothesis. Proving the stability of
the closed-loop sliding motion in (8.21) (in the nominal as well as in the fault/failure
scenarios) is one of the important parts of the design process which is demonstrated
in the following subsection.

Remark 8.3 The conditions in this chapter are subtly different to those in Chaps. 3
and 4. In (8.23) the norm of (GBw(ρ))−1 must be guaranteed to be bounded by
limiting W (t) ∈ Wε thus introducing an explicit ε to bound ‖GBw(ρ)‖ away from
zero. This is not necessary in Chaps. 3 and 4 and so the ‘price’ for facilitating a wider
operating envelope is a slightly more restricted set of possible failures.

http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_4
http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_4
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8.2.2 Closed-Loop Stability Analysis

In the nominal fault-free scenario when W (t) = Im, it is easy to verify Φ̃(t, ρ) = 0,
and Eq. (8.21) simplifies to

ẋ(t) = (A(ρ) − BνF) x(t) (8.25)

which is stable by design of F . However in fault/failure scenarios, closed-loop sta-
bility needs to be proven. To this end, Eq. (8.21) can also be represented by

ẋ(t) = (A(ρ) − BνF)︸ ︷︷ ︸
Ã(ρ)

x(t) + B̃

ũ(t)︷ ︸︸ ︷
Φ̃(t, ρ) Fx(t)︸ ︷︷ ︸

ỹ(t)

(8.26)

Define γ2 to be the L2 gain associated with the operator

G̃(s) := F(s I − Ã(ρ))−1B̃ (8.27)

Proposition 8.1 For any possible combination of faults or failures belonging to the
set Wε, the closed-loop sliding motion in (8.26) will be stable if

γ2γ1

(
1 + c√

ε

)
< 1 (8.28)

Proof The specially written structure in (8.26) can be thought of as a feedback
interconnection of an LPV plant and a time varying feedback gain associated with

ẋ(t) = Ã(ρ)x(t) + B̃ũ(t) (8.29)

ỹ(t) = Fx(t) (8.30)

where

ũ(t) = Φ̃(t, ρ)ỹ(t) (8.31)

If (8.28) is satisfied then according to the small gain theorem (Appendix B.1.2), if

‖G̃(s)‖‖Φ̃(t, ρ)‖ < 1 (8.32)

the closed-loop system in (8.26) will be stable. �

In the next subsection the ideas of integral slidingmodes are used to design the virtual
control law ν(t) in order to produce the virtual control effort.
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8.2.3 ISM Control Laws

Consider the (integral sliding mode) control law

ν(t) = (GBŵ(ρ))−1(νl(t) + νn(t)) (8.33)

where

GBŵ(ρ) = B2E(ρ)Ŵ (t)(E(ρ))−1BT
2 (8.34)

and Ŵ (t) is an estimate of W (t). The linear part of the control law νl(t) in (8.33) is
defined as

νl(t) := −Fx(t) (8.35)

and the nonlinear discontinuous part, which enforces sliding and provides robustness
against fault/failure scenarios is given by

νn(t) := −κ(t, x)
σ (t)

‖σ(t)‖ for σ(t) �= 0 (8.36)

where κ(t, x) > 0 is an adaptive modulation function given by

κ(t, x) = ‖F‖‖x(t)‖κ̄(t, x) + η (8.37)

where η is a positive scalar. The positive adaptation gain κ̄(t, x) evolves according
to

˙̄κ(t, x) = −ς1κ̄(t, x) + ς2ε0‖F‖‖x(t)‖‖σ(t)‖ (8.38)

where ς1, ς2 and ε0 are positive (design) scalar gains.

Assumption 8.6 In the analysis which follows, it is assumed the actuator efficiency
level W (t) is not perfectly known but that the estimate Ŵ (t) satisfies

W (t) = Ŵ (t)(I + Δ(t)) (8.39)

where the diagonal matrix Δ(t) represents imperfections in the estimation of W (t).

Substituting (8.39) into (8.14) yields

GBw(ρ) = B2E(ρ)Ŵ (t)(E(ρ))−1BT
2 + B2E(ρ)Ŵ (t)Δ(t)(E(ρ))−1BT

2 (8.40)

Using (8.33), Eq. (8.16) becomes

σ̇ (t) = GBw(ρ)(GBŵ(ρ))−1(νl(t) + νn(t)) + Fx(t)
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Substituting for (8.40) and for νl from (8.35) yields

σ̇ (t) = (I + Δ̂(t))(νl(t) + νn(t)) + Fx(t)

= (I + Δ̂(t))νn(t) − Δ̂(t)Fx(t) (8.41)

where

Δ̂(t)=(B2E(ρ)Ŵ
1
2 (t)Δ(t)Ŵ

1
2 (t)

(
E(ρ))−1BT

2

)
(B2E(ρ)Ŵ (t)

(
E(ρ))−1BT

2

)−1

(8.42)
Define

Dε0 =
{
Δ(t) from (8.39) : ‖Δ̂(t)‖ <

√
1 − 2ε0

}
(8.43)

for some scalar 0 < ε0 � 1/2. Clearly the setDε0 is not empty sinceΔ(t) = 0 ∈ Dε0 .
It is easy to show that if

‖Δ̂(t)‖ <
√
1 − 2ε0 (8.44)

then

2Il + Δ̂(t) + Δ̂T (t) > 2ε0 Il (8.45)

Consider the positive definite candidate Lyapunov function

V (t) = σ T (t)σ (t)︸ ︷︷ ︸
V1(t)

+ 1

ς2
e2(t)

︸ ︷︷ ︸
V2(t)

(8.46)

where

e(t) = κ̄(t, x) − 1

ε0
(8.47)

Since ‖Δ̂(t)‖ <
√
1 − 2ε0, taking the derivative of V1(t) from (8.46), and then

substituting from (8.41), yields

V̇1(t) = −κ(t, x)‖σ(t)‖(2Il + Δ̂(t) + Δ̂T (t)) − 2σ T (t)Δ̂(t)Fx(t)

≤ −2κ(t, x)ε0‖σ(t)‖ + 2‖σ(t)‖‖Δ̂(t)‖‖Fx(t)‖
≤ −2κ(t, x)ε0‖σ(t)‖ + 2‖σ(t)‖√1 − 2ε0 ‖F‖ ‖x(t)‖ (8.48)

From (8.47) it follows that κ̄(t, x) = e(t) + 1
ε0
. Then using the fact that

√
1 − 2ε0 < 1

and substituting (8.37) into (8.48), it follows

V̇1(t) ≤ −2ε0‖F‖‖x(t)‖‖σ(t)‖e(t) − 2ηε0‖σ(t)‖ (8.49)
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Taking the derivative of V2(t) from (8.46), using the fact that ė(t) = ˙̄κ(t, x) from
(8.47) and substituting from (8.38) gives

V̇2(t) = 2

ς2
e(t)ė(t) = 2

ς2
e(t) ˙̄κ(t, x)

= −2ς1

ς2
e(t)κ̄(t, x) + 2ε0e(t)‖F‖‖x(t)‖‖σ(t)‖ (8.50)

Therefore, from (8.49) and (8.50) and substituting for κ̄(t, x) from (8.47) yields

V̇ (t) = V̇1(t) + V̇2(t)

≤ −2ς1

ς2
e(t)κ̄(t, x) − 2ηε0‖σ(t)‖

= − 2ς1

ς2ε0
e(t) − 2ς1

ς2
e2(t) − 2ηε0‖σ(t)‖ (8.51)

It is easy to show that

− 2ς1

ς2ε0
e(t) − 2ς1

ς2
e2(t) ≤ ς1

2ς2ε
2
0

for all values of e(t) and therefore from (8.51) it follows that

V̇ (t) ≤ ς1

2ς2ε
2
0

− 2ηε0‖σ(t)‖ (8.52)

which implies that σ(t) moves into a boundary layer about σ(t) = 0 of size ς1
4ς2ε30η

.

Remark 8.4 The adaptation scheme in (8.37) and (8.38) makes the approach in this
chapter quite different fromChaps. 3 and 4.Adaptation is required here because of the
complex relationship between Δ(t) and Δ̂(t) in (8.42) and the limitations associated
with (8.43).

Remark 8.5 The fact that a traditional sliding mode scheme involving a unit vector
structure has been selected as the basis for the control law, has facilitated the inclusion
of an adaptive scheme. An adaptive gain is highly desirable in FTC schemes to
compensate for sudden significant changes to the plant.

Finally the physical control law, which is used to distribute the control effort among
the available actuators is obtained by substituting (8.33)–(8.36) into (8.8) which
yields

u(t) = −(E(ρ))−1BT
2

(
B2E(ρ)Ŵ (t)(E(ρ))−1BT

2

)−1
(
Fx(t) + κ(·) σ (t)

‖σ(t)‖
)

(8.53)

http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_4
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Fig. 8.1 Overall FTC
scheme

Remark 8.6 Note the physical control law in (8.53) requires an estimate of the effec-
tiveness level of the actuators Ŵ (t) (see Fig. 8.1 for details). In this chapter, it is
assumed that this estimate is provided by anFDI scheme (see for example Sect. 3.3.1).
This information can also be obtained by directly comparing the controller signals
with the actual actuator deflection, as measured by control surface sensors, which
are available in many aircraft systems.

8.2.4 Design of the State Feedback Gain

In this section, using the nominal system (8.10), the state feedback gain F will
be designed. In designing F two objectives must be met: the first is equivalent to
achieving pre-specified nominal performance for all admissible values of ρ(t), and
the second one is to satisfy the closed-loop stability condition in (8.28) via the small
gain theorem. Nominal performance will be incorporated by the use of a LQR type
cost function

J =
∫ ∞

0
(xT Qx + uT Ru)dt

where Q and R are s.p.d. matrices. The LPV system matrices ( Ã(ρ), B̃, F) which
depend affinely on the parameter vectorρ(t) in (8.29) and (8.30) canbe representedby
the polytopic system( Ã(ωi), B̃, F) where the vertices ω1, ω2, . . . , ωnω

for ωnw = 2r

correspond to the extremes of the allowable range of ρ(t) ∈ Ω . Consequently

Ã(ρ) =
2r∑

i=1

Ãiδi ,

2r∑

i=1

δi = 1, δi ≥ 0

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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The LQR performance criteria can then be posed as an optimisation problem:
Minimise trace (X−1) subject to

[
A(ωi)X + X AT (ωi) − BνY − Y TBT

ν (Q1X − R1Y )T

Q1X − R1Y −I

]
< 0 (8.54)

X > 0 (8.55)

where

Q1 =
[
Q

1
2

0l×n

]
, R1 =

[
0n×l

R
1
2

]T

(8.56)

and Y := FX and X−1 ∈ IRn×n is the Lyapunov matrix.
To satisfy the closed-loop stability condition in (8.28), it is sufficient to apply the
Bounded Real Lemma at each vertex of the polytope and ensure that

⎡

⎣
A(ωi)X + X AT (ωi) − BνY − Y TBT

ν B̃ Y T

B̃T −γ 2 I 0
Y 0 −I

⎤

⎦ < 0 (8.57)

for i = 1 . . . 2r . Since the objective is to seek a commonLyapunovmatrix for the LMI
formulations at each vertex, this can be achieved by introducing the slack variable
Z ∈ IRn×n and posing the problem as:

Minimise trace(Z) subject to (8.54), (8.55) and (8.57) and

[−Z In
In −X

]
< 0 (8.58)

The decision variables are X and Y . The matrix Z satisfies trace(Z) ≥ trace(X−1).
Therefore the LMIs in (8.54)–(8.58) can be solved for all the vertices of the polytopic
system. The state feedback matrix is obtained from the expression F = Y X−1.

8.3 Simulations

The simulations in this chapter are based on the RECOVER benchmark model. For
the controller design the LPVmodel of RECOVER given in Appendix A.1.1 is used.
The aerodynamic coefficients are polynomial functions of velocity Vtas and angle
of attack α in the range of

[
150, 250

]
m/s and

[−2, 8
]
deg respectively, and at an

altitude of 7000m. The states of the LPV plant are (ᾱ, q̄, V̄tas, θ̄ , h̄e)which represent
deviation of the angle of attack, pitch rate, true air speed, pitch angle and altitude
from their trim values. The inputs of the LPV plant are (δ̄e, δ̄s, T̄n), which represent
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deviation of elevator deflection, horizontal stabiliser deflection and total engine thrust
from their trim values respectively. The trim values of the states are

(αtrim, qtrim, Vtastrim , θtrim, hetrim )=(1.05 deg, 0 deg/s, 227.02m/s, 1.05 deg, 7000m)

and the trim values of the LPV plant inputs are

(δetrim , δstrim , Tntrim) = (0.163 deg, 0.590 deg, 42291 N)

For the controller design, the state h̄e is removed and the states of the LPV plant have
been reordered as (θ̄ , ᾱ, V̄tas, q̄). The LPV system matrices are given by

A(ρ) = A0 +
7∑

i=1

Aiρi and B(ρ) = B0 +
7∑

i=1

Biρi (8.59)

where

(ρ1, . . . , ρ7) := (
ᾱ, V̄tas, V̄tas ᾱ, V̄ 2

tas, V̄
2
tas ᾱ, V̄ 3

tas, V̄
4
tas

)
(8.60)

where ᾱ = α − αtrim and V̄tas = Vtas − Vtastrim . For full details of the LPV plant
see the Appendix A.1.1. The input distribution matrix B(ρ) has been factorised into
fixed and varying matrices:

B(ρ) =

⎡

⎢⎢⎣

0 0 0
0.01 0 0
0 1 0
0 0 1

⎤

⎥⎥⎦

︸ ︷︷ ︸
B f

⎡

⎣
100b31(ρ) 100b32(ρ) 100b33(ρ)

0 0 b23(ρ)

b41(ρ) b42(ρ) b43(ρ)

⎤

⎦

︸ ︷︷ ︸
E(ρ)

(8.61)

Note that the top portion of B f corresponds to the B1 term in (8.5) which has been
made small compared to the B2 term. In order to introduce a tracking facility, the
plant states are augmented with the integral action states given by

ẋr(t) = r(t) − Ccx̄(t) (8.62)

where r(t) is the command to be tracked, and Cc is the controlled output distribution
matrix. The controlled outputs have been chosen as flight path angle (FPA) and V̄tas ,
where FPA = θ̄ − ᾱ. By defining new states as

xa(t) = col(xr(t), x̄(t))
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the augmented system from (8.10) becomes

ẋa(t) = Aa(ρ)xa(t) + Bνaν(t) + Brr(t) (8.63)

where

Aa(ρ) :=
[
0 −Cc

0 A(ρ)

]
, Bνa :=

[
0
Bν

]
, Br =

[
Il
0

]
(8.64)

which is used as the basis for the control law design. In the augmented system, the
choice of G in (8.12) becomes Ga := B2(BT

fa
B fa )

−1BT
fa
where

B fa =
[

0
B f

]
(8.65)

8.3.1 Control Design Objectives

The tracking requirements for FPA and true air speed Vtas are decoupled responses,
with settling times of 20 and 45s respectively in the fault-free scenario. In the case of
an elevator or horizontal stabiliser failure, the tracking requirement for Vtas remains
unchanged (because speed is controlled by thrust) but for the FPA response, a settling
time of 30 s is considered. In this example, a fixed gain matrix F is valid for the entire
range of the LPV model. Note that designing a fixed matrix F , allows the MATLAB
state-feedback synthesis code ‘msfsyn’ to be used to solve the LMIs (8.54)–(8.58).
For designing the state feedback gain F , the Q and R matrices in (8.54) have been
chosen as

Q = diag(1.1, 0.04, 1, 1, 0.03, 5) and R = diag(0.007, 1.1)

where the first two states in the Q matrix are integral action states. The state feedback
gain resulting from the optimisation is given by

F =
[−1.1161 −2.3532 −10.3807 3.8107 3.7409 −1.3623

−0.9891 0.0177 9.6902 −4.9097 −0.0222 3.3779

]
(8.66)

In the nominal case, the engines are considered to be fault-free. The positive scalar
from (8.23) has been chosen as ε = 0.28. It can then be shown (using a numerical
search algorithm) that the maximum value of ‖Φ̃(t, ρ)‖ from Eq. (8.24) is 0.0673. To
satisfy the closed-loop stability condition in (8.28), the value of γ2 associatedwith the
operator in (8.27) should satisfy γ2 <

√
ε

γ1(
√

ε+c)
= 14.8588. The value associated with

F in (8.66) is γ2 = 11.0000, and hence the stability condition in (8.28) is satisfied.
During the simulations, the discontinuity associated with the nonlinear control term
in (8.36) has been smoothed by using a sigmoidal approximation σa(t)

‖σa(t)‖+δ
, where δ
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is a small positive scalar. This ensures a smooth and realistic control signal is sent to
the actuators and allows extra design freedom especially when faults/failures occur.
Here δ has been chosen as δ = 0.01. The adaptive gain parameters from (8.37)
and (8.38) used in the simulation are: η = 1, ς1 = 1, ς2 = 0.01 and ε0 = 0.01.
The control law in (8.53) requires information about the actuator effectiveness level
matrixW (t), which can be estimated by some FDI scheme, as given in Sect. 3.3.1. As
in theGARTEURFM-AG16 project, in this chapter, it is assumed that ameasurement
of the actual actuator deflection is available, which is not an unrealistic assumption
in modern aircraft systems. Information provided by the actual actuator deflection
can be compared with the signals from the controller to indicate the effectiveness of
the actuator.

8.3.2 Simulation Results

The manoeuvre considered in this chapter represents a change of altitude and speed
using a series of −3 deg FPA and −10m/s Vtas commands. This covers a wide range
of the flight envelope highlighting the efficacy of the FTC scheme when dealing with
faults and failures. In this chapter two failure scenarios will be considered, one is an
elevator jam and the other is a stabiliser runaway. For consistency, all the actuator
failures are set to occur at 300s.

Remark 8.7 Note that even though the controller is designed based on the LPV
model from Appendix A.1.1, it is tested on the full high fidelity nonlinear aircraft
model used as a FTC benchmark in GARTEUR FM-AG16 project.

8.3.2.1 Elevator Jam

Figure8.2 shows a comparison between the fault-free case and a scenario inwhich the
elevator jams at 300 s. Despite the elevator jam, there is no visible difference in terms
of the FPA and speed Vtas tracking performance. There is also no visible difference in
terms of the altitude change between the failure and the fault-free case. It can be seen
that immediately after the failure at 300 s, the estimate of the elevator effectiveness
level drops to 10%. This indicates non-perfect estimation (it should be zero). Despite
this imperfection, there is no difference in terms of tracking performance. The plot of
the norm of the switching function ‖σ(t)‖ also shows no visible difference between
the fault-free and the failure case. Finally, a plot of the adaptive gain shows the
variation of κ(t, x) defined in (8.37). Again, there is no visible difference in terms of
the adaptive gain between the fault-free and failure case. Note that in the fault-free
case, the variation of the adaptive gain is due to a combination of variations in ‖σ(t)‖
and the states ‖x(t)‖, as described in the formula in (8.38).

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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Fig. 8.2 Elevator jam
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Fig. 8.3 Stabiliser runaway
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8.3.2.2 Stabiliser Runaway

Figure8.3 shows the results for the case when a stabiliser runaway occurs. The effect
of the stabiliser runaway can be seen in the control surface plot where the stabiliser
moves at a maximum rate to the maximum position of 3 deg. The effect of the control
relocation can be seen in the plot of the elevator which moves to 7 deg immediately
after the failure occurs at 300 s. Despite the stabiliser runaway and the imperfect
estimation of the stabiliser effectiveness, there is no visible difference in terms of
tracking performance between the fault-free and the failure case. (The estimated
stabiliser effectiveness level is shown as 10% whereas the actual value should be
zero.) The plot of the norm of the switching function ‖σ(t)‖ shows the difference
between the fault-free and the failure case. Here it can be seen that the norm for the
failure case is slightly higher than the fault-free case immediately after the failure at
300 s, but is still relatively small. Finally, the plot of the adaptive gain shows there is
a slight difference between the fault-free and the failure case.

8.4 Summary

This chapter described a FTC scheme for linear parameter varying systems. Inte-
gral sliding mode control in conjunction with CA was used to maintain nominal
performance and robustness in the face of actuator faults or failures. The virtual con-
trol signal, generated by the integral sliding mode control law was translated into the
physical actuator commands by using the control allocation scheme. The closed-loop
stability of the system throughout the entire flight envelope was guaranteed—even
in the event of total failure of a certain class of actuators (provided appropriate
redundancy is available in the system). The scheme also takes into account imperfect
estimation of actuator effectiveness levels and considers an adaptive gain for the
nonlinear component of the control law. The FTC scheme has been tested on a full
nonlinear aircraft benchmark model to highlight the efficacy of the scheme.

8.5 Notes and References

LPV methods have attracted much attention in recent years—especially for aircraft
systems [2]. Using LPV techniques, guaranteed performance can be ensured over a
wide range of operating regimes [3]. For LPV systems, several controller synthesis
methods have been proposed in recent years in the framework of FTC: the advantages
and capabilities of LPV controller synthesis (based on a single quadratic Lyapunov
function approach) over gain-scheduling controller designs (based onH∞ controller
synthesis) are discussed and compared in [4] by implementing the two techniques on a
high fidelity atmospheric re-entry vehicle model. In [5], an output feedback synthesis
method using LMIs is presented in order to preserve closed-loop stability in the case
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of multiple actuator faults. The authors in [6] have explored the combined use of
fault estimation and fault compensation for LPV systems. Recently in [7] an active
FTC technique was proposed for LPV systems to deal with actuator faults, in which
the faults are identified by using an UIO technique, and a state feedback controller is
realised by approximating the LPV system in a polytopic form. There is almost no
literature on the use of slidingmode controllers for LPV systemswith the exception of
[8–11]. The work in [8, 9] has proposed SMC schemes for LPV systems—although
not in the context of fault tolerant control. In [12] the nonlinear longitudinal model
of the RECOVER transport aircraft was approximated by polynomially fitting the
aerodynamics coefficients obtained from [13], to create an LPV representation using
the function substitution method. In this chapter, the LPV plant matrices are taken
from [12]. In [2] the same system is considered but only elevator failures (lock and
float) are considered, whereas the FTC scheme described in this chapter is also tested
by considering a stabiliser failure (as well as elevator failure scenarios).
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