
Chapter 7
Nonlinear Integral Sliding Mode

Many of the existing FTC schemes in the literature are based on linear plant
representations and are therefore only valid in the vicinity of the designed trim point.
Therefore, one of the main challenges for practical implementation, especially for
aircraft, is to ensure good performance for a wide range of operating conditions.
Some of the linear based designs can be extended to handle variations in operat-
ing conditions, but direct nonlinear methods such as nonlinear dynamic inversion
(NDI) and backstepping provide equally viable alternatives—with many benefits
compared to the extended linear cases. One obvious benefit is the direct exploitation
of the well-known aircraft equations of motion, which provides good and consistent
performance throughout the flight envelope. This chapter presents a nonlinear fault
tolerant scheme for longitudinal control of an aircraft system, comprising an integral
sliding mode control allocation scheme and a backstepping structure. In fault-free
conditions, the closed-loop system is governed by the backstepping controller and
the integral sliding mode control allocation scheme only influences the performance
if faults/failures occur in the primary control surfaces. In this situation the alloca-
tion scheme redistributes the control signals to the secondary control surfaces and
the scheme is able to tolerate total failures in the primary actuator. A backstepping
scheme taken from the existing literature is designed for flight path angle tracking
(based on the nonlinear equations of motion) and this is used as the underlying base-
line controller. The efficacy of the scheme is demonstrated using the RECOVER
benchmark model.

7.1 Nonlinear Aircraft Model

In this chapter, the longitudinal motion of a rigid aircraft will be considered. Such a
model is typically given by four differential equations
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124 7 Nonlinear Integral Sliding Mode

V̇tas = 1

m
(−D + Tn cos(α + σT ) − mg sin γ ) (7.1)

α̇ = 1

mVtas
(−L − Tn sin(α + σT ) + mg cos γ ) + q (7.2)

θ̇ = q (7.3)

q̇ = 1

Iy
(M + Tnltz cos σT ) (7.4)

where Vtas, α, θ, q, γ represent true air speed, angle of attack, pitch angle, pitch
rate and flight path angle respectively. The parameters in (7.1)–(7.4) are m, g, Iy, Tn,

ltz, σT which represent mass, gravity, the body axis moment of inertia, total engine
thrust, the distance from the engine centre line to the fuselage reference line and the
engine inclination angle respectively.

Define the state vector as x = col(Vtas, α, θ, q), then the drag force, lift force and
pitch moments (D, L, M) from (7.1) to (7.4) can be written as:

D = q̄SCD(x, δ) (7.5)

L = q̄SCL(x, δ) (7.6)

M = q̄Sc̄ (Cm(x, δ) + Δ(x)) (7.7)

where the dynamic pressure

q̄ = 1

2
ρairV 2

tas (7.8)

and S, c̄, ρair represent the wing area, wing mean aerodynamic chord and air den-
sity respectively. The dimensionless drag force, lift force and pitch moment coeffi-
cients CD(x, δ), CL(x, δ) and Cm(x, δ) are functions of the states and control surface
deflections, and are usually obtained through wind tunnel and flight tests. This data
is then used to create an aerodynamic database in the form of a lookup table. For the
RECOVER model, this data is available. The term Δ(x) in (7.7) represents unmod-
elled dynamics which are not considered during the design, but which appear as part
of the high fidelity model in RECOVER. This term is explicitly given by

Δ(x) = −1

c̄
(CD sin α + CL cosα) x̄cg + c̄α̇

Vtas

(
Cmα̇

− x̄cg

c̄
CLα̇

cosα

)
(7.9)

where x̄cg = xcgref −xcg represents the difference between the actual and the reference
x-axis centre of gravity. In this chapter it is assumed that Δ(x) is unknown.
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7.1.1 Strict Feedback Form

To design the ISM scheme and the baseline backstepping control law, approxima-
tions will be made to the longitudinal aircraft dynamics in (7.1)–(7.4) to create a
representation in ‘strict feedback form’.1 Here, the following simplifications are
introduced.

Assumption 7.1 It is assumed that Vtas remains constant: i.e. V̇tas ≈ 0.

Assumption 7.2 It is assumed that a change to the elevator mainly affects the pitch
moment, and the effect on lift and drag can be neglected (i.e.CD(δ) = 0, CL(δ) = 0).

Remark 7.1 Assumption 7.1 can be achieved by introducing a separate feedback
loop based on the measured speed and the auto throttle.

Remark 7.2 Assumption 7.2 is common in the flight dynamics literature.2

Using Assumptions 7.1 and 7.2 together with (7.5)–(7.7), and replacing α̇ with γ =
θ−α (i.e. flight path angle) to remove the dependency on q, the longitudinal dynamics
in (7.1)–(7.4), for controller design purposes, can be rewritten as

γ̇ = 1

mVtas
(q̄SCL(x) + Tn sin(θ − γ + σT ) − mg cos γ ) (7.10)

θ̇ = q (7.11)

q̇ = 1

Iy
(q̄Sc̄ (Cm(x, δ) + Δ(x)) + Tnltz cos σT ) (7.12)

In (7.10)–(7.12), the control surface deflection δ only appears in Eq. (7.12) and this
allowsmany nonlinear schemes (e.g. backstepping and nonlinear dynamic inversion)
to be used for control law design.

Note that (7.10)–(7.12) are only used for controller design; in the simulations the
original Eqs. (7.1)–(7.4), and in fact the more detailed RECOVER benchmark from
Appendix A, are used to test the design.

The pitch moment coefficient can be written as a function of the states and control
surfaces:

Cm(x, δ) = Cm(x) + dCm

dδe
δe + dCm

dδs
δs (7.13)

where δe, δs are elevator and horizontal stabiliser deflections respectively. Combining
Eq. (7.13) with Eqs. (7.10)–(7.12), simplified equations of motion can be written in
the form

1See for example [1].
2See for example [2].
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⎡
⎣ γ̇

θ̇

q̇

⎤
⎦

︸ ︷︷ ︸
ẋ(t)

=
⎡
⎣

1
mVtas

(q̄SCL(x) + Tn sin(α + σT ) − mg cos γ )

q
1
Iy

(q̄Sc̄Cm(x) + Tnltz cos σT )

⎤
⎦

︸ ︷︷ ︸
f (x)

+
⎡
⎣ 0 0

0 0
1
Iy

q̄Sc̄ dCm
dδe

1
Iy

q̄Sc̄ dCm
dδs

⎤
⎦

︸ ︷︷ ︸
ge(x)

︸ ︷︷ ︸
gs(x)︸ ︷︷ ︸

g(x)

[
δe

δs

]
︸ ︷︷ ︸

u(t)

+
⎡
⎣ 0

0
1
Iy

q̄Sc̄

⎤
⎦

︸ ︷︷ ︸
b(x)

Δ(x)
(7.14)

The vector ge(x) is associated with the primary control surface (the elevator). Con-
versely the vector gs(x) is the secondary control surface (the stabiliser) which will
be used when faults/failures occur on the primary control surface (see Fig.A.2).

Remark 7.3 Note that the term dCm
dδe

is assumed to be available either by online para-
meter estimation or from a lookup table. In this chapter the information is obtained
from a lookup table. However imprecision in the knowledge of dCm

dδe
will appear as

matched uncertainty which will be suppressed by the sliding mode terms in the con-
troller. The thrust Tn is also assumed to be available by converting engine pressure
ratio (which is the commanded signal from the speed controller) into thrust through
a lookup table. (Recall it is assumed speed is controlled by a separate “auto-throttle”
control loop.)

To simplify the subsequent analysis, Eq. (7.14) can be written as

[
ẋ1
ẋ2

]
=

[
f1(x)
f2(x)

]
+ g(x)u(t) + b(x)Δ(x) (7.15)

where the state sub-vector x1 = col(γ, θ) and x2 = q. The input distribution vector

g(x) = [
ge(x) gs(x)

] =
[
02×1 02×1

g1(x) g2(x)

]
(7.16)

where g1(x) = 1
Iy

q̄Sc̄ dCm
dδe

and g2(x) = 1
Iy

q̄Sc̄ dCm
dδs

. The disturbance matrix b(x) in
(7.14) can be written as

b(x) =
[
02×1

b1(x)

]
(7.17)

where b1(x) = 1
Iy

q̄Sc̄.
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7.2 Control Law Development

Consider the effect of faults on each actuator modelled by

ue
i (t) = wi(t)ui(t) + ξ(t) for i = 1, 2 (7.18)

where the scalars 0 ≤ wi(t) ≤ 1, and ξ(t) is an exogenous signal. Here ue
i (t)

represents the effective control signal which influences the aircraft dynamics, taking
into account the detrimental impact of the fault. The scalarsw1(t) andw2(t) are the so-
called control surface effectiveness gains associated with the primary (elevator) and
secondary (stabiliser) control surfaces respectively. If wi(t) = 1, the corresponding
ith control surface is working perfectly, while wi(t) = 0 indicates a total failure. If
0 < wi(t) < 1, a partial fault is present in the ith control surface. Ignoring the term
ξ(t)which does not affect stability,3 the system in (7.15) subject to potentially faulty
actuators can be written in the form

[
ẋ1
ẋ2

]
=

[
f1(x)
f2(x)

]
+

[
02×1 02×1

g1(x) g2(x)

]
W(t)u(t) + b(x)Δ(x) (7.19)

where the matrix W(t) = diag(w1(t), w2(t)).
For simplicity, factorise g(x) so that (7.15) can be written as

[
ẋ1
ẋ2

]
=

[
f1(x)
f2(x)

]
+ g1(x)

[
02×1 02×1

1 gs
2(x)

]
W(t)u(t) + b(x)Δ(x) (7.20)

where

gs
2(x) = g2(x)

g1(x)
(7.21)

For the aircraft example considered here, g1(x) and g2(x) are both nonzero since
dCm
dδe

�= 0 and dCm
dδs

�= 0 for typical regions in the flight envelope as shown inFig. 7.1a, b.
This guarantees the inverse in (7.21) exists and the system (7.20) is controllable when
faults/failures occur on the elevator. (Note that the maximum ceiling is 45,000 ft and
maximum level speed is Mach 0.895 at 30,000 ft).

3Although of course it has a detrimental impact on performance, since it acts as an external distur-
bance to the post-fault system.
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Fig. 7.1 Pitching moment coefficient due to elevator and stabiliser deflections [3, 4]. a Elevator. b
Stabiliser

7.2.1 Nominal Backstepping Control Law

Assume that for the nominal system

ẋ(t) = f (x) + ge(x)u0(t) (7.22)

a controller
u0(x) = K (x) (7.23)

has been designed using the primary control surface such that the nominal closed-
loop system

ẋ(t) = f (x) + ge(x)K (x) (7.24)

is stable. In this chapter, the baseline controller for the elevator is given by a back-
stepping control scheme

u0(t) = K (x) =
(

dCm

dδe

)−1 (
Iyq̇des − q̄Sc̄Cm(x) − Tnltz cos σT

q̄Sc̄

)
(7.25)
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where

q̇des = − [
κ1κ2κ3 κ2κ3 κ3

]⎡
⎣ γ − γref

θ − γref − α0

q

⎤
⎦ (7.26)

where α0 is the angle of attack at a steady state condition. The gains κ1, κ2, κ3 must
be chosen to satisfy

κ1 > −1

κ2 > 0

κ3 >

{
κ2 if κ1 ≤ 0

κ2(1 + k1) if κ1 > 0
(7.27)

7.2.2 Control Allocation

Consider the situation when the actuator effectiveness gains w1(t) and w2(t) are
not perfectly known. Their estimates ŵ1(t) and ŵ2(t) are assumed to be computed
by an FDI scheme (which is required for the approach presented in this chapter).
Consequently, as part of the estimationprocess, andby ‘clipping’ the estimates arising
from the calculations if necessary, it can be assumed that they satisfy 0 ≤ ŵ1(t) ≤ 1
and 0 < ŵ2(t) ≤ 1 if they are to represent realistic effectiveness levels. However,
these estimates may not be perfect, and so for analysis purposes

Assumption 7.3 It is assumed that ŵ1(t) and ŵ2(t) are related to the real values
w1(t) and w2(t) according to:

[
w1(t) 0
0 w2(t)

]
︸ ︷︷ ︸

W(t)

=
[

ŵ1(t) 0
0 ŵ2(t)

]
︸ ︷︷ ︸

Ŵ(t)

[
1 + δ1(t) 0

0 1 + δ2(t)

]
(7.28)

In (7.28) the scalars δ1(t) and δ2(t) represent imperfections in the estimates and are
assumed to satisfy

δmin ≤ δ1(t), δ2(t) ≤ δmax (7.29)

where δmin, δmax are known scalars and max{|δmin|, |δmax|} < 1.

The expressions in (7.28) ensure that the true values of the effectiveness levels

wi(t) ∈ [
ŵi(t) + δminŵi(t), ŵi(t) + δmaxŵi(t)

]
(7.30)

and importantly, since δmin > −1, the expression in (7.30) guarantees wi(t) ≥ 0.
Based on (7.28), Eq. (7.20) can be written as
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[
ẋ1(t)
ẋ2(t)

]
=

[
f1(x)
f2(x)

]
+g1(x)

[
02×1 02×1

1 gs
2(x)

][
ŵ1(t)(1 + δ1) 0

0 ŵ2(t)(1 + δ2)

]
u(t)+b(x)Δ(x)

(7.31)

For the potentially faulty system in (7.31), consider as a control law

u(t) = N(x) (K (x) + νn(t))︸ ︷︷ ︸
ν(t)

(7.32)

where the signal νn(t) is associated with the sliding mode component of the control
law, and will be defined formally later in the chapter. The ‘control allocation matrix’
N(x) is given by

N(x) =
[

1
1−ŵ1(t)

ŵ2(t)gs
2(x)

]
(7.33)

assuming ŵ2(t) �= 0 (i.e. assuming that the secondary control surface is failure-free)
and exploiting the fact that gs

2(x) �= 0.

Remark 7.4 Note that the control allocation matrix in (7.33) is different to the ones
used in the earlier chapters (although it is related to the retro-fit scheme in Chap.6).
Here the control allocation matrix is very bespoke and utilises the specific aircraft
equations of motion—especially the strict feedback form in (7.14).

Substituting (7.28) and (7.32)–(7.33) into (7.31) yields (after some straightforward
algebra)

[
ẋ1
ẋ2

]
︸ ︷︷ ︸

ẋ(t)

=
[

f1(x)
f2(x)

]
︸ ︷︷ ︸

f (x)

+

⎛
⎜⎜⎜⎝

[
02×1

g1(x)

]
︸ ︷︷ ︸

ge(x)

+
[

02×1

g1(x)δ̂(t)

]
︸ ︷︷ ︸

ĝe(x)

⎞
⎟⎟⎟⎠ (K (x) + νn(t))︸ ︷︷ ︸

u(t)

+
[
02×1

b1(x)

]
︸ ︷︷ ︸

b(x)

Δ(x)

(7.34)
where

δ̂(t) := (
ŵ1(t)δ1(t) + (1 − ŵ1(t))δ2(t)

)
(7.35)

Since by assumption 0 ≤ ŵ1(t) ≤ 1, it follows that δ̂(t) ∈ [
δ1(t) δ2(t)

]
(i.e. it

belongs to the line segment between δ1 and δ2), and therefore δmin ≤ δ̂(t) ≤ δmax.

Remark 7.5 Notice from Eq. (7.33) that during fault-free conditions and when the
actuator effectiveness estimate is perfect, (i.e. when Ŵ(t) = W(t) = I2, and therefore
ŵ1(t) = 1) the control signal u(t) becomes

u(t) =
[
K (x) + νn(t)

0

]
(7.36)

http://dx.doi.org/10.1007/978-3-319-32238-4_6
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Equation (7.36) shows only the primary control surfaces are used. In general if
Ŵ(t) �= I , then the lower component in (7.33) is nonzero and a control signal is
sent to the secondary actuator.

7.2.3 Integral Sliding Mode Design

In this section, an expression for the control law component νn(t) in (7.32) will be
developed. In particular this termwill add robustness to the control allocation scheme
presented in Sect. 7.2.

Define a time-varying sliding surface as

S = {x ∈ IR3 : σ(t) = 0} (7.37)

where

σ(t) := Gx(t) − Gx(0) − G
∫ t

0
(f (x) + ge(x)K (x))dτ (7.38)

and G ∈ IR1×3 is the design freedom. In this chapter the gain will be chosen as

G := [
0 0 1

]
(7.39)

First it will be demonstrated that if a sliding motion occurs on S given in (7.37)–
(7.38), then fault tolerance is achieved. Subsequently a control law ν(t), to achieve
and maintain sliding will be presented.

Proposition 7.1 If a sliding mode is maintained on S given by (7.37)–(7.38), then
the associated sliding motion is governed by the stable system (7.24)–(7.25).

Proof From the definition of G in (7.39), it follows that the scalar

Gge(x) = g1(x) �= 0, Gĝe(x) = g1(x)δ̂(t), Gb(x) = b1(x) (7.40)

The fact that Gge(x) �= 0 guarantees the existence of an unique equivalent control,
and so the slidingmode control problem iswell-posed. Taking the derivative of (7.38)
along the trajectory of (7.31) and substituting from (7.34) yields

σ̇ (t) = Gẋ(t) − G(f (x) + ge(x)K (x))

= Gge(x)νn(t) + Gĝe(x)(K (x) + νn(t)) + Gb(x)Δ(x)

= g1(x)(1 + δ̂(t))νn(t) + g1(x)δ̂(t)K (x) + b1(x)Δ(x) (7.41)

where νn(t) from (7.32) will be defined shortly to ensure a sliding motion onS can
be maintained. During sliding σ̇ (t) = σ(t) = 0, and therefore since g1(x) �= 0 the
‘equivalent control’ necessary to maintain sliding, is given by equating the left hand
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side of (7.41) to zero and solving the resulting algebraic equation to yield

νeq(t) = −
(

g1(x)
(
1 + δ̂(t)

))−1 (
g1(x)δ̂(t)K (x) + b1(x)Δ(x)

)
(7.42)

The equations of motion during the sliding mode can be obtained by substituting
(7.42) into (7.34) to yield

ẋ(t) = f (x) + ge(x)K (x) (7.43)

�

Remark 7.6 Note that Eq. (7.43) is the closed-loop system associated with the base-
line controller in (7.23), and that the unknown term Δ(x) does not appear. This is
because Δ(x) is ‘matched’ uncertainty and is therefore rejected by the sliding mode
controller. Note that the choice of G in (7.39) means that the matrix G is fixed which
simplifies the analysis. Furthermore since (I − ge(Gge)

−1G) = diag(1, 1, 0), the
contraction properties discussed in Sect. 2.7.4 are still obtained since

‖I − ge(Gge)
−1G‖ = 1

(which is the minimum achievable value of the norm over all possible values of G).

The remainder of this section presents a controller to ensure sliding can be achieved
and maintained in the presence of faults, and formally demonstrates this is indeed
the case.

Here, the sliding mode nonlinear term νn(t) is defined as

νn(t) = −ρ(t, x)g1(x)
−1sign (σ (t)) for σ(t) �= 0 (7.44)

where the modulation gain ρ(t, x) is any function satisfying

ρ(t, x) >
|g1(x)| δ̄ |K (x)| + |b1(x)||Δ(x)| + η0

(1 − δ̄)
(7.45)

where δ̄ = max{|δmin|, |δmax|} < 1 and η0 is small positive scalar. Note: here δ̄ will
be used as an user defined parameter employed to select the level of tolerance to the
error in estimation of the effectiveness gains that the controller can tolerate.

Proposition 7.2 The control law given in (7.32), with the allocation matrix in (7.33),
and the nonlinear injection term from (7.44) to (7.45), maintains a sliding motion
provided δ̄ < 1 and w2(t) �= 0.

Proof Substituting from (7.44) into (7.41) yields

σ̇ (t) = −ρ(t, x)(1 + δ̂(t))sign (σ (t)) + g1(x)δ̂(t)K (x) + b1(x)Δ(x) (7.46)
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To show that sliding is maintained, consider a positive definite candidate Lyapunov
function

V(t) = 1

2
σ 2(t) (7.47)

It follows from (7.46) to (7.47) that

V̇(t) = −ρ(t, x)(1 + δ̂(t))|σ(t)| + σ(t)g1(x)δ̂(t)K (x) + σ(t)b1(x)Δ(x) (7.48)

Since
|δ̂(t)| < δ̄ < 1 (7.49)

using (7.49) and (7.45), Eq. (7.48) becomes

V̇(t) ≤ |σ(t)|
(
−ρ(t, x)(1 − |δ̂(t)|) + |g1(x)| |δ̂(t)| |K (x)| + |b1(x)| |Δ(x)|

)

≤ |σ(t)| (−ρ(t, x)(1 − δ̄) + |g1(x)| δ̄ |K (x)| + |b1(x)| |Δ(x)|)
≤ −η0|σ(t)| = −η0

√
2V(t) (7.50)

This is sufficient to show that the ‘reachability condition’ is satisfied and sliding is
maintained. �

The final control signal u(t) which is supplied to all the available control surfaces
(primary and secondary) is given by substituting (7.44) into (7.32) to yield

u(t) =
[

1
1−ŵ1(t)

ŵ2(t)gs
2(x)

]

︸ ︷︷ ︸
N(x)

(
K (x) − ρ(t, x)g1(x)

−1sign (σ (t))
)

︸ ︷︷ ︸
νn(t)

(7.51)

Remark 7.7 Note that (7.51) requires the estimates of actuator efficiency ŵ1(t) and
ŵ2(t), but does not require knowledge of δ1, δ2 or Δ(x). The errors δ1, δ2 are only
used in conjunction with δ̂ to prove sliding is maintained.

7.3 Simulations

7.3.1 RECOVER Benchmark Model

All the simulations that follow are based on the RECOVERmodel at a trim altitude of
2000m, a mass of 263 tonnes, c.g. at 25%MAC, a speed of 92.6m/s and flap settings
of 20 deg. The modulation gain ρ(t, x) can be chosen based on worst case estimates
of |g1(x)| and |b1(x)| in (7.45), obtained from graphs similar to those presented in
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Fig. 7.1, together with bounds on Δ(t) in (7.9) using worst case bounds/estimates of
the drag and lift coefficients CD and CL, together with the aerodynamic coefficients
related to α̇. A possible structure for the modulation gain to satisfy (7.45) is

ρ(t, x) = ρ2|K (x)| + ρ1‖x‖ + ρ0 (7.52)

where the ρi are positive constants. Here the gain from (7.44) has been simply chosen
as ρ = 0.65. This is very easy to implement and is shown to work well in simulation.
This is in fact an aggressive choice for ρ(t, x) because the nonlinear term in (7.44)
can contribute a signal in the range

[−0.65 0.65
]
rad, to the value of the overall

virtual control signal because of the signum term. The units of the control signal are
radians4 and so this range represents a significant portion of the available/allowable
control signal variation.

Remark 7.8 Although the term Δ(x) from (7.9) has been excluded from the design
process, it appears in the high fidelity full nonlinear model used for simulation.
As discussed in Sect. 7.2.3, this will appear as matched uncertainty which will be
suppressed by the sliding mode.

Remark 7.9 Note that an estimate ofW(t) from (7.15) can be obtained from any FDI
scheme of choice. In large passenger aircraft, it is common to measure the actual
control surface deflection for monitoring purposes. Consequently, in this chapter,
it is assumed that W(t) is estimated by comparing the measured control surface
deflection and the command from the flight control system.5 In particular since any
mismatch resulting from errors in the estimate of W(t) used in the controller appears
as matched uncertainty, the controller is able to compensate.

7.3.2 Outer-Loop Control

In order to maintain Vtas at a setpoint during the simulations, a PD based auto-
throttle has been implemented as a separate loop. The corresponding proportional
and derivative gains have been chosen as KpVtas = 1 and KdVtas = 0.5. An outer-loop
altitude control loop is also implemented as shown in Fig. 7.2, to provide a flight path
reference signal to the inner-loop slidingmode-backstepping controller. This is based
on a PID structure with gains Kphe = 0.001, Kihe = 4×10−5 and Kdhe = 0.02. Finally
an Instrument Landing System (ILS) glide slope intercept and tracking facility is also
included to create an automatic landing mode for the aircraft. This takes the form of
a simple scalar feedback loop with proportional gain KPGS = 7.

4Although in all the plots they have been scaled and presented in terms of degrees because these
units are more intuitive to most readers.
5As shown in [5], this is not an unrealistic assumption in aircraft systems. Using the same idea as in
[6] (i.e. ‘least squares’ method), information provided by the actual actuator deflection is compared
with the signals from the controller to provide estimates of the effectiveness of the actuators.
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Fig. 7.2 Controller interconnection

In this chapter, since only the longitudinal axis is considered, the Instrument
Landing System (ILS) switches between an altitude/FPA command and glide slope6

(GS) tracking (as shown in Fig. 7.2). Specifically it changes the outer-loop control
from being pilot commanded (i.e. altitude demand tracking), to an automated landing
mode using the GS signal. When the aircraft is inside the GS coverage zone, the GS
controller will become active and provides the inner-loop FPA command to the core
longitudinal ISM controller, and no pilot input is required. This configuration can be
found in all current large commercial aircraft in service (although the specific details
of the outer-loop and inner-loop controller may differ7).

7.3.3 Results

The fault/failure cases and manoeuvres that are considered here are associated with
theGARTEURFM-AG16benchmark scenarios: specifically concerning the elevator.
The simulation begins at a low speed and a low altitude (92.6m/s and 2000m). The
aircraft starts to descend to 900m at 50 s and maintains altitude to intercept the
ILS glide slope signal. Once the glide slope is intercepted, the aircraft descends at
a commanded flight path angle of −3 deg towards the runway. The flare (the last
manoeuvre before touchdown) is not implemented in RECOVER and therefore the
aircraft altitude is held at 50mabove the runway. For consistency and for comparison,
the actuator failures are set to occur at 100 s.

6The glide slope in the ILS provides vertical guidance to the aircraft during descent to the runway
in order to provide an automated landing [6, 7]. The standard glide slope path demand is 3 deg. The
glide slope signal is emitted by an antenna, located near the end of the runway and the glide slope
provides the precise altitude required leading to the touchdown zone of the runway [7].
7For details see Sects. 11.8–11.10 in [8].
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For the simulations which follow, the gains in the backstepping control law have
been chosen as κ1 = 1, κ2 = 0.6 and κ3 = 3. The control law (7.51) requires the
estimates of actuator efficiency ŵ1(t) and ŵ2(t) which can be provided by a FDI
scheme, or, more specifically by a fault estimation scheme. In this chapter, it will be
assumed that a measurement of the actual actuator deflection is available.

7.3.3.1 Fault-Free

Figure7.3a shows good flight path trackingwhile the outer-loop PID controllermain-
tains tight control of speed. Figure7.3b shows good altitude and glide slope tracking
performance. Figure7.3b shows the first demanded change of altitude to 900m at
50 s. The second change in altitude is due to the tracking of the ILS glide slope—
which is activated when the aircraft is within the range and altitude of the ILS signal.
This activation is shown in Fig. 7.3b as a boolean signal; where 1 indicates GS cap-
ture. Once the ILS glide slope is activated at 448s, the outer-loop ILS controller
provides a flight path command (of about −3 deg in Fig. 7.3a) and forces the glide
slope deviation error to zero as shown in Fig. 7.3b. Figure7.3d shows that since there
are no faults present, there is no control signal command to the stabiliser as shown
in Fig. 7.3c.

7.3.3.2 Elevator Loss of Effectiveness

Figure7.4 shows the results when a fault occurs which renders the elevator only 50%
effective. The same manoeuvre as in the previous fault-free test is considered. The
fault is set to occur at 100 s. Figure7.4a, b show no degradation of flight path angle,
altitude and glide slope tracking in comparison to the fault-free case. Figure7.4d
confirms the decrease in the elevator effectiveness to 50%. Figure7.4d also shows
that sliding is still maintained despite the uncertainty and the faults in the system.
Figure7.4c shows the effect of loss of effectiveness on elevator deflection. Now,
the stabiliser has become active as the control signal is partially redistributed to
compensate for the reduction of elevator effectiveness.

7.3.3.3 Elevator Float

Figure7.5 shows the effect of an elevator float failure in which the control surface
is unable to produce any moment, and moves freely in the direction of the airflow.
This can occur due to the loss of hydraulics for example. Once the failure occurs
at 100 s, as shown in Fig. 7.5c, the surface deflection becomes equal to the angle of
attack of the aircraft as shown in Fig. 7.5a. After the failure, the stabiliser becomes
active and tries to compensate for the failed elevator. Figure7.5a, b show that no
degradation in the flight path angle, altitude and glide slope tracking performance
occurs despite the failure of the primary control surface. Finally Fig. 7.5d shows
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the actuator effectiveness level and also shows no degradation in the sliding mode
performance.

7.3.3.4 Elevator Float–Imperfect ̂W(t)

Figure7.6 shows a comparison between the fault-free and the case when the elevator
suffers a float failure with imperfect estimation of the actuator effectiveness level
Ŵ(t). A float failure corresponds to the control surface ‘floating’ about its zero
moment position, thus becoming ineffective. In the simulation, an elevator float is
simulated by replacing the control signal by the angle of attack of the aircraft. In
terms of Eq. (7.18), this can be modelled as

ue
1(t) = 0 + α(t) (7.53)

which in terms of (7.18) equates to w1(t) = 0 and ξ(t) = α(t). As a consequence
the effective control signal ue

1(t) is completely disconnected from the command
signal u1(t) generated by the control law. Figure7.6a, b show that no degradation
in the flight path angle, altitude and glide slope tracking performance occurs (all
lines overlap) compared to the fault-free case, despite the failure of the primary
control surface and imperfect estimation of the actuator effectiveness level Ŵ(t).
Figure7.6b shows an altitude change command of 900m at 50 s. A further altitude
change to initiate tracking of the ILS glide slope is activated when the aircraft is
within range of the ILS signal. Figure7.6b shows the glide-slope-capture boolean
signal equals 1 to indicate GS capture. Once the ILS glide slope is activated at 448
s, the outer-loop ILS controller provides the flight path command (of about −3 deg
in Fig. 7.6a) forcing the glide slope deviation error to zero (Fig. 7.6b). Figure7.6c
indicates the effect of an elevator float failure in which the control surface is unable to
produce any pitching moment, and moves freely in the direction of the airflow. This
can occur due to the loss of hydraulics for example. Once the failure occurs at 100 s,
as shown in Fig. 7.6c, the surface deflection becomes equal to the angle of attack of
the aircraft as shown in Fig. 7.6a. After the failure, the stabiliser becomes active and
tries to compensate for the failed elevator. The effect of imperfect estimation can
be seen in Fig. 7.6d, where even though the elevator has totally failed, the elevator
effectiveness estimation ŵ1(t) wrongly shows 50% effectiveness. Note that in the
fault-free case w1(t) = w2(t) = 1, but for simplicity, the lines are not labelled in
Fig. 7.6d. Finally, Fig. 7.6d also shows no visible degradation in the sliding mode
performance when compared to the fault-free case.

7.3.3.5 Elevator Lock in Place

Figure7.7 shows the results of an elevator jammed in a non-trim position at 100 s.
The non-trim jam position creates an extra moment which needs to be compensated
for. As before, Fig. 7.7a, b show no visible degradation of flight path angle, altitude
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or glide slope tracking. Figure7.7c shows that once the elevator jams at 100 s, the
stabiliser becomes active as the control signal is reallocated.

7.3.3.6 Elevator Lock in Place—Imperfect ̂W(t)

Figure7.8 shows the comparison between fault-free and the case when an elevator
jams at a non-trim position (at 100 s), and in the presence of imperfect actuator
effectiveness estimation Ŵ(t). The non-trim jam position creates an extra moment
which needs to be compensated for. Note that the elevator jam is represented by

ue
1(t) = 0 + u1(tf ) (7.54)

which in terms of (7.18) is associated with w1(t) = 0 for all t ≥ tf and ξ(t) =
u1(tf ), where tf is the time when the elevator failure occurs. Again this means for
all t ≥ tf the effective control signal ue

1(t) is decoupled from the command u1(t)
determined by the control law. Figure7.8c shows that once the elevator jams at
100 s, the stabiliser becomes active as the control signal is reallocated. The effect
of the imperfect estimation can be seen in Fig. 7.8d. Here, although the elevator has
totally failed due to the lock in place failure, the elevator effectiveness estimation
ŵ1(t) wrongly shows 50% effectiveness. Again, as in Fig. 7.6, despite the elevator
jamming at a non-trim position, and imperfect estimation associated with ŵ1(t),
Fig. 7.6a, b show no degradation in terms of all the tracking performance measures,
compared to the fault-free case.

7.3.3.7 Elevator Float: Backstepping control only—Imperfect ̂W(t)

Figure7.9 shows a comparison between the fault-free case and when the elevator
floats, using only the baseline backstepping controller, in the presence of imperfect
actuator effectiveness estimation Ŵ(t). The same control allocation scheme as in
Figs. 7.6, 7.7 and 7.8 has been considered to redistribute the control signal to the
stabiliser. In comparison to the fault-free condition, Fig. 7.9a shows that the unmod-
elled term Δ(x) from (7.9) causes imperfect tracking of the flight path angle. When
compared with the fault-free condition, Fig. 7.9b shows a small difference in terms
of altitude tracking as the imperfect flight path angle tracking has been compensated
by the outer-loop altitude control. Whereas in Fig. 7.6a, b, the effect of the eleva-
tor failure and uncertainty has been totally compensated by the sliding mode, thus
maintaining the same tracking performance as in the fault-free case.
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deviation. c Control surface deflections. d Switching function σ(t) and actuator effectiveness W(t)



7.3 Simulations 145

0 200 400 600 800 1000
−0.5

0

0.5
q 

(d
eg

/s
)

0 200 400 600 800 1000
90

91

92

93

94

95

V
ta

s (
m

/s
)

0 200 400 600 800 1000
4

5

6

7

α 
(d

eg
)

time (s)
0 200 400 600 800 1000

−5

0

5

γ 
(d

eg
)

time (s)

q fail case
q fault free

V
tas

 fail case

V
tas

 fault free

α fail case
α fault free

γ fail case
γ fault free

0 200 400 600 800 1000
0

500

1000

1500

2000

h e (
m

)

time (s)
0 200 400 600 800 1000

−2

−1

0

1

2
IL

S
 g

lid
es

lo
pe

time (s)

h
e
 fail case

h
e
 fault free

dem

GS deviation fail case (deg)
GS deviation fault free (deg)
GS capture

0 200 400 600 800 1000

0

2

4

6

8

el
ev

at
or

 (
de

g)

time (s)
0 200 400 600 800 1000

−6

−5

−4

−3

st
ab

ili
se

r 
(d

eg
)

time (s)

δ
e
 fail case

δ
e
 fault free

δ
e
 fail case

δ
e
 fault free

0 200 400 600 800 1000

0

0.5

1

w
 (

t)

time (s)

w
2
 actual & estimate w

1
 estimate

w
1
 actual

(a)

(b)

(c)

(d)

Fig. 7.9 Backstepping control only: elevator float performances—imperfect Ŵ(t). a States. b
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7.4 Summary

This chapter has presented a nonlinear fault tolerant scheme for longitudinal aircraft
control. The scheme is designed directly from the nonlinear longitudinal equations of
motion and incorporates an integral sliding mode control allocation scheme together
with a baseline backstepping control law for flight path angle tracking. In fault-free
conditions only the primary control surface (the elevator) is used. However, when
faults/failures occur, the integral sliding mode control allocation scheme is able to
automatically provide robustness, and the control signals are redistributed to the
redundant secondary control surface (the horizontal stabiliser). The control law has
been tested on the RECOVER benchmark model. The simulations show that even
in the presence of unmodelled dynamics (which have not been considered during
the design process) excellent results are obtained for both nominal fault-free and
fault/failure scenarios. Although the scheme in this chapter is described specifically
in terms of the longitudinal equations of motion of an aircraft, in principle, the
underlyingmethodology can be applied to other systems controlled by a backstepping
structure, provided redundancy in the controls exists.

7.5 Notes and References

A number of authors have applied sliding mode techniques to the design of flight
control laws: see for example [9–12]. However many of these papers do not con-
sider fault tolerant control aspects and focus instead on the robustness properties
introduced by the sliding modes. Some notable exceptions are [13, 14]; however
these schemes (including [14]) can only deal with partial actuator faults and cannot
cope with the problem of total actuator failure. Recent work on aircraft FTC using
sliding modes (for example [6, 15, 16]) used a passive type of FTC control where
the same controller is used for both the nominal fault-free case and in the event
of faults/failures occurring. Despite the potential of these controllers, they are still
based on linearisations of the plant dynamics about a specific operating condition
[16, 17]. The combination of the backstepping ISM structure with control allocation
presented in this chapter, allows the same controller to be used in both nominal fault-
free and faulty situations, and distinguishes the ideas in this chapter from existing
backstepping based SMC/ISM schemes for nonlinear systems (see for example [18–
20]). Note that the choice of allocation matrix in Sect. 7.2.2 is different compared
to the one in [16, 17], and takes into account the structure of the aircraft equations
of motion considered in this chapter. For further details about the backstepping con-
troller described in Sect. 7.2.1, see [1, 21]. Compared with the existing schemes
designed from linear models, the underlying nonlinear backstepping controller has
guaranteed levels of stability and performance for a wide range of flight conditions.
Furthermore, the backstepping design from [1, 21] has a simple structure and does
not require exact knowledge of the aircraft dynamics (e.g. the coefficient of forces and
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moments). Some of the aerodynamic arguments used to justify the simplifications in
the nonlinear equations of motion described in Sect. 7.1.1 are taken from [2].
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