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Preface

Control is an essential part of many new technology developments, from cell
phones to passenger aircraft and from washing machines to oil refineries. The
objective of many control applications is to maintain the output (of the process) in
the face of unknown disturbances, whilst in others, it is tracking a reference signal
and minimising the tracking error, which is important. Ensuring the closed-loop
stability of the overall system in the presence of unknown disturbances and in the
face of uncertainties which arise as a result of creating an approximate mathematical
model used for the controller design is an important part of the control design
process. In addition, issues of operating safety, reliability and availability of the
system, especially in safety critical plants like aircraft and nuclear reactors, are of
great importance. Safety critical systems like aircraft became the basis for the initial
research in the field of fault tolerant control systems. Faults or failures in these
safety critical systems cannot be totally avoided, however their effects (in terms of
human mortality and economic loss) can be mitigated using fault tolerant control
schemes. Fault Tolerant Control (FTC) schemes are an important aspect in safety
critical systems and seek to maintain overall system stability and acceptable per-
formance in the face of faults and failures within the system. One way to achieve
high level of availability is to ensure a suitable level of redundancy in terms of the
key actuators and sensors within the system. In emergency situations, this redun-
dancy can be manipulated in a way to achieve fault tolerance. Therefore, increasing
demands for safety, reliability and high system performance have motivated the
need for fault tolerant control and has stimulated research in this area. For the
design of fault tolerant controllers, many different design paradigms have been
proposed in the literature. This book will focus on one particular methodology—the
so-called integral sliding modes. The objective is to show how the robustness
properties of sliding mode control—especially integral sliding modes—can be used
within the framework of FTC to provide an increase in the survivability, reliability
and stability of safety critical systems.

The book is a mix of theoretical developments and case studies relating to
aerospace systems and is organised as follows:
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In Chap. 1, the definitions and basic terminologies of FTC and some typical
types of faults at the sensor, actuator and component level are defined. In addition,
the difference between fault and failure is clearly explained. Different types of
fault/failure models used in the literature to design fault tolerant schemes against the
actuator faults/failures and component faults are discussed. An introduction to FTC
is given together with an introduction to different fault tolerant control methods
used in the literature based on passive and active approaches. The terminologies
used in the fault detection and isolation framework are defined, and some of the
techniques which can be used for FDI are also documented.

In Chap. 2, the concept, properties and design principles of sliding mode control
are explained. Different methods which can be used to implement sliding mode
controllers in real and practical applications are also given. The concept of integral
sliding modes is defined next, with an explanation of how it differs from the
classical sliding mode control approach explained earlier in the chapter. A detailed
procedure for the design of integral sliding mode control laws together with a
special choice of sliding surface which helps to mitigate the effects of unmatched
uncertainty is explained. Finally, some motivation for the use of integral sliding
modes as a candidate for FTC is discussed.

In Chap. 3, an integral sliding mode FTC scheme is presented, which considers
the combination of integral sliding modes and a Control Allocation scheme. The
concept of a virtual control is also explained, which is then used by the Control
Allocation scheme to achieve the demanded actuator position. The FTC scheme
described in this chapter uses the estimated actuator effectiveness level to distribute
the control effort among the actuators without changing the underlying ISM con-
troller. A rigorous closed-loop stability analysis is carried out and it is proved that
the scheme can handle some level of error in estimating the actuator effectiveness.
Furthermore, in order to compute the controller parameters such that the
closed-loop stability condition (given in the chapter) is satisfied, an LMI synthesis
procedure is described. The resulting fault-tolerant Control Allocation scheme can
cope with actuator faults and certain total actuator failures without degrading the
desired performance. A benchmark model of a large civil aircraft is used to validate
the feasibility of the scheme.

In Chap. 4, a passive FTC scheme is described where the combination of integral
sliding mode control with fixed control allocation is considered. The FTC scheme
has the capability to deal with actuator faults/failures without any FDI scheme and
is suitable for the case where fault information is not available to the controller.
A detailed LMI-based procedure is provided to synthesise the controller parameters
and a rigorous closed-loop stability analysis is carried out in the presence of
unmatched uncertainty for a suitable set of actuator faults/failures.

Chapter 5 focuses on an output feedback integral sliding mode control allocation
scheme within the framework of FTC. This chapter relaxes the assumption made in
the previous chapters that full state information is available for the controller
design. The chapter also builds on the idea that information about actuator
faults/failures is not available to the controller. A direct control allocation scheme is
employed in this case to distribute the control signal among the actuators. In order
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to estimate the plant states, an unknown input observer (UIO) is employed and the
necessary conditions for the existence of the UIO are included. A rigorous
closed-loop stability analysis is carried out and a stability condition is posed in an
LMI framework through which the controller and observer gains are computed.
A benchmark model of a large civil aircraft is used to demonstrate the efficacy
of the scheme by considering component faults, together with faults or failures in
the actuator channels.

In Chap. 6, an integral sliding mode augmentation scheme is considered in order
to introduce fault tolerance at an actuator level. The scheme is based on an a posteri
approach, building on an existing state feedback controller designed using only the
primary actuators, without the need to remove or alter existing control loops. The
control allocation scheme is developed based on the idea that if the primary actu-
ators are healthy, the secondary actuators should not be activated, and the secondary
actuators should only be activated for fault tolerant purposes if the primary actu-
ators are faulty. This FTC approach depends on information about the actuator
effectiveness levels, to distribute the control signals among the available actuators
in the set. Possible errors in estimating the actuator effectiveness by the FDI scheme
are taken into consideration while a closed-loop stability condition is described,
which must be satisfied to ensure stability in the case of faults or failures. The
efficacy of the scheme is tested by applying it to a nonlinear benchmark model of a
large civil aircraft.

In Chap. 7, a nonlinear fault tolerant scheme for the control of longitudinal
motion of an aircraft is considered and an integral sliding mode control allocation
scheme is combined with a backstepping structure. In fault-free conditions, the
closed-loop system is governed by the backstepping controller and the integral
sliding mode control allocation scheme only influences the performance if
faults/failures occur in the primary control surfaces. In this situation, the allocation
scheme redistributes the control signals to the secondary control surfaces and the
scheme is able to tolerate total failures in the primary actuator. A backstepping
scheme taken from the existing literature is designed for flight path angle tracking
(based on the nonlinear equations of motion) and this is used as the underlying
baseline controller in nominal conditions.

In Chap. 8, the ideas of integral sliding mode control allocation discussed in
Chap. 3 are extended for Linear Parameter Varying (LPV) plants. For the design
of the virtual control law, the parameter varying input distribution matrix is fac-
torised into a fixed matrix and a matrix with varying components. In this chapter, a
control law is developed which is automatically scheduled with respect to the
varying plant operating conditions in order to ensure closed-loop stability for a
wider range of operating conditions. The scheme also depends on information about
actuator effectiveness levels for control signal distribution. An effective LMI syn-
thesis procedure is described to compute the parameters of the controller and a
rigorous closed-loop stability analysis is undertaken, which ensures that certain
classes of faults or failures can be dealt with over the entire operating envelope
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(with the assumption that the redundancy is available in the system). A benchmark
LPV model of the large civil aircraft is used to demonstrate the efficacy of the FTC
scheme.

In Chap. 9, the integral sliding mode FTC scheme for LPV plants described in
Chap. 8 is implemented in real-time on the SIMONA motion flight simulator at the
Delft University of Technology, The Netherlands.

Lahore, Pakistan Mirza Tariq Hamayun
Exeter, UK Christopher Edwards
Exeter, UK Halim Alwi
February 2016
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Chapter 1
Fault Tolerant Control

Control is used extensively in industry where it plays an important role in
increasing productivity, but it is required to operate safely—especially where inter-
action with humans takes place. Particularly in safety critical systems like chemical
plants, nuclear reactors, aircraft etc., reliability of the system is very important.
Broadly speaking, control systems that have such capabilities, are termed Fault Tol-
erant Control (FTC) systems. In this chapter, different terminologies used in the FTC
literature are defined, the concepts of faults and failures are distinguished, and their
classification is explained.

1.1 Fault and Failure and Their Classification

The term fault will first be defined to avoid any confusion.1

Fault: This constitutes an unexpected change in a system parameter from the accept-
able/normal condition, which can degrade system performance. It is a fact that a
fault can disturb the normal operation of a system from the desired one, but may be
tolerable. Faults are usually considered to occur very rarely in the system but cannot
be totally prevented. However their consequences can sometimes be mitigated by
taking appropriate actions. A FTC system, as the name implies, has the potential to
tolerate faults and to maintain the closed-loop performance of the system. A fault is
a sudden event, and can occur in any part of the system. Depending upon the location
of occurrence, it can be classified as an actuator fault, a sensor fault or a component
fault (Fig. 1.1).

Actuator faults: Actuators are the work horses in a control system and represent a
linkage/interface between the controller commands and the plant. In Fig. 1.3d, an
actuator fault is shown which is termed as a loss of effectiveness, during which

1The definition of a fault given in this section is in compliance with the definition given in [1].
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2 1 Fault Tolerant Control

Fig. 1.1 Classification of faults (adapted from [2])

time the actuator works with reduced capability as compared to its normal operating
condition (when it is fault-free). This means that in a post fault condition, the actuator
will only be partially effective in achieving the required controller demand, which
may affect the overall performance of the system. Actuator faults may occur due to,
for instance, a drop in voltage supply, increased resistance, hydraulic leakages etc.

Sensor faults: Sensors are used in the control system to measure and convert the
physical quantities of interest into a signal (e.g. a tachometer measures the speed of
a rotating motor shaft and converts it into a voltage). A fault in the sensor means
an incorrect measurement from the sensor, which in turn can result in a continuous
constant offset as compared to the true value. Sensor faults can degrade the feedback
system performance even in the presence of a well-designed controller. Therefore it
is important to detect and isolate sensor faults at an early stage.

Component faults: All faults that do not belong in the category of actuator or sensor
faults, can be considered as component faults. A component fault is a very severe
type of fault that can occur in the plant components. As a result the input/output
dynamical behaviour of the controlled system will be altered. Component faults can
in turn result in a change in the physical parameters of the system, and can reduce
the overall performance of the system.

Faults can also be classified with respect to their time characteristics i.e. how the
fault characteristics change with respect to time. The characteristics of faults can
change abruptly, incipiently or intermittently with respect to time as can be seen

Fig. 1.2 Classification of faults with respect to time (adapted from [2])
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in Fig. 1.2. If a fault characteristic changes abruptly, it can result in a very severe
situation, as the system stability may also be affected. These types of faults often
occur due to hardware damage. On the other hand incipient faults represent a scenario
whereby the fault characteristics change very slowly, due to variations of parameters
for instance, and are not severe in nature. However if incipient faults are not attended
to promptly, they can result in a severe situation. Intermittent faults occur sporadically
over time, and can be caused by intermittent contact or damaged wiring in some part
of the circuitry.

In the FTC literature, and throughout this book, the notion of faults or failures is
frequently used and may cause confusion, therefore the difference between them is
clearly outlined in this chapter in order to avoid any ambiguity.

The difference between fault and failure: The term failure is defined in the literature2

as a permanent interruption or a complete breakdown of a component or system and
its complete inability to perform a specific function. A failure is usually a more
serious situation than a fault, because the component or system cannot be used any
more to perform a task. Thismeans that if a failure occurs in a sensor or in an actuator,
a different sensor or actuator is required for the continuation of the process: in other
words some sort of reconfiguration mechanism is required in the control system to
deal with such a situation, and redundancy must be available. For example, in an
aircraft, some very severe types of actuator failure, if not promptly detected, can
degrade or even destabilise the overall system. Examples are a jam or lock in place
failure, a float failure or a runaway/hardover failure as shown in Fig. 1.3. In a jam
failure, the actuator becomes stuck or jams at some (offset) position due to a lack
of lubrication for instance, and does not respond even if a control signal is applied
to it. In a float failure, the actuator moves freely and does not provide any desired
moment. A runaway/hardover failure is a very destructive type of failure and it causes
the actuator to move at its maximum rate limit until a saturation limit is reached. This
can be caused by a ‘wrong signal’ being applied to the actuator. In Fig. 1.4, some
common types of sensor faults/failures are shown. A sensor in a ‘frozen’ (failure)
situation, provides a constant output value instead of the true value of the physical
state. During a loss of accuracy fault, the sensor does not reflect the actual value of
the physical state. A specific example is a bias fault which creates a constant offset in
the measurement. Finally in a drift fault, the offset in the measurement of an actual
physical state increases with time.

In this book, different FTC schemes are described, which have the potential to
deal with faults and failures associated with the actuators, provided that redundant
actuators are available. Faults at the component level are also considered, but the
sensor faults and failures are not within the scope of this book.

2See for example [1].
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(a) (b)

(d)(c)

Fig. 1.3 Types of actuator failure (a)–(c) and actuator fault (d) (adapted from [3]). a Float failure.
b Lock in place failure. c Hard over failure. d Loss of effectiveness

1.1.1 Modeling Faults and Failures

In the literature, different representations have been used to model actuator faults
and failures. For example, to model an actuator fault/failure, the state-space model
can be written as

ẋ(t) = Ax(t) + BΣ(t)u(t) + B(I − Σ(t))ū(t) (1.1)

where A ∈ IRn×n , B ∈ IRn×m and Σ(t) = diag(θ1(t), . . . , θm(t)), θi (t) ∈ [
0 1

]
and

ū(t) is an uncontrollable offset vector. If θi (t) = 1, then the i th actuator is functioning
normally, whereas if θi (t) = 0 then the i th actuator has a failure, i.e. the control
action from the failed actuator is equal to ū(t). Throughout this book, a state-space
representation of the plant is considered in order to synthesise the fault tolerant
controllers. Mathematically a linear time invariant (LTI) system, subject to actuator
faults/failures can be expressed as

ẋ(t) = Ax(t) + BW (t)u(t) (1.2)
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(a)

(c) (d)

(b)

Fig. 1.4 Types of sensor failure (a) and sensor faults (b)–(d) (adapted from [3]). a Bias. b Drift. c
Freezing. d Loss of accuracy

where W (t) = diag(w1(t), . . . , wm(t)) is a diagonal semi-positive definiteweighting
matrix. The scalarsw1(t), . . . , wm(t) all lie in

[
0 1

]
andmodel the effectiveness level

of the actuators. Ifwi (t) = 1, it means that the corresponding i th actuator has no fault
and is working perfectly, whereas if 1 > wi (t) > 0 an actuator fault is present. The
situation in which wi (t) = 0, represents a complete loss of effectiveness or failure
of a particular actuator. Some common types of actuator fault/failure are shown
in Fig. 1.3. The fault and failure representation in (1.2), which is a special case of
(1.1) has become the building block for many of the FTC schemes in this book
because this representation makes the closed-loop stability analysis tractable, as will
be demonstrated in the subsequent chapters. From Eqs. (1.1) and (1.2), it is clear
that faults or failures associated with the actuators only affect the input distribution
matrix B, whereas a component fault may introduce changes in the system matrix,
and can be represented in the following form

ẋ(t) = (A + �A(t))x(t) + BW (t)u(t) (1.3)

where �A(t) represents a change in the system matrix A.
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1.2 Fault Detection and Isolation (FDI)

FaultDetection and Isolation (FDI) schemes provide online information about system
faults or failures. The fault or failure information provided by the FDI scheme plays
an important role in managing any actuator redundancy in an efficient way. On the
basis of this information, active FTC methods (as explained in the next section) take
appropriate action to mitigate the effects of these faults/failures. One important facet
of an FDI scheme is how fast and precisely a fault is detected, isolated and identified,
so that prompt action can be taken by the FTC scheme. Generally FDI schemes in
the literature are classified into two categories—model based and model free FDI
schemes. Model based schemes utilise (nominal fault-free) mathematical models
(analytical redundancy) of the plant for FDI purposes, and can be sub-categorised
as residual based FDI schemes or fault estimation based FDI schemes. In residual
based FDI schemes, the measurements from the plant sensors are compared with
signals from the mathematical model to create residual signals. In the fault-free
case, the residuals should vanish or be very close to zero. The increasing size of a
residual due to faults or failures can then be used for detection purposes. Residuals are
normally used with a threshold level to avoid any false alarms due to disturbances or
noise signals. So-called unknown input observer (UIO) based schemes can be used
as robust (in the sense of decoupling of disturbance signals) residual generators.
The idea behind the UIO scheme is to decouple the state estimation error from the
unknown inputs: in this case the disturbance signals. Residual based FDI schemes
usually provide fault detection capabilities and also the location of the fault. The
location of a fault in the system can be inferred by employing a bank of dissimilar
residual signals. (One possibility is to make each residual sensitive to a particular
fault and insensitive to all the others in order to isolate a particular fault.)

In certain FTC schemes, andmore often than not in the ones described in this book,
the efficiency level of the actuators (or an estimation of the fault) is also required
for FTC purposes. The control effectiveness estimation problem can be posed within
an augmented Kalman Filter formulation, where the control effectiveness gains are
modelled as augmented states in the linear plant model. Sliding mode approaches
have also been proposed (details of which can be found later in Sect. 3.3.1). In
certain applications, such as passenger aircraft actuator, effectiveness levels can be
obtained by using a measurement of the actual actuator deflection compared to the
demand. Such information is typically available in many safety critical systems.3

This simplifies the problem considerably.

3In modern fly-by-wire passenger aircraft [4], sensors measuring the actuator deflections provide
this information to local monitoring schemes.

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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1.3 Fault Tolerant Control Systems

The motivation for the early research in the field of fault tolerant control was in
the area of flight control systems to improve the reliability and safety of aircraft. A
fault tolerant control system has the capability to maintain some level of acceptable
performance, or degrade gracefully subsequent to the occurrence of a fault. From
the definitions, it is clear that the main task in achieving fault tolerance is to design
a suitable controller which has the ability to maintain overall system stability in
fault-free, as well as in situations when a system becomes faulty. Usually to design
such a controller, the system should have redundant control effectors, which can be
efficiently used and exploited to achieve fault tolerance. In the case of a failure in
certain actuators, the control effort can be distributed to healthy actuators to maintain
the desired performance or at least some level of acceptable performance. Therefore it
is fair to say that redundancy is necessary, or is at least a key ingredient, in achieving
fault tolerance. This redundancy can be achieved by the direct replication of the
hardware (actuator/sensor) or it can be in the form of dissimilar hardware having
similar functionality.

To explain the concept mathematically, consider an over-actuated system with
redundancy

ẋ(t) = Ax(t) + Bu(t) (1.4)

where the system matrix A ∈ IRn×n and B ∈ IRn×m . Suppose the input distribution
matrix B can be partitioned as B = [

Bp Bs
]
where Bp ∈ IRn×l is assumed to be

of rank l < m and the pair (A, Bp) is controllable. Provided only l outputs of (1.4)
need to be regulated, the channels associated with matrix Bs constitute redundant
(secondary) actuators which can be used in the case of faults/failures to the primary
one. The ultimate objective of a FTC scheme is to provide a desired level of perfor-
mance in fault-free as well as in fault/failure situations, provided that redundancy is
available in the system. Depending on the way the problem is tackled, FTC systems
can be classified as passive fault tolerant control (PFTC) systems or active fault
tolerant control (AFTC) systems. A block diagram representing the classification of
FTC methods is shown in Fig. 1.5. However as seen in this book, sometimes this
classification is blurred.

1.3.1 Passive Fault Tolerant Control Systems

In PFTC systems the controller is of a fixed structure and is designed off-line.4 Due to
the fact that PFTC systems do not require up-to-date fault information, PFTC meth-
ods are computationallymore attractive. In passive fault tolerant control schemes, the
idea is to design the controller using robust control techniques such that the closed-
loop system response is robust against certain classes of uncertainties and presumed

4PFTC systems are also called reliable control systems in the literature [5].
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Fig. 1.5 Classification of FTC methods (adapted from [2])

system faults. TheH∞ methodology is a well-known technique in the field of robust
control, and can take into account performance and stability requirements. The idea
behind the H∞ control methodology is to design a controller which can provide
stabilising properties and minimise the effects of uncertainties or disturbances on
certain outputs of interest. When designing a robust controller, the worst case per-
formance specifications are taken into account, which may lead to a requirement to
sacrifice the nominal performance of the system. Faults usually occur very rarely in
the system and so to sacrifice the nominal performance to obtain robustness against
a certain class of faults may not be appropriate.

Another robust control methodology is Sliding Mode Control (SMC). This
approach underpins the ideas in this book and will be discussed in depth in Chap.2.
SMC schemes have inherent robustness properties against matched uncertainties (i.e.
uncertainties which act in the input channels) during a sliding mode. The basic con-
cept is to first design a sliding surface, and then to specify a controller to induce
and maintain a sliding motion on the sliding surface. Due to its inherent robustness
against matched uncertainties, SMC schemes have the inherent capability to directly
deal with actuator faults—which can be effectively modelled as matched uncertain-
ties. A shortcoming of SMC schemes is that failures cannot be directly handled, and
so some sort of mechanism is required in order to distribute the control effort among
the redundant healthy actuators.

http://dx.doi.org/10.1007/978-3-319-32238-4_2
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Fig. 1.6 Main structure of AFTC systems (adapted from [2])

1.3.2 Active Fault Tolerant Control Systems

Active fault tolerant control (AFTC) systems on the other hand rely on fault infor-
mation from the FDI scheme to react appropriately. Specifically AFTC systems,
react to faults/failures actively, by reconfiguring control actions so that stability and
acceptable performance of the system can be maintained. In certain circumstances,
degraded performance may have to be accepted. A typical AFTC system is rep-
resented in Fig. 1.6. The structure of an AFTC system is usually more complex
compared to PFTC systems, but can deal with a wider class of faults. From Fig. 1.6,
it is clear that there are two aspects that distinguish AFTC systems from PFTC sys-
tems. The first one is the FDI scheme and the other is the reconfiguration mechanism.
The reconfigurationmechanism changes the parameters or structure of the controller,
(usually) based on the fault information provided by the FDI unit. It is common prac-
tice that FTC and FDI schemes are designed independently. In the literature AFTC
methods are further sub-classified as Projection based methods, and online control
redesign methods. In projection based methods, one of the pre-computed controllers
from a set, which have already been designed off-line for a specific fault scenario, is
selected, depending on the fault information provided by the FDI scheme. In online
control redesign methods, depending on the fault information provided by the FDI
scheme, the new controller is synthesised online. Online control redesign methods
are also referred to as reconfigurable control or restructureable control. In reconfig-
urable control, the controller parameters are computed online depending on the fault
information provided by the FDI unit, whereas in restructureable control both the
structure and controller parameters are computed online.

Many different approaches have been considered for FTC. A summary of these
appear in Table1.1.
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Table 1.1 Examples of existing control design methodologies used in FTC (adapted from [5])

Design approaches References

Adaptive control [6–9]

Control allocation [10–22]

Sliding mode control [15, 19, 23–27]

Dynamic inversion [28, 29]

Multiple model [30–35]

Gain scheduling [36]

Linear parameter varying [37–41],

Model predictive control [42–47]

H∞ robust control [8, 48–50]

1.3.3 Control Allocation

As discussed in Sect. 1.3, hardware redundancy provides opportunities that can be
exploited when designing fault tolerant controllers. The advantage of the Control
Allocation (CA)method is that the underlying control law can be designed separately
in order to produce the desired control effort and the CA distributes this virtual effort
among the available actuators to achieve the required system performance. To get
insight into how the CA method works, consider a linear model of the plant with
redundant actuators

ẋ(t) = Ax(t) + Bu(t) (1.5)

where A ∈ IRn×n , B ∈ IRn×m . Assume that the control input distribution matrix B
can be factorised as

B = Bν Bu (1.6)

where Bν ∈ IRn×l and Bu ∈ IRl×m , and both matrices have rank l < m. Substituting
(1.6) into (1.5) yields the new system description

ẋ(t) = Ax(t) + Bν Buu(t)︸ ︷︷ ︸
ν(t)

= Ax(t) + Bνν(t)

where
ν(t) := Buu(t) (1.7)

Usually ν(t) ∈ IRl is called the virtual control effort. If u(t) is chosen as

u(t) = B†
uν(t) (1.8)

where B†
u = Ω BT

u (BuΩ BT
u )−1 (i.e. a weighted right pseudo-inverse of Bu) where

Ω is any matrix such that det(BuΩ BT
u ) �= 0, then u(t) as defined in (1.8) satisfies
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Fig. 1.7 Control Allocation scheme (adapted from [51])

the constraint in (1.7). In order to redistribute the control signals in the case of faults
or failures, different researchers utilise the design freedom in the pseudo-inverse
matrix B†

u in different ways. The structure of the CA scheme is shown in Fig. 1.7,
which demonstrates that the CA element is not part of the virtual control law ν(t).
The virtual control effort ν(t) produced by the controller is directly translated into
actuator deflections by the CA module.

1.4 Summary

In this chapter a brief introduction to FTC and some common terminologies that are
used in the FTC literature have been defined. Typical faults or failures associated
with the actuators and sensors were also explained. Redundancy, which is a key
criterion in FTC has been identified and defined. Methods which have been used
to design fault tolerant controllers using active and passive approaches were also
discussed and in particular control allocation has been introduced as a means of
managing actuator redundancy. The remainder of the book discusses how sliding
mode methods, specifically integral sliding mode schemes, can be combined with
CA to create practical FTC schemes, which can cope with faults and certain classes
of total failure (in actuators).

1.5 Notes and References

The motivation for the early research in the field of fault tolerant control was in the
area of flight control systems, to improve the reliability and safety of aircraft [5,
52]. In the area of FDI and FTC many books have been written: for example [3, 12,
53–55]. A classic early book on FDI is [56]. A key reference for (robust) model based
FDI schemes is [57]. This provides a detailed account of unknown input observers,
eigenstructure andH∞ methods. In [3], the authors describe fault reconstruction and
fault tolerant control schemes to deal with sensor and actuator faults/failures using
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SMC schemes for aerospace applications. Reference [12] describes advanced FDI
and FTC methods for linear and nonlinear small UAVs models. To model actuator
faults and failures, other FTC researchers have used different representations to the
one considered in this book: see for example [2, 15, 58–61]. The schemes proposed
in [62] use a Kalman filter based approach to estimate the actuator efficiency. Model
based FDI and FTC methods are described in [54] to deal with actuator and sen-
sor faults. In [55], different kinds of FDI schemes—specifically knowledge based,
signal based and process model based methods are described for different kinds of
engineering systems. The survey papers, for example [5, 52, 63], and books [3, 64],
provide a bibliographical review of different FTC methods. In addition a review of
FTC applied to aerospace problems appears in [64]. A comparative study between
active and passive FTC approaches is given in [65]. The work in [19, 25–27, 66]
shows that if there is enough redundancy in the system, SMC can deal with total
actuator failures. A detailed discussion on the requirements and merits of FDI and
FTC schemes was documented in [67].

Control Allocation (CA) has attracted the attention of many FTC researchers
because of its ability to handle actuator faults or failures without the need to modify
the underlying control law [10–13]. The CA method can also deal effectively with
actuator constraints. The work in [11, 68] explicitly uses information about the
actuator constraints (rate and position) for CA. The work in [16, 17] describes a
special structure of CA called daisy chaining. In [69], a modified daisy chaining
method is proposed to deal with actuator loss of effectiveness. The benefits of using
CA in terms of FTC are exploited in [10, 18] for high performance aircraft. In [70], a
comparison between different control allocationmethods is made and in [14] optimal
control and CA are compared in terms of redistributing a virtual control signal among
redundant actuators. In [15, 19] a combination of CA with SMC is considered for
FTC.
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Chapter 2
Integral Sliding Mode Control

Variable Structure Control Systems (VSCS) are a class of systems where the control
law, as a function of the system state, is deliberately changed (from one structure
to another) according to some predefined rules: for example a relay system. During
a sliding mode the closed-loop system response is constrained to evolve along a
sliding surface in the state-space to an equilibrium point. In sliding mode schemes,
a switching function typically dictates which structure of control law is to be used
at a particular time instant, depending on the position of the state from the sliding
surface. The set of points for which the switching function is zero is called the
sliding surface. SMC has now become an established tool to design controllers for
uncertain systems, and provides robustness properties against matched uncertainties
i.e. uncertainties that affect the plant dynamics acting in the input channels. However
this robustness against external disturbances and parameter variations matched to the
control can only be achieved after the occurrence of the sliding mode. Before the
occurrence of the sliding mode i.e. during the so-called reaching phase, the system
is affected by external disturbances—even matched ones. In order to eliminate the
reaching phase and to ensure robustness throughout the entire closed-loop system
response (i.e. to enforce a slidingmode for all time) the idea of Integral SlidingModes
(ISM) was proposed. In this chapter a step-by-step design procedure is described for
the synthesis of sliding mode controllers; then these ideas are extended to integral
sliding modes in order to ensure robustness throughout the entire system response.
Necessary conditions for the existence of slidingmodes are also given. The properties
of the systemwhile in the sliding mode are also explained, and are examined through
simulations.

2.1 Introduction

SMC is a useful robust technique to handle sudden and large changes in the system
dynamics and has been applied to many areas—for example motor control, aircraft
and spacecraft control, process control and power systems. The realisation of a sliding

© Springer International Publishing Switzerland 2016
M.T. Hamayun et al., Fault Tolerant Control Schemes Using Integral
Sliding Modes, Studies in Systems, Decision and Control 61,
DOI 10.1007/978-3-319-32238-4_2

17



18 2 Integral Sliding Mode Control

mode controller comprises two steps. The first step is to design a sliding (switching)
surface on which the sliding motion will take place. The second step is to design
a control law, which depends on the choice of switching function and forces the
system state trajectories to reach and slide on the surface. An important condition
in the sliding mode literature is the reachability condition, which guarantees the
existence of the sliding mode. Once sliding is achieved and maintained, robustness
against matched uncertainties is guaranteed. Details of the design procedures are
given in the next sections.

2.2 Problem Statement and Equivalent Control

In order to explain the design procedure for a system where full state information is
available, consider an uncertain linear time invariant (LTI) system of the form

ẋ(t) = Ax(t) + Bu(t) + Mξ(t, x) (2.1)

where A ∈ IRn×n, B ∈ IRn×m.

Assumption 2.1 It is assumed that the matrix B has full rank i.e. rank(B) = m,
where 1 ≤ m < n and the pair (A,B) is controllable.

Assumption 2.2 ThematrixM ∈ IRn×l is assumed to be known and lies in the range
space of the input distribution matrix B i.e. R(M) ⊂ R(B), therefore it is possible
to writeM = BD for some D ∈ IRm×l.

The function ξ(t, x) represents an external disturbance or models uncertainty which
is unknown but has a known upper bound for all x and t. Therefore the uncertain
system in (2.1) can be rewritten as

ẋ = Ax(t) + Bu(t) + BDξ(t, x) (2.2)

Uncertainty of the form in (2.2), acting in the channel of the input distributionmatrix,
is referred to as matched uncertainty. As a first step, define a sliding surface as

S = {x ∈ IRn : σ(t) = 0} (2.3)

where σ(t) is a linear switching function defined as

σ(t) = Gx(t) (2.4)

where G ∈ IRm×n is a design matrix and is of full rank. Furthermore by design it is
assumed that the square matrix GB is nonsingular i.e. det(GB) �= 0. It is important
that the sliding motion on the sliding surface should be stable and robust against the
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uncertainty ξ(t, x). Therefore in order to analyse the sliding motion associated with
the sliding surface in (2.3), consider the time derivative of (2.4) given by

σ̇ (t) = Gẋ(t) (2.5)

Substituting the open-loop system equations from (2.2) into (2.5) gives

σ̇ (t) = G (Ax(t) + Bu(t) + BDξ(t, x)) (2.6)

It is assumed that the system states are forced to reach the sliding surface at time ts
say, so that for all t ≥ ts an ideal sliding motion can be obtained i.e.

σ(t) = σ̇ (t) = 0 for all t ≥ ts

The control signal u(t) such that the time derivative σ̇ (t) along the state trajectories
is equal to zero can be obtained by equating Eq. (2.6) to zero which yields

ueq(t) = −(GB)−1 (GAx(t) + GBDξ(t, x)) for t ≥ ts (2.7)

where the square matrix GB is nonsingular by design. The expression ueq(t) in (2.7)
is termed the equivalent control and can be thought of as the average value which
the control signal must take to maintain the sliding motion on the sliding surface.
However, it is not the control law that is applied to the system to induce the sliding
mode. In order to obtain an expression for the sliding motion (i.e. the motion while
the system is in the sliding mode), substituting the value of ueq(t) from (2.7) into
(2.2), yields

ẋ(t) = Ax(t) + B
(−(GB)−1(GAx(t) + GBDξ(t, x))

) + BDξ(t, x)

= (In − B(GB)−1G)︸ ︷︷ ︸
Γ

Ax(t) + (In − B(GB)−1G)BDξ(t, x) (2.8)

Note that the projection operator Γ has the property that

Γ B = 0 (2.9)

As a result, Eq. (2.8) reduces to

ẋ(t) = Γ Ax(t) for t ≥ ts (2.10)

From (2.10), it is clear that the effect of the uncertainty ξ(t, x) during the sliding
mode is completely rejected i.e. the reduced order system motion is insensitive to
matched uncertainties. Also the stability of the sliding motion depends on the choice
of sliding surface, i.e. the choice of switching matrix G.



20 2 Integral Sliding Mode Control

2.2.1 Sliding Mode Control Laws

The second step is to design a control law such that the sliding motion on the surface
S is guaranteed in finite time. A sliding mode controller for a system of the form in
(2.1) typically consists of two parts; a linear part and a nonlinear part so that

u(t) = ul(t) + un(t) (2.11)

where the nonlinear part contains a discontinuous component and is responsible
for inducing a sliding motion on S , whereas the linear part, which is normally the
nominal equivalent control, is responsible for helping tomaintain sliding. Specifically

u(t) = −(GB)−1GAx(t) − ρ(t, x)(GB)−1 σ(t)

‖σ(t)‖ for σ(t) �= 0 (2.12)

where σ(t)
‖σ(t)‖ is the unit vector component and ρ(t, x) is a scalar gain chosen large

enough (i.e. greater than the size of the uncertainty present in the system) to enforce
the sliding motion.

Remark 2.1. For single input systems, the slidingmode controller in (2.12) becomes

u(t) = −(GB)−1GAx(t) − ρ(t, x)(GB)−1sign(σ (t)) for σ(t) �= 0 (2.13)

where sign(.) is the signum function and has the property that σ sign(σ ) = |σ |.

2.3 Reachability Problem

In the sliding mode literature the controller u(t) is designed so that the so-called
reachability condition is satisfied, which is a sufficient condition to ensure that at
each time instant, the system state trajectories will converge towards the sliding
surface. Mathematically this can be expressed for the case of single input systems as

lim
σ(t)→0+

σ̇ (t) < 0 lim
σ(t)→0−

σ̇ (t) > 0 (2.14)

or in a compact form as
σ(t)σ̇ (t) < 0 (2.15)

near the sliding surface σ(t) = 0. A stronger conditionwhich ensures an ideal sliding
motion in finite time, even in the presence of external disturbances or uncertainty, is
given by

σ(t)σ̇ (t) ≤ −η|σ(t)| (2.16)
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where η represents a positive design scalar. The expression in (2.16) is often called
the η-reachability condition.

For multi-input systems, a natural multivariable version of the reachability con-
dition in (2.16) is

σ T (t)σ̇ (t) ≤ −η‖σ(t)‖ (2.17)

This is a sufficient condition to show that the sliding surface S is attractive.
In order to demonstrate that the controller designed in (2.12) satisfies the η-

reachability condition (2.17), substituting the value of (2.12) into (2.6) gives

σ̇ (t) = GAx(t) + GB

(
−(GB)−1GAx(t) − ρ(t, x)(GB)−1 σ(t)

‖σ(t)‖
)

+ GBDξ(t, x)

= −ρ(t, x)
σ (t)

‖σ(t)‖ + GBDξ(t, x) (2.18)

Pre-multiplying both sides of (2.18) by σ T (t) yields

σ T (t)σ̇ (t) = −ρ(t, x)
σ T (t)σ (t)

‖σ(t)‖ + σ T (t)GBDξ(t, x) (2.19)

and using the property that σ Tσ = ‖σ‖2, Eq. (2.19) becomes

σ T (t)σ̇ (t) = −ρ(t, x)‖σ(t)‖ + σ T (t)GBDξ(t, x)

≤ ‖σ(t)‖(−ρ(t, x) + ‖GBDξ(t, x)‖) (2.20)

For any particular choice of scalar gain ρ(t, x) such that

ρ(t, x) ≥ ‖GBDξ(t, x)‖ + η (2.21)

where η is a positive scalar, the inequality in (2.20) becomes

σ T (t)σ̇ (t) ≤ −η‖σ(t)‖ (2.22)

From (2.22), it is clear that the η-reachability condition is satisfied, which ensures
the existence of an ideal sliding motion on the sliding surface S .

2.4 A Simple Simulation Example

In this section, the design procedure for the typical sliding mode controller discussed
in the previous sections is applied to a simulation example, to offer insight into the
design procedure.
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2.4.1 Spring Mass Damper System

Asimple example of a spring-mass-damper system (SMDS), driven by a force u(t), is
considered here as shown in Fig. 2.1. It is assumed that at t = 0 the mass m is pulled
down from the equilibrium position, such that y(0) = 0.1m and ẏ(0) = 0.05m/s.
The dynamical equation of the mechanical system (Fig. 2.1) can be written as

mÿ(t) + cẏ(t) + ky(t) = u(t) (2.23)

where k is the spring constant, c is the viscous-friction coefficient and m is the mass.
A disturbance signal a sin(y) is added to the control input channel to demonstrate
the invariance against a disturbance while in the sliding mode. The values of these
constants are chosen as m = 1kg, c = 3N · s/m, k = 2N/m and a = 0.1. In order to
write the differential equation in (2.23) in state-space form, define the state variables
as x1(t) = y(t) and x2(t) = ẏ(t), which represent the position and velocity of the
mass m. Equation (2.23) can be written in terms of the state variables as

ẋ1(t) = ẏ(t) = x2(t) (2.24)

ẋ2(t) = ÿ(t) = − k

m
x1(t) − c

m
x2(t) + 1

m
(u(t) + a sin(x1(t)) (2.25)

Fig. 2.1 Spring mass
damper system
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By substituting values for the spring constant k, viscous friction coefficient c, and
mass m;

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

−2 −3

]

︸ ︷︷ ︸
A

[
x1(t)
x2(t)

]
+

[
0
1

]

︸︷︷︸
B

(u(t) + 0.1 sin(x1(t))) (2.26)

2.4.2 Simulation Objective and SMC Design

In the simulation it is assumed that at t = 0 the mass m is pulled down from the
equilibrium position such that y(0) = 0.1m and ẏ(0) = 0.05m/s. The objective here
is to design a sliding mode controller to bring the system back to the equilibrium
position from the initial conditions without overshooting in terms of displacement,
and with a settling time of not more than 6s.

The first step is to design a sliding surface. The switching function in (2.4) can be
written in terms of the states x1(t) and x2(t) as

σ(t) = [
G1 G2

] [
x1(t)
x2(t)

]
= G1x1(t) + G2x2(t) (2.27)

whereG1 ∈ IR andG2 ∈ IR. Here it is assumedG2 �= 0.While sliding, the switching
function σ(t) = 0, and Eq. (2.27) can be written as

x2(t) = −G−1
2 G1x1(t) (2.28)

It is clear from (2.28) that once x1(t) is known, the state x2(t) can be easily determined,
therefore substituting the value of (2.28) into (2.24), the sliding motion is given by

ẋ1(t) = −G−1
2 G1x1(t) (2.29)

From (2.29) it is clear that during sliding the system behaves as a reduced order
system. Choosing the value of G2 = 1, the switching matrix G takes the form

G = [
G1 1

]

In this example the value of G1 = 0.9 is chosen. Using the fact that GB = 1, the
sliding mode control law defined in (2.13) becomes

u(t) = [
2 2.1

]
x(t) − ρ(t, x) sign(σ (t)) (2.30)

Finally in order to verify that the control law u(t) in (2.30) satisfies the reachability
condition (2.16), by substituting (2.30) and (2.26) into the time derivative of (2.27):
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σ̇ (t) = G1ẋ1(t) + G2ẋ2(t)

= −ρ(t, x)sign(σ (t)) + 0.1 sin(x1(t)) (2.31)

Multiplying (2.31) with σ(t) and choosing ρ(t, x) ≥ |0.1 sin(x1(t))| + η = 0.1 + η,
it is clear the reachability condition in (2.16) has been established and

σ(t)σ̇ (t) ≤ −η|σ(t)| (2.32)

which ensures the existence of an ideal sliding mode.

2.4.3 Simulation Results

The sliding mode controller in (2.30) based on the nominal system (2.26) is now
tested in simulation using the MATLAB/SIMULINK environment. In the simula-
tions, the value of ρ(t, x) is selected as ρ(t, x) = 0.15. From Fig. 2.2 it is clear that
the disturbance has no effect on the system performance, whichmeans that the design
requirements of the displacement reaching the equilibriumpositionwith no overshoot
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Fig. 2.2 Simulation results for the SMDS with disturbance
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and within 6 s is met. The switching function plot in Fig. 2.2 shows that the sliding
surface is attained in 1 s, i.e. the sliding motion starts after t ≥ 1s. However the dis-
continuous control signal exhibits high frequency switching which is undesired in
most systems due to high wear on moving mechanical components.

2.5 Practical Sliding Mode Control Law

The discontinuity associated with the nonlinear discontinuous part of the control law
in (2.12) is the main hurdle in a practical implementation—especially in mechanical
systems. Traditionally this has been circumvented by “smoothing” the discontinuity.
After doing this the state trajectories no longer slide on the sliding surface, and instead
they evolve in the vicinity of the sliding surface: this is termed as pseudo-sliding.
However this means total invariance against matched uncertainties is not guaranteed.
Nevertheless a good (point-wise) approximation of the discontinuous control term
ensures a certain level of robustness against matched uncertainties still remains.1

One possibility is to use a sigmoidal approximation, where the unit vector term in
(2.12) is replaced by

un(t) = −ρ(t, x)(GB)−1 σ(t)

||σ(t)|| + δ
(2.33)

where δ is a small positive design scalar. In this book the sigmoidal approximation
given in (2.33), as shown in Fig. 2.3, is used. Here, the value of δ is chosen as
δ = 0.0001, and the control law in (2.30) becomes

u(t) = [
2 2.1

]
x(t) − 0.15

σ(t)

|σ(t)| + 0.0001

From Fig. 2.4, it is clear that the chattering or high frequency switching of the control
signal has been removed. Due to this approximation, the sliding motion will be in
the vicinity of the sliding surface and will be termed pseudo-sliding instead of ideal
sliding. The design requirements however are still met in the presence of the external
disturbance as can be seen in Fig. 2.4.

1An alternative approach to smoothing the discontinuity which leads to chattering is to use a higher
order sliding mode control approach [2]. Now the sliding motion takes place on the constraint set
σ = σ̇ = · · · = σ r−1 = 0 and is called an rth order sliding mode. Furthermore if it is possible to
steer σ to zero using the discontinuous control based on u̇(t), then the actual control signal u(t) will
be continuous and the unwanted chattering effects can be alleviated [3].
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Fig. 2.4 Simulation results for the SMDS with modified control law

2.6 Properties of the Sliding Mode

The properties of conventional (1st order) siding modes are summarised below:

• during a sliding mode, the order of the sliding motion is n − m, where n and m
represent the number of states and the number of inputs respectively;
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• the stability of the closed-loop sliding motion depends only on these n − m non-
negative eigenvalues;

• the performance of the closed-loop slidingmotion depends on the choice of sliding
surface;

• during sliding, the sliding motion is invariant to matched uncertainties;

It should be noted that the robustness to uncertainty is only achievedonce sliding takes
place. In the sequel, Integral Sliding Mode Control (ISMC) schemes are discussed
which eliminate the reaching phase associated with the classical SMC approach
discussed in the previous sections, and induce a sliding mode for the entire closed-
loop system response.

2.7 Integral Sliding Mode Control (ISMC)

The basic idea of ISMC was initially proposed to enforce a sliding mode from the
beginning of the system response, which means a controller based on ISMC ideas
can provide compensation to matched uncertainties throughout the entire system
response. In this section, a step-by-step design procedure for Integral Sliding Mode
(ISM) controllers is explained, and the special features associated with ISMC design
are discussed. Again in this section, it is assumed that state information is available
for the controller design.

2.7.1 Introduction

In ISMC, it is assumed that there exists a nominal plant, forwhich a properly designed
state feedback controller has already been designed to ensure asymptotic stability
of the closed-loop system, and to satisfy predefined performance specifications. A
discontinuous controller is ‘added’ to the nominal state feedback controller to ensure
the nominal performance is maintained, and the system is insensitive to external dis-
turbances (faults/failures from a FTC perspective). This design philosophy provides
the opportunity to retro-fit an ISM to the existing baseline controller to compen-
sate for the matched uncertainties and external disturbances throughout the system
response. As demonstrated in this chapter, when using sliding mode based schemes,
the system state trajectories are insensitive to matched uncertainties while in the slid-
ing mode. However no discussion has been made regarding unmatched uncertainties
i.e. uncertainties which are not in the range space of the input distribution matrix.
This will be addressed in the remainder of the chapter.
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2.7.2 Problem Statement and ISM Controller Design

To explain the design procedure, consider an uncertain LTI system of the form

ẋ(t) = Ax(t) + Bu(t) + Mξ(t, x) + fu(t, x) (2.34)

subject to Assumptions2.1 and 2.2, where ξ(t, x) is a bounded unknown disturbance
and the matrix M satisfies the matching condition and can be written as M = BD,
for some D ∈ IRm×l.

Assumption 2.3 The function fu(t, x) represents unmatched uncertainty i.e. it does
not lie within the range space of matrix B, but is assumed to be bounded with known
upper bound.

The nominal linear system associated with Eq. (2.34) can be written as

ẋ(t) = Ax(t) + Buo(t) (2.35)

where uo(t) is a nominal control law which can be designed by any suitable state
feedback paradigm to achieve desired nominal performance. Since it is assumed that
the pair (A,B) is controllable, then there exists a state feedback controller of the form

uo(t) = −Fx(t) (2.36)

where F ∈ IRm×n is a state feedback gain to be designed, so that the state trajectories
of the nominal system (2.35), say xo(t), are stable and meet the performance specifi-
cations. ThematrixF can be designed using any state feedback design approach. The
objective is to design a control law u(t), such that the state trajectories x(t) of (2.34),
while in the sliding mode satisfy the condition x(t) ≡ xo(t) for all time if fu(.) = 0,
starting from the initial time instant i.e. when x(0) ≡ xo(0). To achieve x(0) ≡ xo(0)
the order of the sliding dynamics should be the same as the nominal system.

2.7.3 Design Principles

Define a control law u(t) of the form

u(t) = uo(t) + un(t) (2.37)

where uo(t) is the nominal controller and un(t) is a nonlinear injection to induce a
sliding mode. Then using (2.37), (2.34) can be written as

ẋ(t) = Ax(t) + Buo(t) + Bun(t) + BDξ(t, x) + fu(t, x) (2.38)
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where uo(t) is the state feedback controller defined in (2.36), and where un(t) is
chosen to reject the disturbance term ξ(t, x) while in the sliding mode. Here the
switching function is defined as

σ(t) = Gx(t) + z(t) (2.39)

whereG ∈ IRm×n is design freedom and z(t) is to be specified. Since thematrixB is of
full rank, the switching matrix G can be chosen so that the matrix GB is nonsingular
i.e. det(GB) �= 0. During sliding σ(t) = σ̇ (t) = 0 and therefore

σ̇ (t) = Gẋ(t) + ż(t) = 0 (2.40)

In order to ensure that the equivalent control term associated with un(t) rejects the
effect of the matched disturbance term ξ(t, x) (in the case when fu(t, x) = 0), so that
the condition x(t) ≡ xo(t) is satisfied for all t > 0, substituting the value of (2.38)
into (2.40) gives:

σ̇ (t) = G (Ax(t) + Buo(t) + Bun(t) + BDξ(t, x)) + ż(t) = 0 (2.41)

During sliding it is expected that uneq(t) = −Dξ(t, x), i.e. it should compensate for
the uncertainty, then selecting

ż(t) = −G(Ax(t) + Buo(t)), z(0) = −Gx(0) (2.42)

ensures
σ̇ (t) = GBun(t) + GBDξ(t, x) (2.43)

and so during sliding uneq(t) = −Dξ(t, x). Substituting the value of uneq(t) into (2.38)
means the integral sliding mode is governed by

ẋ(t) = Ax(t) + Buo(t) (2.44)

which confirms that the condition x(t) ≡ xo(t) is satisfied if fu(t, x) = 0 and x(0) =
xo(0). In the case when fu(t, x) �= 0 in (2.38), the equivalent control obtained from
(2.41) can be written as

uneq(t) = −(GB)−1GBDξ(t, x) − (GB)−1Gfu(t, x)

= −Dξ(t, x) − (GB)−1Gfu(t, x) (2.45)

Substituting the value of equivalent control uneq(t) from (2.45) into (2.38) and sim-
plifying, the expression for the integral sliding mode dynamics can be written as

ẋ(t) = Ax(t) + Buo(t) + (I − B(GB)−1G)︸ ︷︷ ︸
Γ

fu(t, x) (2.46)
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From Eq. (2.46), it is clear that the effect of the matched uncertainty has been com-
pletely rejected while in the sliding mode. However the matrix Γ in (2.46) can
amplify the effect of unmatched uncertainty fu(t, x). Therefore the objective in the
next section is to design the integral sliding surface design parameter G to avoid any
amplification of the unmatched uncertainty.

2.7.4 Integral Switching Surface

Using Eqs. (2.39) and (2.42), an integral switching function which eliminates the
reaching phase is

σ(t) = Gx(t) − Gx(0) − G
∫ t

0
(Ax(τ ) + Buo(τ )) d(τ ) (2.47)

The term −Gx(0) ensures that σ(0) = 0, so the reaching phase is eliminated. The
sliding mode will exist from time t = 0 and the system will be robust throughout the
entire closed-loop system response against matched uncertainties.

From the previous analysis, it is clear that in the case of only matched uncertainty,
then any choice of G which ensures GB is invertible is sufficient for the ISM design,
but for unmatched uncertainty, a specific choice ofG is needed. Here it will be argued
that

G = B+ = (BTB)−1BT (2.48)

is an appropriate choice. Note G in (2.48) is the Moore–Penrose left pseudo-inverse
of the input distribution matrix B. The particular choice of G in (2.48) brings two
advantages:

1. the modulation gain associated with un(t) in (2.37) is minimised which means
the amplitude of the chattering can be reduced;

2. it avoids amplifying the effect of the unmatched disturbance.

This choice of G also has the simplifying property that

GB = (BTB)−1BT

︸ ︷︷ ︸
G

B = Im

and ensures that the square matrixGB is nonsingular. With the choice ofG in (2.48),
the projection operator Γ in (2.46) becomes

Γ = In − B(BTB)−1BT (2.49)

Notice that the projection operator Γ in (2.49) is symmetric and idempotent i.e.
Γ 2 = Γ . The properties of symmetry and idempotency imply that ‖Γ ‖ = 1, which
means that the effect of fu is not amplified since ‖Γ fu‖ ≤ ‖fu‖. In fact, it can be
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proved that ‖I − B(GB)−1G‖ ≥ 1 for any G, and so the choice of G in (2.48) is an
optimal one in the sense of non-amplification of the unmatched uncertainty.

2.7.5 Integral Sliding Mode Control Laws

An integral sliding mode controller will now be designed based on the nominal
system in (2.35). The control law has a structure given by

u(t) = uo(t) + un(t) (2.50)

where uo(t) is the linear part of the controller, and un(t) is the discontinuous part to
enforce a sliding mode along the sliding surface in (2.47). One choice of u(t) is

u(t) = −Fx(t) − ρ(t, x)(GB)−1 σ(t)

‖σ(t)‖ for σ(t) �= 0 (2.51)

where F is the state feedback controller which is responsible for the performance of
the nominal system and ρ(t, x) is the modulation gain to enforce the sliding mode—
whose precise value is given in the next subsection.

2.7.6 The Reachability Condition

To justify that the controller designed in (2.51) satisfies the η-reachability condition
(2.22), which is a sufficient condition to ensure the existence of an ideal sliding
motion, it can be shown from (2.34) and (2.36) that

σ̇ (t) = G (Ax(t) + Bu(t) + BDξ(t, x) + fu(t, x)) − GAx(t) + GBFx(t)

then substituting from (2.51), and after some simplification

σ̇ (t) = GAx(t) + GB(−Fx(t) + un(t)) + GBDξ(·) + Gfu(·) − GAx(t) + GBFx(t)

= −ρ(t, x)
σ (t)

‖σ(t)‖ + GBDξ(t, x) + Gfu(t, x) (2.52)

Then

σ T (t)σ̇ (t) = −ρ(t, x)‖σ(t)‖ + σ T (t)Dξ(t, x) + σ T (t)Gfu(t, x)

≤ ‖σ(t)‖(−ρ(t, x) + ‖Dξ(t, x)‖ + ‖Gfu(t, x)‖) (2.53)
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where the fact that GB = Im, has been used. In order to enforce a sliding mode
the value of the modulation gain ρ(t, x) should be greater than any disturbance or
uncertainty in the system, and therefore for any choice of ρ(t, x) which satisfies

ρ(t, x) ≥ ‖D‖‖ξ(t, x)‖ + ‖G‖‖fu(t, x)‖ + η (2.54)

where η is some positive scalar, the η-reachability condition

σ T (t)σ̇ (t) ≤ −η||σ(t)|| (2.55)

is satisfied.

Remark 2.2. Inequality (2.55) can also be interpreted from a Lyapunov perspec-
tive. Define V (t) = 1

2σ
T (t)σ (t), then V̇ (t) = σ T (t)σ̇ (t) and from the inequalities in

(2.53)–(2.55) it follows

V̇ (t) ≤ −η||σ(t)|| = −η
√
2V (t) (2.56)

Integrating both sides of (2.56) yields

√
2V (t) − √

2V (0) ≤ −ηt

which implies V (t) ≡ 0 in less than η√
2V (0)

units of time.

2.7.7 Properties of Integral Sliding Mode

The properties of integral sliding modes can be summarised as follows:

• there is no reaching phase and a sliding mode is enforced throughout the entire
system response;

• during sliding, the order of the motion is the same as the original system;
• by a suitable choice of sliding surface, the effect of unmatched uncertainty can be
ameliorated;

• during the sliding mode, the system motion is invariant to matched uncertainties;
• the ISMapproach has the ability to be retro-fitted to an existing feedback controller;

2.7.8 Simulation Example

Here in this section, to make a direct comparison, the simulation scenario of the
spring-mass-damper system from Sect. 2.4 will be simulated. Recall the system was
represented as
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[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

−2 −3

]

︸ ︷︷ ︸
A

[
x1(t)
x2(t)

]
+

[
0
1

]

︸︷︷︸
B

(u(t) + 0.1 sin(x1(t)))

The objective is to design an ISM controller to bring the system back to the equilib-
rium position from the initial conditions without overshooting in terms of displace-
ment, and with a settling time not more than 6s. The integral switching function from
Eq. (2.47) is

σ(t) = Gx(t) − Gx(0) − G
∫ t

0
(A − BF) x(τ )d(τ )

where the value of G is chosen as in (2.48), and here is equal to

G = (BTB)−1BT = [
0 1

]
(2.57)

The gain F in this example has been designed using the linear quadratic regulator
(LQR) method,2 and aims to regulate the system states to the origin by minimising
the cost function

J =
∫ ∞

0
(x(t)TQx(t) + uo(t)

TRuo(t))dt (2.58)

where Q is a symmetric positive definite (s.p.d.) matrix and R is a positive scalar.
These matrices penalise the magnitude of the control signal uo(t) and the deviation
of the system states from the origin. Here the values of Q and R are chosen as
Q = diag(1, 0.5) and R = 1, which results in the matrix

F = [
0.2361 0.1579

]

The ISM control law is

u(t) = −Fx(t) − ρsign(σ (t)) for σ(t) �= 0 (2.59)

since the choice of G in (2.57) makes GB = 1. Here ρ is a fixed scalar satisfying
ρ = 0.1 + η where η > 0. It is easy to check that the control law u(t) satisfies the
reachability conditionσ(t)σ̇ (t) ≤ −η|σ(t)|.Here the sigmoidal approximationgiven
in (2.33) and shown in Fig. 2.3 is used, and therefore the ISM control law in (2.59)
is modified to become

u(t) = −Fx(t) − ρ
σ(t)

|σ(t)| + δ
(2.60)

where the value of the small positive scalar δ is chosen as δ = 0.0001, to eliminate
chattering. The control law u(t), after substituting for the value ofF, can bewritten as

2This is a well-known ‘classical’ state-space technique: for details see for example [4].
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Fig. 2.5 Simulation results for the SMDS nominally (with ISMC)

u(t) = −0.2361x1(t) − 0.2361x2(t) − ρ
σ(t)

|σ(t)| + δ

The displacement plots in Figs. 2.5 and 2.6 show that the design requirements are
met both nominally (without any disturbance) and in the presence of a disturbance
term. From Fig. 2.6, it is clear that the effect of the disturbance 0.1 sin(x1(t)) has
been completely rejected. From the switching function plots in Figs. 2.5 and 2.6, it
is clear there is no reaching phase i.e. the sliding mode starts from time t = 0.

2.8 Sliding Modes as a Candidate for FTC

Sliding mode based control schemes are a strong candidate for fault tolerant con-
trol because of their inherent robustness to matched uncertainties. As argued in
Sect. 1.3.1, actuator faults can be effectively modelled as matched uncertainties and
therefore sliding mode based control schemes have an inherent capability to directly
dealwith actuator faults.However actuator failures cannot be handled directly by slid-
ing modes schemes because the complete loss of effectiveness in a channel destroys

http://dx.doi.org/10.1007/978-3-319-32238-4_1
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Fig. 2.6 Simulation results for the SMDS with disturbance (with ISMC)

the regularity of the sliding mode, and a unique equivalent control signal can no
longer be determined.

In the subsequent chapters, Control Allocation (as discussed in Sect. 1.3.3) is con-
sidered as a potential candidate to be combinedwith ISMcontrol to deal with actuator
faults or failures due to its ability to effectively manage the actuator redundancy and
to redistribute the control signals to the healthy actuators in the case of an actuator
failure. The use of integral sliding modes ensures robustness for all time by eliminat-
ing the reaching phase associated with ‘classical’ SMC based methods. Furthermore
integral sliding modes have the capacity to be retro-fitted to the existing controller
design to introduce fault tolerance without changing or altering the existing control
loops, which is advantageous from an industrial perspective.

2.9 Notes and References

The term sliding mode was first used in the literature in the context of relay systems
[5]. Sliding mode control (SMC) is a particular class of variable structure control
systems (VSCS) [6]. VSCS evolved from work in Russia in the early 1960s and
spread around the world in the late 1970s after the publication of the survey paper by

http://dx.doi.org/10.1007/978-3-319-32238-4_1
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Utkin [7]. SMC design paradigms [1, 2, 5] have become mature techniques for the
control of uncertain systems and provide effective solutions against matched uncer-
tainties; however to provide compensation against matched uncertainties throughout
the entire system response, the idea of integral sliding mode control was initially
proposed in [5, 8–10]. In [11–13], integral sliding mode control ideas were used
for uncertain systems considering both matched and unmatched uncertainties and
demonstrated that the system dynamics while on the sliding surface meet the per-
formance specifications in the presence of matched uncertainties. In [13], it was
first demonstrated that the effect of mismatched uncertainties can be minimised by
the suitable choice of an integral sliding surface (the specific choice of G is given in
Sect. 2.7.4). Details of the integral sliding mode approach in the context of robust LQ
output control (but not in the context of FTC) can be found in [14]. Different methods
have been used in the literature to smooth the transition near the sliding surface to
remove chattering—see for example Chap.3 in [1, 15]. An alternative approach to
smoothing the discontinuous switching control law (which leads to chattering) is to
use a higher order sliding mode control approach [3]. Many researchers have iden-
tified SMC as a potential candidate for FTC, see for example [16–20]. Researchers
in [21] have focused on fault reconstruction and fault tolerant control schemes for
aerospace applications using traditional SMC approaches. In [16, 17], it was argued
that SMC could deal with significant and sudden changes in the system dynamics due
to actuator faults and has the capability to become an alternative to reconfigurable
control systems. In [18], a ‘hedging’ based SMC design is used to reduce the effect
of neglected parasitic dynamics in a longitudinal control system for an aircraft. In
[16, 19] the authors have demonstrated the combination of SMC with control allo-
cation for FTC purposes. Recently in [22], a continuous integral sliding mode FTC
scheme was proposed using a higher order sliding mode observer by incorporating
fixed control allocation.
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Chapter 3
Design and Analysis of an Integral Sliding
Mode Fault Tolerant Control Scheme

One of the important elements necessary for achieving FTC, is the availability of
redundant actuators. This provides increased freedom in terms of controller design
to mitigate the effects of faults and failures. Although these ‘redundant’ actuators are
often designed for different purposes, in the event of an emergency (such as faults or
failures to the primary actuators), they can be used to retain satisfactory performance.
This chapter is concernedwith the development of fault tolerant controllers for a class
of linear systems with redundant actuators. This redundancy will be exploited to
achieve tolerance to a specified class of faults/failures, which includes the possibility
of total failure to certain primary actuators. Furthermore the precise class of total
actuator failure which can be accommodated is identified. The idea is to design an
ISM controller based on a ‘virtual’ system. The associated virtual control signal
is then translated into actual control surface deflections using CA. This distinctive
design strategy is beneficial since only one controller is designed to cover a wide
range of fault/failure cases, while the CA redistributes the signals to the available
‘healthy’ actuators. The scheme uses the measured or estimated effectiveness level
of the actuators to redistribute the control effort during faults/failures to maintain
close to nominal closed-loop performance without reconfiguring the controller. The
relative error in the estimation of the actuator effectiveness gains is also taken into
consideration. The stability test in this chapter allows an effective synthesis procedure
to be employed using Linear Matrix Inequality (LMI) optimisation to compute the
parameters involved in the control law. The effectiveness of the scheme against faults
or failures is tested in simulation based on a large transport aircraft model.

3.1 System Description and Problem Formulation

In this chapter an LTI system with actuator faults or failures is modelled as

ẋ(t) = Ax(t) + BW (t)u(t) (3.1)

© Springer International Publishing Switzerland 2016
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where A ∈ IRn×n, B ∈ IRn×m, and

W (t) = diag(w1(t), . . . ,wm(t)) (3.2)

is a diagonal semi-positive definite matrix.

Assumption 3.1 The pair (A,B) is assumed to be controllable.

The time varying scalarsw1(t), . . . ,wm(t)model the effectiveness level of the actua-
tors. As discussed in Sect. 1.1.1, ifwi(t) = 1, it means that the ith actuator has no fault
(i.e. a 100% healthy actuator) and is working perfectly, whereas if 1 > wi(t) > 0,
an actuator fault is present i.e. the actuator functions with reduced capability. If
wi(t) = 0, actuator i has completely failed and the control input component ui has no
effect on the system dynamics. The matrixW (t) will be termed the efficiency matrix
indicating the health level of each actuator. Associate with (3.1) a set of controlled
outputs

yc(t) = Cx(t) (3.3)

where C ∈ IRl×n and l < m. The variables yc(t) are required to respond to desired
(external) commands. In terms of ‘controlling’ these outputs it follows that only l
independent actuators are required to produce the required closed-loop performance.
The remainingm− l actuators constitute redundancy and can be exploited to achieve
fault tolerance. In this chapter an estimate of the actuator efficiency

Ŵ (t) = diag(ŵ1(t), . . . , ŵm(t)) (3.4)

where the scalars 0 ≤ ŵi(t) ≤ 1, will be used explicitly in the control law. One
way to obtain an estimate of the actuator efficiency is by using a measurement of
the actual actuator deflection compared to the demand. Such information is typically
available in many safety critical systems e.g. passenger aircraft.1 In other situations
Ŵ (t) would need to be provided by an FDI scheme. It is important to note that
whatever method is employed, the estimate Ŵ (t) will not be perfect and there will
be a difference between the actual efficiency matrix W (t), and its estimate Ŵ (t):

Assumption 3.2 It is assumed

W (t) = (I − �(t))Ŵ (t) (3.5)

where the ‘uncertainty’

�(t) = diag(δ1(t), . . . , δm(t)) (3.6)

represents the estimation error. The unknown scalars δ1(t), . . . , δm(t)model the level
of imperfection in the fault estimation.

1See for example [1].

http://dx.doi.org/10.1007/978-3-319-32238-4_1
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The effect of this imperfection will be analysed later. In this chapter a virtual control
concept for resolving actuator redundancy will be employed. In Sect. 1.3.3 the input
distribution matrix B was factorised into two matrices (i.e. B = BνBu, where Bν ∈
IRn×k and Bu ∈ IRk×m and both have rank k < m). This factorisation is only possible
if rank(B) = k < m. In many actuator redundant systems, this condition is not
satisfied. However re-ordering of the states is possible, and the input distribution
matrix B can be partitioned as:

B =
[
B1

B2

]
(3.7)

where B1 ∈ IR(n−l)×m and B2 ∈ IRl×m is of rank l < m. Suppose that by design of
the partition in (3.7), the pair (A,Bv) where Bv = BBT

2 , is controllable. In aircraft
systems for example, the component B2 is associated with the equations of angular
acceleration in pitch, roll and yaw, because the control objectives in (most) aircraft
systems can be obtained by commanding the desired moments.

Assumption 3.3 It is assumed the partition of matrix B is such that the elements of
B2 have large magnitude compared to ‖B1‖, so that the channels associated with B2

represents the dominant contribution of the control action on the system.

Although this is a restriction, aircraft systems often satisfy such a constraint. By
hypothesis ‖B1‖ is assumed to be small. To create this separation, a permutation of
the states must usually be undertaken. The virtual control input is defined as

ν(t) := B2u(t) (3.8)

where ν(t) ∈ IRl can be interpreted as the total control effort produced by the
actuators. Once the partition of B in (3.7) has been achieved, the states can be scaled
so that B2BT

2 = Il i.e. ‖B2‖ = 1. This can be achieved without loss of generality,
because rank(B2) = l. The physical control signal u(t) sent to the actuators can be
determined from Eq. (3.8) as

u(t) = B†
2(t)ν(t) (3.9)

where B†
2(t) ∈ IRm×l is a weighted right pseudo-inverse of the matrix B2. Thus

the matrix B†
2(t) provides some design freedom and ‘distributes’ the virtual control

signal to the physical actuators via (3.9).Different researchers have utilised the design
freedom in the pseudo-inverse matrix in different ways. A generic choice of B†

2(t)
such that B2B

†
2(t) = Il is

B†
2(t) = Ŵ (t)BT

2 (B2Ŵ (t)BT
2 )−1 (3.10)

assuming det(B2Ŵ (t)BT
2 ) �= 0.

Remark 3.1 In the special case when there are no faults present in the system i.e.
when Ŵ (t) = Im, then the weighted right pseudo-inverse matrix B†

2(t) simplifies to

http://dx.doi.org/10.1007/978-3-319-32238-4_1
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Fig. 3.1 Schematic of the overall control strategy

B†
2(t) = BT

2 , using the fact that B2BT
2 = Il. This means the physical control law in

(3.9) becomes
u(t) = BT

2 ν(t) (3.11)

The overall control structure in block diagram form is presented in Fig. 3.1, where
the virtual control signal ν(t) is designed using integral sliding mode control ideas.
The virtual control is translated into the actual control signal u(t) by using control
allocation based on knowledge of Ŵ (t). In order to clarify the set of faults or failures
the scheme can tolerate, define the set

W = {(ŵ1, . . . , ŵm) ∈ [
0 1

] × · · · × [
0 1

]

︸ ︷︷ ︸
m times

: det(B2ŴBT
2 ) �= 0} (3.12)

Because l < m, it is possible that det(B2Ŵ (t)BT
2 ) �= 0 even if up to m − l of the

entries ŵi(t) = 0 in the matrix Ŵ (t): in other words, potentially up tom− l actuators
can totally fail and yet det(B2Ŵ (t)BT

2 ) �= 0. However if more than m − l entries are
zero, then rank(Ŵ (t)) < l and det(B2Ŵ (t)BT

2 ) = 0. The set W will be shown to
constitute the faults/failures for which closed-loop stability can be maintained.

Substituting (3.9) into (3.1) and using (3.10) results in

ẋ(t) = Ax(t) +
[
B1(I − �(t))Ŵ 2(t)BT

2 (B2Ŵ (t)BT
2 )−1

B2(I − �(t))Ŵ 2(t)BT
2 (B2Ŵ (t)BT

2 )−1

]
ν(t) (3.13)

with
ν̂(t) := (B2Ŵ

2(t)BT
2 )(B2Ŵ (t)BT

2 )−1ν(t) (3.14)

and then (3.13) can be written as

ẋ(t) = Ax(t) +
[
B1(I − �(t))B+

2 (t)
B2(I − �(t))B+

2 (t)

]

︸ ︷︷ ︸
B̂(t)

ν̂(t) (3.15)
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where
B+
2 (t) := Ŵ 2(t)BT

2 (B2Ŵ
2(t)BT

2 )−1 (3.16)

Notice that B+
2 (t) is a weighted right pseudo-inverse of B2 since B2B

+
2 (t) = Il, for

all Ŵ (t) ∈ W . Furthermore when Ŵ (t) = I , then B+
2 (t) = BT

2 (B2BT
2 )−1 = BT

2 .

Remark 3.2 Note that whilst the pseudo-inverse B†
2(t) defined in (3.10) is used for

control allocation, the pseudo-inverse B+
2 (t) defined in (3.16) plays a significant role

in the closed-loop analysis which will be demonstrated in the sequel.

For the closed-loop stability analysis, an upper bound on the norm of the weighted
pseudo-inverseB+

2 (t) is required.Here results on the boundedness of pseudo-inverses
will be exploited2: Specifically there exists a scalar γo such that

‖B+
2 (t)‖ = ‖Ŵ 2(t)BT

2 (B2Ŵ
2(t)BT

2 )−1‖ < γo (3.17)

for all (ŵ1(t), . . . , ŵm(t)) ∈ W .
In the case when the estimates of the efficiency matrix are perfect (i.e. �(t) = 0),

and when there are no faults present (i.e. Ŵ (t) = I), Eq. (3.15) simplifies to

ẋ(t) = Ax(t) +
[
B1BT

2
Il

]

︸ ︷︷ ︸
Bν

ν(t) (3.18)

since B+
2 (t)|Ŵ (t)=I = BT

2 . The nominal fault-free equation (3.18) will be used to
design the control scheme. During faults or failures the inherent properties of integral
sliding modes will be relied upon.

Assumption 3.4 The pair (A,Bv) associated with (3.18) is controllable.

Since the pair (A,Bv) associated with (3.18) is assumed to be controllable, then there
exists a state feedback controller ν(t) = −Fx(t), so that the nominal system

ẋ(t) = (A − BνF)x(t) (3.19)

is stable. The state feedback controller F can be designed to achieve optimality
against some appropriate criteria. The choice of the matrix F will be discussed in the
sequel.

2Here the results from Stewart [2] will be exploited: specifically if X is a full column rank matrix
andW is a diagonal matrix with positive scalars, then the weighted left pseudo-inverse of X defined
by X+ = (XTWX)−1XTW is norm bounded by some number that is independent of W .
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3.2 Integral Sliding Mode Controller Design

This section, develops a systematic design procedure for the synthesis of an ISM
controller. There are two steps to design an ISM controller, first a sliding surface is
designed, and then in the second step, a control law to induce and maintain a sliding
motion is created.

3.2.1 Integral-Type Switching Surface Design

The ideas of integral sliding surface control discussed in Chap. 2 will be used here
for the system in (3.18) associated with the virtual control input ν(t). The sliding
surface is defined by the set:

S = {x ∈ IRn : σ(t) = 0} (3.20)

where the switching function σ(t) ∈ IRl is defined as

σ(t) := Gx(t) − Gx(0) − G
∫ t

0
(A − BνF) x(τ )dτ (3.21)

and G ∈ IRl×n is design freedom. At t = 0, the switching function σ(0) = 0, and
hence the reaching phase is eliminated. In Chap.2, it was shown that, in the case of
matched uncertainty, the sliding motion associated with (3.21) is always nominally
governed by (A−BνF) independent of the choice ofG, but the effects of unmatched
uncertainty cannot be rejected while in the sliding mode. Here G will be chosen to
attempt to ameliorate the effects of unmatched uncertainty as discussed in Chap. 2.
In this chapter

G := B2(B
TB)−1BT (3.22)

is suggested. Notice that since by definition Bν = BBT
2 , this choice of G in (3.22)

has the property that

GBν = B2(B
TB)−1BTBBT

2 = B2B
T
2 = Il

and so G in (3.22) is a specific choice of left-pseudo-inverse of Bν .

Remark 3.3 The choice of G in (2.48), is a left-pseudo-inverse of the virtual input
matrix Bν and ensures that while in the sliding mode the impact of unmatched
uncertainty will not be amplified. With the choice of G in (3.22) generically
GB̂(t) = Il − B2�(t)BT

2 i.e. a symmetric matrix. The symmetry is important and
simplifies much of the subsequent analysis and avoids the introduction of conser-
vatism. Also nominally, when there are no faults and W (t) = I , from the special
properties of the matrix B2, it follows that GB̂(t)|W (t)=I = B2BT

2 = I . This means,

http://dx.doi.org/10.1007/978-3-319-32238-4_2
http://dx.doi.org/10.1007/978-3-319-32238-4_2
http://dx.doi.org/10.1007/978-3-319-32238-4_2
http://dx.doi.org/10.1007/978-3-319-32238-4_2
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nominally, G has the ‘pseudo-inverse properties’ which are optimal from the point
of view of minimising the impact of unmatched uncertainties on the closed-loop
dynamics.

From (3.21) it is easy to see that

σ̇ (t) = Gẋ(t) − GAx(t) + GBνFx(t) (3.23)

Substituting (3.15) in (3.23), and using the fact that GBν = I , yields

σ̇ (t) = GB̂ν̂(t) + Fx(t) (3.24)

The equivalent control can be obtained by solving for ν̂(t) in σ̇ (t) = 0 which yields

ν̂eq(t) = −(GB̂)−1Fx(t) (3.25)

Adding and subtracting Fx(t) in Eq. (3.25) and substituting into (3.15) yields

ẋ(t) = (A − BνF)x(t) + (
Bν − B̂(GB̂)−1

)
Fx(t) (3.26)

where Bν is defined in (3.18) and B̂ is defined in (3.15). UsingG as defined in (3.22),
further simplifying Eq. (3.26) gives:

ẋ(t) = (A − BνF)x(t) + B̃Φ̃(t)Fx(t) (3.27)

where the time varying uncertain term is

Φ̃(t) := B1B
T
2 − B1(I − �(t))B+

2 (t)(B2(I − �(t))B+
2 (t))−1 (3.28)

and

B̃ :=
[
In−l

0

]
(3.29)

Remark 3.4 Notice in the case of perfect knowledge of the actuator efficiency (i.e.
�(t) = 0), and when there are no faults in the system (i.e. Ŵ (t) = I), the matrices
B̂|Ŵ (t)=I = Bν and B+

2 (t)|Ŵ (t)=I = BT
2 . As a consequence Φ̃(t) = 0 and Eq. (3.27)

simplifies to
ẋ(t) = (A − BνF)x(t) (3.30)

which is stable by design of the state feedback gain F. The nominal equation (3.30)
constitutes ideal fault-free behavior. In the case, when there is uncertainty in the fault
estimation i.e. �(t) �= 0, and during faults or failures i.e. Ŵ (t) �= Im, the uncertain
term Φ̃(t) �= 0. This will be treated as unmatched uncertainty in the closed-loop
stability analysis. Therefore for the generic fault/failure case, closed-loop stability
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needs to be proven since the closed-loop system equation (3.27) depends on matrices
Ŵ (t) and �(t).

3.2.2 Closed-Loop Stability Analysis

In the presence of faults/failures, the closed-loop system (assuming a sliding motion
is maintained) is governed by

ẋ(t) = (A − BνF + B̃Φ̃(t)F)x(t) (3.31)

To ensure closed-loop stability in the presence of the unmatched term Φ̃(t), the small
gain theorem is used. In the subsequent analysis, define a transfer function matrix

G̃(s) = F(sI − Ã)−1B̃ (3.32)

where Ã := A − BνF. By construction, G̃(s) is stable, and define

γ2 = ‖G̃(s)‖∞ (3.33)

Proposition 3.1 Assume the effectiveness gain estimate Ŵ (t) is sufficiently accurate
so that the condition �maxγo < 1 holds, where γo is defined in (3.17) and ‖�(t)‖ <

�max bounds the relative error in the estimation of the effectiveness gains. Then
during fault/failure conditions, for any (ŵ1(t), . . . , ŵm(t)) ∈ W , the sliding motion
in (3.31) will be stable if:

γ2 γ1(1 + γo)

1 − �maxγo
< 1 (3.34)

where γo > ‖B+
2 (t)‖, γ1 = ‖B1‖ and γ2 is as defined in (3.33).

Proof The system in (3.31), which represents the dynamics of the sliding motion,
can be written as

ẋ(t) = Ãx(t) + B̃ũ(t) (3.35)

ỹ(t) = Fx(t) (3.36)

where
ũ(t) = Φ̃(t)ỹ(t) (3.37)

In this form, the differential equation in (3.31) may be considered to be the closed-
loop dynamics of the negative feedback interconnection of G̃(s) and the ‘feedback
gain’ in (3.37) as shown in Fig. 3.2.
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Fig. 3.2 Feedback
interconnection of G̃(s)
and Φ̃(t)

G̃(s)

Φ̃(t)

−

ũ ỹ

According to the small gain theorem, (see Appendix B.1.2) if

‖G̃(s)‖∞‖Φ̃(t)‖ < 1 (3.38)

then (3.31) will be stable. In (3.38), ‖G̃(s)‖∞ is theH∞ norm of the transfer function
G̃(s) (which is equal to theL2 gain of the system in the time domain) and ‖.‖ is the
induced spectral norm. From (3.28) it is clear that

‖Φ̃(t)‖ ≤ ‖B1B2‖ + ‖B1(I − �(t))B+
2 (t)‖‖(B2(I − �(t))B+

2 (t))−1‖ (3.39)

Using the fact that ‖B2‖ = 1, B2B
+
2 (t) = Il and also that for a generic square matrix

X, in general ‖(I − X)−1‖ ≤ (1 − ‖X‖)−1 if ‖X‖ < 1, then

‖Φ̃(t)‖ ≤ ‖B1‖ + ‖B1‖(1 + �max)‖B+
2 (t)‖(I − ‖B2�(t)B+

2 (t)‖)−1 (3.40)

This is well-defined since ‖B2�(t)B+
2 (t)‖ < �maxγo < 1. Since γo > ‖B+

2 (t)‖ and
γ1 = ‖B1‖, inequality (3.40) becomes

‖Φ̃(t)‖ ≤ γ1(1 + γo)

1 − �maxγo
(3.41)

Since γ2 = ‖G̃(s)‖∞, in conjunction with (3.41), it is clear that if inequality (3.34)
holds, the small gain condition (3.38) holds, and consequently the system in (3.31)
is stable. �

Remark 3.5 By hypothesis, γ1 = ‖B1‖ is assumed to be small. Note that from (3.39)
the size ‖B1‖ has a significant impact on the norm of the nonlinearity in the small
gain feedback loop. If ‖B1‖ is small, the gain of the nonlinearity is small, and there is
a less stringent requirement on the magnitude of theH∞ norm of the linear transfer
function matrix. Furthermore, ‖Φ̃(t)‖ → 0 as ‖B1‖ → 0 and Proposition 3.1 is
trivially satisfied.

Remark 3.6 In the case of exact estimation of the effectiveness matrix W (t), i.e.
Ŵ (t) = W (t) and �(t) = 0, the stability condition (3.34) reduces to

γ2γ1(1 + γo) < 1 (3.42)
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3.2.3 Integral Sliding Mode Control Laws

Now a sliding mode control law must be designed based on the virtual system (3.15)
with respect to ν̂(t). The control structure has the form given by:

ν̂(t) = ν̂l(t) + ν̂n(t) (3.43)

where
ν̂l(t) := −Fx(t) (3.44)

The scaled unit vector

ν̂n(t) :=
{−ρ(t, x) σ(t)

||σ(t)|| if σ(t) �= 0
0 otherwise

(3.45)

where ρ(t, x) is a scalarmodulation function to enforce the slidingmotion. A suitable
choice of ρ(t, x) will be described explicitly in the sequel.

Proposition 3.2 Suppose that

‖�(t)‖ ≤ �max <
1

γo
(3.46)

where γo is defined in (3.17). If ρ(t, x) is chosen as

ρ(t, x) = �maxγo‖ν̂l‖ + η

1 − �maxγo
(3.47)

where η is a positive scalar, then, the control law in (3.43) satisfies the so-called
reachability condition and sliding on S in (3.20) is maintained.

Proof Substituting (3.15) in (3.23) gives

σ̇ (t) = (GB̂)ν̂(t) + Fx(t) (3.48)

Substituting for ν̂(t) from Eqs. (3.43)–(3.45) and then exploiting the fact that GB̂ =
(I − B2�(t)B+

2 (t)), gives

σ̇ (t) = −ρ(·) σ (t)

||σ(t)|| +B2�(t)B+
2 (t)

(
Fx(t) + ρ(·) σ (t)

||σ(t)||
)

for σ(t) �= 0 (3.49)

Consider as the candidate Lyapunov function

V (t) = 1

2
σ T (t)σ (t) (3.50)
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The time derivative of the Lyapunov function along the trajectories satisfies

V̇ = −ρ‖σ‖ + σ TB2�(t)B+
2 (t)Fx(t) + ρσ T (B2�(t)B+

2 (t))
σ

‖σ‖ for σ �= 0

and therefore

V̇ (t)≤−ρ(·)‖σ(t)‖ + ‖σ(t)‖‖B2�(t)B+
2 (t)‖‖

−ν̂l︷ ︸︸ ︷
Fx(t) ‖ + ρ(·)‖σ(t)‖‖B2�(t)B+

2 (t)‖
≤ −ρ(·)‖σ(t)‖ + (ρ(·) + ‖ν̂l‖)‖σ(t)‖�maxγo

≤ −ρ(·)(1 − �maxγo)‖σ(t)‖ + ‖ν̂l‖‖σ(t)‖�maxγo (3.51)

Substituting for ρ(t, x) from (3.47) into (3.51) gives V̇ (t) ≤ −η‖σ(t)‖ = −η√
2V (t). This implies that the sliding motion is maintained for all time. �

Finally using Eqs. (3.9), (3.10) and (3.14) it follows that the physical control law is
given by

u(t) = Ŵ (t)BT
2 (B2Ŵ

2(t)BT
2 )−1

(
− Fx(t) − ρ(t, x)

σ (t)

||σ(t)||
)

if σ(t) �= 0 (3.52)

This is the actual control signal which will be sent to the actuators, and depends on
the effectiveness levels. The controller in (3.52) can deal with actuator faults and even
total actuator failures, provided that (ŵ1(t), . . . , ŵm(t)) ∈ W and the conditions of
Proposition 3.1 are satisfied.

Remark 3.7 In this chapter, actuator position limits are not considered formally in the
control design, However the fault estimation scheme would declare it as a fault if an
actuator exceeds its position limits. This is because the actual position of the actuator
will be different from the expected position based on the commanded control signal.
The scheme attempts to reduce the burden on the faulty actuator channels (ŵi(t) < 1)
and hence mitigates the effects of actuator saturation, and redistributes the control
effort among the redundant actuators.

The results developed in this section can be summarised in the form of the following
theorem.

Theorem 3.1 The system in (3.1) is closed-loop stable for any fault/failure combi-
nation belonging to W in (3.12) under the control law (3.52), if a feedback gain F
can be found such that

γ2 γ1(1 + γo)

1 − �maxγo
< 1

where γ2 is defined in (3.33), γ1 = ‖B1‖, γo satisfies γo ≥ ‖B+
2 (t)‖ where B+

2 (t)
is defined in (3.16), and �max bounds the relative error in the estimation of the
effectiveness gains in (3.5).
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3.2.4 Design of the Controller Gains

In this section, it will be demonstrated that the stability test in Proposition 3.1 is
amenable to incorporationwithin a synthesis framework for determining the feedback
gain F in (3.19). For the nominal system (3.19), the matrix F must be chosen to
stabilise (A−BνF). Since (A,Bν) is assumed to be controllable, an LQR formulation
is adopted to synthesise the control signal ν̂(t) to minimise the energy cost function

J =
∫ ∞

0
zT z dt (3.53)

where

z =
[
Q1 0
0 R1

] [
x
ν

]
(3.54)

and Q1 and R1 are symmetric positive definite matrices. Details of the LMI formula-
tion are given in Appendix B.2.1, where it is argued the LQR problem can be posed
as an LMI optimisation:

Minimise trace(X−1) subject to

[
AX + XAT − BνY − YTBT

ν (Q1X − R1Y)T

Q1X − R1Y −I

]
< 0 (3.55)

X > 0 (3.56)

where

Q1 =
[
Q

1
2

0l×n

]
and R1 =

[
0n×l

R
1
2

]
(3.57)

In (3.55) the variable Y := FX with Y ∈ IRl×n and X ∈ IRn×n is the Lyapunov
matrix. In this LMI formulation, the decision variables are X and Y .

However in addition, the small gain stability condition (3.34) needs to be satisfied.
From the Bounded Real Lemma, the L2 gain from ũ to ỹ, which in this situation is
equal to theH∞ norm of its transfer matrix G̃(s), satisfies ||G̃(s)||∞ < γ if and only
if there exist X > 0 and γ ≥ 0 such that

⎡

⎣
AX + XAT − BνY − YTBT

ν B̃ YT

B̃T −γ 2I 0
Y 0 −I

⎤

⎦ < 0 (3.58)

where B̃ is defined in (3.29). For details of the LMI formulation see Appendix B.2.2.
In (3.58) γ is an a-priori fixed scalar gainwhichmay be viewed as a tuning parameter.
The decision variables in this LMI formulation are again X and Y . If
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γ <
(1 − 
maxγo)

γ1(1 + γo)

then the conditions of Theorem 3.1 are satisfied and closed-loop stability for a
fault/failure combination belonging to W is guaranteed.

Since a common Lyapunov matrix is sought in the LMI formulations, the overall
optimisation process is:

Minimise trace(Z) subject to (3.55), (3.56) and (3.58) and

[−Z In
In −X

]
< 0 (3.59)

ThematrixZ is a slack variable,which using the Schur complement satisfiesZ > X−1

and therefore trace(Z) ≥ trace(X−1). Finally the feedback gain F can be recovered
as F = YX−1.

3.3 Simulations

In this section control of the lateral axis of a large transport aircraft, discussed in
Appendix A.1, will be considered to demonstrate the effectiveness and feasibility of
the scheme described in the earlier section. To design the state feedback gain F in
(3.44), a linear model has been obtained around an operating condition of straight
and level flight at 263,000kg, 92.6m/s true airspeed, and at an altitude of 600m
based on 25.6% of maximum thrust and at a 20 deg flap position. The lateral axis
states which are considered for the controller design are (φ, β, r, p), where φ is roll
angle (rad), β is sideslip angle (rad), r is yaw rate (rad/s), and p is roll rate (rad/s).
The controlled outputs yc(t) = Cx(t) are (β, φ) where

C =
[
0 1 0 0
1 0 0 0

]

It is clear in this example that l = 2. For the lateral control, the inboard and outboard
ailerons (δair, δaor) on the right wing are aggregated to produce one control input.
The available control surfaces are δ = (δa, δr, δepr), which represent anti-symmetric
aileron deflection (rad), rudder deflection (rad) and differential aggregated engine
pressure ratios (EPR). Note in this example the number of control inputs m = 3,
while the number of controlled outputs l = 2, and so in theory, only two control
inputs would be required to force the controlled outputs to follow a commanded
trajectory. Here the fact that three control inputs can be manipulated, indicates
the existence of redundancy in the system which can be exploited to achieve fault
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tolerance. The ordering of the states ensures ‖B1‖ � ‖B2‖, so that B2 represents
the dominant contribution to the control action as compared to B1. After scaling the
states to ensure B2BT

2 = Il the state-space representation is

A =

⎡

⎢⎢
⎣

0 0 0.0084 0.3334
0.1055 −0.0999 −0.3170 0.0538

−0.0059 0.5617 −0.1856 −0.1796
0.0008 −4.8828 0.2154 −1.0789

⎤

⎥⎥
⎦

B =

⎡

⎢⎢
⎣

0 0 0
0 0.0174 −0.0010

−0.1459 −0.7584 −0.6352
−0.9387 0.3089 −0.1531

⎤

⎥⎥
⎦

}
B1

}
B2

(3.60)

For tracking the (β, φ) commands, integral action is used. To accomplish this, the
integral action states xr(t) satisfying the relation

ẋr(t) = r(t) − Cx(t) (3.61)

are introduced, where r(t) is the reference signal to be tracked. By defining xa(t) =
col(xr(t), x(t)), the system in (3.18) is augmented with the integral action states to
become

ẋa(t) = Aaxa(t) + Bνaν(t) + Brr(t) (3.62)

where

Aa =
[
0 −C
0 A

]
Bνa =

[
0
Bν

]
Bν =

[
B1BT

2
Il

]
Br =

[
Il
0

]
(3.63)

By design the pair (Aa,Bνa) is controllable and a state feedback gain ν(t) = −Fxa(t)
is to be designed to stabilise the nominal system in (3.62). The switching function
in (3.21) for the augmented system will become

σ(t) = Gaxa(t) − Gaxa(0) − Ga

∫ t

0

(
(Aa − BνaF)xa(τ ) + Brr(τ )

)
dτ (3.64)

where Ga := B2(BT
a Ba)

−1BT
a , and the augmented input distribution matrices

Ba =
[
B1a
B2

]
B1a =

[
0l×m

B1

]

In a fault-free scenario, i.e. in normal flight, the primary control surfaces for φ and
β tracking are the ailerons and rudder respectively; however the engine thrust can be
used as redundancy for both surfaces. Based on these assumptions, using a numerical
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Fig. 3.3 Aileron-fault, loss of effectiveness: plant states

search, a suitable bound for the scalar in (3.17) is γo = 3.2020. Here it can be easily
verified that γ1 = ‖B1a‖ = 0.0174. The nominal state feedback controller gain F
associated with Eq. (3.19) for the augmented system has been designed using the
LMI approach described in Sect. 3.2.4 and is given by

F =
[

0.4165 −0.0839 0.2936 −1.9273 0.7983 −0.1356
−0.5265 −0.1241 1.1878 −0.6954 −0.1000 0.3879

]
(3.65)

The performance design matrices Q and R in (3.55) have been chosen as

Q = diag(0.95, 0.08, 2, 1, 15, 5) and R = diag(10, 2)

respectively, where the first two states in Q represent the integral action states. Here
�max = 0.17 which implies an upper bound on the relative error in Ŵ (t) of 17%.
The choice of γ = 8.8 in LMI (3.58) results in γ2 = 5.8832 and it can be verified
that

γ2 γ1(1 + γo)

1 − �maxγo
= 0.9440 < 1
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Fig. 3.4 Aileron-fault, loss of effectiveness: actuator deflections

Consequently the conditions ofTheorem3.1 are satisfied and the closed-loop stability
of the system for any combination of faults (ŵ1, ŵ2, ŵ3) ∈ W is ensured.

3.3.1 Sliding Mode Fault Reconstruction Scheme

The control law u(t) in (3.52) depends on an estimate of theW (t)matrix to distribute
the control effort among the actuators. A sliding mode fault reconstruction scheme,
can be used to estimate the actuator effectiveness levels. To explain this, without loss
of generality, the actuator fault model in (3.1) can be written as

ẋ(t) = Ax(t) + B (Im − K(t))︸ ︷︷ ︸
W (t)

u(t) (3.66)

where it is assumed that the input matrix B is of full column rank. In (3.66) the matrix
K(t) = diag(ki(t), . . . , km(t)) where the scalars ki(t) = 1 − wi(t). By writing the
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Fig. 3.5 Aileron Jam/Lock in place failure: plant states

term K(t)u(t) in this way, it can be considered as a fault term. To estimate the fault
term K(t)u(t) an estimator is given by

ż(t) = Az(t) + Bu(t) + Gnϑ(t) (3.67)

where Gn is an appropriate gain matrix, z(t) is the estimator state and ϑ(t) is a
discontinuous injection term defined by

ϑ(t) := −ρe
e(t)

‖e(t)‖ for e(t) �= 0 (3.68)

where the scalar ρe must be chosen such that ρe ≥ ‖K(t)u(t)‖. From (3.67) and
(3.66) it is clear that the error dynamics e(t) = x(t) − z(t) satisfy

ė(t) = ẋ(t) − ż(t)

= Ae(t) − ϑ(t) − BK(t)u(t) (3.69)
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Fig. 3.6 Aileron Jam/Lock in place failure: actuator deflections

A sliding motion on e(t) = 0 will be enforced by the discontinuous injection term
ϑ(t). Then during sliding e(t) = ė(t) = 0 and the fault signal K(t)u(t) can be
reconstructed from Eq. (3.69) as

− K(t)u(t) ≈ (BTB)−1BTϑeq(t) (3.70)

where ϑeq(t) is the equivalent injection term necessary to maintain sliding. The
injection term is discontinuous and can be approximated to any level of accuracy
using the relation

ϑδ(t) := −ρe
e(t)

‖e(t)‖ + δ
(3.71)

where δ is a small positive scalar. The scalars ki(t) can be obtained from (3.70) by
introducing a small threshold ε such that if at time tε, |ui(t)| ≤ ε, then

ki(t) =
{

((BTB)−1BTϑδ(t))i
ui(t)

if |ui(t)| > ε

ki(tε) otherwise
(3.72)

A saturation block with limits
[
0 1

]
is used before the information is provided to

the control allocation unit to keep the estimates within the theoretical limits.
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Fig. 3.7 Rudder Jam/Lock in place failure: plant states

3.3.2 Manoeuvre and Fault Scenarios

In the simulations which follow the linear aircraft model undertakes a turning
manoeuvre, where the reference command requests a change inφ to 25 deg during the
period of time 60–90 s. A 0 deg reference command is applied to β throughout. In the
simulations, the discontinuity associated with the nonlinear control term in (3.45) is
smoothed using the sigmoidal approximation (2.33), discussed in Sect. 2.5, and given
by σ(t)

||σ(t)||+δo
where the value of the positive scalar δo is chosen to be 0.001. An ideal

sliding motion will not be obtained in this situation, and instead a pseudo-sliding
will be achieved, where the sliding motion is in the vicinity of the sliding surfaceS .
This boundary layer can be made arbitrarily small by selecting δo sufficiently small.

3.3.2.1 Aileron Faults and Lock in Place Failure

In this subsection to test the efficacy of the FTC scheme, aileron faults and failures
are considered. Various levels of aileron faults (from 0 to 100%) are tested, each
occurring at 80 s in 15% increments. In Figs. 3.3 and 3.4, the plant states and actuator
deflections are shown during the aileron fault scenario (when the estimation ofW (t)

http://dx.doi.org/10.1007/978-3-319-32238-4_2
http://dx.doi.org/10.1007/978-3-319-32238-4_2
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Fig. 3.9 Switching function
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is perfect). It can be seen that the CA scheme systematically redistributes the control
signals to the rudder and the engines, while maintaining the same level of tracking
performance as in the fault-free condition.

In Figs. 3.5 and 3.6, the aileron undergoes lock in place failure (where the actuator
jams at some offset position), which means the effectiveness of the aileron after the
failure time (80 s) is 0%. If the estimate of the actuator effectiveness is perfect then
the information provided to the CA unit regarding the actuator effectiveness (ŵi(t))
should be 0%. But since the estimate Ŵ (t) is not perfect, the effect of a 17% error
in the estimate of W (t) can be seen in Fig. 3.6, which is the maximum theoretical
percentage error �max which can be tolerated by the scheme without violating the
stability conditions of Proposition 3.1. Due to the availability of redundancy in the
system, the CA scheme involves the engines more actively to achieve a performance
close to the nominal (Fig. 3.5).

3.3.2.2 Rudder Lock in Place Failure

This subsection validates the scheme, by considering a rudder failure scenario. Fig-
ures3.7 and 3.8 show the tracking performance of the states and the control surface
deflections, when a rudder jam/lock-in place occurs at 80 s at a position of −2 deg.
The estimate of the rudder effectiveness is not perfect and has a 17% error as can be
seen in Fig. 3.8. The FTC scheme redistributes the control effort between the aileron
and the engines to cope with the rudder failure, and to maintain the nominal tracking
performance (Fig. 3.7). Figure3.9 shows that sliding is maintained throughout the
simulations, even in the presence of actuator faults or failures.

3.4 Summary

An Integral Sliding Mode fault tolerant control scheme has been described. To han-
dle total actuator failures, integral sliding mode ideas have been incorporated into
a control allocation framework, which has the capability to redistribute the control
effort among the healthy redundant actuators automatically in the case of faults or
failures, without reconfiguring the controller. The estimation of the actuator effec-
tiveness levels is a key source of information for the control allocation scheme. A
formal stability analysis guarantees closed-loop stability of the system in the face of a
class of faults and failures, and for a certain level of mismatch between the actual and
the estimated actuator effectiveness levels. The efficacy of the fault tolerant scheme
was demonstrated through simulation, based on different fault or failure scenarios in
a benchmark civil aircraft.
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3.5 Notes and References

The uncertain model used in this chapter represents a LTI system subject to actuator
faults/failures and has been used by many other FTC researchers: see for example
[3–7]. Other ways of representing fault models used in the literature can be found in
[8]. Control allocation provides access to redundant actuators and has the ability to
cope with actuator faults/failures without the need to modify the underlying control
laws [9–12]. Actuator constraints (rate and position) are explicitly used in [10, 13]
for CA. In terms of FTC, the benefits of CA are exploited in [9, 14]. In [15], a
modified daisy chaining method, which is a special structure of CA, was proposed to
deal with actuator loss of effectiveness. In [16], fault reconstruction and fault tolerant
control schemes are described for both sensors and actuators, where a combination
of CA with SMC is considered to design fault tolerant controllers for aerospace
applications. In [17, 18] researchers have considered the combination of SMC with
CA to deal with actuator faults on a tailless fighter aircraft. In [19], SMC is argued to
have the potential to become an alternative to reconfigurable control to directly deal
with actuator faults, which can be effectively modelled as matched uncertainties.
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Chapter 4
A Fault Tolerant Direct Control Allocation
Scheme with Integral Sliding Modes

The FTC scheme described in this chapter looks at the possibility of introducing
fault tolerance without having information about actuator effectiveness levels. Here
the idea of direct control allocation is incorporated within the ISM/FTC framework.
Achieving performance close to the nominal and maintaining overall closed-loop
stability in the face of actuator faults/failures and in the presence of aerodynamic
disturbances (i.e. wind gusts) and sensor noise is the main objective. An LMI based
procedure is described to synthesise the controller parameters, and a rigorous closed-
loop stability analysis is carried out in the presence of unmatched uncertainty for a
suitable set of actuator faults/failures. The FTC scheme is compared in simulation
with the one from Chap.3 by considering the same manoeuvre on the RECOVER
benchmark model in the presence of wind gusts and sensor noise.

4.1 Problem Formulation

In this chapter again consider an over-actuated system with actuator faults or failures
modelled as

ẋ(t) = Ax(t) + BW(t)u(t) + Dξ(t, x) (4.1)

where A ∈ IRn×n and B ∈ IRn×m are the state and input distribution matrices. As
before, the termW(t) = diag(w1(t), . . . ,wm(t)) is a diagonal semi-positive definite
weighting matrix wherein the scalars w1(t), . . . ,wm(t) model the individual effec-
tiveness/efficiency levels of the actuators. As in the previous chapter if the diagonal
entrywi(t) = 1, this indicates that the corresponding ith actuator is healthy/fault-free,
whereas if 1 > wi(t) > 0, actuator i is faulty. Finally the value wi(t) = 0 indicates
that the corresponding actuator has failed.

Assumption 4.1 It is assumed that the pair (A,B) is controllable and B has full
column rank.

© Springer International Publishing Switzerland 2016
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Assumption 4.2 In this chapter it is assumed that the actuator effectiveness level
(i.e. the matrix W(t)) is not available, and neither is an estimate.

In (4.1), the function ξ(t, x) represents uncertainties/nonlinearities in the system.

Assumption 4.3 The structure of the D matrix is assumed to be such that BTD = 0
i.e. D is in the null space of B.

Suppose that the input distribution matrix B in (4.1) has been partitioned as

B =
[
B1

B2

]
(4.2)

whereB1 ∈ IR(n−l)×m andB2 ∈ IRl×m is of rank l < m. It will be demonstrated later in
the chapter that the norm of ‖B1‖ plays a significant role in the closed-loop stability
analysis.

Assumption 4.4 Assume that ‖B2‖ � ‖B1‖, so that B2 is more dominant in the
delivery of the control effort to the system compared to B1.

As discussed in Chap. 3, a state permutation may be required to achieve the form in
(4.2). It is also assumed without loss of generality that the states are scaled to ensure
that B2BT

2 = Il. This will help simplify the analysis and design process in the sequel.
In order to follow a reference demand, a tracking capability is included in the design.
For this purpose, the states x(t) in (4.1) are augmented with integral action states
xr(t) creating the vector xa(t) = col(xr(t), x(t)), where

ẋr(t) = r(t) − Ccx(t) (4.3)

In (4.3) the signal r(t) is the reference command to be tracked, whereasCc ∈ IRl×n is
the output distribution matrix which extracts the controlled outputs from the states.
The overall augmented system becomes

ẋa(t) = Aaxa(t) + BaW(t)u(t) + Brr(t) + Daξ(t, x) (4.4)

and the augmented matrices are

Aa =
[
0 −Cc

0 A

]
, Ba =

[
B1a
B2

]
, B1a =

[
0
B1

]
, Br =

[
Il
0

]
, Da =

[
0
D

]

(4.5)

Note that by definition, Ba has full column rank (inherited from B).

Assumption 4.5 It is assumed that the function ξ(t, x) satisfies the relationship
ξ(t, x) = φ(t, x)x(t), where ‖φ(t, x)‖ is bounded.

In the next section, an integral sliding mode FTC scheme with direct CA will be
described for the system in (4.4).

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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4.2 Integral Sliding Mode FTC Scheme with Direct Control
Allocation

In the FTC scheme which will be introduced in this section, the fault information
(i.e. the matrixW(t)) is not required for the control allocation scheme. The strategy
“distributes” control effort among all the actuators and constitutes a passive fault
tolerant control scheme. A schematic of the proposed scheme, is shown in Fig. 4.1.
In this chapter, a virtual control input, ν(t) ∈ IRl, is defined as

ν(t) = B2u(t) (4.6)

where B2 is taken from (4.5). Here the physical control law u(t) is chosen as

u(t) = BT
2 ν(t) (4.7)

Using the fact thatB2BT
2 = Il,BT

2 is a right pseudo-inverse ofB2, and hence the choice
of control law in (4.7) satisfies (4.6). In the sequel, a framework for the design of the
virtual control law ν(t) will be formulated. Substituting (4.7) into (4.4) yields

ẋa(t) = Aaxa(t) +
[
B1aW(t)BT

2
B2W(t)BT

2

]

︸ ︷︷ ︸
Bwa (t)

ν(t) + Brr(t) + Daξ(.) (4.8)

The ISM approach will now be used to design the virtual controller ν(t) in (4.8),
based on the nominal fault-free system (i.e. when W(t) = Im). Then substituting
W(t) = Im into (4.8), yields

ẋa(t) = Aaxa(t) +
[
B1aB

T
2

Il

]

︸ ︷︷ ︸
Bνa

ν(t) + Brr(t) + Daξ(.) (4.9)

Assumption 4.6 It is assumed that the pair (Aa,Bνa ) is (preferably) controllable but
at least stabilisable.

Fig. 4.1 FTC strategy with direct Control Allocation
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Note that
‖B1aB

T
2 ‖ ≤ ‖B1a‖‖BT

2 ‖ ≤ ‖B1a‖ ≤ ‖B1‖

because ‖BT
2 ‖ = 1 (since B2BT

2 = I), and where the last inequality follows from the
definition in (4.5). Consequently the control contribution in the first n channels of
(4.9) is still small. To design ν(t) based on an ISMmethodology, an integral switching
function which eliminates the reaching phase and which aims to retain the nominal
closed-loop performance is defined as

σ(t) = Gaxa(t) − Gaxa(0) − Ga

∫ t

0
(Aa − BνaF)xa(τ ) dτ (4.10)

where the matrixGa ∈ IRl×(n+l) is design freedom. In (4.10) the matrix F ∈ IRl×(n+l)

is a state feedback gain matrix chosen to make the matrix (Aa − BνaF) Hurwitz. The
associated sliding motion occurs on the surface S = {xa ∈ IRn+l : σ(t) = 0}. The
choice of Ga suggested in Sect. 3.2.1, will also be employed here:

Ga := B2
(
BT
a Ba

)−1
BT
a (4.11)

The choice of Ga is a left pseudo-inverse of Bνa i.e. GaBνa = I . The inverse in (4.11)
exists because the control distribution matrix Ba is assumed to be full column rank.
The choice of Ga in (4.11) brings some simplifying properties to the closed-loop
analysis which are explained later. The sliding motion associated with the surface in
(4.10), in the presence of faults or failures, will now be analysed. The time derivative
of (4.10) along the trajectories of the differential equation (4.8) is given by

σ̇a(t) = GaBwa(t)ν(t) + GaBνaFxa(t) (4.12)

Note that (4.12) does not depend on the reference signal r(t) because

GaBr = B2
(
BT
a Ba

)−1
BT
a Br

= B2
(
BT
a Ba

)−1 [
0 BT

] [
Il
0

]
= 0

Also note that (4.12) is independent of the uncertainty ξ(t, x), because

GaDa = B2
(
BT
a Ba

)−1
BT
aDa︸ ︷︷ ︸
0

= 0

by assumption. In order to obtain an expression for the closed-loop motion during
sliding, an equivalent control approachwill be adopted. The equivalent control which
maintains motion on the surface in (4.10) is obtained by equating σ̇a(t) = 0 in (4.12)
to obtain

νeq(t) = −(GaBwa(t))
−1GaBνaFxa(t) (4.13)

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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Note the expression in (4.13) is not the virtual control signal used in (4.7) to obtain
the physical control signal, it is purely an abstraction used to obtain an expression
for the sliding motion. For the existence of such a control, GaBwa(t) needs to be
nonsingular, which will be discussed later in (4.15). It is easy to verify that with the
choice of Ga in (4.11),

GaBwa(t) = B2
(
BT
a Ba

)−1 (
BT
a Ba

)
W(t)BT

2 = B2W(t)BT
2

Therefore, the expression for the equivalent control in (4.13) can be simplified to

νeq(t) = − (
B2W(t)BT

2

)−1
Fxa(t) (4.14)

It is assumed that W(t) belongs to the set

W = {(w1, . . . ,wm) : λmin
(
B2WBT

2

)
> λo} (4.15)

where λo is a positive design scalar.

Remark 4.1 Because l < m, it is possible that λmin(B2W(t)BT
2 ) > λo even if up to

m − l of the entries wi(t) = 0 in the matrix W(t). This means that up to m − l
actuators can be subjected to total failure and yet λmin(B2W(t)BT

2 ) �= 0 i.e. matrix is
nonsingular. However if more than m − l entries become zero then rank(W(t)) < l
and λmin(B2W(t)BT

2 ) = 0. The set W constitutes the faults or failures which the
scheme described in this chapter can cope with. Notice that the fault set in (4.15) is
a strict subset of the one in Chap.3 and so technically the scheme from Chap.3 can
accommodate a wider class of faults.

The dynamics associated with the sliding surfaceS can be obtained by substituting
the equivalent control from (4.14) into (4.8) gives

ẋa(t) = Aaxa(t) − Bwa(t)
(
B2W(t)BT

2

)−1
Fxa(t) + Brr(t) + Daξ(t, x) (4.16)

Adding and subtracting the term BνaFxa(t) to (4.16), and then rearranging, yields the
expression

ẋa(t) = (Aa − BνaF)xa(t) + Bm(t)Fxa(t) + Brr(t) + Daξ(.) (4.17)

where the matrix

Bm(t) :=
[
B1aB

T
2 − B1aW(t)BT

2 (B2W(t)BT
2 )−1

0

]
(4.18)

Note that in Eq. (4.17), since r(t) is a bounded signal, the closed-loop stability of the
sliding motion only depends on the first two and the last termwhich can be expressed
in the form

http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_3
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ẋa(t) = (Aa − BνaF)
︸ ︷︷ ︸

Ã

xa(t) + B̃a

ũ(t)
︷ ︸︸ ︷
Δaf (t)Faxa(t)︸ ︷︷ ︸

ỹ(t)

(4.19)

where

B̃a = [
B̃ Da

]
B̃ :=

[
In
0

]
Δaf (t) =

[
Δf (t) 0
0 φ̃(t, x)

]
Fa =

[
F
I

]
(4.20)

and φ̃(t, x) = [ 0 φ(t, x) ]. The uncertain fault/failure dependent term

Δf (t) := B1aB
T
2 − B1aW(t)BT

2

(
B2W(t)BT

2

)−1
(4.21)

Note that sinceW(t) is unknown, and φ̃(t, x) is assumed to be bounded, the expression
Δaf (t) above is treated as uncertainty. To facilitate the closed-loop stability analysis,
assume the following hold:

Assumption 4.7 The augmented uncertainty satisfies

‖Δaf (t)‖ < γ1 for all W(t) ∈ W (4.22)

where γ1 is a positive scalar.

Such a bound is guaranteed to exist since ‖W(t)‖ < 1 and ‖B2W(t)BT
2 ‖ < 1

λo
. Define

γ2 = ||G̃(s)||∞ (4.23)

where the transfer function matrix

G̃(s) := Fa(sI − Ã)−1B̃a (4.24)

Note that by design of F, the matrix Ã = Aa − BaF is stable, and so the H∞ norm
of γ2 is well-defined and finite.

Proposition 4.1 For any combination of faults or failures belonging to the set W ,
the sliding motion in (4.19) will be stable if

γ2γ1 < 1 (4.25)

where γ1 and γ2 are defined in (4.22) and (4.23) respectively.

Proof The structure of differential equation (4.19) can be considered as the inter-
connection of the transfer function G̃(s) (in the feedforward path) with the uncertain
termΔaf (t) (in the feedback loop) of a closed-loop system. Using Eqs. (4.22)–(4.24),
from the small gain theorem, if
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‖G̃(s)‖∞‖Δaf (t)‖ < 1 (4.26)

then the closed-loop stability of (4.19) is ensured. The condition in (4.26) is exactly
the stability condition in the proposition statement, and the proof is complete. �

In a sliding mode framework, the control law should be designed to satisfy the so-
called reachability condition, which is a sufficient condition to guarantee that sliding
will be enforced and maintained.

Proposition 4.2 The virtual control based on the integral sliding mode control law

ν(t) = νl(t) + νn(t) (4.27)

where

νl(t) := −Fxa(t) (4.28)

νn(t) := −ρ(t, x)
σa(t)

||σa(t)|| for σa(t) �= 0 (4.29)

will maintain sliding during faults or failures belonging to the setW , if the modula-
tion gain ρ(t, x) in (4.29) is selected as

ρ(t, x) >
2‖νl(t)‖ + η

λo
(4.30)

where η is a positive design scalar.

Proof Substituting (4.27) into (4.12), and using the fact GaBwa(t) = B2W(t)BT
2 and

GaBνa = I , it follows that

σ̇a(t) = (
B2W(t)BT

2

)
(νl(t) + νn(t)) + Fxa(t)

= (
B2W(t)BT

2

)
νn(t) + (

B2W(t)BT
2

)
νl(t) + Fxa(t) (4.31)

Consider a positive definite Lyapunov candidate function V(t) = 1
2σ

T
a (t)σa(t). Tak-

ing the time derivative along the system trajectories gives

V̇(t) = σ T
a (t)

((
B2W(t)BT

2

)
νn(t) +

(
B2W(t)BT

2

)
νl(t) + Fxa(t)

)

≤ −λmin

(
B2W(t)BT

2

)
ρ(·)‖σa(t)‖ + ‖σa(t)‖‖B2W(t)BT

2 ‖‖νl‖ + ‖σa(t)‖‖νl‖
≤ −λoρ(·)‖σa(t)‖ + ‖σa(t)‖‖νl‖ + ‖σa(t)‖‖νl‖ (4.32)
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since‖B2W(t)BT
2 ‖ < 1.Byusing a value ofρ(t, x) satisfying (4.30), inequality (4.32)

can be written as
V̇(t) ≤ −η‖σa(t)‖ = −η

√
2V(t) (4.33)

which is equivalent to the η-reachability condition, and the proof is complete. �

Finally substituting the integral sliding mode control law given in (4.27)–(4.29) into
(4.7) gives the physical control law

u(t) = −BT
2

(
Fxa(t) + ρ(t, x)

σa(t)

‖σa(t)‖
)

(4.34)

Remark 4.2 Compared to the control law in (3.52), it is clear that the control law
u(t) in (4.34) has no information about the actuator effectiveness matrix W(t) and
will distribute the control effort amongst all the actuators.

4.2.1 Design of Feedback Gain F

The feedback gain F associated with the physical control law u(t) in (4.34) can
be designed by using the LMI optimisation method from Chap. 3 (which is also
explained in this chapter for completeness) such that the small gain stability condition
given in Proposition4.1 is satisfied. A necessary condition is that the matrix Ã =
Aa − BaF in (4.24) must be stable. The feedback gainF must be designed to meet the
nominal performance requirements (whenW = Im)whilst also satisfying the stability
condition in Proposition4.1. For the nominal performance specification, as in Chap.3
an LQR formulation is adopted, which can be posed as an LMI optimisation:
Minimise trace(X−1) subject to

[
AaX + XAT

a − BνaY − YTBT
νa

(Q̂X − R̂Y)T

Q̂X − R̂Y −I

]
< 0 (4.35)

X > 0 (4.36)

where Y := FX and the symmetric matrix X ∈ IR(n+l)×(n+l). In (4.35) the matrices

Q̂ :=
[
Q1/2

0

]
and R̂ :=

[
0

R1/2

]
(4.37)

To encapsulate the small gain stability condition (4.25), the Bounded Real Lemma
is used: ⎡

⎣
AaX + XAT

a − BνaY − YTBT
νa

B̃a YT

B̃T
a −γ 2I 0
Y 0 −I

⎤

⎦ < 0 (4.38)

http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_3
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where B̃a is defined in (4.20). In (4.38) the scalar gain γ may be viewed as a tuning
parameter.
The overall optimisation process is:

Minimise trace(Z) subject to (4.35), (4.36) and (4.38) and

[−Z In
In −X

]
< 0 (4.39)

As argued in Chap.3 the slack variable Z satisfies Z > X−1 and therefore trace(Z) ≥
trace(X−1). Finally the feedback gain F can be recovered as F = YX−1.

4.3 Simulations

The RECOVER benchmark model of a large passenger aircraft (as described in
Appendix A) is used to test the effectiveness of the FTC scheme. This software rep-
resents a “real world” model of the large body B747-100/200 aircraft. The feedback
gain F, has been designed based on a linearisation of the model around an operating
condition of straight and level flight at 263,000kg, 92.6m/s true airspeed, and at an
altitude of 600m based on 25.6% of maximum thrust and at a 20 deg flap position.
In the simulations, an up-and-away flight manoeuvre is considered. For longitudi-
nal control, only the states x = (θ, α,Vtas, q) are considered, where θ is the pitch
angle (rad), α is the angle of attack (rad), Vtas is the true airspeed (m/s), and q is the
pitch rate (rad/s). The available longitudinal control surfaces are δlong = (δe, δs, δepr)

which represent aggregated elevator deflection (rad), horizontal stabiliser deflection
(rad), and aggregated longitudinal EPR (i.e. the four engine pressure ratio (EPRs) are
added to produce one control input). The state-space model obtained at the operating
condition of straight and level flight is

A =

⎡

⎢⎢
⎣

0 0 0 1
0 −0.6284 −0.0021 1.0064

−9.8046 1.7171 −0.0166 0
0 −0.5831 0.0004 −0.5137

⎤

⎥⎥
⎦

B =

⎡

⎢⎢⎢⎢
⎣

0 0 0
−0.0352 −0.0819 −0.0084

0 −0.1756 5.7072
−0.6228 −1.3578 0.0600

⎤

⎥⎥⎥⎥
⎦

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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where the input matrix B is partitioned according to (4.2). For the up-and-away
manoeuvre it is required to track the flight path angle (FPA) γ (where γ = θ − α)
and Vtas. The controlled output matrix is

Cc =
[
1 −1 0 0
0 0 1 0

]

To design the state feedback gain F, the LMI approach given in Sect. 4.2.1 has been
used in which the design matrices

Q = diag(0.95, 0.004, 0.01, 2, 0.1, 5) and R = diag(4, 8)

With the choice γ = 7 in (4.38), the feedback gain F obtained is

F =
[−0.1714 −0.0296 −0.7450 −0.8077 0.9828 −0.2921

−0.3226 0.0079 2.0833 1.2277 −0.1549 1.8162

]
(4.40)

In this example the elevator is the primary control surface for FPA tracking while the
horizontal stabiliser is used as a redundant control surface. However forVtas tracking,
aggregated EPR is the only available actuator (and has no redundancy). Based on
the assumption that the engines are fault-free, using a numerical search, a suitable
value of scalar in (4.15) is λ0 = 0.0826, and a suitable upper bound in Eq. (4.22) is
γ1 = 0.01.With the feedback gainF given above,it can be verified that γ2 = 75.3013
in (4.23), which fulfils the stability requirement of Proposition4.1.

4.4 Nonlinear Simulation Results

In the simulations, a series of 3 deg FPA pulses together with a change in Vtas of
10m/s are used to increase the altitude and the speed of the aircraft. In the simulations
the discontinuity associated with the nonlinear controller term in (4.29) has been
smoothed by the sigmoidal approximation σa(t)

‖σa(t)‖+δ
where δ is chosen small (here

δ = 0.05). (In so doing, a pseudo-sliding motion takes place in which the system
trajectories move in the vicinity of the sliding surface.) To enforce sliding during
faults/failures belonging to the set W , the design scalars in (4.30) are chosen as
η = 1 and λ0 = 0.0826, which satisfy the requirements of Proposition4.2.

The scheme described in this chapter is also compared in simulation with the
FTC scheme in Chap.3 where the efficacy of both schemes is compared based on the
longitudinal dynamics of the RECOVER model. All the simulations in this chapter
are obtained in the presence of wind and gust models and sensor noise. The wind
model generates wind velocities (uwind = −11, vwind = −12 and wwind = 0) along
the positive axis of the earth reference frame, whereas the Dryden spectra1 is used

1See for example [1].

http://dx.doi.org/10.1007/978-3-319-32238-4_3


4.4 Nonlinear Simulation Results 73

in the gust model. Both the models are embedded in the RECOVER software. The
sensor noise which appears in themeasured states (θ, α,Vtas, q) is based onGaussian
distributions of zero mean and variances 3e−8, 1e−2, 3e−6, 3e−8 respectively.

In Figs. 4.2 and 4.3, the nominal fault-free performance, using the approach
described in this chapter, is shown. The control signals u(t) are also plotted together
with the actual actuator deflections for comparison with online CA scheme described
in Chap.3. The tracking performance of the commands γ and Vtas is promising. In
Figs. 4.5 and 4.7 a fault scenario is demonstrated whereby the elevator’s effectiveness
decreases from100 to 40%during 250–550s; after that, the elevator completely fails.
It is clear from Figs. 4.4 and 4.6 that good tracking performance (close to nominal) is
still achieved with both the FTC schemes. For online CA, it is clear from Fig.4.5 that
the scheme in Chap.3 stops sending control signals to the elevator after it has failed
completely at 550 s due to the availability of fault information (the W(t) matrix) in
the controller. The scheme described in this chapter distributes control effort amongst
all the actuators (Fig. 4.7) despite fault/failure to the elevator, as fault information is
not available to the controller. Figures4.9 and 4.11 present the case when the elevator
jams at some offset position for both the online and direct CA schemes. However due
to the availability of the redundant control surface (the horizontal stabiliser), both
schemes can cope with this failure and still maintain the sliding motion as seen in
Figs. 4.8 and 4.10. No apparent degradation in performance is visible which shows
the effectiveness of both the schemes, despite the severe failure condition. Based on
the comparison between the direct CA with online CA, it can be seen that despite the
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Fig. 4.2 Nominal fault-free performance: system states based on direct control allocation scheme
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Fig. 4.3 Nominal fault-free performance: actuators deflections based on direct control allocation
scheme
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Fig. 4.4 Elevator with partial to complete failure: system states based on online control allocation
scheme



4.4 Nonlinear Simulation Results 75

0 200 400 600 800
1

1.5

2

2.5

3

3.5

u e,δ
e (

de
g)

δ
e

u
e

0 200 400 600 800
−4

−3.5

−3

−2.5

−2

−1.5

−1

u s,δ
s (

de
g)

δ
s

u
s

0 200 400 600 800
0.5

1

1.5

2

E
P

R
1−

4

Time (sec)
0 200 400 600 800

−1

−0.5

0

0.5

1

sw
itc

hi
ng

 fu
nc

tio
n,

W
 e

le
va

to
r

Time (sec)

σ
1

σ
2

W
ele

Fig. 4.5 Elevator with partial to complete failure: actuator deflections based on online control
allocation scheme
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Fig. 4.6 Elevator with partial to complete failure: system states based on direct control allocation
scheme
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Fig. 4.7 Elevator with partial to complete failure: actuators deflections based on direct control
allocation scheme
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Fig. 4.8 Elevator jam: system states based on online control allocation scheme
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Fig. 4.9 Elevator jam: actuators deflections based on online control allocation scheme
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Fig. 4.10 Elevator jam: system states based on direct control allocation scheme
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Fig. 4.11 Elevator jam: actuators deflections based on direct control allocation scheme

absence of FDI information (matrix W(t)), the results for the direct CA scheme in
this chapter are comparable to the online CA scheme in Chap.3. The only limitation
of not knowing the actuator effectiveness level (matrixW(t)) as compared to Chap.3,
is that, theoretically, a slightly more limited set of faults/failures given in (4.15) must
be assumed.

4.5 Summary

In this chapter, a passive FTC scheme has been described which has the potential to
provide fault tolerance against actuator faults/failures without requiring any informa-
tion from an FDI scheme. The inclusion of direct control allocation allows a single
controller to dealwith a rangeof actuator faults/failureswithout any fault information.
The direct control allocation structure maintains an acceptable level of closed-loop
performance both nominally and in fault/failure situations by distributing the control
effort computed by virtual control law amongst the actuators. A rigorous closed-
loop stability analysis has been carried out in the presence of unmatched uncertainty
and demonstrates the class of faults/failures which can be dealt with without any
performance degradation. A range of actuator fault/failure scenarios are considered
in simulation, in the presence of wind, gusts and sensor noise, for validation pur-
poses, on the RECOVER benchmark model. The results obtained show the efficacy

http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_3
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of the scheme. The controller was also compared in simulation with the FTC scheme
described in Chap.3, which does require fault information. Comparable results have
been achieved.

4.6 Notes and References

RECOVER is an establishedFDI/FTCbenchmark developed duringGARTEURFM-
AG16 [1].An overviewof different approaches employedwithin theGARTEURFM-
AG16 project are described in [1]. These include indirect adaptive schemes,H∞ and
μ-synthesis methods, sliding mode schemes, MRAC, predictive subspace methods,
MPCand control allocation.Manyof the schemes in [1] require FDI information.One
exception is the SMC/CA work described in [2]. To deal with actuator faults/failures
in over actuated systems, the most commonly employed strategy is to distribute the
control effort generated by the virtual controller equally amongst the actuators [3, 4].
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Chapter 5
An Output Integral Sliding Mode FTC
Scheme Using Control Allocation

In this chapter a fault tolerant control scheme is described for systems where only
output information is available. The assumption made in the earlier chapters was
that the state information is known and available for the controller design. In this
chapter, it is assumed only measured outputs are available and knowledge of the
actuator faults or failures is not available from an FDI scheme. A full order linear
unknown input observer (UIO) is employed to estimate the system states used in
the underlying virtual controller. No attempt is made to estimate the actuator faults
or failures (using an FDI scheme), instead, the robustness properties of the UIO
coupled with the ISM components are relied upon. A fixed control allocation scheme
(which does not require actuator effectiveness levels W(t)) is used to translate the
virtual control signals into physical actuator demands. An LMI procedure is used to
synthesise the observer gains and the controller parameters, and a rigorous closed-
loop stability analysis is carried out to ensure the stability of the sliding motion in
the face of actuator faults and certain failures, provided that redundancy is available
in the system. A civil aircraft benchmark model is used to investigate the feasibility
of the scheme.

5.1 Problem Formulation

Consider a system with actuator faults or failures, and component faults written as

ẋ(t) = (A + Aδ(t))x(t) + Bu(t) − BK(t)u(t) (5.1)

y(t) = Cx(t) (5.2)

where A ∈ IRn×n is the state matrix, Aδ(t) is parametric uncertainty in the sys-
tem matrix arising from imprecisely known parameters and possible faults at a
component level, B ∈ IRn×m is the input distribution matrix and C ∈ IRp×n is the

© Springer International Publishing Switzerland 2016
M.T. Hamayun et al., Fault Tolerant Control Schemes Using Integral
Sliding Modes, Studies in Systems, Decision and Control 61,
DOI 10.1007/978-3-319-32238-4_5
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output distribution matrix where p ≥ m. The diagonal weighting matrix K(t) =
diag(k1(t), . . . , km(t)), where the scalars k1(t), . . . , km(t), model the effectiveness
level of the actuators. If ki(t) = 0, the corresponding ith actuator is fault-free and is
working perfectly, whereas if 1 > ki(t) > 0, an actuator fault is present. The value
ki(t) = 1 indicates the ith actuator has completely failed.

Remark 5.1 The description of the actuator faults or failures in (5.1) looks different
from the early chapters, but in structure it is the same because the actuator effective-
ness matrixW(t) can be defined asW(t) := Im − K(t). Note that the matrix K(t) in
(5.1) is assumed to be unknown.

Here it is assumed that the outputs to be controlled are given by yc(t) = Ccx(t)where
Cc ∈ IRl×n, where l < m. It follows that there is redundancy in the system in terms
of the number of control inputs. This will be exploited to achieve fault tolerance. To
resolve the actuator redundancy, (by permuting the states if necessary) it is assumed
the matrix B can be partitioned as

B =
[
B1

B2

]
(5.3)

where B1 ∈ IR(n−l)×m and B2 ∈ IRl×m is of rank l < m. By appropriate scaling of the
last l states, without loss of generality, B2BT

2 = Il.

Assumption 5.1 Assume that ‖B1‖ � ‖B2‖ = 1, so that B2 reflects that the domi-
nant control action contribution on the system acting in the lower l channels.

Using (5.3), the system in (5.1) can be written as

ẋ(t) = (A + Aδ(t))x(t) +
[
B1

B2

]
(I − K(t))︸ ︷︷ ︸

W(t)

u(t) (5.4)

By definitionW(t) is diagonal and its diagonal elements wi(t) satisfy 0 ≤ wi(t) ≤ 1.
The objective of this chapter is to develop a control scheme, based on only output
measurements, which can maintain closed-loop stability in the face of a class of
actuator faults and failures. The physical control law u(t) is realised by a so-called
‘fixed’ control allocation scheme of the form

u(t) = BT
2 ν(t) (5.5)

where ν(t) ∈ IRl is the ‘virtual control’ effort produced by the control law, which will
be described explicitly in the sequel. In Eq. (5.5) the fact that B2BT

2 = Il is exploited.

Remark 5.2 The control allocation structure in (5.5) is similar to the one employed
in Chap.4. The fixed CA/ISM scheme developed in this chapter will be independent
of W(t) and will not require an FDI scheme.

http://dx.doi.org/10.1007/978-3-319-32238-4_4
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By using (5.5), Eq. (5.4) can be written as

ẋ(t) = (A + Aδ(t))x(t) +
[
B1W(t)BT

2
B2W(t)BT

2

]

︸ ︷︷ ︸
Bw(t)

ν(t) (5.6)

In the nominal case, when there is no fault (W(t) = Im and Aδ(t) = 0), Eq. (5.6)
simplifies to

ẋ(t) = Ax(t) +
[
B1BT

2
Il

]

︸ ︷︷ ︸
Bν

ν(t) (5.7)

because B2BT
2 = Il by design.

Assumption 5.2 Here it is assumed that the pair (A,Bν) is controllable.

5.2 ISM Controller Design

In this section the integral sliding mode strategy will be adopted for synthesising the
virtual control signal ν(t). The virtual control signal ν(t) will use estimated states
x̂(t), obtained from an observer, so that only outputs need to be measured. Consider
a switching function of the form

σ(t) = Gy(t) − Gy(0) +
∫ t

0
Fx̂(τ )dτ (5.8)

where G ∈ IRl×p and F ∈ IRl×n are design matrices selected to specify nominal
closed-loop performance and x̂(t) represents an estimate of x(t). In order to cre-
ate the state estimate x̂(t), a full-order unknown input observer (UIO) is used. The
term BK(t)u(t) in (5.1) is treated as an unknown input since by assumption K(t) is
unknown. Consequently the distribution matrix associated with the unknown input
signal to be rejected is chosen as B. Necessary and sufficient conditions for a linear
UIO to exist for the system in (5.1) and (5.2), to provide insensitivity with respect to
the term BK(t)u(t), are

Assumption 5.3 rank(CB) = m and the triple (A,B,C) is minimum phase

Consider a full-order observer of the form:

ż(t) = A0z(t) + TBu(t) + Ly(t) (5.9)

x̂(t) = z(t) + Hy(t) (5.10)

where x̂(t) is the estimated state, and A0,T ,L andH are design matrices of appropri-
ate dimension chosen in order to decouple the unknown inputs. The ultimate objective
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of an UIO is to make the error signal e(t) = x(t) − x̂(t) converge to zero, despite the
presence of the unknown input K(t)u(t) so that the estimated states converge to the
true states asymptotically. In particular, the matrixH ∈ IRn×p must be chosen so that

(I − HC)︸ ︷︷ ︸
T

B = 0 (5.11)

because B is the unknown-input-direction in this case. Assumption5.3 is sufficient
to solve (5.11) and H := B((CB)TCB)−1(CB)T is an appropriate choice. After com-
puting H, the matrix

A0 := A − HCA︸ ︷︷ ︸
Ah

−L1C (5.12)

can be defined, where L1 ∈ IRn×p is design freedom which is exploited to make A0

Hurwitz. Finally
L2 := A0H (5.13)

and the gain L := L1 + L2. If e(t) = x(t) − x̂(t), using the plant equation in (5.1)
and the UIO equations in (5.9) and (5.10), the error dynamics can be written as

ė(t) = Ax(t) + Aδ(t)x(t) + Bu(t) − BK(t)u(t) − A0z(t) − TBu(t) − Ly(t)

−HC(Ax(t) + Aδ(t)x(t) + Bu(t) − BK(t)u(t))

= (I − HC)Ax(t) + (I − HC)Aδ(t)x(t) + (I − HC)Bu(t) − (I − HC)BK(t)u(t)

−A0z(t) − TBu(t) − Ly(t) (5.14)

where it can be seen that with the choice of H := B((CB)TCB)−1(CB)T and using
Eq. (5.11) the error dynamics can be made invariant to the unknown input BK(t)u(t).
Furthermore using Eqs. (5.10), (5.13) together with the relationship L = L1 + L2, the
error dynamics in (5.14) can be further simplified to yield

ė(t) = TAx(t) + TAδ(t)x(t) − A0(x̂(t) − Hy(t)) − L1y(t) − L2y(t)

= TAx(t) + TAδ(t)x(t) − A0x̂(t) − L1Cx(t)

= (TA − L1C)︸ ︷︷ ︸
A0

x(t) + TAδ(t)x(t) − A0x̂(t)

= A0e(t) + TAδ(t)x(t) (5.15)

Choose
G := B2

(
(CB)TCB

)−1
(CB)T (5.16)

where the existence of the inverse is guaranteed byAssumption5.3. As a result of this
choice ofG,GCBw(t) = B2W(t)BT

2 which is symmetric. This symmetry is important
and simplifies much of the subsequent analysis. Also nominally, when there are no
faults and W(t) = I , from the special properties of the matrix B2, it follows that
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GCBw(t)|W=I = B2B
T
2 = I

This means, nominally, G has the pseudo-inverse properties which, as explained in
Chap.2, are optimal from the point of view of minimising the impact of unmatched
uncertainties on the closed-loop dynamics. The derivative of σ(t) in Eq. (5.8) is

σ̇ (t) = Gẏ(t) + Fx̂(t) (5.17)

then substituting from Eq. (5.6), and equating σ̇ (t) = 0, yields an expression for the
equivalent control of the form

νeq(t) = −(GCBw(t))−1
(
Fx̂(t) + GC(A + Aδ(t))x(t)

)
(5.18)

under the assumption that det(GCBw(t)) �= 0. With the choice of G in (5.16) the
matrix GCBw(t) = B2W(t)BT

2 , and (5.18) becomes

νeq(t) = − (
B2W(t)BT

2

)−1 (
Fx̂(t) + GC(A + Aδ(t))x(t)

)
(5.19)

Substituting (5.19) into (5.6), the sliding mode dynamics are given by

ẋ(t) = (A + Aδ(t))x(t) − Bm(t)
(
Fx̂(t) + GC(A + Aδ(t))x(t)

)
(5.20)

where

Bm(t) :=
[
B1W(t)BT

2 (B2W(t)BT
2 )−1

Il

]

Adding and subtracting the term Bν

(
Fx̂(t) + GC(A + Aδ(t))x(t)

)
to the right hand

side of (5.20) and exploiting the fact that e(t) := x(t) − x̂(t), the slidingmode dynam-
ics in (5.20) can be written as

ẋ(t) = (A + Aδ(t))x(t) − Bν

(
Fx̂(t) + GC(A + Aδ(t))x(t)

)

+(Bν − Bm(t))
(
Fx̂(t) + GC(A + Aδ(t))x(t)

)

= (A − BνF − BνGCA)x(t) + Aδ(t)x(t) + BνFe(t) − BνGCA
δ(t)x(t)

+B̃Φ(t)
(
Fx(t) − Fe(t) + GC(A + Aδ(t))x(t)

)

= (A − BνF − BνGCA)x(t) + (I − BνGC)Aδ(t)x(t) + BνFe(t)

+B̃Φ(t)(GCA + F)x(t) − B̃Φ(t)Fe(t) + B̃Φ(t)GCAδ(t)x(t) (5.21)

where

B̃ :=
[
In−l

0

]
(5.22)

http://dx.doi.org/10.1007/978-3-319-32238-4_2
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and
Φ(t) = B1B

T
2 − B1W(t)BT

2

(
B2W(t)BT

2

)−1

︸ ︷︷ ︸
ψ(t)

(5.23)

Combining Eqs. (5.15) and (5.21), the closed-loop system dynamics can be written
as

[
ė(t)
ẋ(t)

]
=

[
A0 0
BνF A − BνF − BνGCA

] [
e(t)
x(t)

]
+ BaΔ(t)Ca

[
e(t)
x(t)

]

=
[

A0 0
BνF Ac − BνF

]

︸ ︷︷ ︸
Aa

[
e(t)
x(t)

]

︸ ︷︷ ︸
xa

+BaΔ(t)Ca

[
e(t)
x(t)

]
(5.24)

where

Ac := (I − BνGC)A (5.25)

Ba :=
[

(I − HC) 0 0
(I − BνGC) B̃ B̃

]
(5.26)

Ca :=
⎡

⎣
0 I

−F GCA + F
0 I

⎤

⎦ (5.27)

and the uncertainty term Δ(t) is

Δ(t) :=
⎡

⎣
Aδ(t) 0 0
0 Φ(t) 0
0 0 Φ(t)GCAδ(t)

⎤

⎦ (5.28)

Define [
e(t)
x̂(t)

]

︸ ︷︷ ︸
x̂a

=
[

I 0
−I I

]

︸ ︷︷ ︸
T̃

[
e(t)
x(t)

]
(5.29)

then in the new (e, x̂) coordinates, Eq. (5.24) can be written as

˙̂xa(t) = Ãax̂a(t) + B̃aΔ(t)C̃ax̂a(t) (5.30)
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where

Ãa := T̃AaT̃
−1 =

[
A0 0

Ac − A0 Ac − BνF

]
(5.31)

B̃a := T̃Ba =
[

(I − HC) 0 0
HC − BνGC B̃ B̃

]
(5.32)

C̃a := CaT̃
−1 =

⎡

⎣
I I

GCA GCA + F
I I

⎤

⎦ (5.33)

Now in order to demonstrate that the term Φ(t) in (5.23) is bounded, note that
Φ(t) = B1BT

2 − ψ(t) and ψ(t) = B1B
†
2(t) where B

†
2(t) is a right pseudo-inverse of

B2. Then, by using arguments similar to those as given in Chap.3, there exists a scalar
γ0 such that

‖B†
2(t)‖ := ‖W(t)BT

2

(
B2W(t)BT

2

)−1 ‖ < γ0 (5.34)

for all combinations of (w1(t), . . . ,wm(t)) such that det(B2W(t)BT
2 ) �= 0. Therefore

‖ψ(t)‖ ≤ γ1γ0 and hence
‖Φ(t)‖ ≤ γ1(1 + γ0) (5.35)

where γ1 = ‖B1‖. As in earlier chapters γ1 is assumed to be small.

Assumption 5.4 Assume that the uncertainty Aδ(t) in the system matrix A is
bounded.

Therefore in (5.28) since Φ(t) is bounded, it follows

‖Δ(t)‖ < γa (5.36)

for some positive scalar γa.

5.2.1 Closed-Loop Stability Analysis

In the nominal case, (i.e. when W(t) = I , Aδ(t) = 0 and Δ(t) = 0), Eq. (5.30) sim-
plifies to ˙̂xa(t) = Ãax̂a(t). From (5.31) it is clear the eigenvalues of Ãa are given by
the union of the eigenvalues of A0 and Ac − BνF. Both these matrices can be made
Hurwitz by choice of the design freedom matrices L1 from (5.12) and F respec-
tively. Consequently, by design, Ãa can be made Hurwitz, and hence nominally the
closed-loop system is stable. However for the fault/failure cases, stability needs to
be proven. Define

γ2 = ‖G̃a(s)‖∞ (5.37)

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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where
G̃a(s) := C̃a(sI − Ãa)

−1B̃a (5.38)

Proposition 5.1 In fault or failure conditions, for any (w1(t), . . . ,wm(t)) such that
det(B2W(t)BT

2 ) �= 0, the closed-loop system in (5.30) is stable if:

γ2γa < 1 (5.39)

Proof In order to establish closed-loop stability, the system defined in (5.30) can be
written as

˙̂xa(t) = Ãax̂a(t) + B̃ãua(t) (5.40)

ỹa(t) = C̃ax̂a(t) (5.41)

where ũa(t) := Δ(t)̃ya(t). In this form, Eq. (5.30) is the feedback interconnection of
the known linear system G̃a(s), and the bounded uncertain gain Δ(t). According to
the small gain theorem (Appendix B.1.2), the feedback interconnection of G̃a(s) and
Δ(t) will be stable if (5.39) is satisfied. �

Remark 5.3 By hypothesis, γ1 = ‖B1‖ is assumed to be small. Basically the size
of ‖B1‖ has a significant impact on the norm of the nonlinearity in the small gain
feedback loop, and so if ‖B1‖ is small, the gain of the nonlinearity is small, and
there is a less stringent requirement on the magnitude of theH∞ norm of the linear
part. Furthermore if Aδ(t) = 0, then ‖Δ(t)‖ → 0 as ‖B1‖ → 0 and Proposition5.1
is trivially satisfied.

5.2.2 LMI Synthesis

In this section the observer gain L1 and the controller gain F are synthesised, so
that the stability condition in (5.39) is satisfied. For the triple (̃Aa, B̃a, C̃a), from the
Bounded Real Lemma, ‖G̃a(s)‖∞ < γ2 if and only if there exists a s.p.d. matrix
X ∈ IR2n×2n such that

⎡

⎣
ÃaX + XÃT

a B̃a XC̃T
a

B̃T
a −γ 2

2 I 0
C̃aX 0 −I

⎤

⎦ < 0 (5.42)

Here it is assumed that X = diag(X1,X2) where the two sub-blocks X1,X2 ∈ IRn×n

are s.p.d. With this assumption

C̃aX =
⎡

⎣
X1 X2

GCAX1 GCAX2 + Y
X1 X2

⎤

⎦ (5.43)
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where Y := FX2. The top left sub-block in (5.42) is

ÃaX + XÃT
a =

[
A0X1 + X1AT

0 X1AT
c − X1AT

0
AcX1 − A0X1 AcX2 + X2AT

c − BνY − YTBT
ν

]
(5.44)

Also write A0 = Ah − L1C where Ah is defined in (5.12). To create a convex repre-
sentation, define the observer gain as

L1 := βBE (5.45)

where β is a positive scalar and E ∈ IRm×p is chosen so that (Ah,B,EC) is minimum
phase and det(ECB) �= 0. This is possible if (A,B,C) is minimum phase 1 (Assump-
tion5.3). Then it can be argued1 that it is possible to find an s.p.d. matrix Pwhich has
a structure P = NTdiag(P1,P2)N such that PB = (EC)T , whereN ∈ IRn×n is invert-
ible (and depends on E) and the s.p.d. matrices P1 ∈ IR(n−m)×(n−m),P2 ∈ IRm×m.
Define X11 = P−1

1 and X12 = P−1
2 . It follows that L1C = βBEC = βBBTP and so if

X1 := P−1 = N−1diag(X11,X12)(N
−1)T > 0 (5.46)

then L1CX1 = βBBT andA0X1 = AhX1 − βBBT . It follows that thematrix inequality
in (5.42) is affine with respect to the decision variables X11,X12,X2, β,Y and so the
synthesis problem is convex. For the nominal system in (5.7), (i.e. when W(t) = I
and Aδ(t) = 0), the matrix F must stabilise (A − BνF). Since (A,Bν) is assumed to
be controllable (Assumption5.2), an LQR formulation will be adopted where F is
selected to minimise

J =
∫ ∞

0
(xTQx + νTRν)dt

whereQ and R are symmetric positive definite design matrices. This problem can be
posed as an LMI optimisation:
Minimise trace(X−1

2 ) subject to

[
AX2 + X2AT − BνY − YTBT

ν (Q1X2 − R1Y)T

Q1X2 − R1Y −I

]
< 0 (5.47)

where

Q1 =
[
Q

1
2

0l×n

]
and R1 =

[
0n×l

R
1
2

]
(5.48)

For a given L2-gain γ2, the overall optimisation problem, posed in convex form
becomes:

1For details see [1].
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Minimise trace(Z) with respect to X11,X12,X2, β,Y subject to (5.42), (5.47),
(5.46) and (5.49) and [−Z In

In −X2

]
< 0 (5.49)

The s.p.d. matrix Z is a slack variable which from (5.49) satisfies Z > X−1
2 and

therefore trace(Z) ≥ trace(X−1
2 ). Finally the controller and observer gains can be

recovered as F = YX−1
2 and L1 = βBE.

5.2.3 ISM Control Laws

A control law will be defined to ensure sliding is maintained from t = 0. Define the
virtual control law in (5.7) as

ν(t) = νl(t) + νn(t) (5.50)

where the linear part, responsible for the nominal performance of the system is

νl(t) = −Fx̂(t) − GCAx̂(t) (5.51)

and the nonlinear part is defined as

νn(t) = −ρ(t)
σ (t)

‖σ(t)‖ for σ(t) �= 0 (5.52)

where ρ(t) is the modulation gain and is defined in Proposition5.2.
Also define a time varying scalar ε(t) as the solution to

ε̇(t) = −m0ε(t) + m1‖x̂(t)‖ (5.53)

where m0 and m1 are positive scalars to be defined in the sequel. Let V0 = eTP0e
where P0 is the s.p.d. matrix obtained from solving

P0A0 + A0
TP0 = −I (5.54)

Further suppose that ‖Aδ(t)‖ is sufficiently small so that P0 also satisfies

2‖P0‖‖(I − HC)Aδ(t)‖ < 1 − μo (5.55)

where μo > 0. Then the following Proposition can be proved:
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Proposition 5.2 Define the modulation gain from (5.52) as

ρ(t) = ‖GCAδ(t)‖‖x̂(t)‖ + ‖νl‖ + ε(t)(‖GCA‖ + ‖GCAδ(t)‖)/p0 + η

(1 − λ0)
(5.56)

where p0 = √
λmin(P0) and η is a positive design scalar. Also assume that the fault

(k1(t), . . . , km(t)) belongs to

D = {
(k1, . . . , km) : λmax

(
B2KB

T
2

)
< λ0 < 1

}

Also assume that by choice of x̂(0) and ε(0) the state estimation error at t = 0,
written e(0), satisfies

√
e(0)TP0e(0) < ε(0). Then the integral sliding mode control

law defined in (5.51) and (5.52), guarantees that the system trajectories remain on
the sliding surface.

Proof Equation (5.15) can be written as

ė(t) = (A0 + (I − HC)Aδ(t))e(t) + (I − HC)Aδ(t)x̂(t) (5.57)

then the derivative of the positive definite function V0 = eTP0e is given by

V̇0 = e
(
P0A0 + AT

0P0
)
eT + 2eTP0(I − HC)Aδ(t)e + 2eTP0(I − HC)Aδ(t)x̂

≤ −‖e‖2 + 2‖e‖2‖P0‖‖(I − HC)Aδ(t)‖ + 2‖e‖‖P0‖‖(I − HC)Aδ(t)‖‖x̂‖

and therefore since by assumption 2‖P0‖‖(I − HC)Aδ(t)‖ < 1 − μo where μo > 0
it follows

V̇0 ≤ −μ0‖e‖2 + (1 − μ0)‖x̂‖‖e‖ ≤ − μ0

λmax(P0)
V0 + 1 − μ0√

λmax(P0)
‖x̂‖√V0

(5.58)
Define Ṽ = √

V0, then (5.58) implies

˙̃V(t) ≤ − μ0

2λmax(P0)
Ṽ(t) + 1 − μ0

2
√

λmax(P0)
‖x̂(t)‖ (5.59)

which for notational convenience can also be written as

˙̃V(t) ≤ −m0Ṽ(t) + m1‖x̂(t)‖ (5.60)

where the positive scalars m0, and m1 are appropriately defined. Comparing (5.60)
and (5.53) if ε(0) > Ṽ(0), then it can be shown that ε(t) > Ṽ(t) for all t ≥ 0 and
consequently

ε(t) ≥ √
λmin(P0)‖e(t)‖ for t ≥ 0 (5.61)
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Now it will be shown that the control law defined in (5.50) satisfies the standard
reachability condition. Using the relationship K(t) = I − W(t), Eq. (5.17) can be
written as

σ̇ (t) = GC(A + Aδ(t))x(t) + (
B2W(t)BT

2

)
ν(t) + Fx̂(t)

= GC(A + Aδ(t))x(t) + ν(t) − (
I − B2W(t)BT

2

)
ν(t) + Fx̂(t)

= GC(A + Aδ(t))x(t) + ν(t) − (
B2(I − W(t))BT

2

)
ν(t) + Fx̂(t)

= GC(A + Aδ(t))x(t) + ν(t) − B2K(t)BT
2 ν(t) + Fx̂(t) (5.62)

Substituting the control law (5.50)–(5.52), into Eq. (5.62) and exploiting the fact that
e(t) = x(t) − x̂(t) yields

σ̇ (t) = GCAδ(t)x̂(t) + GCAδ(t)e(t) + GCAe(t) − (
B2K(t)BT

2

)
(νl + νn) + νn

(5.63)

Now consider the derivative of the candidate Lyapunov function V(t) = 1
2σ

T (t)σ (t).
From (5.63) the time derivative

V̇(t)≤‖σ(t)‖(‖GCAδ(t)‖‖x̂(t)‖ + (‖GCAδ(t)‖ + ‖GCA‖)‖e(t)‖
+‖B2K(t)BT

2 ‖‖νl(t)‖ − ρ(·) (
1 − ‖B2K(t)BT

2 ‖) )

≤‖σ(t)‖(‖GCAδ(t)‖‖x̂(t)‖ + (‖GCAδ(t)‖ + ‖GCA‖)‖e(t)‖
+‖B2K(t)BT

2 ‖‖νl‖ − ρ(·)(1 − λ0)
)

(5.64)

for a fault set (k1(t), . . . km(t)) ∈ D . Then from the definition of ρ(t) in (5.56) and
using the fact that ε(t) satisfies ε(t) ≥ √

λmin(P0)‖e(t)‖ for all t, inequality (5.64)
can be written as

V̇(t) ≤ −η‖σ(t)‖ = −η
√
2V(t) (5.65)

which is a standard reachability condition and sufficient to guarantee that a sliding
motion is maintained for all subsequent time. �

Finally the physical control law u(t) is obtained by substituting (5.50)–(5.52) into
(5.5) to obtain

u(t) = BT
2

(
−Fx̂(t) − GCAx̂(t) − ρ(t)

σ (t)

‖σ(t)‖
)

for σ(t) �= 0 (5.66)

5.3 Simulations

The civil aircraft benchmarkmodel discussed inAppendixA.1will be used to demon-
strate the effectiveness and fault tolerant nature of the scheme. The simulation sce-
nario which is considered in this section is that the aircraft undergoes an actuator
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fault or failure during a climb from straight and level flight. This scenario can be
realised by tracking a suitable flight path angle (FPA) while keeping the speed at a
fixed level. To design the linear component of the controller in (5.51), the flight oper-
ating condition considered here is the same as in Chap.3. The linearised state-space
model obtained at straight and level flight is

Ap =

⎡

⎢
⎢
⎣

−0.5137 0.0004 −0.5831 0
0 −0.0166 1.7171 −9.8046

1.0064 −0.0021 −0.6284 0
1 0 0 0

⎤

⎥
⎥
⎦

Bp =

⎡

⎢⎢
⎣

−0.6228 −1.3578 0.0599
0 −0.1756 5.7071

−0.0352 −0.0819 −0.0085
0 0 0

⎤

⎥⎥
⎦

The system states are x(t) = (q,Vtas, α, θ) where q is the pitch rate (rad/s), Vtas is
the true airspeed (m/s), α is the angle of attack (rad) and θ is the pitch angle (rad).
In the simulations, only measured system outputs

y =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦

︸ ︷︷ ︸
Cp

⎡

⎢
⎢
⎣

q
Vtas

α

θ

⎤

⎥
⎥
⎦

are available for use in the control law. The control surfaces are δlong = (δe, δs, δepr)

which represent elevator deflection (rad), horizontal stabiliser deflection (rad) and
aggregated longitudinal EPR (i.e. the four individual engine pressure ratios (EPRs)
aggregated to produce one control input). In the simulations a series of 3 deg flight
path angle (FPA) commands are given to increase the altitude of the aircraft, while
the true airspeed Vtas is held constant by using a separate inner-loop Proportional
Integral (PI) controller which creates an auto-throttle manipulating EPR. Throughout
the simulations it is assumed that the engines are fault-free. By splitting the input
distributionmatrix intomatrices which are associated with (δe, δs) and δepr , the linear
model can be written as

ẋp(t) = Apx(t) + Bsu1(t) + Beδepr(t) (5.67)

y(t) = Cpx(t) (5.68)

where u1(t) = (δe, δs) and matrices Bs ∈ IR4×2 and Be ∈ IR4×1. Define a new state
associated with the PI controller for Vtas as

ẋr(t) = rVtas(t) − C1xp(t) (5.69)

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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where rVtas(t) is the reference signal for Vtas tracking andC1 = [
0 1 0 0

]
. The inner-

loop PI control is given by

δepr = Kpip(rVtas(t) − C1x(t)) + Kpii xr(t)

where the PI gains are chosen as Kpip = 0.6, and Kpii = 0.9. Now augmenting the
plant in (5.67) with xr(t) yields

[
ẋr(t)
ẋp(t)

]
=

[
0 −C1

BeKpii (Ap − BeKpipC1)

]

︸ ︷︷ ︸
A

[
xr(t)
xp(t)

]

︸ ︷︷ ︸
x(t)

+
[
0
Bs

]

︸ ︷︷ ︸
B

u1(t) +
[

I
BeKpip

]

︸ ︷︷ ︸
Br

rVtas(t)

(5.70)
It is assumed that xr(t) is available for the controller design, and y = Cx(t) where
C = diag(1,Cp). In order to introduce steady state tracking for the controlled output
yc(t), a feedforward term LrrFPA(t) is introduced where

Lr := (Cc(A − BνF − BνGCA)−1Bν)
−1 (5.71)

and the exogenous constant signal rFPA is the reference to be tracked by the FPA. Since
(A − BνF − BνGCA) isHurwitz, det(A − BνF − BνGCA) �= 0 and consequently the
inverse in (5.71) is well-defined. In the absence of faults and uncertainty it is easy to
see the linear control law

u(t) = −Fx̂(t) + LrrFPA − GCAx̂(t)

ensures that at steady state yc(t) = rFPA(t). To accommodate this tracking require-
ment, the control law in (5.66) must be changed to

u(t) = BT
2

(
−Fx̂(t) + LrrFPA(t) − GCAx̂(t) − ρ(t)

σ (t)

‖σ(t)‖
)

for σ(t) �= 0

(5.72)
and

σ(t) = Gy(t) − Gy(0) +
∫ t

0
(Fx̂(τ ) − LrrFPA(τ ))dτ (5.73)

A fault tolerant control law will now be designed based on the system in (5.70)
governed by the triple (A,B,C) using only the elevator and stabiliser as inputs. A
further scaling ofB is required to ensure thatB2BT

2 = Il (where in this example l = 1).
It can be verified that rank(CB) = rank(B) = 2, and therefore Assumption5.3 holds.
In this aircraft system (A,B,C) has one stable invariant zero. Since the objective
is to track a FPA command, the controlled output is yc(t) = Ccx(t), where Cc =[
0 0 0 −1 1

]
. The gain G in Eq. (5.16) is

G = [
0 0.6694 0 0

]
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In addition to actuator faults or failures, to introduce potential faults which cause
changes to the aerodynamics of the aircraft, a 10% change in the aerodynamic
coefficients (due to airframe damage) is considered in the simulation, specifically:

Aδ =

⎡

⎢⎢⎢⎢
⎣

0 0 0 0 0
0 0.0514 0 0.0583 0
0 0 0.0017 0 0
0 0.1006 0 0.0628 0
0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

Choosing

E =
[−12.4139 −1.6056 12.4139 −1.6056

5.6942 0 −5.6942 0

]

gives ECB = I , and makes (Ah,B,EC) minimum phase with stable zeros at

(−1.0000,−0.6451,−1.0000)

The corresponding value of the observer gain L1 is

BE =

⎡

⎢⎢⎢
⎢
⎣

0 0 0 0
0 1 0 1

−1 0 1 0
−0.0290 0.0566 0.0290 0.0566

0 0 0 0

⎤

⎥⎥⎥
⎥
⎦

and A0 = (Ah − βBEC) is then stable for any β > 0. Choosing

Q = diag(0.02, 0.5, 0.2, 0.1, 10)

and R = 1 in (5.47) the feedback gain matrix F, obtained by solving the LMIs (5.42),
(5.47), (5.49) is given by

F = [−0.8142 9.9401 −2.2095 −0.3356 8.8802
]

In the simulations, it is assumed that the engines are fault-free. Based on this assump-
tion, using a numerical search, it can be verified using (5.28) that the value of γa in
(5.36) is γa = 0.1597. To satisfy the closed-loop stability condition in (5.39), the
value of γ2 must satisfy γ2 < 1

0.1597 = 6.2621. This has been satisfied through the
designed parameters L1 and F.
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5.3.1 Simulation Results

In this section the performance of the benchmark civil aircraft model is demonstrated
by considering potential failures in the actuators. In the simulations, the discontinuity
associated with the control signal in (5.52), is smoothed using the sigmoidal approx-
imation σ(t)

‖σ(t)‖+δ(t) , where the value of the positive scalar δ is chosen as δ = 0.01. The
value of themodulation gain is chosen here asρ(t) = 2. In the simulations the aircraft
undergoes a series of 3 deg FPA commands issued in two intervals between 25–50s
and between 100–125s in order to increase the altitude of the aircraft, while the
true airspeed Vtas is kept constant as shown in Fig. 5.1. The initial conditions for the
plant and observer are taken as x0 = (0, 0, 0, 0) and x0obs = (0, 0, 0, 0, 0.5(π/180))
respectively.

5.3.1.1 Nominal Versus Perturbed System Matrix

In Figs. 5.1 and 5.2 good tracking performance of the commanded signals is achieved
(nominally when Aδ = 0) and also when perturbing the system matrix with Aδ rep-
resenting a 10% change in the aerodynamic coefficients (due to possible airframe
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Fig. 5.6 Stabiliser runaway failure states

damage). The system states and the actuator deflections in both cases visually over-
lap, which shows the robustness of the scheme to parameter variations.

5.3.1.2 Elevator Lock in Place/Jam Failure

In Fig. 5.4 a failure is considered whereby the elevator jams at some offset position.
To maintain the performance close to the nominal, the FTC scheme invokes the
horizontal stabiliser to counteract the failure, while maintaining the sliding motion
throughout the entire system response (Fig. 5.5). There is no performance degradation
compared to the nominal situation (Figs. 5.1 and 5.4). In Fig. 5.3, it can be seen that
the observer output error quickly converges to zero despite the failure scenario.

5.3.1.3 Horizontal Stabiliser Hardover/Runaway Failure

Figure5.7 demonstrates the situation when the horizontal stabiliser runs-away to a
maximum position limit of 3 deg. Due to the availability of a ‘redundant’ actuator
(the elevator), the scheme can still maintain good tracking performance close to
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Fig. 5.7 Stabiliser runaway failure surface deflections

nominal as seen in Fig. 5.6. The observer output error is not influenced by the failure
and quickly converges to zero.

5.4 Summary

In this chapter, a fault tolerant control scheme was described, which assumes only
output information is available, and no information about the actuator faults or fail-
ures is known. A linear unknown input observer is employed to estimate the states
which are used in the virtual control law. The virtual signals are then translated into
physical control signals (associated with the actuators) by using a fixed control allo-
cation scheme which does not require estimates of the actuator effectiveness levels.
The closed-loop stability analysis allows for parameter uncertainty in the system
matrix in addition to actuator faults or failures. A convex representation of the syn-
thesis problem is established in order to prove closed-loop stability by synthesising
appropriate observer and controller gains. The simulation results on a benchmark
aircraft model show fast convergence of the observer output error, and demonstrate
the excellent FTC features of the scheme.
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5.5 Notes and References

In the FTC literature, methods such asH∞ control [2] and eigenstructure assignment
[3] invariably deal with the output feedback situation and do not require observers
per se for estimating the unmeasured states. Other FTC methods such as the Pseudo-
Inverse Method [4] use static output feedback to deal with actuator faults and the
model-following approach of [5] exploits an adaptive output feedback framework
which does not require state estimation. On the other hand papers such as [6, 7] used
an integrated FDI/FTC structure and take advantage of the observer (Kalman filter)
to provide state estimates to use in the control law. In [8] an ISM controller using
output information was used (although not in the framework of FTC) to compensate
for matched uncertainties, and a hierarchical sliding mode observer was proposed
to estimate the states. In [9] the ISM controller design method was developed into
an output feedback framework by introducing a dynamic output dependent sliding
surface employing a full order compensator. The unknown input observer considered
in Sect. 5.2 is based on the results from [10]. The ISM scheme in this chapter can
tolerate the presence of stable invariant zeros associated with the triple (A,B,C)

(Assumption5.3) as compared to [8], where it is assumed that the triple (A,B,C)

does not have any invariant zeros.
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Chapter 6
An Augmentation Scheme for Fault Tolerant
Control Using Integral Sliding Modes

In this chapter a quite different approach is adopted: here an integral sliding mode
approach will be retro-fitted to an existing feedback controller. The fault tolerant
control allocation scheme in this chapter adopts an a posteri approach, building on
an existing state feedback controller designed using only the primary actuators. An
integral sliding mode scheme is integrated within the existing controller to intro-
duce fault tolerance. The FTC technique described in this chapter is quite different
to the techniques described in Chaps. 3 and 4, which were designed based on the
open-loop plant with no cognizance of any existing controller. All the parameters
associated with the integral sliding mode schemes in Chaps. 3 and 4 were synthe-
sised simultaneously based on a model of the open-loop plant and specifications for
closed-loop performance. In this chapter, for controller design purposes, the actua-
tors are classified as primary and secondary. It is assumed a controller based only
on primary actuators has already been designed to provide appropriate closed-loop
performance in a fault-free scenario. The idea here is to create an a posteri integral
sliding mode design, building on the existing state feedback controller. The idea is to
use only the primary actuators in the nominal fault-free scenario, and to engage the
secondary actuators only if faults or failures occur. Crucially, in the fault-free case,
the closed-loop system behaviour is entirely dependent on the original controller,
and the overall scheme behaves exactly as though the ISM scheme is not present.
Only in the fault/failure case does the FTC scheme become active. In this way the
integral sliding mode FTC scheme described in this chapter can be retro-fitted to
almost any existing control scheme to induce fault tolerance. This requires a totally
different design philosophy compared to the schemes discussed in Chaps. 3 and 4.
The scheme discussed here has an advantage from an industrial perspective, since
it can be retro-fitted to an existing control scheme to induce fault tolerance without
the need to remove or alter existing control loops. The scheme in this chapter uses
measured or estimated actuator effectiveness levels in order to distribute the control
signals among the actuators. The effectiveness of the scheme is tested in simulation
using the high fidelity nonlinear RECOVER model.
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6.1 System Description and Problem Formulation

AnLTI system subject to actuator faults or failures can bemodelled (as in the previous
chapters) as

ẋp(t) = Apxp(t) + BpW(t)u(t) (6.1)

whereAp ∈ IRn×n,Bp ∈ IRn×m andW(t) ∈ IRm×m is a diagonal semi-positive definite
weighting matrix representing the effectiveness of each actuator where the elements
0 ≤ wi(t) ≤ 1 for i = 1, . . . ,m. If wi(t) = 1, the corresponding ith actuator has no
fault, whereas if 1 > wi(t) > 0, an actuator fault is present. In a situation where
wi(t) = 0, the actuator has completely failed. Suppose the input distribution matrix
can be partitioned as

Bp = [
B1 B2

]
(6.2)

where B1 ∈ IRn×l and B2 ∈ IRn×(m−l) and l < m and l < n. Here B1 is the input
distribution matrix associated with the primary actuators and is assumed to be of
rank equal to l, whilst B2 is associated with the secondary actuators which provide
redundancy in the system.

Assumption 6.1 It is assumed that the pair (Ap,B1) is controllable.

For the primary and secondary actuators, theweightingmatrixW(t) is also partitioned
as

W(t) = diag(W1(t),W2(t)) (6.3)

whereW1(t) = diag(w1(t), . . . ,wl(t)) andW2(t) = diag(wl+1(t), . . . ,wm(t)) are the
weighting matrices for the primary and secondary actuators respectively. In this
chapter, it is assumed that the matrix W(t) is estimated by some FDI scheme, as
given in Sect. 3.3.1 or by using a measurement of the actual actuator deflection
compared to the demand. In this chapter, again, the estimated value Ŵ(t) will not be
a perfect estimate of the real effectiveness matrixW(t).

Assumption 6.2 Assume the estimated matrix

Ŵ(t) = diag(Ŵ1(t), Ŵ2(t)) (6.4)

satisfies the relationship

W(t) = (I − �(t))Ŵ(t) (6.5)

where �(t) = diag(�1(t),�2(t)).

http://dx.doi.org/10.1007/978-3-319-32238-4_3


6.1 System Description and Problem Formulation 105

Both the uncertainty blocks �1(t) and �2(t) are assumed to be diagonal such that
�1(t) = diag(δ1(t), . . . , δl(t)) and�2(t) = diag(δl+1(t), . . . , δm(t)),where the diag-
onal elements δi(t) ∈ IR satisfy |δi(t)| < �max for some �max > 0 where

�max = max(‖�1(t)‖, ‖�2(t)‖) (6.6)

The matrices �1(t) and �2(t) model the level of imperfection in the fault estimate,
and satisfy

W1(t) = (Il − �1(t))Ŵ1(t)

W2(t) = (Im−l − �2(t))Ŵ2(t)

Since B1 is assumed to have full column rank equal to l, there exists an orthogonal
matrix Tp ∈ IRn×n such that

TpB1 =
[

0
B21

]
(6.7)

where B21 ∈ IRl×l (and B21 is nonsingular). By a suitable change of coordinates
x �→ Tpxp it can be ensured that the input plant distribution matrix has the form

TpBp =
[

0 B12

B21 B22

]
(6.8)

where B22 ∈ IRl×(m−l). Next scale the last l states to ensure BT
21B21 = B21BT

21 = Il
(i.e. B21 is orthogonal). Consequently it can be assumed without loss of generality
that the system in (6.1) can be written as

ẋ(t) = Ax(t) + BW(t)u(t) (6.9)

where

B =
[

0 B12

B21 B22

]
:= [

Bo Bs
]

(6.10)

Controllability of (Ap,B1) implies that the pair (A,Bo) is controllable. Assume that
a state feedback control law

νo(t) = Fx(t) (6.11)

has been designed a priori to make the system

ẋ(t) = (A + BoF)x(t) (6.12)
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stable. Note that the gain F is the baseline controller specifically designed based
on the primary actuators. Now a control allocation scheme will be retro-fitted to
the control law νo(t). The physical control law u(t) applied to all the actuators is
defined as

u(t) = N(t)ν(t) (6.13)

where ν(t) ∈ IRl is the virtual control effort produced by the actuators, and will be
discussed in the next section. The overall control structure is given in Fig. 6.1, where
it is clear that the integral sliding mode FTC scheme is retro-fitted to the existing
baseline controller νo(t) (which is designed based on the primary actuators) and
will be only active in the case of faults or failures. The control allocation matrix is
given by

N(t) =
[

Il
N2(t)(Il − Ŵ1(t))

]
(6.14)

where

N2(t) := BT
22B21(B

T
21B22Ŵ2(t)B

T
22B21)

−1 (6.15)

and Ŵ1(t) and Ŵ2(t) are the estimates of the effectiveness levels. Now define

W = {(ŵl+1, . . . , ŵm) ∈ [0 1] × · · · × [0 1]
︸ ︷︷ ︸

m−l times

: det(B22Ŵ2(t)B
T
22) �= 0} (6.16)

Assumption 6.3 Throughout this chapter, it is assumed that m ≥ 2l.

Fig. 6.1 Schematic of the
overall control strategy

v

Ŵ
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Remark 6.1 This allows up to m − 2l of the entries ŵi(t) in the matrix Ŵ2(t) to be
zero, and yet guarantee det(B22Ŵ2(t)BT

22) �= 0. The setW will be shown to constitute
the class of faults/failures for which closed-loop stability can be maintained.

Substituting (6.5) and (6.13) into (6.9) yields

ẋ(t) = Ax(t) +
[

B12(Im−l − �2)Ŵ2(t)N2(t)(Il − Ŵ1(t))
B21(Il − �1)Ŵ1(t) + B22(Im−l − �2)Ŵ2(t)N2(t)(Il − Ŵ1(t))

]
ν(t)

(6.17)

Since B21 is orthogonal by construction B21BT
21 = Il, then using the definition of

N2(t) in (6.15) it follows that

B22Ŵ2(t)N2(t) = B21B
T
21B22Ŵ2(t)N2(t) = B21 (6.18)

Consequently using (6.18), Eq. (6.17) simplifies to

ẋ(t) = Ax(t) +
[

B12(Im−l − �2)Ŵ2N2(t)(Il − Ŵ1)

B21(Il − �1)Ŵ1 + B21(Il − Ŵ1) − B22�2Ŵ2N2(t)(Il − Ŵ1)

]
ν(t)

(6.19)
which can be further simplified to

ẋ(t) = Ax(t) +
[

B12(Im−l − �2)Ŵ2(t)N2(t)(Il − Ŵ1(t))
B21 − B21�1Ŵ1(t) − B22�2Ŵ2(t)N2(t)(Il − Ŵ1(t))

]

︸ ︷︷ ︸
B̂(t)

ν(t)

(6.20)

Remark 6.2 In the case of perfect estimation of Ŵ(t) (i.e.�(t) = 0) and when there
is no fault in the primary and secondary actuators (i.e.W1(t) = Il andW2(t) = Im−l),
the system in (6.20) becomes

ẋ(t) = Ax(t) + Boν(t) (6.21)

and so only the primary control channels will be used.

In a fault/failure scenario, to maintain the closed-loop performance near to nominal,
the concept of integral sliding mode control is combined with the control law from
(6.13) and (6.14). The nominal fault-free system in (6.21) will be used for the design
of the augmentation scheme which will be demonstrated in the sequel.

6.2 Integral Sliding Mode Controller Design

First choose the sliding surface asS = {x ∈ IRn : σ(t) = 0} where the switching
function σ(t), based on the nominal system (6.12), is defined as
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σ(t) := Gx(t) − Gx(0) − G
∫ t

0
(A + BoF) x(τ )dτ (6.22)

whereG ∈ IRl×n is the design freedom to be selected. The elimination of the reaching
phase, ensures the occurrence of the sliding motion throughout the entire response
of the system. In this chapter, the design freedom G is selected as

G := BT
o (6.23)

where Bo is defined in (6.10). With this choice of G it follows

GBo = BT
21B21 = Il

and so this choice ofG serves as a pseudo-inverse of the matrix Bo. Also from (6.20)

GB̂(t) = BT
21

(
B21 − B21�1(t)Ŵ1(t) − B22�2(t)Ŵ2(t)N2(t)(Il − Ŵ1(t))

)
(6.24)

which will be used when obtaining an expression for the equivalent control. Taking
the time derivative of σ(t) defined in (6.22) along the system trajectories yields

σ̇ (t) = Gẋ(t) − GAx(t) − GBoFx(t) (6.25)

Substituting (6.20) into (6.25), the expression above simplifies to

σ̇ (t) = GB̂(t)ν(t) − GBoFx(t) (6.26)

Equating σ̇ (t) = 0, and using the fact thatGBo = Il, the expression for the equivalent
control is

νeq(t) = (GB̂(t))−1Fx(t) (6.27)

The equations of motion governing sliding can be obtained by substituting (6.27)
into (6.20) which yields

ẋ(t) = Ax(t) + B̂(t)(GB̂(t))−1Fx(t) (6.28)

Adding and subtracting the term BoFx(t), Eq. (6.28) can be written as

ẋ(t) = (A + BoF)x(t) + (̂B(t)(GB̂(t))−1 − Bo)Fx(t) (6.29)

which can be further simplified to

ẋ(t) = (A + BoF)x(t) +
[
B12(I − �2(t))Ŵ2(t)N2(t)(I − Ŵ1(t))(GB̂(t))−1

0l

]
Fx(t)

(6.30)
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Remark 6.3 Note that in the nominal fault-free case whenW(t) = I , and in the case
of perfect estimation of Ŵ(t) matrix, the top row in the second term is zero, and the
closed-loop sliding motion is stable. In the case of faults or failures when Ŵ(t) �= I ,
then the second term is not zero and will be treated as unmatched uncertainty.

For the stability analysis which follows, write (6.30) as

ẋ(t) = (A + BoF)x(t) + B̃Φ̃(t)Fx(t) (6.31)

where

B̃ :=
[
B12

0

]
(6.32)

and the time varying uncertain term

Φ̃(t) := (Im−l − �2(t))Ψ (t)
(
Il − �1(t)Ŵ1(t) − BT

21B22�2(t)Ψ (t)
)−1

(6.33)

where

Ψ (t) := Ŵ2(t)N2(t)(Il − Ŵ1(t)) (6.34)

From (6.18) it is clear that Ŵ2(t)N2(t) is a right pseudo-inverse for BT
21B22. Then by

using arguments similar to those given in Chap. 3, it follows ‖Ŵ2(t)N2(t)‖ < γ1 for
some positive scalar γ1, provided that det(B22Ŵ2(t)BT

22) �= 0. Since

‖Ψ (t)‖ ≤ ‖(Il − Ŵ1(t))‖‖Ŵ2(t)N2(t)‖ < ‖Ŵ2(t)N2(t)‖ < γ1

the term ‖Ψ (t)‖ is bounded. Define γ ∗
1 as the smallest number (which will be used

later in Proposition 6.1) satisfying

‖Ψ (t)‖ < γ ∗
1 (6.35)

In the following subsections the main results of the chapter are presented.

6.2.1 Stability Analysis of the Closed-Loop Sliding Motion

In the case of perfect estimation of the Ŵ(t) matrix, (i.e. �(t) = 0) and when there
are no faults in the system (i.e.W(t) = I) the uncertain term Φ̃(t) in (6.31) vanishes
(i.e. Φ̃(t) = 0) and the closed-loop sliding motion in (6.31) simplifies to

ẋ(t) = (A + BoF)x(t) (6.36)

which is stable by choice of the baseline controller F.

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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In the case of non-perfect estimation of Ŵ(t), and in the presence of faults, the
stability of (6.31) needs to be proven. To this end, in this most general situation the
equation governing the sliding motion in (6.31) can be written as

ẋ(t) = (A + BoF)︸ ︷︷ ︸
Ã

x(t) + B̃

ũ(t)
︷ ︸︸ ︷
Φ̃(t)Fx(t)︸ ︷︷ ︸

ỹ(t)

(6.37)

For the subsequent stability analysis, define theL2 gain between ũ to ỹ as

γ2 = ‖G̃(s)‖∞ (6.38)

where the transfer function matrix

G̃(s) := F(sI − Ã)−1B̃ (6.39)

which is stable by design.

Proposition 6.1 Suppose that the condition

(1 + γ3γ
∗
1 )�max < 1 (6.40)

holds, where γ ∗
1 and �max are defined in (6.35) and (6.6) and γ3 = ‖B22‖, then

during fault/failure conditions, including the failure of primary actuators, and for
any ŵl+1(t), . . . , ŵm(t) ∈ W where W is defined in (6.16), the closed-loop system
in (6.37) will be stable if:

γ2γ
∗
1 (1 + �max)

1 − (1 + γ3γ
∗
1 )�max

< 1 (6.41)

where γ2 is defined in (6.38).

Proof The closed-loop sliding motion in (6.37) can be written as

ẋ(t) = Ãx(t) + B̃ũ(t) (6.42)

ỹ(t) = Fx(t) (6.43)

where
ũ(t) = Φ̃(t)ỹ(t) (6.44)

By using the small gain theorem (as discussed in Appendix B.1.2), the feedback
interconnection of the known stable matrix G̃(s) with the bounded uncertain term
Φ̃(t), and hence Eq. (6.37), will be stable if

‖G̃(s)‖∞‖Φ̃(t)‖ < 1 (6.45)
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From Eq. (6.33), it is clear that

‖Φ̃(t)‖ ≤ ‖(Il − �1(t)Ŵ1(t) − BT
21B22�2(t)Ψ (t)

︸ ︷︷ ︸
X(t)

)−1‖‖(Im−l − �2(t))Ψ (t)‖

(6.46)
Using the fact that ‖Ŵ1(t)‖ ≤ 1, and ‖BT

21‖ = 1 (since BT
21B21 = Il), from (6.46)

‖X(t)‖ ≤ ‖�1(t)Ŵ1(t)‖ + ‖BT
21B22�2(t)Ψ (t)‖

≤ ‖�1(t)‖ + ‖B22‖‖�2(t)‖‖Ψ (t)‖
≤ (1 + γ3γ

∗
1 )�max < 1

if the conditions of Proposition 6.1 hold. Hence from (6.46), and using the fact that
in general

‖(I − X)−1‖ ≤ (1 − ‖X‖)−1 if ‖X‖ < 1

it follows that

‖Φ̃(t)‖ ≤ γ ∗
1 (1 + �max)

1 − (1 + γ3γ
∗
1 )�max

(6.47)

From the expression in (6.47) and the fact that ‖G̃(s)‖∞ = γ2, a sufficient condition
to ensure the small gain theorem in (6.45) holds, is that

γ2γ
∗
1 (1 + �max)

1 − (1 + γ3γ
∗
1 )�max

< 1

This is the condition in (6.41), and the proof of Proposition 6.1 is complete. �

Remark 6.4 If B12 is zero in (6.32) which is the assumption in many CA schemes,1

then B̃ = 0, and the condition of Proposition 6.1 is trivially satisfied. The scheme
in this chapter allows B12 �= 0, and consequently considers a more general solution,
which helps target a wider range of potential applications.

6.2.2 Integral Sliding Mode Control Laws

Now a control lawwill be designed such that the slidingmotion on the sliding surface
in (6.22) can be ensured. Define the integral sliding mode control law as

ν(t) = νl(t) + νn(t) (6.48)

1See for example [1, 2].
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where the linear part of the control law (which is known a priori) is

νl(t) := Fx(t) (6.49)

and the nonlinear part, which induces the sliding motion, is

νn(t) := −ρ(t, x)
σ (t)

‖σ(t)‖ for σ(t) �= 0 (6.50)

where ρ(t, x) is the modulation gain whose precise value is given in the statement of
Proposition 6.2. Now in the sequel it is demonstrated that the integral sliding mode
control law in (6.48)–(6.50) satisfies the reachability condition.

Proposition 6.2 Assume the conditions of Proposition 6.1 hold. Then if ρ(t, x) is
chosen as

ρ(t, x) ≥ (1 + γ3γ
∗
1 )�max‖νl(t)‖ + η

1 − (1 + γ3γ
∗
1 )�max

(6.51)

where η > 0 is a small positive scalar, the integral slidingmode control law in (6.48)–
(6.50) satisfies the reachability condition and sliding on S in (6.22) is maintained.

Proof By substituting the control law in (6.48)–(6.50) into (6.26) and by using the
fact that GBo = I:

σ̇ (t) = (GB̂(t)) (νl(t) + νn(t)) − Fx(t) (6.52)

Since by construction BT
21B21 = Il, using (6.24) and (6.34), Eq. (6.52) can be written

as

σ̇ (t) = (Il − �1(t)Ŵ1(t) − BT
21B22�2(t)Ψ (t))(νl(t) + νn(t)) − Fx(t)

= νn(t) − (�1(t)Ŵ1(t) + BT
21B22�2(t)Ψ (t))(νl(t) + νn(t)) (6.53)

Now consider the candidate Lyapunov function

V(t) = 1

2
σ T (t)σ (t) (6.54)

Taking the time derivative of (6.54) and substituting for σ̇ (t) from (6.53) yields

V̇(t) = −ρ(·)‖σ‖ − σ T (�1(t)Ŵ1(t) + BT
21B22�2(t)Ψ (t))(νl(t) + νn(t))

≤ −ρ(·)‖σ‖ + ‖σ‖(�max + γ3�maxγ
∗
1 )(‖νl‖ + ρ(·))

≤ −ρ(·)(1 − (�max + γ3�maxγ
∗
1 ))‖σ‖ + ‖σ‖(�max + γ3�maxγ

∗
1 )‖νl‖

(6.55)

where �max is defined in (6.6). By choosing the value of ρ(t, x) as in (6.51), the
expression in (6.55) becomes V̇(t) ≤ −η‖σ(t)‖ = −η

√
2V(t), which is the standard
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reachability condition, and is sufficient to guarantee that sliding on the surfaceS is
maintained. �

Finally in order to obtain the overall physical control law which is used to create the
actual control signals sent to all the available control surfaces, substituting (6.48)–
(6.50) into (6.13) yields

u(t) =
[

Il
N2(t)(Il − Ŵ1(t))

] (
Fx(t) − ρ(t, x)

σ (t)

‖σ(t)‖
)

(6.56)

where N2(t) is defined in (6.15). The efficacy of the scheme is tested in the following
section using the high fidelity nonlinear model of the large transport aircraft from
Appendix A.

6.3 Case Study: Yaw Damping of a Large
Transport Aircraft

The integral sliding mode FTC scheme described in this chapter employs an a posteri
approach building on an existing state feedback controller designed using only the
primary actuators. In the physical control law given in (6.56), the baseline control
law F is assumed to exist a-priori. The technique implemented in the FTC scheme
is to use the baseline controller in the nominal fault-free scenario, and activate the
fault tolerant features only in the case when faults or failures occur in the actuators.
All the simulations that follow are based on the RECOVER benchmark model of a
large passenger aircraft (see Appendix A.1).

The objective of the simulations is to damp the lateral dynamics of the aircraft
when the initial sideslip β(0) is perturbed by 1 degwhile the aircraft is flying at a high
altitude (12,192m) at a high speed (236m/s). The lateral dynamics of the aircraft
discussed in Appendix A.1 are used to evaluate the scheme. For yaw damping, the
washout filter state:

ẋwo = r − 0.333xwo (6.57)

is augmented with the lateral dynamics, where r is the yaw rate and xwo is the
washout filter state. The nominal state feedback controller F associated with the
primary actuators for yaw damping (which is a stability augmentation system for the
lateral dynamics of an aircraft) has been taken from the literature2 and is not part of
the design process.

By augmenting the washout filter state given in Eq. (6.57), with the aircraft’s
lateral dynamics the state-space representation of the model is given as

2Specifically the control law is based on eigenstructure assignment [3].
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Ap =

⎡

⎢⎢⎢⎢
⎣

−0.3330 0 0 1 0
0 0 0 0.0816 1
0 0.0413 −0.0537 −0.9944 0.0823
0 −0.0012 0.6090 −0.0869 −0.0335
0 0.0002 −2.9236 0.3681 −0.4514

⎤

⎥⎥⎥⎥
⎦

Bp =

⎡

⎢⎢
⎢⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0

0.0070 0 0.0003 −0.0003 0.0002 −0.0002
−0.4438 −0.0082 −0.0046 0.0046 0.0493 −0.0493
0.1451 −0.1329 −0.0625 0.0625 0.0085 −0.0085

⎤

⎥⎥
⎥⎥
⎦

(6.58)

The states are (xwo, φ, β, r, p), where xwo is the washout filter state (rad) in Eq. (6.57),
φ is the roll angle (rad), β is the side slip (rad), r is the yaw rate (rad/s) and p is
the roll rate (rad/s). The control surfaces which are considered for the design are
δlat = (δr, δa, δsp5, δsp8,Tnl,Tnr) where δr is the rudder deflection (rad), δa is the
aileron deflection (rad), δsp5 is the left inboard spoiler (rad), δsp8 is the right inboard
spoiler (rad) and Tnl and Tnr are aggregated engine thrusts (N) (scaled by 105)
on the left and right wing. It is assumed that the left aileron moves in an anti-
symmetrical fashion to the right aileron.3 In (6.58) the input distribution matrix Bp is
divided into primary (δr, δa) and secondary (δsp5, δsp8,Tnl,Tnr) actuators. A further
transformation is required in order to have the structure in (6.10) and to ensure that
B21BT

21 = I2.

6.3.1 Baseline Controller

Eigenstructure assignment is a method that provides the freedom to allow the appro-
priate set of eigenvalues and associated eigenvectors to be considered in the design
procedure to achieve the desired performance or shape of the closed-loop system
response. The feedback gain F, based only on the primary actuator, is assumed to
be available a priori and should stabilise the nominal closed-loop system in (6.12).
The design of F is based on a set of eigenvalues and the best possible eigenvectors.
Based on this available eigenstructure, the feedback gain F can be obtained using
the relation

(A + BoF)vi = λivi i = 1, . . . , n (6.59)

where λi is an eigenvalue and vi is the associated eigenvector.
The ideal closed-loop eigenvalues for the nominal state feedback controller F

associated with the primary actuators for yaw damping are

{−0.0051,−0.468,−0.6 ± 0.628j,−1.106} (6.60)

3The outboard ailerons and spoilers (sp1 − 4, sp9 − 12) are not active at a high speed cruise con-
dition due to structural limit. The spoilers (sp6, sp7) are ground spoilers and not used in flight.
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The motions corresponding to the stable real poles are referred to as the spiral mode
(−0.0051), the washout filter (−0.468) and the roll mode (−1.106). The motion
corresponding to the complex poles is referred to as the Dutch roll mode. The best
possible eigenvectors to ensure decoupling between these modes are

⎡

⎢⎢⎢
⎢
⎣

∗
0
1
∗
∗

⎤

⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢
⎣

∗
0
1
∗
∗

⎤

⎥⎥⎥
⎥
⎦

︸ ︷︷ ︸
Dutch roll mode

⎡

⎢⎢⎢
⎢
⎣

∗
1
0
∗
∗

⎤

⎥⎥⎥
⎥
⎦

︸ ︷︷ ︸
roll mode

⎡

⎢⎢⎢
⎢
⎣

∗
1
0
∗
∗

⎤

⎥⎥⎥
⎥
⎦

︸ ︷︷ ︸
spiral mode

⎡

⎢⎢⎢
⎢
⎣

0
0
0
1
0

⎤

⎥⎥⎥
⎥
⎦

︸ ︷︷ ︸
washout filter

⎡

⎢⎢⎢
⎢
⎣

xwo
φ

β

r
p

⎤

⎥⎥⎥
⎥
⎦

︸ ︷︷ ︸
x(t)

(6.61)

where ∗ denotes that the value of the element is unimportant. This selection of
eigenvectors ensures no coupling of Dutch roll with the roll angle and/roll rate.
Furthermore the spiral mode and roll mode are associated with the roll angle only,
and should ensure decoupling from the sideslip angle to avoid sideslip in the course
of a steady turn. The washout filter which is used for the yaw damping is only
associated with the yaw rate. Using the set of eigenvalues and eigenvectors given
in (6.60) and (6.61), the ideal baseline control law F for yaw damping (considering
only the primary actuators (δr, δa)), based on eigenstructure assignment is

F =
[ −0.5342 −0.4817 0.0665 1.1836 −0.0133

−21.9319 −0.5188 0.1313 1.9001 0.6705

]
(6.62)

The state feedback control gain matrix in (6.62) will be taken as the a priori given
controller around which the integral sliding mode scheme is created.

6.3.2 Fault Tolerant Control

In the case of faults or failures, the baseline control law in (6.62) cannot be used
alone; instead the fault tolerant control law given in (6.56) will be employed to
retain performance close to the nominal. In the nominal case, the aileron is the
primary control surface for φ tracking, and the spoilers are the redundancy; whereas
the rudder is the primary control surface for β tracking (i.e. yaw damping), and
differential engine thrust is the redundancy. The closed-loop stability condition in
(6.41) should be guaranteed in nominal and in fault/failure scenarios. The value of
γ2 for the a priori F using Eq. (6.38) is γ2 = 0.0424. Using (6.35) it can be verified
using a numerical search that γ ∗

1 = 7.5920. Hence to satisfy the stability conditions
of Proposition 6.1 in (6.40) and (6.41) where γ3 = 0.7176, the maximum value of
the error in estimation of the actuator effectiveness levels which can be handled by
the physical control law in (6.56) is �max = 10%.
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6.3.3 Nonlinear Simulation Results

As in previous chapters, the discontinuity in the unit vector has been smoothed
using the sigmoidal approximation σ(t)

‖σ(t)‖+δ
given in Sect. 2.5, where the value of the

positive scalar is chosen as δ = 0.01. In the sequel three simulation case studies are
investigated: one a fault-free case considering the estimation of the W(t) matrix is
perfect; the second considering the same scenario as in case 1, butwhen the estimation
of theW(t)matrix is imperfect; and the third a scenario involving a primary actuator
failure with imperfect estimation ofW(t).

6.3.3.1 Case 1: Fault-Free Case with Perfect Estimation of W(t)

In the case when the estimation of the effectiveness level matrix W(t) is perfect,
�(t) = 0 and �max = 0. Consequently the stability condition in (6.41) reduces to
γ2γ

∗
1 = 0.3217 < 1. Figures6.2 and 6.3 demonstrate the nominal fault-free perfor-

mance. In Fig. 6.2 it can be seen that the roll and yawmodes are decoupled.During the
nominal fault-free scenario the secondary actuators are not active (Fig. 6.3) because
the integral sliding mode FTC scheme is not active in this case, and only the baseline
controller F is employed to achieve the nominal performance.
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Fig. 6.2 No fault (perfect estimation of W(t)): plant states
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Fig. 6.3 No fault (perfect estimation of W(t)): actuators

6.3.3.2 Case 2: Fault-Free Case with Imperfect Estimation of W(t)

A second scenario is considered here to demonstrate the efficacy of the scheme when
the system is fault-free and the estimation of theW(t)matrix is not perfect. Figure6.4
shows that due to imprecise information provided by the FDI, the estimate Ŵ(t) �= I ,
(indicating the presence of faults) although in reality there is no fault in the system.
In response to this the control allocation scheme engages the secondary actuators
(spoilers for φ performance and differential engine thrust for β performance) as
shown in Fig. 6.5 tomaintain closed-loop stability of the system and to retain nominal
performance as in Fig. 6.2.

6.3.3.3 Case 3: Primary Failure with Imperfect Estimation of W(t)

The third scenario demonstrates the scheme with imperfect estimates Ŵ(t) in the
case of failures in the primary actuators. Theoretically themaximumpercentage error
�max the scheme can handle and yet ensure the stability conditions of Proposition 6.1,
is 10%. Figure6.7, shows the scenario when both the primary actuators (rudder and
ailerons) have jammed at offset positions at 6 s, and due to imprecise information
provided by the FDI scheme, the effectiveness of the primary actuators is estimated
at 10%, instead of 0% (Fig. 6.6). Due to this failure, the right wing spoiler sp8 is
actively engaged by the control allocation scheme, together with the left and right
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Fig. 6.6 Primary failure (imperfect estimation of W(t)): plant states
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wing engine thrusts, to cope with this situation, and to maintain performance close
to the nominal (Fig. 6.7). The switching function plot in Fig. 6.7 shows that sliding
is maintained during the entire system response.

6.4 Summary

This chapter described a fault tolerant control scheme incorporating integral sliding
mode and CA, based on an a posteri approach. Here an ISM and CA architecture
was incorporated into an existing state feedback controller (designed using only
the primary actuators). As in earlier chapters, to distribute the control signals to
the functional actuators, the scheme uses the estimated effectiveness levels of the
actuators provided by an FDI scheme. The efficacy of the FTC scheme was tested in
simulation using the high fidelity nonlinear RECOVER benchmark model.

6.5 Notes and References

Retro-fitting a new component to an existing baseline feedback control scheme to
achieve fault tolerance is appealingbecause it retains theperformanceof baseline con-
troller nominally. The nominal fault-free performance can be achieved by any design
paradigm includingH∞ control [4], eigenstructure assignment [5], LQR [1], or slid-
ing mode control [6–8]. An early example of retro-fitting adaptive reconfigurable
control laws to conventional control laws was explored in [9]. The implementation
of retro-fit control laws is possible in a parallel or in an ‘in-line’ or ‘series’ approach
[10]. In [11], a reconfigurable control effector compensation scheme was proposed,
where an adaptive subsystem was implemented in a retro-fit fashion as an add-on
signal within the Fast on-Line Actuator Recovery Enhancement (FLARE) system.
In [12], a theoretical framework was developed for retro-fitting reconfigurable flight
control laws to accommodate severe structural damage and the resulting state depen-
dent disturbances, using prior information about the baseline controller. In [13], a
decentralised retro-fitted adaptive FTC schemewas designed for nonlinear models to
accommodate loss of effectiveness in flight control actuators. The loss of effective-
ness parameters and retro-fit control signals are generated locally to deal with loss
of effectiveness in the actuators. In this chapter the baseline yaw damping controller
in Sect. 6.3.1 is based on arguments in [14] and the eigenstructure assignment has
been performed based on the toolbox associated with [3].
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Chapter 7
Nonlinear Integral Sliding Mode

Many of the existing FTC schemes in the literature are based on linear plant
representations and are therefore only valid in the vicinity of the designed trim point.
Therefore, one of the main challenges for practical implementation, especially for
aircraft, is to ensure good performance for a wide range of operating conditions.
Some of the linear based designs can be extended to handle variations in operat-
ing conditions, but direct nonlinear methods such as nonlinear dynamic inversion
(NDI) and backstepping provide equally viable alternatives—with many benefits
compared to the extended linear cases. One obvious benefit is the direct exploitation
of the well-known aircraft equations of motion, which provides good and consistent
performance throughout the flight envelope. This chapter presents a nonlinear fault
tolerant scheme for longitudinal control of an aircraft system, comprising an integral
sliding mode control allocation scheme and a backstepping structure. In fault-free
conditions, the closed-loop system is governed by the backstepping controller and
the integral sliding mode control allocation scheme only influences the performance
if faults/failures occur in the primary control surfaces. In this situation the alloca-
tion scheme redistributes the control signals to the secondary control surfaces and
the scheme is able to tolerate total failures in the primary actuator. A backstepping
scheme taken from the existing literature is designed for flight path angle tracking
(based on the nonlinear equations of motion) and this is used as the underlying base-
line controller. The efficacy of the scheme is demonstrated using the RECOVER
benchmark model.

7.1 Nonlinear Aircraft Model

In this chapter, the longitudinal motion of a rigid aircraft will be considered. Such a
model is typically given by four differential equations

© Springer International Publishing Switzerland 2016
M.T. Hamayun et al., Fault Tolerant Control Schemes Using Integral
Sliding Modes, Studies in Systems, Decision and Control 61,
DOI 10.1007/978-3-319-32238-4_7
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V̇tas = 1

m
(−D + Tn cos(α + σT ) − mg sin γ ) (7.1)

α̇ = 1

mVtas
(−L − Tn sin(α + σT ) + mg cos γ ) + q (7.2)

θ̇ = q (7.3)

q̇ = 1

Iy
(M + Tnltz cos σT ) (7.4)

where Vtas, α, θ, q, γ represent true air speed, angle of attack, pitch angle, pitch
rate and flight path angle respectively. The parameters in (7.1)–(7.4) are m, g, Iy, Tn,

ltz, σT which represent mass, gravity, the body axis moment of inertia, total engine
thrust, the distance from the engine centre line to the fuselage reference line and the
engine inclination angle respectively.

Define the state vector as x = col(Vtas, α, θ, q), then the drag force, lift force and
pitch moments (D, L, M) from (7.1) to (7.4) can be written as:

D = q̄SCD(x, δ) (7.5)

L = q̄SCL(x, δ) (7.6)

M = q̄Sc̄ (Cm(x, δ) + Δ(x)) (7.7)

where the dynamic pressure

q̄ = 1

2
ρairV 2

tas (7.8)

and S, c̄, ρair represent the wing area, wing mean aerodynamic chord and air den-
sity respectively. The dimensionless drag force, lift force and pitch moment coeffi-
cients CD(x, δ), CL(x, δ) and Cm(x, δ) are functions of the states and control surface
deflections, and are usually obtained through wind tunnel and flight tests. This data
is then used to create an aerodynamic database in the form of a lookup table. For the
RECOVER model, this data is available. The term Δ(x) in (7.7) represents unmod-
elled dynamics which are not considered during the design, but which appear as part
of the high fidelity model in RECOVER. This term is explicitly given by

Δ(x) = −1

c̄
(CD sin α + CL cosα) x̄cg + c̄α̇

Vtas

(
Cmα̇

− x̄cg

c̄
CLα̇

cosα

)
(7.9)

where x̄cg = xcgref −xcg represents the difference between the actual and the reference
x-axis centre of gravity. In this chapter it is assumed that Δ(x) is unknown.
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7.1.1 Strict Feedback Form

To design the ISM scheme and the baseline backstepping control law, approxima-
tions will be made to the longitudinal aircraft dynamics in (7.1)–(7.4) to create a
representation in ‘strict feedback form’.1 Here, the following simplifications are
introduced.

Assumption 7.1 It is assumed that Vtas remains constant: i.e. V̇tas ≈ 0.

Assumption 7.2 It is assumed that a change to the elevator mainly affects the pitch
moment, and the effect on lift and drag can be neglected (i.e.CD(δ) = 0, CL(δ) = 0).

Remark 7.1 Assumption 7.1 can be achieved by introducing a separate feedback
loop based on the measured speed and the auto throttle.

Remark 7.2 Assumption 7.2 is common in the flight dynamics literature.2

Using Assumptions 7.1 and 7.2 together with (7.5)–(7.7), and replacing α̇ with γ =
θ−α (i.e. flight path angle) to remove the dependency on q, the longitudinal dynamics
in (7.1)–(7.4), for controller design purposes, can be rewritten as

γ̇ = 1

mVtas
(q̄SCL(x) + Tn sin(θ − γ + σT ) − mg cos γ ) (7.10)

θ̇ = q (7.11)

q̇ = 1

Iy
(q̄Sc̄ (Cm(x, δ) + Δ(x)) + Tnltz cos σT ) (7.12)

In (7.10)–(7.12), the control surface deflection δ only appears in Eq. (7.12) and this
allowsmany nonlinear schemes (e.g. backstepping and nonlinear dynamic inversion)
to be used for control law design.

Note that (7.10)–(7.12) are only used for controller design; in the simulations the
original Eqs. (7.1)–(7.4), and in fact the more detailed RECOVER benchmark from
Appendix A, are used to test the design.

The pitch moment coefficient can be written as a function of the states and control
surfaces:

Cm(x, δ) = Cm(x) + dCm

dδe
δe + dCm

dδs
δs (7.13)

where δe, δs are elevator and horizontal stabiliser deflections respectively. Combining
Eq. (7.13) with Eqs. (7.10)–(7.12), simplified equations of motion can be written in
the form

1See for example [1].
2See for example [2].
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⎡

⎣
γ̇

θ̇

q̇

⎤

⎦

︸ ︷︷ ︸
ẋ(t)

=
⎡

⎣

1
mVtas

(q̄SCL(x) + Tn sin(α + σT ) − mg cos γ )

q
1
Iy

(q̄Sc̄Cm(x) + Tnltz cos σT )

⎤

⎦

︸ ︷︷ ︸
f (x)

+
⎡

⎣
0 0
0 0

1
Iy

q̄Sc̄ dCm
dδe

1
Iy

q̄Sc̄ dCm
dδs

⎤

⎦

︸ ︷︷ ︸
ge(x)

︸ ︷︷ ︸
gs(x)︸ ︷︷ ︸

g(x)

[
δe

δs

]

︸ ︷︷ ︸
u(t)

+
⎡

⎣
0
0

1
Iy

q̄Sc̄

⎤

⎦

︸ ︷︷ ︸
b(x)

Δ(x)
(7.14)

The vector ge(x) is associated with the primary control surface (the elevator). Con-
versely the vector gs(x) is the secondary control surface (the stabiliser) which will
be used when faults/failures occur on the primary control surface (see Fig.A.2).

Remark 7.3 Note that the term dCm
dδe

is assumed to be available either by online para-
meter estimation or from a lookup table. In this chapter the information is obtained
from a lookup table. However imprecision in the knowledge of dCm

dδe
will appear as

matched uncertainty which will be suppressed by the sliding mode terms in the con-
troller. The thrust Tn is also assumed to be available by converting engine pressure
ratio (which is the commanded signal from the speed controller) into thrust through
a lookup table. (Recall it is assumed speed is controlled by a separate “auto-throttle”
control loop.)

To simplify the subsequent analysis, Eq. (7.14) can be written as

[
ẋ1
ẋ2

]
=

[
f1(x)
f2(x)

]
+ g(x)u(t) + b(x)Δ(x) (7.15)

where the state sub-vector x1 = col(γ, θ) and x2 = q. The input distribution vector

g(x) = [
ge(x) gs(x)

] =
[
02×1 02×1

g1(x) g2(x)

]
(7.16)

where g1(x) = 1
Iy

q̄Sc̄ dCm
dδe

and g2(x) = 1
Iy

q̄Sc̄ dCm
dδs

. The disturbance matrix b(x) in
(7.14) can be written as

b(x) =
[
02×1

b1(x)

]
(7.17)

where b1(x) = 1
Iy

q̄Sc̄.
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7.2 Control Law Development

Consider the effect of faults on each actuator modelled by

ue
i (t) = wi(t)ui(t) + ξ(t) for i = 1, 2 (7.18)

where the scalars 0 ≤ wi(t) ≤ 1, and ξ(t) is an exogenous signal. Here ue
i (t)

represents the effective control signal which influences the aircraft dynamics, taking
into account the detrimental impact of the fault. The scalarsw1(t) andw2(t) are the so-
called control surface effectiveness gains associated with the primary (elevator) and
secondary (stabiliser) control surfaces respectively. If wi(t) = 1, the corresponding
ith control surface is working perfectly, while wi(t) = 0 indicates a total failure. If
0 < wi(t) < 1, a partial fault is present in the ith control surface. Ignoring the term
ξ(t)which does not affect stability,3 the system in (7.15) subject to potentially faulty
actuators can be written in the form

[
ẋ1
ẋ2

]
=

[
f1(x)
f2(x)

]
+

[
02×1 02×1

g1(x) g2(x)

]
W(t)u(t) + b(x)Δ(x) (7.19)

where the matrix W(t) = diag(w1(t), w2(t)).
For simplicity, factorise g(x) so that (7.15) can be written as

[
ẋ1
ẋ2

]
=

[
f1(x)
f2(x)

]
+ g1(x)

[
02×1 02×1

1 gs
2(x)

]
W(t)u(t) + b(x)Δ(x) (7.20)

where

gs
2(x) = g2(x)

g1(x)
(7.21)

For the aircraft example considered here, g1(x) and g2(x) are both nonzero since
dCm
dδe

�= 0 and dCm
dδs

�= 0 for typical regions in the flight envelope as shown inFig. 7.1a, b.
This guarantees the inverse in (7.21) exists and the system (7.20) is controllable when
faults/failures occur on the elevator. (Note that the maximum ceiling is 45,000 ft and
maximum level speed is Mach 0.895 at 30,000 ft).

3Although of course it has a detrimental impact on performance, since it acts as an external distur-
bance to the post-fault system.
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Fig. 7.1 Pitching moment coefficient due to elevator and stabiliser deflections [3, 4]. a Elevator. b
Stabiliser

7.2.1 Nominal Backstepping Control Law

Assume that for the nominal system

ẋ(t) = f (x) + ge(x)u0(t) (7.22)

a controller
u0(x) = K (x) (7.23)

has been designed using the primary control surface such that the nominal closed-
loop system

ẋ(t) = f (x) + ge(x)K (x) (7.24)

is stable. In this chapter, the baseline controller for the elevator is given by a back-
stepping control scheme

u0(t) = K (x) =
(

dCm

dδe

)−1 (
Iyq̇des − q̄Sc̄Cm(x) − Tnltz cos σT

q̄Sc̄

)
(7.25)
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where

q̇des = − [
κ1κ2κ3 κ2κ3 κ3

]
⎡

⎣
γ − γref

θ − γref − α0

q

⎤

⎦ (7.26)

where α0 is the angle of attack at a steady state condition. The gains κ1, κ2, κ3 must
be chosen to satisfy

κ1 > −1

κ2 > 0

κ3 >

{
κ2 if κ1 ≤ 0

κ2(1 + k1) if κ1 > 0
(7.27)

7.2.2 Control Allocation

Consider the situation when the actuator effectiveness gains w1(t) and w2(t) are
not perfectly known. Their estimates ŵ1(t) and ŵ2(t) are assumed to be computed
by an FDI scheme (which is required for the approach presented in this chapter).
Consequently, as part of the estimationprocess, andby ‘clipping’ the estimates arising
from the calculations if necessary, it can be assumed that they satisfy 0 ≤ ŵ1(t) ≤ 1
and 0 < ŵ2(t) ≤ 1 if they are to represent realistic effectiveness levels. However,
these estimates may not be perfect, and so for analysis purposes

Assumption 7.3 It is assumed that ŵ1(t) and ŵ2(t) are related to the real values
w1(t) and w2(t) according to:

[
w1(t) 0
0 w2(t)

]

︸ ︷︷ ︸
W(t)

=
[

ŵ1(t) 0
0 ŵ2(t)

]

︸ ︷︷ ︸
Ŵ(t)

[
1 + δ1(t) 0

0 1 + δ2(t)

]
(7.28)

In (7.28) the scalars δ1(t) and δ2(t) represent imperfections in the estimates and are
assumed to satisfy

δmin ≤ δ1(t), δ2(t) ≤ δmax (7.29)

where δmin, δmax are known scalars and max{|δmin|, |δmax|} < 1.

The expressions in (7.28) ensure that the true values of the effectiveness levels

wi(t) ∈ [
ŵi(t) + δminŵi(t), ŵi(t) + δmaxŵi(t)

]
(7.30)

and importantly, since δmin > −1, the expression in (7.30) guarantees wi(t) ≥ 0.
Based on (7.28), Eq. (7.20) can be written as
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[
ẋ1(t)
ẋ2(t)

]
=

[
f1(x)
f2(x)

]
+g1(x)

[
02×1 02×1

1 gs
2(x)

][
ŵ1(t)(1 + δ1) 0

0 ŵ2(t)(1 + δ2)

]
u(t)+b(x)Δ(x)

(7.31)

For the potentially faulty system in (7.31), consider as a control law

u(t) = N(x) (K (x) + νn(t))︸ ︷︷ ︸
ν(t)

(7.32)

where the signal νn(t) is associated with the sliding mode component of the control
law, and will be defined formally later in the chapter. The ‘control allocation matrix’
N(x) is given by

N(x) =
[

1
1−ŵ1(t)

ŵ2(t)gs
2(x)

]

(7.33)

assuming ŵ2(t) �= 0 (i.e. assuming that the secondary control surface is failure-free)
and exploiting the fact that gs

2(x) �= 0.

Remark 7.4 Note that the control allocation matrix in (7.33) is different to the ones
used in the earlier chapters (although it is related to the retro-fit scheme in Chap.6).
Here the control allocation matrix is very bespoke and utilises the specific aircraft
equations of motion—especially the strict feedback form in (7.14).

Substituting (7.28) and (7.32)–(7.33) into (7.31) yields (after some straightforward
algebra)

[
ẋ1
ẋ2

]

︸ ︷︷ ︸
ẋ(t)

=
[

f1(x)
f2(x)

]

︸ ︷︷ ︸
f (x)

+

⎛

⎜⎜⎜
⎝

[
02×1

g1(x)

]

︸ ︷︷ ︸
ge(x)

+
[

02×1

g1(x)δ̂(t)

]

︸ ︷︷ ︸
ĝe(x)

⎞

⎟⎟⎟
⎠

(K (x) + νn(t))︸ ︷︷ ︸
u(t)

+
[
02×1

b1(x)

]

︸ ︷︷ ︸
b(x)

Δ(x)

(7.34)
where

δ̂(t) := (
ŵ1(t)δ1(t) + (1 − ŵ1(t))δ2(t)

)
(7.35)

Since by assumption 0 ≤ ŵ1(t) ≤ 1, it follows that δ̂(t) ∈ [
δ1(t) δ2(t)

]
(i.e. it

belongs to the line segment between δ1 and δ2), and therefore δmin ≤ δ̂(t) ≤ δmax.

Remark 7.5 Notice from Eq. (7.33) that during fault-free conditions and when the
actuator effectiveness estimate is perfect, (i.e. when Ŵ(t) = W(t) = I2, and therefore
ŵ1(t) = 1) the control signal u(t) becomes

u(t) =
[
K (x) + νn(t)

0

]
(7.36)

http://dx.doi.org/10.1007/978-3-319-32238-4_6
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Equation (7.36) shows only the primary control surfaces are used. In general if
Ŵ(t) �= I , then the lower component in (7.33) is nonzero and a control signal is
sent to the secondary actuator.

7.2.3 Integral Sliding Mode Design

In this section, an expression for the control law component νn(t) in (7.32) will be
developed. In particular this termwill add robustness to the control allocation scheme
presented in Sect. 7.2.

Define a time-varying sliding surface as

S = {x ∈ IR3 : σ(t) = 0} (7.37)

where

σ(t) := Gx(t) − Gx(0) − G
∫ t

0
(f (x) + ge(x)K (x))dτ (7.38)

and G ∈ IR1×3 is the design freedom. In this chapter the gain will be chosen as

G := [
0 0 1

]
(7.39)

First it will be demonstrated that if a sliding motion occurs on S given in (7.37)–
(7.38), then fault tolerance is achieved. Subsequently a control law ν(t), to achieve
and maintain sliding will be presented.

Proposition 7.1 If a sliding mode is maintained on S given by (7.37)–(7.38), then
the associated sliding motion is governed by the stable system (7.24)–(7.25).

Proof From the definition of G in (7.39), it follows that the scalar

Gge(x) = g1(x) �= 0, Gĝe(x) = g1(x)δ̂(t), Gb(x) = b1(x) (7.40)

The fact that Gge(x) �= 0 guarantees the existence of an unique equivalent control,
and so the slidingmode control problem iswell-posed. Taking the derivative of (7.38)
along the trajectory of (7.31) and substituting from (7.34) yields

σ̇ (t) = Gẋ(t) − G(f (x) + ge(x)K (x))

= Gge(x)νn(t) + Gĝe(x)(K (x) + νn(t)) + Gb(x)Δ(x)

= g1(x)(1 + δ̂(t))νn(t) + g1(x)δ̂(t)K (x) + b1(x)Δ(x) (7.41)

where νn(t) from (7.32) will be defined shortly to ensure a sliding motion onS can
be maintained. During sliding σ̇ (t) = σ(t) = 0, and therefore since g1(x) �= 0 the
‘equivalent control’ necessary to maintain sliding, is given by equating the left hand
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side of (7.41) to zero and solving the resulting algebraic equation to yield

νeq(t) = −
(

g1(x)
(
1 + δ̂(t)

))−1 (
g1(x)δ̂(t)K (x) + b1(x)Δ(x)

)
(7.42)

The equations of motion during the sliding mode can be obtained by substituting
(7.42) into (7.34) to yield

ẋ(t) = f (x) + ge(x)K (x) (7.43)

�

Remark 7.6 Note that Eq. (7.43) is the closed-loop system associated with the base-
line controller in (7.23), and that the unknown term Δ(x) does not appear. This is
because Δ(x) is ‘matched’ uncertainty and is therefore rejected by the sliding mode
controller. Note that the choice of G in (7.39) means that the matrix G is fixed which
simplifies the analysis. Furthermore since (I − ge(Gge)

−1G) = diag(1, 1, 0), the
contraction properties discussed in Sect. 2.7.4 are still obtained since

‖I − ge(Gge)
−1G‖ = 1

(which is the minimum achievable value of the norm over all possible values of G).

The remainder of this section presents a controller to ensure sliding can be achieved
and maintained in the presence of faults, and formally demonstrates this is indeed
the case.

Here, the sliding mode nonlinear term νn(t) is defined as

νn(t) = −ρ(t, x)g1(x)
−1sign (σ (t)) for σ(t) �= 0 (7.44)

where the modulation gain ρ(t, x) is any function satisfying

ρ(t, x) >
|g1(x)| δ̄ |K (x)| + |b1(x)||Δ(x)| + η0

(1 − δ̄)
(7.45)

where δ̄ = max{|δmin|, |δmax|} < 1 and η0 is small positive scalar. Note: here δ̄ will
be used as an user defined parameter employed to select the level of tolerance to the
error in estimation of the effectiveness gains that the controller can tolerate.

Proposition 7.2 The control law given in (7.32), with the allocation matrix in (7.33),
and the nonlinear injection term from (7.44) to (7.45), maintains a sliding motion
provided δ̄ < 1 and w2(t) �= 0.

Proof Substituting from (7.44) into (7.41) yields

σ̇ (t) = −ρ(t, x)(1 + δ̂(t))sign (σ (t)) + g1(x)δ̂(t)K (x) + b1(x)Δ(x) (7.46)
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To show that sliding is maintained, consider a positive definite candidate Lyapunov
function

V(t) = 1

2
σ 2(t) (7.47)

It follows from (7.46) to (7.47) that

V̇(t) = −ρ(t, x)(1 + δ̂(t))|σ(t)| + σ(t)g1(x)δ̂(t)K (x) + σ(t)b1(x)Δ(x) (7.48)

Since
|δ̂(t)| < δ̄ < 1 (7.49)

using (7.49) and (7.45), Eq. (7.48) becomes

V̇(t) ≤ |σ(t)|
(
−ρ(t, x)(1 − |δ̂(t)|) + |g1(x)| |δ̂(t)| |K (x)| + |b1(x)| |Δ(x)|

)

≤ |σ(t)| (−ρ(t, x)(1 − δ̄) + |g1(x)| δ̄ |K (x)| + |b1(x)| |Δ(x)|)

≤ −η0|σ(t)| = −η0
√
2V(t) (7.50)

This is sufficient to show that the ‘reachability condition’ is satisfied and sliding is
maintained. �

The final control signal u(t) which is supplied to all the available control surfaces
(primary and secondary) is given by substituting (7.44) into (7.32) to yield

u(t) =
[

1
1−ŵ1(t)

ŵ2(t)gs
2(x)

]

︸ ︷︷ ︸
N(x)

(
K (x) − ρ(t, x)g1(x)

−1sign (σ (t))
)

︸ ︷︷ ︸
νn(t)

(7.51)

Remark 7.7 Note that (7.51) requires the estimates of actuator efficiency ŵ1(t) and
ŵ2(t), but does not require knowledge of δ1, δ2 or Δ(x). The errors δ1, δ2 are only
used in conjunction with δ̂ to prove sliding is maintained.

7.3 Simulations

7.3.1 RECOVER Benchmark Model

All the simulations that follow are based on the RECOVERmodel at a trim altitude of
2000m, a mass of 263 tonnes, c.g. at 25%MAC, a speed of 92.6m/s and flap settings
of 20 deg. The modulation gain ρ(t, x) can be chosen based on worst case estimates
of |g1(x)| and |b1(x)| in (7.45), obtained from graphs similar to those presented in
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Fig. 7.1, together with bounds on Δ(t) in (7.9) using worst case bounds/estimates of
the drag and lift coefficients CD and CL, together with the aerodynamic coefficients
related to α̇. A possible structure for the modulation gain to satisfy (7.45) is

ρ(t, x) = ρ2|K (x)| + ρ1‖x‖ + ρ0 (7.52)

where the ρi are positive constants. Here the gain from (7.44) has been simply chosen
as ρ = 0.65. This is very easy to implement and is shown to work well in simulation.
This is in fact an aggressive choice for ρ(t, x) because the nonlinear term in (7.44)
can contribute a signal in the range

[−0.65 0.65
]
rad, to the value of the overall

virtual control signal because of the signum term. The units of the control signal are
radians4 and so this range represents a significant portion of the available/allowable
control signal variation.

Remark 7.8 Although the term Δ(x) from (7.9) has been excluded from the design
process, it appears in the high fidelity full nonlinear model used for simulation.
As discussed in Sect. 7.2.3, this will appear as matched uncertainty which will be
suppressed by the sliding mode.

Remark 7.9 Note that an estimate ofW(t) from (7.15) can be obtained from any FDI
scheme of choice. In large passenger aircraft, it is common to measure the actual
control surface deflection for monitoring purposes. Consequently, in this chapter,
it is assumed that W(t) is estimated by comparing the measured control surface
deflection and the command from the flight control system.5 In particular since any
mismatch resulting from errors in the estimate of W(t) used in the controller appears
as matched uncertainty, the controller is able to compensate.

7.3.2 Outer-Loop Control

In order to maintain Vtas at a setpoint during the simulations, a PD based auto-
throttle has been implemented as a separate loop. The corresponding proportional
and derivative gains have been chosen as KpVtas = 1 and KdVtas = 0.5. An outer-loop
altitude control loop is also implemented as shown in Fig. 7.2, to provide a flight path
reference signal to the inner-loop slidingmode-backstepping controller. This is based
on a PID structure with gains Kphe = 0.001, Kihe = 4×10−5 and Kdhe = 0.02. Finally
an Instrument Landing System (ILS) glide slope intercept and tracking facility is also
included to create an automatic landing mode for the aircraft. This takes the form of
a simple scalar feedback loop with proportional gain KPGS = 7.

4Although in all the plots they have been scaled and presented in terms of degrees because these
units are more intuitive to most readers.
5As shown in [5], this is not an unrealistic assumption in aircraft systems. Using the same idea as in
[6] (i.e. ‘least squares’ method), information provided by the actual actuator deflection is compared
with the signals from the controller to provide estimates of the effectiveness of the actuators.
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Fig. 7.2 Controller interconnection

In this chapter, since only the longitudinal axis is considered, the Instrument
Landing System (ILS) switches between an altitude/FPA command and glide slope6

(GS) tracking (as shown in Fig. 7.2). Specifically it changes the outer-loop control
from being pilot commanded (i.e. altitude demand tracking), to an automated landing
mode using the GS signal. When the aircraft is inside the GS coverage zone, the GS
controller will become active and provides the inner-loop FPA command to the core
longitudinal ISM controller, and no pilot input is required. This configuration can be
found in all current large commercial aircraft in service (although the specific details
of the outer-loop and inner-loop controller may differ7).

7.3.3 Results

The fault/failure cases and manoeuvres that are considered here are associated with
theGARTEURFM-AG16benchmark scenarios: specifically concerning the elevator.
The simulation begins at a low speed and a low altitude (92.6m/s and 2000m). The
aircraft starts to descend to 900m at 50 s and maintains altitude to intercept the
ILS glide slope signal. Once the glide slope is intercepted, the aircraft descends at
a commanded flight path angle of −3 deg towards the runway. The flare (the last
manoeuvre before touchdown) is not implemented in RECOVER and therefore the
aircraft altitude is held at 50mabove the runway. For consistency and for comparison,
the actuator failures are set to occur at 100 s.

6The glide slope in the ILS provides vertical guidance to the aircraft during descent to the runway
in order to provide an automated landing [6, 7]. The standard glide slope path demand is 3 deg. The
glide slope signal is emitted by an antenna, located near the end of the runway and the glide slope
provides the precise altitude required leading to the touchdown zone of the runway [7].
7For details see Sects. 11.8–11.10 in [8].
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For the simulations which follow, the gains in the backstepping control law have
been chosen as κ1 = 1, κ2 = 0.6 and κ3 = 3. The control law (7.51) requires the
estimates of actuator efficiency ŵ1(t) and ŵ2(t) which can be provided by a FDI
scheme, or, more specifically by a fault estimation scheme. In this chapter, it will be
assumed that a measurement of the actual actuator deflection is available.

7.3.3.1 Fault-Free

Figure7.3a shows good flight path trackingwhile the outer-loop PID controllermain-
tains tight control of speed. Figure7.3b shows good altitude and glide slope tracking
performance. Figure7.3b shows the first demanded change of altitude to 900m at
50 s. The second change in altitude is due to the tracking of the ILS glide slope—
which is activated when the aircraft is within the range and altitude of the ILS signal.
This activation is shown in Fig. 7.3b as a boolean signal; where 1 indicates GS cap-
ture. Once the ILS glide slope is activated at 448s, the outer-loop ILS controller
provides a flight path command (of about −3 deg in Fig. 7.3a) and forces the glide
slope deviation error to zero as shown in Fig. 7.3b. Figure7.3d shows that since there
are no faults present, there is no control signal command to the stabiliser as shown
in Fig. 7.3c.

7.3.3.2 Elevator Loss of Effectiveness

Figure7.4 shows the results when a fault occurs which renders the elevator only 50%
effective. The same manoeuvre as in the previous fault-free test is considered. The
fault is set to occur at 100 s. Figure7.4a, b show no degradation of flight path angle,
altitude and glide slope tracking in comparison to the fault-free case. Figure7.4d
confirms the decrease in the elevator effectiveness to 50%. Figure7.4d also shows
that sliding is still maintained despite the uncertainty and the faults in the system.
Figure7.4c shows the effect of loss of effectiveness on elevator deflection. Now,
the stabiliser has become active as the control signal is partially redistributed to
compensate for the reduction of elevator effectiveness.

7.3.3.3 Elevator Float

Figure7.5 shows the effect of an elevator float failure in which the control surface
is unable to produce any moment, and moves freely in the direction of the airflow.
This can occur due to the loss of hydraulics for example. Once the failure occurs
at 100 s, as shown in Fig. 7.5c, the surface deflection becomes equal to the angle of
attack of the aircraft as shown in Fig. 7.5a. After the failure, the stabiliser becomes
active and tries to compensate for the failed elevator. Figure7.5a, b show that no
degradation in the flight path angle, altitude and glide slope tracking performance
occurs despite the failure of the primary control surface. Finally Fig. 7.5d shows
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Fig. 7.3 Fault-free performances. a States. b Altitude and ILS glide slope deviation. c Control
surface deflections. d Switching function σ(t)
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Fig. 7.4 Elevator loss of effectiveness performances. a States. b Altitude and ILS slope deviation.
c Control surface deflections. d Switching function σ(t) and actuator effectiveness W(t)
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Fig. 7.5 Elevator float performances. a States. bAltitude and ILS slope deviation. cControl surface
deflections. d Switching function σ(t) and actuator effectiveness W(t)
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the actuator effectiveness level and also shows no degradation in the sliding mode
performance.

7.3.3.4 Elevator Float–Imperfect ̂W(t)

Figure7.6 shows a comparison between the fault-free and the case when the elevator
suffers a float failure with imperfect estimation of the actuator effectiveness level
Ŵ(t). A float failure corresponds to the control surface ‘floating’ about its zero
moment position, thus becoming ineffective. In the simulation, an elevator float is
simulated by replacing the control signal by the angle of attack of the aircraft. In
terms of Eq. (7.18), this can be modelled as

ue
1(t) = 0 + α(t) (7.53)

which in terms of (7.18) equates to w1(t) = 0 and ξ(t) = α(t). As a consequence
the effective control signal ue

1(t) is completely disconnected from the command
signal u1(t) generated by the control law. Figure7.6a, b show that no degradation
in the flight path angle, altitude and glide slope tracking performance occurs (all
lines overlap) compared to the fault-free case, despite the failure of the primary
control surface and imperfect estimation of the actuator effectiveness level Ŵ(t).
Figure7.6b shows an altitude change command of 900m at 50 s. A further altitude
change to initiate tracking of the ILS glide slope is activated when the aircraft is
within range of the ILS signal. Figure7.6b shows the glide-slope-capture boolean
signal equals 1 to indicate GS capture. Once the ILS glide slope is activated at 448
s, the outer-loop ILS controller provides the flight path command (of about −3 deg
in Fig. 7.6a) forcing the glide slope deviation error to zero (Fig. 7.6b). Figure7.6c
indicates the effect of an elevator float failure in which the control surface is unable to
produce any pitching moment, and moves freely in the direction of the airflow. This
can occur due to the loss of hydraulics for example. Once the failure occurs at 100 s,
as shown in Fig. 7.6c, the surface deflection becomes equal to the angle of attack of
the aircraft as shown in Fig. 7.6a. After the failure, the stabiliser becomes active and
tries to compensate for the failed elevator. The effect of imperfect estimation can
be seen in Fig. 7.6d, where even though the elevator has totally failed, the elevator
effectiveness estimation ŵ1(t) wrongly shows 50% effectiveness. Note that in the
fault-free case w1(t) = w2(t) = 1, but for simplicity, the lines are not labelled in
Fig. 7.6d. Finally, Fig. 7.6d also shows no visible degradation in the sliding mode
performance when compared to the fault-free case.

7.3.3.5 Elevator Lock in Place

Figure7.7 shows the results of an elevator jammed in a non-trim position at 100 s.
The non-trim jam position creates an extra moment which needs to be compensated
for. As before, Fig. 7.7a, b show no visible degradation of flight path angle, altitude
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Fig. 7.6 Elevator float performances—imperfect Ŵ(t). a States.bAltitude and ILS slope deviation.
c Control surface deflections. d Switching function σ(t) and actuator effectiveness W(t)
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or glide slope tracking. Figure7.7c shows that once the elevator jams at 100 s, the
stabiliser becomes active as the control signal is reallocated.

7.3.3.6 Elevator Lock in Place—Imperfect ̂W(t)

Figure7.8 shows the comparison between fault-free and the case when an elevator
jams at a non-trim position (at 100 s), and in the presence of imperfect actuator
effectiveness estimation Ŵ(t). The non-trim jam position creates an extra moment
which needs to be compensated for. Note that the elevator jam is represented by

ue
1(t) = 0 + u1(tf ) (7.54)

which in terms of (7.18) is associated with w1(t) = 0 for all t ≥ tf and ξ(t) =
u1(tf ), where tf is the time when the elevator failure occurs. Again this means for
all t ≥ tf the effective control signal ue

1(t) is decoupled from the command u1(t)
determined by the control law. Figure7.8c shows that once the elevator jams at
100 s, the stabiliser becomes active as the control signal is reallocated. The effect
of the imperfect estimation can be seen in Fig. 7.8d. Here, although the elevator has
totally failed due to the lock in place failure, the elevator effectiveness estimation
ŵ1(t) wrongly shows 50% effectiveness. Again, as in Fig. 7.6, despite the elevator
jamming at a non-trim position, and imperfect estimation associated with ŵ1(t),
Fig. 7.6a, b show no degradation in terms of all the tracking performance measures,
compared to the fault-free case.

7.3.3.7 Elevator Float: Backstepping control only—Imperfect ̂W(t)

Figure7.9 shows a comparison between the fault-free case and when the elevator
floats, using only the baseline backstepping controller, in the presence of imperfect
actuator effectiveness estimation Ŵ(t). The same control allocation scheme as in
Figs. 7.6, 7.7 and 7.8 has been considered to redistribute the control signal to the
stabiliser. In comparison to the fault-free condition, Fig. 7.9a shows that the unmod-
elled term Δ(x) from (7.9) causes imperfect tracking of the flight path angle. When
compared with the fault-free condition, Fig. 7.9b shows a small difference in terms
of altitude tracking as the imperfect flight path angle tracking has been compensated
by the outer-loop altitude control. Whereas in Fig. 7.6a, b, the effect of the eleva-
tor failure and uncertainty has been totally compensated by the sliding mode, thus
maintaining the same tracking performance as in the fault-free case.
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7.4 Summary

This chapter has presented a nonlinear fault tolerant scheme for longitudinal aircraft
control. The scheme is designed directly from the nonlinear longitudinal equations of
motion and incorporates an integral sliding mode control allocation scheme together
with a baseline backstepping control law for flight path angle tracking. In fault-free
conditions only the primary control surface (the elevator) is used. However, when
faults/failures occur, the integral sliding mode control allocation scheme is able to
automatically provide robustness, and the control signals are redistributed to the
redundant secondary control surface (the horizontal stabiliser). The control law has
been tested on the RECOVER benchmark model. The simulations show that even
in the presence of unmodelled dynamics (which have not been considered during
the design process) excellent results are obtained for both nominal fault-free and
fault/failure scenarios. Although the scheme in this chapter is described specifically
in terms of the longitudinal equations of motion of an aircraft, in principle, the
underlyingmethodology can be applied to other systems controlled by a backstepping
structure, provided redundancy in the controls exists.

7.5 Notes and References

A number of authors have applied sliding mode techniques to the design of flight
control laws: see for example [9–12]. However many of these papers do not con-
sider fault tolerant control aspects and focus instead on the robustness properties
introduced by the sliding modes. Some notable exceptions are [13, 14]; however
these schemes (including [14]) can only deal with partial actuator faults and cannot
cope with the problem of total actuator failure. Recent work on aircraft FTC using
sliding modes (for example [6, 15, 16]) used a passive type of FTC control where
the same controller is used for both the nominal fault-free case and in the event
of faults/failures occurring. Despite the potential of these controllers, they are still
based on linearisations of the plant dynamics about a specific operating condition
[16, 17]. The combination of the backstepping ISM structure with control allocation
presented in this chapter, allows the same controller to be used in both nominal fault-
free and faulty situations, and distinguishes the ideas in this chapter from existing
backstepping based SMC/ISM schemes for nonlinear systems (see for example [18–
20]). Note that the choice of allocation matrix in Sect. 7.2.2 is different compared
to the one in [16, 17], and takes into account the structure of the aircraft equations
of motion considered in this chapter. For further details about the backstepping con-
troller described in Sect. 7.2.1, see [1, 21]. Compared with the existing schemes
designed from linear models, the underlying nonlinear backstepping controller has
guaranteed levels of stability and performance for a wide range of flight conditions.
Furthermore, the backstepping design from [1, 21] has a simple structure and does
not require exact knowledge of the aircraft dynamics (e.g. the coefficient of forces and
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moments). Some of the aerodynamic arguments used to justify the simplifications in
the nonlinear equations of motion described in Sect. 7.1.1 are taken from [2].
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Chapter 8
Linear Parameter Varying FTC Scheme
Using Integral Sliding Modes

This chapter describes an extension of the FTC scheme described in Chap.3 and
considers Linear Parameter Varying (LPV) systems rather than LTI systems. LPV
systems can be considered as an extension or generalisation of LTI systems. They
represent a certain class of finite dimensional linear systems, in which the entries
of the state-space matrices continuously depend on a time varying parameter vector
which belongs to a bounded compact set. The objective is to synthesise an FTC
scheme which will work over a wider range of operating conditions. To design the
virtual control law, the varying input distribution matrix is factorised into a fixed and
a varying matrix. As discussed earlier in the text, the virtual control law, designed
using the ISM technique, is translated into the actual actuator commands using a
CA scheme. In this way the controller is automatically ‘scheduled’ and closed-loop
stability is established throughout the entire operating envelope. The FTC scheme
can maintain closed-loop stability even in the presence of total failures of certain
actuators, provided that redundancy is available in the system. The FTC scheme
takes into account imperfect estimation of the actuator effectiveness levels and also
considers an adaptive scheme for the nonlinear modulation gains to account for this
estimation error. The efficacy of the FTC scheme is tested in simulation by applying it
to an LPV model of a benchmark transport aircraft, previously used in the literature.

8.1 Problem Formulation

LPV methods are appealing for nonlinear plants which can be modelled as time
varying systems with state dependent parameters which are measurable online. An
LPV system can be defined in state-space representation form as

ẋ(t) = A(ρ)x(t) + B(ρ)u(t) (8.1)

y(t) = C(ρ)x(t) + D(ρ)u(t) (8.2)
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where the matrices are of appropriate dimensions and the time varying parameter
vector ρ(t) lies in a specified bounded compact set. In (8.1) and (8.2), the matrix
entries change according to the parameter vector ρ(t). If all the system states are
available, then a suitable state feedback controller u(t) = −Fx(t) can be designed
in order to achieve the desired performance (and closed-loop stability) of the system

ẋ(t) = (A(ρ) − B(ρ)F)x(t)

for all the admissible values of ρ(t) in a compact set. To account for actuator faults
or failures, the linear parameter varying plant in (8.1) can be represented as

ẋ(t) = A(ρ)x(t) + B(ρ)W (t)u(t) (8.3)

where A(ρ) ∈ IRn×n , B(ρ) ∈ IRn×m and W (t) ∈ IRm×m is a diagonal semi-positive
definite weighting matrix whose diagonal entries w1(t), . . . ,wm(t) model the effi-
ciency level of the actuators. As throughout the text, if wi(t) = 1 it means that the
ith actuator is working perfectly and is fault-free, whereas if 1 > wi(t) > 0 some
level of fault is present (and that particular actuator works at reduced efficiency). If
wi(t) = 0 it means the ith actuator has completely failed and the actuator does not
respond to the control signal ui(t).

Assumption 8.1 The time varying parameter vector ρ(t) is assumed to lie in a
specified bounded compact set Ω ⊂ IRr and is assumed to be available for the
controller design.

Assumption 8.2 Further assume that the varying plant matrices A(ρ) and B(ρ)

depend affinely on the parameter ρ(t), that is

A(ρ) = A0 +
r∑

i=1

ρi Ai, B(ρ) = B0 +
r∑

i=1

ρiBi

Assumption 8.3 To design the virtual control law, which is explained in the sequel,
assume that the parameter varying matrix B(ρ) can be factorised as

B(ρ) = B f E(ρ) (8.4)

where B f ∈ IRn×m is a fixed matrix and E(ρ) ∈ IRm×m is a matrix with varying
components and is assumed to be invertible for all ρ(t) ∈ Ω . This of course is a
restriction on the class of systems for which the results in this chapter are applicable,
but for example many aircraft systems fall into this category.

As discussed in Chap. 3, to resolve actuator redundancy, assume that by permuting
the states, the matrix B f can be partitioned as

B f =
[
B1

B2

]
(8.5)

http://dx.doi.org/10.1007/978-3-319-32238-4_3


8.1 Problem Formulation 151

where B1 ∈ IR(n−l)×m, and B2 ∈ IRl×m is of rank l < m.

Assumption 8.4 It is assumed that ‖B2‖ � ‖B1‖ so that B2 provides the dominant
contribution of the control action within the system as compared to B1.

Furthermore scale the last l states to ensure that B2BT
2 = Il . This can be done without

loss of generality.
Using (8.4) and (8.5), the system in (8.3) can be written as

ẋ(t) = A(ρ)x(t) +
[
B1E(ρ)W (t)
B2E(ρ)W (t)

]
u(t) (8.6)

The design of the virtual control will be based on the fault-free system i.e. when
W (t) = I . Define the virtual control input signal as:

ν(t) := B2E(ρ)u(t) (8.7)

where ν(t) ∈ IRl is the total control effort produced by the actuators. Using the fact
B2BT

2 = Il , one particular choice for the physical control law u(t) ∈ IRm which is
used to distribute the control effort among the actuators is

u(t) := (E(ρ))−1BT
2 ν(t) (8.8)

Note the expression in (8.8) satisfies (8.7) since (E(ρ))−1BT
2 is a right pseudo-inverse

of B2E(ρ).

Remark 8.1 The control structure in (8.8) is different from Chaps. 3 and 4, since it
involves the varying matrix E(ρ).

Substituting (8.8) into (8.6) yields the state-space representation

ẋ(t) = A(ρ)x(t) +
[
B1E(ρ)W (t)(E(ρ))−1BT

2
B2E(ρ)W (t)(E(ρ))−1BT

2

]

︸ ︷︷ ︸
Bw(ρ)

ν(t) (8.9)

in terms of the virtual control ν(t). In the nominal case, when there is no fault in the
system, i.e. when W (t) = I , Eq. (8.9) simplifies to

ẋ(t) = A(ρ)x(t) +
[
B1BT

2
Il

]

︸ ︷︷ ︸
Bν

ν(t) (8.10)

exploiting the fact that B2BT
2 = Il .

Assumption 8.5 The pair (A(ρ),Bν) is controllable for all values of ρ(t) ∈ Ω .

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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In this chapter all the states are assumed to be available for the controller design,
therefore a state feedback law ν(t) = −Fx(t) can be designed in order to stabilise
the nominal system

ẋ(t) = (A(ρ) − BνF)x(t)

for all values ofρ(t) ∈ Ω , aswell as to achieve the desired closed-loop performance.1

The nominal fault-free system in (8.10) is used in the next section to design the virtual
control law.

8.2 Integral Sliding Mode Controller Design

This section focuses initially on the design of the sliding surface and then subse-
quently the control law, so that the sliding motion on the sliding surface can be
sustained for all time.

8.2.1 Design of Integral Switching Function

Here the switching function suggested in Eq. (3.21) from Sect. 3.2.1 is extended to
LPV plants. Choose the sliding surface as

S = {x ∈ IRn : σ(t) = 0}

where

σ(t) := Gx(t) − Gx(0) − G
∫ t

0
(A(ρ) − BνF) x(τ )dτ (8.11)

and G ∈ IRl×n represents design freedom. Here

G := B2
(
BT

f B f
)−1

BT
f (8.12)

is suggested where B f is defined in (8.4). With this choice ofG, and using the special
properties of matrix B2 (i.e. B2BT

2 = Il), it is easy to verify that

GBν = B2
(
BT

f B f
)−1

BT
f B f B

T
2 = Il (8.13)

1This may be viewed from a controllability viewpoint, and in the literature, the concept of parameter
varying invariant subspaces [1] has been proposed to compute the controllable subspaces for LPV
systems with affine parameter dependence.

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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which means that nominally when there are no faults in the system and W = Im, the
special choice of G in (8.12) serves as a left pseudo-inverse of the matrix Bν . Also
from Eq. (8.9)

GBw(ρ) = B2
(
BT

f B f
)−1

BT
f B f E(ρ)W (t)(E(ρ))−1BT

2

= B2E(ρ)W (t)(E(ρ))−1BT
2 (8.14)

which will be used in the sequel when defining the control law.
Taking the time derivative of the switching function σ(t) along the trajectories of
(8.9) yields

σ̇ (t) = Gẋ(t) − GA(ρ)x(t) + GBνFx(t) (8.15)

and after substituting from (8.9)

σ̇ (t) = GBw(ρ)ν(t) + GBν︸︷︷︸
Il

Fx(t) (8.16)

Therefore the expression for the equivalent control (associated with σ̇ (t) = 0) can
be written as

νeq(t) = − (
B2E(ρ)W (t)(E(ρ))−1BT

2

)−1
Fx(t) (8.17)

provided the matrixW (t) is such that det(B2E(ρ)W (t)(E(ρ))−1BT
2 ) �= 0. Substitut-

ing (8.17) into (8.9) yields the expression for the sliding motion as

ẋ(t) = A(ρ)x(t) − Bw(ρ)
(
B2E(ρ)W (t)(E(ρ))−1BT

2

)−1
Fx(t) (8.18)

By adding and subtracting the termBνFx(t) to the right hand side of Eq. (8.18) yields

ẋ(t) = (A(ρ) − BνF) x(t) +
[

Φ̃(t, ρ)

0l

]
Fx(t) (8.19)

where the term which models the uncertainty is

Φ̃(t, ρ) := B1B
T
2 − B1E(ρ)W (t)(E(ρ))−1BT

2

(
B2E(ρ)W (t)(E(ρ))−1BT

2

)−1

(8.20)

Remark 8.2 From Eq. (8.20) it is clear that when there are no actuator faults in
the system (i.e. W (t) = Im), then Φ̃(t, ρ) ≡ 0 . However in the case of faults or
failures (i.e. whenW (t) �= Im), then Φ̃(t, ρ) �= 0 which will be treated as unmatched
uncertainty while sliding.
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The closed-loop stability of the motion while sliding must be ensured in the pres-
ence of ‘uncertainty’ Φ̃(t, ρ). To facilitate the closed-loop stability analysis, notice
Eq. (8.19) can be written as

ẋ(t) = (A(ρ) − BνF) x(t) + B̃Φ̃(t, ρ)Fx(t) (8.21)

where

B̃ :=
[
In−l

0

]
(8.22)

Now in order to define the class of faults or failures which the FTC scheme in this
chapter can mitigate, let the diagonal entries of W (t) belong to the set

Wε = {(w1, . . . ,wm) ∈ [
0 1

] × · · · × [
0 1

]

︸ ︷︷ ︸
m times

: (GBw(ρ))T (GBw(ρ)) > ε I }

(8.23)
where ε is a small positive scalar satisfying 0 < ε � 1. Note when W (t) = Im,
(GBw(ρ))T (GBw(ρ)) = I > ε I and therefore Wε �= ∅. If the actuator effectiveness
matrix W (t) = diag(w1(t), . . . ,wm(t))∈ Wε then by construction

‖(GBw(ρ))−1‖ = ‖ (
B2E(ρ)W (t)(E(ρ))−1BT

2

)−1 ‖ <
1√
ε

The set Wε will be shown to constitute the class of faults/failures for which closed-
loop stability can be maintained. From (8.20) note that for any W (t) ∈ Wε

‖Φ̃(t, ρ)‖ ≤ γ1

(
1 + c√

ε

)
(8.24)

where c = maxρ∈Ω ‖E(ρ)‖‖(E(ρ))−1‖ (i.e. theworst case condition number associ-
atedwith E(ρ)); andγ1 = ‖B1‖, which is small by hypothesis. Proving the stability of
the closed-loop sliding motion in (8.21) (in the nominal as well as in the fault/failure
scenarios) is one of the important parts of the design process which is demonstrated
in the following subsection.

Remark 8.3 The conditions in this chapter are subtly different to those in Chaps. 3
and 4. In (8.23) the norm of (GBw(ρ))−1 must be guaranteed to be bounded by
limiting W (t) ∈ Wε thus introducing an explicit ε to bound ‖GBw(ρ)‖ away from
zero. This is not necessary in Chaps. 3 and 4 and so the ‘price’ for facilitating a wider
operating envelope is a slightly more restricted set of possible failures.

http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_4
http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_4
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8.2.2 Closed-Loop Stability Analysis

In the nominal fault-free scenario when W (t) = Im, it is easy to verify Φ̃(t, ρ) = 0,
and Eq. (8.21) simplifies to

ẋ(t) = (A(ρ) − BνF) x(t) (8.25)

which is stable by design of F . However in fault/failure scenarios, closed-loop sta-
bility needs to be proven. To this end, Eq. (8.21) can also be represented by

ẋ(t) = (A(ρ) − BνF)︸ ︷︷ ︸
Ã(ρ)

x(t) + B̃

ũ(t)
︷ ︸︸ ︷
Φ̃(t, ρ) Fx(t)︸ ︷︷ ︸

ỹ(t)

(8.26)

Define γ2 to be the L2 gain associated with the operator

G̃(s) := F(s I − Ã(ρ))−1B̃ (8.27)

Proposition 8.1 For any possible combination of faults or failures belonging to the
set Wε, the closed-loop sliding motion in (8.26) will be stable if

γ2γ1

(
1 + c√

ε

)
< 1 (8.28)

Proof The specially written structure in (8.26) can be thought of as a feedback
interconnection of an LPV plant and a time varying feedback gain associated with

ẋ(t) = Ã(ρ)x(t) + B̃ũ(t) (8.29)

ỹ(t) = Fx(t) (8.30)

where

ũ(t) = Φ̃(t, ρ)ỹ(t) (8.31)

If (8.28) is satisfied then according to the small gain theorem (Appendix B.1.2), if

‖G̃(s)‖‖Φ̃(t, ρ)‖ < 1 (8.32)

the closed-loop system in (8.26) will be stable. �

In the next subsection the ideas of integral slidingmodes are used to design the virtual
control law ν(t) in order to produce the virtual control effort.
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8.2.3 ISM Control Laws

Consider the (integral sliding mode) control law

ν(t) = (GBŵ(ρ))−1(νl(t) + νn(t)) (8.33)

where

GBŵ(ρ) = B2E(ρ)Ŵ (t)(E(ρ))−1BT
2 (8.34)

and Ŵ (t) is an estimate of W (t). The linear part of the control law νl(t) in (8.33) is
defined as

νl(t) := −Fx(t) (8.35)

and the nonlinear discontinuous part, which enforces sliding and provides robustness
against fault/failure scenarios is given by

νn(t) := −κ(t, x)
σ (t)

‖σ(t)‖ for σ(t) �= 0 (8.36)

where κ(t, x) > 0 is an adaptive modulation function given by

κ(t, x) = ‖F‖‖x(t)‖κ̄(t, x) + η (8.37)

where η is a positive scalar. The positive adaptation gain κ̄(t, x) evolves according
to

˙̄κ(t, x) = −ς1κ̄(t, x) + ς2ε0‖F‖‖x(t)‖‖σ(t)‖ (8.38)

where ς1, ς2 and ε0 are positive (design) scalar gains.

Assumption 8.6 In the analysis which follows, it is assumed the actuator efficiency
level W (t) is not perfectly known but that the estimate Ŵ (t) satisfies

W (t) = Ŵ (t)(I + Δ(t)) (8.39)

where the diagonal matrix Δ(t) represents imperfections in the estimation of W (t).

Substituting (8.39) into (8.14) yields

GBw(ρ) = B2E(ρ)Ŵ (t)(E(ρ))−1BT
2 + B2E(ρ)Ŵ (t)Δ(t)(E(ρ))−1BT

2 (8.40)

Using (8.33), Eq. (8.16) becomes

σ̇ (t) = GBw(ρ)(GBŵ(ρ))−1(νl(t) + νn(t)) + Fx(t)
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Substituting for (8.40) and for νl from (8.35) yields

σ̇ (t) = (I + Δ̂(t))(νl(t) + νn(t)) + Fx(t)

= (I + Δ̂(t))νn(t) − Δ̂(t)Fx(t) (8.41)

where

Δ̂(t)=(B2E(ρ)Ŵ
1
2 (t)Δ(t)Ŵ

1
2 (t)

(
E(ρ))−1BT

2

)
(B2E(ρ)Ŵ (t)

(
E(ρ))−1BT

2

)−1

(8.42)
Define

Dε0 =
{
Δ(t) from (8.39) : ‖Δ̂(t)‖ <

√
1 − 2ε0

}
(8.43)

for some scalar 0 < ε0 � 1/2. Clearly the setDε0 is not empty sinceΔ(t) = 0 ∈ Dε0 .
It is easy to show that if

‖Δ̂(t)‖ <
√
1 − 2ε0 (8.44)

then

2Il + Δ̂(t) + Δ̂T (t) > 2ε0 Il (8.45)

Consider the positive definite candidate Lyapunov function

V (t) = σ T (t)σ (t)︸ ︷︷ ︸
V1(t)

+ 1

ς2
e2(t)

︸ ︷︷ ︸
V2(t)

(8.46)

where

e(t) = κ̄(t, x) − 1

ε0
(8.47)

Since ‖Δ̂(t)‖ <
√
1 − 2ε0, taking the derivative of V1(t) from (8.46), and then

substituting from (8.41), yields

V̇1(t) = −κ(t, x)‖σ(t)‖(2Il + Δ̂(t) + Δ̂T (t)) − 2σ T (t)Δ̂(t)Fx(t)

≤ −2κ(t, x)ε0‖σ(t)‖ + 2‖σ(t)‖‖Δ̂(t)‖‖Fx(t)‖
≤ −2κ(t, x)ε0‖σ(t)‖ + 2‖σ(t)‖√1 − 2ε0 ‖F‖ ‖x(t)‖ (8.48)

From (8.47) it follows that κ̄(t, x) = e(t) + 1
ε0
. Then using the fact that

√
1 − 2ε0 < 1

and substituting (8.37) into (8.48), it follows

V̇1(t) ≤ −2ε0‖F‖‖x(t)‖‖σ(t)‖e(t) − 2ηε0‖σ(t)‖ (8.49)
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Taking the derivative of V2(t) from (8.46), using the fact that ė(t) = ˙̄κ(t, x) from
(8.47) and substituting from (8.38) gives

V̇2(t) = 2

ς2
e(t)ė(t) = 2

ς2
e(t) ˙̄κ(t, x)

= −2ς1

ς2
e(t)κ̄(t, x) + 2ε0e(t)‖F‖‖x(t)‖‖σ(t)‖ (8.50)

Therefore, from (8.49) and (8.50) and substituting for κ̄(t, x) from (8.47) yields

V̇ (t) = V̇1(t) + V̇2(t)

≤ −2ς1

ς2
e(t)κ̄(t, x) − 2ηε0‖σ(t)‖

= − 2ς1

ς2ε0
e(t) − 2ς1

ς2
e2(t) − 2ηε0‖σ(t)‖ (8.51)

It is easy to show that

− 2ς1

ς2ε0
e(t) − 2ς1

ς2
e2(t) ≤ ς1

2ς2ε
2
0

for all values of e(t) and therefore from (8.51) it follows that

V̇ (t) ≤ ς1

2ς2ε
2
0

− 2ηε0‖σ(t)‖ (8.52)

which implies that σ(t) moves into a boundary layer about σ(t) = 0 of size ς1
4ς2ε30η

.

Remark 8.4 The adaptation scheme in (8.37) and (8.38) makes the approach in this
chapter quite different fromChaps. 3 and 4.Adaptation is required here because of the
complex relationship between Δ(t) and Δ̂(t) in (8.42) and the limitations associated
with (8.43).

Remark 8.5 The fact that a traditional sliding mode scheme involving a unit vector
structure has been selected as the basis for the control law, has facilitated the inclusion
of an adaptive scheme. An adaptive gain is highly desirable in FTC schemes to
compensate for sudden significant changes to the plant.

Finally the physical control law, which is used to distribute the control effort among
the available actuators is obtained by substituting (8.33)–(8.36) into (8.8) which
yields

u(t) = −(E(ρ))−1BT
2

(
B2E(ρ)Ŵ (t)(E(ρ))−1BT

2

)−1
(
Fx(t) + κ(·) σ (t)

‖σ(t)‖
)

(8.53)

http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_4
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Fig. 8.1 Overall FTC
scheme

Remark 8.6 Note the physical control law in (8.53) requires an estimate of the effec-
tiveness level of the actuators Ŵ (t) (see Fig. 8.1 for details). In this chapter, it is
assumed that this estimate is provided by anFDI scheme (see for example Sect. 3.3.1).
This information can also be obtained by directly comparing the controller signals
with the actual actuator deflection, as measured by control surface sensors, which
are available in many aircraft systems.

8.2.4 Design of the State Feedback Gain

In this section, using the nominal system (8.10), the state feedback gain F will
be designed. In designing F two objectives must be met: the first is equivalent to
achieving pre-specified nominal performance for all admissible values of ρ(t), and
the second one is to satisfy the closed-loop stability condition in (8.28) via the small
gain theorem. Nominal performance will be incorporated by the use of a LQR type
cost function

J =
∫ ∞

0
(xT Qx + uT Ru)dt

where Q and R are s.p.d. matrices. The LPV system matrices ( Ã(ρ), B̃, F) which
depend affinely on the parameter vectorρ(t) in (8.29) and (8.30) canbe representedby
the polytopic system( Ã(ωi), B̃, F) where the vertices ω1, ω2, . . . , ωnω

for ωnw = 2r

correspond to the extremes of the allowable range of ρ(t) ∈ Ω . Consequently

Ã(ρ) =
2r∑

i=1

Ãiδi ,

2r∑

i=1

δi = 1, δi ≥ 0

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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The LQR performance criteria can then be posed as an optimisation problem:
Minimise trace (X−1) subject to

[
A(ωi)X + X AT (ωi) − BνY − Y TBT

ν (Q1X − R1Y )T

Q1X − R1Y −I

]
< 0 (8.54)

X > 0 (8.55)

where

Q1 =
[
Q

1
2

0l×n

]
, R1 =

[
0n×l

R
1
2

]T

(8.56)

and Y := FX and X−1 ∈ IRn×n is the Lyapunov matrix.
To satisfy the closed-loop stability condition in (8.28), it is sufficient to apply the
Bounded Real Lemma at each vertex of the polytope and ensure that

⎡

⎣
A(ωi)X + X AT (ωi) − BνY − Y TBT

ν B̃ Y T

B̃T −γ 2 I 0
Y 0 −I

⎤

⎦ < 0 (8.57)

for i = 1 . . . 2r . Since the objective is to seek a commonLyapunovmatrix for the LMI
formulations at each vertex, this can be achieved by introducing the slack variable
Z ∈ IRn×n and posing the problem as:

Minimise trace(Z) subject to (8.54), (8.55) and (8.57) and

[−Z In
In −X

]
< 0 (8.58)

The decision variables are X and Y . The matrix Z satisfies trace(Z) ≥ trace(X−1).
Therefore the LMIs in (8.54)–(8.58) can be solved for all the vertices of the polytopic
system. The state feedback matrix is obtained from the expression F = Y X−1.

8.3 Simulations

The simulations in this chapter are based on the RECOVER benchmark model. For
the controller design the LPVmodel of RECOVER given in Appendix A.1.1 is used.
The aerodynamic coefficients are polynomial functions of velocity Vtas and angle
of attack α in the range of

[
150, 250

]
m/s and

[−2, 8
]
deg respectively, and at an

altitude of 7000m. The states of the LPV plant are (ᾱ, q̄, V̄tas, θ̄ , h̄e)which represent
deviation of the angle of attack, pitch rate, true air speed, pitch angle and altitude
from their trim values. The inputs of the LPV plant are (δ̄e, δ̄s, T̄n), which represent
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deviation of elevator deflection, horizontal stabiliser deflection and total engine thrust
from their trim values respectively. The trim values of the states are

(αtrim, qtrim, Vtastrim , θtrim, hetrim )=(1.05 deg, 0 deg/s, 227.02m/s, 1.05 deg, 7000m)

and the trim values of the LPV plant inputs are

(δetrim , δstrim , Tntrim) = (0.163 deg, 0.590 deg, 42291 N)

For the controller design, the state h̄e is removed and the states of the LPV plant have
been reordered as (θ̄ , ᾱ, V̄tas, q̄). The LPV system matrices are given by

A(ρ) = A0 +
7∑

i=1

Aiρi and B(ρ) = B0 +
7∑

i=1

Biρi (8.59)

where

(ρ1, . . . , ρ7) := (
ᾱ, V̄tas, V̄tas ᾱ, V̄ 2

tas, V̄
2
tas ᾱ, V̄ 3

tas, V̄
4
tas

)
(8.60)

where ᾱ = α − αtrim and V̄tas = Vtas − Vtastrim . For full details of the LPV plant
see the Appendix A.1.1. The input distribution matrix B(ρ) has been factorised into
fixed and varying matrices:

B(ρ) =

⎡

⎢⎢
⎣

0 0 0
0.01 0 0
0 1 0
0 0 1

⎤

⎥⎥
⎦

︸ ︷︷ ︸
B f

⎡

⎣
100b31(ρ) 100b32(ρ) 100b33(ρ)

0 0 b23(ρ)

b41(ρ) b42(ρ) b43(ρ)

⎤

⎦

︸ ︷︷ ︸
E(ρ)

(8.61)

Note that the top portion of B f corresponds to the B1 term in (8.5) which has been
made small compared to the B2 term. In order to introduce a tracking facility, the
plant states are augmented with the integral action states given by

ẋr(t) = r(t) − Ccx̄(t) (8.62)

where r(t) is the command to be tracked, and Cc is the controlled output distribution
matrix. The controlled outputs have been chosen as flight path angle (FPA) and V̄tas ,
where FPA = θ̄ − ᾱ. By defining new states as

xa(t) = col(xr(t), x̄(t))
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the augmented system from (8.10) becomes

ẋa(t) = Aa(ρ)xa(t) + Bνaν(t) + Brr(t) (8.63)

where

Aa(ρ) :=
[
0 −Cc

0 A(ρ)

]
, Bνa :=

[
0
Bν

]
, Br =

[
Il
0

]
(8.64)

which is used as the basis for the control law design. In the augmented system, the
choice of G in (8.12) becomes Ga := B2(BT

fa
B fa )

−1BT
fa
where

B fa =
[

0
B f

]
(8.65)

8.3.1 Control Design Objectives

The tracking requirements for FPA and true air speed Vtas are decoupled responses,
with settling times of 20 and 45s respectively in the fault-free scenario. In the case of
an elevator or horizontal stabiliser failure, the tracking requirement for Vtas remains
unchanged (because speed is controlled by thrust) but for the FPA response, a settling
time of 30 s is considered. In this example, a fixed gain matrix F is valid for the entire
range of the LPV model. Note that designing a fixed matrix F , allows the MATLAB
state-feedback synthesis code ‘msfsyn’ to be used to solve the LMIs (8.54)–(8.58).
For designing the state feedback gain F , the Q and R matrices in (8.54) have been
chosen as

Q = diag(1.1, 0.04, 1, 1, 0.03, 5) and R = diag(0.007, 1.1)

where the first two states in the Q matrix are integral action states. The state feedback
gain resulting from the optimisation is given by

F =
[−1.1161 −2.3532 −10.3807 3.8107 3.7409 −1.3623

−0.9891 0.0177 9.6902 −4.9097 −0.0222 3.3779

]
(8.66)

In the nominal case, the engines are considered to be fault-free. The positive scalar
from (8.23) has been chosen as ε = 0.28. It can then be shown (using a numerical
search algorithm) that the maximum value of ‖Φ̃(t, ρ)‖ from Eq. (8.24) is 0.0673. To
satisfy the closed-loop stability condition in (8.28), the value of γ2 associatedwith the
operator in (8.27) should satisfy γ2 <

√
ε

γ1(
√

ε+c)
= 14.8588. The value associated with

F in (8.66) is γ2 = 11.0000, and hence the stability condition in (8.28) is satisfied.
During the simulations, the discontinuity associated with the nonlinear control term
in (8.36) has been smoothed by using a sigmoidal approximation σa(t)

‖σa(t)‖+δ
, where δ
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is a small positive scalar. This ensures a smooth and realistic control signal is sent to
the actuators and allows extra design freedom especially when faults/failures occur.
Here δ has been chosen as δ = 0.01. The adaptive gain parameters from (8.37)
and (8.38) used in the simulation are: η = 1, ς1 = 1, ς2 = 0.01 and ε0 = 0.01.
The control law in (8.53) requires information about the actuator effectiveness level
matrixW (t), which can be estimated by some FDI scheme, as given in Sect. 3.3.1. As
in theGARTEURFM-AG16 project, in this chapter, it is assumed that ameasurement
of the actual actuator deflection is available, which is not an unrealistic assumption
in modern aircraft systems. Information provided by the actual actuator deflection
can be compared with the signals from the controller to indicate the effectiveness of
the actuator.

8.3.2 Simulation Results

The manoeuvre considered in this chapter represents a change of altitude and speed
using a series of −3 deg FPA and −10m/s Vtas commands. This covers a wide range
of the flight envelope highlighting the efficacy of the FTC scheme when dealing with
faults and failures. In this chapter two failure scenarios will be considered, one is an
elevator jam and the other is a stabiliser runaway. For consistency, all the actuator
failures are set to occur at 300s.

Remark 8.7 Note that even though the controller is designed based on the LPV
model from Appendix A.1.1, it is tested on the full high fidelity nonlinear aircraft
model used as a FTC benchmark in GARTEUR FM-AG16 project.

8.3.2.1 Elevator Jam

Figure8.2 shows a comparison between the fault-free case and a scenario inwhich the
elevator jams at 300 s. Despite the elevator jam, there is no visible difference in terms
of the FPA and speed Vtas tracking performance. There is also no visible difference in
terms of the altitude change between the failure and the fault-free case. It can be seen
that immediately after the failure at 300 s, the estimate of the elevator effectiveness
level drops to 10%. This indicates non-perfect estimation (it should be zero). Despite
this imperfection, there is no difference in terms of tracking performance. The plot of
the norm of the switching function ‖σ(t)‖ also shows no visible difference between
the fault-free and the failure case. Finally, a plot of the adaptive gain shows the
variation of κ(t, x) defined in (8.37). Again, there is no visible difference in terms of
the adaptive gain between the fault-free and failure case. Note that in the fault-free
case, the variation of the adaptive gain is due to a combination of variations in ‖σ(t)‖
and the states ‖x(t)‖, as described in the formula in (8.38).

http://dx.doi.org/10.1007/978-3-319-32238-4_3
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8.3.2.2 Stabiliser Runaway

Figure8.3 shows the results for the case when a stabiliser runaway occurs. The effect
of the stabiliser runaway can be seen in the control surface plot where the stabiliser
moves at a maximum rate to the maximum position of 3 deg. The effect of the control
relocation can be seen in the plot of the elevator which moves to 7 deg immediately
after the failure occurs at 300 s. Despite the stabiliser runaway and the imperfect
estimation of the stabiliser effectiveness, there is no visible difference in terms of
tracking performance between the fault-free and the failure case. (The estimated
stabiliser effectiveness level is shown as 10% whereas the actual value should be
zero.) The plot of the norm of the switching function ‖σ(t)‖ shows the difference
between the fault-free and the failure case. Here it can be seen that the norm for the
failure case is slightly higher than the fault-free case immediately after the failure at
300 s, but is still relatively small. Finally, the plot of the adaptive gain shows there is
a slight difference between the fault-free and the failure case.

8.4 Summary

This chapter described a FTC scheme for linear parameter varying systems. Inte-
gral sliding mode control in conjunction with CA was used to maintain nominal
performance and robustness in the face of actuator faults or failures. The virtual con-
trol signal, generated by the integral sliding mode control law was translated into the
physical actuator commands by using the control allocation scheme. The closed-loop
stability of the system throughout the entire flight envelope was guaranteed—even
in the event of total failure of a certain class of actuators (provided appropriate
redundancy is available in the system). The scheme also takes into account imperfect
estimation of actuator effectiveness levels and considers an adaptive gain for the
nonlinear component of the control law. The FTC scheme has been tested on a full
nonlinear aircraft benchmark model to highlight the efficacy of the scheme.

8.5 Notes and References

LPV methods have attracted much attention in recent years—especially for aircraft
systems [2]. Using LPV techniques, guaranteed performance can be ensured over a
wide range of operating regimes [3]. For LPV systems, several controller synthesis
methods have been proposed in recent years in the framework of FTC: the advantages
and capabilities of LPV controller synthesis (based on a single quadratic Lyapunov
function approach) over gain-scheduling controller designs (based onH∞ controller
synthesis) are discussed and compared in [4] by implementing the two techniques on a
high fidelity atmospheric re-entry vehicle model. In [5], an output feedback synthesis
method using LMIs is presented in order to preserve closed-loop stability in the case
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of multiple actuator faults. The authors in [6] have explored the combined use of
fault estimation and fault compensation for LPV systems. Recently in [7] an active
FTC technique was proposed for LPV systems to deal with actuator faults, in which
the faults are identified by using an UIO technique, and a state feedback controller is
realised by approximating the LPV system in a polytopic form. There is almost no
literature on the use of slidingmode controllers for LPV systemswith the exception of
[8–11]. The work in [8, 9] has proposed SMC schemes for LPV systems—although
not in the context of fault tolerant control. In [12] the nonlinear longitudinal model
of the RECOVER transport aircraft was approximated by polynomially fitting the
aerodynamics coefficients obtained from [13], to create an LPV representation using
the function substitution method. In this chapter, the LPV plant matrices are taken
from [12]. In [2] the same system is considered but only elevator failures (lock and
float) are considered, whereas the FTC scheme described in this chapter is also tested
by considering a stabiliser failure (as well as elevator failure scenarios).
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Chapter 9
Real-Time Implementation of an ISM Fault
Tolerant Control Scheme on the SIMONA
Flight Simulator

This chapter describes the results of implementing the LPV integral sliding mode
FTC controller from Chap.8 on the 6-DOF SIMONA motion flight simulator at
Delft University of Technology. This demonstrates proof of concept in a realistic
operational environment, and shows the applicability of the integral sliding mode
FTC scheme. The LPV FTC scheme has been evaluated with a pilot-in-the-loop to
give insight into real-time performance issues, and to assess the effect on the handling
of the aircraft in nominal and in fault/failure scenarios.

9.1 SIMONA Research Simulator (SRS)

The SIMONA(SImulation, MOtion and NAvigation) research simulator (SRS)
(Fig. 9.1) is a realistic 6 degree-of-freedom pilot-in-the-loop flight simulator located
at Delft University of Technology. The SRS has a typical commercial aircraft cockpit
with two side-by-side pilot seats, and typical pilot controls (a hydraulically activated
control column, electrically actuated side stick, a rudder pedal (from an actual B777
aircraft), control wheel, thrust lever, flap and landing gear lever). At the centre of
the cockpit is a mode control panel (MCP) from a B737 (Fig. 9.2), to allow auto-
pilot commands and configuration selection, as well as an electronic flight control
display (which can be configured to represent any aircraft display) to provide pilots
with typical flight information such as control surface deflections and the aircraft
trajectory. The SRS has an outside virtual world projection which can be set to any
location. The SRS 180 × 40 deg outside visual field of view is supplied by three
LCD projectors and provides the pilot with an immense sense of motion and the
attitude of the aircraft. The motion of the SRS is provided by 6 large hydraulic
hexapods and the SRS motion cueing algorithm, allowing any aircraft dynamics and
manoeuvres to be implemented. The SRS is operated by a network of modular com-
puters, each with a different function and task (visual cuing, motion control, running
the aircraft model, data logging, control load feel, and the flight control computer).

© Springer International Publishing Switzerland 2016
M.T. Hamayun et al., Fault Tolerant Control Schemes Using Integral
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Fig. 9.1 SIMONA research
simulator (picture courtesy of
Delft University of
Technology)

Communication and synchronisation between the different computers in the network
are provided by high speed fibre optic cables. The custom-built motion and visuali-
sation system, and its modular structure allow the SRS to be configured to represent
any aircraft and has the capability of implementing any existing or ‘experimental’
flight control scheme. In this chapter, the SRS has been configured to represent the
RECOVER B747-100/200 aircraft1 with an outside virtual world representation of
the area aroundAmsterdam-Schiphol airport. This SRS configuration is programmed
using DUECA(Delft University Environment for Communication and Activation).
TheDUECA software architecture also handles the real-time scheduling, and ensures
that each of the computers are synchronised.

1For details of the RECOVER benchmark model see the Appendix A.1.
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Fig. 9.2 Mode Control Panel (MCP)

9.2 Design and SRS Implementation

This chapter considers the design of the adaptive ISM controller given in Chap.8
and its implementation on the SRS. It is assumed that a measurement of the actual
actuator deflections are available. Furthermore, the monitoring channels are separate
from the control channels, and so faults in the actuators do not affect the fidelity of
the control surface monitoring signals. In these experiments the diagonal elements
ŵi(t) of Ŵ(t) in (8.53) have been estimated based on a least squares approach using
information provided by the actual actuator deflections and the command signals
from the controller.

9.2.1 SRS Implementation

The LPV design discussed in Sect. 8.3 is only associated with the longitudinal axis,
although a lateral axis controller2 must also be incorporated for the purpose of test-
ing and evaluation. However the description of the SRS implementation will only
focus on the longitudinal controller. In this chapter, the controller has been initially
developed and tuned using MATLAB V2006b (the original version supported by
the RECOVER model) using an ODE4 fixed time step solver with a step size of
0.01 s. For the implementation, the SIMULINK model of the designed ISM con-
troller (which has the GARTEUR FM-AG16 standardised inputs–outputs in order to
fit with the SRS implementation) has been converted to C code using the MATLAB
Real-Time Workshop(R) utility. The C coded controller is then implemented on a
PC with an Intel(R) Xeon(R) 3.07 GHz processor which has been used as the flight
control computer. However the computational load measured as the time needed for
a single integration step on the flight computer was found to be 0.15 msec. Figure9.3
shows the overall controller configuration and the interface to the SRS, where it
is clear that the inner-loop longitudinal controller provides flight path and speed
tracking, which the pilot can command directly using the MCP dials at the centre of
the cockpit. The outer-loop longitudinal controller provides altitude control using a
simple PID scheme to provide a flight path angle command to the inner-loop ISM
controller. In the results which follow KpFPA = 0.1,KiFPA = 0.07 and KdFPA = 0.1.

2See [1] for details of the lateral controller.

http://dx.doi.org/10.1007/978-3-319-32238-4_8
http://dx.doi.org/10.1007/978-3-319-32238-4_8
http://dx.doi.org/10.1007/978-3-319-32238-4_8
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Fig. 9.3 Controller interconnection
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9.3 SRS Piloted Evaluation Results

The results in this section represent evaluation tests by an experienced commer-
cial pilot. Figure9.4 shows the overall manoeuvres for three different tests: fault-
free, elevator jam and stabiliser runaway. The following describes the sequence of
manoeuvres conducted during the pilot evaluation:

1. Straight and level flight at 250 kts (128.6m/s), 2000 ft (609.6m) heading North.
2. Insert failure (for failure cases).
3. Right turn 90 deg (East).
4. Left turn back to 0 deg (North).
5. Altitude change to 4000 ft (1219.2m).
6. Altitude change back to 2000 ft (609.6m).
7. Acceleration to 300 kts (154.3m/s) (indicated air speed).
8. Deceleration to 250 kts (128.6m/s) (indicated air speed).
9. Deceleration to 228 kts (117.3m/s) (indicated air speed).

Note that eachmanoeuvre was allowed to reach steady state before the next sequence
was tested.

The controller has been tested at the trim condition

(5.53 deg, 0.0017 deg/s, 133.8m/s, 5.53 deg, 600m)

with an input trim (2 deg, −1.59 deg, 45568N) with an initial mass of 317,000kg
and with the flaps fully retracted. This represents one of the trim conditions used
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for the GARTEUR FM-AG16 benchmark problem and it is different to the trim
conditions of the LPV model in Appendix A.1.1. Using different flight conditions
for the evaluation highlights the capability of the designed controller to operate in
regions away from the design point.

Remark 9.1 Note that the aircraft trajectories for the three different tests in Fig. 9.4
are not identical. This is due to the fact that the manoeuvres were ‘manually’ flown
by the pilot using the mode control panel. Although the magnitudes of the heading,
altitude and speed commands are the same, the times at which each manoeuvre is
executed are different.

9.3.1 Fault-Free

Figure9.5 shows longitudinal fault-free performance. The longitudinal states and
the tracking performance is shown in Fig. 9.5a. Figure9.5b shows the control sur-
face deflections during nominal fault-free conditions. Figure9.5c shows that no
fault/failure is present in the elevator or stabiliser (the actuator effectiveness is
W(t) = 1 for both surfaces). Finally Fig. 9.5d shows the nominal variation in the
switching function and the adaptive gain due to changes in the operating conditions.

9.3.2 Elevator Jam

Figure9.6 shows the pilot evaluation for the case of an elevator jam. Figure9.6c
shows the elevator failure occurred at approximately 63s when the effectiveness
level drops to zero. The effect of the elevator jam can be seen in Fig. 9.6b. After
this point in time, the stabiliser becomes more active in order to compensate for
the jammed elevator. Despite the presence of a failure, Fig. 9.6a shows similar state
tracking performance as the fault-free case. Finally Fig. 9.6e shows the switching
function is still close to zero indicating sliding is still maintained. Figure9.6d shows
a magnified portion of the estimate of the elevator effectiveness levels in the case of
the elevator fault in Fig. 9.6c. Figure9.6d shows that the estimation provided by the
FDI scheme considered in this chapter3 is not perfect, and includes detection delays
(arising from the moving window of information and the filters employed to ensure
a usable estimate of the actuator effectiveness levels).

3See page 265 of [2].
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9.3.3 Stabiliser Runaway

Figure9.7 shows the evaluation results for the more challenging case of a stabiliser
runaway at approximately 74 s (see Fig. 9.7c). The effect of the stabiliser runaway
can be seen in Fig. 9.7b, where the stabiliser runs-away at its maximum rate to
the maximum physical limits of 3 deg. Figure9.7b also shows the deflection of
the elevator to approximately −10 deg immediately after the stabiliser saturates in
order to compensate for the stabiliser runaway. Despite the presence of this critical
failure, Fig. 9.7a shows hardly any noticeable difference in terms of state tracking
performance as compared to the fault-free case. Figure9.7d shows that sliding is still
being maintained, and the adaptive gain remains low.

9.3.4 Pilot Feedback

The following observations and discussions represent feedback from the pilot and the
SRS researcher conducting the evaluation for all the three scenarios. Generally, the
feedback from the pilot and the SRS researcher indicates that all three tests (nominal,
the elevator jam and the stabiliser runaway) showed very similar performance and the
pilot was unable to discern a meaningful difference, without looking at the surface
deflections. The pilot reported that no transients were observed at the time of the
failures. (In fact the SRS researcher had to double check that failures had actually
occurred).

Some specific comments from the pilot and SRS researcher on the performance
of the longitudinal controller are:

• Speed capturing was satisfactory, with some creep towards the set speed at the
end.

• Altitude change capturing resulted in a rather careful 1400 feet (426.7m) per
minute rate for a 2000 ft (609.6m) change. A rule of thumb is 2000 ft per minute
(609.6m per minute) for a 2000 ft change. A small overshoot of 60 ft (18.3m) was
observed on both climb and descent, which though not excessive, would not be
acceptable in practice. The altitude set point was passed at around 600 ft (182.8m)
per minute. The subsequent undershoot of 20 ft (6.1m) is also not desirable. A
first-order response with no over or undershoot is desirable, rather than the current
damped second order response.

• Speed trackingwas acceptable during themanoeuvres (1 or 2 kts (0.51 or 1.03m/s)
deviations were observed, which is acceptable).

• Altitude tracking was generally good, apart from the small 40 ft (12.2m) drop
during heading capture.
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9.4 Summary

This chapter has presented the results from real-time implementation and testing of
the LPV based adaptive FTC scheme described in Chap.8, on the SIMONA research
simulator. The integral sliding mode approach ensures ideal sliding throughout the
closed-loop system response, and maintains near to nominal performance in the face
of actuator faults/failures. The scheme also takes into account imperfect estimation
of the actuator effectiveness levels and considers an adaptive gain in the nonlinear
component of the control law, to account for the imperfect estimation of the actuator
effectiveness levels. The FTC scheme has been implemented and evaluated in a
realistic operational environment with a pilot-in-the-loop. Evaluation results from
the SIMONA research simulator show good tracking performance even in the event
of faults/failures.

9.5 Notes and References

The SIMONA research simulator is a powerful tool and serves as a proof of concept
test-bed in various research areas, for example: research into human-machine inter-
action [3], human motion perception [4–6], air traffic control [7], flight procedures
[8, 9], aircraft handling qualities [10, 11], fly-by-wire control algorithms and flight
deck displays [12, 13]. The SRS has been used to evaluate the real-time performance
of different fault tolerant control algorithms in a pilot-in-the-loop configuration, con-
sidering the real EL AL flight 1862 accident scenario [14, 15]. A re-enactment of
this incident was considered and implemented on the SIMONA research simulator in
[16, 17]. In [16], a sliding mode FTC scheme using a fixed control allocation struc-
ture was tested whereas in [17], an adaptive nonlinear dynamic inversion approach
was used for manual fly-by-wire control. Adaptive sliding mode FTC schemes were
proposed in [18] where both fixed and online control allocation structures were com-
pared by implementing them both in a piloted simulator environment. Recently in
[19], propulsion-control tests were conducted on SIMONA, considering the failure
of all control surfaces. The proposed fault tolerant sliding mode control allocation
scheme in [19]was shown to be capable of dealingwith the loss of all control surfaces
and was able to achieve a safe emergency landing using only the engines.
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Appendix A
Benchmark Model of Large
Transport Aircraft

A.1 RECOVER Benchmark Model

The RECOVER (REconfigurable COntrol for Vehicle Emergency Return) bench-
mark model [1], which runs in the MATLAB/SIMULINK environment has been used in
the Group for Aeronautical Research and Technology in Europe Flight Mechanics
Action Group (GARTEUR FM-AG16). The purpose of the FM-AG16 project [1]
was to conduct research in Europe to develop advanced FTC schemes for aerospace
applications to cope with realistic malfunctions in actuators, sensors and control sur-
faces. The RECOVER model consists of 77 states and includes four engines and 25
other control surfaces (four elevators, one stabiliser, four ailerons, 12 spoilers and
flaps). The RECOVER aircraft model includes realistic sensor and actuator models
with realistic limits and aerodynamic effects (such as blowdown). The RECOVER
software has the ability to test actuator fault/failure scenarios (elevator jam, stabiliser
runaway, aileron jam and rudder runaway) and also includes the EL AL flight 1862
failure case. This software is an upgraded version of Delft University’s Aircraft Sim-
ulation and Analysis Tool, DASMAT, and Flight lab 747 FTLAB747 [2]. In the
upgraded version [3], the mechanically linked control surfaces (inherited from the
original B747-100/200 aircraft) have been removed and replaced by individually
controlled surfaces similar to more modern aircraft which use fly-by-wire systems.
The removal of the mechanical link allows more flexibility in terms of fault tolerant
control by creating a highly redundant systemwhich is suitable to test state-of-the-art
FTC schemes. The RECOVER software [2–4], used in this book has been used by
many researchers [5–9] and is a validated benchmark platform for research in the
fields of FTC and FDI.

The rigid body states of the B747-100/200 aircraft for the longitudinal, lateral and
directional axis are

x(t) = (p, q, r,Vtas, α, β, φ, θ, ψ, he, xe, ye) (A.1)

© Springer International Publishing Switzerland 2016
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Fig. A.1 Aircraft attitudes
(adapted from [1]).
a Longitudinal. b Lateral and
directional

(a)

(b)

which are determined from the 6-DOF equations. In Eq.A.1 the states for the lon-
gitudinal axis (Fig.A.1a) are xlong = (q,Vtas, α, θ, he), which represent pitch rate q
(rad/s), true air speedVtas (m/s), angle of attackα (rad), pitch angle θ (rad) and altitude
he (m). On the other hand the states for the lateral and directional axis (Fig.A.1b)
are xlat = (p, r, β, φ,ψ), which represent roll rate p (rad/s), yaw rate r (rad/s),
sideslip β (rad), roll angle φ (rad) and yaw angle ψ (rad). In Eq. (A.1), the states
(he, xe, ye) represent geometric earth position, along the z-axis, x-axis and y-axis
respectively. The typical control surfaces for the longitudinal and lateral axis control
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Fig. A.2 Boeing 747 flight control surface arrangements and body axes and moment definitions
(L = rolling moment, M = pitching moment, N = yawing moment, p = roll rate, q = pitch rate,
r = yaw rate) (Figure adapted from [1])

are shown in Fig.A.2. The control surfaces which are typically used for longitudinal
axis control comprise 4 elevators (inboard and outboard), a horizontal stabiliser, 4
engines thrusts (two on each wing), which can be controlled through the Engine
Pressure Ratio (EPR). For lateral axis control, 4 ailerons (inboard and outboard on
each wing), 12 spoilers (2 inboard and 4 outboard spoilers on each wing), 2 rudders
(upper and lower), and 4 engines thrusts (controlled through EPR) are used. A linear
state-spacemodel of the RECOVERbenchmark can be obtained at a given trim point.
At the trim point, the aircraft is in steady state for example straight and level flight. In
this book the longitudinal and lateral axis of the benchmark model, at different trim
conditions, is considered as the basis for designing the FTC schemes. For example in
Chaps. 3 and 5, the simulations are based around an operating condition of straight
and level flight at 263,000 kg, 92.6m/s true airspeed, and at an altitude of 600mbased
on 25.6% of maximum thrust and at a 20deg flap position. The result is a 12th order
linear model, which can be divided into two six order models for longitudinal and
lateral axis control. The first four states xlong = (q,Vtas, α, θ) and xlat = (p, r, β, φ)

are used for the controller design. At this trim condition the state-space matrices are:

http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_5
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Along =

⎡
⎢⎢⎣

−0.5137 0.0004 −0.5831 0
0 −0.0166 1.7171 −9.8046

1.0064 −0.0021 −0.6284 0
1.0000 0 0 0

⎤
⎥⎥⎦ (A.2)

Blong =

⎡
⎢⎢⎣

−0.6228 −1.3578 0.0082 0.0218 0.0218 0.0082
0 −0.1756 1.4268 1.4268 1.4268 1.4268

0.0352 −0.0819 0.0021 −0.0021 −0.0021 −0.0021
0 0 0 0 0 0

⎤
⎥⎥⎦ (A.3)

Alat =

⎡
⎢⎢⎣

−1.0579 0.1718 −1.6478 0.0004
0.1186 −0.2066 0.2767 −0.0019
0.1014 −0.9887 −0.0999 0.1055
1.0000 0.0893 0 0

⎤
⎥⎥⎦ (A.4)

Blat =

⎡
⎢⎢⎣

−0.0832 0.0832 −0.2285 0.2285 −0.2625 −0.0678 0.0678
−0.0154 0.0154 −0.0123 0.0123 −0.0180 −0.0052 0.0052

0 0 0 0 0.0017 0.0006 −0.0006
0 0 0 0 0 0 0

0.2625 0.1187 0.0246 0.0140 −0.0140 −0.0246
0.0180 −0.2478 0.1269 0.0724 −0.0724 −0.1269

−0.0017 0.0174 0.0005 0.0005 −0.0005 −0.0005
0 0 0 0 0 0

⎤
⎥⎥⎦ (A.5)

where the control surfaces for the longitudinal axis are

δlong = (δe, δs, e1long, e2long, e3long, e4long) (A.6)

which represent elevator deflection (rad) (4 elevators are aggregated to produce one
control input), horizontal stabiliser deflection (rad) and four longitudinal engines
pressure ratios. For lateral axis control the control surfaces comprise

δlat = (δair, δail, δaor, δaol, sp1−4, sp5, sp8, sp9−12, δr, e1lat, e2lat, e3lat, e4lat) (A.7)

which represent aileron inboard (right and left) deflection (rad), aileron outboard
(right and left) deflection (rad), left wing spoiler deflections (rad) (sp1 − sp4, sp5),
rightwing spoiler deflections (rad) (sp8, sp9−sp12), rudder deflection (rad) (the upper
and lower rudders are aggregated to produce one control input) and four lateral engine
pressure ratios. The spoilers sp6 and sp7 are ground spoilers and are not used in flight.
Further details of the RECOVER model can be found in [1, 2] and the references
therein.
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A.1.1 LPV Plant of a RECOVER Benchmark Model

The LPV plant representation of the RECOVER model used for longitudinal con-
troller design is obtained from [10], where the LPV model is approximated by
polynomially fitting the aerodynamic coefficients obtained from [11] to create an
LPV representation using the function substitution method. The aerodynamic coef-
ficients are polynomial functions of velocity Vtas and angle of attack α in the range
of

[
150, 250

]
m/s and

[−2, 8
]
deg respectively and at the altitude of 7000 m. The

states of the LPV plant are (ᾱ, q̄, V̄tas, θ̄ , h̄e)which represent deviation of the angle of
attack, pitch rate, true air speed, pitch angle and altitude from their trim values. The
inputs of the LPV plant are (δ̄e, δ̄s, T̄n), which represent deviation of elevator deflec-
tion, horizontal stabiliser deflection and total engine thrust from their trim values
respectively. The trim values of the states are

(αtrim, qtrim,Vtastrim , θtrim, hetrim ) = (1.05 deg, 0 deg/s, 227.02 m/s, 1.05 deg, 7000 m)

and the trim values of the LPV plant inputs are

(δetrim , δstrim ,Tntrim) = (0.163 deg, 0.590 deg, 42291N)

The LPV system matrices are given by

A(ρ) = A0 +
7∑

i=1

ρiAi and B(ρ) = B0 +
7∑

i=1

ρiBi (A.8)

where
(ρ1, . . . , ρ7) := (ᾱ, V̄tas, V̄tasᾱ, V̄ 2

tas, V̄
2
tasᾱ, V̄ 3

tas, V̄
4
tas)

where ᾱ = α − αtrim and V̄tas = Vtas − Vtastrim . After reordering, the LPV plant states

for the control law design become (θ̄ , ᾱ, V̄tas, q̄). The LPV system matrix is given
by

A(ρ) =

⎡
⎢⎢⎣

0 0 0 a14(ρ)

0 a33(ρ) a32(ρ) a34(ρ)

a21(ρ) a23(ρ) a22(ρ) 0
0 a43(ρ) a42(ρ) a44(ρ)

⎤
⎥⎥⎦ (A.9)

where

a14(ρ) = 1

a33(ρ) = −0.5935 − 2.5923 × 10−3ρ2

a32(ρ) = −5.2124 × 10−4 − 6.2678 × 10−7ρ2 + 1.1121 × 10−11ρ4

a34(ρ) = 0.9914
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a21(ρ) = −9.7851

a23(ρ) = 5.7733 − 84.5625ρ1 − 3.5127 × 10−2ρ2 − 0.7450ρ3 − 0.7736 × 10−4ρ4

−1.6408 × 10−3ρ5

a22(ρ) = −6.1168 × 10−3 − 2.1091 × 10−5ρ2 − 2.2374 × 10−8ρ4

a43(ρ) = −1.9626 + 3.4170ρ1 − 0.01729ρ2 + 0.0301ρ3 − 0.38081 × 10−4ρ4

+6.630 × 10−5ρ5

a42(ρ) = −4.9579 × 10−4 − 3.8893 × 10−6ρ2 − 7.6201 × 10−9ρ4

+0.19644 × 10−11ρ6

a44(ρ) = −0.46087 − 0.00203ρ2

and the LPV input distribution matrix is

B(ρ) =

⎡
⎢⎢⎣

0 0 0
b31(ρ) b32(ρ) b33(ρ)

0 0 b23(ρ)

b41(ρ) b42(ρ) b43(ρ)

⎤
⎥⎥⎦ (A.10)

where

b31(ρ) = −0.0358 − 1.1877 × 10−5ρ2 + 1.5311 × 10−6ρ4 + 3.9135 × 10−9ρ6

b32(ρ) = −0.0716

b33(ρ) = −3.6326 × 10−4 − 5.8732 × 10−3ρ1 + 1.6002 × 10−6ρ2

+0.25871 × 10−4ρ3

b23(ρ) = 1.3323 − 0.058133ρ1

b41(ρ) = −1.7696 − 0.0089ρ2 + 0.5985 × 10−4ρ4 + 0.4428 × 10−6ρ6

+0.6912 × 10−9ρ7

b42(ρ) = −3.9993 − 0.035233ρ2 − 0.776 × 10−4ρ4

b43(ρ) = 0.015328.
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Appendix B
Closed-Loop Stability and Feedback
Gain Synthesis

B.1 LLL 2 Gain and Small Gain Theorem

B.1.1 LLL 2 Gain

In the case of LTI systems the L2 gain can be calculated accurately [1]. Consider a
LTI system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where it is assumed that the system matrix A is Hurwitz. The system above can be
written as G(s) = C(sI − A)−1B +D, then according to Theorem 6.4 in [2], theL2

gain of the system G(s) is supω∈IR ‖G( jω)‖2, which is the induced 2-norm of the
system G(jω). The L2 gain of the system in the time domain is equal to the H∞
norm in the frequency domain [2], which means if Y(jω) = G(jω)U(jω), then from
Theorem 6.4 [2] it is shown that

‖y‖2L2
≤ (sup

ω∈IR
‖G(jω)‖2)2‖u‖2L2

(B.1)

where ‖u‖2L2
= ∫ ∞

0 uT (t)u(t)dt.

B.1.2 Small Gain Theorem

The small gain theorem is a systematic approach to investigate the input-output
stability of interconnected dynamical systems [2]. Consider the feedback intercon-
nection in Fig.B.1. Suppose that e1 is the input to system H1 and y1 is the output,

© Springer International Publishing Switzerland 2016
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Fig. B.1 Feedback
interconnection of two
systems (adapted from [2])

then the system H1 is finite gain L2 stable if ‖y1‖L2 ≤ γ1‖e1‖L2 . Now consider
the interconnection of two systems as shown in Fig.B.1, then according to the small
gain theorem [2], with the assumption that the two systems H1 and H2 are finite gain
L2 stable, with L2 gains γ1 and γ2 respectively, then the feedback connection will
be finite gain L2 stable if

γ2γ1 < 1 (B.2)

The proof can be found in [2].

B.2 LMI Equivalence of Closed-Loop Stability Analysis

To satisfy the stability condition of Theorem 3.1 in Chap.3, a closed-loop analysis
is carried out in an LMI framework, in order to find a feedback gain F such that
the H∞ norm of the transfer function G̃(s) = F(sI − Ã)−1B̃ is less than some
predefined scalar γ i.e. ‖G̃(s)‖∞ < γ . Two constraints are imposed on the design
of the feedback gain F which need to be satisfied simultaneously. Firstly to achieve
(nominal) performance, an LQR formulation is used; and secondly, to ensure the
design of an F to satisfy the stability condition of Theorem 3.1, a Bounded Real
Lemma (BRL) formulation is used.

B.2.1 LMI Formulation of the LQR problem

In Sect. 3.2.4 the design of the feedback gain F is based on the nominal system in
(3.18). For the LMI formulation of the LQR problem, consider the LTI system

ẋ(t) = Ax(t) + Bνν(t) (B.3)

z(t) = Q1x(t) + R1ν(t) (B.4)

where ν represents the (virtual) control input and Q1 and R1 are symmetric posi-
tive definite matrices where QT

1R1 = 0. The LQR problem involves determining the

http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_3
http://dx.doi.org/10.1007/978-3-319-32238-4_3
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control law ν(t) = −Fx(t) such that J = ∫ ∞
0 zT z is minimised. Consider the Lya-

punov function V(x) = xTPx where P > 0 and assume the inequality

V̇ + zT z ≤ 0 holds for all x and z (B.5)

Integrating (B.5) yield the expression

J =
∫ ∞

0
zT z ≤ V(0) − V(∞)

Since a stabilising gain F is required, x(t) → 0 as t → ∞ and V(∞) = 0. Therefore

J ≤ xT (0)Px(0)

Clearly the cost J depends on the specific initial condition x(0). If x(0) is treated as
a random variable with zero mean, then1

E(J) ≤ E
(
trace

(
xT (0)Px(0)

))

= trace
(
E

(
xT (0)Px(0)

))

= trace(P)Var (x(0)) (B.6)

where Var(·) represents the variance of a random variable. From (B.6) minimising
trace(P) subject to (B.5) is an appropriate approach.

Taking the time derivative of V(x) and substituting from (B.3) yields

V̇ = xT (PA + ATP)x + xTPBνν + νTBT
ν Px

Substituting the value of V̇ above and (B.4) into (B.5), implies the inequality in (B.5)
is equivalent to

PA+ATP+QT
1Q1−PBνF−FTBT

ν P−QT
1R1F−FTRT

1Q1+FTRT
1R1F < 0 (B.7)

Inequality (B.7), is clearly not convex [1], and cannot be written as an LMI repre-
sentation. Define X = P−1 then by pre and post multiplying the inequality in (B.7)
by X together with the change of variable Y = FX, implies inequality (B.7) can be
written as

AX +XAT +XTQT
1Q1X −BνY − YTBT

ν −XTQT
1R1Y − YTRT

1Q1X + YTRT
1R1Y < 0

(B.8)

1Here E(·) is the mathematical expectation operator, and in establishing (B.6) the fact that the linear
operators E(·) and trace(·) commute is exploited [3].
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Finally using the Schur complement [1], inequality (B.8) can be written as

[
AX + XAT − BνY − YTBT

ν (Q1X − R1Y)T

(Q1X − R1Y) −I

]
< 0 (B.9)

where the matrices X and Y are the decision variables. The requirement now is to
minimise trace(X−1). From the definition of X = P−1, using the Schur complement
[1], the inequality [−Z I

I −X

]
< 0 (B.10)

implies X−1 < Z and therefore

trace(Z) > trace(X−1) (B.11)

The overall problem then becomes:

Minimise trace(Z) subject to (B.10) and (B.9).

Once X and Y are synthesised, the feedback gain F can be recovered as F = YX−1.

B.2.2 LMI Formulation of the BRL

In Sect. 3.2.2, the closed-loop stability of the sliding motion is governed by

ẋ(t) = (A − BνF)︸ ︷︷ ︸
Ã

x(t) + B̃ϑ(t) (B.12)

z(t) = Fx(t) (B.13)

where ϑ(t) = Φ(t)z(t). The L2 gain from ϑ to z (which in this LTI situation is

the H∞ norm of G̃(s) = F
(
sI − Ã

)−1
B̃) is less than γ if there exists a Lyapunov

function V(x) = xTPx where P > 0 such that

∫ ∞

0
(V̇(τ ) + zT z − γ 2ϑTϑ)dτ < 0 for all x andϑ (B.14)

http://dx.doi.org/10.1007/978-3-319-32238-4_3


Appendix B: Closed-Loop Stability and Feedback Gain Synthesis 193

holds, since rearranging the inequality in (B.14) and assuming x(0) = 0 yields

∫ ∞

0
zT z < γ 2

∫ ∞

0
ϑTϑ − V(∞) ≤ γ 2

∫ ∞

0
ϑTϑ

To guarantee (B.14) holds, the inequality

V̇ + zT z − γ 2ϑTϑ < 0 (B.15)

for all x and ϑ will be enforced.2 Taking the time derivative of the function V(x) and
substituting from (B.12) yields

V̇ = xT (P(A − BνF) + (A − BνF)TP)x + ϑT B̃TPx + xTPB̃ϑ

Substituting V̇ and (B.13) into (B.15) means (B.15) is equivalent to

xT (P(A − BνF) + (A − BνF)TP)x + ϑT B̃TPx + xTPB̃ϑ + xTFTFx − γ 2ϑTϑ < 0

which can be written as

[
x
ϑ

]T [
P(A − BνF) + (A − BνF)TP + FTF PB̃

B̃TP −γ 2I

] [
x
ϑ

]
< 0 (B.16)

or in other words

[
P(A − BνF) + (A − BνF)TP + FTF PB̃

B̃TP −γ 2I

]
< 0 (B.17)

Inequality (B.17) can be written as

[
P(A − BνF) + (A − BνF)TP PB̃

B̃TP −γ 2I

]
+

[
FT

0

] [
F 0

]
< 0 (B.18)

which from the Schur complement [1], is equivalent to

⎡
⎣
P(A − BνF) + (A − BνF)TP PB̃ FT

B̃TP −γ 2I 0
F 0 −I

⎤
⎦ < 0 (B.19)

2See page 122 of [1].
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From Eq. (B.19) it is clear that the expression in the top left position is not convex
and cannot be written as an LMI representation. However multiplying both sides of
(B.19) by diag(P−1, I, I) means (B.19) is equivalent to

⎡
⎣

(A − BνF)P−1 + P−1(A − BνF)TP B̃ P−1FT

B̃T −γ 2I 0
FP−1 0 −I

⎤
⎦ < 0 (B.20)

Letting P−1 = X, the inequality in (B.20) is equivalent to

⎡
⎣

(A − BνF)X + X(A − BνF)TP B̃ XFT

B̃T −γ 2I 0
FX 0 −I

⎤
⎦ < 0 (B.21)

Finally with the change of variable Y = FX, inequality (B.21) can be written as

⎡
⎣
AX + XA − BνY − YTBT

ν B̃ YT

B̃T −γ 2I 0
Y 0 −I

⎤
⎦ < 0 (B.22)

where the matrices X and Y represent the decision variables. Inequality (B.22) is
convex and available LMI tools can be used to find a feasible solution. The gain
matrix F can be recovered using the relation F = YX−1.
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