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Abstract Speaker detection, localization and tracking are required in systems that
involve e.g. hands-free speech acquisition, or blind source separation. Localization
can be done in the (TF) domain, where location features extracted using micro-
phone arrays are used to cluster the TF bins corresponding to the same source.
The TF clustering approaches provide an alternative to the Bayesian tracking
approaches that are based on Kalman and particle filters. In this work, we propose a
maximum-likelihood approach where detection, localization, and tracking are
achieved by online clustering of narrowband position estimates, while incorporating
the speech presence probability at each TF bin in a unified manner.

Keywords Multi-speaker tracking � Maximum likelihood � Number of source
estimation � Distributed arrays

1 Introduction

To provide high-quality capture of speech in communication and entertainment
systems without requiring close-talking microphones, the spatial diversity of
microphone arrays is exploited to extract sources of interest. Such systems need to
localize and track a desired source, and use the location information to compute a
spatial filter (beamformer) that extracts the source signal and reduces interferers.
A multitude state-of-the-art tracking approaches estimate the evolution of the source
positions using Kalman or particle filters (see [1, 2] and references therein).
Although these approaches are elegantly formulated within a Bayesian framework
and provide excellent tracking performance, the estimated source positions can only
be used to steer data-independent beamformers to the estimated source locations.
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From the vast literature on spatial filters, it is known that such filters often provide
insufficient performance in reverberant environments.

The localization can alternatively be done by exploiting the speech sparsity in the
TF domain [3]. Such approaches often involve clustering of location features, such
as phase differences between sensors [4, 5], (DOAs) [6, 7], or narrowband positions
[8]. As a by-product of the localization, each TF bin is classified to the dominant
source providing means to track the second-order statistics of the sources [7–9]. The
latter can be used to compute data-dependent beamformers which offer better per-
formance in reverberant and noisy environments than data-independent beam-
formers. Note that after clustering of DOAs or phase differences, an additional step is
required to obtain the Cartesian coordinates of the sources, in case they are required.
Due to the non-linear and non-injective relation between the DOA and the position,
this step is non-trivial. Approaches that estimate the positions have been proposed in
[5], by deriving the position from clustered phase differences, and in [8], by clus-
tering narrowband position estimates. However, these approaches assume that the
number of sources is fixed, which is restrictive in practice. DOA-based clustering
that detects the number of sources online has been proposed in [7, 10].

For the application of source localization, source tracking, and clustering of the
TF bins, we propose a (ML) framework based on narrowband position estimates
obtained from distributed arrays. Narrowband positions were used in our previous
work for localization [8] and tracking of a known number of sources [11]. In this
paper, we address dynamic scenarios where the number of sources is unknown and
time-varying. The proposed framework consists of (i) estimating the parameters of a
mixture model by an online (EM) algorithm (Sects. 2 and 3) and (ii) a data-driven
mechanism to detect appearing/disappearing sources and add/remove the corre-
sponding clusters (Sect. 4). A further contribution is the unified treatment of speech
presence uncertainty in the model, which increases the robustness to noise and
reverberation without requiring voice activity detection in a pre-processing stage as
in [11, 12]. The cluster information can be used for multi-speaker tracking, as well
as for computation of data-dependent spatial filters for (BSS). The evaluation in
Sect. 5 focuses on the tracking application, whereas the evaluation of a BSS system
is an ongoing work.

2 Probabilistic Model of Narrowband Position Estimates

The signals from S sources in a noisy and reverberant enclosure are captured by A
microphone arrays. The signal at microphone m from the a-th array, at time index n

and frequency index k in the (STFT) domain is given by Y ðaÞ
m ðn; kÞ ¼PS

s¼1 X
ðaÞ
m;sðn; kÞþV ðaÞ

m ðn; kÞ; where XðaÞ
m;s and V ðaÞ

m denote the signal of the s-th
source and the noise, respectively. The different signals represent realizations of
mutually uncorrelated random processes. Assuming far field conditions and
selecting an arbitrary reference microphone m0, a DOA ha at array a can be obtained
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at each TF bin by a phase difference-based estimator [13] (TF indices omitted for
brevity)

na ¼ cosðhaÞ
sinðhaÞ

� �
¼ c

2pf
½D að Þ

m0 �y arg y að Þ

Y að Þ
m0

; ð1Þ

where DðaÞ
m0 ¼ ½dðaÞ1 � dðaÞm0 ; . . .; d

ðaÞ
Ma

� dðaÞm0 �T, dðaÞm for m ¼ 1; . . .Ma denote the posi-

tions of the microphones from array a, yðaÞ contains the signals from array a stacked
in a vector, c and f are the speed of sound and the frequency in Hz, y denotes the
Moore-Penrose pseudoinverse, and argð�Þ is taken element-wise. Although the
DOAs consider only azimuth ha, an extension to elevation is possible. By trian-
gulating two vectors na1 and na2 from different arrays, a position Hnk is obtained for
each bin ðn; kÞ. As the signals at each TF bin represent (RV), Hnk is also an RV.
The position estimates are used to cluster the TF bins based on their respective
dominant source. If at TF bin ðn; kÞ, the energy of a given source is dominant over
the other sources and the noise, the position Hnk represents a good estimate of the
source location. Note that the DOA estimates can be obtained with any narrowband
estimator and the choice of an estimator influences the accuracy of the clustering.

Due to the speech sparsity in the STFT domain [3], it can be assumed that there
is at most one dominant source at each TF bin. Let znk be a discrete RV that takes
values from 0 to S, indicating the dominant source as follows

znk ¼ 0 if yðn; kÞ ¼ vðn; kÞ ði:e: only noise presentÞ; ð2aÞ

znk ¼ s if yðn; kÞ � xsðn; kÞþ vðn; kÞ; ð2bÞ

where the entries of y, xs, and v contain the respective signals from all micro-
phones. Marginalizing over the unobservable RV z, the distribution of the
observable RV H is given by pðHÞ ¼ P

z pðzÞpðHjzÞ (subscript nk omitted for
brevity). We propose the following parametric model for the likelihood pðHjzÞ

pðH j zÞ ¼ N ðH; lz;RzÞ; for z 6¼ 0; ð3aÞ

pðH j zÞ ¼ UðHÞ; for z ¼ 0; ð3bÞ

where U is a uniform distribution (noise is localized across the room with equal
probability) and NðH; lz;RzÞ is a two-dimensional Gaussian distribution with
mean lz and covariance matrix Rz. The mean lz represents the true location of the
z-th source in the xy plane. By writing the marginal distribution of z as

pðzÞ ¼ pðz j z 6¼ 0Þpðz 6¼ 0Þþ pðz j z ¼ 0Þ pðz ¼ 0Þ; ð4Þ

and introducing pz ¼ pðz j z 6¼ 0Þ and p0 ¼ pðz 6¼ 0Þ, where p0 is the (SPP), the
following holds
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pðzÞ ¼ pz p0; if z 6¼ 0
ð1� p0Þ if z ¼ 0:

�
ð5Þ

The parametrized distribution of the observable RV H can now be written as

pðH;P; p0Þ ¼
X
z6¼0

pzp0NðH; lz;RzÞþ ð1� p0Þ UðHÞ; ð6Þ

where P ¼ fpz; lz;Rzgz2½1;S� are unknown parameters. The SPP p0 is treated as a
known parameter as it can be estimated at each bin, independently of the clustering
framework. The interested reader is referred to [14] and references therein for
details on the computation of the SPP p0.

The goal in this work consists of inferring and tracking the time-varying
parameters Pn and the number of speakers Sn online as blocks of narrowband
position estimates become available. The framework should be capable of removing
and adding clusters for sources that disappear and appear, respectively.

3 Maximum Likelihood-Based Online Clustering

In this section, we derive the update of the parameters bPn�1 at frame n� 1 to the

new estimates bPn in light of the input data at frame n. For ease of exposition, we
assume that the number of speakers is equal in the two successive frames.
A mechanism that determines the number of speakers is detailed in Sect. 4.

The observable data at frame n is the set of position estimates and the corre-
sponding SPP from the most recent L frames, across all K frequency bins

Dn ¼ fðHik; p0;ikÞji 2 ½n� Lþ 1; n�; k 2 ½1;K�g: ð7Þ

Note that depending on the accuracy of the DOA estimates at different fre-
quencies and on the spatial aliasing limit for the microphone array, data only from a

subset of frequencies can be used as done e.g. in [7]. The parameters bPn are
obtained by maximizing the following log likelihood, with respect to Pn

LðDn;PnÞ ¼
X
i;k

ln pðHik;Pn; p0Þ: ð8Þ

We omit the TF-bin index from p0 for brevity, although p0 is computed
bin-wise. The mixture model given by (6) leads to a summation inside the logarithm
in (8), which does not allow for a closed form maximization. Instead, maximizing
the expectation of the complete data likelihood under the posterior distribution of
the unobservable z, represents a significantly easier problem [15]. This expectation,
also known as the Q-function, is given for our model by
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X
i;k

n
pðzik ¼ 0 jHik; bPn�1Þ

�
ln ð1� p0Þþ ln UðHikÞ

�
þ

X
z6¼0

pðzik ¼ z jHik; bPn�1Þ
�
ln pzp0 pðHik j zik ¼ z;PnÞ

�o
; ð9Þ

where the posterior distribution of zik is computed with respect to the old parametersbPn�1. Evaluating (9), and maximizing it with respect to Pn represents an iteration
of the EM algorithm, guaranteeing that LðDn;PnÞ[ LðDn;Pn�1Þ [15]. Setting the
derivatives of (9) with respect to Pn to zero, the standard M-step for a (GMM) is
obtained, as the terms due to z ¼ 0 do not depend on Pn. Introducing
PzðnÞ ¼

P
i;k pðzik ¼ z jHikÞ, the new parameters are computed as

pz ¼ PzðnÞ
LK

; lz ¼
P

i;k pðzik ¼ z jHikÞHik

PzðnÞ ;

Rz ¼
P

i;k pðzik ¼ z jHikÞ ðHik � lzÞðHik � lzÞT
PzðnÞ :

ð10Þ

To compute the posteriors pðzik ¼ z jHikÞ, we express them as follows

pðzik ¼ z jHikÞ ¼ pðzik ¼ z jHik; z 6¼ 0Þ p0 þ pðzik ¼ z jHik; z ¼ 0Þ ð1� p0Þ:
ð11Þ

Next, noting that for zik 6¼ 0 the second term equals zero, the posterior for
zik 6¼ 0 can be written by applying the Bayes theorem to the first term, i.e.,

pðzik ¼ z jHikÞ ¼ p0 � pðHik j zik ¼ zÞ pz p0P
z0 6¼0

pðHik j zik ¼ z0Þ pz0 p0 : ð12Þ

Hence, by virtue of the proposed model in Sect. 2, the speech presence uncer-
tainty is inherently considered when computing the model parameters. The EM
iteration given by (9)–(12) can be efficiently implemented using sufficient statistics
for GMMs. The reader is referred to our work in [11] where the EM algorithm was
implemented in this manner.

Given the estimated parameter set Pn at each frame n, the sequence

lz;1; lz;2; . . .; lz;n

h i
represents the estimated track for the s-th speaker, whereas the

posteriorprobabilitiescanbeused todesignTFmasksorspatialfilters forBSS[7,9,11].

4 Robust Counting and Tracking of Sources

The EM iteration, described in Sect. 3, is coupled with an outlier control and a
source counting mechanism. The outlier control is based on the likelihood of the
incoming data under the current parameter estimates and implicitly imposes smooth
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speaker tracks, as described next. A block diagram of the proposed online clustering
framework is illustrated in Fig. 1.

4.1 Outlier Control and Smoothness of Estimated Tracks

Noise and reverberation result in outliers which often exceed the number of reliable
data points. If there are erroneous SPP estimates in the incoming data, the
ML-based criterion in Sect. 3 forces the parameter estimates to fit noisy data that do
not accurately represent the speaker locations. Without a motion model or track
smoothness constraint, even moderate amount of outliers lead to significant tracking
errors. We propose a data-driven approach for trimming the set Dn to contain only
positions Hik that belong to a specified confidence region of at least one of the
clusters. Given the confidence probability p, the data used in the EM step at frame n
needs to satisfy the following, for at least one z 2 ½1; S�

ðHik � lz;n�1ÞTR�1
z;n�1ðHik � lz;n�1Þ�Wp: ð13Þ

As the quadratic form on the left hand side in (13) follows a Chi-squared

distribution with two degrees of freedom,Wp and p are related as p ¼ 1� e�
Wp
2 [16].

The data trimming step implicitly imposes smoothness of the speaker tracks and
assists the detection of new speakers, as described in Sect. 4.2.

Note that the points with low SPP, and hence a low impact on bPn, can be
removed from Dn without evaluating (13). In this manner, the storage and com-
putation complexity are notably reduced, as due to speech sparsity the number of
low SPP points is significant. Thresholding based on voice activity detection is
often a required step in acoustic source clustering and tracking [6, 11, 12]. In this
work, due to the incorporated SPP and outlier control, this step is optional and is
done only to reduce the computational cost.

Fig. 1 Diagram of the proposed system. The parameters bPn�1 from the previous frame are used
to remove outliers and to run an EM iteration at the current frame n
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4.2 Removing and Adding Speakers

Removing speakers. Inspired by the sparse EM variant [17], where at frame n only
the Gaussian components with large responsibility for observing the current data Dn

are updated, we propose to first update the mixture coefficients pz using the data Dn,
update the mean and covariance according to (10) only for the components z for
which pz [ pthr, and freeze the means and covariances otherwise. The frozen
parameters indicate inactive sources that are removed if their parameters are frozen
longer than a pre-defined number of frames Lfrz. The value Lfrz is often referred to as
time-to-live in tracking literature. In this work, Lfrz was fixed to 60 frames, corre-
sponding to 1.9 s. Alternatively, Lfrz can be computed online based on the predicted
travelled distance within a silent period. If a speaker travels a large distance without
acoustic activity, the track can not be recovered when acoustic activity is resumed.
This behavior is due to the smoothness requirement implicitly imposed by (13).
Instead, the speaker is removed after Lfrz frames, and promptly re-detected as a new
speaker when activity is resumed.

Adding speakers. Let us denote by eDn the set of all the points that were removed
from Dn by (13), and for which the SPP satisfies p0 [ psp. Assuming that there is
no new speaker at frame n, the cardinality jeDnj is low as all points with high SPP
are modeled by the current GMM and remain in the set Dn. On the contrary, if a
new speaker appears, a cluster of points is present in eDn. To verify the existence of
a new cluster we first take the maximum ha;max of the DOA histogram for each array
a, computed using the TF bins in eDn. Consider a set eD0

n � eDn such that for all TF
bins ði; kÞ corresponding to the points in eD0

n, the following holds

eD0
n ¼ fHik

�� j ha;max � ha;ikj\Dh; 8ag: ð14Þ

The threshold Dh is chosen such that the intersection region satisfying (14) is
sufficiently small, so that a large cardinality jeD0

nj indicates, with high probability, a
new source activity in that region. Denote by lzþ 1 the mean of the data points ineD0

n. To ensure that the newly detected source does not model an already existing
one we impose a limit on the minimum distance between two detected sources,
leading to the last condition for adding a source

jjlzþ 1 � lsjj2 [ dmin; 8s ^ jeD0
nj � n ð15Þ

where n is the minimum number of points required to declare a new speaker. If
(15) is satisfied, a new Gaussian is initialized with mean lzþ 1 and a scaled identity
covariance, and the standard EM iteration is executed with the new model. Note
that although only one new speaker per frame can be detected, there is no constraint
on the number of new speakers that appear in the same frame. Due to the
outlier-based speaker detection, both speakers will be detected, however with at
least one frame delay between the two detections.
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In addition, the following check is continuously exectuted jjli � ljjj2\dmrg so
that clusters of speaker i and j are merged in the case of crossing tracks. After the
speakers move away from each other, the two separate clusters and the corre-
sponding trajectories are recovered, as shown in the results. Although in certain
applications, it might be desirable to maintain separate speaker tracks regardless of
crossing, the proposed system in this work was developed in view of the signal
extraction applications using spatial filters, where speakers with small inter-speaker
distances cannot be separated by the spatial filter as separate sound sources.
Therefore, we choose to merge the the tracks of crossing trajectories.

5 Performance Evaluation

The proposed algorithm was evaluated in a simulated 6	 5	 3 m room. Clean
speech signals were convolved with room impulse responses for moving sources
using the software in [19]. Diffuse babble noise [18] and uncorrelated sensor noise
were added to the speech signals. The STFT frame length was 64 ms, with 50 %
overlap, at a sampling rate of 16 kHz. Three uniform circular arrays of diameter
2.9 cm and three omnidirectional microphones per array were employed. All rel-
evant processing parameters are summarized in Table 1. Scenarios with different
reverberation times T60, noise levels, number of sources, and motion patterns were
examined. The system is tested in dynamic situations with appearance of new
sources, speech pauses, and sources with crossing trajectories.

Experiment 1. In this experiment, we tested the tracker for a fixed number of
moving speakers. We started the algorithm with an unknown number of speakers
and once all were detected, the RMSE between the true and the estimated tracks
was computed. The results in Table 2 are averaged over time frames, over speakers,
and over three scenarios with different motion patterns. Two, three, and four
simultaneously active speakers were tracked for signal-to-noise ratios of 11 and
21 dB and speeds of 0.23 and 0.34 m/s. It can be observed that while the system is
robust to noise and reverberation, accuracy decreases for faster speaker movement.
The sensitivity to speed can be controlled by the number of frames L that constitute

Table 1 Parameters used in
the implementation

L Dh psp p pthr Lfrz n dmin dmrg

30 10
 0.85 0.95 0.07 60 30 0.5 0.3

Table 2 Average root mean
squared error in meters
between the true speaker
location and the mean of the
respective Gaussian

SNR (dB) speed (m/s) T60 ¼ 200 ms T60 ¼ 400 ms

two three four two three four

21 0.23 0.16 0.14 0.12 0.18 0.15 0.22

21 0.34 0.23 0.17 0.17 0.24 0.22 0.25

11 0.23 0.16 0.12 0.19 0.20 0.16 0.24

11 0.34 0.25 0.23 0.24 0.26 0.26 0.26
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the short-term data. Smaller L allows for faster adaptation suited for higher speeds,
however leads to quickly varying parameter estimates and less smooth tracks.
Experiments showed that L 2 ½25; 35� offers a good tradeoff between responsive-
ness and stability.

Experiment 2. We tested the tracker in several challenging scenarios which often
occur in practice. In Fig. 2, we illustrate a four-speaker example with T60 ¼ 200 ms
and velocity 0.34 m/s for each speaker. Snapshot II shows a detection of a new
speaker, where even in multitalk scenarios, a new speaker is detected in less than
0.5 s after the first activity. Snapshots I and III show stabilized clusters of three and
four speakers, respectively. Finally, snapshot IV is taken at the frame where the third
speaker is discarded, and only two Gaussians track the remaining two speakers.

Experiment 3. In the last experiment, the tracker was tested in a triple-talk
scenario when the trajectories of two speakers cross. The tracking result is visu-
alized in Fig. 3, where the x and y coordinates of the true and estimated tracks are
plotted across time. The crossing happens around second 5 on the time axis, where
it is visible that for a short period the two speakers are represented by a single
Gaussian component. When speakers split, around second 7, the tracker promptly
detects a new speaker, assigns a new Gaussian distribution to it, and continues to
track the three speakers.

Fig. 2 Snapshots of the tracking at different times and the signals of each speaker. The number at
the right bottom corner of each snapshot relates to the signal segment as indicated by the markers.
SNR 21 dB, T60 = 200 ms, velocity 0.34 m/s. The black dots denote the points in Dn that are used
in the current EM iteration, whereas the gray dots denote the discarded points eDn. The plus signs
denote the microphone arrays
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6 Conclusions

A maximum likelihood framework for multi-speaker detection and tracking was
proposed, based on clustering of narrowband position estimates. The position
estimates are obtained by using at least two distributed arrays. Speech presence
uncertainty and outlier control are incorporated in a unified manner, resulting in a
system that is robust to noise and reverberation, estimates the number of speakers
online, and allows for track recovery even in situations where the sources have
crossing trajectories. As a by-product of the clustering-based tracking, each TF bin
is classified to the dominant source providing means to design data-dependent
spatial filters for blind source separation.
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