
Incremental-Eclat Model:
An Implementation via Benchmark
Case Study

Wan Aezwani Bt Wan Abu Bakar, Zailani B. Abdullah,
Md. Yazid B. Md Saman, Masita@Masila Bt Abd Jalil,
Mustafa B. Man, Tutut Herawan and Abdul Razak Hamdan

Abstract Association Rule Mining (ARM) is one of the most prominent areas in
detecting pattern analysis especially for crucial business decision making. With the
aims to extract interesting correlations, frequent patterns, association or casual
structures among set of items in the transaction databases or other data repositories,
the end product of association rule mining is the analysis of pattern that could be a
major contributor especially in managerial decision making. Most of previous
frequent mining techniques are dealing with horizontal format of their data
repositories. However, the current and emerging trend exists where some of the
research works are focusing on dealing with vertical data format and the rule
mining results are quite promising. One example of vertical rule mining technique
is called Eclat which is the abbreviation of Equivalence Class Transformation.
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In response to the promising results of the vertical format and mining in a higher
volume of data, in this study we propose a new model called an Incremental-Eclat
adopting via relational database management system, MySQL (My Structured
Query Language) that serves as our association rule mining database engine in
testing benchmark Frequent Itemset Mining (FIMI) datasets from online repository.
The experimental results of our proposed model outperform the traditional Eclat
with certain order of magnitude.

Keywords Association rule mining � Relational database � Mysql � Frequent
itemset � Eclat algorithm

1 Introduction

Association rules mining (ARM) is first defined by [1] remains as one of the
prominent and advance techniques in data mining. With the objectives to find the
correlations, associations or casual structures among sets of items, association rules
are the if-then statements that uncover relationships between unrelated data in
transactional database, relational database or other types of data repositories. There
are two (2) major aspects of ARM i.e. mining frequent itemset and generate
interesting rules or also called positive association rule (PAR) and also mining
infrequent itemset and generate interesting rules or also called negative association
rule (NAR) [2, 3].

Most of the previous efforts on ARM have utilized the traditional horizontal
transactional database layout format such as in [2, 4]. However, recently a number
of vertical association rules mining algorithms have been proposed in works done
by [5–8]. A general survey and comparison for association rule mining algorithms
has been comprehensively initiated by [9] where a group of researchers have
systemized the approaches of ARM algorithms into detailed schematic diagram.
Since the introduction of frequent itemset mining, it has received a major attention
among researchers [3, 10–14] and various efficient and sophisticated algorithms
have been proposed to do frequent itemset mining. Among the three basic frequent
itemset mining and best-known algorithms are Apriori [1, 2], Eclat [5, 15] and
FP-Growth [4, 16, 17]. The state of the art in association rule mining algorithm is
dealing with the extraction of frequent itemsets that occur with high frequency of
support, s% in transactional database. The prerequisite feature that must taking into
major account is the database format or sometimes called as database layout. The
database format (either in horizontal or vertical) might be a major determinant of
how far and how fast association rule is mined prior to generation of frequent
itemsets from a database. Among existing works on vertical data association rules
mining [4–7, 9–11, 15], Eclat algorithm is known for its ‘fast’ intersection of its
tidlist whereby the resulting number of tids is actually the support (frequency) of
each itemsets [5, 9]. That is, we should break off each intersection as soon as the
resulting number of tids is below minimum support threshold that we have set.
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Studies on Eclat algorithm has attracted many development including the works of
[6, 8, 18]. Motivated to its ‘fast intersection’, this paper proposed a new
Incremental-Eclat model by taking Eclat as well as Eclat-variants as the based
models. This new model proposes a new incremental mechanism in Eclat dimen-
sion model.

The rest of the paper is organized as follows. Section 2 describes the related
works of vertical algorithm in ARM. Section 3 explains the theoretical background.
Section 4 outlines on Traditional Eclat and Eclat-variants versus Incremental-Eclat
concept. This is followed by the experimentation of Eclat and Incremental-Eclat in
Sect. 5. Finally, conclusion and future direction is reported in Sect. 6.

2 Related Works

The first aspect in association rule mining is looking on the frequent itemset mining
as applied in FP-Growth and Eclat algorithms. The FP-Growth is defined in [4, 17]
employs a divide-and-conquer strategy and a FP-tree data structure to achieve a
condensed representation of the transaction database. It has become the fastest
algorithms for frequent pattern mining. In large databases, it’s not possible to hold
the FP-tree in the main memory. A strategy to cope with this problem is to firstly
partitioned the database into a set of smaller databases (called projected databases),
and then construct an FP-tree from each of these smaller databases. The generation
of FP-tree is done by counting occurrences and depth first search (refer to Fig. 2) in
searching the nodes [9].

The Eclat is first initiated by [5] stands for Equivalence Class Transformation
[15, 16] and as an acronym of Equivalence Class Clustering and bottom up Lattice
Traversal [18]. It also takes a depth-first search in searching nodes and intersecting,
in which each item is represented by a set of transaction IDs (called a tidset) whose
transactions contain the item. The tidset of an itemset is generated by intersecting
tidsets of its items. Because of the depth-first search, it is difficult to utilize the
downward closure property like in Apriori [1, 2] that based on breadth-first
searching. However, using tidsets has an advantage that there is no need for
counting support, the support of an itemset is the size of the tidset representing it.
The main operation of Eclat is intersecting tidsets, thus the size of tidsets is one of
main factors affecting the running time and memory usage of Eclat. The bigger
tidsets are, the more time and memory are needed.

Continuing the work by [5], a new vertical data representation, called Diffset is
proposed in [6], and introduced dEclat, an Eclat-based algorithm using diffset.
Instead of using tidsets, they use the difference of tidsets (called diffsets). Using
diffsets has drastically reduced the set size representing itemsets and thus operations
on sets are much faster. The dEclat has shown to achieve significant improvements
in performance as well as memory usage over Eclat, especially on dense databases.
However, when the dataset is sparse, diffset loses its advantage over tidset.
Therefore, the researchers suggested using tidset format at the start for sparse
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databases and then switching to diffset format later when a switching condition
is met.

The VIPER (Vertical Itemset Partitioning for Efficient Rule Extraction) is
established by [7] uses compressed vertical bitmaps for association rule mining has
shown to outperform an optimal horizontal algorithm that has complete apriori
knowledge of the identities of all frequent itemsets and only need to find their
frequency.

Following the efforts in [5, 6], a novel approach for vertical representation
wherein the authors used the combination of tidset and diffset and sorted the diffset
in descending order to represent databases [8] which is called sortdiffset. The
technique is claimed to eliminate the need of checking the switching condition and
converting tidset to diffset format regardless of database condition either sparse or
dense. Besides, the combination can fully exploit the advantages of both tidset and
diffset format where the prelim results have shown a reduction in average diffset
size and speed of database processing.

Motivating on the support measure in frequent item mining in [6], an
improvement work by [11] is done whereby a conjecture of support count and
improvement of traditional Eclat are proposed. The new Bi-Eclat algorithm sorted
on support is introduced such that items are in descending order according to
frequencies in transaction cache while itemsets use ascending order of support
during support count. As compared to traditional Eclat, it has gained better per-
formance when tested on several public selected datasets.

3 Theoretical Background

Following is the formal definition of the problem defined in [11]. Let I ¼
fi1; i2; . . .img for mj j[ 0 be the set of items. D is a database of transactions where
each transaction has a unique identifier called tid. Each transaction T is a set of
items such that T�I. An association rule is an implication of the form X�Y where
X represent the antecedent part of the rule and Y represents the consequent part of
the rule where X�I; Y�I and X \ Y ¼ ;. A set X�I is called an itemset. An itemset
with k-items is called a k—itemset. The itemset that satisfies minimum support is
called frequent itemset. The rule X ) Y holds in the transaction set D with con-
fidence c if c% of transactions in D that contain X also contain Y. The rule X ) Y
has support s in the transaction set D if s% of transaction in D contains X [Y .
A rule is frequent if its support is greater than minimum support (min_supp)
threshold. The rules which satisfy minimum confidence (min_conf) threshold is
called strong rule and both min_supp and min_conf are user specified values [15].
An association rule is considered interesting if it satisfies both min_supp and
min_conf thresholds [18].
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4 Traditional Eclat and Eclat-Variants Versus
Incremental-Eclat Concept

A. Traditional Eclat

An Eclat algorithm is first proposed by [13, 18, 19] for discovering frequent
itemsets from a vertical database layout of a transaction database. It uses
prefix-based equivalence relation, h1 along with bottom up search. It enumerates all
frequent itemsets. There are two main steps: candidate generation and pruning.

1. Candidate Generation

In candidate generation, each k-itemset candidate is generated from two frequent
(k-1)-itemsets and its support is counted, if its support is lower than the threshold,
then it will be discarded, otherwise it is frequent itemsets and used to generate
(k + 1)-itemsets. Since Eclat uses the vertical layout, counting support is trivial.
Depth-first searching strategy is done where it starts with frequent items in the item
base and then 2-itemsets from 1-itemsets, 3-itemsets from 2-itemsets and so on.

The first scan of the database builds the transaction id (tids) of each single items.
Starting with single item (k = 1), then the frequent (k + 1)-itemset will grow from
the previous k-itemset will be generated with a depth first computation order similar
to FP-Growth [15]. The computation is done by intersecting tids of the frequent
k-itemsets to compute the tidsets of the corresponding (k + 1)-itemsets. The process
is repeated until no more frequent candidate itemsets can be found.

2. Equivalence Class Clustering

An equivalence class E ¼ fði1; t i1 [Pð ÞÞ; . . .; ðik; t ik [Pð ÞÞjPg, considering the
set fi1; . . .; ikg as an item base, it will have a tree of itemsets over this item base and
if the prefix P is appended to all itemsets in this new tree, it will have a set of all
itemsets sharing the prefix P in the search tree over the item base B. In other word,
from this equivalence class, a set of all itemsets sharing the prefix P could be
generated and this set forms a sub tree of the initial search tree.

Eclat starts with prefix {} and the search tree is actually the initial search tree. To
divide the initial search tree, it picks the prefix {a}, generate the corresponding
equivalence class and does frequent itemset mining in the sub tree of all itemsets
containing {a}, in this sub tree it divides further into two sub trees by picking the
prefix {ab}: the first sub tree consists of all itemset containing {ab}, the other
consists of all itemsets containing {a} but not {b}, and this process is recursive until
all itemsets in the initial search tree are visited. The search tree of an item base {a,b,
c,d,e} is represented by the tree as shown in Fig. 1.

In the vertical layout, each item ik in the item base B is represented as ik :
fik; t ikð Þg and the initial transaction database consists of all items in the item base.
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For both layouts, it is possible to use the bit format to encode tids and also a
combination of both layouts can be used [20, 21]. Figure 2 illustrates how data in
horizontal layout is transformed by a set of transaction ids or tidset in vertical
layout [20].

Fig. 1 Prefix Tree for 5 items {a,b,c,d,e} with null set

Fig. 2 Transformation from horizontal to vertical layout
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In Fig. 2, the items in B consist of {a,b,c,d,e} and each itemsets are allocated
with unique identifiers (tids) for each transactions. This is clearly visualized in
horizontal format. To switch to vertical format, every items {a,b,c,d,e} are then
organized where all items are allocated with their corresponding tids. When this is
done, it is clearly visualized the support of each items through the counting number
of every item’s tids.

B. Traditional Eclat (Tidset) and Eclat-Variants (Diffset and SortDiffset)

A detail steps taken in Eclat-tidset algorithm when assuming that the initial
transaction database is in vertical layout and represented by an equivalence class E
with prefix {} is shown in Fig. 3 (refer to steps 1,2,3,4,5,6,7,8,9,10). The itemset in
the database table is first sorted in ascending order into each column and then, the
looping value is getting based on the number of columns occupied by the itemset.
Starting with the first column and second column, the intersection of items in both
columns is done and save the intersecting tidlist into database. This process is
repeated until all frequent itemsets have been enumerated. The looping number is
determined by the number of attributes of the dataset read.

The Eclat-diffset or named as dEclat (different set or diffset) is proposed by [6]
where the authors represent an itemset by tids that appear in the tidset of its prefix
but do not appear in its tidsets. In other words, diffset is the difference between two
(2) tidsets (i.e. tidset of the itemsets and its prefix). Using diffset, the cardinality of
sets representing itemsets is reduced significantly and this results in faster inter-
section and less memory usage. The dEclat is shown to achieve significant
improvements in performance and memory usage over traditional Eclat especially
in dense database. However when database is sparse, it loses its advantages over
tidsets. Then in [6] the authors suggested to use tidset format at starting for sparse
database and later switch to diffset format when switching condition is met. The
pseudocode of diffset is given in Fig. 3 (refer to steps 1,2,3,4,5,6.1,7,8,9,10).

1. start
2.  Sort data by itemset
2.1 Sort data by itemset with descending order of dataset value.
3.  looping=numberofcolumn;

//process tidset
4. for(i=0;i<looping;i++)
5. {
6.  get intersect data for column[i] with  column[i+1];
6.1 get diffset data for column[i] with  column[i+1];
7. save to db;
8. add next transaction data; 
9. }
10. end

Fig. 3 Eclat-tidset (in steps 1,2,3,4,5,6,7,8,9,10), Eclat-diffset (in steps 1,2,3,4,5,6.1,7,8,9,10),
and Eclat-sortdiffset (in steps 1,2.1,3,4,5,6,7,8,9,10)
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The Eclat-SortDiffset is established in [8] that applied the sorting of diffset in
descending order. It claims to achieve a significant reduces in running time
and memory usage. Since pðPXYÞ ¼ supðPXÞ � dðPXYÞj j ¼ supðPYÞ � dðPYXÞj j,
both d(PXY) and d(PYX) could be used to calculate sup(PXY). Therefore, the
smaller one of the two should be used to calculate sup(PXY) to reduce the memory
usage and processing time. Because d(PXY) = d(PY)−d(PX) and d(PYX) = d(PX)
−d(PY), if d(PX) is smaller than d(PY) then d(PYX) is smaller than d(PXY). In
general, diffsets in an equivalence class should be sorted in descending order
according to size to generate new itemsets represented by diffsets with smaller sizes.
The portion of SortDiffset algorithm is given in Fig. 3 (refer to steps
1,2.1,3,4,5,6.1,7,8,9,10) where the difference only in step 2 as compared to
diffset algorithm.

C. Incremental Eclat Algorithm

The initial objective of Incremental Eclat is to handle the issues of big and
dynamic data. In real application, data is becoming bigger prior to non-stop
transaction being done in many of real world application domain. With respect to
association rule mining, items may incur either in two (2) different ratios i.e.
increment of itemset or increment of records in typical database. To mine frequent
items, it may require higher specification of memory and spaces of the computer
hardware. Incurring itemsets result in bigger cardinality of data in equivalence class
clustering whereas incurring records consumes higher volume of data. Thus,
Incremental Eclat attends to reduce a memory and spaces requirement by imple-
menting flushing of memory prior to each itemset being visited before intersecting
the next itemsets. The current or last transaction data that is in-memory will be
flushed before proceeding into next transaction data. Adopting in a structured and
relational MySQL database, the incremental of either itemset or records of trans-
action is easier and more efficient in structuring the data. The pseudocode of the
proposed algorithm is denoted in Fig. 4. The only difference in Incremental-Eclat
engine is depicted in step 9.

1. start
2.  Sort data by itemset
2.1 Sort data by itemset with descending order of dataset value.
3.  looping=numberofcolumn;
4. for(i=0;i<looping;i++)
5. {
6.  get intersect data for column[i] with  column[i+1];
6.1 get diffset data for column[i] with  column[i+1];
7.  save to db;
8.  add next transaction data;
9.  flush value for current/last transaction data;
10. }
11. end

Fig. 4 Incremental-Eclat approach
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5 Experimentation

A. Database Platform

All experiments are performed on a Dell N5050, Intel ® Pentium ® CPU B960
@ 2.20 GHz with 2 GB RAM in a Win 7 64-bit platform. The software specifi-
cation used is MySQL version 5.5.27—MySQL community server (GPL) for our
database server, Apache/2.4.3 (Win32) OpenSSL/1.0.1c PHP/5.4.7 for our web
server and phpMyAdmin with version 3.5.2.2. For the kick-off experimentation, we
start with simple synthetic dataset. In addition, we have retrieved benchmark
datasets from http://fimi.ua.ac.be/data/ in a *.dat file format. For the ease of use in
MySQL, we convert datasets into comma separated value (csv) format. The char-
acteristics of benchmark datasets with the average size include chess and mushroom
is depicted in Table 1. For the faster results of a depth first with intersection
searching strategy in database mining, we have split chess, connect and mushroom
datasets into benchmark trained datasets. There are three (3) sub divisions of each
i.e. chess1000 � 12, chess2000 � 12, chess3000 � 12. The same sub division is
done in connect.

B. Empirical Results

The experimentation is done with regards to Eclat algorithm (tidset) in [5],
dEclat algorithm (diffset) in [6] and sortdiffset algorithm in [8]. Figure 5, 6, 7, 8
show the graph of performance result in execution time between Eclat and
Eclat-variants versus Incremental-Eclat within chess and connect datasets prior to
running with Eclat engine versus Incremental-Eclat engine. The graphs indicate the
result of sortdiffset algorithm with an order of magnitude outperforms diffset and
tidset algorithm in Eclat engine. The execution time shows a slight decreased in
connect dataset for about 0.31 % in Incremental-Eclat as compared to Eclat engine.
However, in chess, the execution of Incremental-Eclat decreases tremendously for
21.03 % as compared to Eclat engine. As overall, Incremental-Eclat performs better
than Eclat in certain order of magnitude. The incremental process either in itemsets

Table 1 Database
characteristics

Database Size
(KB)

Average
length

Records

Chess (original) 335 37 3196

Chess1000 � 12 32 12 1000

Chess2000 � 12 63 12 2000

Chess3000 � 12 95 12 3000

Connect (original) 9039 43 67,557

Connect1000 � 12 34 12 1000

Connect2000 � 12 67 12 2000

Connect3000 � 12 100 12 3000
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Fig. 6 Chess with incremental-Eclat

Fig. 5 Chess with eclat

Fig. 7 Connect with eclat
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or in transaction records are efficiently conducted with the adoption of MySQL
database where the adhock query either addition or deletion of data can be effi-
ciently manipulated through SQL query in phpMyAdmin software.

6 Conclusion and Future Direction

Experimenting ourselves in association rule database mining with the selected
benchmark datasets conforms to what the other previous researchers have proven.
In this paper, we have successfully adopted a depth first search (DFS) with inter-
section strategy through Eclat and our proposed algorithms within a benchmark
transaction database in mining association rules. The important advantages in
database mining that we disclose here are firstly, the ease of indexing mechanism.
Secondly the ad hoc query support mechanism and thirdly, is the interoperability
and flexibility of data storage to facilitate the altering (either adding or deleting of
row/column) in a data table.Our proposed algorithm seems to benefit with dynamic
database where data is always incur in volume from time to time. In conjunction
with big data explosion and when the database integration method as in [21] needs
to be adopted, then the use of this incremental method will give benefits to end
users.
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Fig. 8 Connect with incremental-eclat
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