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Abstract Most of the neural network based forecaster operated in offline mode, in
which the neural network is trained by using the same training data repeatedly.
After the neural network reaches its optimized condition, the training process stop
and the neural network is ready for real forecasting. Different from this, an online
time series forecasting by using an adaptive learning Radial Basis Function neural
network is presented in this paper. The parameters of the Radial Basis Function
neural network are updated continuously with the latest data while conducting the
desired forecasting. The adaptive learning was achieved using the Exponential
Weighted Recursive Least Square and Adaptive Fuzzy C-Means Clustering algo-
rithms. The results show that the online Radial Basis Function forecaster was able
to produce reliable forecasting results up to several steps ahead with high accuracy
to compare with the offline Radial Basis Function forecaster.

1 Introduction

Forecasting has become an important research area and is applied in many fields
such as in sciences, economy, meteorology, politic and to any system if there, exist
uncertainty on that system in the future. Before the emergence of mathematical and
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computer models so called machine learning algorithms, forecasting was carried out
by human experts. In this approach, all parameters that are possibly give effect to
the system to be forecasted are considered and judged by the experts before pro-
ducing the forecasting output. Unfortunately, forecasting using human experts is
very vague and sometimes arguable since it is totally depends on the expert’s
knowledge, experiences an interest. Other than using human experts, there exists
other prediction approach: Statistical Prediction Rules which is more reliable and
robust [1]. One of the popular methods in Statistical Prediction Rules is Time Series
Prediction where it uses a model to forecast future events based on known past
events: to forecast future data points before they are measured.

A time series consists of sequence of numbers which explained the status of an
activity versus time. In more detail, a time series is a sequence of data points,
measured typically at successive times, spaced at (often uniform) time intervals.
A time series has features that are easily understood. For instance a stock price time
series has a long term trend, seasonal and random variations while a cereal crops
price time series contains only seasonal components [2]. There exist many
approaches to perform time series forecasting. Among the approaches are
Box-Jenkins Approach (ARMA/ARIMA) [3], Regression analysis [4], Artificial
Neural Networks (ANN) [5], Fuzzy Logic (FL) [6] and Genetic Algorithms [GA]
[7]. However among them, the computational intelligence technique such as ANN,
FL and GA are getting more attention in time series forecasting because they are
non-linear in nature and able to approximate easily complex dynamically sys-
tem [8–11].

In its typical implementation, ANN will be trained by using the existing set of
previous data. After the ANN reaches its optimized performance, the training
process is stopped. Then the optimized ANN will be used to estimate the forth-
coming output based on the current received inputs. This form of implementation is
called as offline mode and is implemented in real-world, especially in power
generator station [12, 13]. However, studies shown forecasting in the offline mode
has several disadvantages. The major disadvantage is that the ANN parameters
must be updated from time to time to suite with the various changing of the
incoming data. This requires the ANN to be trained again by including the latest
available data for the training. If the updating process is neglected, the ANN will
generate incorrect forecasting whenever they receive unseen input data beyond the
training data set. In situation where the data are non-stationary, the offline forecaster
will be under performance, unless it is continuously being updated to track
non-stationarities. This calls for online forecasting technique, where the parameters
of the ANN will be adaptive to the latest available data.
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2 Materials and Methods

2.1 Radial Basis Function

The Radial basis function (RBF) neural networks typically have three layers: an
input layer, a hidden layer with a non-linear RBF activation function and a linear
output layer. Each layer consists of one or more nodes depending on the design.
The nodes in input layer are connected to the nodes in hidden layer while the nodes
in hidden layer are connected to the nodes in the output layer via linear weights
[14]. The output from each node in the hidden layer is given as:

Zj ¼ U jjvðtÞ � cjðtÞjj
� �

j ¼ 1; 2; 3. . .. . .. . .nh: ð1Þ

where cj tð Þ and nh representing the RBF centre and number of hidden nodes, v tð Þ is
the input vector to the RBF and Uð�Þ representing the temporary activation function
while ||•|| represents the Euclidean distance between the input vector and RBF
centre. The initial value of the RBF centre, cj tð Þ is given by taking the first data of
the series as the RBF centre. The activation function Uð�Þ used is Thin Plate Spline
given by U að Þ ¼ a2 log að Þ, where a = a ¼ jjvðtÞ � cjðtÞjj is Euclidean distance.
The Euclidean distance for each hidden node is given by:

Euclidean distance,

aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

cijðtÞ � vjðtÞ
� �2s

: ð2Þ

where cij(t) = RBF centre for the j-th hidden node and i-th input, and viðtÞ = the i-th
input. The RBF output is given by:

ykðtÞ ¼ wk0 þ
Xnh
j¼1

wkjU jjvðtÞ � cjðtÞjj
� �

; k ¼ 1; 2; 3; . . .. . .m: ð3Þ

where wkj, is the weight between hidden node and output node and m is the number
of output node.

2.2 Adaptive Learning Algorithms

Two parameters, namely, the RBF centre in hidden nodes and weights between the
hidden nodes and the output nodes were updated using the Adaptive Fuzzy C-
Means Clustering (AFCMC) and the Exponential Weighted Recursive Least Square
(e-WRLS) algorithms respectively [15, 16].
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Adaptive Fuzzy C-Means Clustering. Give initial value to cj(0), l(0) and q,
where 0 � l(0) � 1.0 and 0 � q � 1.0 (the typical value is between 0.30 to
0.95 respectively). Then compute the Euclidean distance dj(t) between input v
(t) and centre cj(t). Obtain the shortest distance, ds(t) longest distance dl(t), nearest
centret cs(t) and distant centre cl(t).

For j = 1 to j = nc, where nc = number of RBF centre,

(a) Updates the square distance between centre and input v(t) using:

cðtÞ ¼ 1
nc

Xnc
k¼1

jjvðtÞ � ckðtÞjj½ �2: ð4Þ

(b) if j 6¼ s that is if that centre is not cs centre, updates the centre by referring to:

Dcj ¼ lðtÞ#ðtÞ vðtÞ � cjðt � 1Þ� �
: ð5Þ

where

#ðtÞ ¼ Dl tð ÞDj tð Þ exp �Da tð Þ½ � if dj [ 0
Dl tð Þ exp �Da tð Þ½ � if dj ¼ 0

�
: ð6Þ

and

Dl tð Þ ¼ c tð Þ
d2l
,Dj tð Þ ¼ d2a tð Þ

d2j tð Þ and Da tð Þ ¼ d2a tð Þ
c tð Þ with a = s if ds(t) > 0 and a = z

if ds(t) = 0, (dz(t) = smallest nonzero distance between v(t) and cj(t)).
(c) updates cs(t) using

Dcs tð Þ ¼ l tð Þu tð Þ v tð Þ � cs t � 1ð Þ½ �: ð7Þ

Where

u tð Þ ¼ exp � d2s tð Þ
c tð Þ

� 	
if ds tð Þ[ 0:

0 if ds tð Þ ¼ 0:

(
ð8Þ

Measure the distance between cs(t) with all centres, hk tð Þ ¼ cs tð Þ � ck tð Þk kð Þ,
k = 1, 2, 3, … nc and k 6¼ s. If the shortest distance hc(t), is hc tð Þ\l tð Þda tð Þ, move
the nearest distance, cc(t) to new location based on:

Dcc tð Þ ¼ � l tð Þd2a tð Þ
d2l tð Þ cc tð Þ � cs tð Þð Þ: ð9Þ
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Set t = t + 1, and repeat the above for each data sample. The diffusion coeffi-
cient l tð Þ, is updates by using:

l tð Þ ¼ l 0ð Þ exp � qt2

n2c


 �
þ exp �ql t � 1ð Þð Þ

nc
: ð10Þ

Exponential Weighted Recursive Least Square. Set b̂ j
0 ¼ 0 and construct

matrix P0 = aI. The typical value for a is 104 � a � 106 and I is Identity matrix
of nh (number of hidden nodes). Read the output from the hidden nodes, XT

k , and
calculate Kk and Pk+1 using:

Kk ¼ PkXkþ 1

kþXT
kþ 1PkXkþ 1

; ð11Þ

and

Pkþ 1 ¼ Pk

k
I � KkX

T
kþ 1

� 

: ð12Þ

where k is a forgetting factor with its typical value of 0.95 � k � 0.99. The k can
also be computed by:

k tð Þ ¼ k0k t � 1ð Þþ 1� k0ð Þ: ð13Þ

where k0 = 0.99. Estimates b̂ j
kþ 1 by using:

b̂ j
kþ 1 ¼ b̂ j

k þKk ykþ 1 � XT
kþ 1b̂

j
k

h i
: ð14Þ

Set k = k + 1, k = 1, 2, 3, … N where N is the number of data. Repeat steps 2–4
till converges. Because n kð Þ cannot be computed, ê kð Þ is used to replace n kð Þ where
ê kð Þ, is measurement error and can be computed by ê kð Þ ¼ y kð Þ � ŷðkÞ where
ŷ ¼ XT

k b̂k�1:

3 Results and Discussion

3.1 Data

The forecasting performance is evaluated by using two simulated data and one real
data. The simulated data are the Mackey-Glass nonlinear time series and Set A from
Santa Fe Competition (SantaFe-A), while the real data is the IBM Stock Price data.
The forecasting based on time series produced by the Mackey-Glass equation is
regarded as a criterion for comparing the ability of different predicting method and
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is used in many time series forecasting researches [17, 18]. The SantaFe-A data
were recorded from a Far-Infrared-Laser in a chaotic state. These data were chosen
because they are a good example of the complicated behavior that can be seen in a
clean, stationary, low-dimensional non-trivial physical system for which the
underlying governing equations dynamics are well understood. The IBM data are
the daily closing price of IBM stock from January 1, 1980 to October 8, 1992 [19].

3.2 Forecaster Optimization

The selection of input lag and the number of hidden node in the RBF have strong
impact on the performance of a neural network based forecaster [3]. In parallel to
this, the analysis on input selection (input lag) and number of hidden node that
produce the optimized forecaster is conducted. The analysis starts by setting the
RBF input with the data at elapsed time (t−1)(t−2) … (t−8)(t−9)(t−10) and
increasing the hidden nodes one by one until it reaches 50. For each number of
hidden nodes, the R2 value for one step ahead forecasting were recorded. The same
process is repeated for the other input lag as tabulated in Table 1. The R2 values
obtained from the analysis were plotted and the number of hidden node which gives
the highest R2 values for all five input lags was used in the analysis to obtain the
correct number of input lag. This analysis was conducted by setting the hidden node
to the value obtained and varies the input lag from (t−1) to (t−1)(t−2) … (t−98)(t
−99)(t−100). Table 2 shows the input lag and the number of hidden node which
produce the best multiple steps ahead forecasting performance for the three data.

Table 1 List of input lags
used to determine the correct
number of hidden node

Name Input lag

Input lag 1 (t−1)(t−2)(t−3) … (t−9)(t−10)

Input lag 2 (t−1)(t−2)(t−3) … (t−19)(t−20)

Input lag 3 (t−1)(t−2)(t−3) … (t−29)(t−30)

Input lag 4 (t−1)(t−2)(t−3) … (t−39)(t−40)

Input lag 5 (t−1)(t−2)(t−3) … (t−49)(t−50)

Table 2 The best input lag
and number of hidden node
for the three data

Data Input lag Hidden node

Mackey-Glass (t−1)(t−2)(t−3) …
(t−36)(t−37)

32

SantaFe-A (t−1)(t−2)(t−3) … (t−29)
(t−30)

25

IBM (t−1)(t−2)(t−3) … (t−40)
(t−41)

39

30 M. Mamat et al.



3.3 Forecasting Performance

The findings obtained from the analyses in Sect. 3.2 were used to construct a
universal online RBF forecaster for Mackey Glass data, SantaFe-A data and IBM
Stock Price data. The performance of the forecaster to forecast the three data were
tested. Figure 1 presented one to four steps ahead forecasting for the last 500
Mackey Glass data. For SantaFe-A data, due to the nature of data which is too
fluctuating, only the last 100 actual and forecasted data are displayed in Fig. 2.
Figure 3 presented the forecasting on 500 IBM Stock Price data. From plots in
Figs. 1, 2, and 3, it can be observed that the online RBF forecaster is able to
produce reliable and close forecasted values in most of the time. For both data, the
input lags and number of hidden nodes which produce the best forecasting per-
formance and the R2 values for one to four steps ahead forecasting are presented in
Table 3.
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The forecasting performance of the online RBF forecaster versus the offline RBF
forecaster was also evaluated. Table 4 presents the RMSE and R2 values for four
steps ahead forecasting achieved by the offline RBF forecaster.
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Fig. 3 One to four steps ahead forecasting for the last 500 IBM data

Table 3 RMSE and R2 values for one to four steps ahead forecasting obtained by the online RBF
forecaster

Data Mackey-Glass SantaFe-A IBM

Input lag (t−1)(t−2)(t−3) …
(t−36)(t−37)

(t−1)(t−2)(t−3) …
(t−29)(t−30)

(t−1)(t−2)(t−3) …
(t−40)(t−41)

Hidden node 32 25 39

Indicator RMSE R2 RMSE R2 RMSE R2

1-step ahead 0.019 0.995 25.477 0.653 1.872 0.994

2-steps ahead 0.064 0.947 27.436 0.597 6.211 0.939

3-steps ahead 0.099 0.872 28.527 0.565 8.634 0.882

4-steps ahead 0.137 0.758 28.510 0.565 10.512 0.825

Table 4 RMSE and R2 values for one to four steps ahead forecasting obtained by the offline RBF
forecaster

Data Mackey-Glass SantaFe-A IBM

Input Lag (t−1)(t−2)(t−3) …
(t−36)(t−37)

(t−1)(t−2)(t−3) …
(t−29)(t−30)

(t−1)(t−2)(t−3)… (t
−40)(t−41)

Hidden node 32 25 39

Indicator RMSE R2 RMSE R2 RMSE R2

1-step ahead 0.030 0.988 23.733 0.699 7.215 0.918

2-steps ahead 0.083 0.911 25.317 0.657 16.424 0.573

3-steps ahead 0.140 0.746 26.617 0.621 28.026 −0.243

4-steps ahead 0.214 0.412 26.687 0.619 42.152 −1.812
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For Mackey Glass data, the performance of the offline RBF for one step ahead
forecasting are slightly lower to compare with the online RBF. However for mul-
tiple steps ahead forecasting, the performance of offline RBF was absolutely poorer
where significant deviations were recorded as the forecasting distance increases.
The analysis on IBM stock price data also favors online RBF over offline RBF. It
can be noted that the offline RBF is able to produce good one step ahead forecasting
with 91 % accuracy. However it is considered low to compare with the accuracy
obtained by online RBF which is 99 %. For other forecasting distance, namely two
to four steps ahead, the offline RBF was failed to generate the acceptable fore-
casting performance. The forecasting performance obtained by the two, three and
four steps ahead was lower than 0.6 and can be regarded as poor to compare with
online RBF.

The superiority of online RBF over offline RBF on the Mackey Glass and IBM
stock price data can be explained by the nature of the data themselves. It can be
observed that both data display different patterns over times especially in the first
half and second half of the data. Therefore by using the first half of the data for
training are insufficient for the offline RBF to cover all patterns that were exhibited
by the data in the next second half. This finding shows that the offline RBF is
unable to generate good forecasting for any system which shows chaotic and
non-stationary patterns over time.

However, different observation was obtained from the analysis on SantaFe-A
data. For this data, the offline RBF produces higher performance in one to four steps
ahead forecasting to compare with online RBF. This is again can be explained by
the data itself where it can be noted that SantaFe-A data exhibit almost consistent
patterns throughout the time. In brief, it can be said that the data is repeating
themselves over times. Therefore by training the offline RBF using the first 500 data
repeatedly was enough to cover the next 500 testing data. While for online RBF,
continuous learning contributes to over fitting which degraded its forecasting
ability.

4 Conclusion

More and more fields including science, financial, economy and meteorological
adapt time series forecasting to solve uncertainty situation or outcomes in their
respective fields. Due to the nature that problems to be solved are affected much by
other parameters which change over time, the requirement of the online forecasting
model is practical in real-world applications. This paper presented a tool to perform
online multiple steps ahead time series forecasting using Radial Basis Function,
which shows reliable and accurate forecasting capability.
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