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Abstract This paper analyses the vibro-acoustic characteristics of the bearing
using FFT (Fast Fourier Transform), EMD (Empirical Mode Decomposition),
EEMD (Ensemble EMD) and CEEMDAN (Complete EEMD with Adaptive Noise)
algorithms. The main objective is to find out the best algorithm that avoids mode
mixing problems while decomposing the signal and also enhance the feature
extraction. It is observed that even though acoustic and vibration can be used for the
fault detection in the bearing, duo follow differently interns of their statistical
distributions. The feature of the bearing is acquired using acoustic and vibration
sensors and analyzed using non-linear and non-stationary signal processing tech-
niques. The statistical distribution of the data plays a major role in truly extracting
the components using signal processing techniques. All the algorithms are data
driven, as per the conditional events of the system, these algorithms efficiency
increases or decreases. Here, the vibro-acoustic feature of the normally distributed
acoustic and vibration signature are extracted effectively using CEEMDAN with
least computational time and efficient signal extraction.

1 Introduction

Bearings are the vital element in almost all industries and daily life. It has wide
application and the preventive measures need to be taken care to avoid any kind of
disaster. Bearing fault generally occur due improper uses i.e., harsh environmental
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condition and improper uses [1]. The condition of failure in bearing depends on
various parameters such as bearing types, applications, environmental conditions,
or any manufacturing defects [2, 3].

The condition in the bearing can be evaluated and analyzed using various sensing
and signal processing techniques. As far as the fault frequencies identifications are
ascertain, the feature can be acquired different types of sensors i.e., vibrations,
acoustic/sound pressure monitoring, acoustic emission (AE) monitoring, ultrasonic
emission, temperature monitoring, chemical analysis, laser monitoring, current
monitoring and perception based monitoring etc. [4–6]. Each techniques having their
significant contribution in detecting fault. AE are mostly used for qualitative analysis
as compared to the quantitative analysis by ultrasonic emission, but both can be used
for early fault detection. These sensing methods are costly as compared to micro-
phone and accelerometer. Microphone with higher sensitivity can be used to detect
the fault in the bearing, but it is prone to high external noise [8]. Accelerometer
sensor can be used for fault analysis, but early fault cannot be detected using this
technique. To infer the features of the bearing, combination of different sensing
technologies can be used as an asset to discover the problem persists in the bearings.

The signal processing can be done through different techniques i.e., Fast Fourier
Transform (FFT), Short Time Fourier Transform (STFT), Wavelet Transform [7]
and Hilbert Huang Transform (HHT) [8, 9], EMD, EEMD, CEEMDAN [10, 11]
and Variational Mode Decomposition (VMD) [12]. FFT has higher extraction
efficiency than that of all other algorithms, but, it suffers from the condition of
non-linearity and non-stationary. The global to local decomposition method
adopted by STFT can be used to analyze the non-stationary signal, but it suffers
from the non-linearity condition and lacks in multi resolution analysis. The window
and the signal behavior must match statistically to extract the actual information
present in the signal, which is least considered in signal analysis. Wavelet transform
is better option than FFT, but the improper selection of the basis function can affect
the analysis. Even though, it can be used for multi resolution signal analysis i.e.,
only for frequency modulated signals not for amplitude modulated. To better
analyze amplitude and frequency modulated signals, EMD can be used as it behave
like a dyadic filter. In literature, EMD has been used by many researchers, but EMD
abide by noise and sampling rate issues. EMD is a dyadic filter, the reaction to noise
and sampling inhibit its application in industrial noisy environment. The vibration
signal obtained from the experimental setup is complex and are of multi tone
signals. EMD fails to decompose close multi tone signals and it can be better
performed using VMD [12]. VMD cannot be used for time frequency analysis and
the selection of constraint bandwidth and the resulting modes cannot be decided
adaptively. Here the analysis is carried out using EMD, EEMD CEEMDAN [10]
techniques and their significance in fault detection of bearing to certain extent. The
goal of this paper is to use non linear and non stationary signal processing technique
in fault detection of bearing. EEMD uses the Gaussian noise to avoid the mode
mixing problem occurred in case of EMD. The solution leads to the significant
residual noise and the decomposition level increases. CEEMDAN follows the same
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trend of adding noise, but it has better spectral separation and the decomposition
time also reduces. The mode mixing in the signal is too complex and can be carried
out with statistical signal processing or wavelet packet transform followed by
CEEMDAN to extract the feature of the faults [13, 14]. The performance of these
signal processing techniques are tested to on vibro-acoustic signals to identify the
fault in the bearing.

2 Mathematical Interpretation of Frequency

In general, the frequency of vibration of the ball bearing is estimated from the
mathematical formulation and the same is compared with experimental signals to
identify the nature of the fault. The defects frequencies calculated mathematically
for outer race, inner race, ball spin and fundamental train frequencies are defined in
(1–4).
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Where for is outer race defect frequency, fir is the inner race defect frequency,
fbs is the ball spin frequency, fftf is the train frequency, fs is the spin frequency of
shaft, Nb is the number of balls in the bearing, Bd is the ball diameter, Pd is the pitch
diameter and u is the contact angle.

3 Empirical Mode Decomposition

The acoustic and vibration signal obtained from the experimental setup is complex
and are of multi tone signals. EMD is used to decompose the signal into number of
Intrinsic Mode Function (IMF’s). The decomposition method extract from higher to
lower frequencies till the residual monotonic signal is achieved. The decomposition
of the real time data x(t) is as follows,
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1. Sample the time domain signal xðtÞ; depending on the sample rate of acquisition
device (DAQ card) and the required sample for the type of applications.

2. Identify all maxima and minima for the sampled data points xðnÞ.
3. Generate upper and lower envelope i.e., emin(n) and emax(n) using Cubic Spline

interpolation.
4. Calculate the mean m (n) for upper and lower envelope.
5. m(n) = (emin (n) + emax (n))/2.
6. Extract the mean from the time series and define the difference of x(n) and m(n)

as d(n).
7. h(n) = x(n)−m(n);
8. Check the properties of h(n). If SD > 0.3, repeat steps 1–7 until the residual

satisfies some stopping criterion. Standard deviation (SD) is calculated as;

SD ¼
X ðprev(h)� hÞ2

prevðhÞ2

9. In the end the signal x(n) can be represented as in (5).

X(n) ¼
Xn
i¼1

ciðnÞþ rnðnÞ ð5Þ

Once the IMF’s are obtained, FFT is applied to the IMF’s to get the spectral
components of the original decomposed signals as in (6).

X(k) ¼
XN�1

n¼0

IMFðnÞe�j2pkn=N ð6Þ

Where N is number of discrete sample points, and is 10,000 for this experiment.

4 Experimental Setup and Methodology

The experimentations are performed to identify the acoustic and vibration feature in
global and local domain using different signal processing techniques. The
accelerometer sensors are mounted onto the surface of the ball bearing using stud
mounting and the data are acquired from the sensors using NI USB 4432. Vibration
and acoustic signals are acquired at a sampling rate of 5120 samples/sec using two
different types of sensors i.e., ±50 g, ±1 g accelerometer and GRAS array
microphone as shown in Fig. 1. In case of acoustic signal, acquisition preamplifier
is used to amplify the signal from the microphone to enhance the strength of the
signal. For, practicalities of the paper only ±50 g and GRAS array microphones are
used to analyze the extracted features.
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For fault identification, SKF-6205, deep groove ball bearing (DGBB) is used for
analysis. Before the diagnosis of the fault, the bearing is subjected to load for a
period of 25 h in a Spectra Quest bearing prognostic simulator. The developed fault
is further analyzed using the fabricated experimental setup as shown in Fig. 1. The
bearing configuration and the fault frequencies are listed in Tables 1 and 2.

5 Results and Analysis

The vibro-acoustic features can be used simultaneously to detect diagnosis of fault.
The behavioral patterns for the four different algorithms are investigated in the
detection of the fault as well as the exact IMF (intrinsic mode functions) identifi-
cation that exactly emulated the faulty state of the bearing. The mode mixing
problem in EMD is investigated further using EEMD and CEEMDAN.

5.1 Fast Fourier Transform

FFT is the hidden basic building block of all the signal processing and decoding
algorithms, even though the extraction method changes with bit variation in the

Fig. 1 Experimental setup of ball bearing simulator with array microphone, accelerometers,
proximity sensor. *Acc. (Accelerometer), Mic. (Microphone), PS (Proximity Sensor), SC (Signal
Conditioner)

Table 1 Ball bearing configuration

Bearing type Pitch dia (in) Rolling element dia (in) Number of rolling element

6205(DGBB) 1.537 0.3125 9

Table 2 Ball bearing frequencies

Shaft speed (RPM) fir (Hz) for (Hz) fbs (Hz) fftf (Hz)

3000 (50 Hz) 270.747 179.253 117.877 19.917
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basis functions. The result for the acoustic and vibration response of the faulty
bearing is as shown in Figs. 2 and 3.

It can be observed that the rotation of the shaft of 50 Hz as in Table 2. is traced
with its corresponding harmonics as in Fig. 3. The fault frequency is also identified
as 270 Hz, which closely matches with the inner race fault of the bearing. It can be
drawn that the maximum failure in the bearing due to loading is caused due to the
inner race. The detection of inner race fault is significant as compared to the outer
race under radial load. The limitation of FFT in analyzing non-linear and
non-stationary signals calls for new algorithms.
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Fig. 2 Time response of acoustic (top) and vibration (bottom) data samples
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Fig. 3 Frequency response of acoustic (top) and vibration (bottom) data samples
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These algorithms generally deal with noises that are Gaussian. The statistical
distributions of the time domain signals for acoustic and vibration signatures are as
in Figs. 4 and 5. The ranking of the distributions are based on Chi-squared test. The
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Fig. 4 Probability density functions for acoustic signal

Probability Density Function

Histogram Beta Johnson SB Error
Error Function Normal Burr (4P) Fatigue Life (3P)
Inv. Gaussian (3P) Lognormal (3P)

x
210-1-2

f (
x)

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Fig. 5 Probability density
function for the vibration
signal

Vibro-Acoustic Fault Analysis of Bearing … 287



purpose is to check the exact distribution of acoustic and vibration and their
probability density function.

It is observed from Fig. 4 that the acoustic data follows normal distribution (rank
3) and the fitness function of this distribution is higher compared all other distri-
butions. This is true for our experimental data; it is not always true that the data
matches to the normal distribution. If the data matches to the perfect normal
distribution then Principal component analysis can be used for blind source sepa-
ration as mode mixing are concerned. If the signal distribution are non-Gaussian
then ICA (Independent component analysis) can be used just after is processed by
the any of the non-linear and non-stationary algorithms considered in [15].

Figure 5 shows that the Beta and Johnson SB distributions are best suited as
compared to the normal distribution (rank 5). The distribution has tremendous
impact on the analysis process and the techniques used.

5.2 Empirical Mode Decomposition

To extract the non-linear and non stationary feature of the bearing, further signals
are decomposed into their IMF’s (intrinsic mode functions). The extracted results
for the acoustic and vibrations are as shown in Fig. 6. It is observed from Fig. 6a
that the IMF 3, 4 have the same significant peak at 270 Hz. Even though the
algorithm could able to trace the fault signature and matches to Fig. 3, the selection
of IMF is now difficult as the same frequency reflects at multiple decomposition
levels. It can be observed from Fig. 6b that for vibration signal analysis the mode
mix-up happens at the fifth order harmonics i.e., 249.4 Hz of the rpm rather at fault
frequencies. It means the signal of acoustic and vibration even though looks for the
same source i.e., bearing; they have different statistical distributions as observed in
Figs. 4 and 5.

5.3 EEMD

The analysis is further verified using EEMD technique. It is observed from Fig. 7a
that, the intensity of vibration falls to lower level as compared to the EMD, but the
detection of rpm of the mill is stable for both acoustic and vibration signals i.e.,
50.18 Hz. Figure 7a, b are in more congruence as compared to Fig. 6a, b.

The rpm detection is erroneous in case of EMD for acoustic signal. The EEMD
algorithm is best suited to extract all the information independent of the data types
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i.e., acoustic or vibration as compared to EMD. As the problem of mode mixing is
concerned EEMD also has the same problem as that of EMD.

5.4 CEEMDAN

The detection and analysis is further validated using CEEMDAN. It can be
observed from the acoustic patterns in Fig. 8a, that the acoustic pattern is well verse
with the Fig. 7a. The same analysis for vibration results shows that the Figs. 7b and
8b are in congruence. There is no significant difference between EEMD and
CEEMDAN. The computational extraction level increases as the decomposition
level increases as in Table 3. The computational complexity of CEEMDAN is

Fig. 6 Time (left) and frequency (right) response of a acoustic and b vibration signals using EMD
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lower than that of EEMD with effective signal extraction for both acoustic and
vibration signals.

All the algorithms are very effective in extracting the inner race fault of the
bearing effectively, if the mathematical Eqs. (1–4) are known. All these algorithms
having short fall in avoiding mode mixing problem occurred in the bearing fault
analysis. These techniques are adaptively decomposes into number of levels as
compared to the VMD algorithms, but the mode mixing problem can be avoided
using VMD, but VMD is not applicable for non stationary signal analysis. To avoid
mode mixing, the data need to be statistically distributed using statistical tool and
further the data need to adaptively un-correlate the correlated IMF components
using ICA (independent component analysis) [15].

Fig. 7 Time (left) and frequency (right) response of a acoustic and b vibration signals using
EEMD
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6 Conclusions

CEEMDAN perform better than all other algorithms in terms of signal detection
and computational time, but lags to avoid the mode mixing problem. These algo-
rithms can be used to detect amplitude and frequency modulated fault signals
adaptively. All the algorithms except FFT can be used for nonlinear and non
stationary signal analysis with effective identification of the inner race fault in the
bearing. These algorithms are prone to mode mixing problems, even though they

Fig. 8 Time (left) and frequency (right) response of a acoustic and b vibration signal using
CEEMDAN

Table 3 Decomposition levels by algorithms

Algorithms Number of modes produced
for acoustic signal

Number of modes produced
for vibration signals

EMD 13 13

EEMD 15 15

CEEMDAN 14 14
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effectively extract the information content. These algorithms computational cost
increases as the standard deviation is chosen to a lower value and the sample length
selection is higher. In future, the extraction of the feature using these algorithms
followed by statistical distribution analysis and Independent component analysis
can be used to eliminate the mode mixing problems.
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