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Abstract This paper deals with the restoration of images corrupted by a
non-invertible or ill-conditioned linear transform and Poisson noise. The paper is
experimental and can be seen as a continuation of “as reported by Harizanov et al.
(Epigraphical Projection for Solving Least Squares Anscombe Transformed
Constrained Optimization Problems 2013)”. The constraint set in the minimization
problem, considered there, was too large and the results tend to oversmooth the initial
image. Here, we consider various techniques for restricting this set in order to improve
the image quality of the result, and numerically investigate them. They are based on
image domain decomposition and give rise tomulti-constraint optimization problems.

1 Introduction

Industrial computed tomography (CT) scanning uses irradiation (usually with
x-rays) to produce three-dimensional representations of the scanned object both
externally and internally. The latter is derived from a large series of two-dimensional
radiographic images taken around a single axis of rotation. To create each of the
planar images, a heterogeneous beam of X-rays is produced and projected toward the
object. A certain amount of X-ray is absorbed by the object, while the rest is captured
behind by a detector (either photographic film or a digital detector). The local
magnitudes of the detected X-ray amount determine the corresponding gray-scale
pixel values of the radiographic image. In such processes, where images are obtained
by counting particles, Poisson noise occurs. Being interested in improving the
quality of the 3D CT reconstruction, we are motivated to investigate 2D Poisson
denoising techniques, and to apply them to each radiographic image.
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In mathematical terms, one wants to solve the ill-posed inverse problem of
recovering the original 2D image �u 2 ½0; m�M�N from observations

f ¼ PðH�uÞ;

where ν is the gray-scale intensity, P denotes an independent Poisson noise cor-
ruption process, and H 2 ½0; þ1Þn�n is a blur operator, corresponding to a con-
volution with a Gaussian kernel. Here n = MN, because it is beneficiary to
column-wise reshape the image into a long 1D vector. Note that blurring appears
naturally in practice (e.g., when the industrial CT scan is not well calibrated) and
needs to be incorporated in the problem.

Poisson denoising is a hot and active research field, so it is impossible to list all
the related publications. We mention only few of them [1–10] in chronological
order, as illustration. All the approaches are based on minimizing a regularization
term WðuÞ, where a data fidelity term Fðu; f Þ is either incorporated in the cost
function as penalization

argmin
u

WðuÞþ kFðu; f Þ; k� 0; ð1Þ

or considered as constraint

argmin
u

WðuÞ subject to Fðu; f Þ� s; s� 0: ð2Þ

The problems (1) and (2) are closely related and, under some mild assumptions
on Ψ and F, there is a one-to-one correspondence k $ s, such that their solutions
coincide (see [11]). In general, (1) is easier to solve, but the optimal parameter λ
cannot be well approximated, while (2) is both mathematically and computationally
more complex, but the optimal parameter s is statistically estimated.

There are two main-stream directions for the choice of the data fidelity F. In the
first one, the mean/variance dependence of the Poisson distribution can be reduced
by using variance-stabilizing transformations (VST), such as the Anscombe trans-
form [12]

T : ½0; þ1Þn ! ð0; þ1Þn : v ¼ ðviÞ1� i� n 7! 2

ffiffiffiffiffiffiffiffiffiffiffiffi
vi þ 3

8

r !
1� i� n

:

It transforms Poisson noise to approximately Gaussian noise with zero-mean and
unit variance (if the variance of the Poisson noise is large enough), for which
Least Squares estimates are maximum-likelihood ones. The second approach is
closely related to a direct Maximum A Posteriori (MAP) estimate, where the
neg-log-likelihood of the Poisson noise, i.e., the I-divergence (generalized
Kullback-Leibler divergence)
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u 7!Dðf ;HuÞ :¼ h1n; f log f
Hu � f þHui if Hu[ 0;

þ1 otherwise,

�

is used. Here h�; �i denotes the standard Euclidean inner product and 1n denotes the
vector consisting of n entries equal to 1.

This paper is a continuation of our previous work [8], thus we deal with the Total
Variation (TV) [13] constraint optimization problems

argmin
u2½0;þ1Þn

jjrujj2;1 subject to jjTðHuÞ � Tðf Þjj22 � sA; ð3Þ

argmin
u2½0;þ1Þn

jjrujj2;1 subject to Dðf ;HuÞ� sI ; ð4Þ

where r 2 R
2n�n is the discrete gradient operator (forward differences and

Neumann boundary conditions are used), and jj � jj2;1 denotes the ‘2;1 norm.
To both problems, we apply the primal- dual hybrid gradient algorithm [14, 15]

with an extrapolation (modification) of the dual variable (PDHGMp). At each
iteration step, we compute n epigraphical projections [16] w.r.t. a 1D convex
function related to T [8], respectively solve an I-divergence constrained least
squares problem [6, 9]. The algorithms’ description can be found in [8, Sect. 4]. We
keep the notation Algorithms 1–2 from it.

The paper is organized as follows: In Sect. 2, we experiment with different
choices of sA; sI and measure their effect on the output image quality. In Sect. 3, we
propose various domain decompositions in order to improve that quality. Those
decompositions give rise to multi-constraint optimization problems, for which
Algorithms 1–2 are still applicable. Numerical experiments are conducted and the
results are discussed. Conclusions are drawn in Sect. 4.

2 Single-Constraint Optimization with Optimal τ

In this paper, we test the same initial images �u ‘cameraman’ (256� 256), its central
part (130� 130), and ‘brain’ (184� 140) as in [8] (Fig. 1), and we work with the
same polluted images f. This allows us to compare numerical results. Again, we
denote them by B1ν, B1partν, and B2ν, where ν stands for the gray-scale intensity.
We recall that the peak signal to noise ratio (PSNR) and the mean absolute error
(MAE) are computed via

PSNR ¼ 10 log10
jmax �u�min �uj2

1
n jju� �ujj22

; MAE ¼ 1
nm

jj�u� ujj1:

Deblurring Poissonian Images via Multi-constraint Optimization 203



The statistically motivated choice for the constraint parameter sA ¼ n in (3),
resp. sI ¼ n=2 in (4), places the true image �u with high probability very close to the
boundary of the constraint sets (see [8, Table 1] for experimental verification).

CA ¼ fu : jjTðHuÞ � Tðf Þjj22 � sAg; CI ¼ fu : Dðf ;HuÞ� sIg; ð5Þ

thus guaranteeing those sets are non-empty and minimizers uA, resp. uI , exist.
Moreover, since the TV functional is a semi-norm and every semi-norm is
positively-homogeneous, uA 2 @CA, resp. uI 2 @CI , are unique, unless the con-
straint sets (5) contain constant images (the global minimizers of the TV func-
tional), i.e., whenever

min
c2R

jjTðf Þ � cjj22 [ sA; resp: min
c� 0

Dðf ; cÞ[ sI :

We used that H reproduces constants (H1n ¼ 1n), which is true for convolution-
based blur operators. Since EðfiÞ ¼ ðH�uÞi and T 0ð�uiÞ� T 0ðmÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 3=8

p
8i ¼ 1; . . .; n,

min
c2R

jjTðf Þ � cjj22 �
1

mþ 3=8
min
c2R

jjH�u� cjj22:

Fig. 1 Original images ‘cameraman’ (left) and phantom of a brain image (right)
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Therefore, problems (3) and (4) admit unique solution if

min
c2R

jjH�u� cjj22 [ msA; min
c� 0

DðH�u; cÞ[ sI ; m � 0: ð6Þ

In particular, when sA ¼ n, sI ¼ n=2, (6) holds true for all nontrivial (e.g.,
edge-containing, not close-to-constant) initial images �u and moderate blur operators
H (such that H�u remains nontrivial). To conclude, for sA ¼ n, sI ¼ n=2, and under
some natural assumptions on �u, H, and m, problems (3) and (4) are well-posed, with
�u placed around the boundary of their constraint sets (5), thus being an admissible
candidate for the unique solution.

Being an admissible candidate is not enough for �u to be “close” to the actual
solution! If the constraint set is too large, then the two images might still differ a lot.
As Fig. 2 illustrates, this is indeed the case for our problem (3). The minimizer is
significantly “oversmoothened”. Hence, in order to let uA better approximate �u, we
need to restrict CA.

The easiest way to do so is to simply decrease sA. We tried it on B1part3000 and
the results can be viewed on Fig. 3. Since the minimizer of (3) tends to “stretch out”
when sA decreases, we worked with box constraints u 2 ½0; 3000�n in CA. Due to the
k $ s relations between (1) and (2), sAðkAÞ is monotonically decreasing, thus
invertible. We numerically solved the penalized version of (3) for various kA,
which, as discussed in the introduction, is computationally much more efficient, and
cheaply derived the solution uA of (3) for the corresponding sA. We observe that the
optimal values for sA w.r.t. both PSNR and MAE are smaller than n, which con-
firms the above conclusion that CA is too large. Maximal PSNR is obtained for
sA ¼ 0:791n, while minimal MAE is obtained for sA ¼ 0:894n. On the other hand,
kA ¼ 104 gives rise to sA ¼ 0:5742n, while kA ¼ 105 gives rise to sA ¼ 0:5452n,
thus we expect CA to be empty for sA ¼ 0:5.

100 600 1200 2000 3000

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

intensity

T
V

 R
at

io

cameraman
brain

Fig. 2 The ratio
TVð�uÞ=TVðuAÞ as a function
of m for the both test images
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From the plots of PSNR ðuAÞ and 3000MAE ðuAÞ (m ¼ 3000) we see that
the former is much more stable to the change of sA than the latter, e.g.,
when sA 2 ½0:72; 1�, PSNR ðuAÞ 2 ½25:5932; 26:5614�, while m MAE ðuAÞ 2
½61:3239; 90:2654�. Moreover, the optimal minimizer w.r.t. PSNR possesses quite
large MAE (namely ≈67) and artifacts in the smooth regions of �u, while the optimal
minimizer w.r.t. MAE has quite satisfactory PSNR (namely 26.16) and good visual
properties (see Table 1). This is due to the different norms involved in the two
functions, namely the 2-norm and the 1-norm. The initial image �u was firstly
blurred by a Gaussian kernel with r ¼ 1:3, thus smoothed around its edges (the TV
semi-norm of the blurred image is 1.3146e+06 which is more than 2 times smaller
than the TV semi-norm 2.9390e+06 of B1part3000). In particular, the most prob-
lematic image part is the camera where we have very “thin” details. Since, we are
also looking for the smoothest solution in CA, the minimizers of (3) fail to recover
the jump discontinuities of �u in these regions and jjuA � �ujj1 is quite large there.
The smaller the sA the larger the TV semi-norm of the minimizer and the better the
capturing of the singularities. In the same time, the Poisson noise in the smooth
regions becomes more and more problematic, since we further deviate from the
statistically optimal value sA ¼ n for its complete removal. PSNR is based on
1
n jj�u� uAjj22 and the impact of jjuA � �ujj1 along the camera edges is very strong.
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Fig. 3 Left k as a function of sA and uA for sA ¼ n. Center PSNR ðuAÞ as a function of sA and its
minimizer uA (sA ¼ s1n). Right mMAE ðuAÞ as a function of sA and its minimizer uA (sA ¼ s2n)

Table 1 Comparison among
the optimal sA’s from Fig. 2

sA ¼ 0:791n sA ¼ 0:894n sA ¼ n

PSNR 26.5614 26.1581 25.5934

νMAE 67.0804 61.3239 63.6238
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Hence the denoising failure in the smooth regions is undermined as long as the size
of the artifacts there is not comparable to the one of the jump discontinuities at the
edges. On the other hand, 3000MAEðuAÞ ¼ 1

n jj�u� uAjj1, which is a “sparser” norm
and it is small when many entries of uA � �u are close to zero. Hence, it captures
better the presence of denoising artifacts.

In conclusion, for the constraint optimization problem (3) it seems that, in order
to obtain good visual results, it is better to minimize the MAE of uA than to
maximize its PSNR.

3 Multi-constraint Optimization

Even though decreasing sA may improve the image qualities of the solution of (3), it
doesn’t seem like a good strategy. We deviate from its statistical estimation, thus we
need to guess the right value of sA, which is computationally expensive. Moreover,
we lose the nice properties of �u being close to the boundary of CA, thus the
guaranteed well-posedness of (3) as well as the admissibility of �u to be the mini-
mizer. In this section we follow a different approach for restricting CA that is based
on image domain decomposition and the use of independent constraints for the
regions. In such a setup, Eq. (3) is reformulated into

argmin
u2½0;þ1Þn

jjujj2;1 subject to jjTðHuÞ � Tðf ÞjjAi
� si; i ¼ 1; . . .;K: ð7Þ

where fAigKi¼1 is a tessellation of the image domain (intðAiÞ \ intðAjÞ ¼ ;), and
jj � jjAi

is a short notation for the squared 2-norm, restricted to the region Ai.
Analogously, the multi-constraint version of (4) is

argmin
u2½0;þ1Þn

jjrujj2;1 subject to DAiðf ;HuÞ�
1
2
si; i ¼ 1; . . .;K: ð8Þ

Both Algorithms 1–2 can be straightforwardly modified to such multi-constraint
setting, since no correlation among pixel data appear in jj � jj22 and Dð�; �Þ, allowing
for direct and complete component-wise splitting. Moreover, following the notation

in [9], kðkþ 1Þ
i is the solution of DAiðf ; gðpðkÞ1 þHuðkþ 1Þ; k=rÞÞ ¼ si=2 and for ki :

¼ limk!1kðkÞi we have that the the minimizer of (8) also minimizes

argmin
u2½0;þ1Þn

jjrujj2;1 þ
XK
i¼1

kiDAiðf ;HuÞ:
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3.1 Block Subdivision

The first thing we try is a simple block subdivision of the spatial domain as
illustrated on Fig. 4. More precisely, given a level l, we split the image into 4l

blocks AðlÞ
i;j , i; j ¼ 0; . . .; 2l � 1 of “equal” size (if the number of pixels in height or

width is not divisible by 2l, we of course need to round off and the blocks cannot be

absolutely identical) and take sðlÞi;j ¼ cardðAðlÞ
i;j Þ 	 n=4l. Due to triangle inequality, it

is straightforward that the corresponding constraint set CðlÞ
A in (7) is a proper subset

of CA. Moreover, if we denote Cð0Þ
A :¼ CA, we have CðlÞ

A 
 Cðl�1Þ
A ; 8l 2 N.

The results are summarized in Table 2. We observe that, as expected, increasing
the level l we restrict the global constraint sets and increase the TV semi-norm of
the solutions of (7) and (8). Up to a certain moment (in the particular case for
B1part3000 this is l = 3) both PSNR and MAE values of the outputs improve. Then
the MAE value has a significant jump and the visual quality of the output image
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Fig. 4 Domain partition for block subdivision of levels 1 (solid lines) and 2 (dotted lines)

Table 2 Results of
Algorithms 1–2 on B1part3000
for different l. When l > 0 we
initialize with the output for
l − 1, and set ðr;qÞ ¼
ð0:4; 0:3Þ in Algorithm 1

Level #iter TV semi-norm PSNR MAE�m
0 20000 1.7070e+6 25.5934 63.6238

1.7073e+6 25.5949 63.6054

1 20000 1.7194e+6 25.6957 62.8892

1.7197e+6 25.6975 62.8620

2 20000 1.7418e+6 25.8372 62.4555

1.7423e+6 25.8385 62.4421

3 50000 1.7930e+6 25.9966 62.1405

20000 1.7934e+6 25.9975 62.1315

4 50000 1.9490e+6 26.0686 64.6669

20000 1.9649e+6 26.0298 65.1237
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drops down (see Fig. 5). The reason is that, we are still using the statistically

estimated bounds sðlÞi;j for each of the blocks. However, when l is large the size of the

blocks AðlÞ
i;j is small, the law of large numbers that backs up the theoretical argu-

ments in [12, 17] fails, and we cannot guarantee that the value of sðlÞi;j is adequate or
even that the constraint problem (7) is block-wise well-posed.

Indeed, already at the third subdivision level we have trivial regions (constant
images are admissible for some of the blocks). The uniqueness of the globalminimizer
is not affected, because those trivial blocks interfere with the others and, since we
minimize the overall TV semi-norm, the constant intensity value on them is uniquely
determined by its nontrivial neighbors. On the other hand, existence of the global
minimizer becomes problematic at the fourth subdivision level. We have smaller
blocks (their size is 	 8� 8) and on some of them the original image B1part3000 is

close-to-constant.When such a regionAð4Þ
i;j is of small intensity (i.e., close to black) the

Poisson noise is insignificant there and the oscillations of the neighboring pixel values
in f jAð4Þ

i;j
are negligible. On top of that, the Anscombe transform is not reliable in the

sense that Tðf j
Að4Þ
i;j
Þ is not guaranteed to be normally distributed, so the choice sð4Þi;j ¼

cardðAð4Þ
i;j Þ has no theoretical justification. To summarize,

jjTðH�uÞ � Tðf ÞjjAð4Þ
i;j
� 0 ¼ cardðAð4Þ

i;j Þ ¼ sð4Þi;j ;

and �ujAð4Þ
i;j

is well inside the interior of CAð4Þ
i;j
. In the single-constraint case we have

already verified that �u is with high probability close to @CA, thus the above relation

implies for another region Að4Þ
i;j , jjTðH�uÞ � Tðf ÞjjAð4Þ

i;j
� sð4Þi;j , so CAð4Þ

i;j
could be empty.

Fig. 5 Block subdivision. From left to right: Algorithm 1 outputs for l ¼ 3 and l ¼ 4

Deblurring Poissonian Images via Multi-constraint Optimization 209



Hence, Algorithm 1 may not converge on AðlÞ
i;j . The following example of one such

empty-constraint block at level 5 illustrates the problem

�ujAð5Þ
4;19

¼

2250:0 2262:3 2262:3 2176:2

2274:6 2262:3 2299:2 2286:9

2262:3 2311:5 2311:5 2299:2

2299:2 2323:8 2299:2 2348:4

0
BBB@

1
CCCA

f j
Að5Þ
4;19

¼

2348 2243 2360 2183

2244 2295 2205 2234

2190 2364 2213 2393

2313 2269 2326 2264

0
BBB@

1
CCCA:

�uj
Að5Þ
4;19

is almost constant and of high intensity, while the Poisson noise contributes

significantly and visibly alters the entries of f.
As a result, the output image of Algorithm 1 for l = 4 possesses certain artifacts

in some high, close-to-constant intense regions. As discussed in Sect. 2, those
artifacts are captured by the MAE value of the output, which immediately jumps up,
but not by its PSNR value, which still improves (see Table 2).

The block subdivision might be different. For example, it may be data-dependent
and based on the output image at zeroth level uð0Þ. We tested a 2-block subdivision,
where A0 is a 130� 75 block that deviates most from the statistical expectation
(i.e., it maximizes the quantity jjTðHuð0Þ � Tðf ÞjjA � 130 � 75�� ��), and A1 is its
complement, as well as a 4-block subdivision, where A0 is a 75� 75 block that
maximizes the analogous expression, A1 and A2 are the “horizontal” and “vertical”
complements of A0, and A3 is the complement of their union A0 [A1 [A2. For
different original images and intensity levels the benefit of such data-dependency is
different, but the quality of the output is comparable to that of the “standard” block
subdivision presented above, possibly on a higher level. The close similarity
between the solutions of (3) and (4), numerically observed in [8], holds true also for
their multi-constraint versions (7) and (8). Only for l ¼ 4 the outputs of Algorithms
1–2 differ visibly, but this is due to the ill-posedness of the optimization problems
and the slow (or even lack of) convergence of the algorithms. This phenomenon
appears for all test images and all constraint choices, we considered, therefore from
now on we deal only with (7) and Algorithm 1.

3.2 Intensity Tessellation

The statistical choice sA ¼ n in (3) is based not only on the law of large numbers,
but also on the Central Limit Theorem. Therefore, it theoretically holds for inde-
pendent and identically distributed Poisson random variables, which in our setting
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is equivalent to a trivial blurry image H�u ¼ const. This is by far not true for the
examples we consider, and even though in [8] jjTðH�uÞ � Tðf Þjj22=n 	 1 is
numerically verified, the solution uA of (3) is oversmoothened due to a “redistri-
bution” of the noise among the pixels. Indeed, as illustrated on Fig. 6, around the
edges (jump discontinuities) of the original image, where most of the TV
semi-norm of �u is concentrated, the big positive displacements H�ui;j � fi;j � 0 of
the high-intensity pixels ði; jÞ related to the Poisson distribution are wrongly
accumulated in the minimizer by the neighboring low-intensity pixels ði0; j0Þ,
making Hui;j 	 fi;j and Hui0;j0 	 fi0;j0 þ ðH�ui;j � fi;jÞ, while still u 2 CðlÞ

A . In other
words, if a high-intensity edge pixel value of �u is decreased by the noise, it is not

properly denoised in uðlÞA but rather its neighboring low-intensity edge pixel
increases its intensity with a reciprocal amount. Thus f is no longer a realization of

independent Poisson random variables over HuðlÞA , meaning that uðlÞA does not

approximate well �u along the edges. On the other hand, away from the edges uðlÞA is
a quite good approximation of �u. We back this up with a simple experiment.

We replace all pixel intensities of uð3ÞA from Table 2, that are more than d away from
the corresponding values of the original image �u with the true intensities and
recompute the PSNR and the MAE values of such a “hybrid” image. The difference

image uð3ÞA � �u is the right one from Fig. 6. For d ¼ m=6 ¼ 500, only 397 pixels
(≈2.35 % of all the pixels) are modified, while PSNR and νMAE improve to
30.1569 and 45.1862, respectively. For d ¼ m=15 ¼ 200, we modify 1334 (≈7.9 %)
pixels and derive PSNR = 36.5034 and νMAE = 27.1241. Finally, d ¼ m=30 ¼ 100
gives rise to 2211 (≈13 %) modified pixels with PSNR ¼ 40:1747 and
νMAE = 19.7688. Finally if we take the opposite hybrid image for d = 500 (i.e., we
use the �u data for all the pixels but those 397 mentioned above), we use ≈97.65 %
of the original pixels intensities, but PSNR = 28.0989 (worse than the counterpart
test!) while νMAE = 16.9543 keeps improving.
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Fig. 6 Noise redistribution in block subdivision. The difference images between the output of

Algorithm 1 at level 0 uð0ÞA (left), respectively at level 3 uð3ÞA (right) and the original image
B1part3000
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Therefore, separating the image domain in regions Ai of similar intensity values
sounds reasonable. This is what we do in this subsection. We again use subdivision,

namely at level l we generate 2l regions fAðlÞ
i g that decompose the intensity interval

of �u into intervals of equal length. In particular, for the B1part3000 image

AðlÞ
i :¼ fjj�uj 2 ði2�l3000; ðiþ 1Þ2�l3000Þg; 8i ¼ 0; . . .; 2l � 1: ð9Þ

In practice, the original image is not known a priori, so we use the output uð0ÞA of
the single-constraint Algorithm 1 in (9). The results are summarized in Table 3.
Some comments are in order. Due to the subdivision technique, we again have the

constraint set inclusion CðlÞ
A 
 Cðl�1Þ

A ; 8l 2 N. Thus, jjruðlÞA jj2;1 is monotonically

increasing with respect to l. We observe that PSNR ðuðlÞA Þ is also monotonically

increasing with l� 1, while MAE ðuðlÞA Þ is not monotone at l = 5. In Sect. 3.1 we
tessellated the image domain into 4l regions, while here we used only 2l. Therefore,
it is reasonable to compare the quality of the l-level output images from Table 2
with the quality of the 2l-level output images from Table 3. We see that, apart from
the PSNR value for the image at level 3 in Table 2, respectively 6 in Table 3, both
the PSNR and MAE values improve with intensity tessellation. Especially the MAE
value which goes below its optimal value 61.3239 for the single-constraint opti-
mization problem (3) (see Fig. 3). As before, there are indications that high l (l = 7

and l = 8) may lead to empty constraint sets CðlÞ
A , thus the problem may be ill-posed

and the algorithm may not converge. However, no visual artifacts appear (see

Fig. 7) and MAE ðuðlÞA Þ continues to decrease.
The algorithm depends on the initial choice of image u in (9), and different u give

rise to different outputs. We have always used uð0ÞA in the experiments above, but we
have also tested some of the block-subdivision outputs for higher levels, as well as
some of the intensity-tessellation outputs for lower levels. The results are more or less

comparable, with uð0ÞA seeming to be the best option in general. Last but not least,
tuning the regularization parameters r and qwas the key for the efficient performance

Table 3 Results of
Algorithm 1 on B1part3000 for
different levels of intensity
tessellation. For all levels we
set ðr; qÞ ¼ ð0:4; 0:3Þ, and
sðlÞi ¼ cardðAðlÞ

i Þ

Level #iter TV semi-norm PSNR MAE�m
1 20000 1.7080e+6 25.5810 63.6927

2 20000 1.7228e+6 25.7251 62.7592

3 20000 1.7439e+6 25.8739 61.4654

4 50000 1.7535e+6 25.8895 61.2834

5 50000 1.7695e+6 25.9421 61.5316

6 50000 1.7775e+6 25.9923 61.1921

7 50000 1.8046e+6 26.0401 61.0400

8 50000 1.8491e+6 26.1230 60.7815
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of the single-constraint algorithm, while in both Sects. 3.1 and 3.2 the algorithms’
convergence rate seems to be slow and independent of that choice, thus we always
use r ¼ 0:4, q ¼ 0:3. The same parameters also work for the other images B1 and B2
on all the considered intensity levels m ¼ 100; 600; 1200; 2000; 3000.

The main drawback of the intensity tessellation algorithm is that we have no
control on the size of the tessellated regions. It may happen that even at low levels,
some of the regions consist of only few points (some of them might be even empty,
but this is not a problem). Thus, the law of large numbers may be violated and

sðlÞi ¼ cardðAðlÞ
i Þ may be a bad choice that leads to an ill-posed optimization

problem or to a minimizer that is quite different from the initial image. A possible
remedy is to adaptively split the intensity interval in order to guarantee

cardðAðlÞ
i Þ 	 n=2l, 8i ¼ 0; . . .; 2l � 1. This is left for future work.

3.3 2-Step Combined Tessellation

So far we saw that both block subdivision and intensity tessellation improve the image
quality of the output of Algorithm 1. On the other hand, the former technique violates
the Central Limit Theorem but allows for the application of the law of large numbers,
while the latter one violates the law of large numbers but allows for the application of

the Central Limit Theorem. Thus for both of them, the choice sðlÞi ¼ cardðAðlÞ
i Þ for

constraint parameters is not theoretically justified and may lead to diverging algo-
rithms or meaningless results. In this subsection, we try to combine the two approa-
ches in a beneficial way. We use 1-level block subdivision together with
3-region-intensity tessellation of the image domain. The idea is the following: the
block subdivision performs very well away from the edges, while along them it leads
to noise redistribution (Fig. 6). If we assume that the redistribution always involves 2
neighboring pixels, one of law intensity and one of high intensity, and it simply
exchanges their noisy values as discussed in Sect. 3.2, then we need to find all such
pixel pairs, separate them into 2 regions—one �A0 of low and one �A1 of high intensity,

Fig. 7 The output images uð4ÞA (left), uð7ÞA (center), uð8ÞA (right) from Table 2
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and introduce a second constrained jjTðHuÞ � Tðf Þjj�Ai
� cardð�AiÞ; i ¼ 0; 1; 2. (For

the sake of symmetry, we take �A2 to be the complement of �A0 [ �A1.)
The operator H “smoothens” the edges of �u, but as long as the blur is not very

strong (i.e., corresponds to a Gaussian kernel with close-to-one standard deviation)
the edges “survive” it. The Poisson noise more or less preserves what is left from
them. The block subdivision also smoothens the edges, but not as much as the blur

operator. Thus, both the difference images �u� f and uðlÞA � f contain enough edge
information (see Fig. 8). However, the smoothing effect of the blur operator
dominates and we cannot say from the second image where noise redistribution

appear. Hence, we prefer to work with the difference image @u :¼ uð1ÞA � uð0ÞA .
Indeed, the subdivision of the image domain into 4 regions alleviates the noise

redistribution effect from uð0ÞA and part of the edge information is again visualized
(the right image in Fig. 8). More importantly, all the pixels with significantly

different uð1ÞA and uð0ÞA values indeed belong to the edges of �u, making edge-detection
a plausible application of such multi-constraint optimization.

We compute M :¼ maxi@ui [ 0, m :¼ mini@ui\0, fix a number c[ 0, and set
�A0 :¼ fij@ui [M=cg, �A1 :¼ fij@ui\m=cg. Then we solve

argmin
u2½0;þ1Þn

jjrujj2;1 s:t:
jjTðHuÞ � Tðf Þjj

Að1Þ
i;j
� card Að1Þ

i;j

� �
; i; j ¼ 0; 1;

jjTðHuÞ � Tðf Þjj�Ak
� card �Akð Þ; k ¼ 0; 1; 2:

We apply a straightforward modification of Algorithm 1, which decouples the

two tessellations fAð1Þ
i;j g and f�Akg. Results are summarized in Table 4.

We observe that the higher the intensity (thus the sharper the edges) the bigger
the improvement in the quality of the result with respect to the corresponding

images uð1ÞA and uð0ÞA . For very low intensity ν the combined technique may even
worsen the MAE of the output (see B2100). The PSNR always improves.

Fig. 8 Edge detection via difference images. Left uð1ÞA � f . Center �u� f . Right uð1ÞA � uð0ÞA . The

images uðiÞA , i ¼ 0; 1 are taken from Table 2
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4 Conclusions

The constraint sets (5) for the optimization problems (3) and (4) are too large, thus
their minimizers tend to oversmooth the image. We experimented with various
restriction techniques on CA;CI .

Simply decreasing sA; sI does improve the image quality of the output at the
beginning, but we deviate from their statistical estimations and need to guess their
optimal values, which is computationally very expensive. Moreover, those optimal
values depend on the quality measures we consider, differ significantly from
minimizing MAE to maximizing PSNR, and does not necessary lead to an output
with good visual properties.

Another option, suggested in [8] as a future work direction, is to consider
multi-constraint optimization. We investigated such approach, within the frame-
work (7) and (8). We considered spatial, intensity, and mixed domain decompo-
sitions of the image, and summarized the numerical results in Tables 2, 3 and 4.

In all the setups, we observed that the image quality of the output improved up to
a certain level. After that, the optimization problems became ill-posed, the algo-
rithms’ convergence was unclear, and artifacts appeared. This effect was caught by
the MAE output values, but not by the PSNR ones, which still increased. Multiple
constraints slowed down Algorithm 1, and its convergence rate was poor, inde-
pendent on the choice of the accelerators r; q. Therefore, parallel implementation of
Algorithm 1 is practically important and is an object of ongoing work. While the
problems (7) and (8) were well-posed, the close similarity between their solutions
uA; uI , numerically observed in [8], hold true. Hence, their difference image uA � uI
can be used as a criterion for well-posedness.
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