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Systems
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Abstract The chapter is devoted to automatic annotation of natural images joining
the strengths of text-based and content-based image retrieval. The Automatic Image
Annotation (AIA) is based on the semantic concept models, which are built from large
number of patches receiving from a set of images. In this case, image retrieval is
implemented by keywords called as Visual Words (VWs) that is similar to text
document retrieval. The task involves two main stages: a low-level segmentation
based on color, texture, and fractal descriptors (a shape descriptor is less useful due to
great variety of visual objects and their projections in natural images) and a high-level
clustering of received descriptors into the separated clusters corresponding to the VWs
set. The enhanced region descriptor including color, texture (with the high order
moments—skewness and kurtosis), and fractal features (fractal dimension and lacu-
narity) has been proposed. For the VWs generation, the unsupervised clustering is a
suitable approach. The Enhanced Self-Organizing Incremental Neural Network
(ESOINN) was chosen due to its main benefits as a self-organizing structure and
on-line implementation. The preliminary image segmentation permitted to change a
sequential order of descriptors entering in the ESOINN as the associated sets. Such
approach simplified, accelerated, and decreased the stochastic variations of the
ESOINN. Our experiments demonstrate acceptable results of the VWs clustering for a
non-large natural image sets. Precision value of clustering achieved up to 85–90 %.
Our approach show better precision values and execution time as compared with fuzzy
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c-means algorithm and classic ESOINN. Also issues of parallel implementation of
unsupervised segmentation in OpenMP and Intel Cilk Plus environments were
considered for processing of HD-quality images. Execution time has been increased
on 26–32 % using the parallel computations.

Keywords Unsupervised clustering � Visual words � Self-organizing incremental
neural network � Automatic image annotation � Image features � Image
segmentation

4.1 Introduction

Nowadays, the image browsing and retrieval are the embedded WWW tools, which
are available for many users in anytime and anywhere. However, the retrieval
systems require the development of efficient software tools that is caused by the
increasing visual data growth. The image retrieval systems have three frameworks:
text-based (since 1970s), content-based (since 1980s), and automatic annotation
(since 2000s). In Text-Based Image Retrieval (TBIR) systems, the images are
manually annotated by text descriptors [1]. This leads to inaccuracy and duration of
a user work. The Content-Based Image Retrieval (CBIR) is free from such disad-
vantages. The queries into Content-Based Retrieval Systems (CBRS) can be dif-
ferent, for example, a retrieval of features (color, shape, spatial location), abstract
objects, real objects, or listed events [2–4]. Image retrieval in Automatic Image
Annotation (AIA) assumes that the images can be retrieved in the same manner as
text documents. The basic idea of the AIA is to implement the unsupervised
learning based on semantic concept models extracted from large number of image
samples [5–9]. The images can be retrieved by keywords called as Visual Words
(VWs). The AIA systems join the advantages of both TBIR and CBIR systems and
additionally solve the task of automatic image annotation using semantic labels.

This chapter is devoted to the retrieval of abstract objects, which is based on the
VWs extraction from a non-large set of images. The task involves two main stages:
a low-level segmentation based on color, texture, and fractal descriptors (a shape
descriptor is less useful due to great variety of visual objects and their projections in
natural images [10]) and a high-level clustering of received descriptors into the
separated clusters corresponding to the VWs set. Sometimes it is useful to divide
images in two global categories: natural or urban scenes, and according to such
classification tune an unsupervised procedure of extraction of low-level features.
The goal is to develop fast and accurate methods, which are suitable for natural
images annotation in the AIA framework.

For the VWs detection, the unsupervised clustering is a suitable approach. The
Enhanced Self-Organizing Incremental Neural Network (ESOINN) was chosen due
to its main benefits in unsupervised clustering and on-line implementation. This
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network can be trained adaptively and store the previous data with any increasing
volume of input information.

The chapter is organized as follows. A brief literature review is provided by
Sect. 4.2. The main statements, methods, and algorithms of unsupervised seg-
mentation and unsupervised clustering are detailed in Sects. 4.3 and 4.4, respec-
tively. Section 4.5 presents a discussion of experimental results of precision and
computational speed involving experiments with images from the dataset IAPR
TC-12 Benchmark [11]. Conclusion and remarks of future development are drawn
in Sect. 4.6.

4.2 Related Work

The literature review includes two main issues: the analysis of unsupervised image
segmentation for extraction of low-level features (Sect. 4.2.1) and the overview of
unsupervised image clustering (Sect. 4.2.2) in order to receive the high-level
semantic descriptors.

4.2.1 Unsupervised Segmentation of Natural Images

Any image, especially natural, involves a set of regions with different textures and
colors. During the last decade, many heuristic segmentation methods and algo-
rithms have been designed, which can be concerned to three main approaches:

• Region-based approach including grid-based method, when an image is roughly
divided into blocks [12], threshold-based methods of gradient gray-scales image
[13], contour-based methods evolving a curve around an object [14], methods of
morphological watersheds with preliminary image pyramid building in order to
detect the centers of crystallization [15–18], region-based methods including a
region growing approach [19–21].

• Model-based approach involving graph-based methods, among which a nor-
malized graph cut [22], statistical models using Bayesian model, Markov chain,
Expectation Maximization (EM) algorithm, and others [23–25], auto-regressive
models [26, 27], clustering algorithms like k-means, which are used to classify
pixels into different classes [28].

• Structured-based approach using Haralick structural methods for texture seg-
mentation [29], image segmentation by clustering of spatial patterns [30].

A majority of known CBIR and AIA systems use a region-based segmentation
as the close technique for a human vision. Let us notice that for the AIA systems,
the unsupervised segmentation is strongly recommended approach.

The unsupervised color image segmentation method based on the estimation of
Maximum A Posteriori (MAP) on the Markov Random Fields (MRFs) was
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proposed by Hou et al. [31]. This method works under the assumption that there are
n pixels of m (m ≪ n) colors in the image I, and any two colors, fore and back, are
perceptually distinguishable from each other. The authors used the energy functions
approximately in the non-iteration style. A new binary segmentation algorithm
based on the slightly tuned Lanczos eigensolver was designed.

The effective unsupervised color image segmentation algorithm, which uses the
multi-scale edge information and spatial color content, was represented by Celik and
Tjahjadi [32]. The multi-scale edge information is extracted using Dual-Tree
Complex Wavelet Transform (DT-CWT). The segmentation of homogeneous
regions was obtained using a region growing followed by a region merging in the
Lightness and A and B (LAB) color space in the research [33]. The authors proposed
the edge-preserving smoothing filter, which removes a noise and retains a contrast
between regions. The authors show that their approach provides better boundaries of
objects than JSEG and mean-shift algorithms. However, the unsupervised color
image segmentation works non-well in the textured images. Sometimes the color
image segmentation needs in a priory information and has high computational cost.
The use of statistical pattern recognition and Artificial Neural Networks (ANN) with
multi-layer perceptron topology was suggested by Haykin [34] in order to segment
and make a clustering of images into the pre-determined classes.

Also some hybrid methods exist, for example, 2D autoregressive modeling and
the Stochastic Expectation-Maximization (SEM) algorithm. The last one was
developed by Cariou and Chehdi [27]. The proposed texture segmentation method
has three steps. First, 2D causal non-symmetric half-plane autoregressive modeling
of the textured image is realized. Second, the parameters of identifiable mixed dis-
tributions and the corrected number of classes are calculated using the SEM algo-
rithm. The second step is finalized by coarse, block-like image pre-segmentation.
Third, the original image ought to refine the pixel-based segmentation applying the
Maximizer of Posterior Marginals (MPM). Using this hierarchical model in a
Bayesian framework, the authors obtained a reliable segmentation by means of Gibbs
sampling. This approach provided good segmentation/classification results above
90 % of correct classification with maximum value 99.26 %. The disadvantage is the
complicated mathematical calculations.

The well-known method of J-image SEGmentation (JSEG) is concerned to the
unsupervised segmentation based on a color-texture model. In the pioneer research
of Deng and Manjunath [35], the given color-texture patterns and the estimations of
their homogeneity were used. First, the image colors are quantized to several
representative classes in the color space without considering the spatial distributions
of the colors. Then pixel values are replaced by their corresponding color class
labels to form a class-map of the image (J-image). The received class-map can be
represented as a special type of homogeneous color-texture regions. Second, a
spatial segmentation is executed into this class-map without considering the cor-
responding pixel color similarity. This work became the basis of following modi-
fications and improvements.

An improved version, combining the classical JSEG algorithm with a local
fractal estimator, permits to improve the boundary detection [36]. A model of the
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texture features using a mixture of Gaussian distributions, which components can
be degenerate or nearly-degenerate, was developed by Yang et al. [37]. The authors
show the efficiency of their simple agglomerative clustering algorithm derived from
a lossy data compression approach. Using 2D texture filter banks or simple
fixed-size windows, the algorithm effectively segments an image minimizing the
overall coding length of the feature vectors.

Statistical Region Merging (SRM) algorithm based on perceptual growing and
region merging was proposed by Nock and Nielsen [38]. An unsupervised GSEG
algorithm [21] is based on color-edge detection, dynamic region growth, and
multi-resolution region merging procedure. A Partion-based SEGmentation (PSEG)
algorithm uses a hierarchical approach, according to which the spatially connected
regions group together based on the mean vectors and covariance matrices of a
multi-band image [39]. Also the authors introduced the inner and the external
measures based on Gaussian distribution, which estimate the goodness for each
portion in the hierarchy.

The approach for color–texture segmentation based on graph cut techniques
finds optimal color–texture segmentation by regarding it as a minimum cut problem
in a weighted graph [40]. A texture descriptor called as texton was introduced to
efficiently represent texture attributes of the given image, which is derived from the
complex Gabor filtered images estimated in various directions and scales. In the
research [40], the texton feature is defined as a magnitude of textons rather than a
histogram of textons, which makes it highly effective to apply the graph cut
techniques. The problem of color-texture segmentation is formulated in terms of
energy E(·) minimization with graph cuts by Eq. 4.1, where A is the data and
smoothness constraint, Θ denotes the mixture model parameters, λ > 0 specifies a
balance between a data term U(A, Θ) and a prior term V(A).

E A;Hð Þ ¼ k � U A;Hð ÞþV Að Þ ð4:1Þ

The segmentation energy should be minimized with respect to the labeling A and
the model parameter Θ. This method provides better precision and recall results in
comparison with JSEG algorithm. The following essential extension of multilayer
graph cut approach using multivariate mixed Student’s t-distribution and regional
credibility merging one can find in [41].

The Blobworld segmentation is widely used method. It is closed to the JSEG
algorithm. The pixel clustering is executed in a color-texture-position feature space.
First, a common distribution of these features is modeled by a Gaussian mixture.
Second, the EM algorithm estimates the parameters of received model. The
pixel-cluster membership produces a resulting coarse segmentation of the objects.
Vogel et al. proposed the adapting version of Blobworld algorithm, which was called
BlobContours segmentation [42]. The idea of displaying the intermediate segmented
images as the layers lays in the basis of BlobContours segmentation. Each EM iter-
ation is displayed as a layer, and the user can examine, which layer is the best one. The
flood-fill algorithm calculates the average true color for each region instead of using
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the connected component algorithm from the original Blobworld. However, the
blob-approach has a restricted application in the unsupervised segmentation.

Many authors use the measures of similarity to estimate and compare the
experimental results. Some of such measures one can find in [43].

4.2.2 Unsupervised Clustering of Images

The good decision for extraction of high-level semantic features is the use of
semi-supervised or unsupervised machine learning techniques. The goal of super-
vised learning is to determine the output values, and the goal of unsupervised learning
is to re-distribute the input data into classes and describe these classes. Support Vector
Machine (SVM) classification, Bayesian classification, and decision tree technique
are concerned to supervised methods, which form the high-level results from the
low-level features. In this research, the unsupervised methods are considered for
clustering of low-level features into the VWs representation. The traditional k-means
clustering, fuzzy c-means, and clustering based on Self-Organizing Neural Network
(SONN) including their modifications are often applied approaches in the CBRS. Let
us discuss some approaches for such clustering.

The color moments and Block Truncation Coding (BTC) were used in [44] to
extract features as the inputs of k-means clustering algorithm. The basis of color
moments (mean, standard deviation, and skewness) uses assumption that a distribution
of color in an image can be interpreted as a probability distribution. An image is split
into R, G, and B components separately, the average values of each component are
determined. Then the features are calculated as a set of color moments for R, G, and B
values, which are higher and lower the corresponding averages. Such heuristic algo-
rithm can not provide a high accuracy of clustering because color features are computed
in a whole image. The closed approaches one can find in [45, 46].

The application of Radial-Based Function Neural Network (RBFNN) for
semantic clustering was proposed by Rao et al. [47]. The authors applied the
hierarchical clustering algorithm to group the images into classes based only on the
color RGB-content; however, the result of received accuracy is absent in
research [47].

Self-Organizing Fuzzy Neural Network (SOFNN) can be concerned to a special
type of the SONN. The first group of Fuzzy Neural Network (FNN) with the
self-tuning capabilities requires the initial rules prior to train. The second group of
the FNN is able to automatically create the fuzzy rules from the training data set. In
opposite of a traditional clustering, when classes are disjointed, a fuzzy clustering
suggests so called soft clustering scheme. In this case, each pattern is associated with
every class by a membership function, in other words each class is a fuzzy set of all
patterns. A traditional clustering can be obtained from a fuzzy clustering using a
threshold of a membership value. The most popular fuzzy clustering algorithm is a
Fuzzy C-Means (FCM) algorithm. It is better than the k-means algorithm avoiding
local minimums. The design of membership functions is the most important problem
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in a fuzzy clustering because they determine the similarity decomposition and the
centroids of classes. An incremental clustering is based on the assumption that it is
possible to consider instances one at a time and assign them to the existing classes.

In research [48], the SOFNN was proposed as extended RBFNN, which is a
functional equivalent to Takagi-Sugeno-Kang fuzzy systems. First, a
self-organizing clustering approach is used to form the structure and obtain the
initial values of parameters in a network. Second, a hierarchical on-line
self-organizing learning paradigm is employed to adjust the parameters and the
structure of the SOFNN. The algorithm of incremental learning was developed,
which is capable to generate automatically fuzzy rules according to a simple error
criterion based on the differences between calculated and desired output values.

Tung and Quek suggested a Generic Self-Organizing Fuzzy Neural Network
(GenSOFNN), which overcomes the drawbacks of fuzzy neural network approach
connecting with the necessity of prior knowledge such as a number of classes [49].
The proposed GenSOFNN did not require a pre-definition of the fuzzy rules. The
authors show that its training cycle takes place in a single pass of the training data
and demonstrated the on-line applications of the GenSoFNNs.

Three new learning algorithms for Takagi-Sugeno-Kang fuzzy system based on
a training error and a genetic algorithm were proposed by Malek et al. [50]. First
two algorithms involve two stages. In the first stage, the initial structure of the FNN
was created by estimating the optimum points of training data in input-output space
using k-nearest neighbor algorithm and c-means methods, respectively. This stage
keeps adding new neurons based on an error-based algorithm. In the second stage,
the redundant neurons were recognized and removed using a genetic algorithm.
Third algorithm built the FNN by a single stage using a modified version of error
algorithm. These algorithms were evaluated using two examples: by function of
two nonlinear inputs and identification of nonlinear dynamic system.

Fuzzy clustering can be applied with other techniques, for example, invariant
moments as the invariant shape features [51]. One of the connected problems is a
semantic gap removal, which appears between low-level and high-level features
because the images, which are identical in a spatial domain, can be non-identical in
a semantic domain [52].

For our experiments, two ways were chosen: without preliminary segmentation
of natural images and with preliminary segmentation, description of the last one is
located in next Sect. 4.3.

4.3 Preliminary Unsupervised Image Segmentation

Segmentation of natural images is a complicated task due to a great set of regions
with various colors and textures. The basic JSEG algorithm [35] with some mod-
ification was applied in order to obtain good segmentation results. The segmenta-
tion task can be interpreted as an optimization task for search of such division of
image, which possesses the predetermined properties according to some functional.
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The authors of research [35] referred this functional as J-functional, which esti-
mates a quality of segmentation based on a color distribution. However, the direct
optimization of J-functional is a high resource task. The JSEG algorithm uses a
greedy algorithm of optimization, which searches local optimums in each of iter-
ations, calculating J-functional in a neighborhood of each pixel.

Two independent steps including color quantization and spatial segmentation are
used in this method. In order to extract only a few representative colors, the colors
in image are coarsely quantized. For natural images, 10–20 colors are enough for
good segmentation. Each pixel is replaced by corresponding color class label. The
image of labels is called a class-map, which can be interpreted as a special texture.
Each point belongs to a color class in a class-map. In natural images, such classes
usually have the overlapping distributions. Under such assumptions, the authors of
research [35] consider Z as the set of all N data points in a class-map, z = (x, y),
where x, y are spatial coordinates, z 2 Z with the mean m provided by Eq. 4.2, on
the one hand,

m ¼ 1
N

X
z2Z

z ð4:2Þ

and, on the other hand, suppose that Z is classified into classes Zi, i = 1, …, C with
mean mi of the Ni points in class Zi as it is written in Eq. 4.3.

mi ¼ 1
Ni

X
z2Zi

z ð4:3Þ

The total variance ST of class-map points is determined by Eq. 4.4.

ST ¼
X
z2Z

z� mk k2 ð4:4Þ

The total variance of points SW belonging to the same class is defined by Eq. 4.5.

SW ¼
XC
i¼1

Si ¼
XC
i¼1

X
z2Z

z� mik k2 ð4:5Þ

Then J-functional can be calculated by Eq. 4.6.

J ¼ ST � SWð Þ=SW ð4:6Þ

If value of J is large, then the color classes are more separated from each other,
and points inside a class are strongly connected between themselves. The average �J
can be defined by Eq. 4.7, where Jk is J-functional over region k, Mk is a number of
points in region k, N is a total number of points in a class-map.
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�J ¼ 1
N

X
k

MkJk ð4:7Þ

A better segmentation means a lower value of �J. Equation 4.6 is a criterion of
minimization of segmentation. However, the global optimization of �J is impossible
because any image can be segmented by various ways. Instead of this, J-image is
generated, where pixel values correspond to local J-values, which are calculated
over small window centered in the pixels. The local J-values become large near a
region boundary. The J-image can be represented as a 3D map containing valleys
and hills, which are correspond to the region insides and the region boundaries. The
size of local window is a multi-scale parameter. A window with small sizes (9 × 9
pixels) is useful to detect edges, and a window with large sizes is used for boundary
detection.

A spatial segmentation as a second step of the JSEG algorithm is based on a
region-growing method. The pixels of J-image with minimal functional values are
accepted as the seeds. A growing process is realized by jointing the neighbor pixels
to the seeds. As a result, an initial segmentation is received sometimes with small
over-segmented regions. To avoid this artifact, such regions are merged based on
color similarity. The agglomerative procedure is applied: the distance values
between two neighbor regions are calculated according to a color histogram, the
pairs of regions with minimal distance value is merged, then a color histogram is
recalculated and the distance values are update. The procedure is repeated until the
predetermined maximum distance value between regions will not be achieved.

Our improvement of JSEG results deals with decreasing the original image in
four times (the upper level of image pyramid with Gaussian blurring), application of
JSEG algorithm to small-sized image, and following stretching transformation of J-
image to the initial sizes of original image. A convolution of the transformed J-
image with original image provides a final segmentation. The segmentation results
for images 38019, 38225, 38755, 39986, and 38756 are represented in Fig. 4.1.
The test images were taken from DB IAPR TC-12 Benchmark [11]. The size of
original images is 480 × 360 pixels. The size of decreased images was 240 × 180
pixels.

Our approach provides better visual segmentation results without considering the
non-significant for the AIA small regions in original images.

4.4 Feature Extraction Using Parallel Computations

In this research, the JSEG algorithm was chosen as a pre-segmentation stage and
realized in the designed software tool. Consider the main color, texture, and fractal
features extraction (Sects. 4.4.1, 4.4.2 and 4.4.3, respectively) from a pre-segmented
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image in order to create a common image descriptor as a set of region features. The
enhanced region descriptor is built in Sect. 4.4.4. Section 4.4.5 provides a description
of parallel computations of features.

Fig. 4.1 Visual results of JSEG algorithm: a, c, e, g, i original images and JSEG results; b, d, f, h,
j the resized in four times original images and JSEG results
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4.4.1 Color Features Representation

A number of important color features, which are extracted from images or regions,
have been proposed in literature including Color Histogram (CH) [53], Color
Moments (CM) [54], Color Coherence Vector (CCV) [55], Color Correlogram [56],
among others. Notice that MPEG-7 standard restricts a number of color features
including Dominant Color Descriptor (DCD), Color Layout Descriptor (CLD),
Color Structure Descriptor (CSD), and Scalable Color Descriptor (SCD) [57].

The color moments such as mean, standard deviation, and skewness are the
simplest and popular features. They are applied to each component of color spaces
mentioned below:

• Red, Green, Blue (RGB).
• Lightness and A and B are the color-opponent dimensions based on nonlinearly

compressed CIE (International Commission on Illumination; usually abbrevi-
ated CIE for its French name, Commission internationale de l’éclairage) XYZ
coordinates (LAB).

• Lightness, Uniform chromaticity scale, Valence (LUV). CIE LUV and
CIE LAB were adopted simultaneously by the CIE.

• Hue, Saturation, Value (HSV) or Hue, Saturation, Lightness (HSL).
• Hue, Min, Max, Difference (HMMD).

In current research, the color features (mean, standard deviation, and skewness
for each color component) are extracted as the low-level features of each region in
HSV-color space. According to the theory of moments, normalized mean μc, nor-
malized standard deviation σc, and normalized skewness θc (values of these
parameters are normalized relative to a pixel amount into current region) are cal-
culated for each HSV-component by Eqs. 4.8–4.10, where pi

c is a pixel value of
corresponding color component, NP is a number of pixels in a current region. Let us
remember that preliminary image segmentation was executed using the JSEG
algorithm.

lc ¼
1
NP

XNP
i¼1

pci ð4:8Þ

rc ¼ 1
NP

XNP
i¼1

pci � lc
� �2 !1

2

ð4:9Þ

hc ¼ 1
NP

XNP
i¼1

pci � lc
� �3 ð4:10Þ

As a result, nine color features are received and included as FC0, …, FC8

components in feature vector, describing a current region.
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4.4.2 Calculation of Texture Features

The calculation techniques for texture features are very different. Often statistical
texture features are based on moments or local statistical measures such as the six
Tamura texture features [58]. The Tamura features include coarseness, direction-
ality, regularity, contrast, line-likeness, and roughness. First three characteristics are
more significant, and second three ones are the secondary parameters. The MPEG-7
standard has employed regularity, directionality, and coarseness as the texture
browsing descriptor [57]. Unfortunately, the Tamura and the MPEG-7 texture
descriptors are non-invariant to a scale.

Also it is possible to calculate the statistical features using a Gray-Level
Co-occurrence Matrix (GLCM) [59]. The GLCM provides information about the
positions of pixels having similar gray level values. Each element of such matrix
contains a number of all pairs of pixels separated by displacement vector d, which
includes gray levels i and j. Haralick et al. [60] suggested a set of 14 textural
features extracted from a co-occurrence matrix. Homogeneity, contrast, and entropy
are the main parameters, which are calculated from the GLCM. However, the
experiments show that these parameters do not make essential contribution into
improvement of CBIR accuracy but increase a computational cost.

The spectral characteristics based on 2D wavelet transform and a Gabor trans-
form have high cost for the CBIR and the AIA. The advantage of Gabor transform
is an invariance to a scale. Galloway [61] introduced five original features of
run-length statistics, which were built using the analysis of image gray levels. At
present, run-length statistics have a historical meaning.

Let z be a random value of intensity, h(zi) is its histogram, i = 0, 1, 2, …, Q–1,
Q is a number of brightness levels. Statistical features into a current image region
such as normalized average AV, normalized dispersion DS, normalized homogeneity
HM, normalized smoothness SM and improved normalized smoothness ISM, nor-
malized entropy EN and improved normalized entropy IEN, normalized skewness
SK, and normalized kurtosis KR are provided by Eqs. 4.11–4.19, where SR is a
region area, μ3 and μ4 are moments of 3rd and 4th orders, σ3 and σ4 are standard
deviation in 3rd and 4th degrees. All these values are normalized relative to a region
area SR.

AV ¼ 1
SR

XQ�1

i¼0

zih zið Þ ð4:11Þ

DS ¼ 1
SR

XQ�1

i¼0

zi � AVð Þ2h zið Þ ð4:12Þ

HM ¼ 1
SR

XQ�1

i¼0

h2 zið Þ ð4:13Þ
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SM ¼ 1
SR

1� 1

1þDS
.

Q� 1ð Þ2

0
@

1
A ð4:14Þ

ISM ¼ �logSM; if SM[ 0

10; if SM ¼ 0

(
ð4:15Þ

EN ¼ � 1
SR

XQ�1

i¼0

h zið Þ log2h zið Þ ð4:16Þ

IEN ¼ EN=log2Q Q[ 1 ð4:17Þ

SK ¼ 1
SR

l3
r3 ¼

1
SR

�
XQ�1

i¼1

zi � AVffiffiffiffiffiffi
DS

p
� �3

�h zið Þ
 !

ð4:18Þ

KR ¼ 1
SR

l4
r4 � 3 ¼ 1

SR
�
XQ�1

i¼1

zz � AVffiffiffiffiffiffi
DS

p
� �4

�h zið Þ
 !

� 3 ð4:19Þ

If parameter SM = 0, then its value is forcibly maintained into NSM = 10 (small
empirical value, differing from 0). Normalized entropy NEN indicates some
equalization effect in dark and bright areas of image [62, 63].

Thus, seven texture features (AV, DS, HM, ISM, IEN, SK, and KR) are used as
the FT9, …, FT15 components of feature vector, describing a current region.

4.4.3 Fractal Features Extraction

It is well-known, that natural texture surfaces are the spatial isotropic fractals and their
2D intensity function are also fractals. Connected domain A in a topological n-space is
self-similarity, when domain A includes N separated non-overlapping and
self-similarity copies, and each of copies is reduced by a coefficient r along all coor-
dinate axes. Fractal dimension FD of connected domain A is determined by Eq. 4.20.

FD ¼ logN=log 1=rð Þ ð4:20Þ

Usually fractal surfaces demonstrate a statistical self-similarity, when each of
N copies is identical to an original surface by all statistical features. However, to
determine a dimension of fractal texture region using Eq. 4.20 is difficult and
sometimes impossible. In research [64], two ways for definition of fractal dimen-
sion FD were investigated using a cube cover and based on the probability esti-
mations. Let us calculate a measure of domain A on a set Rn. Suppose that domain
A is covered by n-ary cube with sizes Lmax. If domain A is a reduced copy by
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coefficient r, then N = r–FD sub-cubes exist. Therefore, a number of cubes with
sizes L = r · Lmax, which are necessary to cover a whole domain, is determined by
Eq. 4.21.

N Lð Þ ¼ 1
�
rFD ¼ Lmax=L½ �FD ð4:21Þ

A simple procedure to determine fractal dimension FD by Eq. 4.21 involves a
cover of connected domain A by a grid from n cubes with a side length L and
calculation a number of non-empty K cubes. Then fractal dimension FD is deter-
mined from a line slope of {log L; –log N(L)} in Rn space.

Another way to determine fractal dimension FD uses a probability approach. Let
P(m, L) be a probability that m points into a cube with length side L are located near
a random point of connected domain A. Let total number of points into connected
domain A be equal M (in our case, a connected domain A is an image). If a grid
from cubes with a length side L is imposed in an image, then a number of cubes,
including m points, is determined as (M/m) · P(m, L) and will be proportional to a
power dependence L–FD.

However, various fractal structures with a similar fractal dimension FD can have
very different textures. The term “lacunarity” was introduced by Mandelbrot [65] to
describe such fractals. Mandelbrot proposed some procedures to define a lacunarity
FL, the most known of which has a view of Eq. 4.22, where M is a weight of fractal
structure, Mh i is an estimated weight.

FL ¼ M= Mh i � 1ð Þ2
D E

ð4:22Þ

Lacunarity FL demonstrates the difference between a weight of fractal structure
and an estimated weight. This feature is a statistical characteristic of the second order
and changes in a following manner. Lacunarity has low value for a fine-grained
textures and high value for a coarse-grained textures. Weight of fractal structureM is
a function of parameter L (Eq. 4.23), where k is a proportional coefficient [65].

M Lð Þ ¼ kLFD ð4:23Þ

Also lacunarity FL can be estimated based on a probability approach. Probability
P(m, L) includes data for average distortion of weight in fractal structure. Therefore,
lacunarity FL can be calculated by Eq. 4.24.

FL Lð Þ ¼ M2 Lð Þ � M Lð Þj j2
M Lð Þj j2 ¼

PN
m¼1

m2P m; Lð Þ � PN
m¼1

m P m; Lð Þ
����

����
2

PN
m¼1

m P m; Lð Þ
����

����
2 ð4:24Þ

Lacunarity estimating by Eq. 4.24 is well for textures with large area but it is
non-useful for small area image regions. Let us simplify Eq. 4.24 by introduction of
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function C(L) provided by Eq. 4.25, where MD(L) is an average density of weight
into a cube with a length side L, NP(L) is a quotient of division the number cubes
with a length side L, which are necessary for a full cover of fractal structure, on the
number of points into this fractal structure.

C Lð Þ ¼ MD Lð Þ � NP Lð Þ
MD Lð ÞþNP Lð Þ ð4:25Þ

If the smallest texton is less then L, then a weight of fractal structure will
distributed uniformly into each cube. In this case, values MD(L) and NP(L) have
close values, and C(L) → 0. If the smallest texton is large than L, then C(L) → 1.
If L value increases, then C(L) → 1 for all fractal structures. Therefore, function C
(L) will include the data about textons in both cases.

Two fractal features FD and FL are two components FF16 and FF17 of feature
vector describing a current region.

4.4.4 Enhanced Region Descriptor

Using parameters from Sects. 4.4.1–4.4.3, one can construct a region vector
RF = {FC0, …, FC8, FT9, …, FT15, FF16, FF17}, which later will be transformed to
Region Descriptor RDij. Values of RDij are normalized to the intervals of input values
of neural network, where i is a counter of regions in an image j, j is a counter of
images in an image set. As a result, an image descriptor IDj = {RD1j, …, RDij, …}
and a set descriptor SD = {ID1, …, IDj, …} will be constructed. The extended region
descriptor is our contribution in the unsupervised clustering for image annotation
problem. For simplicity, denote a set of Region Descriptor {RDij} as a weight input
vector Wx, because region descriptors enter to the inputs of classical ESOINN
randomly.

A transition from low-level features to high-level semantics is usually tracked by
reducing the “semantic gap”, which includes four categories:

• Object ontology to define high-level concepts.
• Introduction a relevant feedback into retrieval loop for continuous learning of

users’ intention.
• Generation semantic templates to support high-level image retrieval.
• Supervised or unsupervised learning methods to associate low-level features

with query concepts.

Our choice deals with the last one due to high possibilities of self-organizing
approach. Let us remark that a redundancy is eliminated during segmentation stage
in order to avoid an over-segmentation of natural images.
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4.4.5 Parallel Computations of Features

The parallelizing of program code includes the types mentioned below:

• Parallelizing of data means a multiple execution of the same algorithm with
various input data. Data are divided into fragments, and each fragment is pro-
cessed by an allocated computer core.

• Functional parallelizing is a parallel execution of sets of operations by func-
tional feature. Simple example of such functional decomposition is a decom-
position of task into subtasks such as input of initial data, processing, output of
results, visualization of results, etc. Functional parallelizing is achieved using
sequential or sequential-parallel “conveyor” between subtasks. Each subtask
provides a parallelizing of data inside.

• Algorithmic parallelizing finds such fragments in algorithm, which can be exe-
cuted in parallel. Synthesis of parallel algorithms based on algorithmic paral-
lelizing is called an algorithmic decomposition. During algorithmic
decomposition, it would like to divide a task into large and rarely connecting
branches with homogeneous distribution of data processing along the branches.
Main distinction between algorithmic and functional parallelizing is in following.
Functional parallelizing merges only functional close operators from algorithm,
and algorithmic parallelizing does not consider a functional similarity of operators.

For implementation of parallel algorithms, some standards are available, among
which OpenMP standard [66] is used for parallelizing of program code in languages
C, C++, and Fortran. Also the extension of language C++ with parallel possibilities
called as Intel Cilk Plus [67] is developed.

In OpenMP standard, a paralleling is executed explicitly by insert the special
directives and by call the additional functions in a program code. The standard
OpenMP realizes the parallel computations in the multi-thread mode, when the
“main” thread creates a set of sub-threads, and a current task is distributed between
the sub-threads. First, a program is executed in “sequential” area with single “main”
thread (process). Second, several sub-threads are generated in “parallel” area, and
the program code is distributed between them. Third, all sub-threads except the
“main” thread are finalized, and again a “sequential” area is continued. The stan-
dard OpenMP supports the embedding of parallel areas.

The Intel Cilk Plus environment is a dynamic thread scheduler, including a set of
keywords. Keywords inform a compiler about the application of scheme schedul-
ing. A parallel Cilk-program creates a task queue. The “executors” capture the
tasks, and free thread performs a current task. In the Intel Cilk Plus environment,
the semantics of sequential program is supported. However, a program can be
executed in sequential or parallel modes due to available resources. Use of extended
index notation is an essential difference in comparison with OpenMP standard that
provides a paralleling of vector instructions of processor.

The enhanced region descriptor involves color, texture, and fractal features
calculated in a neighborhood of considered pixel. Calculation of color and textural
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features (Eqs. 4.8–4.19) can be implemented in a parallel mode. Fractal features
requires a separate non-parallel computation. The color and texture features are
computed by two steps. First, stochastic data acquisition is accomplished in a
neighborhood of current pixel: the normalized means of color channels are calcu-
lated using Eq. 4.8, and local histogram is built based on texture features. Second,
color and texture features (Eqs. 4.9–4.19) are calculated directly. Two basic cycles
are implemented in parallel mode. There are an external cycle for image with sizes
(w/kw) × (h/kh), where w and h are width and height of image, respectively, kw and
kh are width and height of image segment, respectively, and the internal cycles for
segment with sizes kw × kh.

For parallel computation of texture features, a whole image is divided into
segments, and a processing of segments is distributed between cores of processor.
A way of image partitioning in vertical/horizontal bands or rectangle blocks
determines a structure of parallel procedure. In order to increase a computational
cost, a parallelizing of external cycles in whole image is required. For this purpose,
a processor directive “#pragma omp parallel for” in the case of OpenMP standard
and a keyword “cilk_for” in the case of the Intel Cilk Plus environment can be
applied. The calculations of color and texture features do not connected. Therefore,
the additional parallel areas in random access memory can be determined for color
and texture features separately.

4.5 Clustering of Visual Words by Enhanced SOINN

As a result of features extraction (Sect. 4.3), any image can be represented as a set
of regions with corresponding region vectors RF = {FC0, …, FC8, FT9, …, FT15,
FF16, FF17} as a collection of color, texture, and fractal features. Direct comparison
of feature sets in a metric space is not preferable due to segmentation errors and
noises. Therefore, a clustering methodology is a single way to receive good results.
In literature review (Sect. 4.2), it was shown that the unsupervised clustering is
more suitable for the VWs detection, and among unsupervised clustering methods
the SOINN was chosen.

The clustering procedure groups the regions of all annotated images into subsets
(VWs) in such manner that the regions with similar features are grouped together,
while the regions with different features belong to the different classes. Formally, a
clustering structure S is represented as a set of subsets C = {C1, …, CK}, Eq. 4.26.
Consequently, any element in S belongs to one and only one subset.

S ¼ [K
k¼1

Ci and Ci \Cj ¼ 0 for i 6¼ j ð4:26Þ
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The ESOINN proposed by Furao et al. [68] is applied as the useful unsupervised
clustering technique in many applications: robots navigation [69, 70] microarray
data analysis [71], multi-agent systems [72], among others. The basic concepts of
ESOINN are discussed shortly in Sect. 4.5.1, and algorithm of ESOINN is pre-
sented in Sect. 4.5.2.

4.5.1 Basic Concepts of ESOINN

The ESOINN was developed to overcome the main disadvantages of the two-layer
SOINN as mentioned below:

• The separated training of the first layer and the second layer.
• The second layer is unsuitable for on-line incremental training: the changing of

training results in the first layer causes the re-training of the second layer.
• The necessity of user-determined parameters, if a within-class insertion appears.
• The SOINN cannot separate a set with the high-density overlapping areas.

The ESOINN is adapted using a single-layer network structure. To build an edge
between nodes, the ESOINN adds a condition to judge, and after some training
iterations it separates nodes to the different subclasses deleting edges, which lie in
the overlapping areas. The ESOINN achieves the within-class insertion slightly but
it is more suitable for on-line or even life-long training tasks than two-layer SOINN.

A single layer of ESOINN is continuously adapted according to the input data
structure defining a number and a topology of classes. When an input vector enters,
the ESOINN finds two nearest nodes as the winner and the second winner by the
predetermined metric. Using a threshold criterion of similarity (the maximum
distances between vectors owing to the same cluster), the network judges: an input
vector belongs to the winner or the second winner cluster or not. A distribution of
input data is unknown, and a threshold criterion is updated adaptively for each
separate node. A threshold criterion for node Ti is calculated by Eq. 4.27, where Ni

is a set of neighbor nodes, Wi and Wj are the weight vectors of nodes i and j,
respectively.

Ti ¼ max
j2Ni

Wi �Wj

		 		 ð4:27Þ

If a node i has not the connected neighbor nodes, then a threshold criterion
Eq. 4.27 is transformed in Eq. 4.28, which is defined as a minimum distance
between nodes, where N is a set of all network nodes.

Ti ¼ min
j2Nn if g

Wi �Wj

		 		 ð4:28Þ

An input vector is inserted as the first node of new class, if distance between an
input vector and the winner or the second winner is more than a threshold value
between the winner and the second winner. If an input vector belongs to the cluster
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of the winner or the second winner, then an edge between the winner and the
second winner is created with 0 “age”, and the “age” of all edges linked to the
winner is increased by 1.

Then a density pi of the winner is updated by Eq. 4.29, where di is a mean value
of distances between node j and its neighbor nodes.

pi ¼ 1
.

1þ di
� �2 ð4:29Þ

If a mean value of distances between node j and its neighbor nodes is large, then
a number of nodes and a density pi of node i will have small values, and vice versa.
For each iteration λ, only a density of winner-node is calculated. The accumulated
density hi of winner-node is provided by Eq. 4.30, where n is a total number of
iterations (calculated as n ¼ LT=k, LT is a total number of input vectors), K is a
number of iterations, when a density value for node i exceeds 0.

hi ¼ 1
K
�
Xn
l¼1

Xk
k¼1

pi ð4:30Þ

After re-calculation of density, a counter of winsMi (for a winner-node) is increased
by 1. The change of weight vectors of the winner ΔWi and its neighboring nodes ΔWj

(j 2 Ni) are determined by Eqs. 4.31 and 4.32, where Wx is a weight input vector.

DWi ¼ 1
Mi

� Wxk k � Wik kð Þ ð4:31Þ

DWj ¼ 1
100 �Mi

� Wxk k � Wj

		 		� � ð4:32Þ

Then all edges, the “age” of which is higher a threshold value agemax, are
removed. If number of input vectors does not achieved λ iterations, then a following
input vector is submitted. Otherwise, the overlaps between classes are detected and
removed by including additional subclasses.

One can find the detailed description of algorithms for separation a composite
class into subclasses, a building the edges between nodes, and a classifying nodes to
the different classes in research [69].

4.5.2 Algorithm of ESOINN Functioning

The algorithm of the ESOINN functioning includes the steps mentioned below.

Step 1. Set a minimal number of the predetermined segments into a set of images.
Number of the pre-determined segments is defined using the JSEG algorithm.
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This is our first proposed distinction in comparison with the ESOINN, which
initialization is started always from two random nodes. (Let the ESOINN with
our color-texture-fractal descriptor be called as the dESOINN.)

Step 2. Input a weight input vector Wx. The second proposed distinction connects
with the order of ranked vectors {Wx} at the inputs of the dESOINN.
Vectors {Wx} is sorted according to the results of previous segmentation.
Therefore, the winner and the second winner are defined at the first steps,
and at the following steps the dESOINN is trained using the remaining
samples from current segment. Sometimes an input vector Wx cannot be
associated with the current winner owing to coarse segmentation errors.
Such input vector ought to be rejected from a sample. This approach
reinforces the current winner and makes the stochastic dESOINN more
stable. Then the input vectors {Wx} concerning to another segment are
clustered by the dESOINN. The proposed approach is especially useful for
clustering of non-large set of natural images.

Step 3. Define the nearest node (the winner) a1 and the second nearest node (the second
winner) a2. If a distance between the input vector Wx and nodes a1 or a2
exceeds threshold values Ti calculating by Eqs. 4.27 and 4.28, then the input
vector is considered as a new node and added to a node set. Go to Step 2.

Step 4. Increment the “age” of all edges connecting with a node a1 by 1.
Step 5. Define the edge creation necessary between nodes a1 and a2.
Step 6. Recalculate the accumulated density hi of the winner-node by Eq. 4.30.
Step 7. Increment the counter of wins Mi by 1.
Step 8. Calculate the weight vectors of the winner ΔWi and its neighboring nodes

ΔWj using Eqs. 4.31 and 4.32.
Step 9. Remove the edges, “age” of which has more value than a pre-determined

parameter agemax.
Step 10. If a number of the input vectors Wx is multiple to a parameter λ, then it is

required to update the subclasses for each node and remove the “noisy”
nodes using Eqs. 4.33 and 4.34, where N is a number of nodes in a node
set, c1 and c2 are the empirical coefficients. Equations 4.33 and 4.34 are
used, if a node has two or one neighbors, respectively

hi\c1 �
XNa

j¼1

hj
�
N ð4:33Þ

hi\c2 �
XNa

j¼1

hj
�
N ð4:34Þ

In experiments, the non-large sets of images were used. Therefore, the
additional condition Eq. 4.35 was introduced to remove the single nodes,
where c3 is an empirical coefficient.
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hi\c3 �
XNa

j¼1

hj
�
N ð4:35Þ

Step 11. If a clustering process is finished, then it is needed to determine a number
of classes, the output sample vectors for each class, and stop the algorithm.

Step 12. Go to Step 2, if the ESOINN continues to work.

4.6 Experimental Results

For experiments, 120 images from the dataset IAPR TC-12 Benchmark [11] were
selected as the 10 sets including 12 images in each set. An example set (12 images
and their segmented prototypes by JSEG algorithm with removal small size frag-
ments, Set NN 01) are presented in Fig. 4.2.

The first type of experiments was directed to obtain the precision estimations.
The average values of color-texture-fractal features for segments from a set of
images, representing in Fig. 4.2, are summarized in Table 4.1. As a result, five
clusters (VWs) were determined by the dESOINN as it is show in Fig. 4.3.

As one can see, the clusters fromFig. 4.3 represent three types of objects—“Houses”,
“Sky”, and “Water”. However, the dESOINN divided the cluster “Houses” into three
clusters. This decision reflects the differences in values of color and texture features
(Table 4.1).

Three algorithms were compared: fuzzy c-means, the ESOINN, and the
dESOINN. The last one begins its work by use a predetermined minimum number
of clusters provided by the JSEG algorithm. For initialization, the following
parameters were applied: λ = 50, agemax = 5, c1 = 0.01, c2 = 0.3, and c3 = 1.05.

The average precision of algorithms PRC was calculated by Eq. 4.36, where C is
a total number of clusters, NTPi is a number of true positive examples (true detected
regions) and NFPi is a number of false positive examples (false detected regions) in
cluster i relatively the expert estimations.

PRC ¼ 1
C

XC
i¼1

NTPi

NTPi þNFPi
ð4:36Þ

All calculations had been repeated 100 times, and then a precision was averaged
out. The parameter “Number of clusters” was chosen as the most frequent value
during clustering. The generalized estimations of precision and execution time for
fuzzy c-means, ESOINN, and dESOINN algorithms are summarized in Table 4.2.
For experiments, PC Acer JM50-HR with a single processor core, Intel Core
i5-2430 M 2,4 GHz, RAM Kingston 1333 MHz (PC3-10700) DDR3 8 GB,
VC NVIDIA GeForce GT 540 M, 1 GB, SSD Smartbuy, 128 GB was used.
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The data from Table 4.2 shows that a precision of VWs using the ESOINN and
the dESOINN is better than received by fuzzy c-means algorithm. Also the
determined clusters are close for human perception. A creation of VWs by ESOINN
or dESOINN is slowly in 3–5 times against fuzzy c-means algorithm for small

Fig. 4.2 The original images and their segmented prototypes from the database IAPR TC-12
Benchmark: a image 2954, b image 2956, c image 38056, d image 38060, e image 38063,
f image 38097, g image 38129, h image 38183, i image 38273, j image 38277, k image 39458,
l image 40417
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Fig. 4.3 Five clusters of VWs determined by dESOINN, Set NN 01: a cluster 0, which includes 12
segments 2956_1, 38056_1, 38056_2, 38056_5, 38060_2, 38060_5, 38063_2, 38063_4, 38097_2,
38273_2, 38273_5, 40417_2, b cluster 1, which includes 23 segments 2954_0, 2956_0, 38056_0,
38056_3, 38060_0, 38060_1, 38060_6, 38063_0, 38097_0, 38097_1, 38129_0, 38129_1, 38183_0,
38183_1, 38273_0, 38273_1, 38273_4, 38273_6, 38277_0, 38277_1, 38277_2, 39458_0, 40417_0,
c cluster 2, which includes 8 segments 2954_2, 2956_2, 38097_3, 38129_2, 38183_3, 38273_3,
38277_3, 39458_3, d cluster 3, which includes 6 segments 38063_1, 38097_4, 38097_5, 38129_3,
38183_2, 38183_4, e cluster 4, which includes 11 segments 2954_1, 38056_4, 38060_3, 38060_7,
38060_7, 38063_3, 38063_5, 38277_4, 39458_1, 39458_2, 40417_1
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number of samples. However, the unsupervised clustering with large sets of images
will be promising. The main benefits of ESOINN algorithm are a possibility of the
unsupervised clustering and the on-line implementation. This network can be
trained by novel data adaptively, and it stores the previous data with any increasing
volume of input information.

The additional experiments provided a comparison of precision and execution
time results with large number of annotated images. Seven sets with 50, 100, 150,
200, 250, 300, and 350 images from the dataset IAPR TC-12 Benchmark [11] were
selected and tested by basic ESOINN, DBSCAN algorithm [73], X-Means algo-
rithm [74], and dESOINN. The experiments were implemented using the same PC
Acer JM50-HR (Table 4.3).

For the ESOINN initiation, the same parameters were tuned as in the main
experiment. The calculations had been repeated 100 times, and then the precision
values were averaged. The often received values are chosen as the parameter
“Number of clusters”.

The plots in Fig. 4.4 show the generalized precision and time dependences for
these four algorithms. One can see that the dESOINN algorithm provides better
results for large number of annotated images.

b Fig. 4.3 (continued)

4 Unsupervised Clustering of Natural Images … 147



T
ab

le
4.
2

T
he

co
m
pa
ra
tiv

e
re
su
lts

of
pr
ec
is
io
n
an
d
ex
ec
ut
io
n
tim

e
fo
r
fu
zz
y
c-
m
ea
ns
,
E
SO

IN
N
,
an
d
dE

SO
IN

N
al
go

ri
th
m
s

Se
t

N
N

V
W
s,
de
te
rm

in
ed

by
ex
pe
rt

Fu
zz
y
c-
m
ea
ns

E
SO

IN
N

dE
SO

IN
N

N
um

be
r
of

cl
us
te
rs

Pr
ec
is
io
n,

%
T
im

e,
m
s

N
um

be
r
of

cl
us
te
rs

Pr
ec
is
io
n,

%
T
im

e,
m
s

N
um

be
r
of

cl
us
te
rs

Pr
ec
is
io
n,

%
T
im

e,
m
s

00
5

5
65

.5
3

79
5

65
.1
3

19
3

5
67

.2
8

18
6

01
3

6
81

.0
4

98
6

83
.2
2

19
5

5
84

.6
6

18
2

02
5

5
63

.9
0

68
5

65
.5
4

19
4

5
66

.6
3

19
3

03
4

4
68

.4
1

56
4

71
.1
6

18
2

4
71

.4
7

18
2

04
3

5
82

.5
9

91
4

88
.8
4

22
2

4
90

.5
8

21
5

05
5

6
69

.0
7

16
2

6
69

.1
3

24
2

6
70

.6
8

23
6

06
4

4
72

.2
3

69
4

73
.8
9

18
3

5
73

.7
1

17
5

07
4

4
70

.9
3

65
5

74
.2
7

27
5

4
73

.8
4

25
1

08
6

8
67

.1
6

16
2

8
65

.5
0

22
3

8
69

.5
2

22
3

09
6

6
73

.7
9

11
4

6
79

.0
7

24
4

6
81

.8
3

23
2

148 M. Favorskaya et al.



T
ab

le
4.
3

T
he

co
m
pa
ra
tiv

e
re
su
lts

of
pr
ec
is
io
n
an
d
ex
ec
ut
io
n
tim

e
fo
r
E
SO

IN
N
,
D
B
SC

A
N
,
X
-M

ea
ns
,
an
d
dE

SO
IN

N
al
go

ri
th
m
s

N
um

be
r

of
im

ag
es

V
W
s,

de
te
rm

in
ed

by
ex
pe
rt

E
SO

IN
N

D
B
SC

A
N

X
-M

ea
ns

dE
SO

IN
N

N
um

be
r

of
cl
us
te
rs

Pr
ec
is
io
n,

%
T
im

e,
m
s

N
um

be
r

of
cl
us
te
rs

Pr
ec
is
io
n,

%
T
im

e,
m
s

N
um

be
r

of
cl
us
te
rs

Pr
ec
is
io
n,

%
T
im

e,
m
s

N
um

be
r

of
cl
us
te
rs

Pr
ec
is
io
n,

%
T
im

e,
m
s

50
45

50
64
.3
9

18
96

46
74
.7

18
44
7

60
78
.8
3

18
87

57
90
.9
1

13
46

10
0

67
67

62
.3
7

66
20

80
75
.2

73
82
4

74
80
.2
4

54
06

71
86
.5

40
04

15
0

91
10
2

61
.7
4

12
68
7

11
8

72
.4
3

16
41
72

88
78
.1
8

17
54
4

91
84
.7
8

74
46

20
0

11
1

12
3

61
.5
1

19
63
1

12
7

71
.0
8

29
45
36

11
6

75
.0
5

27
33
6

10
9

85
.8
7

12
08
3

25
0

13
6

14
9

62
.6
9

35
67
1

14
6

70
.5

46
55
30

13
4

73
.5
2

35
59
8

13
8

83
.0
2

18
75
3

30
0

15
5

16
1

61
.1
2

48
39
7

14
4

69
.2
4

65
78
50

16
5

75
.6

42
73
8

15
6

83
.6
1

26
03
4

35
0

16
5

17
0

59
.8
7

60
40
4

17
4

67
.5
9

87
86
39

17
5

72
.9
2

56
04
9

16
5

82
.3
8

33
84
3

4 Unsupervised Clustering of Natural Images … 149



The second type of experiments was devoted to increase a computational speed
by parallel processing. A version of non-optimized algorithm was realized in
Microsoft Visual C++ 2010 package. Versions of optimized algorithm were
implemented in OpenMP and Intel Cilk Plus environments. The test dataset con-
tained six sets, each set included 10 images. These six sets were formed from
images with different resolutions, i.e. 1920 × 1080 pixels, 2560 × 1600 pixels,
2800 × 2100 pixels, 3840 × 2160 pixels, 3646 × 2735 pixels, and 4096 × 3072
pixels. A test parallel processing was executed in personal computer and servers
with different configurations.

For mentioned above six sets of images, the mean values of processing time
were estimated using various paralleling algorithms. Four samples, including 40
chosen randomly images, were formed. Each randomly chosen image was pro-
cessed 25 times. Such methodology permits to decrease the influence of external
factors such as activity of background task of operating system and available free
hardware resources. Experiments show that a computational speed increases on 26–
32 % using parallelizing algorithms. Hardware characteristics influence on com-
putational speed directly. For example, a processing time using Intel Core i5-3450
(3.1 GHz) was in 2–2.2 times less than a processing time using Intel Core 2 Quad
Q6600 (2.4 GHz).

A processing time of non-optimized algorithm was defined as 1 in order to
calculate a relative speedup factor for optimized algorithms. The speedup factors
were calculated for all six sets of images using 2, 3, and 4 threads. Average values
of speedup factors for parallelizing algorithms are represented in Fig. 4.5.

Also additional tests were executed in order to compare OpenMP and Intel Cilk
Plus environments. The results are drawn in Table 4.4. One can see the advantage
of Intel Cilk Plus environment.

Fig. 4.4 Generalized dependences for ESOINN, DBSCAN, X-Means, and dESOINN algorithms:
a precision, b execution time
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4.7 Conclusion and Future Development

In this chapter, the AIA issues were investigated by the VWs extraction from the
restricted image sets. The enhanced feature set describing an image region was
suggested, which includes color, texture, and fractal features. Three algorithms
were compared: fuzzy c-means, the ESOINN, and color-texture-fractal descriptor
ESOINN (dESOINN) in the precision estimation and the execution time. The
precision of VWs using the ESOINN and the dESOINN is higher then fuzzy c-
means algorithm provides. The experiments demonstrate that the unsupervised
clustering of large sets of images based on the neural network approach is
promising than other algorithms.

Parallelizing algorithms permit to increase essentially an image processing
including images of HD-quality. A computational speed was increased on 26–32 %
using algorithms with parallel implementation. Also experiments show that Intel
Cilk Plus environment provides the speedup values on 9–14 % higher in com-
parison with OpenMP environment due to effective balance of loading.

Fig. 4.5 Mean values of
speedup factors

Table 4.4 Values of speedup factors

Image sizes Number of threads

OpenMP Intel Cilk Plus Differences in values of
speedup factors, %

2 3 4 2 3 4 2 3 4

2 MB 1.75 2.29 2.68 1.93 2.51 2.92 10.27 9.79 9.04

4 MB 1.74 2.30 2.64 1.96 2.58 2.99 12.90 12.11 13.38

6 MB 1.73 2.27 2.65 2.00 2.61 3.01 15.40 14.77 13.34

8 MB 1.74 2.29 2.69 1.94 2.58 2.99 11.05 12.35 11.18

10 MB 1.72 2.28 2.66 1.99 2.61 3.02 15.92 14.58 13.58

12 Mb 1.73 2.27 2.66 1.98 2.62 3.05 14.17 15.35 14.58

Mean value 1.74 2.28 2.67 1.97 2.58 3.00 13.29 13.16 12.52
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Future work will be directed on development of algorithms, annotating not only
natural images but also complicated urban scenes. Also an image categorization is a
useful procedure in the AIA systems. The experiments with other datasets will be
executed in future.
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