
Chapter 1
New Approaches for Hierarchical Image
Decomposition, Based on IDP, SVD, PCA
and KPCA

Roumen Kountchev and Roumiana Kountcheva

Abstract The contemporary forms of image representation vary depending on the
application. There are well-known mathematical methods for image representation,
which comprise: matrices, vectors, determined orthogonal transforms,
multi-resolution pyramids, Principal Component Analysis (PCA) and Independent
Component Analysis (ICA), Singular Value Decomposition (SVD), wavelet
sub-band decompositions, hierarchical tensor transformations, nonlinear decom-
positions through hierarchical neural networks, polynomial and multiscale hierar-
chical decompositions, multidimensional tree-like structures, multi-layer perceptual
and cognitive models, statistical models, etc. In this chapter are analyzed the basic
methods for hierarchical decomposition of grayscale and color images, and of
sequences of correlated images of the kind: medical, multispectral, multi-view, etc.
Here is also added one expansion and generalization of the ideas of the authors
from their previous publications, regarding the possibilities for the development of
new, efficient algorithms for hierarchical image decompositions with various pur-
poses. In this chapter are presented and analyzed the following four new approaches
for hierarchical image decomposition: the Branched Inverse Difference Pyramid
(BIDP), based on the Inverse Difference Pyramid (IDP); the Hierarchical Singular
Value Decomposition (HSVD) with tree-like computational structure; the
Hierarchical Adaptive Principle Component Analysis (HAPCA) for groups of
correlated images; and the Hierarchical Adaptive Kernel Principal Component
Analysis (HAKPCA) for color images. In the chapter are given the algorithms, used
for the implementation of these decompositions, and their computational com-
plexity is evaluated. Some experimental results, related to selected applications are
also given, and various possibilities for the creation of new hybrid algorithms for
hierarchical decomposition of multidimensional images are specified. On the basis
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of the results obtained from the executed analysis, the basic application areas for
efficient image processing are specified, such as: reduction of the information
surplus; noise filtration; color segmentation; image retrieval; image fusion;
dimensionality reduction for objects classification; search enhancement in large
scale image databases, etc.

Keywords Hierarchical image decomposition � Branched inverse difference
pyramid � Hierarchical singular value decomposition � Hierarchical principal
component analysis for groups of images � Hierarchical adaptive kernel principal
component analysis for color images

1.1 Introduction

The methods for image processing, transmission, registration, restoration, analysis
and recognition, are defined at high degree by the corresponding mathematical
forms and models for their representation. On the other hand, they all depend on the
way the image was created, and on their practical use. The primary forms for image
representation depend on the used sources, such as: photo and video cameras,
scanners, ultrasound sensors, X-ray, computer tomography, etc. The matrix
descriptions are related to the primary discrete forms. Each still halftone image is
represented by one matrix; the color RGB image—by three matrices; the multi-
spectral, hyper spectral and multi-view images, and also some kinds of medical
images (for example, computer tomography, IMR, etc.)—by N matrices (for N > 3),
while the moving images are represented through M temporal sequences, of
N matrices each. There are already many secondary forms created for image rep-
resentation, obtained from the primary forms, after reduction of the information
surplus, and depending on the application. Various mathematical methods are used
to transform the image matrices into reduced (secondary) forms by using: vectors,
for each image block, through which are composed vector fields; deterministic and
statistical orthogonal transforms; multi-resolution pyramids; wavelet sub-band
decompositions; hierarchical tensor transforms; nonlinear decompositions through
hierarchical neural networks, polynomial and multiscale hierarchical decomposi-
tions, multi-dimensional tree-like structures, multi-layer perceptual and cognitive
models, statistical models, fuzzy hybrid methods for image decomposition, etc.

The decomposition methods permit each image matrix to be represented as
the sum of the matrix components with different weights, defined by the image
contents. Besides, the description of each matrix in the decomposition is much
simpler than that of the original (primary) matrix. The number of the matrices in the
decomposition could be significantly reduced through analyzing their weights,
without significant influence on the approximation accuracy of the primary matrix.
To this group could be related the methods for linear orthogonal transforms [1]: the
Discrete Fourier Transform (DFT), the Discrete Cosine Transform (DCT),
the Walsh-Hadamard Transform (WHT), the Hartley Transform (HrT), the Haar
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Transform (HT), etc.; the pyramidal decompositions [2]: the Gaussian Pyramid
(GP), the Laplacean Pyramid (LP), the Discrete Wavelet Transform (DWT), the
Discrete Curvelet Transform (DCuT) [3], the Inverse Difference Pyramid (IDP) [4],
etc.; the statistical decompositions [5]: the Principal Component Analysis (PCA),
the Independent Component Analysis (ICA) and the Singular Value Decomposition
(SVD); the polynomial and multiscale hierarchical decompositions [6, 7];
multi-dimensional tree-like structures [8]; hierarchical tensor transformations [9];
the decompositions based on hierarchical neural networks [10]; etc.

The aim of this chapter is to be analyzed the basic methods and algorithms for
hierarchical image decomposition. Here are also generalized the following new
approaches for hierarchical decomposition of multi-component matrix images: the
Branched Inverse Difference Pyramid (BIDP), based on the Inverse Difference
Pyramid (IDP), the Hierarchical Singular Value Decomposition (HSVD)—for the
representation of single images; the Hierarchical Adaptive Principal Component
Analysis (HAPCA)—for the decorrelation of sequences of images, and the
Hierarchical Adaptive Kernel Principal Component Analysis (HAKPCA)—for the
analysis of color images.

1.2 Related Work

One of the contemporary methods for hierarchical image decomposition is called
multiscale decomposition [7]. It is used for noise filtration in the image f, repre-
sented by the sum of the clean part u, and the noisy part, v. In accordance to Rudin,
Osher and Fatemi (ROF) [11], to define the components u and v it is necessary to
calculate the total variation of the functional Q, defined by the relation:

Qðf ; kÞ ¼ inf
Z
X

jruj þ kjjvjj2L2 ; f ¼ uþ v

8<
:

9=
;;

where λ > 0 is a scale parameter; and f 2 L2(Ω)—the image function, defined in the
space L2(Ω). The minimization of Q leads to decomposition, in result of which the
visual information is divided into a part u that extracts the edges of f, and a part
v that captures the texture. Denoising at different scales λ generates a multiscale
image representation. In [6], Tadmor, Nezzar and Vese proposed a multiscale image
decomposition which offers a hierarchical and adaptive representation for different
features in the analyzed images. The image is hierarchically decomposed into the
sum of simpler atoms uk, where uk extracts more refined information from the
previous scale uk−1. To this end, the atoms uk are obtained as dyadically scaled
minimizers of the ROF functionals at increasing λk scales. Thus, starting with v−1 := f
and letting vk denote the residual at a given dyadic scale, λk = 2k, the recursive step
[uk, vk] = arg{inf[QT(vk−1, k)]} leads to the desired hierarchical decomposition,
f = ΣT(uk) (here T is a blurring operator).
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Another well-known approach for hierarchical decomposition is based on the
hierarchical matrices [12]. The concept of hierarchical, or H-matrices, is based on
the observation that submatrices of a full rank matrix may be of low rank, and
respectively—to have low rank approximations. On Fig. 1.1 is given an example
for the representation of a matrix of size 8 × 8 through H-matrices, which contain
sub-matrices of three different sizes: 4 × 4, 2 × 2 and 1 × 1.

This observation is used for the matrix-skeleton approximation. The inverses of
finite element matrices have, under certain assumptions, submatrices with expo-
nentially decaying singular values. This means that these submatrices have also
good low rank approximations. The hierarchical matrices permit decomposition by
QR or Cholesky algorithms, which are iterative. Unlike them, the new approaches
for hierarchical image decomposition, given in this chapter (BIDP and HSVD—for
single images, HAPCA—for groups of correlated images, and HAKPCA—for
color images), are not based on iterative algorithms.

1.3 Image Representation Based on Branched Inverse
Difference Pyramid

1.3.1 Principles for Building the Inverse Difference Pyramid

In this section is given a short description of the inverse difference pyramid, IDP
[4, 13], used as a basis for building its modifications. Unlike the famous Gaussian
(GP) and Laplacian (LP) pyramids, the IDP represents the image in the spectral
domain. After the decomposition, the image energy is concentrated in its first
components, which permits to achieve very efficient compression, by cutting off the
low-energy components. As a result, the main part of the energy of the original
image is retained, despite the limited number of decomposition components used.
For the decomposition implementation various kinds of orthogonal transforms
could be used. In order to reduce the number of decomposition levels and the
computational complexity, the image is initially divided into blocks and for each is
then built the corresponding IDP.

Fig. 1.1 Representation of the matrix of size 8 × 8 through three hierarchical matrices, or
H-matrices
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In brief, the IDP is executed as follows: At the lowest (initial) level, on the
matrix [B] of size 2n × 2n is applied the pre-selected “Truncated” Orthogonal
Transform (TOT) and are calculated the values of a relatively small number of
“retained” coefficients, located in the high-energy area of the so calculated trans-
formed (spectrum) matrix [S0]. These are usually the coefficients with spatial fre-
quencies (0, 0), (0, 1), (1, 0) and (1, 1). After Inverse Orthogonal Transform
(IOT) of the “truncated” spectrum matrix ½Ŝ0�, which contains the retained coeffi-
cients only, is obtained the matrix ½B̂0� for the initial IDP level (p = 0), which
approximates the matrix [B]. The accuracy of the approximation depends on: the
positions of the retained coefficients in the matrix [S0]; the values, used to substitute
the missing coefficients from the approximating matrix ½Ŝ0� for the zero level, and
on the selected orthogonal transform. In the next decomposition level (p = 1), is
calculated the difference matrix ½E0� ¼ ½B� � ½B̂0�. The resulting matrix is then split
into 4 sub-matrices of size 2n−1 ×2n−1 and on each is applied the corresponding
TOT. The total number of retained coefficients for level p = 1 is 4 times larger than
that in the zero level. In case, that Walsh-Hadamard Transform (WHT) is used for
this level, the values of coefficients (0, 0) in the IDP decomposition levels 1 and
higher are always equal to zero, which permits to reduce the number of retained
coefficients with ¼. On each of the four spectrum matrices ½Ŝ1� for the IDP level
p = 1 is applied IOT and as a result, four sub-matrices are obtained, which build the
approximating difference matrix ½Ê0�. In the next IDP level (p = 2) is calculated the
difference matrix ½E1� ¼ ½E0� � ½Ê0�. After that, each difference sub-matrix is
divided in similar way as in level 1, into four matrices of size 2n−2 × 2n−2, and for
each is performed TOT, etc. In the last (highest) IDP level is obtained the “residual”
difference matrix. In case that the image should be losslessly coded, each block of
the residual matrix is processed with full orthogonal transform and no coefficients
are omitted.

1.3.2 Mathematical Representation of n-Level IDP

The digital image is represented by a matrix of size (2nm) × (2nm). For the pro-
cessing, the matrix is first divided into blocks of size 2n × 2n and on each is applied
the IDP decomposition. The matrix [B(2n)] of each block is represented by the
equation:

½Bð2nÞ� ¼ ½B̂0ð2nÞ�þ
Xr

p¼1

½Êp�1ð2nÞ� þ ½Erð2nÞ� for r ¼ 1; 2; . . .; n� 1: ð1:1Þ

Here the number of decomposition components, which are matrices of size
2n × 2n, is equal to (r + 2). The maximum possible number of decomposition levels
for one block is n + 1 (for r = n − 1). The last component ½Erð2nÞ� defines the
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approximation error for the block ½Bð2nÞ� for the case, when the decomposition is
limited up to level p = r. The first component ½B̂0ð2nÞ� for the level p = 0 is the
coarse approximation of the block [B(2n)]. It is obtained through 2D IOT on the
block ½Ŝ0ð2nÞ� in correspondence with the relation:

½B̂0ð2nÞ� ¼ ½T0ð2nÞ��1½Ŝ0ð2nÞ�½T0ð2nÞ��1 for p ¼ 0; ð1:2Þ

where ½T0ð2nÞ��1 is a matrix of size 2n × 2n, used for the inverse orthogonal
transform of ½Ŝ0ð2nÞ�.

The matrix ½Ŝ0ð2nÞ� ¼ ½m0ðu; vÞs0ðu; vÞ� is the “truncated” orthogonal transform
of the block [B(2n)]. Here m0(u, v) are the elements of the binary matrix-mask
[M0(2

n)], used to define the retained coefficients of ½Ŝ0ð2nÞ� in correspondence to the
relation:

m0ðu; vÞ ¼ 1; if s0ðu; vÞ is a retained coefficient;
0 � otherwise:

�
ð1:3Þ

The values of the elements m0ðu; vÞ are selected in accordance with the
requirement the retained coefficients ŝ0ðu; vÞ ¼ m0ðu; vÞs0ðu; vÞ to be these with
maximum energy, calculated for all image blocks. The transform ½S0ð2nÞ� of the
block [B(2n)] is defined through direct 2D OT:

½S0ð2nÞ� ¼ ½T0ð2nÞ�½Bð2nÞ�½T0ð2nÞ�; ð1:4Þ

where ½T0ð2nÞ� is a matrix of size 2n × 2n for the decomposition level p = 0, used to
perform the selected 2D OT, which could be DFT, DCT, WHT, KLT, etc.

The remaining coefficients in the decomposition presented by Eq. 1.1 are the
approximating difference matrices ½Êp�1ð2n�pÞ� for levels p = 1, 2, …, r. They

comprise the sub-matrices ½Êkp
p�1ð2n�pÞ� of size 2n−p × 2n−p for kp = 1, 2, …, 4p,

obtained through quadtree division of the matrix ½Êp�1ð2n�pÞ�. Each sub-matrix

½Êkp
p�1ð2n�pÞ� is then defined by the relation:

½Êkp
p�1ð2n�pÞ� ¼ ½Tpð2n�pÞ��1½Ŝkpp ð2n�pÞ�½Tpð2n�pÞ��1 for kp ¼ 1; 2; . . .; 4p; ð1:5Þ

where 4p is the number of the quadtree branches in the decomposition level p. Here
½Tpð2n�pÞ��1 is a matrix of size 2n−p × 2n−p in the level p, used for the inverse 2D OT.

The elements ŝkpp ðu; vÞ ¼ mpðu; vÞ: skpp ðu; vÞ of the matrix ½Ŝkpp ð2n�pÞ� are defined
by the elements mp(u, v) of the binary matrix-mask [Mp(2

n−p)]:

mpðu; vÞ ¼ 1; if skpp ðu; vÞ is a retained coefficient,
0 � otherwise:

�
ð1:6Þ
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The matrix ½Skpp ð2n�pÞ� is the transform of ½Ekp
p�1ð2n�pÞ� and is defined through

direct 2D OT:

½Skpp ð2n�pÞ� ¼ ½Tpð2n�pÞ�½Ekp
p�1ð2n�pÞ�½Tpð2n�pÞ�: ð1:7Þ

Here ½Tpð2n�pÞ� is a matrix of size 2n−p × 2n−p in the decomposition level p, used

for the 2D OT of each block ½Ekp
p ð2n�pÞ� (when kp = 1, 2,…, 4p), of the difference

matrix for same level, defined by the equation:

½Ep�1ð2nÞ� ¼ ½Bð2nÞ��½B̂0ð2nÞ� for p ¼ 1; ð1:8Þ

½Ep�1ð2n�pÞ� ¼ ½Ep�2ð2n�pÞ� � ½Êp�2ð2n�p Þ� for p ¼ 2; 3; . . .; r: ð1:9Þ

In result of the decomposition represented by Eq. 1.1, for each block [B(2n)], are
calculated the following spectrum coefficients:

• all nonzero coefficients of the transform ½Ŝ0ð2nÞ� in the decomposition level
p = 0;

• all nonzero coefficients of the transforms ½Ŝkpp ð2n�pÞ� for kp = 1, 2, …, 4p in the
decomposition levels p = 1, 2, …, r.

The spectrum coefficients of same spatial frequency (u, v) from all image blocks
are arranged in common data sequences, which correspond to their decomposition
level p. The transformation of the 2D data massifs into one-dimensional data
sequence is executed, using the recursive Hilbert scan, which preserves very well
the correlation between neighboring coefficients.

In order to reduce the decomposition complexity, and in accordance with
Eq. 1.1, this could be done recursively, as follows:

½B0
rð2nÞ� ¼ ½B0

r�1ð2nÞ� þ ½Êrð2nÞ� for r ¼ 1; 2; . . .; n� 1: ð1:10Þ

For the case, when the number of the retained coefficients for each IDP sub-block

kp of size 2n�p � 2n�p is
P2n�p

u¼0

P2n�p

v¼0
mpðu; vÞ ¼ 4; then their total number for all levels is:

N ¼
Xn�1

p¼0

4pþ 1 ¼ ð4=3Þð4n � 1Þ � ð4=3Þ4n: ð1:11Þ

In this case the total number of “retained” coefficients is 4/3 times higher than
that of the pixels in the block, and hence, the IPD is “overcomplete”.

1 New Approaches for Hierarchical Image Decomposition … 7



1.3.3 Reduced Inverse Difference Pyramid

For the building of the Reduced IDP (RIDP) [14], the existing relations between the
spectrum coefficients from the neighboring IDP levels are used. Let the retained

coefficients skpp ðu; vÞ with spatial frequencies (0, 0), (1, 0), (0, 1) and (1, 1) for the
sub-block kp in the IDP level p, be obtained by using the 2D-WHT. Then, except
for level p = 0, the coefficients (0, 0) from each of the four neighboring sub-blocks
in same IDP level are equal to zero, i.e.:

skpp ð0; 0Þ ¼ skp þ 1
p ð0; 0Þ ¼ skp þ 2

p ð0; 0Þ ¼ skp þ 3
p ð0; 0Þ ¼ 0 for p ¼ 1; 2; . . .; n� 1:

ð1:12Þ

From this, it follows that the coefficients skppþ ið0; 0Þ for i = 0, 1, 2, 3 could be
cut-off, and as a result they should not be saved or transferred. Hence, the total
number of the retained coefficients NR for each sub-block kp in the decomposition
levels p = 1, 2,…, n−1 of the RIDP could be reduced by ¼, i.e.

NR ¼ 4þ
Xn�1

p¼1

4pþ 1�
Xn�1

p¼1

4p ¼ 4þ 3
Xn�1

p¼1

4p ¼ 4þ 3
4
3
ð4n�1 � 1Þ ¼ 4n: ð1:13Þ

In this case the total number of the “retained” coefficients for all levels is equal to
the number of pixels in the block, and hence, the so calculated RIPD is “complete”.

1.3.4 Main Principle for Branched IDP Building

The pyramid BIDP [15, 16] with one or more branches is an extension of the basic
IDP. The image representation through the BIDP aims at the enhancement of the
image energy concentration in a small number of IDP components. On Fig. 1.2 is
shown an example block diagram of the generalized 3-level BIDP. The IDP for each
block of size 2n × 2n from the original image, called “Main Pyramid”, is of 3 levels
(n = 3, for p = 0, 1, 2). The values of the coefficients, calculated for these 3 levels,
compose the inverse pyramid, whose sections are of different color each. The
coefficients s(0, 0), s(0, 1), s(1, 0) and s(1, 1) in level p = 0 from all blocks compose
corresponding matrices of size m × m, colored in yellow. These 4 matrices build the
“Branch for level 0” of the Main Pyramids. Each is then divided into blocks of size
2n−1×2n−1, on which in similar way are built the corresponding 3-level IPDs
(p = 00, 01, 02). The retained coefficients s(0, 1), s(1, 0) and s(1, 1) in level p = 1 of
the Main Pyramids from all blocks build matrices of size 2m × 2m (colored in pink).

Each matrix of size 2m × 2m is divided into blocks of size 2n−1 × 2n−1, on which
in similar way are build corresponding 3-level IDPs (p = 10, 11, 12). The retained
coefficients, calculated after TOT from the blocks of the Residual Difference in the
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last level (p = 2) of the Main Pyramids, build matrices of size 4m × 4m; from the
first level (p = 00) of the Pyramid Branch 0—matrices of size (m/2n−1 × m/2n−1);
and from the first level (p = 10) of the “Pyramid Branch 1”—matrices of size
(m/2n−2 × m/2n−2). In order to reduce the correlation between the elements of the so
obtained matrices, on each group of 4 spatially neighboring elements is applied the
following transform: the first is substituted by their average value, and each of
the remaining 3—by its difference to next elements, scanned counter-clockwise. The
coefficients, obtained this way from all levels of the Main and Branch Pyramids are
arranged in one-dimensional sequences in accordance with Hilbert scan and after
that are quantizated and entropy coded using Adaptive RLC and Huffman. The
values of the spectrum coefficients are quantizated only in case that the image coding
is lossy. In order to retain the visual quality of the restored images, the quantization
values are related to the sensibility of the human vision to errors in different spatial
frequencies. To reduce these errors, retaining the compression efficiency, in the
consecutive BIDP levels could be used various fast orthogonal transforms: for
example, in the zero level could be used DCT, and in the next levels—WHT.

1.3.5 Mathematical Representation for One BIDP Branch

In the general case, the branch g of the BIDP is built on the matrix ½Sgðu; vÞ� of size
2n�g�1 � 2n�g�1; which comprises all spectrum coefficients skpp ðu; vÞ with the
same spatial frequency (u, v) from all blocks or sub-blocks kp in the level p = g of

Fig. 1.2 Example of generalized 3-level Branched Inverse Difference Pyramid (BIDP)
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the Main IDPs. By analogy with Eq. (1.1), the matrix ½Sgðu;vÞ� could be decomposed
in accordance with the relation, given below:

½Sgðu;vÞ� ¼ ½~S0;gðu;vÞ� þ
Xr

s¼1

½~Eks
s�1;gðu;vÞ� þ ½~Er;gðu;vÞ� for r ¼ 1; 2; . . .; n� 1; ð1:14Þ

where

½~S0;gðu;vÞ� ¼ ½T0;gðu;vÞ��1½Ŝ0;gðu;vÞ�½T0;gðu;vÞ��1 for s ¼ 0; ð1:15Þ

½Ŝ0;gðu;vÞ� ¼ ½̂s0;gðu;vÞðk; lÞ� ¼ ½m0;gðu;vÞðk; lÞs0;gðu;vÞðk; lÞ�; ð1:16Þ

m0;gðu;vÞðk; lÞ ¼ 1; if s0;gðu;vÞðk; lÞ are the retained coefficients,
0 � otherwise;

�
ð1:17Þ

½S0;gðu;vÞ� ¼ ½s0;gðu;vÞðk; lÞ� ¼ ½T0;gðu;vÞ�½Sgðu;vÞ�½T0;gðu;vÞ�; ð1:18Þ

½Es�1;gðu;vÞ� ¼ ½Sgðu;vÞ�� ½~S0;gðu;vÞ� for s ¼ 1; ð1:19Þ

½~Eks
s�1;gðu;vÞ� ¼ ½Ts;gðu;vÞ��1½Skss;gðu;vÞ�½Ts;gðu;vÞ��1 for s ¼ 2; 3; . . .; r and ks

¼ 1; 2; . . .; 4s; ð1:20Þ

½Es�1;gðu;vÞ� ¼ ½Es�2;gðu;vÞ� � ½~Es�2;gðu;vÞ�: ð1:21Þ

All matrices in Eqs. (1.14)−(1.19) are of size 2n�g�1 � 2n�g�1; and these in
Eqs. (1.20) and (1.21)—of size 2n�g�s�1 � 2n�g�s�1: The decomposition from
Eq. (1.14) of the matrix ½Sgðu;vÞ� is named Pyramid Branch (PBg(u,v)). It is a pyramid,
whose initial and final levels are g and r correspondingly (g < r). This pyramid
represents the branch g of the Main IDPs and contains all coefficients, whose spatial
frequency is (u, v).

The maximum number of branches for the levels p = 0, 1, …, n − 1 of the Main
IDPs, built on a sub-block of size 2n�p � 2n�p; is defined by the general number of

retained spectrum coefficients Mp ¼ 4p
P2n�p

u¼0

P2n�p

v¼0
mpðu; vÞ. For the branch g from the

level p = g the corresponding pyramid PBg(uv) is of r levels. The number of the
coefficients in this branch of the Main IDPs for p = g, g + 1, …, r, without
cutting-off the coefficients, calculated for the spatial frequency (0, 0), is:

Ng;r ¼ Mg

Xr

p¼g

4p ¼ Mg½
Xr

p¼0

4p �
Xg�1

p¼0

4p� ¼ ðMg=3Þð4rþ 1 � 4gÞ: ð1:22Þ

10 R. Kountchev and R. Kountcheva



In case that the number of the retained spectrum coefficients for each sub-block

is set to be
P2n�g

u¼0

P2n�g

v¼0
mgðu; vÞ ¼ 4; then Mg ¼ 4gþ 1. In this case, from Eq. (1.22) it

follows, that the total number of the coefficients in the branch PBg(uv) is Ng;r ¼
ð4gþ 1=3Þð4rþ 1 � 4gÞ: Hence, the compression ratio (CR) for PBg(uv) is defined by
the relation:

CRg;r ¼ 4n�g�1

Ng;r;
¼ 3

4
� 4n�g�1

4gð4rþ 1 � 4gÞ ; ð1:23Þ

where 4n−g−1 is the number of the elements in one sub-block of size 2n�g�1 �
2n�g�1 from PBg(uv).

The compression ratio for the Main IDPs, calculated in accordance with
Eq. (1.11), is:

CR ¼ 4n

N
¼ 3� 4n

4ð4n � 1Þ �
3
4
for 4n � 1: ð1:24Þ

From the comparison of the Eqs. (1.23) and (1.24) it follows, that:

CRg;r [CR; if r� n� 3: ð1:25Þ

In case that the requirement from Eq. (1.25) for the number of levels r of PBg(u,v)

for level g of the Main IDPs is satisfied, the compression ratio for the branch g is
higher, than that for each of the basic pyramids. From Eq. (1.25) it follows that the
condition r > 1 is satisfied, when n > 4, i.e., when the image is divided into blocks
of minimum size of 16 × 16 pixels. For this case, to retain the correlation between
their pixels high, is necessary the size of the image (16m) × (16m) to be relatively
large. For example, the image should be of size 2k × 2k (for m = 128), or larger.
Hence, the BIDP decomposition is efficient mainly for images with high resolution.

The correlation between the elements of the blocks of size 2n�1 � 2n�1 from the
initial level g = 0 of the Main IDPs is higher than that, between the elements of the
sub-blocks of size 2n�g�1 � 2n�g�1 from the higher levels g = 1, 2, …, r. Because
of this, the branching of the BIDP should always start from the level g = 0.

1.3.6 Transformation of the Retained Coefficients
into Sub-blocks of Size 2 × 2

The aim of the transformation is to reduce the correlation between the retained
neighboring spectrum coefficients in the sub-blocks of size 2 × 2 in each matrix,
built by the coefficients of same spatial frequency (u, v) from all blocks (or
respectively—from the sub-blocks kp in the selected level p of the Main IDPs, or
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their branches). In order to simplify the presentation, the spectrum coefficients in
the sub-blocks kp for the level p, are set as follows:

Ai ¼ skp þ i
p ð0; 0Þ; Bi ¼ skp þ i

p ð1; 0Þ; Ci ¼ skp þ i
p ð0; 1Þ; Di ¼ skp þ i

p ð1; 1Þ for i ¼ 0; 1; 2; 3:

ð1:26Þ

On Fig. 1.3 are shown matrices of size 2 × 2, which contain the retained groups

of four spectrum coefficients skpp ðu; vÞ, which have same frequencies, (0, 0), (1, 0),
(0, 1) and (1, 1) correspondingly, placed in four neighboring sub-blocks (kp, kp + 1,
kp + 2, kp + 3) of size 2n−p × 2n−p for the level p of the Main IDPs, or their branches.

In correspondence with the symbols, used in Fig. 1.3, the transformation of the
groups of four coefficients is represented by the relation below [16]:

S1
S2
S3
S4

2
664

3
775 ¼ 1

4

1 1 1 1
0 4 0 �4
�4 0 4 0
0 0 �4 4

2
664

3
775

P1

P2

P3

P4

2
664

3
775: ð1:27Þ

Here Pi, for i = 1, 2, 3, 4 represent correspondingly:

• the coefficients Ai, for i = 1, 2, 3, 4 with frequencies (0, 0);
• the coefficients Bi, for i = 1, 2, 3, 4 with frequencies (1, 0);
• the coefficients Ci, for i = 1, 2, 3, 4 with frequencies (0, 1);
• the coefficients Di, for i = 1, 2, 3, 4 with frequencies (1, 1).

Sub-Block kp+3
2n-p×2n-p

Sub-Block kp+2
2n-p×2n-p

Sub-Block kp+1
2n-p×2n-p

Sub-Block kp
2n-p×2n-p

2x2

A1 A2

A3 A4

2x2

B4

Level p

B2B1

B3

2x2

D2

D4D3

D1

2x2

C2

C4C3

C1

(0,0) (1,0)

(0,1) (1,1)

Fig. 1.3 Location of the
retained groups of four
spectrum coefficients from 4
neighboring sub-blocks
kp + i (i = 0, 1, 2, 3) of size
2n−p × 2n−p in the
decomposition level p
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In result of the transform, executed in accordance with Eq. (1.27), each coeffi-
cient S1 has higher value, than the remaining three difference coefficients S2, S3, and
S4.

The inverse transform executed in respect of Eq. (1.27) gives total restoration of
the initial coefficients Pi, for i = 1, 2, 3, 4:

P1

P2

P3

P4

2
664

3
775 ¼ 1

4

4 �1 �3 �2
4 3 1 2
4 �1 1 �2
4 �1 1 2

2
664

3
775

S1
S2
S3
S4

2
664

3
775; ð1:28Þ

Depending on the frequency (0, 0), (1, 0), (0, 1), or (1, 1) of the restored
coefficients P1 * P4, they correspond to A1 * A4, B1 * B4, C1 * C4, or
D1 * D4. The operation, given in Eq. (1.28) is executed through decoding of the
transformed coefficients S1 * S4. The so described features of the coefficients S1,
S2, S3, S4 permit to achieve significant enhancement of their entropy coding
efficiency.

The basic quality of the BIDP is that it offers significant decorrelation of the
processed image data. As a result, the BIDP permits the following:

• To achieve highly efficient compression with retained visual quality of the
restored image (i.e. visually lossless coding), or efficient lossless coding,
depending on the application requirements;

• Layered coding and transfer of the image data, in result of which is obtained low
transfer bit-rate with gradually increased quality of the decoded image;

• Lower computational complexity than that of the wavelet decompositions [4];
• Easy adaptation of the coder parameters, so that to ensure the needed concor-

dance of the obtained data stream, to the ability of the communication channel;
• Resistance to noises in the communication channel, or due to

compression/decompression. The reason for this is the use of TOT in the
decoding of each image block;

• Retaining the quality of the decoded image after multiple coding/decoding;

The BIDP could be further developed and modified in accordance to the
requirements of various possible applications. One of these applications for pro-
cessing of groups of similar images, for example, is a sequence of Computer
Tomography (CT) images, Multi-Spectral (MS) images, etc.

1.3.7 Experimental Results

The experimental results, given below, were obtained from the investigation of
image database, which contained medical images stored in DICOM (dcm) format,
of various size and kind, grouped in 24 classes. The database was created at the
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Medical University of Sofia, and comprises the following image kinds: CTI—
computer tomography images; MGI—mammography images; NMI—nuclear mag-
netic resonance images; CRI—computer radiography images, and USI—ultrasound
images. For the investigation, the DICOM images were first transformed into
non-compressed (bmp format), and then they were processed by using various
lossless compression algorithms. A part of the obtained results is given in Table 1.1.

Here are shown the results for the lossless compression of the bmp files of still
images, and of image sequences, after their transformation into files of the kind jp2
and tk. The image file format jp2 is based on the standard JPEG2000LS, and the tk
format—on the algorithms BIDP for single images, combined with the adaptive
run-length lossless coding (ARLE), based on the histogram statistics [17]. For the
execution of the 2D-TOT/IOT in the initial levels of all basic pyramids and their
branches was used the 2D-DCT, and in their higher levels—the 2D-WHT trans-
form. The number of the pyramid levels for the blocks of the smallest treated
images (of size 512 × 512), is two, and for the larger ones, it is three. The basic IDP
pyramids have one branch only, comprising coefficients with spatial frequency
(0, 0) for their initial levels.

From the analysis of the obtained results, the following conclusions could be
done:

1. The new format tk surpasses the jp2, especially for images, which contain
objects, placed on a homogenous background. From the analyzed 24 classes of
images, 17 are of this kind. Some examples are shown in Table 1.1;

2. Together with the enlargement of the analyzed images, the compression ratio for
the lossless tk compression grows up, compared to that of the jp2;

3. The data given in Table 1.1 show that the mean compression ratio for all
DICOM images after their transformation into the format tk is 41:1, while for the
jp2 this coefficient is 26:1. Hence, the use of the tk format for all 24 classes
ensures compression ratio which is ≈40 % higher than that of the jp2 format.

The experimental results, obtained for the comparison of the coding efficiency
for several kinds of medical images through BIDP and JPEG2000 confirmed the
basic advantages of the new approach for hierarchical pyramid decomposition,
presented here.

1.4 Hierarchical Singular Value Image Decomposition

The SVD is a statistical decomposition for processing, coding and analysis of
images, widely used in the computer vision systems. This decomposition was an
object of vast research, presented in many monographs [18–22] and papers [23–26].
This is optimal image decomposition, because it concentrates significant part of the
image energy in minimum number of components, and the restored image (after
reduction of the low-energy components), has minimum mean square error. One of
the basic problems, which limit, to some degree, the use of the “classic” SVD, is
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related to its high computational complexity, which grows up together with the
image size.

To overcome this problem, several new approaches are already offered. The first
is based on the SVD calculation through iterative methods, which do not require
defining the characteristic polynomials of a pair of matrices. In this case, the SVD is
executed in two stages: in the first, each matrix is first transformed into triangular
form with the QR decomposition, and then—into bidiagonal, through the
Householder transforms [27]. In the second stage on the bidiagonal matrix is
applied an iterative method, whose iterations stop when the needed accuracy is
achieved. For this could be used the iterative method of Jacobi [21], in accordance
with which for the calculation of the SVD with bidiagonal matrix is needed the
execution of a sequence of orthogonal transforms with rotation matrix of size 2 × 2.
The second approach is based on the relation of the SVD with the Principal
Component Analysis (PCA). It could be executed through neural networks [28] of
the kind generalized Hebbian or multilayer perceptron networks, which use iterative
learning algorithms. The third approach is based on the algorithm, known as
Sequential KL/SVD [29]. The basic idea here is as follows: the image matrix is
divided into blocks of small size, and on each is applied the SVD, based on the QR
decomposition [21]. At first, the SVD is calculated for the first block from the
original image (the upper left, for example), and then is used iterative SVD cal-
culation for each of the remaining blocks by using the transform matrices, calcu-
lated for the first block (by updating the process). In the flow of the iteration process
are deleted the SVD components, which correspond to very small eigen values.

For the acceleration of the SVD calculation several methods are already
developed [30–32]. The first, is based on the algorithm, called Randomized SVD
[30], a number of matrix rows (or columns) is randomly chosen. After scaling, they
are used to build a small matrix, for which is calculated the SVD, and it is later used
as an approximation of the original matrix. In [31] is offered the algorithm
QUIC-SVD, suitable for matrices of very large size. Through this algorithm is
achieved fast sample-based SVD approximation with automatic relative error
control. Another approach is based on the sampling mechanism, called the cosine
tree, through which is achieved best-rank approximation. The experimental
investigation of the QUIC-SVD in [32] presents better results than those, from the
MATLAB SVD and the Tygert SVD. The so obtained 6–7 times acceleration
compared to the SVD depends on the pre-selected value of the parameter δ which
defines the upper limit of the approximation error, with probability (1 − δ).

Several SVD-based methods developed, are dedicated to enhancement of the
image compression efficiency [33–37]. One of them, called Multi-resolution SVD
[33], comprises three steps: image transform, through 9/7 biorthogonal wavelets of
two levels, decomposition of the SVD-transformed image, by using blocks of size
2 × 2 up to level six, and at last—the use of the algorithms SPIHT and gzip. In [34]
is offered the hybrid KLT-SVD algorithm for efficient image compression. The
method K-SVD [35] for facial image compression, is a generalization of the
K-means clusterization method, and is used for iterative learning of overcomplete
dictionaries for sparse coding. In correspondence with the combined compression
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algorithm, in [36] is proposed a SVD based sub-band decomposition and
multi-resolution representation of digital colour images. In the paper [37] is used
the decomposition, called Higher-Order SVD (HOSVD), through which the SVD
matrix is transformed into a tensor with application in the image compression.

In this chapter, the general presentation of one new approach for hierarchical
decomposition of matrix images is given, based on the multiple application of the
SVD on blocks of size 2 × 2 [38]. This decomposition, called Hierarchical SVD
(HSVD), has tree-like structure of the kind “binary tree” (full or truncated).
The SVD calculation for blocks of size 2 × 2 is based on the adaptive KLT [5, 39].
The HSVD algorithm aims to achieve a decomposition with high computational
efficiency, suitable for parallel and recursive processing of the blocks through
simple algebraic operations, and offers the possibility for enhancement of the cal-
culations through cutting-off the tree branches, whose eigen values are small or
equal to zero.

1.4.1 SVD Algorithm for Matrix Decomposition

In the general case, the decomposition of each image matrix [X(N)] of size
N × N could be executed by using the direct SVD [5], defined by the equation
below:

½XðNÞ� ¼ ½UðNÞ�½KðNÞ�1=2½VðNÞ� t ¼
XN
s¼1

ffiffiffiffi
ks

p
~Us:~V

t
s: ð1:29Þ

The inverse SVD is respectively:

½KðNÞ�1=2 ¼ ½UðNÞ�t½XðNÞ� ½VðNÞ�: ð1:30Þ

In the relations above, the terms ½UðNÞ� ¼ ½~U1; ~U2; . . .; ~UN � and ½VðNÞ� ¼
½~V1; ~V2; . . .; ~VN � are matrices, composed respectively by the vectors ~Us and ~Vs for
s = 1, 2, …, N; ~Us are the eigenvectors of the matrix Y Nð Þ½ � ¼ X Nð Þ½ � X Nð Þ½ �t
(left-singular vectors of the [X(N)]), and ~Vs—the eigenvectors of the matrix
Z Nð Þ½ � ¼ X Nð Þ½ �t X Nð Þ½ � (right-singular vectors of the [X(N)]), for which:

½YðNÞ�~Us ¼ ks~Us; ½ZðNÞ�~Vs ¼ ks~Vs; ð1:31Þ

½KðNÞ� ¼ diag ½k1; k2; ::; kN� is a diagonal matrix, composed by the eigenvalues
ks which are identical for the matrices ½YðNÞ� and ½ZðNÞ� .

From Eq. (1.29) it follows that for the description of the decomposition for a
matrix of size N × N, N × (2N + 1) parameters are needed in total, i.e. in the
general case the SVD is a decomposition of the kind “overcomplete”.
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1.4.2 Particular Case of the SVD for Image Block of Size
2 × 2

In this case, the direct SVD for the block [X] of size 2 × 2 (for N = 2) is represented
by the relation:

½X� ¼ a b
c d

� �
¼ ½U�½K�1=2½V � t ¼

ffiffiffiffiffi
k1

p
~U1~V

t
1 þ

ffiffiffiffiffi
k2

p
~U2~V

t
2 ¼

X2
s¼1

ffiffiffiffi
ks

p
~Us~V

t
s

ð1:32Þ

or

½X� ¼ ½C1� þ ½C2�; ð1:33Þ

where ½C1� ¼
ffiffiffiffiffi
k1

p
~U1~Vt

1;½C2� ¼
ffiffiffiffiffi
k2

p
~U2~Vt

2; a, b, c, d are the elements of the block
[X]; k1; k2 are the eigenvalues of the symmetrical matrices [Y] and [Z], defined by
the relations below:

½Y � ¼ ½X�½X�t ¼ a b
c d

� �
a c
b d

� �
¼ ða2 þ b2Þ ðacþ bdÞ

ðacþ bdÞ ðc2 þ d2Þ
� �

; ð1:34Þ

½Z� ¼ ½X�t½X� ¼ a c
b d

� �
a b
c d

� �
¼ ða2 þ c2Þ ðabþ cdÞ

ðabþ cdÞ ðb2 þ d2Þ
� �

: ð1:35Þ

~U1 and ~U2 are the eigenvectors of the matrix [Y], for which: ½Y �~Us ¼ ks~Us

(s = 1, 2);
~V1 and ~V2 are the eigenvectors of the matrix [Z], for which: ½Z�~Vs ¼ ks~Vs (s = 1, 2).

U½ � ¼ ½~U1; ~U2� and V½ � t ¼ ~Vt
1

~Vt
2

� �
are matrices, composed by the eigen vectors ~Us

and ~Vs.

In accordance with the solution given in [38] for the case when N = 2, the couple
direct/inverse SVD for the matrix [X(2)] could be represented as follows:

a b
c d

� �
¼ 1

2A
r1

ffiffiffiffiffi
rp

p ffiffiffiffiffi
sp

pffiffiffiffiffi
rq

p ffiffiffiffiffi
sq

p
� �

þ r2

ffiffiffiffiffi
sq

p � ffiffiffiffiffi
rq

p
� ffiffiffiffiffi

sp
p ffiffiffiffiffi

rp
p

� �� �
¼ r1½T1� þ r2½T2�

¼ ½C1� þ ½C2� ;
ð1:36Þ

r1 0
0 r2

� �
¼ 1

2A

ffiffiffi
p

p ffiffiffi
q

p
� ffiffiffi

q
p ffiffiffi

p
p

� �
a b
c d

� � ffiffi
r

p � ffiffi
s

pffiffi
s

p ffiffi
r

p
� �

for A 6¼ 0; ð1:37Þ
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where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4g2

p
; r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
xþA
2

r
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � A

2

r
; r ¼ A þ m; p ¼ A þ l;

s ¼ A� m; q ¼ A� l;

ð1:38Þ

m ¼ a2 þ c2 � b2 � d2; g ¼ ab þ cd; x ¼ a2 þ b2 þ c2 þ d2;

l ¼ a2 þ b2 � c2 � d2:
ð1:39Þ

Figure 1.4 shows the algorithm for direct SVD for the block [X] of size 2 × 2,
composed in accordance with the relations (1.36), (1.38) and (1.39). This algorithm
is the basic building element—the kernel, used to create the HSVD algorithm.

In accordance with Eq. (1.32) the matrix [X] is transformed into the vector
~X ¼ ½a; b; c; d � t; whose components are arranged by using the “Z”-scan. The
components of the vector ~X are the input data for the SVD algorithm. After its
execution, are obtained the vectors ~C1 and ~C2; from whose components are defined
the elements of the matrices [C1] and [C2] of size 2 × 2, by using the “Z”-scan
again. In this case however, this scan is used for the inverse transform of all vectors
~C1, ~C2 in the corresponding matrix [C1], [C2].

1.4.3 Hierarchical SVD for a Matrix of Size 2n × 2n

The hierarchical n-level SVD (HSVD) for the image matrix [X(N)] of size 2n × 2n

pixels (N = 2n) is executed through multiple applying the SVD on image
sub-blocks (sub-matrices) of size 2 × 2, followed by rearrangement of the so cal-
culated components.

In particular, for the case, when the image matrix [X(4)] is of size 22 × 22

(N = 22 = 4), then the number of the hierarchical levels of the HSVD is n = 2. The
flow graph, which represents the calculation of the HSVD, is shown on Fig. 1.5. In
the first level (r = 1) of the HSVD, the matrix [X(4)] is divided into four
sub-matrices of size 2 × 2, as shown in the left part of Fig. 1.5. Here the elements
of the sub-matrices on which is applied the SVD2×2 in the first hierarchical level, are
colored in same color (yellow, green, blue, and red). The elements of the
sub-matrices are:

½Xð4Þ� ¼ ½X1ð2Þ� ½X2ð2Þ�
½X3ð2Þ� ½X4ð2Þ�

� �
¼

a1 b1
c1 d1

� �
a2 b2
c2 d2

� �
a3 b3
c3 d3

� �
a4 b4
c4 d4

� �
2
664

3
775: ð1:40Þ
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On each sub-matrix [Xk(2)] of size 2 × 2 (k = 1, 2, 3, 4), is applied SVD2×2, in
accordance with Eqs. (1.36)−(1.39). As a result, it is decomposed into two
components:

Fig. 1.4 Representation of the SVD algorithm for the matrix [X] of size 2 × 2
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½Xkð2Þ� ¼ r1;k½T1;kð2Þ� þ r2;k½T2;kð2Þ� ¼ ½C1;kð2Þ� þ ½C2;kð2Þ� for k ¼ 1; 2; 3; 4; ð1:41Þ

where r1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1;k þA1;k

2

q
; r2;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2;k�A2;k

2

q
; ½T1;kð2Þ� ¼ ~U1;k~Vt

1;k; ½T2;kð2Þ� ¼ ~U2;k~Vt
2;k:

Fig. 1.5 Flowgraph of the HSVD algorithm represented through the vector-radix (2 × 2) for a
matrix of size 4 × 4
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Using the matrices ½Cm;kð2Þ� of size 2 × 2 for k = 1, 2, 3, 4 and m = 1, 2, are
composed the matrices ½Cmð4Þ� of size 4 × 4:

½Cmð4Þ� ¼ ½Cm;1ð2Þ� ½Cm;2ð2Þ�
½Cm;3ð2Þ� ½Cm;4ð2Þ�

� �

¼
c11ðm; 1Þ c12ðm; 1Þ
c13ðm; 1Þ c14ðm; 1Þ

� �
c11ðm; 2Þ c12ðm; 2Þ
c13ðm; 2Þ c14ðm; 2Þ

� �
c11ðm; 3Þ c12ðm; 3Þ
c13ðm; 3Þ c14ðm; 3Þ

� �
c11ðm; 4Þ c12ðm; 4Þ
c13ðm; 4Þ c14ðm; 4Þ

� �
2
664

3
775 for m ¼ 1; 2:

ð1:42Þ

Hence, the SVD decomposition of the matrix [X] in the first level is represented
by two components:

½Xð4Þ�¼ ½C1ð4Þ� þ ½C2ð4Þ� ¼ ð½C1;1ð2Þ� þ ½C2;1ð2Þ�Þ ð½C1;2ð2Þ� þ ½C2;2ð2Þ�Þ
ð½C1;3ð2Þ� þ ½C2;3ð2Þ�Þ ð½C1;4ð2Þ� þ ½C2;4ð2Þ�Þ

� �
:

ð1:43Þ

In the second level (r = 2) of the HSVD, on each matrix ½Cmð4Þ� of size 4 × 4 is
applied four times the SVD2×2. Unlike the transform in the previous level, in the
second level, the SVD2×2 is applied on the sub-matrices [Cm,k(2)] of size 2 × 2,
whose elements are mutually interlaced and are defined in accordance with the
scheme, given in the upper part of Fig. 1.5. The elements of the sub-matrices, on
which is applied the SVD2×2 in the second hierarchical level are colored in same
color (yellow, green, blue, and red). As it is seen on the figure, the elements of the
sub-matrices of size 2 × 2 in the second level are not neighbors, but placed one
element away in horizontal and vertical directions. As a result, each matrix ½Cmð4Þ�
is decomposed into two components:

½Cmð4Þ� ¼ ½Cm;1ð4Þ� þ ½Cm;2ð4Þ� for m ¼ 1; 2: ð1:44Þ

Then, the full decomposition of the matrix [X] is represented by the relation:

½Xð4Þ� ¼ ½C1;1ð4Þ� þ ½C1;2ð4Þ� þ ½C2;1ð4Þ� þ ½C2;2ð4Þ� ¼
X2
m¼1

X2
s¼1

½Cm;sð4Þ�;

ð1:45Þ

Hence, the decomposition of an image of size 4 × 4 comprises four components
in total.

The matrix [X(8)] is of size 23 × 23 (N = 23 = 8 for n = 3), and in this case, the
HSVD is executed through multiple calculation of the SVD2×2 on blocks of size
2 × 2, in all levels (the general number of the decomposition components is eight).
In the first and second levels, the SVD2×2 is executed in accordance with the
scheme, shown on Fig. 1.5. In the third level, the SVD2×2 is mainly applied on
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sub-matrices of size 2 × 2. Their elements are defined in similar way, as shown on
Fig. 1.5, but the elements of same color (i.e., which belong to same sub-matrix) are
moved three elements away in the horizontal and vertical direction.

The described HSVD algorithm could be generalized for the cases when the
image [X(2n)] is of size 2n × 2n pixels. Then the relation (1.45) becomes as shown
below:

½Xð2nÞ� ¼
X2
p1¼1

X2
p2¼1

. . .::
X2
pn

½Cp1;p2;...;pnð2nÞ�: ð1:46Þ

The maximum number of the HSVD decomposition levels is n, the maximum
number of the decomposition components (1.46) is 2n, and the distance in hori-
zontal and vertical direction between the elements of the blocks of size 2 × 2 in the
level r is correspondingly (2r−1 − 1) elements, for r = 1, 2,…, n.

1.4.4 Computational Complexity of the Hierarchical SVD
of Size 2n × 2n

1.4.4.1 Computational Complexity of the SVD of Size 2 × 2

The computational complexity could be defined by using the Eq. (1.36), taking into
account the number of multiplication and addition operations, needed for the pre-
liminary calculation of the components x; l; d; m; g; A; B, θ1, θ2, σ1, σ1, defined by
the Eqs. (1.38) and (1.39). Then:

• The number of the multiplications, needed for the calculation of Eq. (1.36) is
Σm = 39;

• The number of the additions, needed for the calculation of Eq. (1.36) is Σs = 15.

Then the total number of the algebraic operations executed with floating point
for SVD of size 2 × 2 is:

OSVDð2� 2Þ ¼ Rm þRs ¼ 54: ð1:47Þ

1.4.4.2 Computational Complexity of the Hierarchical SVD of Size
2n × 2n

The computational complexity is defined on the basis of SVD2×2. In this case, the
number M of the sub-matrices of size 2 × 2, which comprise the image of size
2n × 2n, is 2n−1 × 2n−1 = 4n−1, and the number of the decomposition levels is n.
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• The number of SVD2×2 in the first level is M1 = M = 4n−1;
• The number of SVD2×2 in the second level is M2 = 2 × M = 2 × 4n−1;
• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• The number of SVD2×2 in the level n is Mn = 2n−1 × M = 2n−1 × 4n−1;

The total number of SVD2×2 is correspondingly MΣ = M(1 + 2 + … + 2n−1) =
4n−1(2n − 1) = 22n−2(2n − 1). Then the total number of the algebraic operations for
the HSVD of size 2n × 2n is:

OHSVDð2n � 2nÞ ¼ MR � OSVDð2 � 2Þ ¼ 27� 22n�1ð2n � 1Þ: ð1:48Þ

1.4.4.3 Computational Complexity of the SVD of Size 2n × 2n

For the calculation of the matrices [Y(N)] and [Z(N)] of size N × N for N = 2n are
needed in total Rm ¼ 22nþ 2 multiplications and Rs ¼ 2nþ 1ð2n � 1Þ additions. The
total number of the operations is:

OY ;ZðNÞ ¼ 22nþ 2 þ 2nþ 1ð2n � 1Þ ¼ 2nþ 1ð3� 2n � 1Þ: ð1:49Þ

In accordance with [40], the number of the operations O(N) for the iterative
calculation of all N eigenvalues and the eigen N-component vectors of the matrix of
size N × N for N = 2n with L iterations, is correspondingly:

OvalðNÞ ¼ ð1=6ÞðN � 1Þð8N2 þ 17Nþ 42Þ
¼ ð1=6Þð2n � 1Þð22nþ 3 þ 17� 2n þ 42Þ; ð1:50Þ

OvecðNÞ ¼ N½2NðLNþ Lþ 1Þ � 1� ¼ 2n½2nþ 1ð2nLþ Lþ 1Þ � 1�: ð1:51Þ

From Eq. (1.31) it follows, that two kinds of eigen vectors (~Us and ~Vs) should be
calculated, so the number of the needed operations in accordance with Eq. (1.51)
should be doubled. From the analysis of the Eq. (1.29) it follows that:

• The number of the needed multiplications for all components is:
Rm ¼ 2nð22n þ 22nÞ ¼ 23nþ 1;

• The number of the needed additions for all components is: Rs ¼ 2n � 1:

Then the total number of the needed operations for the calculation of Eq. (1.29)
is:

ODðNÞ ¼ 23nþ 1 þ 2n � 1 ¼ 2nð22nþ 1 þ 1Þ � 1 ¼ 2nð22nþ 1 þ 1Þ � 1: ð1:52Þ

Hence, the total number of the algebraic operations, needed for the execution of
the SVD of size 2n × 2n is:
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OSVDð2n � 2nÞ ¼ OY ;Zð2nÞþOvalð2nÞþ 2Ovecð2nÞþODð2nÞ
¼ 22nþ 1 ½2Lð2n þ 1Þ þ 2n�1 þ 5� þ ð1=6Þð22nþ 3 þ 17� 2n þ 42Þ � 1:

ð1:53Þ

1.4.4.4 Relative Computational Complexity of the HSVD

The relative computational complexity of the HSVD could be calculated on the
basis of Eqs. (1.53) and (1.48), using the relation below:

w1ðn; LÞ ¼
OSVDð2n � 2nÞ
OHSVDð2n � 2nÞ

¼ 3 � 2nþ 1 ½2nþ 2ð2nLþ Lþ 1Þ þ 2nþ 1ð2nþ 3Þ � 3� þ ð2n � 1Þð22nþ 3 þ 17 � 2n þ 42Þ � 6
81� 22nð2n � 1Þ :

ð1:54Þ

For n = 2, 3, 4, 5 (i.e., for image blocks of size 4 × 4, 8 × 8, 16 × 16 and
32 × 32 pixels), the values of ψ1(n, L) for L = 10 are given in Table 1.2.

For big values of n the relation ψ1(n, L) does not depend on n and trends
towards:

w1ðn; LÞn!1 ) 0:1� ð3Lþ 1Þ: ð1:55Þ

Hence, for big values of n, when the number of the iterations L ≥ 4, the relation
w1ðn; LÞ[ 1, and the computational complexity of the HSVD is lower than that of
the SVD. Practically, the value of L is significantly higher than 4. For big values of
n the coefficient ψ1(n, 10) = 3.1 and the computational complexity of the HSVD is
three times lower than that of the SVD.

1.4.5 Representation of the HSVD Algorithm Through
Tree-like Structure

The tree-like structure of the HSVD algorithm of n = 2 levels, shown on Fig. 1.6, is
built on the basis of the Eq. (1.45), for image block of size 4 × 4. As it could be
seen, this is a binary tree. For a block of size 8 × 8, this binary tree should be of
n = 3 levels.

Table 1.2 Coefficient ψ1(n, L) of the relative reduction of the computational complexity of the
HSVD versus the SVD as a function of n, for L = 10

n 2 3 4 5

ψ1(n, 10) 5.94 4.21 3.67 3.44
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Each tree branch has a corresponding eigen value ks;k , or resp. rs;k ¼ ffiffiffiffiffiffiffi
ks;k

p
for

the level 1, and ks;kðmÞ or resp. rs;kðmÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks;kðmÞ

p
—for the level 2 (m = 1, 2).

The total number of the tree branches shown on Fig. 1.6, is equal to six. It is
possible to cut off some branches, if for them the following conditions are satisfied:
rs;k _ rs;kðmÞ ¼ 0 or rs;k �Ds;k _ rs;kðmÞ �Ds;kðmÞ; i.e., when they are equal to 0,
or are smaller than a small threshold Ds;k; resp. Ds;kðmÞ: To cut down one HSVD
component [Ci] in one level, it is necessary all values of σi, which participate in this
component, to be equal to zero, or very close to it. In result, the decomposition in
the corresponding branch could be stopped before the last level n. As a conse-
quence, it follows that the HSVD algorithm is adaptive with respect of the contents
of each image block. In this sense, the algorithm HSVD is adaptive and could be
easily adjusted to the requirements of each particular application.

From the analysis of the presented HSVD algorithm it follows that its basic
advantages compared to the “classic” SVD are:

1. The computational complexity of the full-tree HSVD algorithm (without trun-
cation) for a matrix of size 2n × 2n, compared to SVD for a matrix of same size,
is at least three times lower;

2. The HSVD is executed following the tree-like scheme of n levels, which permits
parallel and recursive processing of image blocks of size 2 × 2 in each level.
The corresponding SVD is calculated by using simple algebraic relations;

3. The HSVD algorithm retains the quality of the SVD in respect of the high
concentration of the main part of the image energy in the first components of the
decomposition. After removal of the low-energy components, the restored
matrix has minimum mean square error and is the optimal approximation of the
original;

Fig. 1.6 Binary tree, representing the HSVD algorithm for the image matrix [X], of size 4 × 4
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4. The tree-like structure of the HSVD algorithm (a binary tree of n levels) makes
more feasible the ability to stop the decomposition earlier in some of the tree
branches, for which the corresponding eigen value is zero, or approximately
zero. As a result, the computational complexity of the HSVD is additionally
reduced, compared to the classic SVD;

5. The HSVD algorithm could be easily generalized for matrices of size different
from 2n × 2n. In these cases each matrix should be divided into blocks of size
8 × 8, to which is applied the HSVD (i.e., a decomposition of eight compo-
nents). In case that after the division the blocks at the image borders are
incomplete, they should be extended through extrapolation. Such approach is
suitable in case, that the number of the decomposition components, which is
limited up to 8, is sufficient for the application. If more components are needed,
their number could be increased, by dividing the image into blocks of size
16 × 16, or larger;

6. The HSVD algorithm opens new possibilities for fast image processing in
various application areas, as: compression, filtration, segmentation, merging,
watermarking, extraction of minimum number of features for pattern recogni-
tion, etc.

1.5 Hierarchical Adaptive Principal Component Analysis
for Image Sequences

Image sequences are characterized with the huge volumes of visual information and
very high spatial and spectral correlation. The decorrelation of this visual infor-
mation is the first and basic stage of the processing, related to various publication
areas, such as: compression and transfer/storage, analysis, objects recognition, etc.
For the decorrelation of correlated image sequences, are developed significant
number of methods for interframe prediction with movement compensation for
temporal decorrelation of moving images and for transform-coding techniques
for intra-frame and inter-frame decorrelation. One of the most efficient methods for
decorrelation of groups of images is based on the Principal Component Analysis
(PCA), known also as Hotelling transform, and Karhunen-Loeve Transform (KLT).
This transform is the object of large number of investigations, presented in many
scientific monographs [11, 40–47] and papers [12, 48–53]. The KLT is related to
the class of linear statistical orthogonal transforms for groups of vectors, obtained,
for example, from the pixels of one image, or from a group of matrix images.
The PCA has significant role in image analysis and processing, and also in the
systems for computer science and pattern recognition. It has a wide variety of
application areas: for the creation of optimal models in the image color space [46],
for compression of signals and groups of correlated images [41–44, 47], for the
creation of objects descriptors in the reduced features’ space [50, 51], for image
fusion [52] and segmentation [53], image steganography [54], etc.
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The PCA has some significant properties: (1) it is an optimal orthogonal
transform for a group of vectors, because as a result of the transform, the maximum
part of their energy is concentrated in a minimum number of their components;
(2) after reduction of the low energy components of the transformed vectors, the
corresponding restored vectors have minimum mean square error (MSE); (3) the
components of the transformed vectors are not correlated. In particular, in case that
the probability distribution of the vectors is Gaussian, their components become
decorrelated and independent after PCA. The Independent Components Analysis
(ICA) [55] is very close to the PCA in respect of their calculation and properties.

For PCA implementation the pixels of same spatial position in a group of
N images compose an N-dimensional vector. The basic difficulty of the PCA
implementation is related to the large size of the covariance matrix. For the cal-
culation of its eigenvectors is necessary to calculate the roots of a polynomial of nth
degree (characteristic equation) and to solve a linear system of N equations [21, 56].
For large values of N, the computational complexity of the algorithm for calculation
of the transform matrix is significantly increased.

One of the basic problems, which limit the use of the PCA, is due to its high
computational complexity, which grows up together with the number of the vec-
tors’ components. Various approaches are offered to overcome this problem. One of
them is based on the PCA calculation through iterative methods, which do not
require the definition of the characteristic polynomial of the vectors’ covariance
matrix. In this case the PCA is executed in 2 stages: in the first, the original image
matrix is transformed into a three-diagonal form through QR decomposition [21],
and after that—into a bi-diagonal, by using the Householder’s transforms [27]. In
the second stage, on the bi-diagonal matrix are applied iterative methods, for which
the iterations are stopped, after the needed accuracy is achieved. The iterative PCA
calculation through the methods of Jacobi and Givens [21, 56], is based on the
execution of a sequence of orthogonal transforms with rotational matrices of
size 2 × 2.

One well known approach is based on the PCA calculation by using neural
networks [28] of the kind Generalized Hebbian, or Multilayer Perceptron Networks.
They both use iterative learning algorithms, for which the number of needed
operations can reach several hundreds.

The third approach is based on the Sequential KLT/SVD [29], already com-
mented in the preceding section. In [28, 29] is presented one more approach, based
on the recursive calculation of the covariance matrix of the vectors, its eigen values
and eigen vectors. In the papers [57, 58] is introduced hierarchical recursive block
processing of matrices.

The next approach is based on the so-called Distributed KLT [59, 60], where
each vector is divided into sub-vectors and on each is applied Partial KLT. Then is
executed global iterative approximation of the KLT, through Conditional KLT,
based on side information. This approach was further developed in [61], where is
offered one algorithm for adaptive two-stage KLT, combined with JPEG2000, and
aimed at the compression of hyper-spectral (HS) images. Similar algorithm for
enhanced search is the “Integer Sub-optimal KLT” (Int SKLT) [62], which uses the
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lifting factorization of matrices. This algorithm is basic for the KLT, executed
through a multilevel strategy, also called Divide-and-Conquer (D&C) [63]. In
correspondence with this approach, the KLT for a long sequence of images is
executed after dividing it into smaller groups, for which the corresponding KLT
have lower computational complexity. By applying the KLT on each group, is
obtained local decorrelation only. For this reason, the eigen images for the first half
of each group in the first decomposition level are used as an input for the next
(second) level of the multi-level transform, etc. In the case, when the KLT group
contains 2 components only, the corresponding multilevel transform is called
Pair-wise Orthogonal Transform (POT) [64]. The experimental results obtained for
this transform, when used for HS images, show that it is more efficient than the
Wavelet Transform (WT) in respect of Rate-Distortion performance, computational
cost, component scalability, and memory requirements.

Another approach is based on the Iterative Thresholding Sparse PCA (ITSPCA)
[65] algorithm, aiming at the reduction of the features’ space dimension, with
minimum dispersion loss.

A fast calculation algorithm (Fast KLT) is known for the particular case, when
the images are represented through first order Markov model [66].

In correspondence with the algorithm for PCA randomization [67], on the basis
of an accidental choice are selected a certain number of rows (or columns) of the
covariance matrix, and on the basis of this approximation, the computational
complexity of the KLT is reduced.

In the works [68, 69], are presented hybrid methods for compression of
multi-component images through KLT, combined with Wavelets, Adaptive Mixture
of Principal Components Model, and JPEG2000.

The analysis of the famous KLT methods shows that: (1) In case of iterative
calculations, the number of iterations depends on the covariance matrix of the
vectors. In many cases this number is very high, which makes the real-time KLT
calculation extremely difficult; (2) In case that the method for multilevel D&C is
used, the eigen images from the second half of each group are not transformed in
the next levels and as a result, they are not completely decorrelated. Moreover—the
selection of the length of each group of images is not optimized.

One of the possible approaches for reducing the computational complexity of
PCA for N-dimensional group of images is based on the so-called Hierarchical
Adaptive PCA (HAPCA) [70]. Unlike the famous Hierarchical PCA (HPCA) [58],
this transform is not related to the image sub-blocks, but to the whole image from
one group. For this, the HPCA is implemented through dividing the images into
groups of length, defined by their correlation range. Each group is divided into
sub-groups of 2 or 3 images each, on which is applied Adaptive PCA (APCA)
[71–73], of size 2 × 2 or 3 × 3. This transform is performed using equations, which
are not based on iterative calculations, and as a result, they have lower computa-
tional complexity. To obtain decorrelation for the whole group of images, it is
necessary to use APCA of size 2 × 2 or 3 × 3, which will be applied in several
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consecutive stages (hierarchical levels), with rearranging of the obtained interme-
diate eigen images after each stage. In result, is obtained a decorrelated group of
eigen images, on which could be applied other combined approaches to obtain
efficient compression through lossless or lossy coding.

1.5.1 Principle for Decorrelation of Image Sequences
by Hierarchical Adaptive PCA

The new principle was developed for the transformation of image sequences using
the adaptive PCA (APCA) with transform matrix of size 2 × 2 or 3 × 3. The
sequence is divided into groups, whose length is harmonized with their correlation
range. The corresponding algorithm comprises the following steps: (1) correlation
analysis of the image sequence, in result of which is defined the length N of each
group; (2) dividing the processed group into sub-groups of two or three images
each, depending on the length of the group, (3) adding (when necessary) new
interpolated images, which supplements the last sub-group up to two or three
images; (4) defining the number of the hierarchical transform levels on the basis of
the mutual decorrelation, which should be achieved, (5) executing of the HAPCA
algorithm for each group from the image sequence. For this, on each sub-group of
two or three images from the first hierarchical level of HAPCA, is applied
Adaptive PCA (APCA) with matrix of size 2 × 2 or 3 × 3. In result, are obtained 2
or 3 eigen images. After that, the eigen images are rearranged so that the first
sub-group of 2 eigen images to comprise the first images from each group, the
second group of 2 or 3 eigen images—the second images from each group, etc. To
each group of intermediate eigen images in the first hierarchical level is applied in
similar way the next APCA with a 2 × 2 or 3 × 3 matrix, on each sub-group of 2 or
3 eigen images. In result are obtained the corresponding new intermediate eigen
images in the second hierarchical level. Then the eigen images are rearranged again
so, that the first group of 2 or 3 eigen images contains the first images from each
group before the rearrangement; the second group of 2 or 3 eigen images—the
second image before the rearrangement, etc.

1.5.2 Description of the Hierarchical Adaptive PCA
Algorithm

1.5.2.1 Calculation of Eigen Images Through APCA with a 2 × 2
Matrix

For any 2 digital images of size S = M × N pixels each, shown on Fig. 1.7, are
calculated the vectors ~Cs ¼ C1s;C2s½ � t for s = 1, 2, …, S.

30 R. Kountchev and R. Kountcheva



Each vector is transformed into the corresponding vectors~Ls ¼ ½L1s; L2s�t through
direct APCA using the matrix [Φ] of size 2 × 2 in correspondence with the relation:

~Ls ¼ ½U�ð~Cs �~lÞ for s ¼ 1; 2; . . .; S: ð1:56Þ

where

~l ¼ Eð~CsÞ ¼ ð1=SÞ
XS
s¼1

~Cs ¼ ½�C1; �C2�t; �C1 ¼ E ðC1sÞ; �C2 ¼ EðC2sÞ; ½U� ¼ ½~U1; ~U2�:

On the other hand, the components of the vectors ~U1; ~U2 could be defined using
the rotation angle θ of the coordinate system (L1, L2) towards the original coordi-
nate system ðC1;C2Þ, resulting from the APCA execution. Then:

~U1 ¼ ½cos h; � sin h�t; ~U2 ¼ ½sin h; cos h�t; ð1:57Þ

where

h ¼ ð1=2Þ arctg½2g3=ðg1 � g2Þ�; g3 ¼ EðC1sC2sÞ � ð�C1Þð�C2Þ;

g1 ¼ EðC2
1sÞ � ð�C1Þ2; g2 ¼ EðC2

2sÞ � ð�C2Þ2:

As a result of the transform from Eq. (1.56) on all S vectors, are obtained the
corresponding two eigen images [L1], [L2], shown in the right part of Fig. 1.7. The
transformation from Eq. (1.56) is reversible, and the inverse APCA is represented
by the relation:

~Cs ¼ ½U�t~Ls þ~l for s ¼ 1; 2; ::; S: ð1:58Þ

On Fig. 1.8 is shown the algorithm for direct/inverse APCA for a group of two
images.

Fig. 1.7 Transformation of the images [C1], [C2] into eigen images [L1], [L2], through APCA
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1.5.2.2 Hierarchical APCA Algorithm for a Group of 8 Images

On Fig. 1.9 is shown the 3-level HAPCA algorithm for the case, when the number
of the correlated images in one group (GOI) is N = 8; in one sub-group it is
Nsg = 2; and the number of the sub-groups is Ng = 4, i.e. N = Nsg × Ng.

As it is shown on Fig. 1.9, on each sub-group of two images from the first
hierarchical level of HAPCA is applied APCA with a 2 × 2 matrix. In result are
obtained two “eigen” images, colored in yellow and blue correspondingly. After
that, the “eigen” images are rearranged so that the first sub-group of two “eigen”
images comprises the first images from each group, the second group of two
“eigen” images—the second images from each group, etc. For each GOI of 8

Fig. 1.8 Algorithm for
direct/inverse APCA for a
group of two images
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intermediate eigen images in the first hierarchical level, is applied in similar way the
next APCA, with a 2 × 2 matrix, on each sub-group of two eigen values. In result
are obtained two new “eigen” images (i.e. the “eigen” images of the group of two
intermediate eigen images), colored in yellow, and blue correspondingly in the

GOI1 = 8 

Input
Images

3 4 7 10 N1 6 8 952

APCA
Level 1

122 222 142 212 N112 232132 242 112212

APCA-12 APCA-22 APCA-32

Rearrangement for level 2 in GOI1

121 221 141 211 N111 231131 241 111

211 221 231 121 N111 141131 241 111

211

121

APCA-11 APCA-21 APCA-41

Rearrangement for level 1 in GOI1

APCA
Level 2

212 222 232 122 N112 142132 242 112122

4=132 7=2426=232 N1=112 5=2222=212

Output
Eigen

Images

3=122 10=2128=142 9=112

GOI2

APCA-31 APCA-11

Rearrang. for l. 1 in GOI2

APCA-42 APCA-12

122 222 142 212 N112 232132 242 112212

APCA-13 APCA-23 APCA-33

APCA
Level 3

APCA-43 APCA-13

Rearrang. for l. 2 in GOI2

Retained Images Retained Images

Fig. 1.9 The HAPCA algorithm for direct transform of groups (GOIs) of N = 8 images
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second hierarchical level. Then the eigen images are rearranged again, so that the
first group of two “eigen” images to contain the first images from each group before
the rearrangement; the second group of two “eigen” images—the second image
before the rearrangement, etc. In result, is achieved significant decorrelation for the
processed group of images, which is a reliable basis for their efficient
compression/restoration. For this is necessary to have information about the
transform matrix, used for each couple of images in all hierarchical levels—12
matrices for one GOI altogether (when N = 8).

1.5.2.3 Calculation of Eigen Images Through APCA with a 3 × 3
Matrix

From the three digital images of S pixels each, are obtained the vectors ~Cs ¼
½C1s;C2s;C3s�t for s = 1, 2, …, S. The vectors ~Cs are transformed into the vectors
~Ls ¼ ½L1s; L2s; L3s�t through direct APCA, given in Eq. (1.56), and using the matrix
[Φ] of size 3 × 3.

The elements Φij of the matrix [Φ] and the vector ~l ¼ ½�C1; �C2; �C3�t for
�C1 ¼ EðC1sÞ;�C2 ¼ EðC2sÞ; �C3 ¼ EðC3sÞ are defined below:

U1m ¼ Am=Pm;U2m ¼ Bm=Pm;U3m ¼ Dm =Pm for m ¼ 1; 2; 3; ð1:59Þ

where

Am ¼ðk3 � kmÞ½k5ðk2 � kmÞ � k4k6�; Bm ¼ ðk3 � km Þ½k6ðk1 � kmÞ � k4k5�;
Dm ¼ k6½2k4k5 � k6ðk1 � kmÞ� � k25ðk2 � kmÞ; Pm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ B2

m þ D2
m

q
;

k1 ¼EðC2
1sÞ � ð�C1Þ2; k2 ¼ EðC2

2sÞ � ð�C2Þ2; k3 ¼ EðC2
3sÞ � ð�C3Þ2;

k4 ¼EðC1sC2sÞ � ð�C1Þð �C2Þ; k6 ¼ EðC2sC3sÞ � ð�C2Þð �C3Þ; k5 ¼ EðC1sC3sÞ � ð�C1Þð �C3Þ;

k1 ¼ 2

ffiffiffiffiffiffi
pj j
3

r
cos

u
3

� �
� a
3
; k2 ¼ � 2

ffiffiffiffiffiffi
pj j
3

r
cos

u þ p
3

� �
� a
3
; k3 ¼ � 2

ffiffiffiffiffiffi
pj j
3

r
cos

u � p
3

� �
� a
3
;

q ¼ 2ða=3Þ3 � ðabÞ=3 þ c; p ¼ �ða2=3Þþ b; u ¼ arccos �q=2
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjpj=3Þ3
q� �

;

a ¼ � ðk1 þ k2 þ k3Þ; b ¼ k1k2 þ k1k3 þ k2k3 � ðk24 þ k25 þ k26Þ;
c ¼ k1k26 þ k2k25 þ k3k24 � ðk1k2k3 þ 2k4k5k6Þ:

The inverse APCA, using the matrix [Φ] of size 3 × 3, is defined by Eq. (1.58).

1.5.2.4 Hierarchical APCA Algorithm for a Group of 9 Images

In this case, the HAPCA algorithm for a group of nine images N = 9 is executed in
similar way, as that, shown on Fig. 1.9 for a group of eight images (N = 8).
Each GOI is divided into Ng = 3 sub-groups, each containing Nsg = 3 images, and
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the number of the HAPCA decomposition levels is n = 2. In the first HAPCA level,
in accordance with Eq. (1.56) on the vectors ~Cs ¼ ½C1s;C2s;C3s�t for each of the
three sub-groups the APCA is executed. In this case, the elements of the matrix [Φ]
of size 3 × 3 are defined by Eq. (1.59). In result, for each sub-group the vectors
~Ls ¼ ½L1s; L2s; L3s�t are calculated. After the rearrangement of the vectors compo-
nents from all sub-groups and their second division into sub-groups of same size
(Ng = 3), are obtained the corresponding input vectors ~L1s ðrÞ ¼
½L11sðrÞ; L12sðrÞ; L13sðrÞ�t for the next HAPCA level, etc.

1.5.3 Setting the Number of the Levels and the Structure
of the HAPCA Algorithm

1.5.3.1 Number of the HAPCA Levels

The minimum number of levels nmin needed for the execution of the HAPCA
algorithm for a group of N images could be defined through the analysis of the
mutual correlation of the group of transformed N-dimensional vectors, obtained
after each hierarchical level. For this, after the execution of the first HAPCA level
for the transformed vectors ~Ls for each sub-group (with two or three components),
are obtained the N-dimensional vectors ~L1s ¼ ½L11s; L12s; . . .; L1Ns�t. After the rear-
rangement of the components of each vector ~L1s , it is transformed into the vector
~L1s ðrÞ ¼ ½L11sðrÞ; L12sðrÞ; . . .; L1NsðrÞ�t. The decision to continue with the next (sec-
ond) HAPCA is based on the analysis of the covariance matrix ½K1

LðrÞ� of the
rearranged vectors ~L1s ðrÞ for s = 1, 2, …, S, from which could be calculated the
achieved decorrelation in the first level. In case that full decorrelation is achieved,
the matrix ½K1

LðrÞ� is diagonal. The HAPCA algorithm could be stopped before the
second level even if the decorrelation is not full, provided that the relation below is
satisfied:

XN
i¼1

XN
j¼1

½ki;jðrÞ�2ði 6¼jÞj

,XN
i¼1

XN
j¼1

½ki;jðrÞ�2ði¼jÞj

( )
� d: ð1:60Þ

Here ki;jðrÞ is the element (i, j) of the matrix ½K1
LðrÞ�, and δ is a threshold with

preliminary set small value. In case that the condition from Eq. (1.60) is not sat-
isfied, the processing continues with the second HAPCA level. After all calcula-
tions are finished, the condition in Eq. (1.60) is checked again, but here ki;jðrÞ are
the elements of the matrix ½K2

LðrÞ� of the rearranged vectors ~L2s ðrÞ in the second
level, etc.
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1.5.3.2 Structure of the HAPCA Algorithm

The structure of the HAPCA algorithm for one group (GOI) depends on the number
of images (N) in it. This number is defined through correlation analysis of the whole
image sequence, and most frequently it is in the range from 4, up to 16. In some
cases, the number of images in the group is not divisible by the number of the
images in a sub-group (Ng), which should be two or three, and then the number of
the images N has to be extended by adding mint interpolated images to the GOI. In
result, the new value Ne = N + mint becomes divisible by two or three. In Table 1.3,
are given the basic parameters of HAPCA for one GOI: N—number of images in
the group, n—the number of transform levels, Nsg—the number of the sub-groups,
Ng—the number of the images in one sub-group, Ne—the number of images in the
extended GOI, and mint—the number of the interpolated images in the extended
GOI.

The number of the levels n in Table 1.3 is defined through correlation analysis of
the whole GOI, and the values of Nsg and Ng—on the basis of the requirement for
minimum value of the number of interpolated images, mint.

1.5.3.3 Computational Complexity of HAPCA

The computational complexity of the n-levels HAPCA algorithm can be calculated
and compared with the classic PCA for a covariance matrix of size N × N for group
of N images with Nsg sub-groups for the APCA of size 2 × 2 or 3 × 3. In case of
classic PCA, this number is n = Nsg = 1, because there are no hierarchical levels or
sub-groups. For this, both algorithms are compared regarding the number of
operations O (additions and multiplications) [74] needed for the calculation of the
following components:

Table 1.3 Basic parameters
of the HAPCA algorithm

N n Nsg Ng Ne = Nsg × Ng mint = Ne−N

4 2 2 2 4 0

5 3 3 2 6 1

6 3 3 2 6 0

7 3 4 2 8 1

8 3 4 2 8 0

9 2 3 3 9 0

10 3 4 3 12 2

11 3 4 3 12 1

12 3 4 3 12 0

13 3 5 3 15 2

14 3 5 3 15 1

15 3 5 3 15 0

16 5 8 2 16 0
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• Covariance matrices [KC] of size N × N for the classic PCA algorithm and for
the APCA with size of the transform matrix 2 × 2 or 3 × 3 [73]:

OcovðNÞ ¼ ð1=2ÞNðNþ 1Þ½NðN � 1Þþ 2ðNþ 2Þ� for the classic PCA; ð1:61Þ

Ocovð2Þ ¼ 30 for APCA of size 2� 2 ðN ¼ 2Þ; ð1:62Þ

Ocovð3Þ ¼ 96 for APCA of size 3� 3 ðN ¼ 3Þ: ð1:63Þ

• Calculation of the eigen values of the corresponding [KC] covariance matrix
when the QR decomposition and the Householder transform of (N − 1) steps are
used for the classic PCA [73]:

OvalðNÞ ¼ ðN�1Þð 4
3
N2 þ 17

6
Nþ 7Þ for classic PCA; ð1:64Þ

Ovalð2Þ � 12 for APCA of size 2� 2 ðN ¼ 2Þ; ð1:65Þ

Ovalð3Þ ¼ 55 for APCA of size 3� 3 ðN ¼ 3Þ: ð1:66Þ

• Calculation of the eigen vectors of the corresponding [KC] covariance matrix in
case that iterative algorithm with 4 iterations is used for the classic PCA [73]:

OvecðNÞ ¼ N½2Nð4Nþ 5Þ � 1� for classic PCA; ð1:67Þ

Ovecð2Þ ¼ 102 for APCA of size 2� 2 ðN ¼ 2Þ; ð1:68Þ

Ovecð3Þ ¼ 303 for APCA of size 3� 3 ðN ¼ 3Þ: ð1:69Þ

• The number of operations needed for the calculation of a group of N eigen
images (each of S pixels), obtained in result of direct PCA transform for zero
mean vectors, is:

OðN; SÞ ¼ SNð2N � 1Þ for classic PCA; ð1:70Þ

Oð2; SÞ ¼ 6S for APCA of size 2� 2 ðN ¼ 2Þ; ð1:71Þ

Oð3; SÞ ¼ 15S for APCA of size 3� 3 ðN ¼ 3Þ: ð1:72Þ

• Using Eqs. (1.61)−(1.72) the total number of operations (TO) needed for both
algorithms (the classic PCA and the HAPCA-based algorithms with APCA of
size 2 × 2 or 3 × 3) is:
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TOPCAðN; SÞ ¼ 1
2
NðN þ 1Þ½N � 1Þþ 2ðN þ 2Þ�

þ ðN�1Þð4
3
N2 þ 17

6
Nþ 7Þ þ N½2Nð4Nþ 5Þ � 1 �

þ SNð2N � 1Þ;

ð1:73Þ

TOHAPCA�2ðN; SÞ ¼ nNsgð30þ 12þ 102þ 6SÞ ¼ nNgð144 þ 6SÞ; ð1:74Þ

TOHAPCA�3ðN; SÞ ¼ nNsgð96þ 55þ 303þ 15SÞ ¼ nNgð454þ 15SÞ: ð1:75Þ

Having obtained the total number of operations required by the algorithms (1.73)
−(1.75), we can compare the computational complexity of both the classic PCA and
the proposed algorithms. The reduction of the number of operations needed for
these algorithms can be described by the coefficient:

g2ðN; SÞ ¼
TOPCAðN; SÞ

TOHAPCA�2ðN; SÞ ¼ OcovðNÞ þ OvalðNÞ þ OvecðNÞ þ OðN; SÞ
nNsg½Ocovð2Þ þ Ovalð2Þ þ Ovecð2Þ þ Oð2; SÞ� ;

ð1:76Þ

is the ratio of the number of operations for the classic PCA and the proposed
HAPCA-2 algorithm (with APCA of size 2 × 2), and:

g3ðN; SÞ ¼
TOPCAðN; SÞ

TOHAPCA�3ðN; SÞ ¼ OcovðNÞ þ OvalðNÞ þ OvecðNÞ þ OðN; SÞ
nNsg½Ocovð3Þ þ Ovalð3Þ þ Ovecð3Þ þ Oð3; SÞ� ;

ð1:77Þ

is the ratio of the number of operations for the classic PCA and the proposed
HAPCA-3 algorithm (with APCA of size 3 × 3).

For example, for N = 8, n = 3 and Ng = 4, from Eq. (1.76) is obtained:

g2ð8; SÞ ¼
TOPCAð8; SÞ

TOHAPCA�2ð8; SÞ ¼ 8269 þ 120S
1730 þ 72S

: ð1:78Þ

For N = 9, n = 2 and Ng = 3, from Eq. (1.77) it follows:

g3ð9; SÞ ¼
TOPCAð9; SÞ

TOHAPCA�3ð9; SÞ ¼ 11987þ 153S
2724 þ 90S

: ð1:79Þ

If S = 218, then g2ð8; 218Þ ¼ 1:66 and g3ð9; 218Þ ¼ 1:7; i.e., the coefficient η(S) is
at least 1.66 times larger than 1 for images of size 512 × 512, or higher (in average,
about 2 times). For higher values of N (for example, between 9 and 16), and for big
values of S, the coefficient η(S) > 2.
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1.5.4 Experimental Results

The presented experimental results are for sequences of multispectral (MS) images.
As an example, was used the test MS sequence “balloons” shown on Fig. 1.10; on
Fig. 1.11 is shown the corresponding color image with RGB values, obtained after
lighting with neutral daylight. This sequence is from the free-access image database
of the Columbia University, USA (http://www1.cs.columbia.edu/CAVE/databases/
multispectral/). It contains N = 15 MS images of size 512 × 512 pixels, 16 bpp. On

Image 1 Image 2 Image 3 Image 4 Image 5

Image 6 Image 7 Image 8 Image 9 Image 10

Image 11 Image 12 Image 13 Image 14 Image 15

Fig. 1.10 Group of 15 consecutive MS images “balloons”

Fig. 1.11 The color image of
“balloons”, obtained after
lighting with neutral daylight

1 New Approaches for Hierarchical Image Decomposition … 39

http://www1.cs.columbia.edu/CAVE/databases/multispectral/
http://www1.cs.columbia.edu/CAVE/databases/multispectral/


it was applied the 3-level HAPCA algorithm. The sequence was divided into Nsg =
5 sub-groups, each of Ng = 3 MS images, and the number of the vectors in each
sub-group is S = 218.

On Fig. 1.12 are shown the corresponding eigen MS images, obtained after
applying the 3-level HAPCA algorithm on the group of images. As it could be seen
from the results shown on Fig. 1.13, the main part of the energy of these 15 images
is concentrated on the first eigen MS image, and the energy of the next eigen images
decreases rapidly.

The graphics on Fig. 1.13 represent the power distribution of all 15 eigen images
in levels 1, 2, 3 before and after the rearrangement. In the first three eigen MS
images are concentrated 99, 88 % of the total power of all 15 images in the GOI.

The basic qualities of the HAPCA algorithm for processing of groups of MS
images are:

1. Lower computational complexity than PCA for the whole GOI, due to the lower
complexity of APCA with matrices of size 2 × 2 and 3 × 3 compared to the
case, when for the calculation of the PCA matrix are used iterative methods;

2. HAPCA could be used not only for efficient compression of sets of MS images,
but also for sequences of medical CT images, video sequences, obtained from
stationary TV camera, compression of multi-view images, image fusion, face
recognition, etc.;

Eigen Image 1 Eigen Image 2 Eigen Image 3 Eigen Image 4 Eigen Image 5

Eigen Image 6 Eigen Image 7 Eigen Image 8 Eigen Image 9 Eigen Image 10

Eigen Image 11 Eigen Image 12 Eigen Image 13 Eigen Image 14 Eigen Image 15

Fig. 1.12 Eigen images, obtained after executing the 3-levels HAPCA
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3. There is also a possibility for further development of the HAPCA algorithms,
through: the use of Integer PCA for lossless coding of MS images; HAPCA with
a matrix of size N × N (N—a digit, divisible by 2 or 3), but without using
numerical methods, etc.

Power distribution of 15 “Eigen" images 
             in level 1 (not arranged)

Power distribution of 15 “Eigen" images in 
                    level 1 (arranged)

Power distribution of 15 “Eigen" images 
               in level 2 (not arranged)

Power distribution of 15 “Eigen" images in level 3 (not arranged)

 Power distribution of 15 “Eigen" images in level 3 (arranged)

Fig. 1.13 Power distribution of all 15 eigen images in levels 1, 2, 3 before and after the
rearrangement
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1.6 Hierarchical Adaptive Kernel Principal Component
Analysis for Color Image Segmentation

The color image segmentation is of high significance in computer vision as the first
stage of the processing, concerning the detection and extraction of objects with
predefined color, the shape of the visible part of the surface, and the texture. The
existing color image segmentation techniques can be classified into seven main
approaches based on: edge detection, region growing, neural network based, fuzzy
logic, histogram analysis, Support Vector Machine and principal color [75–79].
One of the contemporary methods for color image segmentation is based on the
adaptive models in the perceptual color space, using neural networks as multilayer
perceptrons with multi-sigmoid activation function [80]. Recently special attention
attracted the methods for human skin segmentation in color images [81–85]. These
methods are mainly based on different color spaces, adaptive color space switching,
skin color models and detection techniques.

The color space representation based on the PCA [86–88] offers significant
advantages in the efficient image processing, as image compression and filtration,
color segmentation, etc. In this section, a new approach for adaptive object color
segmentation is presented through combining the linear and nonlinear PCA. The
basic problem of PCA, which makes its application for efficient representation of
the image color space relatively difficult, is related to the hypothesis for Gaussian
distribution of the primary RGB vectors. One of the possible approaches for solving
the problem is the use of PCA variations, such as: the nonlinear Kernel PCA
(КPCA) [88], Fast Iterative KPCA [89], etc. In this section, for the color space
representation an adaptive method for transform selection is used: linear PCA or
nonlinear KPCA. The first transform (the linear PCA) could be considered as a
particular case of the КPCA. The linear PCA is carried out on the basis of the
already described Color Adaptive PCA (CAPCA) [85, 87]. The choice of CAPCA
or КPCA is made through evaluation of the kind of distribution of the vectors,
which describe the object color: Gaussian or not.

1.6.1 Mathematical Representation of the Color Adaptive
Kernel PCA

In the general case, through KPCA is executed nonlinear transform of the original

centered vectors ~Xs over S pixels (~Xs ¼
PS
s¼1

X
*

s) into the high-dimensional space, and

then, for the obtained transformed vectors UðX* sÞ, the PCA is applied. The aim is, in

the new multidimensional space the vertices of the vectors UðX*sÞ to be concentrated
in an area, which is accurately enough enveloped by a hyperellipsoid, whose axes
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are the eigenvectors of the covariance matrix of the vectors UðX*sÞ. Figure 1.14
illustrates the idea of the new 3D color space of eigenvectors~m1;~m2;~m3 [85].

In particular, it is possible that the vectors UðX* sÞ in the transformed space are
represented by their projections on the first eigenvector m

*

1 of their covariance
matrix, as shown in Fig. 1.15. For the example, shown in this figure, on the
eigenvector m*1 is projected the basic part of the multitude of all transformed vectors

UðX* sÞ. The original 3D color vectors ~Cs are first centered:

~Xs ¼ ~Cs � ~mC for s ¼ 1; 2; . . .; S; ð1:80Þ

where ~mC is the mean value of the color vector and then follows some kind of
nonlinear transform, which uses the selected nonlinear function Φ (.). In result, the

corresponding N-dimensional vectors, UðX*sÞ (N ≥ 3) are obtained. The value of
N depends on the selected function Φ (.), used for the nonlinear transform [88].

The covariance matrix ½~Kx� of the transformed color vectors UðX* sÞ is of size
N × N and can be calculated in accordance with the relation:

½~Kx� ¼ 1
S

XS
s¼1

Uð~XsÞ:Uð~XsÞt ¼ EfUð~Cs � ~mcÞ:Uð~Cs � ~mcÞtg ; ð1:81Þ

where UðX* sÞ ¼ ½Uðxs1Þ;Uðxs2Þ; ::;UðxsNÞ�t for s = 1, 2,…, S.
For each eigenvalue ~ki and eigenvector m*i ¼ ½mi1; mi2; . . .; miN �t of the matrix ½~Kx�

the following relation is performed:

½~Kx�~mi ¼ ~ki~mi for i ¼ 1; 2; . . .; N: ð1:82Þ

2ν

3ν

1ν

Fig. 1.14 Plot of skin color
samples in the~m1;~m2;~m3
eigenvectors space of CAPCA
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After substitution in Eq. (1.82) using Eq. (1.81), is got:

½~Kx�~mi ¼ 1
S

XS
s¼1

Uð~XsÞUð~XsÞt~mi ¼ ~ki~mi ð1:83Þ

In result of the transformation of Eq. (1.83), known as the “kernel trick” [90], for
the ith eigenvector is obtained:

~mi ¼ 1

S~ki

XS
s¼1

½Uð~XsÞt:~mi�Uð~XsÞ ¼
XS
s¼1

asiUð~XsÞ; ð1:84Þ

where for ~ki 6¼ 0 the coefficient asi ¼ Uð~XsÞt :~mi
S~ki

:

From this, it follows, that:

½~Kx�~mi ¼ ~ki~mi ¼ ~ki
XS
s¼1

asiUð~XsÞ: ð1:85Þ

Substituting Eq. (1.84) in Eq. (1.83), is obtained:

½1
S

XS
s¼1

Uð~XsÞUð~XsÞt� � ½
XS
l¼1

ailUð~XlÞ� ¼ ~ki
XS
l¼1

aliUð~XlÞ

or

1
S

XS
s¼1

XS
l¼1

Uð~XsÞUð~XsÞtUð~XlÞail ¼ ~ki
XS
l¼1

aliUð~XlÞ;

Fig. 1.15 Color space transform with KPCA
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from which follows:

XS
s¼1

XS
l¼1

Uð~XsÞUð~XsÞtUð~XlÞali ¼ S~ki
XS
l¼1

aliUð~XlÞ: ð1:86Þ

After multiplying the left side of the above equation with the vector Uð~XsÞt; is
obtained:

XS
s¼1

XS
l¼1

Uð~XsÞtUð~XsÞUð~XsÞtUð~XlÞali ¼ S~ki
XS
l¼1

aliUð~XlÞtUð~XsÞ: ð1:87Þ

The dot product of the vectors Uð~XsÞ and Uð~XlÞ could be represented through the
kernel function kð~Xs;~XlÞ; defined by the relation:

kð~Xs;~XlÞ ¼ Uð~XsÞt:Uð~XlÞ for s; l ¼ 1; 2; . . .; S: ð1:88Þ

Here, the term kð~Xs; ~XlÞ represents the elements (s, l) of the Gram matrix [K] of
size S × S, called “kernel matrix”. After substituting Eq. (1.88) in Eq. (1.87), is
obtained:

½K]2:~ai ¼ S~ki½K]~ai: ð1:89Þ

Under the condition, that the matrix [K] is positively defined (i.e. when it
eigenvalues are positive) is got a shorter representation than in Eq. (1.89). Then:

½K]~ai ¼ S~ki~ai: ð1:90Þ

From this relation it follows, that S~ki are the eigenvalues of the matrix [K], and
~ai ¼ ½ai1; ai2; . . .; aiS�t are the corresponding eigenvectors of same matrix. Taking
into account the requirement~mti~mi ¼ 1, from Eq. (1.84) is obtained the relation:

XS
s¼1

XS
l¼1

aliasiUð~XlÞt:Uð~XsÞ ¼ 1 or ~ati½K�~ai ¼ 1: ð1:91Þ

After substituting Eq. (1.90) in Eq. (1.91) is obtained S~ki~ati~ai ¼ 1, from which is
defined the square of the module of the vector ~ai ¼ ½ai1; ai2; . . .; aiS�t:

~aik k2¼~ati:~ai ¼
XS
s¼1

a2si ¼ 1=S~ki: ð1:92Þ
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In the general case, the vectors UðX* sÞ in Eq. (1.88) are not centered. In order to
apply the PCA on them, they should be centered in advance, and in result are
obtained the vectors:

U
^ðX* sÞ ¼ UðX* sÞ � EfUðX* sÞg; ð1:93Þ

where ~m
U

^ ¼ E UðX* sÞ
n o

¼ 1
S

PS
s¼1

Uð~XsÞ:

The covariance matrix ½K^ � of the centered vectors UðX*sÞ is of size S × S and is
defined by the relation:

½K^ � ¼ 1
S

XS
s¼1

U
^ð~XsÞt:U

^ð~XlÞ ¼ E U
^ð~XsÞt:U

^ð~XlÞ
n o

: ð1:94Þ

The matrix kernel is:

k
^ð~Xs;~XlÞ ¼ U

^ð~XsÞt:U
^ð~XlÞ ¼ ½UðX* sÞ � ~m

U

^�t:½UðX* lÞ � ~m
U

^�: ð1:95Þ

The relation between the covariance matrices ½K^ � and [K] is:

½K^ � ¼ ½K� � 2½I1=s�½K� þ ½I1=s�½K�½I1=s�; ð1:96Þ

where [I1/s] is a matrix of size S × S, whose elements are equal to 1/S.

The projection of the vector UðX*sÞ on the eigenvector m*i in the S-dimensional
space is:

Prsi ¼ Uð~XsÞt:~mi ¼
XS
s¼1

aisUð~XiÞt:Uð~XsÞ ¼
XS
s¼1

aiskð~Xi;~XsÞ for i ¼ 1; 2; 3; . . .; N:

ð1:97Þ

Using the projections Prsi of the vector UðX*sÞ on each of the first
k ≤ N eigenvectors m

*

i (for i = 1, 2,…, k), could be taken the decision for the
classification of the sth pixel to the dominant color of the selected object, using
some of the well-known classifiers, as: SVM, LDA, k-nearest neighbors, neural
networks, etc. [89]

To carry out the KPCA, one could use different kinds of kernel functions, such
as the polynomial, the Gaussian, the sigmoid, etc. By substituting Uð~XsÞ ¼~x and
Uð~XlÞ ¼~y the polynomial kernel function of degree d is defined by the relation:
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kð~x;~yÞ ¼ ð~xt:~yÞd: ð1:98Þ

For d = 2 and if assumed that for the transformation of the 3-component vectors
~Xs ¼ ½xs1; xs2; xs3�t and ~Xl ¼ ½xl1; xl2; xl3�t into N-component is used the nonlinear
function Ф(.), then:

~x ¼ Uð~XsÞ ¼ ½Us1;Us2; ::;UsN �t; ~y ¼ Uð~XlÞ ¼ ½Ul1;Ul2; ::;UlN �t ð1:99Þ

where the vectors components are defined by the relations:

Usi ¼ xr1sip1x
r2
sip2 ; Uli ¼ xr1lip1x

r2
lip2

ð1:100Þ

for r1, r2 = 0, 1, p1, p2 = 1, 2, 3, i = 1, 2, … N and s, l = 1, 2, …, S.
In this case the maximum value of N is N = 9. In order to reduce the needed

calculations, it is suitable to use smaller number of the possible 9 components of the
quadratic function Ф(.).

For example, if assumed N = 3 and if only mixed products of the vectors
components ~Xs and ~Xl are chosen, then from Eq. (1.100) it follows:

~x ¼ Uð~XsÞ ¼ ½xs1xs2; xs1xs3; xs2xs3�t; ~y ¼ Uð~XlÞ ¼ ½xl1xl2; xl1xl3; xl2xl3�t: ð1:101Þ

Then the corresponding kernel function of vectors Uð~XsÞ and Uð~XlÞ is repre-
sented by the polynomial below:

kð~x;~yÞ ¼ ½Us1;Us2;Us3�t:½Ul1;Ul2;Ul3� ¼ xs1xs2xl1xl2 þ xs1xs3xl1xl3 þ xs2xs3xl2xl3:

ð1:102Þ

In particular, for d =1, Uð~XsÞ ¼ ~Xs and Uð~XlÞ ¼ ~Xl the corresponding kernel
function is linear:

kð~x;~yÞ ¼ ½xs1; xs2; xs3�t � ½xl1; xl2; xl3� ¼ xs1xl1 þ xs2xl2 þ xs3xl3: ð1:103Þ

From the above, it follows that KPCA is transformed into linear PCA (i.e. PCA
is a particular case of KPCA).

1.6.2 Algorithm for Color Image Segmentation by Using
HAKPCA

The general algorithm for objects segmentation in the extended color space, based
on the Hierarchical Adaptive Kernel PCA (HAKPCA) and the classifier of the
reduced vectors, is shown on Fig. 1.16.
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In the preprocessing block, each color vector ~Cs ¼ ½Rs;Gs;Bs�t is transformed
into the corresponding expanded vector ~Ps. If the chosen kernel-function is poly-
nomial, and the 3D color space is transformed into a 9-dimensional, then the
components pis of vectors ~Ps could be defined as follows:

~Ps ¼ ½Rs;Gs;Bs;R
2
s ;G

2
s ;B

2
s ;RsGs;BsGs;RsBs�t

¼ ½P1s;P2s;P3s;P4s;P5s;P6s;P7s;P8s;P9s�t for s ¼ 1; 2; . . .; S:

In order to put all components pis in the range [0, 255], for i = 4, 5, …, 9:
R2
s ;G

2
s ;B

2
s ; RsGs; BsGs; RsBs, are normalized in the range 0−255. The vectors~Ps are

then transformed by the 2-level HAKPCA, whose algorithm is shown in Fig. 1.17.
As a result of the transform are obtained the 2-component vectors ~Es ¼ ½E1s;E2s�t,
which are used to substitute the input 9-components vectors
~Ps ¼ ½P1s;P2s;P3s;P4s;P5s;P6s;P7s;P8s;P9s�t. In this way the performance of the
classifier is also simplified, because it has to process the vectors ~Es in the
two-component, instead of the nine-dimensional space.

At its output are separated all pixels in the image, whose corresponding vectors
~Es are in the area of the cluster, belonging to the object. With this, the color
segmentation is finished. In accordance with the algorithm shown in Fig. 1.17, for
the 2-level HAKPCA [91], the nine components of each input vector ~Ps are divided
into three groups, which contain the three-components vectors

~P1s ¼ ½P11s;P12s;P13s�t; ~P2s ¼ ½P21s;P22s;P23s�t; ~P3s ¼ ½P31s;P32s;P33s�t;

At the first level of HAKPCA, on each group of the three-component vectors
~Pks ¼ ½Pk1s;Pk2s;Pk3s�t for k = 1, 2, 3, is performed color APCA with a transform
matrix of size 3 × 3. The so obtained vectors from each group comprise three
“eigen” images, shown in Fig. 1.18. These images are rearranged in accordance to
the rule:

k1 	 k2 	 k3 	 � � � 	 k9: ð1:104Þ

where ki 	 0 for l = 1, 2, …, 9 are eigen values of the covariance matrices of the
three-component vectors ~Pks for each group (k = 1, 2, 3) in the first level of

Preprocessing

with polynomial

kernel

 function

n-level
HAPCA

SVM
classifier

Input
R,G,B image

ObjectCs Ps Es

Fig. 1.16 Block diagram of the algorithm for image segmentation in the expanded color space
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HAКPCA, arranged as monotonously decreasing sequence of eigen values. After
that these components are divided again, this time into 3 groups, of 3 images each.

The vectors, obtained from the pixels with same coordinates in the images from
each group, are of 3 components. For the second level of HAKPCA for each group

  Components
of Extended 

Color Vectors

3 4 71 6 8 952

Hierarchical
Level 1

311 122 133111 322222 233 333211

APCA-1 APCA-2 APCA-3

Components rearrangement for level 2

31 12 1311 3222 23 33

11 21 3113 2322 33 32

21

12

APCA-1 APCA-2 APCA-3

    Components rearrangement for level 1

Hierarchical
Level 2

122 222 133111 322311 233 333211

4=222 7=136=321=11 5=312=21

Reduced
Principal

Components

3=122 8=23 9=33

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

Retained   Components 

R BG 2R 2G 2B G G B

Fig. 1.17 HAKPCA algorithm for direct transform of the extended color image with components
R, G, B, R2, G2, B2, RG, BG, RB
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of 3-component vectors is executed direct APCA with a transform matrix of size
3 × 3.

The algorithm for direct/inverse transform of the components [R], [G], [B] of the
color image, calculated using APCA in three “eigen” images [L1], [L2], [L3], is
shown on Fig. 1.19. The vectors from each group build the three eigen images,
which are rearranged again in accordance with Eq. (1.25). As a result, the nine
eigen images E1 * E9 are obtained, from which are retained the first two (E1 and
E2) only, which carry the main information, needed for the color objects
segmentation.

As a result, the computational complexity of HAKPCA is lower than that of the
KPCA, for the case, when it is used to transform directly the 9-component vectors
~Ps. In this way, the general computational complexity of HAKPCA with a classi-
fier, needed for the processing of the vectors ~Ps is lower than that, needed for the
processing of same vectors with KPCA with a classifier. From the pixels with same
coordinates in the images E1 and E2 are obtained the vectors~Es ¼ ½E1s; E2s�t; which
are then used by the classifier.

1.6.3 Experimental Results

To verify the feasibility of the proposed algorithm, skin pigmentation images were
tested and evaluated. Figures 1.20 and 1.21 show the original tested images and
their color vectors distribution in the RGB space, respectively. It can be seen that
their color distributions are considered as non-linear Gaussian ones.

These images are passed through the HAKPCA algorithm (shown on Fig. 1.17).
The obtained transformed vectors ~Es in the new color space E1s;E2s;E3s are plotted
in the 3D domain shown in Fig. 1.22. It is easy to notice that the proposed tech-
niques concentrate the energy of the different skin color into very small and close
components of transformed vectors.

Fig. 1.18 Color APCA transform of the [R], [G], [B] components of the color image
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Fig. 1.19 Algorithm for direct/inverse APCA of the components [R], [G], [B] of the color image
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Fig. 1.20 a, b Original skin pigmentation images

Fig. 1.21 a, b Color vectors distribution in RGB space for original images in Fig. 1.20 a, b

Fig. 1.22 a, b. Distribution of the transformed vectors ~Es in the new color space E1s; E2s; E3s
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The HAKPCA transformed coefficients are then used to train a classifier. For
briefing, fuzzy K-means clustering is used. The segmentation results are shown in
Fig. 1.23a, b respectively.

The proposed approach depends mainly on the evaluation of the color vectors
distribution. For a non-Gaussian distribution of the vectors, is used HAKPCA. The
selected nonlinear transform results in negligible expansion of the original color
space, which increases slightly the number of needed calculations. The main
advantage of the new approach is that in result of its adaptation in respect to the
color vectors distribution, it could be used as universal tool for efficient image
processing. One more advantage of HAKPCA towards the KPCA is the lower
computational complexity.

On the basis of the presented approach, new algorithm for objects color seg-
mentation was developed, which was distinguished by its high accuracy. This
algorithm could be used in the CBIR systems for extraction of objects with preset
color, in the computer vision systems for detection and tracking of objects in
correspondence to their color under changing surveillance conditions, for automatic
control of various manufacturing processes, etc.

1.7 Conclusions

The new approaches for image decomposition, presented in this chapter, are dis-
tinguished from the well-known methods by their low computational complexity
and high efficiency, which makes them very attractive for future applications in
computer vision, video communications, image content protection through digital
Watermarking [92], image search in large databases, etc. Besides, the methods for
hierarchical decomposition could be also used for the creation of new hybrid
algorithms [93, 94] for processing of some specific kinds of images (static, or
sequences), of the kind: medical, multi- and hyper spectral, multiview, panoramic
satellite photos, etc. Depending on the requirements of the applications, in respect
of their efficiency and the computation time needed for the processing, for each
image kind could be selected the most suitable from the four decompositions

Fig. 1.23 Skin color
segmentation based on
HAKPCA
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(BIDP, HSVD, HAPCA and HAKPCA) i.e., they can complement each other and
have their own place and significance.

The future development of the presented new algorithms will be focused at the
investigation of the possibilities for their integration in the contemporary systems
for parallel processing, analysis and image recognition.
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