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Preface

This book represents the advances in the development of new approaches, used for
the intelligent image analysis. It introduces various aspects of the image analysis,
related to the theory for their processing, and to some practical applications.

The book comprises 11 chapters, whose authors are researchers from different
countries: USA, Russia, Bulgaria, Japan, Brazil, Romania, Ukraine, and Egypt.
Each chapter is a small monograph, which represents the recent research work
of the authors in the corresponding scientific area. The object of the investigation is
new methods, algorithms, and models, aimed at the intelligent analysis of signals
and images—single and sequences of various kinds: natural, medical, multispectral,
multi-view, sound pictures, acoustic maps of sources, etc.

New Approaches for Hierarchical Image Decomposition,
Based on IDP, SVD, PCA, and KPCA

In Chap. 1 the basic methods for hierarchical decomposition of grayscale and color
images, and of sequences of correlated images are analyzed. New approaches are
introduced for hierarchical image decomposition: the Branched Inverse Difference
Pyramid (BIDP) and the Hierarchical Singular Value Decomposition (HSVD) with
tree-like computational structure for single images; the Hierarchical Adaptive
Principle Component Analysis (HAPCA) for groups of correlated images and the
Hierarchical Adaptive Kernel Principal Component Analysis (HAKPCA) for color
images. In the chapter the evaluation of the computational complexity of the
algorithms used for the implementation of these decompositions is also given. The
basic application areas are defined for efficient image hierarchical decomposition,
such as visual information redundancy reduction; noise filtration; color segmenta-
tion; image retrieval; image fusion; dimensionality reduction, where the following
is executed: the objects classification; search enhancement in large-scale image
databases, etc.
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Intelligent Digital Signal Processing and Feature Extraction
Methods

The goal of Chap. 2 is to present well-known signal processing methods and the
way they can be combined with intelligent systems in order to create powerful
feature extraction techniques. In order to achieve this, several case studies are
presented to illustrate the power of hybrid systems. The main emphasis is on the
instantaneous time–frequency analysis, since it is proven to be a powerful method
in several technical and scientific areas. The oldest and most utilized method is the
Fourier transform, which has been applied in several domains of data processing,
but it has very strong limitations due to the constraints it imposes on the analyzed
data. Then the short-time Fourier transform and the wavelet transform are presented
as they provide both temporal and frequency information as opposed to the Fourier
transform. These methods form the basis of most applications, as they offer the
possibility of time–frequency analysis of signals. The Hilbert–Huang transform is
presented as a novel signal processing method, which introduces the concept of the
instantaneous frequency that can be determined for every time point, making it
possible to have a deeper look into different phenomena. Several applications are
presented where fuzzy classifiers, support vector machines, and artificial neural
networks are used for decision-making. Interconnecting these intelligent methods
with signal processing will result in hybrid intelligent systems capable of solving
computationally difficult problems.

Multi-dimensional Data Clustering and Visualization via Echo
State Networks

Chapter 3 summarizes the proposed recently approach for multidimensional data
clustering and visualization. It uses a special kind of recurrent networks called Echo
State Networks (ESN) to generate multiple 2D projections of the multidimensional
original data. The 2D projections are subjected to selection based on different
criteria depending on the aim of particular clustering task to be solved. The selected
projections are used to cluster and/or to visualize the original data set. Several
examples demonstrate the possible ways to apply the proposed approach to variety
of multidimensional data sets: steel alloys discrimination by their composition;
Earth cover classification from hyperspectral satellite images; working regimes
classification of an industrial plant using data from multiple measurements; dis-
crimination of patterns of random dot motion on the screen; and clustering and
visualization of static and dynamic “sound pictures” by multiple randomly placed
microphones.
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Unsupervised Clustering of Natural Images in Automatic
Image Annotation Systems

Chapter 4 is devoted to automatic annotation of natural images joining the strengths
of the text-based and the content-based image retrieval. The automatic image
annotation is based on the semantic concept models, which are built from large
number of patches received from a set of images. In this case, image retrieval is
implemented by keywords called Visual Words (VWs) that is similar to text doc-
ument retrieval. The task involves two main stages: a low-level segmentation based
on color, texture, and fractal descriptors and a high-level clustering of received
descriptors into the separated clusters corresponding to the VWs set. The enhanced
region descriptor including color, texture, and fractal features has been proposed.
For the VWs generation, the unsupervised clustering is a suitable approach. The
Enhanced Self-Organizing Incremental Neural Network (ESOINN) was chosen due
to its main benefits as a self-organizing structure and online implementation. The
preliminary image segmentation permitted to change a sequential order of
descriptors entering the ESOINN as associated sets. Such approach simplified,
accelerated, and decreased the stochastic variations of the ESOINN. The experi-
ments demonstrate acceptable results of the VWs clustering for a non-large natural
image sets. This approach shows better precision values and execution time as
compared to the fuzzy c-means algorithm and the classic ESOINN. Also issues of
parallel implementation of unsupervised segmentation in OpenMP and Intel Cilk
Plus environments were considered for processing of HD-quality images.

An Evolutionary Optimization Control System for Remote
Sensing Image Processing

Chapter 5 provides an evolutionary control system via two Darwinian Particle
Swarm Optimizations (DPSO)—one novel application of DPSO—coupled with
remote sensing image processing to help in the image data analysis. The remote
sensing image analysis has been a topic of ongoing research for many years and has
led to paradigm shifts in the areas of resource management and global biophysical
monitoring. Due to distortions caused by variations in signal/image capture and
environmental changes, there is not a definite model for image processing tasks in
remote sensing and such tasks are traditionally approached on a case-by-case basis.
Intelligent control, however, can streamline some of the case-by-case scenarios and
allows faster, more accurate image processing to support the more accurate remote
sensing image analysis.
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Tissue Segmentation Methods Using 2D Histogram
Matching in a Sequence of MR Brain Images

In Chap. 6 a new transductive learning method for tissue segmentation using a 2D
histogram modification, applied to Magnetic Resonance (MR) image sequence, is
introduced. The 2D histogram is produced from a normalized sum of co-occurrence
matrices of each MR image. Two types of model 2D histograms are constructed for
each subsequence: intra-tissue 2D histogram to separate tissue regions and an
inter-tissue edge 2D histogram. First, the MR image sequence is divided into few
subsequences, using wave hedges distance between the 2D histograms of the
consecutive MR images. The test 2D histogram segments are modified in the
confidence interval and the most representative entries for each tissue are extracted,
which are used for the kNN classification after distance learning. The modification
is applied by using LUT and two ways of distance metric learning: large margin
nearest neighbor and neighborhood component analysis. Finally, segmentation
of the test MR image is performed using back projection with majority vote
between the probability maps of each tissue region, where the inter-tissue edge
entries are added with equal weights to corresponding tissues. The proposed
algorithm has been evaluated with free access data sets and has showed results that
are comparable to the state-of-the-art segmentation algorithms, although it does not
consider specific shape and ridges of brain tissues.

Multistage Approach for Simple Kidney Cysts Segmentation
in CT Images

In Chap. 7 a multistage approach for segmentation of medical objects in Computed
Tomography (CT) images is presented. Noise reduction with consecutive applied
median filter and wavelet shrinkage packet decomposition, and contrast enhance-
ment based on Contrast limited Adaptive Histogram Equalization (CLAHE) are
applied in the preprocessing stage. As a next step a combination of two basic
methods is used for image segmentation such as the split and merge algorithm,
followed by the color-based K-mean clustering. For refining the boundaries of the
detected objects, additional texture analysis is introduced based on the limited
Haralick’s feature set and morphological filters. Due to the diminished number of
components for the feature vectors, the speed of the segmentation stage is higher
than that for the full feature set. Some experimental results are presented, obtained
by computer simulation. The experimental results give detailed information about
the detected simple renal cysts and their boundaries in the axial plane of the CT
images. The proposed approach can be used in real time for precise diagnosis or in
disease progression monitoring.
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Audio Visual Attention Models in Mobile Robots Navigation

In Chap. 8, it is proposed to use the exiting definitions and models for human audio
and visual attention, adapting them to the models of mobile robots audio and visual
attention, and combining with the results from mobile robots audio and visual
perception in the mobile robots navigation tasks. The mobile robots are equipped
with sensitive audio visual sensors (usually microphone arrays and video cameras).
They are the main sources of audio and visual information to perform suitable
mobile robots navigation tasks modeling human audio and visual perception. The
audio and visual perception algorithms are widely used, separately or in audio
visual perception, in mobile robot navigation, for example to control mobile robots
motion in applications like people and objects tracking, surveillance systems, etc.
The effectiveness and precision of the audio and visual perception methods in
mobile robots navigation can be enhanced combining audio and visual perception
with audio and visual attention. There exists relative sufficient knowledge
describing the phenomena of human audio and visual attention.

Local Adaptive Image Processing

Three methods for 2D local adaptive image processing are presented in Chap. 9.
In the first one, the adaptation is based on the local information from the four
neighborhood pixels of the processed image and the interpolation type is changed to
zero or bilinear. The analysis of the local characteristics of images in small areas is
presented, from which the optimal selection of thresholds for dividing into
homogeneous and contour blocks is made and the interpolation type is changed
adaptively. In the second one, the adaptive image halftoning is based on the gen-
eralized 2D Last Mean Square (LMS) error-diffusion filter for image quantization.
The thresholds for comparing the input image levels are calculated from the gray
values dividing the normalized histogram of the input halftone image into equal
parts. In the third one, the adaptive line prediction is based on the 2D LMS
adaptation of coefficients of the linear prediction filter for image coding. An
analysis of properties of 2D LMS filters in different directions was made. The
principal block schemes of the developed algorithms are presented. An evaluation
of the quality of the processed images was made on the base of the calculated
objective criteria and the subjective observation. The given experimental results,
from the simulation for each of the developed algorithms, suggest that the effective
use of local information contributes to minimize the processing error. The methods
are suitable for different types of images (fingerprints, contour images, cartoons,
medical signals, etc.). The developed algorithms have low computational com-
plexity and are suitable for real-time applications.
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Machine Learning Techniques for Intelligent Access Control

In Chap. 10 several biometric techniques, their usage, advantages and disadvan-
tages are introduced. The access control is the set of regulations used to access
certain areas or information. By access we mean entering a specific area, or logging
on a machine (PC, or another device). The access regulated by a set of rules that
specifies who is allowed to get access, and what are the restrictions on such access.
Over the years several basic kinds of access control systems have been developed.
With advancement of technology, older systems are now easily bypassed with
several methods, thus the need to have new methods of access control. Biometrics is
referred to as an authentication technique that relies on a computer system to
electronically validate a measurable biological characteristic that is physically
unique and cannot be duplicated. Biometrics has been used for ages as an access
control security system.

Experimental Evaluation of Opportunity to Improve
the Resolution of the Acoustic Maps

Chapter 11 is devoted to generation of acoustic maps. The experimental work
considers the possibility to increase the maps resolution. The work uses 2D
microphone array with randomly spaced elements to generate acoustic maps of
sources located in its near-field region. In this region the wave front is not flat and
the phase of the input signals depends on the arrival direction, and on the range as
well. The input signals are partially distorted by the indoor multipath propagation
and the related interference of sources emissions. For acoustic mapping with
improved resolution an algorithm in the frequency domain is proposed. The
algorithm is based on the modified method of Capon. Acoustic maps of point-like
noise sources are generated. The maps are compared with the maps generated using
other famous methods including built-in equipment software. The obtained results
are valuable in the estimation of direction of arrival for Noise Exposure Monitoring.

This book will be very useful for students and Ph.D. students, researchers, and
software developers, working in the area of digital analysis and recognition of
multidimensional signals and images.

Sofia, Bulgaria Roumen Kountchev
Himeji, Japan Kazumi Nakamatsu
2015
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Chapter 1
New Approaches for Hierarchical Image
Decomposition, Based on IDP, SVD, PCA
and KPCA

Roumen Kountchev and Roumiana Kountcheva

Abstract The contemporary forms of image representation vary depending on the
application. There are well-known mathematical methods for image representation,
which comprise: matrices, vectors, determined orthogonal transforms,
multi-resolution pyramids, Principal Component Analysis (PCA) and Independent
Component Analysis (ICA), Singular Value Decomposition (SVD), wavelet
sub-band decompositions, hierarchical tensor transformations, nonlinear decom-
positions through hierarchical neural networks, polynomial and multiscale hierar-
chical decompositions, multidimensional tree-like structures, multi-layer perceptual
and cognitive models, statistical models, etc. In this chapter are analyzed the basic
methods for hierarchical decomposition of grayscale and color images, and of
sequences of correlated images of the kind: medical, multispectral, multi-view, etc.
Here is also added one expansion and generalization of the ideas of the authors
from their previous publications, regarding the possibilities for the development of
new, efficient algorithms for hierarchical image decompositions with various pur-
poses. In this chapter are presented and analyzed the following four new approaches
for hierarchical image decomposition: the Branched Inverse Difference Pyramid
(BIDP), based on the Inverse Difference Pyramid (IDP); the Hierarchical Singular
Value Decomposition (HSVD) with tree-like computational structure; the
Hierarchical Adaptive Principle Component Analysis (HAPCA) for groups of
correlated images; and the Hierarchical Adaptive Kernel Principal Component
Analysis (HAKPCA) for color images. In the chapter are given the algorithms, used
for the implementation of these decompositions, and their computational com-
plexity is evaluated. Some experimental results, related to selected applications are
also given, and various possibilities for the creation of new hybrid algorithms for
hierarchical decomposition of multidimensional images are specified. On the basis
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of the results obtained from the executed analysis, the basic application areas for
efficient image processing are specified, such as: reduction of the information
surplus; noise filtration; color segmentation; image retrieval; image fusion;
dimensionality reduction for objects classification; search enhancement in large
scale image databases, etc.

Keywords Hierarchical image decomposition � Branched inverse difference
pyramid � Hierarchical singular value decomposition � Hierarchical principal
component analysis for groups of images � Hierarchical adaptive kernel principal
component analysis for color images

1.1 Introduction

The methods for image processing, transmission, registration, restoration, analysis
and recognition, are defined at high degree by the corresponding mathematical
forms and models for their representation. On the other hand, they all depend on the
way the image was created, and on their practical use. The primary forms for image
representation depend on the used sources, such as: photo and video cameras,
scanners, ultrasound sensors, X-ray, computer tomography, etc. The matrix
descriptions are related to the primary discrete forms. Each still halftone image is
represented by one matrix; the color RGB image—by three matrices; the multi-
spectral, hyper spectral and multi-view images, and also some kinds of medical
images (for example, computer tomography, IMR, etc.)—by N matrices (for N > 3),
while the moving images are represented through M temporal sequences, of
N matrices each. There are already many secondary forms created for image rep-
resentation, obtained from the primary forms, after reduction of the information
surplus, and depending on the application. Various mathematical methods are used
to transform the image matrices into reduced (secondary) forms by using: vectors,
for each image block, through which are composed vector fields; deterministic and
statistical orthogonal transforms; multi-resolution pyramids; wavelet sub-band
decompositions; hierarchical tensor transforms; nonlinear decompositions through
hierarchical neural networks, polynomial and multiscale hierarchical decomposi-
tions, multi-dimensional tree-like structures, multi-layer perceptual and cognitive
models, statistical models, fuzzy hybrid methods for image decomposition, etc.

The decomposition methods permit each image matrix to be represented as
the sum of the matrix components with different weights, defined by the image
contents. Besides, the description of each matrix in the decomposition is much
simpler than that of the original (primary) matrix. The number of the matrices in the
decomposition could be significantly reduced through analyzing their weights,
without significant influence on the approximation accuracy of the primary matrix.
To this group could be related the methods for linear orthogonal transforms [1]: the
Discrete Fourier Transform (DFT), the Discrete Cosine Transform (DCT),
the Walsh-Hadamard Transform (WHT), the Hartley Transform (HrT), the Haar
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Transform (HT), etc.; the pyramidal decompositions [2]: the Gaussian Pyramid
(GP), the Laplacean Pyramid (LP), the Discrete Wavelet Transform (DWT), the
Discrete Curvelet Transform (DCuT) [3], the Inverse Difference Pyramid (IDP) [4],
etc.; the statistical decompositions [5]: the Principal Component Analysis (PCA),
the Independent Component Analysis (ICA) and the Singular Value Decomposition
(SVD); the polynomial and multiscale hierarchical decompositions [6, 7];
multi-dimensional tree-like structures [8]; hierarchical tensor transformations [9];
the decompositions based on hierarchical neural networks [10]; etc.

The aim of this chapter is to be analyzed the basic methods and algorithms for
hierarchical image decomposition. Here are also generalized the following new
approaches for hierarchical decomposition of multi-component matrix images: the
Branched Inverse Difference Pyramid (BIDP), based on the Inverse Difference
Pyramid (IDP), the Hierarchical Singular Value Decomposition (HSVD)—for the
representation of single images; the Hierarchical Adaptive Principal Component
Analysis (HAPCA)—for the decorrelation of sequences of images, and the
Hierarchical Adaptive Kernel Principal Component Analysis (HAKPCA)—for the
analysis of color images.

1.2 Related Work

One of the contemporary methods for hierarchical image decomposition is called
multiscale decomposition [7]. It is used for noise filtration in the image f, repre-
sented by the sum of the clean part u, and the noisy part, v. In accordance to Rudin,
Osher and Fatemi (ROF) [11], to define the components u and v it is necessary to
calculate the total variation of the functional Q, defined by the relation:

Qðf ; kÞ ¼ inf
Z
X

jruj þ kjjvjj2L2 ; f ¼ uþ v

8<
:

9=
;;

where λ > 0 is a scale parameter; and f 2 L2(Ω)—the image function, defined in the
space L2(Ω). The minimization of Q leads to decomposition, in result of which the
visual information is divided into a part u that extracts the edges of f, and a part
v that captures the texture. Denoising at different scales λ generates a multiscale
image representation. In [6], Tadmor, Nezzar and Vese proposed a multiscale image
decomposition which offers a hierarchical and adaptive representation for different
features in the analyzed images. The image is hierarchically decomposed into the
sum of simpler atoms uk, where uk extracts more refined information from the
previous scale uk−1. To this end, the atoms uk are obtained as dyadically scaled
minimizers of the ROF functionals at increasing λk scales. Thus, starting with v−1 := f
and letting vk denote the residual at a given dyadic scale, λk = 2k, the recursive step
[uk, vk] = arg{inf[QT(vk−1, k)]} leads to the desired hierarchical decomposition,
f = ΣT(uk) (here T is a blurring operator).
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Another well-known approach for hierarchical decomposition is based on the
hierarchical matrices [12]. The concept of hierarchical, or H-matrices, is based on
the observation that submatrices of a full rank matrix may be of low rank, and
respectively—to have low rank approximations. On Fig. 1.1 is given an example
for the representation of a matrix of size 8 × 8 through H-matrices, which contain
sub-matrices of three different sizes: 4 × 4, 2 × 2 and 1 × 1.

This observation is used for the matrix-skeleton approximation. The inverses of
finite element matrices have, under certain assumptions, submatrices with expo-
nentially decaying singular values. This means that these submatrices have also
good low rank approximations. The hierarchical matrices permit decomposition by
QR or Cholesky algorithms, which are iterative. Unlike them, the new approaches
for hierarchical image decomposition, given in this chapter (BIDP and HSVD—for
single images, HAPCA—for groups of correlated images, and HAKPCA—for
color images), are not based on iterative algorithms.

1.3 Image Representation Based on Branched Inverse
Difference Pyramid

1.3.1 Principles for Building the Inverse Difference Pyramid

In this section is given a short description of the inverse difference pyramid, IDP
[4, 13], used as a basis for building its modifications. Unlike the famous Gaussian
(GP) and Laplacian (LP) pyramids, the IDP represents the image in the spectral
domain. After the decomposition, the image energy is concentrated in its first
components, which permits to achieve very efficient compression, by cutting off the
low-energy components. As a result, the main part of the energy of the original
image is retained, despite the limited number of decomposition components used.
For the decomposition implementation various kinds of orthogonal transforms
could be used. In order to reduce the number of decomposition levels and the
computational complexity, the image is initially divided into blocks and for each is
then built the corresponding IDP.

Fig. 1.1 Representation of the matrix of size 8 × 8 through three hierarchical matrices, or
H-matrices
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In brief, the IDP is executed as follows: At the lowest (initial) level, on the
matrix [B] of size 2n × 2n is applied the pre-selected “Truncated” Orthogonal
Transform (TOT) and are calculated the values of a relatively small number of
“retained” coefficients, located in the high-energy area of the so calculated trans-
formed (spectrum) matrix [S0]. These are usually the coefficients with spatial fre-
quencies (0, 0), (0, 1), (1, 0) and (1, 1). After Inverse Orthogonal Transform
(IOT) of the “truncated” spectrum matrix ½Ŝ0�, which contains the retained coeffi-
cients only, is obtained the matrix ½B̂0� for the initial IDP level (p = 0), which
approximates the matrix [B]. The accuracy of the approximation depends on: the
positions of the retained coefficients in the matrix [S0]; the values, used to substitute
the missing coefficients from the approximating matrix ½Ŝ0� for the zero level, and
on the selected orthogonal transform. In the next decomposition level (p = 1), is
calculated the difference matrix ½E0� ¼ ½B� � ½B̂0�. The resulting matrix is then split
into 4 sub-matrices of size 2n−1 ×2n−1 and on each is applied the corresponding
TOT. The total number of retained coefficients for level p = 1 is 4 times larger than
that in the zero level. In case, that Walsh-Hadamard Transform (WHT) is used for
this level, the values of coefficients (0, 0) in the IDP decomposition levels 1 and
higher are always equal to zero, which permits to reduce the number of retained
coefficients with ¼. On each of the four spectrum matrices ½Ŝ1� for the IDP level
p = 1 is applied IOT and as a result, four sub-matrices are obtained, which build the
approximating difference matrix ½Ê0�. In the next IDP level (p = 2) is calculated the
difference matrix ½E1� ¼ ½E0� � ½Ê0�. After that, each difference sub-matrix is
divided in similar way as in level 1, into four matrices of size 2n−2 × 2n−2, and for
each is performed TOT, etc. In the last (highest) IDP level is obtained the “residual”
difference matrix. In case that the image should be losslessly coded, each block of
the residual matrix is processed with full orthogonal transform and no coefficients
are omitted.

1.3.2 Mathematical Representation of n-Level IDP

The digital image is represented by a matrix of size (2nm) × (2nm). For the pro-
cessing, the matrix is first divided into blocks of size 2n × 2n and on each is applied
the IDP decomposition. The matrix [B(2n)] of each block is represented by the
equation:

½Bð2nÞ� ¼ ½B̂0ð2nÞ�þ
Xr

p¼1

½Êp�1ð2nÞ� þ ½Erð2nÞ� for r ¼ 1; 2; . . .; n� 1: ð1:1Þ

Here the number of decomposition components, which are matrices of size
2n × 2n, is equal to (r + 2). The maximum possible number of decomposition levels
for one block is n + 1 (for r = n − 1). The last component ½Erð2nÞ� defines the
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approximation error for the block ½Bð2nÞ� for the case, when the decomposition is
limited up to level p = r. The first component ½B̂0ð2nÞ� for the level p = 0 is the
coarse approximation of the block [B(2n)]. It is obtained through 2D IOT on the
block ½Ŝ0ð2nÞ� in correspondence with the relation:

½B̂0ð2nÞ� ¼ ½T0ð2nÞ��1½Ŝ0ð2nÞ�½T0ð2nÞ��1 for p ¼ 0; ð1:2Þ

where ½T0ð2nÞ��1 is a matrix of size 2n × 2n, used for the inverse orthogonal
transform of ½Ŝ0ð2nÞ�.

The matrix ½Ŝ0ð2nÞ� ¼ ½m0ðu; vÞs0ðu; vÞ� is the “truncated” orthogonal transform
of the block [B(2n)]. Here m0(u, v) are the elements of the binary matrix-mask
[M0(2

n)], used to define the retained coefficients of ½Ŝ0ð2nÞ� in correspondence to the
relation:

m0ðu; vÞ ¼ 1; if s0ðu; vÞ is a retained coefficient;
0 � otherwise:

�
ð1:3Þ

The values of the elements m0ðu; vÞ are selected in accordance with the
requirement the retained coefficients ŝ0ðu; vÞ ¼ m0ðu; vÞs0ðu; vÞ to be these with
maximum energy, calculated for all image blocks. The transform ½S0ð2nÞ� of the
block [B(2n)] is defined through direct 2D OT:

½S0ð2nÞ� ¼ ½T0ð2nÞ�½Bð2nÞ�½T0ð2nÞ�; ð1:4Þ

where ½T0ð2nÞ� is a matrix of size 2n × 2n for the decomposition level p = 0, used to
perform the selected 2D OT, which could be DFT, DCT, WHT, KLT, etc.

The remaining coefficients in the decomposition presented by Eq. 1.1 are the
approximating difference matrices ½Êp�1ð2n�pÞ� for levels p = 1, 2, …, r. They

comprise the sub-matrices ½Êkp
p�1ð2n�pÞ� of size 2n−p × 2n−p for kp = 1, 2, …, 4p,

obtained through quadtree division of the matrix ½Êp�1ð2n�pÞ�. Each sub-matrix

½Êkp
p�1ð2n�pÞ� is then defined by the relation:

½Êkp
p�1ð2n�pÞ� ¼ ½Tpð2n�pÞ��1½Ŝkpp ð2n�pÞ�½Tpð2n�pÞ��1 for kp ¼ 1; 2; . . .; 4p; ð1:5Þ

where 4p is the number of the quadtree branches in the decomposition level p. Here
½Tpð2n�pÞ��1 is a matrix of size 2n−p × 2n−p in the level p, used for the inverse 2D OT.

The elements ŝkpp ðu; vÞ ¼ mpðu; vÞ: skpp ðu; vÞ of the matrix ½Ŝkpp ð2n�pÞ� are defined
by the elements mp(u, v) of the binary matrix-mask [Mp(2

n−p)]:

mpðu; vÞ ¼ 1; if skpp ðu; vÞ is a retained coefficient,
0 � otherwise:

�
ð1:6Þ
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The matrix ½Skpp ð2n�pÞ� is the transform of ½Ekp
p�1ð2n�pÞ� and is defined through

direct 2D OT:

½Skpp ð2n�pÞ� ¼ ½Tpð2n�pÞ�½Ekp
p�1ð2n�pÞ�½Tpð2n�pÞ�: ð1:7Þ

Here ½Tpð2n�pÞ� is a matrix of size 2n−p × 2n−p in the decomposition level p, used

for the 2D OT of each block ½Ekp
p ð2n�pÞ� (when kp = 1, 2,…, 4p), of the difference

matrix for same level, defined by the equation:

½Ep�1ð2nÞ� ¼ ½Bð2nÞ��½B̂0ð2nÞ� for p ¼ 1; ð1:8Þ

½Ep�1ð2n�pÞ� ¼ ½Ep�2ð2n�pÞ� � ½Êp�2ð2n�p Þ� for p ¼ 2; 3; . . .; r: ð1:9Þ

In result of the decomposition represented by Eq. 1.1, for each block [B(2n)], are
calculated the following spectrum coefficients:

• all nonzero coefficients of the transform ½Ŝ0ð2nÞ� in the decomposition level
p = 0;

• all nonzero coefficients of the transforms ½Ŝkpp ð2n�pÞ� for kp = 1, 2, …, 4p in the
decomposition levels p = 1, 2, …, r.

The spectrum coefficients of same spatial frequency (u, v) from all image blocks
are arranged in common data sequences, which correspond to their decomposition
level p. The transformation of the 2D data massifs into one-dimensional data
sequence is executed, using the recursive Hilbert scan, which preserves very well
the correlation between neighboring coefficients.

In order to reduce the decomposition complexity, and in accordance with
Eq. 1.1, this could be done recursively, as follows:

½B0
rð2nÞ� ¼ ½B0

r�1ð2nÞ� þ ½Êrð2nÞ� for r ¼ 1; 2; . . .; n� 1: ð1:10Þ

For the case, when the number of the retained coefficients for each IDP sub-block

kp of size 2n�p � 2n�p is
P2n�p

u¼0

P2n�p

v¼0
mpðu; vÞ ¼ 4; then their total number for all levels is:

N ¼
Xn�1

p¼0

4pþ 1 ¼ ð4=3Þð4n � 1Þ � ð4=3Þ4n: ð1:11Þ

In this case the total number of “retained” coefficients is 4/3 times higher than
that of the pixels in the block, and hence, the IPD is “overcomplete”.

1 New Approaches for Hierarchical Image Decomposition … 7



1.3.3 Reduced Inverse Difference Pyramid

For the building of the Reduced IDP (RIDP) [14], the existing relations between the
spectrum coefficients from the neighboring IDP levels are used. Let the retained

coefficients skpp ðu; vÞ with spatial frequencies (0, 0), (1, 0), (0, 1) and (1, 1) for the
sub-block kp in the IDP level p, be obtained by using the 2D-WHT. Then, except
for level p = 0, the coefficients (0, 0) from each of the four neighboring sub-blocks
in same IDP level are equal to zero, i.e.:

skpp ð0; 0Þ ¼ skp þ 1
p ð0; 0Þ ¼ skp þ 2

p ð0; 0Þ ¼ skp þ 3
p ð0; 0Þ ¼ 0 for p ¼ 1; 2; . . .; n� 1:

ð1:12Þ

From this, it follows that the coefficients skppþ ið0; 0Þ for i = 0, 1, 2, 3 could be
cut-off, and as a result they should not be saved or transferred. Hence, the total
number of the retained coefficients NR for each sub-block kp in the decomposition
levels p = 1, 2,…, n−1 of the RIDP could be reduced by ¼, i.e.

NR ¼ 4þ
Xn�1

p¼1

4pþ 1�
Xn�1

p¼1

4p ¼ 4þ 3
Xn�1

p¼1

4p ¼ 4þ 3
4
3
ð4n�1 � 1Þ ¼ 4n: ð1:13Þ

In this case the total number of the “retained” coefficients for all levels is equal to
the number of pixels in the block, and hence, the so calculated RIPD is “complete”.

1.3.4 Main Principle for Branched IDP Building

The pyramid BIDP [15, 16] with one or more branches is an extension of the basic
IDP. The image representation through the BIDP aims at the enhancement of the
image energy concentration in a small number of IDP components. On Fig. 1.2 is
shown an example block diagram of the generalized 3-level BIDP. The IDP for each
block of size 2n × 2n from the original image, called “Main Pyramid”, is of 3 levels
(n = 3, for p = 0, 1, 2). The values of the coefficients, calculated for these 3 levels,
compose the inverse pyramid, whose sections are of different color each. The
coefficients s(0, 0), s(0, 1), s(1, 0) and s(1, 1) in level p = 0 from all blocks compose
corresponding matrices of size m × m, colored in yellow. These 4 matrices build the
“Branch for level 0” of the Main Pyramids. Each is then divided into blocks of size
2n−1×2n−1, on which in similar way are built the corresponding 3-level IPDs
(p = 00, 01, 02). The retained coefficients s(0, 1), s(1, 0) and s(1, 1) in level p = 1 of
the Main Pyramids from all blocks build matrices of size 2m × 2m (colored in pink).

Each matrix of size 2m × 2m is divided into blocks of size 2n−1 × 2n−1, on which
in similar way are build corresponding 3-level IDPs (p = 10, 11, 12). The retained
coefficients, calculated after TOT from the blocks of the Residual Difference in the
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last level (p = 2) of the Main Pyramids, build matrices of size 4m × 4m; from the
first level (p = 00) of the Pyramid Branch 0—matrices of size (m/2n−1 × m/2n−1);
and from the first level (p = 10) of the “Pyramid Branch 1”—matrices of size
(m/2n−2 × m/2n−2). In order to reduce the correlation between the elements of the so
obtained matrices, on each group of 4 spatially neighboring elements is applied the
following transform: the first is substituted by their average value, and each of
the remaining 3—by its difference to next elements, scanned counter-clockwise. The
coefficients, obtained this way from all levels of the Main and Branch Pyramids are
arranged in one-dimensional sequences in accordance with Hilbert scan and after
that are quantizated and entropy coded using Adaptive RLC and Huffman. The
values of the spectrum coefficients are quantizated only in case that the image coding
is lossy. In order to retain the visual quality of the restored images, the quantization
values are related to the sensibility of the human vision to errors in different spatial
frequencies. To reduce these errors, retaining the compression efficiency, in the
consecutive BIDP levels could be used various fast orthogonal transforms: for
example, in the zero level could be used DCT, and in the next levels—WHT.

1.3.5 Mathematical Representation for One BIDP Branch

In the general case, the branch g of the BIDP is built on the matrix ½Sgðu; vÞ� of size
2n�g�1 � 2n�g�1; which comprises all spectrum coefficients skpp ðu; vÞ with the
same spatial frequency (u, v) from all blocks or sub-blocks kp in the level p = g of

Fig. 1.2 Example of generalized 3-level Branched Inverse Difference Pyramid (BIDP)
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the Main IDPs. By analogy with Eq. (1.1), the matrix ½Sgðu;vÞ� could be decomposed
in accordance with the relation, given below:

½Sgðu;vÞ� ¼ ½~S0;gðu;vÞ� þ
Xr

s¼1

½~Eks
s�1;gðu;vÞ� þ ½~Er;gðu;vÞ� for r ¼ 1; 2; . . .; n� 1; ð1:14Þ

where

½~S0;gðu;vÞ� ¼ ½T0;gðu;vÞ��1½Ŝ0;gðu;vÞ�½T0;gðu;vÞ��1 for s ¼ 0; ð1:15Þ

½Ŝ0;gðu;vÞ� ¼ ½̂s0;gðu;vÞðk; lÞ� ¼ ½m0;gðu;vÞðk; lÞs0;gðu;vÞðk; lÞ�; ð1:16Þ

m0;gðu;vÞðk; lÞ ¼ 1; if s0;gðu;vÞðk; lÞ are the retained coefficients,
0 � otherwise;

�
ð1:17Þ

½S0;gðu;vÞ� ¼ ½s0;gðu;vÞðk; lÞ� ¼ ½T0;gðu;vÞ�½Sgðu;vÞ�½T0;gðu;vÞ�; ð1:18Þ

½Es�1;gðu;vÞ� ¼ ½Sgðu;vÞ�� ½~S0;gðu;vÞ� for s ¼ 1; ð1:19Þ

½~Eks
s�1;gðu;vÞ� ¼ ½Ts;gðu;vÞ��1½Skss;gðu;vÞ�½Ts;gðu;vÞ��1 for s ¼ 2; 3; . . .; r and ks

¼ 1; 2; . . .; 4s; ð1:20Þ

½Es�1;gðu;vÞ� ¼ ½Es�2;gðu;vÞ� � ½~Es�2;gðu;vÞ�: ð1:21Þ

All matrices in Eqs. (1.14)−(1.19) are of size 2n�g�1 � 2n�g�1; and these in
Eqs. (1.20) and (1.21)—of size 2n�g�s�1 � 2n�g�s�1: The decomposition from
Eq. (1.14) of the matrix ½Sgðu;vÞ� is named Pyramid Branch (PBg(u,v)). It is a pyramid,
whose initial and final levels are g and r correspondingly (g < r). This pyramid
represents the branch g of the Main IDPs and contains all coefficients, whose spatial
frequency is (u, v).

The maximum number of branches for the levels p = 0, 1, …, n − 1 of the Main
IDPs, built on a sub-block of size 2n�p � 2n�p; is defined by the general number of

retained spectrum coefficients Mp ¼ 4p
P2n�p

u¼0

P2n�p

v¼0
mpðu; vÞ. For the branch g from the

level p = g the corresponding pyramid PBg(uv) is of r levels. The number of the
coefficients in this branch of the Main IDPs for p = g, g + 1, …, r, without
cutting-off the coefficients, calculated for the spatial frequency (0, 0), is:

Ng;r ¼ Mg

Xr

p¼g

4p ¼ Mg½
Xr

p¼0

4p �
Xg�1

p¼0

4p� ¼ ðMg=3Þð4rþ 1 � 4gÞ: ð1:22Þ

10 R. Kountchev and R. Kountcheva



In case that the number of the retained spectrum coefficients for each sub-block

is set to be
P2n�g

u¼0

P2n�g

v¼0
mgðu; vÞ ¼ 4; then Mg ¼ 4gþ 1. In this case, from Eq. (1.22) it

follows, that the total number of the coefficients in the branch PBg(uv) is Ng;r ¼
ð4gþ 1=3Þð4rþ 1 � 4gÞ: Hence, the compression ratio (CR) for PBg(uv) is defined by
the relation:

CRg;r ¼ 4n�g�1

Ng;r;
¼ 3

4
� 4n�g�1

4gð4rþ 1 � 4gÞ ; ð1:23Þ

where 4n−g−1 is the number of the elements in one sub-block of size 2n�g�1 �
2n�g�1 from PBg(uv).

The compression ratio for the Main IDPs, calculated in accordance with
Eq. (1.11), is:

CR ¼ 4n

N
¼ 3� 4n

4ð4n � 1Þ �
3
4
for 4n � 1: ð1:24Þ

From the comparison of the Eqs. (1.23) and (1.24) it follows, that:

CRg;r [CR; if r� n� 3: ð1:25Þ

In case that the requirement from Eq. (1.25) for the number of levels r of PBg(u,v)

for level g of the Main IDPs is satisfied, the compression ratio for the branch g is
higher, than that for each of the basic pyramids. From Eq. (1.25) it follows that the
condition r > 1 is satisfied, when n > 4, i.e., when the image is divided into blocks
of minimum size of 16 × 16 pixels. For this case, to retain the correlation between
their pixels high, is necessary the size of the image (16m) × (16m) to be relatively
large. For example, the image should be of size 2k × 2k (for m = 128), or larger.
Hence, the BIDP decomposition is efficient mainly for images with high resolution.

The correlation between the elements of the blocks of size 2n�1 � 2n�1 from the
initial level g = 0 of the Main IDPs is higher than that, between the elements of the
sub-blocks of size 2n�g�1 � 2n�g�1 from the higher levels g = 1, 2, …, r. Because
of this, the branching of the BIDP should always start from the level g = 0.

1.3.6 Transformation of the Retained Coefficients
into Sub-blocks of Size 2 × 2

The aim of the transformation is to reduce the correlation between the retained
neighboring spectrum coefficients in the sub-blocks of size 2 × 2 in each matrix,
built by the coefficients of same spatial frequency (u, v) from all blocks (or
respectively—from the sub-blocks kp in the selected level p of the Main IDPs, or
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their branches). In order to simplify the presentation, the spectrum coefficients in
the sub-blocks kp for the level p, are set as follows:

Ai ¼ skp þ i
p ð0; 0Þ; Bi ¼ skp þ i

p ð1; 0Þ; Ci ¼ skp þ i
p ð0; 1Þ; Di ¼ skp þ i

p ð1; 1Þ for i ¼ 0; 1; 2; 3:

ð1:26Þ

On Fig. 1.3 are shown matrices of size 2 × 2, which contain the retained groups

of four spectrum coefficients skpp ðu; vÞ, which have same frequencies, (0, 0), (1, 0),
(0, 1) and (1, 1) correspondingly, placed in four neighboring sub-blocks (kp, kp + 1,
kp + 2, kp + 3) of size 2n−p × 2n−p for the level p of the Main IDPs, or their branches.

In correspondence with the symbols, used in Fig. 1.3, the transformation of the
groups of four coefficients is represented by the relation below [16]:

S1
S2
S3
S4

2
664

3
775 ¼ 1

4

1 1 1 1
0 4 0 �4
�4 0 4 0
0 0 �4 4

2
664

3
775

P1

P2

P3

P4

2
664

3
775: ð1:27Þ

Here Pi, for i = 1, 2, 3, 4 represent correspondingly:

• the coefficients Ai, for i = 1, 2, 3, 4 with frequencies (0, 0);
• the coefficients Bi, for i = 1, 2, 3, 4 with frequencies (1, 0);
• the coefficients Ci, for i = 1, 2, 3, 4 with frequencies (0, 1);
• the coefficients Di, for i = 1, 2, 3, 4 with frequencies (1, 1).

Sub-Block kp+3
2n-p×2n-p

Sub-Block kp+2
2n-p×2n-p

Sub-Block kp+1
2n-p×2n-p

Sub-Block kp
2n-p×2n-p

2x2

A1 A2

A3 A4

2x2

B4

Level p

B2B1

B3

2x2

D2

D4D3

D1

2x2

C2

C4C3

C1

(0,0) (1,0)

(0,1) (1,1)

Fig. 1.3 Location of the
retained groups of four
spectrum coefficients from 4
neighboring sub-blocks
kp + i (i = 0, 1, 2, 3) of size
2n−p × 2n−p in the
decomposition level p
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In result of the transform, executed in accordance with Eq. (1.27), each coeffi-
cient S1 has higher value, than the remaining three difference coefficients S2, S3, and
S4.

The inverse transform executed in respect of Eq. (1.27) gives total restoration of
the initial coefficients Pi, for i = 1, 2, 3, 4:

P1

P2

P3

P4

2
664

3
775 ¼ 1

4

4 �1 �3 �2
4 3 1 2
4 �1 1 �2
4 �1 1 2

2
664

3
775

S1
S2
S3
S4

2
664

3
775; ð1:28Þ

Depending on the frequency (0, 0), (1, 0), (0, 1), or (1, 1) of the restored
coefficients P1 * P4, they correspond to A1 * A4, B1 * B4, C1 * C4, or
D1 * D4. The operation, given in Eq. (1.28) is executed through decoding of the
transformed coefficients S1 * S4. The so described features of the coefficients S1,
S2, S3, S4 permit to achieve significant enhancement of their entropy coding
efficiency.

The basic quality of the BIDP is that it offers significant decorrelation of the
processed image data. As a result, the BIDP permits the following:

• To achieve highly efficient compression with retained visual quality of the
restored image (i.e. visually lossless coding), or efficient lossless coding,
depending on the application requirements;

• Layered coding and transfer of the image data, in result of which is obtained low
transfer bit-rate with gradually increased quality of the decoded image;

• Lower computational complexity than that of the wavelet decompositions [4];
• Easy adaptation of the coder parameters, so that to ensure the needed concor-

dance of the obtained data stream, to the ability of the communication channel;
• Resistance to noises in the communication channel, or due to

compression/decompression. The reason for this is the use of TOT in the
decoding of each image block;

• Retaining the quality of the decoded image after multiple coding/decoding;

The BIDP could be further developed and modified in accordance to the
requirements of various possible applications. One of these applications for pro-
cessing of groups of similar images, for example, is a sequence of Computer
Tomography (CT) images, Multi-Spectral (MS) images, etc.

1.3.7 Experimental Results

The experimental results, given below, were obtained from the investigation of
image database, which contained medical images stored in DICOM (dcm) format,
of various size and kind, grouped in 24 classes. The database was created at the
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Medical University of Sofia, and comprises the following image kinds: CTI—
computer tomography images; MGI—mammography images; NMI—nuclear mag-
netic resonance images; CRI—computer radiography images, and USI—ultrasound
images. For the investigation, the DICOM images were first transformed into
non-compressed (bmp format), and then they were processed by using various
lossless compression algorithms. A part of the obtained results is given in Table 1.1.

Here are shown the results for the lossless compression of the bmp files of still
images, and of image sequences, after their transformation into files of the kind jp2
and tk. The image file format jp2 is based on the standard JPEG2000LS, and the tk
format—on the algorithms BIDP for single images, combined with the adaptive
run-length lossless coding (ARLE), based on the histogram statistics [17]. For the
execution of the 2D-TOT/IOT in the initial levels of all basic pyramids and their
branches was used the 2D-DCT, and in their higher levels—the 2D-WHT trans-
form. The number of the pyramid levels for the blocks of the smallest treated
images (of size 512 × 512), is two, and for the larger ones, it is three. The basic IDP
pyramids have one branch only, comprising coefficients with spatial frequency
(0, 0) for their initial levels.

From the analysis of the obtained results, the following conclusions could be
done:

1. The new format tk surpasses the jp2, especially for images, which contain
objects, placed on a homogenous background. From the analyzed 24 classes of
images, 17 are of this kind. Some examples are shown in Table 1.1;

2. Together with the enlargement of the analyzed images, the compression ratio for
the lossless tk compression grows up, compared to that of the jp2;

3. The data given in Table 1.1 show that the mean compression ratio for all
DICOM images after their transformation into the format tk is 41:1, while for the
jp2 this coefficient is 26:1. Hence, the use of the tk format for all 24 classes
ensures compression ratio which is ≈40 % higher than that of the jp2 format.

The experimental results, obtained for the comparison of the coding efficiency
for several kinds of medical images through BIDP and JPEG2000 confirmed the
basic advantages of the new approach for hierarchical pyramid decomposition,
presented here.

1.4 Hierarchical Singular Value Image Decomposition

The SVD is a statistical decomposition for processing, coding and analysis of
images, widely used in the computer vision systems. This decomposition was an
object of vast research, presented in many monographs [18–22] and papers [23–26].
This is optimal image decomposition, because it concentrates significant part of the
image energy in minimum number of components, and the restored image (after
reduction of the low-energy components), has minimum mean square error. One of
the basic problems, which limit, to some degree, the use of the “classic” SVD, is
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related to its high computational complexity, which grows up together with the
image size.

To overcome this problem, several new approaches are already offered. The first
is based on the SVD calculation through iterative methods, which do not require
defining the characteristic polynomials of a pair of matrices. In this case, the SVD is
executed in two stages: in the first, each matrix is first transformed into triangular
form with the QR decomposition, and then—into bidiagonal, through the
Householder transforms [27]. In the second stage on the bidiagonal matrix is
applied an iterative method, whose iterations stop when the needed accuracy is
achieved. For this could be used the iterative method of Jacobi [21], in accordance
with which for the calculation of the SVD with bidiagonal matrix is needed the
execution of a sequence of orthogonal transforms with rotation matrix of size 2 × 2.
The second approach is based on the relation of the SVD with the Principal
Component Analysis (PCA). It could be executed through neural networks [28] of
the kind generalized Hebbian or multilayer perceptron networks, which use iterative
learning algorithms. The third approach is based on the algorithm, known as
Sequential KL/SVD [29]. The basic idea here is as follows: the image matrix is
divided into blocks of small size, and on each is applied the SVD, based on the QR
decomposition [21]. At first, the SVD is calculated for the first block from the
original image (the upper left, for example), and then is used iterative SVD cal-
culation for each of the remaining blocks by using the transform matrices, calcu-
lated for the first block (by updating the process). In the flow of the iteration process
are deleted the SVD components, which correspond to very small eigen values.

For the acceleration of the SVD calculation several methods are already
developed [30–32]. The first, is based on the algorithm, called Randomized SVD
[30], a number of matrix rows (or columns) is randomly chosen. After scaling, they
are used to build a small matrix, for which is calculated the SVD, and it is later used
as an approximation of the original matrix. In [31] is offered the algorithm
QUIC-SVD, suitable for matrices of very large size. Through this algorithm is
achieved fast sample-based SVD approximation with automatic relative error
control. Another approach is based on the sampling mechanism, called the cosine
tree, through which is achieved best-rank approximation. The experimental
investigation of the QUIC-SVD in [32] presents better results than those, from the
MATLAB SVD and the Tygert SVD. The so obtained 6–7 times acceleration
compared to the SVD depends on the pre-selected value of the parameter δ which
defines the upper limit of the approximation error, with probability (1 − δ).

Several SVD-based methods developed, are dedicated to enhancement of the
image compression efficiency [33–37]. One of them, called Multi-resolution SVD
[33], comprises three steps: image transform, through 9/7 biorthogonal wavelets of
two levels, decomposition of the SVD-transformed image, by using blocks of size
2 × 2 up to level six, and at last—the use of the algorithms SPIHT and gzip. In [34]
is offered the hybrid KLT-SVD algorithm for efficient image compression. The
method K-SVD [35] for facial image compression, is a generalization of the
K-means clusterization method, and is used for iterative learning of overcomplete
dictionaries for sparse coding. In correspondence with the combined compression
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algorithm, in [36] is proposed a SVD based sub-band decomposition and
multi-resolution representation of digital colour images. In the paper [37] is used
the decomposition, called Higher-Order SVD (HOSVD), through which the SVD
matrix is transformed into a tensor with application in the image compression.

In this chapter, the general presentation of one new approach for hierarchical
decomposition of matrix images is given, based on the multiple application of the
SVD on blocks of size 2 × 2 [38]. This decomposition, called Hierarchical SVD
(HSVD), has tree-like structure of the kind “binary tree” (full or truncated).
The SVD calculation for blocks of size 2 × 2 is based on the adaptive KLT [5, 39].
The HSVD algorithm aims to achieve a decomposition with high computational
efficiency, suitable for parallel and recursive processing of the blocks through
simple algebraic operations, and offers the possibility for enhancement of the cal-
culations through cutting-off the tree branches, whose eigen values are small or
equal to zero.

1.4.1 SVD Algorithm for Matrix Decomposition

In the general case, the decomposition of each image matrix [X(N)] of size
N × N could be executed by using the direct SVD [5], defined by the equation
below:

½XðNÞ� ¼ ½UðNÞ�½KðNÞ�1=2½VðNÞ� t ¼
XN
s¼1

ffiffiffiffi
ks

p
~Us:~V

t
s: ð1:29Þ

The inverse SVD is respectively:

½KðNÞ�1=2 ¼ ½UðNÞ�t½XðNÞ� ½VðNÞ�: ð1:30Þ

In the relations above, the terms ½UðNÞ� ¼ ½~U1; ~U2; . . .; ~UN � and ½VðNÞ� ¼
½~V1; ~V2; . . .; ~VN � are matrices, composed respectively by the vectors ~Us and ~Vs for
s = 1, 2, …, N; ~Us are the eigenvectors of the matrix Y Nð Þ½ � ¼ X Nð Þ½ � X Nð Þ½ �t
(left-singular vectors of the [X(N)]), and ~Vs—the eigenvectors of the matrix
Z Nð Þ½ � ¼ X Nð Þ½ �t X Nð Þ½ � (right-singular vectors of the [X(N)]), for which:

½YðNÞ�~Us ¼ ks~Us; ½ZðNÞ�~Vs ¼ ks~Vs; ð1:31Þ

½KðNÞ� ¼ diag ½k1; k2; ::; kN� is a diagonal matrix, composed by the eigenvalues
ks which are identical for the matrices ½YðNÞ� and ½ZðNÞ� .

From Eq. (1.29) it follows that for the description of the decomposition for a
matrix of size N × N, N × (2N + 1) parameters are needed in total, i.e. in the
general case the SVD is a decomposition of the kind “overcomplete”.
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1.4.2 Particular Case of the SVD for Image Block of Size
2 × 2

In this case, the direct SVD for the block [X] of size 2 × 2 (for N = 2) is represented
by the relation:

½X� ¼ a b
c d

� �
¼ ½U�½K�1=2½V � t ¼

ffiffiffiffiffi
k1

p
~U1~V

t
1 þ

ffiffiffiffiffi
k2

p
~U2~V

t
2 ¼

X2
s¼1

ffiffiffiffi
ks

p
~Us~V

t
s

ð1:32Þ

or

½X� ¼ ½C1� þ ½C2�; ð1:33Þ

where ½C1� ¼
ffiffiffiffiffi
k1

p
~U1~Vt

1;½C2� ¼
ffiffiffiffiffi
k2

p
~U2~Vt

2; a, b, c, d are the elements of the block
[X]; k1; k2 are the eigenvalues of the symmetrical matrices [Y] and [Z], defined by
the relations below:

½Y � ¼ ½X�½X�t ¼ a b
c d

� �
a c
b d

� �
¼ ða2 þ b2Þ ðacþ bdÞ

ðacþ bdÞ ðc2 þ d2Þ
� �

; ð1:34Þ

½Z� ¼ ½X�t½X� ¼ a c
b d

� �
a b
c d

� �
¼ ða2 þ c2Þ ðabþ cdÞ

ðabþ cdÞ ðb2 þ d2Þ
� �

: ð1:35Þ

~U1 and ~U2 are the eigenvectors of the matrix [Y], for which: ½Y �~Us ¼ ks~Us

(s = 1, 2);
~V1 and ~V2 are the eigenvectors of the matrix [Z], for which: ½Z�~Vs ¼ ks~Vs (s = 1, 2).

U½ � ¼ ½~U1; ~U2� and V½ � t ¼ ~Vt
1

~Vt
2

� �
are matrices, composed by the eigen vectors ~Us

and ~Vs.

In accordance with the solution given in [38] for the case when N = 2, the couple
direct/inverse SVD for the matrix [X(2)] could be represented as follows:

a b
c d

� �
¼ 1

2A
r1

ffiffiffiffiffi
rp

p ffiffiffiffiffi
sp

pffiffiffiffiffi
rq

p ffiffiffiffiffi
sq

p
� �

þ r2

ffiffiffiffiffi
sq

p � ffiffiffiffiffi
rq

p
� ffiffiffiffiffi

sp
p ffiffiffiffiffi

rp
p

� �� �
¼ r1½T1� þ r2½T2�

¼ ½C1� þ ½C2� ;
ð1:36Þ

r1 0
0 r2

� �
¼ 1

2A

ffiffiffi
p

p ffiffiffi
q

p
� ffiffiffi

q
p ffiffiffi

p
p

� �
a b
c d

� � ffiffi
r

p � ffiffi
s

pffiffi
s

p ffiffi
r

p
� �

for A 6¼ 0; ð1:37Þ
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where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4g2

p
; r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
xþA
2

r
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � A

2

r
; r ¼ A þ m; p ¼ A þ l;

s ¼ A� m; q ¼ A� l;

ð1:38Þ

m ¼ a2 þ c2 � b2 � d2; g ¼ ab þ cd; x ¼ a2 þ b2 þ c2 þ d2;

l ¼ a2 þ b2 � c2 � d2:
ð1:39Þ

Figure 1.4 shows the algorithm for direct SVD for the block [X] of size 2 × 2,
composed in accordance with the relations (1.36), (1.38) and (1.39). This algorithm
is the basic building element—the kernel, used to create the HSVD algorithm.

In accordance with Eq. (1.32) the matrix [X] is transformed into the vector
~X ¼ ½a; b; c; d � t; whose components are arranged by using the “Z”-scan. The
components of the vector ~X are the input data for the SVD algorithm. After its
execution, are obtained the vectors ~C1 and ~C2; from whose components are defined
the elements of the matrices [C1] and [C2] of size 2 × 2, by using the “Z”-scan
again. In this case however, this scan is used for the inverse transform of all vectors
~C1, ~C2 in the corresponding matrix [C1], [C2].

1.4.3 Hierarchical SVD for a Matrix of Size 2n × 2n

The hierarchical n-level SVD (HSVD) for the image matrix [X(N)] of size 2n × 2n

pixels (N = 2n) is executed through multiple applying the SVD on image
sub-blocks (sub-matrices) of size 2 × 2, followed by rearrangement of the so cal-
culated components.

In particular, for the case, when the image matrix [X(4)] is of size 22 × 22

(N = 22 = 4), then the number of the hierarchical levels of the HSVD is n = 2. The
flow graph, which represents the calculation of the HSVD, is shown on Fig. 1.5. In
the first level (r = 1) of the HSVD, the matrix [X(4)] is divided into four
sub-matrices of size 2 × 2, as shown in the left part of Fig. 1.5. Here the elements
of the sub-matrices on which is applied the SVD2×2 in the first hierarchical level, are
colored in same color (yellow, green, blue, and red). The elements of the
sub-matrices are:

½Xð4Þ� ¼ ½X1ð2Þ� ½X2ð2Þ�
½X3ð2Þ� ½X4ð2Þ�

� �
¼

a1 b1
c1 d1

� �
a2 b2
c2 d2

� �
a3 b3
c3 d3

� �
a4 b4
c4 d4

� �
2
664

3
775: ð1:40Þ
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On each sub-matrix [Xk(2)] of size 2 × 2 (k = 1, 2, 3, 4), is applied SVD2×2, in
accordance with Eqs. (1.36)−(1.39). As a result, it is decomposed into two
components:

Fig. 1.4 Representation of the SVD algorithm for the matrix [X] of size 2 × 2
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½Xkð2Þ� ¼ r1;k½T1;kð2Þ� þ r2;k½T2;kð2Þ� ¼ ½C1;kð2Þ� þ ½C2;kð2Þ� for k ¼ 1; 2; 3; 4; ð1:41Þ

where r1;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1;k þA1;k

2

q
; r2;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2;k�A2;k

2

q
; ½T1;kð2Þ� ¼ ~U1;k~Vt

1;k; ½T2;kð2Þ� ¼ ~U2;k~Vt
2;k:

Fig. 1.5 Flowgraph of the HSVD algorithm represented through the vector-radix (2 × 2) for a
matrix of size 4 × 4
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Using the matrices ½Cm;kð2Þ� of size 2 × 2 for k = 1, 2, 3, 4 and m = 1, 2, are
composed the matrices ½Cmð4Þ� of size 4 × 4:

½Cmð4Þ� ¼ ½Cm;1ð2Þ� ½Cm;2ð2Þ�
½Cm;3ð2Þ� ½Cm;4ð2Þ�

� �

¼
c11ðm; 1Þ c12ðm; 1Þ
c13ðm; 1Þ c14ðm; 1Þ

� �
c11ðm; 2Þ c12ðm; 2Þ
c13ðm; 2Þ c14ðm; 2Þ

� �
c11ðm; 3Þ c12ðm; 3Þ
c13ðm; 3Þ c14ðm; 3Þ

� �
c11ðm; 4Þ c12ðm; 4Þ
c13ðm; 4Þ c14ðm; 4Þ

� �
2
664

3
775 for m ¼ 1; 2:

ð1:42Þ

Hence, the SVD decomposition of the matrix [X] in the first level is represented
by two components:

½Xð4Þ�¼ ½C1ð4Þ� þ ½C2ð4Þ� ¼ ð½C1;1ð2Þ� þ ½C2;1ð2Þ�Þ ð½C1;2ð2Þ� þ ½C2;2ð2Þ�Þ
ð½C1;3ð2Þ� þ ½C2;3ð2Þ�Þ ð½C1;4ð2Þ� þ ½C2;4ð2Þ�Þ

� �
:

ð1:43Þ

In the second level (r = 2) of the HSVD, on each matrix ½Cmð4Þ� of size 4 × 4 is
applied four times the SVD2×2. Unlike the transform in the previous level, in the
second level, the SVD2×2 is applied on the sub-matrices [Cm,k(2)] of size 2 × 2,
whose elements are mutually interlaced and are defined in accordance with the
scheme, given in the upper part of Fig. 1.5. The elements of the sub-matrices, on
which is applied the SVD2×2 in the second hierarchical level are colored in same
color (yellow, green, blue, and red). As it is seen on the figure, the elements of the
sub-matrices of size 2 × 2 in the second level are not neighbors, but placed one
element away in horizontal and vertical directions. As a result, each matrix ½Cmð4Þ�
is decomposed into two components:

½Cmð4Þ� ¼ ½Cm;1ð4Þ� þ ½Cm;2ð4Þ� for m ¼ 1; 2: ð1:44Þ

Then, the full decomposition of the matrix [X] is represented by the relation:

½Xð4Þ� ¼ ½C1;1ð4Þ� þ ½C1;2ð4Þ� þ ½C2;1ð4Þ� þ ½C2;2ð4Þ� ¼
X2
m¼1

X2
s¼1

½Cm;sð4Þ�;

ð1:45Þ

Hence, the decomposition of an image of size 4 × 4 comprises four components
in total.

The matrix [X(8)] is of size 23 × 23 (N = 23 = 8 for n = 3), and in this case, the
HSVD is executed through multiple calculation of the SVD2×2 on blocks of size
2 × 2, in all levels (the general number of the decomposition components is eight).
In the first and second levels, the SVD2×2 is executed in accordance with the
scheme, shown on Fig. 1.5. In the third level, the SVD2×2 is mainly applied on
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sub-matrices of size 2 × 2. Their elements are defined in similar way, as shown on
Fig. 1.5, but the elements of same color (i.e., which belong to same sub-matrix) are
moved three elements away in the horizontal and vertical direction.

The described HSVD algorithm could be generalized for the cases when the
image [X(2n)] is of size 2n × 2n pixels. Then the relation (1.45) becomes as shown
below:

½Xð2nÞ� ¼
X2
p1¼1

X2
p2¼1

. . .::
X2
pn

½Cp1;p2;...;pnð2nÞ�: ð1:46Þ

The maximum number of the HSVD decomposition levels is n, the maximum
number of the decomposition components (1.46) is 2n, and the distance in hori-
zontal and vertical direction between the elements of the blocks of size 2 × 2 in the
level r is correspondingly (2r−1 − 1) elements, for r = 1, 2,…, n.

1.4.4 Computational Complexity of the Hierarchical SVD
of Size 2n × 2n

1.4.4.1 Computational Complexity of the SVD of Size 2 × 2

The computational complexity could be defined by using the Eq. (1.36), taking into
account the number of multiplication and addition operations, needed for the pre-
liminary calculation of the components x; l; d; m; g; A; B, θ1, θ2, σ1, σ1, defined by
the Eqs. (1.38) and (1.39). Then:

• The number of the multiplications, needed for the calculation of Eq. (1.36) is
Σm = 39;

• The number of the additions, needed for the calculation of Eq. (1.36) is Σs = 15.

Then the total number of the algebraic operations executed with floating point
for SVD of size 2 × 2 is:

OSVDð2� 2Þ ¼ Rm þRs ¼ 54: ð1:47Þ

1.4.4.2 Computational Complexity of the Hierarchical SVD of Size
2n × 2n

The computational complexity is defined on the basis of SVD2×2. In this case, the
number M of the sub-matrices of size 2 × 2, which comprise the image of size
2n × 2n, is 2n−1 × 2n−1 = 4n−1, and the number of the decomposition levels is n.
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• The number of SVD2×2 in the first level is M1 = M = 4n−1;
• The number of SVD2×2 in the second level is M2 = 2 × M = 2 × 4n−1;
• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• The number of SVD2×2 in the level n is Mn = 2n−1 × M = 2n−1 × 4n−1;

The total number of SVD2×2 is correspondingly MΣ = M(1 + 2 + … + 2n−1) =
4n−1(2n − 1) = 22n−2(2n − 1). Then the total number of the algebraic operations for
the HSVD of size 2n × 2n is:

OHSVDð2n � 2nÞ ¼ MR � OSVDð2 � 2Þ ¼ 27� 22n�1ð2n � 1Þ: ð1:48Þ

1.4.4.3 Computational Complexity of the SVD of Size 2n × 2n

For the calculation of the matrices [Y(N)] and [Z(N)] of size N × N for N = 2n are
needed in total Rm ¼ 22nþ 2 multiplications and Rs ¼ 2nþ 1ð2n � 1Þ additions. The
total number of the operations is:

OY ;ZðNÞ ¼ 22nþ 2 þ 2nþ 1ð2n � 1Þ ¼ 2nþ 1ð3� 2n � 1Þ: ð1:49Þ

In accordance with [40], the number of the operations O(N) for the iterative
calculation of all N eigenvalues and the eigen N-component vectors of the matrix of
size N × N for N = 2n with L iterations, is correspondingly:

OvalðNÞ ¼ ð1=6ÞðN � 1Þð8N2 þ 17Nþ 42Þ
¼ ð1=6Þð2n � 1Þð22nþ 3 þ 17� 2n þ 42Þ; ð1:50Þ

OvecðNÞ ¼ N½2NðLNþ Lþ 1Þ � 1� ¼ 2n½2nþ 1ð2nLþ Lþ 1Þ � 1�: ð1:51Þ

From Eq. (1.31) it follows, that two kinds of eigen vectors (~Us and ~Vs) should be
calculated, so the number of the needed operations in accordance with Eq. (1.51)
should be doubled. From the analysis of the Eq. (1.29) it follows that:

• The number of the needed multiplications for all components is:
Rm ¼ 2nð22n þ 22nÞ ¼ 23nþ 1;

• The number of the needed additions for all components is: Rs ¼ 2n � 1:

Then the total number of the needed operations for the calculation of Eq. (1.29)
is:

ODðNÞ ¼ 23nþ 1 þ 2n � 1 ¼ 2nð22nþ 1 þ 1Þ � 1 ¼ 2nð22nþ 1 þ 1Þ � 1: ð1:52Þ

Hence, the total number of the algebraic operations, needed for the execution of
the SVD of size 2n × 2n is:
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OSVDð2n � 2nÞ ¼ OY ;Zð2nÞþOvalð2nÞþ 2Ovecð2nÞþODð2nÞ
¼ 22nþ 1 ½2Lð2n þ 1Þ þ 2n�1 þ 5� þ ð1=6Þð22nþ 3 þ 17� 2n þ 42Þ � 1:

ð1:53Þ

1.4.4.4 Relative Computational Complexity of the HSVD

The relative computational complexity of the HSVD could be calculated on the
basis of Eqs. (1.53) and (1.48), using the relation below:

w1ðn; LÞ ¼
OSVDð2n � 2nÞ
OHSVDð2n � 2nÞ

¼ 3 � 2nþ 1 ½2nþ 2ð2nLþ Lþ 1Þ þ 2nþ 1ð2nþ 3Þ � 3� þ ð2n � 1Þð22nþ 3 þ 17 � 2n þ 42Þ � 6
81� 22nð2n � 1Þ :

ð1:54Þ

For n = 2, 3, 4, 5 (i.e., for image blocks of size 4 × 4, 8 × 8, 16 × 16 and
32 × 32 pixels), the values of ψ1(n, L) for L = 10 are given in Table 1.2.

For big values of n the relation ψ1(n, L) does not depend on n and trends
towards:

w1ðn; LÞn!1 ) 0:1� ð3Lþ 1Þ: ð1:55Þ

Hence, for big values of n, when the number of the iterations L ≥ 4, the relation
w1ðn; LÞ[ 1, and the computational complexity of the HSVD is lower than that of
the SVD. Practically, the value of L is significantly higher than 4. For big values of
n the coefficient ψ1(n, 10) = 3.1 and the computational complexity of the HSVD is
three times lower than that of the SVD.

1.4.5 Representation of the HSVD Algorithm Through
Tree-like Structure

The tree-like structure of the HSVD algorithm of n = 2 levels, shown on Fig. 1.6, is
built on the basis of the Eq. (1.45), for image block of size 4 × 4. As it could be
seen, this is a binary tree. For a block of size 8 × 8, this binary tree should be of
n = 3 levels.

Table 1.2 Coefficient ψ1(n, L) of the relative reduction of the computational complexity of the
HSVD versus the SVD as a function of n, for L = 10

n 2 3 4 5

ψ1(n, 10) 5.94 4.21 3.67 3.44
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Each tree branch has a corresponding eigen value ks;k , or resp. rs;k ¼ ffiffiffiffiffiffiffi
ks;k

p
for

the level 1, and ks;kðmÞ or resp. rs;kðmÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks;kðmÞ

p
—for the level 2 (m = 1, 2).

The total number of the tree branches shown on Fig. 1.6, is equal to six. It is
possible to cut off some branches, if for them the following conditions are satisfied:
rs;k _ rs;kðmÞ ¼ 0 or rs;k �Ds;k _ rs;kðmÞ �Ds;kðmÞ; i.e., when they are equal to 0,
or are smaller than a small threshold Ds;k; resp. Ds;kðmÞ: To cut down one HSVD
component [Ci] in one level, it is necessary all values of σi, which participate in this
component, to be equal to zero, or very close to it. In result, the decomposition in
the corresponding branch could be stopped before the last level n. As a conse-
quence, it follows that the HSVD algorithm is adaptive with respect of the contents
of each image block. In this sense, the algorithm HSVD is adaptive and could be
easily adjusted to the requirements of each particular application.

From the analysis of the presented HSVD algorithm it follows that its basic
advantages compared to the “classic” SVD are:

1. The computational complexity of the full-tree HSVD algorithm (without trun-
cation) for a matrix of size 2n × 2n, compared to SVD for a matrix of same size,
is at least three times lower;

2. The HSVD is executed following the tree-like scheme of n levels, which permits
parallel and recursive processing of image blocks of size 2 × 2 in each level.
The corresponding SVD is calculated by using simple algebraic relations;

3. The HSVD algorithm retains the quality of the SVD in respect of the high
concentration of the main part of the image energy in the first components of the
decomposition. After removal of the low-energy components, the restored
matrix has minimum mean square error and is the optimal approximation of the
original;

Fig. 1.6 Binary tree, representing the HSVD algorithm for the image matrix [X], of size 4 × 4
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4. The tree-like structure of the HSVD algorithm (a binary tree of n levels) makes
more feasible the ability to stop the decomposition earlier in some of the tree
branches, for which the corresponding eigen value is zero, or approximately
zero. As a result, the computational complexity of the HSVD is additionally
reduced, compared to the classic SVD;

5. The HSVD algorithm could be easily generalized for matrices of size different
from 2n × 2n. In these cases each matrix should be divided into blocks of size
8 × 8, to which is applied the HSVD (i.e., a decomposition of eight compo-
nents). In case that after the division the blocks at the image borders are
incomplete, they should be extended through extrapolation. Such approach is
suitable in case, that the number of the decomposition components, which is
limited up to 8, is sufficient for the application. If more components are needed,
their number could be increased, by dividing the image into blocks of size
16 × 16, or larger;

6. The HSVD algorithm opens new possibilities for fast image processing in
various application areas, as: compression, filtration, segmentation, merging,
watermarking, extraction of minimum number of features for pattern recogni-
tion, etc.

1.5 Hierarchical Adaptive Principal Component Analysis
for Image Sequences

Image sequences are characterized with the huge volumes of visual information and
very high spatial and spectral correlation. The decorrelation of this visual infor-
mation is the first and basic stage of the processing, related to various publication
areas, such as: compression and transfer/storage, analysis, objects recognition, etc.
For the decorrelation of correlated image sequences, are developed significant
number of methods for interframe prediction with movement compensation for
temporal decorrelation of moving images and for transform-coding techniques
for intra-frame and inter-frame decorrelation. One of the most efficient methods for
decorrelation of groups of images is based on the Principal Component Analysis
(PCA), known also as Hotelling transform, and Karhunen-Loeve Transform (KLT).
This transform is the object of large number of investigations, presented in many
scientific monographs [11, 40–47] and papers [12, 48–53]. The KLT is related to
the class of linear statistical orthogonal transforms for groups of vectors, obtained,
for example, from the pixels of one image, or from a group of matrix images.
The PCA has significant role in image analysis and processing, and also in the
systems for computer science and pattern recognition. It has a wide variety of
application areas: for the creation of optimal models in the image color space [46],
for compression of signals and groups of correlated images [41–44, 47], for the
creation of objects descriptors in the reduced features’ space [50, 51], for image
fusion [52] and segmentation [53], image steganography [54], etc.
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The PCA has some significant properties: (1) it is an optimal orthogonal
transform for a group of vectors, because as a result of the transform, the maximum
part of their energy is concentrated in a minimum number of their components;
(2) after reduction of the low energy components of the transformed vectors, the
corresponding restored vectors have minimum mean square error (MSE); (3) the
components of the transformed vectors are not correlated. In particular, in case that
the probability distribution of the vectors is Gaussian, their components become
decorrelated and independent after PCA. The Independent Components Analysis
(ICA) [55] is very close to the PCA in respect of their calculation and properties.

For PCA implementation the pixels of same spatial position in a group of
N images compose an N-dimensional vector. The basic difficulty of the PCA
implementation is related to the large size of the covariance matrix. For the cal-
culation of its eigenvectors is necessary to calculate the roots of a polynomial of nth
degree (characteristic equation) and to solve a linear system of N equations [21, 56].
For large values of N, the computational complexity of the algorithm for calculation
of the transform matrix is significantly increased.

One of the basic problems, which limit the use of the PCA, is due to its high
computational complexity, which grows up together with the number of the vec-
tors’ components. Various approaches are offered to overcome this problem. One of
them is based on the PCA calculation through iterative methods, which do not
require the definition of the characteristic polynomial of the vectors’ covariance
matrix. In this case the PCA is executed in 2 stages: in the first, the original image
matrix is transformed into a three-diagonal form through QR decomposition [21],
and after that—into a bi-diagonal, by using the Householder’s transforms [27]. In
the second stage, on the bi-diagonal matrix are applied iterative methods, for which
the iterations are stopped, after the needed accuracy is achieved. The iterative PCA
calculation through the methods of Jacobi and Givens [21, 56], is based on the
execution of a sequence of orthogonal transforms with rotational matrices of
size 2 × 2.

One well known approach is based on the PCA calculation by using neural
networks [28] of the kind Generalized Hebbian, or Multilayer Perceptron Networks.
They both use iterative learning algorithms, for which the number of needed
operations can reach several hundreds.

The third approach is based on the Sequential KLT/SVD [29], already com-
mented in the preceding section. In [28, 29] is presented one more approach, based
on the recursive calculation of the covariance matrix of the vectors, its eigen values
and eigen vectors. In the papers [57, 58] is introduced hierarchical recursive block
processing of matrices.

The next approach is based on the so-called Distributed KLT [59, 60], where
each vector is divided into sub-vectors and on each is applied Partial KLT. Then is
executed global iterative approximation of the KLT, through Conditional KLT,
based on side information. This approach was further developed in [61], where is
offered one algorithm for adaptive two-stage KLT, combined with JPEG2000, and
aimed at the compression of hyper-spectral (HS) images. Similar algorithm for
enhanced search is the “Integer Sub-optimal KLT” (Int SKLT) [62], which uses the
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lifting factorization of matrices. This algorithm is basic for the KLT, executed
through a multilevel strategy, also called Divide-and-Conquer (D&C) [63]. In
correspondence with this approach, the KLT for a long sequence of images is
executed after dividing it into smaller groups, for which the corresponding KLT
have lower computational complexity. By applying the KLT on each group, is
obtained local decorrelation only. For this reason, the eigen images for the first half
of each group in the first decomposition level are used as an input for the next
(second) level of the multi-level transform, etc. In the case, when the KLT group
contains 2 components only, the corresponding multilevel transform is called
Pair-wise Orthogonal Transform (POT) [64]. The experimental results obtained for
this transform, when used for HS images, show that it is more efficient than the
Wavelet Transform (WT) in respect of Rate-Distortion performance, computational
cost, component scalability, and memory requirements.

Another approach is based on the Iterative Thresholding Sparse PCA (ITSPCA)
[65] algorithm, aiming at the reduction of the features’ space dimension, with
minimum dispersion loss.

A fast calculation algorithm (Fast KLT) is known for the particular case, when
the images are represented through first order Markov model [66].

In correspondence with the algorithm for PCA randomization [67], on the basis
of an accidental choice are selected a certain number of rows (or columns) of the
covariance matrix, and on the basis of this approximation, the computational
complexity of the KLT is reduced.

In the works [68, 69], are presented hybrid methods for compression of
multi-component images through KLT, combined with Wavelets, Adaptive Mixture
of Principal Components Model, and JPEG2000.

The analysis of the famous KLT methods shows that: (1) In case of iterative
calculations, the number of iterations depends on the covariance matrix of the
vectors. In many cases this number is very high, which makes the real-time KLT
calculation extremely difficult; (2) In case that the method for multilevel D&C is
used, the eigen images from the second half of each group are not transformed in
the next levels and as a result, they are not completely decorrelated. Moreover—the
selection of the length of each group of images is not optimized.

One of the possible approaches for reducing the computational complexity of
PCA for N-dimensional group of images is based on the so-called Hierarchical
Adaptive PCA (HAPCA) [70]. Unlike the famous Hierarchical PCA (HPCA) [58],
this transform is not related to the image sub-blocks, but to the whole image from
one group. For this, the HPCA is implemented through dividing the images into
groups of length, defined by their correlation range. Each group is divided into
sub-groups of 2 or 3 images each, on which is applied Adaptive PCA (APCA)
[71–73], of size 2 × 2 or 3 × 3. This transform is performed using equations, which
are not based on iterative calculations, and as a result, they have lower computa-
tional complexity. To obtain decorrelation for the whole group of images, it is
necessary to use APCA of size 2 × 2 or 3 × 3, which will be applied in several
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consecutive stages (hierarchical levels), with rearranging of the obtained interme-
diate eigen images after each stage. In result, is obtained a decorrelated group of
eigen images, on which could be applied other combined approaches to obtain
efficient compression through lossless or lossy coding.

1.5.1 Principle for Decorrelation of Image Sequences
by Hierarchical Adaptive PCA

The new principle was developed for the transformation of image sequences using
the adaptive PCA (APCA) with transform matrix of size 2 × 2 or 3 × 3. The
sequence is divided into groups, whose length is harmonized with their correlation
range. The corresponding algorithm comprises the following steps: (1) correlation
analysis of the image sequence, in result of which is defined the length N of each
group; (2) dividing the processed group into sub-groups of two or three images
each, depending on the length of the group, (3) adding (when necessary) new
interpolated images, which supplements the last sub-group up to two or three
images; (4) defining the number of the hierarchical transform levels on the basis of
the mutual decorrelation, which should be achieved, (5) executing of the HAPCA
algorithm for each group from the image sequence. For this, on each sub-group of
two or three images from the first hierarchical level of HAPCA, is applied
Adaptive PCA (APCA) with matrix of size 2 × 2 or 3 × 3. In result, are obtained 2
or 3 eigen images. After that, the eigen images are rearranged so that the first
sub-group of 2 eigen images to comprise the first images from each group, the
second group of 2 or 3 eigen images—the second images from each group, etc. To
each group of intermediate eigen images in the first hierarchical level is applied in
similar way the next APCA with a 2 × 2 or 3 × 3 matrix, on each sub-group of 2 or
3 eigen images. In result are obtained the corresponding new intermediate eigen
images in the second hierarchical level. Then the eigen images are rearranged again
so, that the first group of 2 or 3 eigen images contains the first images from each
group before the rearrangement; the second group of 2 or 3 eigen images—the
second image before the rearrangement, etc.

1.5.2 Description of the Hierarchical Adaptive PCA
Algorithm

1.5.2.1 Calculation of Eigen Images Through APCA with a 2 × 2
Matrix

For any 2 digital images of size S = M × N pixels each, shown on Fig. 1.7, are
calculated the vectors ~Cs ¼ C1s;C2s½ � t for s = 1, 2, …, S.
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Each vector is transformed into the corresponding vectors~Ls ¼ ½L1s; L2s�t through
direct APCA using the matrix [Φ] of size 2 × 2 in correspondence with the relation:

~Ls ¼ ½U�ð~Cs �~lÞ for s ¼ 1; 2; . . .; S: ð1:56Þ

where

~l ¼ Eð~CsÞ ¼ ð1=SÞ
XS
s¼1

~Cs ¼ ½�C1; �C2�t; �C1 ¼ E ðC1sÞ; �C2 ¼ EðC2sÞ; ½U� ¼ ½~U1; ~U2�:

On the other hand, the components of the vectors ~U1; ~U2 could be defined using
the rotation angle θ of the coordinate system (L1, L2) towards the original coordi-
nate system ðC1;C2Þ, resulting from the APCA execution. Then:

~U1 ¼ ½cos h; � sin h�t; ~U2 ¼ ½sin h; cos h�t; ð1:57Þ

where

h ¼ ð1=2Þ arctg½2g3=ðg1 � g2Þ�; g3 ¼ EðC1sC2sÞ � ð�C1Þð�C2Þ;

g1 ¼ EðC2
1sÞ � ð�C1Þ2; g2 ¼ EðC2

2sÞ � ð�C2Þ2:

As a result of the transform from Eq. (1.56) on all S vectors, are obtained the
corresponding two eigen images [L1], [L2], shown in the right part of Fig. 1.7. The
transformation from Eq. (1.56) is reversible, and the inverse APCA is represented
by the relation:

~Cs ¼ ½U�t~Ls þ~l for s ¼ 1; 2; ::; S: ð1:58Þ

On Fig. 1.8 is shown the algorithm for direct/inverse APCA for a group of two
images.

Fig. 1.7 Transformation of the images [C1], [C2] into eigen images [L1], [L2], through APCA
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1.5.2.2 Hierarchical APCA Algorithm for a Group of 8 Images

On Fig. 1.9 is shown the 3-level HAPCA algorithm for the case, when the number
of the correlated images in one group (GOI) is N = 8; in one sub-group it is
Nsg = 2; and the number of the sub-groups is Ng = 4, i.e. N = Nsg × Ng.

As it is shown on Fig. 1.9, on each sub-group of two images from the first
hierarchical level of HAPCA is applied APCA with a 2 × 2 matrix. In result are
obtained two “eigen” images, colored in yellow and blue correspondingly. After
that, the “eigen” images are rearranged so that the first sub-group of two “eigen”
images comprises the first images from each group, the second group of two
“eigen” images—the second images from each group, etc. For each GOI of 8

Fig. 1.8 Algorithm for
direct/inverse APCA for a
group of two images
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intermediate eigen images in the first hierarchical level, is applied in similar way the
next APCA, with a 2 × 2 matrix, on each sub-group of two eigen values. In result
are obtained two new “eigen” images (i.e. the “eigen” images of the group of two
intermediate eigen images), colored in yellow, and blue correspondingly in the

GOI1 = 8 

Input
Images

3 4 7 10 N1 6 8 952

APCA
Level 1

122 222 142 212 N112 232132 242 112212

APCA-12 APCA-22 APCA-32

Rearrangement for level 2 in GOI1

121 221 141 211 N111 231131 241 111

211 221 231 121 N111 141131 241 111

211

121

APCA-11 APCA-21 APCA-41

Rearrangement for level 1 in GOI1

APCA
Level 2

212 222 232 122 N112 142132 242 112122

4=132 7=2426=232 N1=112 5=2222=212

Output
Eigen

Images

3=122 10=2128=142 9=112

GOI2

APCA-31 APCA-11

Rearrang. for l. 1 in GOI2

APCA-42 APCA-12

122 222 142 212 N112 232132 242 112212

APCA-13 APCA-23 APCA-33

APCA
Level 3

APCA-43 APCA-13

Rearrang. for l. 2 in GOI2

Retained Images Retained Images

Fig. 1.9 The HAPCA algorithm for direct transform of groups (GOIs) of N = 8 images
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second hierarchical level. Then the eigen images are rearranged again, so that the
first group of two “eigen” images to contain the first images from each group before
the rearrangement; the second group of two “eigen” images—the second image
before the rearrangement, etc. In result, is achieved significant decorrelation for the
processed group of images, which is a reliable basis for their efficient
compression/restoration. For this is necessary to have information about the
transform matrix, used for each couple of images in all hierarchical levels—12
matrices for one GOI altogether (when N = 8).

1.5.2.3 Calculation of Eigen Images Through APCA with a 3 × 3
Matrix

From the three digital images of S pixels each, are obtained the vectors ~Cs ¼
½C1s;C2s;C3s�t for s = 1, 2, …, S. The vectors ~Cs are transformed into the vectors
~Ls ¼ ½L1s; L2s; L3s�t through direct APCA, given in Eq. (1.56), and using the matrix
[Φ] of size 3 × 3.

The elements Φij of the matrix [Φ] and the vector ~l ¼ ½�C1; �C2; �C3�t for
�C1 ¼ EðC1sÞ;�C2 ¼ EðC2sÞ; �C3 ¼ EðC3sÞ are defined below:

U1m ¼ Am=Pm;U2m ¼ Bm=Pm;U3m ¼ Dm =Pm for m ¼ 1; 2; 3; ð1:59Þ

where

Am ¼ðk3 � kmÞ½k5ðk2 � kmÞ � k4k6�; Bm ¼ ðk3 � km Þ½k6ðk1 � kmÞ � k4k5�;
Dm ¼ k6½2k4k5 � k6ðk1 � kmÞ� � k25ðk2 � kmÞ; Pm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ B2

m þ D2
m

q
;

k1 ¼EðC2
1sÞ � ð�C1Þ2; k2 ¼ EðC2

2sÞ � ð�C2Þ2; k3 ¼ EðC2
3sÞ � ð�C3Þ2;

k4 ¼EðC1sC2sÞ � ð�C1Þð �C2Þ; k6 ¼ EðC2sC3sÞ � ð�C2Þð �C3Þ; k5 ¼ EðC1sC3sÞ � ð�C1Þð �C3Þ;

k1 ¼ 2

ffiffiffiffiffiffi
pj j
3

r
cos

u
3

� �
� a
3
; k2 ¼ � 2

ffiffiffiffiffiffi
pj j
3

r
cos

u þ p
3

� �
� a
3
; k3 ¼ � 2

ffiffiffiffiffiffi
pj j
3

r
cos

u � p
3

� �
� a
3
;

q ¼ 2ða=3Þ3 � ðabÞ=3 þ c; p ¼ �ða2=3Þþ b; u ¼ arccos �q=2
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjpj=3Þ3
q� �

;

a ¼ � ðk1 þ k2 þ k3Þ; b ¼ k1k2 þ k1k3 þ k2k3 � ðk24 þ k25 þ k26Þ;
c ¼ k1k26 þ k2k25 þ k3k24 � ðk1k2k3 þ 2k4k5k6Þ:

The inverse APCA, using the matrix [Φ] of size 3 × 3, is defined by Eq. (1.58).

1.5.2.4 Hierarchical APCA Algorithm for a Group of 9 Images

In this case, the HAPCA algorithm for a group of nine images N = 9 is executed in
similar way, as that, shown on Fig. 1.9 for a group of eight images (N = 8).
Each GOI is divided into Ng = 3 sub-groups, each containing Nsg = 3 images, and
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the number of the HAPCA decomposition levels is n = 2. In the first HAPCA level,
in accordance with Eq. (1.56) on the vectors ~Cs ¼ ½C1s;C2s;C3s�t for each of the
three sub-groups the APCA is executed. In this case, the elements of the matrix [Φ]
of size 3 × 3 are defined by Eq. (1.59). In result, for each sub-group the vectors
~Ls ¼ ½L1s; L2s; L3s�t are calculated. After the rearrangement of the vectors compo-
nents from all sub-groups and their second division into sub-groups of same size
(Ng = 3), are obtained the corresponding input vectors ~L1s ðrÞ ¼
½L11sðrÞ; L12sðrÞ; L13sðrÞ�t for the next HAPCA level, etc.

1.5.3 Setting the Number of the Levels and the Structure
of the HAPCA Algorithm

1.5.3.1 Number of the HAPCA Levels

The minimum number of levels nmin needed for the execution of the HAPCA
algorithm for a group of N images could be defined through the analysis of the
mutual correlation of the group of transformed N-dimensional vectors, obtained
after each hierarchical level. For this, after the execution of the first HAPCA level
for the transformed vectors ~Ls for each sub-group (with two or three components),
are obtained the N-dimensional vectors ~L1s ¼ ½L11s; L12s; . . .; L1Ns�t. After the rear-
rangement of the components of each vector ~L1s , it is transformed into the vector
~L1s ðrÞ ¼ ½L11sðrÞ; L12sðrÞ; . . .; L1NsðrÞ�t. The decision to continue with the next (sec-
ond) HAPCA is based on the analysis of the covariance matrix ½K1

LðrÞ� of the
rearranged vectors ~L1s ðrÞ for s = 1, 2, …, S, from which could be calculated the
achieved decorrelation in the first level. In case that full decorrelation is achieved,
the matrix ½K1

LðrÞ� is diagonal. The HAPCA algorithm could be stopped before the
second level even if the decorrelation is not full, provided that the relation below is
satisfied:

XN
i¼1

XN
j¼1

½ki;jðrÞ�2ði 6¼jÞj

,XN
i¼1

XN
j¼1

½ki;jðrÞ�2ði¼jÞj

( )
� d: ð1:60Þ

Here ki;jðrÞ is the element (i, j) of the matrix ½K1
LðrÞ�, and δ is a threshold with

preliminary set small value. In case that the condition from Eq. (1.60) is not sat-
isfied, the processing continues with the second HAPCA level. After all calcula-
tions are finished, the condition in Eq. (1.60) is checked again, but here ki;jðrÞ are
the elements of the matrix ½K2

LðrÞ� of the rearranged vectors ~L2s ðrÞ in the second
level, etc.
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1.5.3.2 Structure of the HAPCA Algorithm

The structure of the HAPCA algorithm for one group (GOI) depends on the number
of images (N) in it. This number is defined through correlation analysis of the whole
image sequence, and most frequently it is in the range from 4, up to 16. In some
cases, the number of images in the group is not divisible by the number of the
images in a sub-group (Ng), which should be two or three, and then the number of
the images N has to be extended by adding mint interpolated images to the GOI. In
result, the new value Ne = N + mint becomes divisible by two or three. In Table 1.3,
are given the basic parameters of HAPCA for one GOI: N—number of images in
the group, n—the number of transform levels, Nsg—the number of the sub-groups,
Ng—the number of the images in one sub-group, Ne—the number of images in the
extended GOI, and mint—the number of the interpolated images in the extended
GOI.

The number of the levels n in Table 1.3 is defined through correlation analysis of
the whole GOI, and the values of Nsg and Ng—on the basis of the requirement for
minimum value of the number of interpolated images, mint.

1.5.3.3 Computational Complexity of HAPCA

The computational complexity of the n-levels HAPCA algorithm can be calculated
and compared with the classic PCA for a covariance matrix of size N × N for group
of N images with Nsg sub-groups for the APCA of size 2 × 2 or 3 × 3. In case of
classic PCA, this number is n = Nsg = 1, because there are no hierarchical levels or
sub-groups. For this, both algorithms are compared regarding the number of
operations O (additions and multiplications) [74] needed for the calculation of the
following components:

Table 1.3 Basic parameters
of the HAPCA algorithm

N n Nsg Ng Ne = Nsg × Ng mint = Ne−N

4 2 2 2 4 0

5 3 3 2 6 1

6 3 3 2 6 0

7 3 4 2 8 1

8 3 4 2 8 0

9 2 3 3 9 0

10 3 4 3 12 2

11 3 4 3 12 1

12 3 4 3 12 0

13 3 5 3 15 2

14 3 5 3 15 1

15 3 5 3 15 0

16 5 8 2 16 0
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• Covariance matrices [KC] of size N × N for the classic PCA algorithm and for
the APCA with size of the transform matrix 2 × 2 or 3 × 3 [73]:

OcovðNÞ ¼ ð1=2ÞNðNþ 1Þ½NðN � 1Þþ 2ðNþ 2Þ� for the classic PCA; ð1:61Þ

Ocovð2Þ ¼ 30 for APCA of size 2� 2 ðN ¼ 2Þ; ð1:62Þ

Ocovð3Þ ¼ 96 for APCA of size 3� 3 ðN ¼ 3Þ: ð1:63Þ

• Calculation of the eigen values of the corresponding [KC] covariance matrix
when the QR decomposition and the Householder transform of (N − 1) steps are
used for the classic PCA [73]:

OvalðNÞ ¼ ðN�1Þð 4
3
N2 þ 17

6
Nþ 7Þ for classic PCA; ð1:64Þ

Ovalð2Þ � 12 for APCA of size 2� 2 ðN ¼ 2Þ; ð1:65Þ

Ovalð3Þ ¼ 55 for APCA of size 3� 3 ðN ¼ 3Þ: ð1:66Þ

• Calculation of the eigen vectors of the corresponding [KC] covariance matrix in
case that iterative algorithm with 4 iterations is used for the classic PCA [73]:

OvecðNÞ ¼ N½2Nð4Nþ 5Þ � 1� for classic PCA; ð1:67Þ

Ovecð2Þ ¼ 102 for APCA of size 2� 2 ðN ¼ 2Þ; ð1:68Þ

Ovecð3Þ ¼ 303 for APCA of size 3� 3 ðN ¼ 3Þ: ð1:69Þ

• The number of operations needed for the calculation of a group of N eigen
images (each of S pixels), obtained in result of direct PCA transform for zero
mean vectors, is:

OðN; SÞ ¼ SNð2N � 1Þ for classic PCA; ð1:70Þ

Oð2; SÞ ¼ 6S for APCA of size 2� 2 ðN ¼ 2Þ; ð1:71Þ

Oð3; SÞ ¼ 15S for APCA of size 3� 3 ðN ¼ 3Þ: ð1:72Þ

• Using Eqs. (1.61)−(1.72) the total number of operations (TO) needed for both
algorithms (the classic PCA and the HAPCA-based algorithms with APCA of
size 2 × 2 or 3 × 3) is:
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TOPCAðN; SÞ ¼ 1
2
NðN þ 1Þ½N � 1Þþ 2ðN þ 2Þ�

þ ðN�1Þð4
3
N2 þ 17

6
Nþ 7Þ þ N½2Nð4Nþ 5Þ � 1 �

þ SNð2N � 1Þ;

ð1:73Þ

TOHAPCA�2ðN; SÞ ¼ nNsgð30þ 12þ 102þ 6SÞ ¼ nNgð144 þ 6SÞ; ð1:74Þ

TOHAPCA�3ðN; SÞ ¼ nNsgð96þ 55þ 303þ 15SÞ ¼ nNgð454þ 15SÞ: ð1:75Þ

Having obtained the total number of operations required by the algorithms (1.73)
−(1.75), we can compare the computational complexity of both the classic PCA and
the proposed algorithms. The reduction of the number of operations needed for
these algorithms can be described by the coefficient:

g2ðN; SÞ ¼
TOPCAðN; SÞ

TOHAPCA�2ðN; SÞ ¼ OcovðNÞ þ OvalðNÞ þ OvecðNÞ þ OðN; SÞ
nNsg½Ocovð2Þ þ Ovalð2Þ þ Ovecð2Þ þ Oð2; SÞ� ;

ð1:76Þ

is the ratio of the number of operations for the classic PCA and the proposed
HAPCA-2 algorithm (with APCA of size 2 × 2), and:

g3ðN; SÞ ¼
TOPCAðN; SÞ

TOHAPCA�3ðN; SÞ ¼ OcovðNÞ þ OvalðNÞ þ OvecðNÞ þ OðN; SÞ
nNsg½Ocovð3Þ þ Ovalð3Þ þ Ovecð3Þ þ Oð3; SÞ� ;

ð1:77Þ

is the ratio of the number of operations for the classic PCA and the proposed
HAPCA-3 algorithm (with APCA of size 3 × 3).

For example, for N = 8, n = 3 and Ng = 4, from Eq. (1.76) is obtained:

g2ð8; SÞ ¼
TOPCAð8; SÞ

TOHAPCA�2ð8; SÞ ¼ 8269 þ 120S
1730 þ 72S

: ð1:78Þ

For N = 9, n = 2 and Ng = 3, from Eq. (1.77) it follows:

g3ð9; SÞ ¼
TOPCAð9; SÞ

TOHAPCA�3ð9; SÞ ¼ 11987þ 153S
2724 þ 90S

: ð1:79Þ

If S = 218, then g2ð8; 218Þ ¼ 1:66 and g3ð9; 218Þ ¼ 1:7; i.e., the coefficient η(S) is
at least 1.66 times larger than 1 for images of size 512 × 512, or higher (in average,
about 2 times). For higher values of N (for example, between 9 and 16), and for big
values of S, the coefficient η(S) > 2.
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1.5.4 Experimental Results

The presented experimental results are for sequences of multispectral (MS) images.
As an example, was used the test MS sequence “balloons” shown on Fig. 1.10; on
Fig. 1.11 is shown the corresponding color image with RGB values, obtained after
lighting with neutral daylight. This sequence is from the free-access image database
of the Columbia University, USA (http://www1.cs.columbia.edu/CAVE/databases/
multispectral/). It contains N = 15 MS images of size 512 × 512 pixels, 16 bpp. On

Image 1 Image 2 Image 3 Image 4 Image 5

Image 6 Image 7 Image 8 Image 9 Image 10

Image 11 Image 12 Image 13 Image 14 Image 15

Fig. 1.10 Group of 15 consecutive MS images “balloons”

Fig. 1.11 The color image of
“balloons”, obtained after
lighting with neutral daylight
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it was applied the 3-level HAPCA algorithm. The sequence was divided into Nsg =
5 sub-groups, each of Ng = 3 MS images, and the number of the vectors in each
sub-group is S = 218.

On Fig. 1.12 are shown the corresponding eigen MS images, obtained after
applying the 3-level HAPCA algorithm on the group of images. As it could be seen
from the results shown on Fig. 1.13, the main part of the energy of these 15 images
is concentrated on the first eigen MS image, and the energy of the next eigen images
decreases rapidly.

The graphics on Fig. 1.13 represent the power distribution of all 15 eigen images
in levels 1, 2, 3 before and after the rearrangement. In the first three eigen MS
images are concentrated 99, 88 % of the total power of all 15 images in the GOI.

The basic qualities of the HAPCA algorithm for processing of groups of MS
images are:

1. Lower computational complexity than PCA for the whole GOI, due to the lower
complexity of APCA with matrices of size 2 × 2 and 3 × 3 compared to the
case, when for the calculation of the PCA matrix are used iterative methods;

2. HAPCA could be used not only for efficient compression of sets of MS images,
but also for sequences of medical CT images, video sequences, obtained from
stationary TV camera, compression of multi-view images, image fusion, face
recognition, etc.;

Eigen Image 1 Eigen Image 2 Eigen Image 3 Eigen Image 4 Eigen Image 5

Eigen Image 6 Eigen Image 7 Eigen Image 8 Eigen Image 9 Eigen Image 10

Eigen Image 11 Eigen Image 12 Eigen Image 13 Eigen Image 14 Eigen Image 15

Fig. 1.12 Eigen images, obtained after executing the 3-levels HAPCA
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3. There is also a possibility for further development of the HAPCA algorithms,
through: the use of Integer PCA for lossless coding of MS images; HAPCA with
a matrix of size N × N (N—a digit, divisible by 2 or 3), but without using
numerical methods, etc.

Power distribution of 15 “Eigen" images 
             in level 1 (not arranged)

Power distribution of 15 “Eigen" images in 
                    level 1 (arranged)

Power distribution of 15 “Eigen" images 
               in level 2 (not arranged)

Power distribution of 15 “Eigen" images in level 3 (not arranged)

 Power distribution of 15 “Eigen" images in level 3 (arranged)

Fig. 1.13 Power distribution of all 15 eigen images in levels 1, 2, 3 before and after the
rearrangement
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1.6 Hierarchical Adaptive Kernel Principal Component
Analysis for Color Image Segmentation

The color image segmentation is of high significance in computer vision as the first
stage of the processing, concerning the detection and extraction of objects with
predefined color, the shape of the visible part of the surface, and the texture. The
existing color image segmentation techniques can be classified into seven main
approaches based on: edge detection, region growing, neural network based, fuzzy
logic, histogram analysis, Support Vector Machine and principal color [75–79].
One of the contemporary methods for color image segmentation is based on the
adaptive models in the perceptual color space, using neural networks as multilayer
perceptrons with multi-sigmoid activation function [80]. Recently special attention
attracted the methods for human skin segmentation in color images [81–85]. These
methods are mainly based on different color spaces, adaptive color space switching,
skin color models and detection techniques.

The color space representation based on the PCA [86–88] offers significant
advantages in the efficient image processing, as image compression and filtration,
color segmentation, etc. In this section, a new approach for adaptive object color
segmentation is presented through combining the linear and nonlinear PCA. The
basic problem of PCA, which makes its application for efficient representation of
the image color space relatively difficult, is related to the hypothesis for Gaussian
distribution of the primary RGB vectors. One of the possible approaches for solving
the problem is the use of PCA variations, such as: the nonlinear Kernel PCA
(КPCA) [88], Fast Iterative KPCA [89], etc. In this section, for the color space
representation an adaptive method for transform selection is used: linear PCA or
nonlinear KPCA. The first transform (the linear PCA) could be considered as a
particular case of the КPCA. The linear PCA is carried out on the basis of the
already described Color Adaptive PCA (CAPCA) [85, 87]. The choice of CAPCA
or КPCA is made through evaluation of the kind of distribution of the vectors,
which describe the object color: Gaussian or not.

1.6.1 Mathematical Representation of the Color Adaptive
Kernel PCA

In the general case, through KPCA is executed nonlinear transform of the original

centered vectors ~Xs over S pixels (~Xs ¼
PS
s¼1

X
*

s) into the high-dimensional space, and

then, for the obtained transformed vectors UðX* sÞ, the PCA is applied. The aim is, in

the new multidimensional space the vertices of the vectors UðX*sÞ to be concentrated
in an area, which is accurately enough enveloped by a hyperellipsoid, whose axes
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are the eigenvectors of the covariance matrix of the vectors UðX*sÞ. Figure 1.14
illustrates the idea of the new 3D color space of eigenvectors~m1;~m2;~m3 [85].

In particular, it is possible that the vectors UðX* sÞ in the transformed space are
represented by their projections on the first eigenvector m

*

1 of their covariance
matrix, as shown in Fig. 1.15. For the example, shown in this figure, on the
eigenvector m*1 is projected the basic part of the multitude of all transformed vectors

UðX* sÞ. The original 3D color vectors ~Cs are first centered:

~Xs ¼ ~Cs � ~mC for s ¼ 1; 2; . . .; S; ð1:80Þ

where ~mC is the mean value of the color vector and then follows some kind of
nonlinear transform, which uses the selected nonlinear function Φ (.). In result, the

corresponding N-dimensional vectors, UðX*sÞ (N ≥ 3) are obtained. The value of
N depends on the selected function Φ (.), used for the nonlinear transform [88].

The covariance matrix ½~Kx� of the transformed color vectors UðX* sÞ is of size
N × N and can be calculated in accordance with the relation:

½~Kx� ¼ 1
S

XS
s¼1

Uð~XsÞ:Uð~XsÞt ¼ EfUð~Cs � ~mcÞ:Uð~Cs � ~mcÞtg ; ð1:81Þ

where UðX* sÞ ¼ ½Uðxs1Þ;Uðxs2Þ; ::;UðxsNÞ�t for s = 1, 2,…, S.
For each eigenvalue ~ki and eigenvector m*i ¼ ½mi1; mi2; . . .; miN �t of the matrix ½~Kx�

the following relation is performed:

½~Kx�~mi ¼ ~ki~mi for i ¼ 1; 2; . . .; N: ð1:82Þ

2ν

3ν

1ν

Fig. 1.14 Plot of skin color
samples in the~m1;~m2;~m3
eigenvectors space of CAPCA
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After substitution in Eq. (1.82) using Eq. (1.81), is got:

½~Kx�~mi ¼ 1
S

XS
s¼1

Uð~XsÞUð~XsÞt~mi ¼ ~ki~mi ð1:83Þ

In result of the transformation of Eq. (1.83), known as the “kernel trick” [90], for
the ith eigenvector is obtained:

~mi ¼ 1

S~ki

XS
s¼1

½Uð~XsÞt:~mi�Uð~XsÞ ¼
XS
s¼1

asiUð~XsÞ; ð1:84Þ

where for ~ki 6¼ 0 the coefficient asi ¼ Uð~XsÞt :~mi
S~ki

:

From this, it follows, that:

½~Kx�~mi ¼ ~ki~mi ¼ ~ki
XS
s¼1

asiUð~XsÞ: ð1:85Þ

Substituting Eq. (1.84) in Eq. (1.83), is obtained:

½1
S

XS
s¼1

Uð~XsÞUð~XsÞt� � ½
XS
l¼1

ailUð~XlÞ� ¼ ~ki
XS
l¼1

aliUð~XlÞ

or

1
S

XS
s¼1

XS
l¼1

Uð~XsÞUð~XsÞtUð~XlÞail ¼ ~ki
XS
l¼1

aliUð~XlÞ;

Fig. 1.15 Color space transform with KPCA
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from which follows:

XS
s¼1

XS
l¼1

Uð~XsÞUð~XsÞtUð~XlÞali ¼ S~ki
XS
l¼1

aliUð~XlÞ: ð1:86Þ

After multiplying the left side of the above equation with the vector Uð~XsÞt; is
obtained:

XS
s¼1

XS
l¼1

Uð~XsÞtUð~XsÞUð~XsÞtUð~XlÞali ¼ S~ki
XS
l¼1

aliUð~XlÞtUð~XsÞ: ð1:87Þ

The dot product of the vectors Uð~XsÞ and Uð~XlÞ could be represented through the
kernel function kð~Xs;~XlÞ; defined by the relation:

kð~Xs;~XlÞ ¼ Uð~XsÞt:Uð~XlÞ for s; l ¼ 1; 2; . . .; S: ð1:88Þ

Here, the term kð~Xs; ~XlÞ represents the elements (s, l) of the Gram matrix [K] of
size S × S, called “kernel matrix”. After substituting Eq. (1.88) in Eq. (1.87), is
obtained:

½K]2:~ai ¼ S~ki½K]~ai: ð1:89Þ

Under the condition, that the matrix [K] is positively defined (i.e. when it
eigenvalues are positive) is got a shorter representation than in Eq. (1.89). Then:

½K]~ai ¼ S~ki~ai: ð1:90Þ

From this relation it follows, that S~ki are the eigenvalues of the matrix [K], and
~ai ¼ ½ai1; ai2; . . .; aiS�t are the corresponding eigenvectors of same matrix. Taking
into account the requirement~mti~mi ¼ 1, from Eq. (1.84) is obtained the relation:

XS
s¼1

XS
l¼1

aliasiUð~XlÞt:Uð~XsÞ ¼ 1 or ~ati½K�~ai ¼ 1: ð1:91Þ

After substituting Eq. (1.90) in Eq. (1.91) is obtained S~ki~ati~ai ¼ 1, from which is
defined the square of the module of the vector ~ai ¼ ½ai1; ai2; . . .; aiS�t:

~aik k2¼~ati:~ai ¼
XS
s¼1

a2si ¼ 1=S~ki: ð1:92Þ

1 New Approaches for Hierarchical Image Decomposition … 45



In the general case, the vectors UðX* sÞ in Eq. (1.88) are not centered. In order to
apply the PCA on them, they should be centered in advance, and in result are
obtained the vectors:

U
^ðX* sÞ ¼ UðX* sÞ � EfUðX* sÞg; ð1:93Þ

where ~m
U

^ ¼ E UðX* sÞ
n o

¼ 1
S

PS
s¼1

Uð~XsÞ:

The covariance matrix ½K^ � of the centered vectors UðX*sÞ is of size S × S and is
defined by the relation:

½K^ � ¼ 1
S

XS
s¼1

U
^ð~XsÞt:U

^ð~XlÞ ¼ E U
^ð~XsÞt:U

^ð~XlÞ
n o

: ð1:94Þ

The matrix kernel is:

k
^ð~Xs;~XlÞ ¼ U

^ð~XsÞt:U
^ð~XlÞ ¼ ½UðX* sÞ � ~m

U

^�t:½UðX* lÞ � ~m
U

^�: ð1:95Þ

The relation between the covariance matrices ½K^ � and [K] is:

½K^ � ¼ ½K� � 2½I1=s�½K� þ ½I1=s�½K�½I1=s�; ð1:96Þ

where [I1/s] is a matrix of size S × S, whose elements are equal to 1/S.

The projection of the vector UðX*sÞ on the eigenvector m*i in the S-dimensional
space is:

Prsi ¼ Uð~XsÞt:~mi ¼
XS
s¼1

aisUð~XiÞt:Uð~XsÞ ¼
XS
s¼1

aiskð~Xi;~XsÞ for i ¼ 1; 2; 3; . . .; N:

ð1:97Þ

Using the projections Prsi of the vector UðX*sÞ on each of the first
k ≤ N eigenvectors m

*

i (for i = 1, 2,…, k), could be taken the decision for the
classification of the sth pixel to the dominant color of the selected object, using
some of the well-known classifiers, as: SVM, LDA, k-nearest neighbors, neural
networks, etc. [89]

To carry out the KPCA, one could use different kinds of kernel functions, such
as the polynomial, the Gaussian, the sigmoid, etc. By substituting Uð~XsÞ ¼~x and
Uð~XlÞ ¼~y the polynomial kernel function of degree d is defined by the relation:
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kð~x;~yÞ ¼ ð~xt:~yÞd: ð1:98Þ

For d = 2 and if assumed that for the transformation of the 3-component vectors
~Xs ¼ ½xs1; xs2; xs3�t and ~Xl ¼ ½xl1; xl2; xl3�t into N-component is used the nonlinear
function Ф(.), then:

~x ¼ Uð~XsÞ ¼ ½Us1;Us2; ::;UsN �t; ~y ¼ Uð~XlÞ ¼ ½Ul1;Ul2; ::;UlN �t ð1:99Þ

where the vectors components are defined by the relations:

Usi ¼ xr1sip1x
r2
sip2 ; Uli ¼ xr1lip1x

r2
lip2

ð1:100Þ

for r1, r2 = 0, 1, p1, p2 = 1, 2, 3, i = 1, 2, … N and s, l = 1, 2, …, S.
In this case the maximum value of N is N = 9. In order to reduce the needed

calculations, it is suitable to use smaller number of the possible 9 components of the
quadratic function Ф(.).

For example, if assumed N = 3 and if only mixed products of the vectors
components ~Xs and ~Xl are chosen, then from Eq. (1.100) it follows:

~x ¼ Uð~XsÞ ¼ ½xs1xs2; xs1xs3; xs2xs3�t; ~y ¼ Uð~XlÞ ¼ ½xl1xl2; xl1xl3; xl2xl3�t: ð1:101Þ

Then the corresponding kernel function of vectors Uð~XsÞ and Uð~XlÞ is repre-
sented by the polynomial below:

kð~x;~yÞ ¼ ½Us1;Us2;Us3�t:½Ul1;Ul2;Ul3� ¼ xs1xs2xl1xl2 þ xs1xs3xl1xl3 þ xs2xs3xl2xl3:

ð1:102Þ

In particular, for d =1, Uð~XsÞ ¼ ~Xs and Uð~XlÞ ¼ ~Xl the corresponding kernel
function is linear:

kð~x;~yÞ ¼ ½xs1; xs2; xs3�t � ½xl1; xl2; xl3� ¼ xs1xl1 þ xs2xl2 þ xs3xl3: ð1:103Þ

From the above, it follows that KPCA is transformed into linear PCA (i.e. PCA
is a particular case of KPCA).

1.6.2 Algorithm for Color Image Segmentation by Using
HAKPCA

The general algorithm for objects segmentation in the extended color space, based
on the Hierarchical Adaptive Kernel PCA (HAKPCA) and the classifier of the
reduced vectors, is shown on Fig. 1.16.
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In the preprocessing block, each color vector ~Cs ¼ ½Rs;Gs;Bs�t is transformed
into the corresponding expanded vector ~Ps. If the chosen kernel-function is poly-
nomial, and the 3D color space is transformed into a 9-dimensional, then the
components pis of vectors ~Ps could be defined as follows:

~Ps ¼ ½Rs;Gs;Bs;R
2
s ;G

2
s ;B

2
s ;RsGs;BsGs;RsBs�t

¼ ½P1s;P2s;P3s;P4s;P5s;P6s;P7s;P8s;P9s�t for s ¼ 1; 2; . . .; S:

In order to put all components pis in the range [0, 255], for i = 4, 5, …, 9:
R2
s ;G

2
s ;B

2
s ; RsGs; BsGs; RsBs, are normalized in the range 0−255. The vectors~Ps are

then transformed by the 2-level HAKPCA, whose algorithm is shown in Fig. 1.17.
As a result of the transform are obtained the 2-component vectors ~Es ¼ ½E1s;E2s�t,
which are used to substitute the input 9-components vectors
~Ps ¼ ½P1s;P2s;P3s;P4s;P5s;P6s;P7s;P8s;P9s�t. In this way the performance of the
classifier is also simplified, because it has to process the vectors ~Es in the
two-component, instead of the nine-dimensional space.

At its output are separated all pixels in the image, whose corresponding vectors
~Es are in the area of the cluster, belonging to the object. With this, the color
segmentation is finished. In accordance with the algorithm shown in Fig. 1.17, for
the 2-level HAKPCA [91], the nine components of each input vector ~Ps are divided
into three groups, which contain the three-components vectors

~P1s ¼ ½P11s;P12s;P13s�t; ~P2s ¼ ½P21s;P22s;P23s�t; ~P3s ¼ ½P31s;P32s;P33s�t;

At the first level of HAKPCA, on each group of the three-component vectors
~Pks ¼ ½Pk1s;Pk2s;Pk3s�t for k = 1, 2, 3, is performed color APCA with a transform
matrix of size 3 × 3. The so obtained vectors from each group comprise three
“eigen” images, shown in Fig. 1.18. These images are rearranged in accordance to
the rule:

k1 	 k2 	 k3 	 � � � 	 k9: ð1:104Þ

where ki 	 0 for l = 1, 2, …, 9 are eigen values of the covariance matrices of the
three-component vectors ~Pks for each group (k = 1, 2, 3) in the first level of

Preprocessing

with polynomial

kernel

 function

n-level
HAPCA

SVM
classifier

Input
R,G,B image

ObjectCs Ps Es

Fig. 1.16 Block diagram of the algorithm for image segmentation in the expanded color space
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HAКPCA, arranged as monotonously decreasing sequence of eigen values. After
that these components are divided again, this time into 3 groups, of 3 images each.

The vectors, obtained from the pixels with same coordinates in the images from
each group, are of 3 components. For the second level of HAKPCA for each group

  Components
of Extended 

Color Vectors

3 4 71 6 8 952

Hierarchical
Level 1

311 122 133111 322222 233 333211

APCA-1 APCA-2 APCA-3

Components rearrangement for level 2

31 12 1311 3222 23 33

11 21 3113 2322 33 32

21

12

APCA-1 APCA-2 APCA-3

    Components rearrangement for level 1

Hierarchical
Level 2

122 222 133111 322311 233 333211

4=222 7=136=321=11 5=312=21

Reduced
Principal

Components

3=122 8=23 9=33

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

Retained   Components 

R BG 2R 2G 2B G G B

Fig. 1.17 HAKPCA algorithm for direct transform of the extended color image with components
R, G, B, R2, G2, B2, RG, BG, RB
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of 3-component vectors is executed direct APCA with a transform matrix of size
3 × 3.

The algorithm for direct/inverse transform of the components [R], [G], [B] of the
color image, calculated using APCA in three “eigen” images [L1], [L2], [L3], is
shown on Fig. 1.19. The vectors from each group build the three eigen images,
which are rearranged again in accordance with Eq. (1.25). As a result, the nine
eigen images E1 * E9 are obtained, from which are retained the first two (E1 and
E2) only, which carry the main information, needed for the color objects
segmentation.

As a result, the computational complexity of HAKPCA is lower than that of the
KPCA, for the case, when it is used to transform directly the 9-component vectors
~Ps. In this way, the general computational complexity of HAKPCA with a classi-
fier, needed for the processing of the vectors ~Ps is lower than that, needed for the
processing of same vectors with KPCA with a classifier. From the pixels with same
coordinates in the images E1 and E2 are obtained the vectors~Es ¼ ½E1s; E2s�t; which
are then used by the classifier.

1.6.3 Experimental Results

To verify the feasibility of the proposed algorithm, skin pigmentation images were
tested and evaluated. Figures 1.20 and 1.21 show the original tested images and
their color vectors distribution in the RGB space, respectively. It can be seen that
their color distributions are considered as non-linear Gaussian ones.

These images are passed through the HAKPCA algorithm (shown on Fig. 1.17).
The obtained transformed vectors ~Es in the new color space E1s;E2s;E3s are plotted
in the 3D domain shown in Fig. 1.22. It is easy to notice that the proposed tech-
niques concentrate the energy of the different skin color into very small and close
components of transformed vectors.

Fig. 1.18 Color APCA transform of the [R], [G], [B] components of the color image
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Fig. 1.19 Algorithm for direct/inverse APCA of the components [R], [G], [B] of the color image
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Fig. 1.20 a, b Original skin pigmentation images

Fig. 1.21 a, b Color vectors distribution in RGB space for original images in Fig. 1.20 a, b

Fig. 1.22 a, b. Distribution of the transformed vectors ~Es in the new color space E1s; E2s; E3s
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The HAKPCA transformed coefficients are then used to train a classifier. For
briefing, fuzzy K-means clustering is used. The segmentation results are shown in
Fig. 1.23a, b respectively.

The proposed approach depends mainly on the evaluation of the color vectors
distribution. For a non-Gaussian distribution of the vectors, is used HAKPCA. The
selected nonlinear transform results in negligible expansion of the original color
space, which increases slightly the number of needed calculations. The main
advantage of the new approach is that in result of its adaptation in respect to the
color vectors distribution, it could be used as universal tool for efficient image
processing. One more advantage of HAKPCA towards the KPCA is the lower
computational complexity.

On the basis of the presented approach, new algorithm for objects color seg-
mentation was developed, which was distinguished by its high accuracy. This
algorithm could be used in the CBIR systems for extraction of objects with preset
color, in the computer vision systems for detection and tracking of objects in
correspondence to their color under changing surveillance conditions, for automatic
control of various manufacturing processes, etc.

1.7 Conclusions

The new approaches for image decomposition, presented in this chapter, are dis-
tinguished from the well-known methods by their low computational complexity
and high efficiency, which makes them very attractive for future applications in
computer vision, video communications, image content protection through digital
Watermarking [92], image search in large databases, etc. Besides, the methods for
hierarchical decomposition could be also used for the creation of new hybrid
algorithms [93, 94] for processing of some specific kinds of images (static, or
sequences), of the kind: medical, multi- and hyper spectral, multiview, panoramic
satellite photos, etc. Depending on the requirements of the applications, in respect
of their efficiency and the computation time needed for the processing, for each
image kind could be selected the most suitable from the four decompositions

Fig. 1.23 Skin color
segmentation based on
HAKPCA
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(BIDP, HSVD, HAPCA and HAKPCA) i.e., they can complement each other and
have their own place and significance.

The future development of the presented new algorithms will be focused at the
investigation of the possibilities for their integration in the contemporary systems
for parallel processing, analysis and image recognition.
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Chapter 2
Intelligent Digital Signal Processing
and Feature Extraction Methods

János Szalai and Ferenc Emil Mózes

Abstract Intelligent systems comprise a large variety of applications, including
ones based on signal processing. This field benefits from considerable popularity,
especially with recent advances in artificial intelligence, improving existing pro-
cessing methods and providing robust and scalable solutions to existing and new
problems. This chapter builds on well-known signal processing techniques, such as
the short-time Fourier and wavelet transform, and introduces the concept of
instantaneous frequency along with implementation details. Applications featuring
the presented methods are discussed in an attempt to show how intelligent systems
and signal processing can work together. Examples that highlight the cooperation
between signal analysis and fuzzy c-means clustering, neural networks and support
vector machines are being presented.

Keywords Signal processing � Signal-adaptive processing � Frequency domain
transforms � Instantaneous frequency � Fuzzy c-means � Fuzzy systems � Support
vector machine � Frequency analysis � Time-frequency analysis � Neural networks

2.1 Introduction

Intelligent systems on their own are not always enough to handle complex tasks. In
these cases the preprocessing of the signals is a necessary step. Often the prepro-
cessing algorithms not only convert the initial data into a more advantageous for-
mat, but they are also capable of realizing feature extraction on the data. This aspect
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is equally important as the concept of intelligent systems themselves, for no clas-
sification can succeed if the features of the input data are not emphasized correctly
beforehand.

The goal of the chapter is to present well-known signal processing methods and
the way these can be combined with intelligent systems in order to create powerful
feature extraction techniques. In order to achieve this, several case studies are pre-
sented to illustrate the power of hybrid systems. The main emphasis is on instanta-
neous time-frequency analysis, since it is proven to be a powerful method in several
technical and scientific areas. The authors’ contributions to the computation of the
instantaneous frequency and application of the empirical mode decomposition are
also presented, highlighting the limitations of the existing methods and showing at
the same time a possible approach on T-wave peak detection in electrocardiograms.

Classical signal processing methods have been widely used in different fields of
engineering and natural sciences in order to highlight meaningful information
underlying in a wide variety of signals. In this chapter we aim to present not only the
best known signal processing methods, but also ones that proved to be the most
useful. The oldest and most utilized method is the Fourier transform, which has been
applied in several domains of scientific data processing, but it has very strong
limitations due to the constraints it imposes on the analyzed data. Then the
short-time Fourier transform and the wavelet transform are presented, as they pro-
vide both temporal and frequency information as opposed to the Fourier transform.
These methods form the basis of most applications nowadays, as they offer the
possibility of time-frequency analysis of signals. Finally, the Hilbert-Huang
transform is presented as a novel signal processing method, which introduces the
concept of instantaneous frequency that can be determined for every time point,
making it possible to have a deeper look into different phenomena.

The combinations of these methods with intelligent systems are described in the
second part of the chapter. Several applications are presented where fuzzy classi-
fiers, support vector machines and artificial neural networks are used for decision
making. Interconnecting these intelligent methods with signal processing will result
in hybrid intelligent systems capable of solving computationally difficult problems.

2.2 The Fourier Transform

It is a well known fact that periodic functions can be expanded into Fourier series
using weighted sums of sines and cosines. In the real world, however, most of the
physical phenomena can’t be treated as periodical occurrences. For these shapes
there exists the Fourier transform which is an integral taken over the whole defi-
nition domain. It is thus assumed that the function is represented on the whole real
axis. Applying the Fourier transform to real-world signals makes the spectral
analysis of phenomena possible, offering more information than it would be
available in the time domain.
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The definition of the Fourier transform is given by Eq. 2.1 for any integrable
function f : R ! C [1]

F xð Þ ¼
Z 1

�1
f tð Þe�2pitxdt ð2:1Þ

where t is the time variable and x is the frequency variable of the Fourier plane.
The Fourier transform describes the original function (or signal) as a bijection,

thus the original function can be fully recovered if its Fourier transform is known.
This process is achieved by applying the inverse Fourier transform described by
Eq. 2.2.

f tð Þ ¼
Z 1

�1
F xð Þe2pitxdx ð2:2Þ

The Fourier transform is built upon the Fourier series and in a straightforward
manner on the decomposition of functions into sinusoidal basis functions. This can
be easily proven using Euler’s formula:

F xð Þ ¼
Z 1

�1
f tð Þ cos �2ptxð Þþ i sin �2ptxð Þð Þdt ð2:3Þ

However, most of the practical applications are not dealing with continuous domain
signals and functions. Instead they use digitally sampled signals. For these signals
an adapted version of the Fourier transform can be used, called the discrete Fourier
transform (DFT), defined by Eq. 2.4 for a time series xn, where n is the sample
number, k is the wave number and N is the total number of samples.

Xk ¼
XN�1

n¼0

xne
�2pikn

N ð2:4Þ

Naturally, this also has an inverse transform described by Eq. 2.5.

xn ¼ 1
N

XN�1

k¼0

Xke
2pikn
N ð2:5Þ

Whenever possible, the fast Fourier transform (FFT) is used instead of the discrete
Fourier transform, mostly based on performance and execution time considerations
[2]. The most efficient way to use the FFT is to have signals with number of
samples equal to some power of two. This has to do with the way the FFT algorithm
is constructed. Further details can be found in [3, 4]. The computational complexity
that can be achieved this way is Oðn log nÞ as opposed to the DFT’s Oðn2Þ.
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The Fourier transform considers the analyzed signal in its full length, it is not
using an analyzing window, thus sometimes identifies false frequency components
that in reality aren’t present in the signal. This explains why the best results are
achieved for full periods of periodic signals.

2.2.1 Application of the Fourier Transform

The FFT is used in various fields, such as multimedia [5], optical [6], seismological
[7], spectroscopy [8] or magnetic resonance signal processing [9]. In this part an
application in the field of magnetic resonance imaging (MRI) is going to be pre-
sented briefly.

Magnetic resonance imaging produces images of the human body by exciting the
hydrogen (1H) nuclei with radio frequency pulses and then measuring the radio
frequencies emitted by these nuclei as they recover to their initial energy state.
Localization of different frequencies is done by modifying the main magnetic field
using imaging gradients along the axes of the imaged plane. The frequencies emitted
by different nuclei are equal to their precessional frequencies [9]. By measuring the
electrical current induced in a receiver coil by the emitted RF frequencies the
Fourier-space (or k-space) of the image is constructed using frequencies relative to
the position of imaging gradients. The measured spatial frequency spectrum is then
transformed to space domain (image domain) using the inverse Fourier transform.

This is an example of using the inverse Fourier transform in more than one
dimension. Equations 2.6–2.9 describe the two dimensional continuous Fourier
transform, the two dimensional continuous inverse Fourier transform, the two
dimensional discrete Fourier transform and respectively, the two dimensional dis-
crete inverse Fourier transform.

F u; vð Þ ¼
Z 1

�1

Z 1

�1
f x; yð Þe�2pi uxþ vyð Þdxdy ð2:6Þ

f x; yð Þ ¼
Z 1

�1

Z 1

�1
F u; vð Þe2pi uxþ vyð Þdudv ð2:7Þ

In Eqs. 2.6 and 2.7 x and y are space variables, u and v are spectral variables.

Xk;l ¼ 1ffiffiffiffiffiffiffiffi
MN

p
XN�1

n¼0

XM�1

m¼0

xn;me
�2pi mk

M þ nl
Nð Þ ð2:8Þ

xn;m ¼ 1ffiffiffiffiffiffiffiffi
MN

p
XN�1

k¼0

XM�1

l¼0

Xk;le
2pi mk

M þ nl
Nð Þ ð2:9Þ
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In Eqs. 2.8 and 2.9 n and m are discrete space variables, k and l are discrete wave
numbers.

Figure 2.1 shows the equivalence between 2D spectral space and 2D image
space.
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Fig. 2.1 Equivalence
between k-space and image
space. a k-space
representation of the
Shepp-Logan head phantom.
b Reconstructed image of the
Shepp-Logan head phantom
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2.3 The Short-Time Fourier Transform

The Fourier transform does not reveal any temporal information about the fre-
quency components present in the signal, making it impossible to locate them in
specific applications. The Fourier transform “looks” at the analyzed signal during
its whole time span and identifies frequency components as if they were present
during the whole signal. Obviously, this is not the case in most of the applications.
A way to introduce temporal information in the Fourier transform is to apply it on
the signal using a sliding window with a constant width [1]. Sliding this window
over the whole length of the signal will offer the possibility to get both spectral and
temporal information about the signal. Equation 2.10 defines the short-time Fourier
transform, where w is the windowing function, t is the time variable, x is the
frequency variable and s is the time variable of the spectrogram.

F x; sð Þ ¼
Z 1

�1
f tð Þe�2pixtw t � sð Þdt ð2:10Þ

Similarly to the Fourier transform, the short time Fourier transform is also invert-
ible. The original signal can be recovered using Eq. 2.11.

f tð Þ ¼
Z 1

�1

Z 1

�1
F x; sð Þe2pixtdxds ð2:11Þ

The discrete short-time Fourier transform is described by Eq. 2.12, where similarly
to the discrete Fourier transform, n is the discrete sample number of the time series
xn and k is the wave number. The time variable of spectrogram is represented by m.
Inverting the discrete short-time Fourier transform is not as simple as the contin-
uous one, it is heavily based on knowledge about the window function and the
overlap between successive windows.

Xm;k ¼
X1
n¼0

xnwn�me
�2pink

N ð2:12Þ

A very important element of the short time Fourier transform is the windowing
function. The way the windowing function and its parameters are chosen, will affect
the spectrum produced by the transform. Hann and Hamming windows are often
used due to their favorable frequency responses. The most important parameters of
a window function are its length and overlap—the resolution of the short time
Fourier transform in both the temporal and spectral domain is influenced by
these parameters. As we reduce the length of the window, temporal localization
gets better in detriment of spectral resolution. If the window width is increased,
the temporal resolution decreases but the frequency resolution increases. This
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phenomenon is strongly related to Heisenberg’s uncertainty principle and is
expressed by the inequality described with Eq. 2.13 [10].

rtrf � 1
4p

ð2:13Þ

Here, rt and rf represent the standard deviations in time and frequency, respec-
tively, and their product is bounded. The windowing function that can offer max-
imal resolution in both domains is the Gaussian window [11]. This limitation on
resolution is the major drawback of the transform, making it unsuitable for situa-
tions where precise time and frequency information are both essential, e.g. in some
electrophysiological applications.

Another drawback of the short time Fourier transform is that it can become
numerically unstable [11], i.e. for small perturbations in the initial data set the
output would be significantly different. Using analyzing windows is necessary to
introduce temporal localization of frequency components of the signal, but there is a
drawback to this. The shape of the windowing function will determine the amount
of false frequency components in the spectrum and it also influences the amplitude
of the spectral components. This is why there exists such a wide range of window
functions to accommodate all needs.

2.3.1 Application of the Short-Time Fourier Transform

A wide range of applications exist for the short-time Fourier transform in the audio
signal processing domain. However, this transform can also be used in image
processing.

The short-time Fourier transform can be used to enhance fingerprint images, as it
is described in Chikkerur’s paper [12]. The authors present an enhancement tech-
nique based on frequency domain filtering of the fingerprint image. The short-time
Fourier transform is utilized first to get orientation and frequency maps of the
original image. Just like the Fourier transform, the short-time Fourier transform can
also be extended to higher dimensions. Equation 2.14 presents the 2D form of this
transform.

X s1; s2;x1;x2ð Þ ¼
Z 1

�1

Z 1

�1
I x; yð ÞW x� s1; y� s2ð Þe�j x1xþx2yð Þdxdy ð2:14Þ

where �W is the complex conjugate of a window function, x and y are spatial
variables, x1 and x2 are frequency variables and s1 and s2 are time variables of the
two-dimensional spectrogram. In the case of this application, the window function
is a raised cosine. After the short-time Fourier transform was carried out, the whole
image can be modeled as a surface wave function:
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Iðx; yÞ ¼ Aðcosð2prðx cos hþ y sin hÞÞÞ ð2:15Þ

Here r and h are the frequency and the ridge orientation in the image and A is a
constant amplitude. They can be deduced from the short-time Fourier transform and
they are considered random variables as they are defined by probability density
functions. Thus the joint probability density function is defined by:

p r; hð Þ ¼ F r; hð Þj j2R
r

R
h F r; hð Þj j2 ð2:16Þ

where F represents the Fourier spectrum in polar form.
The marginal density functions for the frequency and the orientation are

described by Eqs. 2.17 and 2.18.

p rð Þ ¼
Z
h
p r; hð Þdh ð2:17Þ

p hð Þ ¼
Z
r
p r; hð Þdr ð2:18Þ

Then the ridge orientation is computed as the expected value of the orientation
variable:

E hð Þ ¼ 1
2
tan�1

R
h p hð Þ sin 2hð ÞdhR
h p hð Þ cos 2hð Þdh ð2:19Þ

This average is further smoothened using a Gaussian smoothing kernel.
The ridge frequency image is obtained by calculating the expected value of the

frequency variable:

E rð Þ ¼
Z
r
p rð Þrdr ð2:20Þ

This frequency image is also smoothened, but an isotropic diffusion smoothing is used
to avoid errors being propagated from the edges of the image towards the middle of it.

In the next step an energy map is determined, used for differentiating areas
which do not contain ridges and thus have very low energy from the short-time
Fourier transform, from areas of interest. This energy map is then used as a basis of
thresholding in order to get two different regions of the image. Equation 2.21 gives
the definition of this energy based region mask.

E x; yð Þ ¼ log
Z
r

Z
h
F r; hð Þj j2

� �
ð2:21Þ
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To further reduce the discontinuities due to the block processing method, a coherence
image is produced, which takes into consideration the level of orientation matching
around individual points, as described by Eq. 2.22, ðx0; y0Þ being the central point
and ðxi; yiÞ are the points overlapped by theW window. The values of this mapwill be
high when the orientation of a block is similar to neighboring blocks’ orientation.

C x0; y0ð Þ ¼
P

ði;jÞ2W cos h x0; y0ð Þ � h xi; yj
� �� �

W �W
ð2:22Þ

The actual image quality enhancement is then produced by applying algorithms
described by Sherlock and Monro in [13].

2.4 The Wavelet Transform

The fixed width of the window used in the short time Fourier transform and the limited
resolution of both the spectral and temporal domain are key reasons why the STFT
cannot be used in many of the applications demanding time-frequency analysis. For
example, non-stationary signal analysis depends heavily on determining what fre-
quency components are present in the signal at a certainmoment in time aswell as on the
possibility to search the signal for the occurrences of certain frequency components.

A new transform method was developed to face all these problems, called the
wavelet transform. By definition, the wavelet transform is also an integral trans-
form, using windows to slide over the analyzed signal in order to obtain
time-frequency information from it [14, 15]. The major difference between this
transform and the short time Fourier transform is that the wavelet transform uses
windows which have variable width and amplitude, allowing the transform to
analyze every bit of the signal. There are many different analyzing windows and
they are called wavelets. Every wavelet is generally characterized by two param-
eters: scale (a) and translation (b). Equation 2.23 describes the continuous wavelet
transform where a represents the scaling factor, b is the translation factor, w is a
continuous function (w 2 L2ðRÞ) with �w being its complex conjugate and x is the
analyzed signal in the time domain. w is also called the mother wavelet.

Xa;b ¼ 1ffiffiffi
a

p
Z 1

�1
x tð Þw t � b

a

� �
dt ð2:23Þ

Mother wavelets have zero mean and their square norm is one, as presented by
Eqs. 2.24 and 2.25.

Z 1

�1
w tð Þdt ¼ 0 ð2:24Þ
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Z 1

�1
w tð Þj j2dt ¼ 1 ð2:25Þ

Although applications exist for the continuous wavelet transform (mostly analyzing
theoretical aspects, see [16]), most of the problems necessitate a discrete wavelet
transform. This can be derived from the continuous transform by quantization and
without loosing any redundant information. Equation 2.26 defines the discrete
scaling (s) and translation (u) factors used for the definition of wavelet functions.

s ¼ 2�j; u ¼ k2�j; j; k 2 Z ð2:26Þ

The result of substituting these variables in the integral transform is described by
Eq. 2.27.

X j; kð Þ ¼ 2j=2
Z 1

�1
x tð Þw 2 jt � k

� �
dt ð2:27Þ

By discretizing the analyzed signal function, the integral transform becomes a sum
as presented by Eq. 2.28.

Xj;k � 2j=2
X
n

xnw 2 jn� k
� � ð2:28Þ

The time-frequency resolution from wavelet decomposition point of view can be
represented by the Heisenberg rectangle, where time and frequency is spread
proportional to the scaling factor s and 1

s. With the variation of s the two parameters
of the rectangle, i.e. height and width, change accordingly but with a constraint
stipulating that the area remains the same, as illustrated in Fig. 2.2. In most cases
for a multiscale analysis, a scaling function u is introduced. The relationship
between the two functions u and w is presented below by Eq. 2.29.

/̂ xð Þ
��� ���2¼ Z 1

1
ŵ sxð Þ
��� ���2ds

s
ð2:29Þ

With this notation the frequency analysis of the signal x at the scale of s is com-
puted as follows:

Xðu; sÞ ¼ hxðtÞ;usðt � uÞi ð2:30Þ

Here h : i denotes the inner product of two functions and us is given by:

usðtÞ ¼
1ffiffi
s

p u
t
s

� 	
ð2:31Þ

In practice, the wavelet transform is computed for a defined number of scales (2 j).
The low frequency component Wðu; 2 jÞ is often called the DC component of the
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signal. Wavelet coefficients W have a length of N
2 j as the largest depth is bounded by

the signal length.
For implementation purposes a set of conjugate mirror filters h and g is con-

structed using the scaling function u and the wavelet function w. Their definitions
are given by Eqs. 2.32 and 2.33.

hðnÞ ¼ h 1ffiffiffi
2

p u
t
2

� 	
;uðt � nÞi ð2:32Þ

gðnÞ ¼ h 1ffiffiffi
2

p w
t
2

� 	
;uðt � nÞi ð2:33Þ

These filter functions have to satisfy the following conditions (here k denotes a filter
function):

k̂ xð Þ�� ��2 þ k̂ xþ pð Þ�� ��2¼ 2 ð2:34Þ

and

k̂ 0ð Þ ¼ 2: ð2:35Þ

The discrete orthogonal wavelet decomposition can be calculated by applying the
filter functions on the signal recursively. The two functions separate the signal into
low and high frequency domains were h is a low-pass filter and g ia a high-pass
filter, as presented in Fig. 2.3, while Fig. 2.4 shows the whole decomposition and

(a)                 (b)                 

(d)                 (c)                 

Fig. 2.2 Heisenberg
rectangles for different
transforms: a continuous
domain (equal windows in the
time direction, no frequency
information); b Fourier
transform (equal windows in
the amplitude direction, no
time information);
c short-time Fourier transform
(equal windows in both time
and frequency direction);
d Wavelet transform
(rectangles with equal area
but varying width and height)
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reconstruction scheme, highlighting the places of eventual filters. A detailed proof
of this concept can be found in [15]. Another, more general approach can be
achieved by using bi-orthogonal decomposition and reconstruction filters. It allows
for a larger room for analyzing, modifying and filtering even multidimensional data.

Having a pair of wavelet function w and a reconstruction function v, the
decomposition and reconstruction is a straightforward implementation with H, G
and K filters satisfying the Eq. 2.36 [17].

û 2xð Þ ¼ e�ixsH xð Þû xð Þ
ŵ 2xð Þ ¼ e�ixsG xð Þŵ xð Þ
v̂ 2xð Þ ¼ eixsK xð Þv̂ xð Þ
H xð Þj j2 þG xð ÞK xð Þ ¼ 1

ð2:36Þ

As it turns out, filtering a signal is equal to applying a simple scaling function after
the transformation. By modifying the wavelet coefficients after the decomposition,
we can attenuate or amplify different frequency bands according to the resolution.
This can be done even for a defined time-period depending on the scaling function.

2.4.1 Application of the Wavelet Transform

One of the most well-known examples of using the wavelet transform is the
JPEG-2000 image compression method. The widely used JPEG image compression

Fig. 2.3 One level of wavelet decomposition. LPF denotes a low-pass filter while HPF stands for
a high-pass filter. Further decompositions are usually carried out using the results of the high pass
filter

Fig. 2.4 Full wavelet decomposition and reconstruction scheme. Notice the down-sampler blocks
on the decomposition side and the up-samplers on the reconstruction side
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format traditionally uses the discrete cosine transform and has limitations both in
compression efficiency and the quality of edge preserving. In order to overcome
these shortcomings, the JPEG-2000 standard was developed, which uses the dis-
crete wavelet transform in order to decompose the image and then compress it.

As a first step, the image is cut in rectangular tiles and all the following oper-
ations are executed on each tile separately. Each tile is transformed using the
one dimensional discrete wavelet transform, so 4 results are obtained: one with
low-resolution rows and columns, one with low resolution rows and high resolution
columns, one with high resolution rows and low resolution columns and one with
high resolution rows and columns. This decomposition is then repeated a number of
times on the low resolution image block. The decomposition process is called
dyadic decomposition. Both lossless and lossy decompositions are possible: when
using integer wavelet functions, the result is lossless decomposition, while using
real-valued wavelet functions, the result is a lossy decomposition. In both cases the
decomposition is done by applying low-pass and high-pass filters built up using
wavelet functions. On the reconstruction side quadrature mirror filter pairs [1] of the
decomposition side filters are used.

After the decomposition, the obtained coefficient values are quantized, i.e. this is
the step where information loss can occur. When using lossless compression,
though, there is no quantization, or the quantization step is 1:0. Following quan-
tization, entropy encoding of the bit planes is carried out. After this procedure is
done, the image is ready to be stored [18].

2.5 The Hilbert-Huang Transform

2.5.1 Introducing the Instantaneous Frequency

All of the transform methods presented up until now use the classical definition of
frequency, i.e. the number of repetitions of a phenomenon in unit time. This means
that intra-wave oscillations are totally disregarded when analyzing non-stationary
signals. Already in the 1990s it was recognized that there are serious consequences
of not taking into consideration these intra-wave changes in frequency.

The basic idea behind the instantaneous frequency is very simple. For example,
if we consider a uniform circular motion, then the projection of this movement on
one of the x or y axes will result in one of the Fourier series, more accurately a
single sine or cosine wave. In this case the instantaneous frequency is constant. The
speed of the motion is described as the derivative of the angular position and it is
called angular velocity. This angular velocity is exactly the definition of the
instantaneous frequency. If the motion is uniform, i.e. has a constant speed, the
angular velocity will be constant, thus the frequency will be constant in each time
point. However, if the motion is non-uniform, the sinusoid will have time-variable
periods. This way, the definition of the instantaneous frequency becomes a gen-
eralization of the classical frequency model.
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From now on, we can treat every signal as a sum of non-uniform circular
motions with varying amplitude where the derivative of the angular position is the
instantaneous frequency. Analyzing data from this perspective exceeds the break-
down capability of the Fourier transform as we get an absolute time depending
spectral overview.

It was, however, not until recently when the computation of the instantaneous
frequency was made easily achievable and Huang [19] contributed significantly to
this by developing the Hilbert-Huang transform. Although the new definition of
frequency was also known before Huang [20], there were no straightforward
algorithms for its computation.

2.5.2 Computing the Instantaneous Frequency

There are many ways of computing the instantaneous frequency of a non-stationary
signal. The basic idea is to decompose the original signal into mono-components
which have only one oscillation per period and then computing the instantaneous
frequency of these components by determining the quadrature of the component
and computing the derivative of the phase of the two sub-signals. As we are talking
about empirical methods to decompose a signal into mono-components, there is a
high risk to end up with elements without any link to the original physical phe-
nomenon. A minimal change in the signal form will result in a totally different
decomposition.

The Hilbert-Huang transform is one of the modalities to calculate the instanta-
neous frequency. It consists of two steps:

1. Determine the mono-components of the original signal. This step uses the
empirical mode decomposition algorithm

2. Compute the instantaneous frequency with the Hilbert transform for every
mono-component.

The empirical mode decomposition (EMD) is an iterative algorithm that extracts
mono-components called intrinsic mode functions (IMF) from the original signal.
These IMFs hold two important properties:

1. They have the same number of local maxima and minima, or their number
differs at most in one;

2. Their upper and lower envelope averages to zero.

Because it is an iterative algorithm, the exact number of final IMFs is unknown
beforehand. The algorithm is described by listing 2.1. The mono-components or
intrinsic mode functions can be described by the general equation of a non-uniform,
variable-amplitude circular motion:
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cðtÞ ¼ AðtÞcosðuðtÞÞ ð2:37Þ

where cðtÞ is the IMF, AðtÞ describes the time-variable amplitude part and uðtÞ
represents the time-variable phase.

Due to their fundamental properties, it is easy to find their quadrature and the
Hilbert transform does exactly that. Taking the IMF cðtÞ, the corresponding
quadrature qðtÞ is given by Eq. 2.38.

q tð Þ ¼ 1
p

Z 1

�1

c sð Þ
t � s

ds ð2:38Þ

Then the phase difference between them is computed:

uðtÞ ¼ arctan
qðtÞ
cðtÞ ð2:39Þ

Then the instantaneous frequency of the IMF will be:

xðtÞ ¼ duðtÞ
dt

ð2:40Þ

Algorithm 2.1: Pseudocode of the EMD algorithm

1 s ← getSignal();
2 ε ← 10−5;
3 k ← 1;
4 while !isMonotonic(s) do
5 SDk ← 1;
6 hk,0 ← s;
7 i ← 0;
8 while SDk > ε do
9 max ← getLocalMaxima(s);

10 min ← getLocalMinima(s);
11 upperEnvelope ← getSpline(maxima);
12 lowerEnvelope ← getSpline(minima);

13 mi ← upperEnvelope+ lowerEnvelope
2

;

14 hk,i ← hk,i−1 −mi;

15 SDk ← ∑(hk,i−1 −hk,i)2

∑h2k,i−1

;

16 ck ← hk,i; // the k-th IMF
17 s ← s− ck;
18 k ← k+1;

19 r ← s; // the residue
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Although this transform is a powerful tool for calculating the instantaneous fre-
quency of an IMF, there are some limitations imposed by the Bedrosian and Nuttal
theorems. According to the Bedrosian theorem [21, 22], the IMFs should satisfy the
condition described by Eq. 2.41 in order for the analytical signal provided by the
Hilbert transform to make sense.

HfAðtÞcosðuðtÞÞg ¼ AðtÞHfcosðuðtÞÞg ð2:41Þ

This condition states that the IMFs should be band limited, i.e. the spectrum of the
time-variable amplitude and the one of the variable phase should not overlap [23].
Failure to conform to this requirement will result in the confusion of amplitude
frequencies in the instantaneous frequency of the IMF.

The Nuttall theorem [24] further states that the Hilbert transform of cosðuðtÞÞ is
not sinðuðtÞÞ for any arbitrary uðtÞ. Therefore, the result of the Hilbert transform is
not necessarily equal to the true quadrature of the IMF. Because there are no further
restrictions on what an IMF can be, except the ones presented before, using the
Hilbert transform to get the instantaneous frequency of an IMF is considered
unsafe. In practice, the instability of the Hilbert transform can be easily spotted in
regions where the instantaneous frequency becomes negative or a sudden peak
appears in a region where there are no sudden frequency changes in the IMF.

A more accurate way to compute the instantaneous frequency of an IMF is to use
the empirical AM-FM decomposition algorithm [23]. This algorithm is also an
iterative one, just like the EMD and it is presented in listing 2.2. The aim of this
algorithm is to separate the two parts of the IMF, i.e. the amplitude part from the
phase part. The model used by this method is that of modulated signals: the
amplitude part is considered to be the modulator signal and the phase part the
carrier; this is considered the AM modulation in the IMF. The carrier is also
modulated in frequency; this constitutes the FM modulation in the IMF. The
decomposition results in two signals: AMðtÞ, the amplitude part and FMðtÞ, the
frequency part.

Algorithm 2.2: Pseudocode of the empirical AM-FM decomposition

1 s ← getImf();
2 s0 ← s;
3 k ← 1;
4 while sk ∈ [−1;1] do
5 e ← getSplineEnvelope(|sk−1|);
6 sk ← sk−1/e;

7 FM ← sk;
8 AM ← s/FM;
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The separation process implies successive approximations of the amplitude part
by cubic spline functions through the local maxima of the IMF signal. After the two
signals are separated, the quadrature of the frequency part is computed:

QðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FM2ðtÞ

p
ð2:42Þ

From here, getting the instantaneous frequency of the IMF matches the Hilbert
transform-based method.

It is important to note that this method satisfies the conditions imposed by both
the Bedrosian and the Nuttall theorems. However, the method is not free of dis-
advantages. The cubic spline envelopes often cross the IMF, meaning that they are
not always greater or equal than the signal, which is a necessary condition for the
algorithm to converge in finite steps. Instead, the method will never converge and a
frequency part belonging to the ½�1; 1� interval will never be reached. This problem
and a possible solution to it is addressed in [25].

First, the intervals where the spline crosses the IMF are identified. These
intervals are characterized by an entry and an exit point. The spline is approximated
with a line segment over these intervals and the maximum distance between this
approximation and the IMF is sought. To do this, the segment and the IMF are
rotated to the horizontal axis and the maximum of the IMF is identified. After an
inverse geometric transform a new spline is defined, which contains the maximal
distance point but not the previous extremum point, thus not intersecting the IMF
anymore. These steps are repeated for each interval, until the spline only touches
the IMF but does not cross it. The correction mechanism is illustrated in Fig. 2.5
and it is described as a pseudocode in listing 2.3.

Algorithm 2.3: Pseudocode of the empirical AM-FM decomposition

1 s ← getImf();
2 s0 ← s;
3 k ← 1;
4 while sk �∈ [−1;1] do
5 e ← getSplineEnvelope(|sk−1|);
6 intervalList ← getCrossingIntervals(sk−1, e);
7 while !isempty(intervalList) do
8 p ← getMaximumDistancePoint(sk−1, intervalListi);
9 e ← getSplineEnvelope(|sk−1|, p);

10 intervalList ← getCrossingIntervals(sk−1, e);

11 sk ← sk−1/e;

12 FM ← sk;
13 AM ← s/FM;
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2.5.3 Application of the Hilbert-Huang Transform

2.5.3.1 Detecting the Third and Fourth Heart Sounds
in Phonocardiograms

The Hilbert-Huang transform is an ideal tool for analyzing the heart activity since it
offers frequency information for every sample point. In the following, a detection of
the third and fourth heart sound will be presented through the usage of HHT. The
method is described in [26]. These sounds (S3, S4) represent an abnormal activity
of the heart indicating failure during diastolic period. Processing sound measure-
ments, i.e. identifying S3, S4 is a noninvasive way to detect early myocardial
ischemia. Deficient S3 is related with ventricle activity or problematic blood flow in
the rapid filling phase. The fourth heart sound, S4 is located before the first heart
sound and is a sign of forceful contractions in an effort to overcome a rigid ven-
tricle. The method localizes the presence of S3, S4 hearts sounds using
time-frequency distribution and K-means clustering in electronic stethoscope
recordings. The proposed method can be divided into three stages. The first step
preprocesses the signal, the second one applies the Hilbert-Huang transform to get a
time-magnitude-frequency decomposition followed by a clustering and recognition
procedure.

The role of preprocessing is to eliminate high frequency noise due to recording
artifacts by a low-pass, finite impulse response filter. Then an envelope is produced
using the Hilbert transform noted as xenvelope½n� (Eq. 2.43).

xenvelopeðnÞ ¼ jxðnÞþ jHfxðnÞgj ð2:43Þ
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Fig. 2.5 A slice created by
the intersection of the spline
and the IMF and the corrected
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This envelope is then normalized (Eq. 2.44) to fit the interval ½�1; 1� and seg-
mented into systolic (S1-S2) and diastolic (S2-S1) periods.

xnorm ¼ xenvelopeðnÞ
maxðxenvelopeðnÞÞ ð2:44Þ

The detection of these terms is based on the Shannon energy as it shows a high rate
of noise rejection property, suppressing low amplitude components. Because of the
main components S1 and S2 will stand out, detection and, therefore, segmentation
is much easier. Equation 2.45 defines how the Shannon energy is computed.

SEðnÞ ¼ �x2normðnÞlogðx2normðnÞÞ ð2:45Þ

A threshold of 70 % of the maximum Shannon energy is set to differentiate S1
and S2 from other components. Naturally, a higher limit will result in a better
filtering but with the risk of missing some S2 sounds. Recognition is built upon the
following rules to ensure a correct result:

• If two peaks higher than the threshold are detected within 50 ms, the one with
lower energy is eliminated.

• For every interval between the peaks, an interval with shorter length than the
previous interval is denoted as a systolic period, while the other one is a diastolic
period. The uncertain intervals are annotated.

• For those uncertain intervals, a secondary threshold is set to find S1 or S2 which
probably have not been recognized.

As a second step the Hilbert-Huang transformation is applied to the nonlinear
signal, extracting the instantaneous frequencies. It is an iterative empirical proce-
dure resulting in a series of intrinsic mode functions and therefore a sum of
instantaneous frequencies is calculated for a single time instance (Hilbert-Huang
spectrum).

Having a time-frequency map allows for a cluster figure based on pairs of
instantaneous frequencies and their amplitudes. Correlating in-scope cluster points
with the time scale will reveal the position of S3 and S4 sounds. For the cluster
graph the instantaneous frequency with the highest magnitude is selected from the
sum of instantaneous frequencies for a particular time instance. Only one with the
highest impact factor is selected based on the magnitude. The number of points
depends on the resolution of the Hilbert spectrum. These pairs originate from the
diastolic interval as it was segmented in the second part of the method. The
K-means algorithm was used to divide pairs into different groups. Three separate
clusters have been formed depending on the frequency and magnitude distribution.
The one of interest is called the abnormal group with the highest frequencies or
magnitudes. Usually this group has the fewest of points and their projections on the
time axis is periodical. If the points appear right before S1 we found the S4 sound
but if they appear periodically after S2 we can identify S3 elements. For those
possibly missing components, an iterative method was applied to enhance accuracy.
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Records from the Cardiac Auscultatory Recording Database (CARD) of Johns
Hopkins University were used to test the proposed method. As a result, 13 signals
were processed. The method with iterative recognition, achieved a 90.3 % identi-
fication rate for S3, 9.6 % were missed and 9.6 % were marked falsely. For S4,
94.4 % were detected correctly and 5.5 % were missed; 16 % were false positive.
Sensitivity for S3 and S4 was 90.4 % and 94.5 %, respectively. Precision was 90.4
and 85.5 %.

Still, the existence of artifacts during diastolic period, such as diastolic murmur
or noise produced by the electronic stethoscope, would contribute to misjudgments.
Components with low amplitude make the separation of S3 and S4 from back-
ground noise difficult. The proposed method aims to detect early heart diseases,
such as left ventricle dysfunction, congenital heart failure or myocardial ischemia.

2.5.3.2 Identifying T Waves in ECG Signals

The empirical mode decomposition can also be used in ECG signal analysis.
Identifying T waves in an ECG is of special interest, since its morphology can
suggest different heart conditions. Finding the positions of these waves is often
done manually, thus an automated detector is much needed. In [27] we propose a
method that can solve this problem for a wide range of ECG sources.

The general idea behind the method is to identify and remove QRS complexes
from the ECG signal, because these are present in most of the IMFs owing to their
large amplitude and wide frequency spectrum. A method described in [28] is
employed for this task. According to this method, after the ECG is decomposed in
IMFs, the Shannon energy of the sum of the first three IMFs is computed, as
described by Eqs. 2.46 and 2.47.

c tð Þ ¼
X3
k¼1

IMFi tð Þ ð2:46Þ

EsðtÞ ¼ �cðtÞ2logðcðtÞ2Þ ð2:47Þ

Then, using a threshold, the Shannon energy (Es) is filtered to eliminate background
noise. The threshold is determined by Eq. 2.48 where N is the number of data
points in the Shannon energy.

T ¼ 1
N

XN
i¼1

Es ið Þ ð2:48Þ

The threshold filter substitutes each value less than the threshold with zero and keeps
all the other values. Non-zero intervals correspond to the QRS complex intervals of
the ECG signal. After identifying each of these intervals, the corresponding places in
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the original ECG are exchanged with a line segment and the signal is decomposed
again using EMD.

In the newly obtained IMF set the 5th, 6th and 7th will contain waves that construct
the T wave, thus they are summed. Finally, the peaks in this newly calculated sum
appearing right after the positions of QRS complexes are marked as T waves in the
original signal. Figure 2.6 presents the steps of the identification process.

Signals from PhysioNet’s QT database [29] were used to test the algorithm. This
testing resulted in a 95.99 % positive predictability and 99.96 % sensitivity when
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Fig. 2.6 Graphical representation of the T wave identification process
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different ECG signals were presented to it. Noise tolerance was also tested by
feeding an ECG signal with different amplitudes of noise to the method. An
87.71 % positive predictability was obtained for a signal to noise ratio as low as
12 dB. The corresponding sensitivity was of 100 %.

2.6 Hybrid Signal Processing Systems

2.6.1 The Discrete Wavelet Transform and Fuzzy C-Means
Clustering

Medical signal processing represents an essential part of a medical decision making
system, however it is able to provide only signal conditioning and feature extraction
without offering any information on the diseases that are reflected in the acquired
signal. Getting information about any condition is basically a classification prob-
lem, and thus it can be addressed by a variety of artificial intelligence methods.
Therefore, it makes sense to combine artificial intelligence methods with
well-known signal processing methods to assist a medical decision making system.

A classical but also very important application area of medical decision making
systems is electrocardiogram (ECG) interpretation. ECG signal processing is a
much discussed topic. There are different ways of processing these signals
depending on what features are being sought for. Thus, there are methods using
classical Fourier analysis [30], time frequency analysis by making use of the
wavelet transform [31], the Hilbert-Huang transform [32, 33], the Wigner-Ville
distribution [34] or by using a multivariate signal analysis such as the independent
component analysis [35] or the principal component analysis [36]. Support vector
machine based analysis has also gained popularity in the past years [37, 38].

A very good example of combining a classical signal processing method with an
intelligent classification method is presented in [39] and describes a method of ECG
signal classification using a combination of the wavelet transform and fuzzy
c-means clustering. The main goal of said paper is to describe a way to implement
the classification system on a mobile device.

The presented approach makes use of the discrete wavelet transform, which
provides discrete wavelet coefficients that describe the signal. To achieve these
coefficients, the finite-length signal is convolved with filters that separate the signal
into low and high frequency sub-signals. The signal can be reconstructed with the
use of quadrature mirror filters from the coefficient sets.

The artificial intelligence algorithm used in this article is the fuzzy c-means
clustering. The idea of this method is to do a fuzzy partitioning of the data into
classes. In fact, the algorithm can be reduced to a constrained optimization problem.
The cost function to be optimized is:
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Jb zð Þ ¼
XN
i¼1

Xc

j¼1

Ab
ij xi � zj


 

2 ð2:49Þ

In this equation, Jb is the cost function, b is the level of fuzziness, chosen to be 1:5
in this specific application, N is the number of data vectors, c represents the number
of clusters, Aij is the grade of membership of data vector i to cluster j, xi is the ith
data vector and zj is the center of the jth cluster. The grades of membership are
computed as Euclidean distances of data vectors from the center of the cluster. The
detailed fuzzy c-means algorithm is described in [40].

Figure 2.7 presents the components of the diagnosing system. The ECG signals
collected by body sensors are first preprocessed, since they are contaminated by
both low and high frequency noise. The baseline drift represents a low frequency
component in the signal, while thermal noise is responsible for the high frequency
noise. Both artifacts are removed using the discrete wavelet transform, applying the
Daubechies-9 wavelet for the signal decomposition. By carefully combining some
of the signal components and then reconstructing the signal, the noises can be
filtered out. The signals were also normalized to lay between �1 mV and 1 mV.
This normalization is also convenient if at a later stage support for different body
sensors will be included in the overall system. This step was necessary because in
the testing phase the ECG signals from the MIT-BIH database were used, which
were recorded by a large variety of devices from all over the world.

The next stage consisted of extracting different features of the signals. In total 6
characteristics were chosen, as follows: the length of a heartbeat period, called the
RR period, the length of the QRS complex relative to the RR length, the length of
the RS interval relative to the QRS length, the period of the ST segment relative to
the RR length, the amplitude of the QRS complex and the amplitude of the T wave.
Measuring these parameter is done also by using the DWT and combining com-
ponents so that the QRS complex and the P-T-U waves could be separated.
An ECG time-series was thus characterized by a feature vector having 6 elements
corresponding to the measurements of the 6 aforementioned parameters.

Fig. 2.7 The general architecture of the classification system
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In the last stage of the classification algorithm the feature vectors are separated
into clusters by the fuzzy c-means algorithm, using a fuzziness number b ¼ 1:5 and
3 clusters. Two ECG data sets from the MIT-BIH database were used. The first one
contained 25 ECG signals while the other one had 23 ECGs. Portions with a length
of 10 s were selected from each signal and their feature vectors were fed to the
fuzzy c-means clustering algorithm. Feature vectors corresponding to normal ECGs
were classified into one cluster and abnormal ones in the other two clusters. There
were, however mismatches too. 3 out of 25 ECGs from the first group and 6 out of
23 ECGs from the second group were misclassified.

The diagnostic system was implemented on a mobile device running
Windows CE having an ARM9 processor. The wavelet decomposition and fuzzy
c-means clustering were implemented in the Matlab environment and then C++
code was generated using Code Generator. According to the article, a nearly
real-time execution was made possible on the mobile device.

2.6.2 Automatic Sleep Stage Classification

The correct diagnosis of sleep stages is crucial when it comes to identifying and
treating possible sleep apnea, insomnia or narcolepsy conditions. Even today much
of this work is done visually by experts, based on polysomnogram (PSG) tech-
niques described by the American Academy of Sleep Medicine (AASM) [41] or by
the guidelines defined by Rechtschaffen’s and Kales’s [42]. Basically, most spe-
cialists try to identify 6 repeating sleep stages from electroencephalogram
(EEG) measurements combined with electrooculograms (EOG) and electromyogram
(EMG) signals to enhance accuracy. The initial stage is characterized by being
awake (Awa) followed by S1, transition between wakefulness and sleep. S2 is
considered to be the baseline; it may consist of 45–55 % of the entire sleep duration.
Stage three and four (S3, S4) represent the recovery mode of the body and mind also
known as deep-sleep period followed by the rapid eye movement (REM) stage.
From this perspective, two major phases can be distinguished when it comes to
sleep, REM and non-REM (NREM), where S1, S2, S3 and S4 are sub-divisions of
the NREM phase. These stages repeat themselves 4–5 times during one night.

The EMG activity is almost missing during REM phase. This helps to differ-
entiate S1 from REM using EMG measurements. Similarly EOG is useful when it
comes to eye movement detection in S1 and REM sleep. In the following, different
methods will be presented, all developed to make the evaluation of sleep signals as
automatic as possible. The task to design such a system usually takes into con-
sideration the amount of data and the complexity of classification algorithms. These
two parameters greatly influence the overall behavior of the end result. For instance,
multichannel EEG devices represent a drawback to patient comfort and in ambu-
latory environment compared to single channel devices. Therefore recent studies
aim to develop methods that use only one measurement to detect sleep stages
[43–49]. Another challenge represents the right choice and combination of different
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feature extraction methods working together with pattern recognition systems.
A great variety has been proposed over the years with different and surprising
outcomes. For instance Hidden Markov Models (HMM), fuzzy classifiers, different
types of artificial neural networks (ANN) using feature vectors based on power
spectral densities (PSD), wavelet decompositions or visibility graphs (VG). Still, it
is difficult to achieve a higher accuracy like the ones produced by experts using
manual techniques. However, in [50] several approaches are proposed for the
discussed problem through a particular neural network, financial forecast based
method, non-smooth optimization problem and frequency domain analysis.
The ANN approach suggests the usage of a time-delay neural network (TDNN)
with the property of reducing input data size, an important element when it comes
to processing EEG, EMG and EOG simultaneously. A particular output from such a
network depends not only on the input but it takes into consideration a range of the
previous input values. The benefit of this particularity makes it possible to reduce
the input-volume as previous information is already stored in the network. In this
study the network was configured with 1 input layer, 3 hidden layers and 1 output
layer. Normalized PSG variables were fed as input: direct EEG, EMG and EOG
measurements. The output layer consists of 6 nodes corresponding to the 6 sleep
stages. As a result, the network was able to obtain a classification accuracy of
76.15 % from thousands of test cases.

A similar model proposed by [51] uses a multi-layer perceptron (MLP), a neural
network designed for classification. The network had 5 input nodes and again 6
output nodes for the 6 sleep-stages. Electrode distribution followed the 10–20
system but only the C3-A2 left-right and C4-A1 right-left measurements were used.
A well known fact in EEG signal processing is related to the frequency bands that
reflect the mind’s different states. There are usually 5 frequency bands related to
mental activity: d (<4 Hz), h (4–7 Hz), a (8–12 Hz), r (13–16 Hz) and b (>16 Hz).
Usually the short time Fourier transform is used to gain an overview in the
time-frequency domain. Due to the non-linearly of these signals, the power spectra
is used in this case. The proposed method calculates the relative spectral power
(RSP) for a window of 30 s, equal to the band spectral power (BSP) divided to the
total spectral power (TSP).

RSPi ¼ BSPi

TSP
; i 2 fd; h; a; r; bg ð2:50Þ

After training the network and finding the optimal structure the method was able to
recognize sleep states with an accuracy of 76 %. The final conclusion states that
Awa, S2, S4 and REM stages are easily recognized, however S1 is confused with
S2 and REM, being the hardest stage to identify. By adding the second derivative of
the EEG signal to the input vector the overall performance of the system did not
improve but remained in the 76–77 % range.

ANN combined with wavelet packet coefficients was suggested in [52] where
they used a 3-layer feed forward perceptron with 12 input nodes, 1 hidden
layer (with 8 neurons for best results) and 1 output layer (with 4 nodes) as a
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classifier. The goal of the perceptron was to distinguish between sleep stages Awa,
S1 + REM, S2 and SWS also known as deep-sleep stage. Adaptive learning rate
has been applied to avoid stagnation on the error surface. This translates to an
adaptive learning step solution minimizing the learning period. For testing purposes
PhysioBank’s EEG Database was used, more precisely Pz-Oz bipolar recordings.
Wavelet packets had been chosen as a feature extraction method, allowing for a
finer frequency resolution. After fine-tuning the packet tree, the structure shown in
Fig. 2.8 was defined as the transformation method supplying feature vectors to the
perceptron. The subbands represent the following EEG frequency bands:

1. Delta—0.39–3.13 Hz
2. Theta—3.13–8.46 Hz
3. Alpha—8.46–10.93 Hz
4. Spindle—10.93–15.63 Hz
5. Beta1—15.63–21.88 Hz
6. Beta2—21.88–37.50 Hz

However, the 6 wavelet coefficient groups were further refined to a 5 element
classification series as a statistical time-frequency distribution representation. The
first element holds the mean quadratic value for each of the 6 bands. The second
element is the total energy, followed by multiple elements calculated as the ratio of
different energy bands (alpha, delta and theta). The fourth and fifth elements are the
mean of the absolute values and the standard deviation of the coefficients in each
sub-band. The 5 element series fed to the MLP resulted in a very high classification
rate, indicating that the method could discriminate between Awa, S1 + REM, S2
and SWS with a specificity of 94.4 � 4.5 %, a sensitivity of 84.2 � 3.9 % and an
accuracy of 93.0 � 4.0 %.

Another feature extraction method uses financial forecasting to predict sleep
stages based on the hypothesis that a variable from the sleep measurement depends
on the previous values. It relies on conditional probability to foretell the next stage.
Raw date is mapped into a 5 symbol series depending on preset derivative
thresholds. The new values are tagged as follows: BI (big increase), SI (small

Fig. 2.8 Wavelet packet transform and selected subbands
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increase), N (no change), SD (small decrease) and BD (big decrease). After the
tagging the method looks for particular sequences like BI, BI, BI, SI, N, SD and SI
defining one of the sleep stages. As a result, this approach finds it hard to classify
S2 correctly; on the other hand its simplicity is a great advantage with an overall
accuracy of above 70 % compared again to expert classification structures.

Non-smoothing optimization is a relatively new extraction method having its
roots in the field of signal processing. The main idea behind it is simple, where the
algorithm tries to fit a sum of two sine waves on the raw EEG. The deviation from
the sine waves represents the information itself. In this case the amplitude is a linear
function resulting in a more adequate curve fitting procedure then with the ordinary
scalar value. This way sudden changes can be tracked maintaining vital information
of the signal. The sum is composed of two sine curves, a low frequency component
tracking the baseline wandering and a high frequency component being able to
adapt to all kind of shapes.

As a summary to the sleep-stage classification methods we can add that even
manual scoring done by experts show differences. Comparisons between results can
score below 80 %. This means that the actual automatic sleep stage classification
methods are as reliably as the experts.

2.6.3 The Hilbert-Huang Transform and Support Vector
Machines

In recent years the car industry has produced a whole new generation of vehicles,
more reliable, safer, and with build-in-intelligence to recognize and anticipate
different type of engine failures. Wang et al. present in [53] a method of failure
detection based on the Hilbert-Huang transform and support vector machines.
Based on the failure source, the engine fault diagnosis (EFD) technology defines 4
types of analysis methods: engine performance detection, lubricating oil analysis,
vibration based methods, and noise based diagnostic methods. The vibration and
noise based EFD methods normally extract the failure features from the vibration or
noise signals of a running engine and make decisions based on diagnostic results by
using pattern recognition algorithms. Usually such a system is composed of two
larger elements. One is responsible for processing the measured signals and sup-
plying useful features, called a feature extractor and the second element is a clas-
sifier. The classifier’s role is to separate the different engine failures into categories
based on feature types.

Noises from a car’s engine are non-stationary under working conditions, for this
reason the Hilbert-Huang transform presents itself as an ideal candidate supplying
time variant mono-components related to circular motions. For the classification
algorithm support vector machine (SVM) [54] has been used as a multi-category
classifier based on “one against one” voting decision method. Such a model will
define an optimal hyper-plane which separates fault types by mapping one group of
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feature vectors (belonging to a particular engine fault) on one side of the plane and
other groups on different sides thus categorizing them geometrically. Basically, for

n categories nðn� 1Þ
2 SVM models are constructed from a training database for every

two differing category. A measurement sample will pass every model and in the end
it will be ranked upon the received votes. The final category is the one with the
largest number of votes.

For the analysis it is presumed that in fault conditions, particular engine noises
will reflect in the amplitude and frequency domain and certain failures will shift the
energy quantum from one frequency band to another. Therefore the energy pattern
of the intrinsic mode function is considered to be at the heart of the proposed feature
extraction method.

The process is performed in 4 steps. First the sound is filtered to remove
unwanted noise, and then the IMFs are calculated together with the residual ele-
ment. Usually the residual and particular IMFs are discarded as they carry almost no
energy. After selecting the IMFs, a correlation coefficient is calculated between the
original signal and every IMF with Eq. 2.51.

qS;ci ¼
E½ðciðtÞ � lciÞðSðtÞ � lSÞ�

rcirS

����
���� ð2:51Þ

Here S represents the original measurement, ci are the IMFs while lci , rci and lS, rS
are the mean values and the standard deviations of these signals. Every correlation
coefficient falls between 0 and 1, where 1 means that the two signals are identical
and 0 means that they are totally different. A large value means that the two signals
have much in common, giving the method a chance to choose between the IMFs.
Usually mono-components with a low correlation coefficient are discarded, there-
fore only IMFs with relevant information content are processed further. The third
step computes the energy moment of the selected IMFs, denoted with Ei.

Ei ¼
Xn
k¼1

kDtð Þ ci kDtð Þj j2
h i

ð2:52Þ

As a last step a feature vector is constructed from the energy moments.

TE ¼ ½E1;E2; . . .;E7� ð2:53Þ

These vectors also describe the energy distribution among the IMFs and reflect their
change through time. To further enhance the vector’s efficiency to track changes,
the marginal spectrum of the IMFS is added to them as the maximum amplitude A0

and the corresponding instantaneous frequency f0:

TE ¼ ½E1;E2; . . .;E7;A0; f0� ð2:54Þ
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The differences between features are then used to distinguish between the states of
the engine, including failures and normal regimes, making it possible to diagnose
engine faults.

The proposed method was tested using a sample car with a fault generator
reproducing valves, pistons, rods, crankshaft, timing belt and structure vibrations.
A microphone was placed over the engine to record its operation at 2500 rotations
per minute. The simulated 7 engine faults are: normal state without faults, a break
or short in the circuit of throttle threshold sensor, break or short in the circuit of
ignition coil, a break or short in the circuit of the Hall sensor, basic set errors in the
throttle control unit, defect in the circuit of the first cylinder injector and defect in
the circuit of the third cylinder injector. Every state was recorded 20 times, totaling
in 140 signals which were used to train and validate the SVM models through 7 and
9 dimensional feature vectors. An iterative training algorithm has been used to train
the SVM models by minimizing an error function. Based on the error function’s
form, two model types can be distinguished: C-SVM and nu-SVM. However results
show that the C-SVM model outperforms the nu-SVM regardless of the dimensions
of the feature vectors.

For testing purposes 70 measurements were used to evaluate the proposed
method. Measurements included faulty and normal behavior and both 9 and 7
dimensional feature vectors were used to see which model is best suited for EFD.
For a total of 56 engine states the 7 dimensional feature vector model classified
correctly 80 % of the states, where the one using a 9 dimensional model was able to
predict 91.43 % of it right. The difference between the accuracy can be acknowl-
edged to the extra information carried by A0 and f0. The outcome is greatly
influenced by the model’s ability to distinguish between states, however faults 4
and 5 are sometimes confused with state 1 and fault 2. This can be attributed to the
fact that faults 2 and 5 represent throttle problems which are hard to distinguish
only by engine noise and fault 4 is a failure of the Hall sensor which has almost no
effect on the acoustic properties of the engine, easily mistaken with the normal state
1. As a conclusion, the paper states that the noise based HHT SVM method can’t be
applied to all types of engine failures. Furthermore to enhance precision, a 5 state
classifier has been proposed (omitting faults 4 and 5) which resulted in 96 %
accuracy. To validate this new model a second set of measurements has been
acquired resulting in a test set of 50 states. Again, the model recognized every state
with an accuracy of 94–96 %. Thus, the HHT based 9 dimensional feature vectors
together with multi-class SVMs for pattern recognition can be used to design noise
based EFD with accuracy above 90 %. The approach itself can be extended to be
used in different fields of engineering, i.e. machinery diagnostics, speech and image
recognition.
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2.7 Conclusions

We have presented both classical and new signal processing and artificial intelli-
gence methods in the context of complex digital signal processing and feature
extraction. Signal processing methods were revisited in a historical order, from the
Fourier transform to the Hilbert-Huang transform, covering the whole interval of
frequency and time-frequency analysis.

The Fourier and discrete Fourier transform are the most basic ones still being in
use today. They are limited to offering information only on the frequency com-
ponents but none on their time localization. In contrast, the short-time Fourier
transform is capable of offering a basic insight into the time scale of frequency
distributions, however, it is limited by the maximum achievable resolution in both
time and frequency domains.

The wavelet transform comes to avoid this limitation of resolution by offering
variable width analyzing windows, which can adapt to the time scales present in the
analyzed signal. Still, it is the Hilbert-Huang transform which introduces the
instantaneous frequency and offers information about the signal in each time point.

These methods by themselves are capable to decompose signals in different
ways, but are not able to draw conclusions about them. Thus, integrating them in a
hybrid system with artificial intelligence methods offers a robust solution to many
signal processing problems. We have presented several hybrid systems having
various uses: a combination between the wavelet transform and the fuzzy c-means
clustering to aid the differentiation of ECG patterns on mobile devices. Another
hybrid system consists of using the Hilbert-Huang transform and support vector
machines together to perform engine-fault detection. The last presented method
combines the power of wavelet packet decomposition and artificial neural networks
in order to detect sleep stages, based on EEG, EMG and EOG signals.

In conclusion, the combination of intelligent methods with classical, well-known
signal processing transforms yield robust feature extraction systems with applica-
tions in different technical and scientific fields, as the presented case studies have
shown.
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Chapter 3
Multi-dimensional Data Clustering
and Visualization via Echo State Networks

Petia Koprinkova-Hristova

Abstract The chapter summarizes the proposed recently approach for multidi-
mensional data clustering and visualization. It uses a special kind of recurrent
networks called Echo state networks (ESN) to generate multiple two-dimensional
(2D) projections of the multidimensional original data. For this purpose equilibrium
states of all neurons in the ESN are exploited. In order to fit the neurons equilib-
riums to the data an algorithm for tuning internal weights of the ESN called
Intrinsic Plasticity (IP) is applied. Next 2D projections are subjected to selection
based on different criteria in dependence on the aim of particular clustering task to
be solved. The selected projections are used to cluster and/or to visualize the
original data set. Several examples demonstrate possible ways to apply the pro-
posed approach to variety of multidimensional data sets, namely: steel alloys dis-
crimination by their composition; Earth cover classification from hyper spectral
satellite images; working regimes classification of an industrial plant using data
from multiple measurements; discrimination of patterns of random dot motion on
the screen; and clustering and visualization of static and dynamic “sound pictures”
taken by multiple randomly placed microphones.

Keywords Echo state network � Clustering � Multi-dimensional data

3.1 Introduction

In spite of numerous developments, clustering and visualization of multidimen-
sional data sets is still a challenging task [15]. There are numerous approaches for
solving it including intelligent techniques based on fuzzy logic and neural net-
works. The present work is focused on application of a special kind of neural
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networks called Echo state networks (ESN). It is applied in combination with well
known fuzzy subtractive clustering procedure. Since the main contribution in this
work is in usage of ESN as a feature extracting techniques, the main focus here will
be on their role in the overall algorithm for multidimensional data clustering and
visualization.

ESN are a representative member of the so called “reservoir computing”
approach that is a common name of extensively developing nowadays class of
recurrent neural networks (RNN) [26]. The key idea of this approach was to mimic
structures in human brain that seem to be composed by randomly connected
dynamic non-linear neurons called reservoir whose output is usually linear com-
bination of the current states of all reservoir neurons. Another advantage of such
artificial structure is simplified training algorithm since only weights of the con-
nections from the reservoir to the readout neurons are subject to training. Thus
instead of gradient descent learning much faster least squares method can be used.

Although the reservoir connections and their weights are randomly generated, in
order to prevent improper behavior of such networks Prof. Jaeger, one of the
pioneer scientists in this area of research, formulated the rule that reservoir has to
have “echo state property” [14]. The basic rule formulation is: the effect of input
disturbances should vanish gradually in time that means the dynamic reservoir must
be stable. The usual recipe is to generate a reservoir weight matrix with spectral
radius below one. However as it was mentioned [26] this condition will not
guaranty ESN stable behavior in general so varieties of task-dependent recipes for
improvement of reservoir connections were proposed.

Since one of the laws of thermodynamics says that any stable stationary state has
a local maximum of entropy [11], it can be expected that maximization of entropy
at the ESN reservoir output could increase its stability. This motivated several
works proposing ESN reservoir improvement by its entropy maximization [28].
Other authors proposed biologically motivated algorithm called Intrinsic Plasticity
(IP) based on mechanisms of changing neural excitability in response to the dis-
tribution of the input stimuli [30, 31]. In [16] it was shown that in fact IP training
achieves balance between maximization of entropy at the ESN reservoir output and
its concentration around the pre-specified mean value increasing at the same time
reservoir stability. During investigations in [16] another interesting effect was
observed: the reservoir neurons equilibrium states were concentrated in several
regions. Then question aroused: is it possible to use this effect for clustering pur-
poses too? This initiated development of the proposed here algorithm for multi-
dimensional data clustering and visualization.

Since ESN are dynamic structures designed initially for time series modeling,
using them for static data clustering might seem odd. However the idea for using
RNNs in this way is not new. There are examples in the literature like neural
systems possessing multi-stable attractors [6] that perform temporal integration
aimed at discrimination between multiple alternatives. In other works [1, 13]
unsupervised learning procedures that minimize given energy function were pro-
posed aiming at achievement of network equilibrium states that reflect given data
structure.
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Concerning ESN applications for clustering, there are only few works available.
In [32] it was proposed for the first time to use ESN at feature extraction stage of
image classification. Their role was to “draw out” silent underlying features of the
data to be used further to train a feedforward neural network classifier. In [29] the
idea to exploit equilibrium states of the ESN reservoir in order to design
multiple-clusters ESN reservoirs was proposed. It was inspired by complex network
topologies imitating cortical networks of the mammalian brain. In [25] it was
reported that using another kind of IP algorithm in combination with Spike-time
Dependent plasticity (STDP) of synaptic weights changes the connectivity matrix of
the network in such way that the recurrent connections capture the peculiarities of
the input stimuli so that the network activation patterns can be separated by an
unsupervised clustering technique.

The idea described in this chapter was motivated initially from stability analysis
of ESN and proposed for the first time in [17]. It exploits more or less the same
reservoir properties reported by other works but looking from slightly different view
point: to consider combinations between steady states of each two neurons in the
reservoir as numerous two-dimensional projections of the original multidimensional
data fed into the ESN input; next to use these low dimensional projections for data
clustering and/or visualization of multidimensional original data. The proposed in
[17] initial algorithm was tested and developed further using different data sets [18–
23] whose clustering purposes were task dependent. This lead to formulation of
new methodology for clustering and visualization of multidimensional data using IP
tuning of ESN reservoirs described further in the present work.

The chapter is constructed as follows: next section describes basics of ESN
structure, algorithm for IP tuning of reservoir and its effect on the equilibrium states
of neurons that motivate described further clustering algorithm; third section con-
tains examples on how the proposed algorithm can be applied to variety of mul-
tidimensional data sets, namely steel alloys discrimination by their composition;
Earth cover classification from hyper spectral satellite images; working regimes
classification of a industrial plant using multiple measurements data; discrimination
of patterns of random dot motion; and clustering and visualization of static and
dynamic “sound pictures” taken by multiple randomly placed microphones.

3.2 Echo State Networks and Clustering Procedure

3.2.1 Echo State Networks Basics

ESNs are a kind of recurrent neural networks that arise from so called “reservoir
computing approaches” [26]. Their basic structure, presented on Fig. 3.1 below,
consists of a reservoir of randomly connected dynamic neurons with sigmoid
nonlinearities f res (usually hyperbolic tangent):
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r kð Þ ¼ f res Winin kð ÞþWresr k � 1ð Þ� � ð3:1Þ

and a linear readout f out (usually identity function) at the output:

out kð Þ ¼ f out Wout in kð Þ r kð Þ½ �ð Þ ð3:2Þ

Here k denotes discrete time instant; in(k) is a vector of network inputs, r(k)—a
vector of the reservoir neurons states and out(k)—a vector of network outputs;
nin, nout and nr are the dimensions of the corresponding vectors in, out and r
respectively;Wout is a trainable nout × (nin + nr) matrix;Win andWres are nr × nin and
nr × nr matrices that are randomly generated and are not trainable. In some appli-
cations direct connection from the input to the readout is omitted.

The key idea is that having rich enough reservoirs of nonlinearities will allow to
approximate quite complex nonlinear dependence between input and output vectors
by tuning only the linear readout weights. Hence the training procedure is sim-
plified to solving in one step Least Squares task [14].

Although this idea seems to work surprisingly well, it appears that initial tuning
of reservoir connections to the data that will be fed into the ESN helps to improve
its properties. In [30, 31] was proposed a reservoir tuning approach called “intrinsic
plasticity” (IP). It is aimed at maximization of information transmission trough the
ESN that is equivalent to its output entropy maximization. Motivation of this
approach is related to known biological mechanisms that change neural excitability
according to the distribution of the input stimuli. The authors proposed a gradient
method for adjusting the biases and an additional gain term aimed at achieving the
desired distribution of outputs by minimizing the Kullback-Leibler divergence:

DKL p rð Þ; pd rð Þð Þ ¼
Zþ1

�1
p rð Þ ln p rð Þ

pd rð Þ
� �

dr ð3:3Þ

That is a measure for the difference between the actual p(r) and the desired pd(r)
probability distribution of reservoir neurons output r. Since the commonly used
transfer function of neurons is the hyperbolic tangent, the proper target distribution

r(k) 

reservoir 

Wres

Win Wout

in(k) Σ out(k) 

Fig. 3.1 Echo state network
basic structure
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that maximizes the information at the output according to [30] is the Gaussian one
with prescribed small variance σ and zero mean μ:

pd rð Þ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp � r � lð Þ2
2r2

 !
ð3:4Þ

Hence Eq. (3.3) can be rearranged as follows:

DKL p rð Þ; pd rð Þð Þ ¼
Zþ1

�1
p rð Þ ln p rð Þdr �

Zþ1

�1
p rð Þ ln pd rð Þdr

¼ �H rð Þþ 1
2r2

E r � lð Þ2
� �

þ ln
1

r
ffiffiffiffiffiffi
2p

p
ð3:5Þ

where H(r) is entropy, the last term is constant and the second one determines the
deviation of the output from the desired mean value. Thus minimization of (3.5)
will lead to compromise between entropy maximization and minimization of dis-
tance between μ and r.

In order to achieve those effects two additional reservoir parameters—gain a and
bias b (both vectors with nr size)—are introduced as follows:

r kð Þ ¼ f res diag að ÞWinin kð Þþ diag að ÞWresr k � 1ð Þþ b
� � ð3:6Þ

The IP training is procedure that adjusts vectors a and b using gradient descent.

3.2.2 Effects of IP Tuning Procedure

Theoretical investigations of the effect of the IP improvement procedure on the
dynamic properties of reservoir neurons [16] revealed the following two facts
(presented graphically on Fig. 3.2 below):

Fig. 3.2 Effect of IP tuning
on working region of
reservoir neurons
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• Due to non-zero bias terms the origin of coordinate system of reservoir outputs
with respect to its total input Θ will be moved according to the achieved after IP
tuning bias b;

• Since in [30] it was recommended to use Gaussian distribution with zero mean,
after IP tuning the reservoir outputs will be squeezed into the interval [−3 σ, 3 σ]
of its new coordinate system.

Here capital theta denotes the total input to reservoir neurons, i.e. following the
Eqs. (3.1) and (3.6):

H ¼ WresrþWinin; HIP ¼ diag að ÞHþ b ð3:7Þ

Hence we can suppose that overall IP training will lead to some rearrangement of
the reservoir neurons equilibrium states [16] re accounting for the input data
distribution.

In the case of a constant input inc:

re ¼ tanh diag að ÞWininc þ diag að ÞWresre þ b
� � ð3:8Þ

So if b = 0 and inc = 0, the equilibrium will be at the origin of the reservoir state
space coordinate system. Otherwise it will be moved in dependence on the values of
input inc and bias b vectors. Since the input weights matrix remains constant, the
first term in the brackets will be also constant for constant inputs. Thus we can
consider it together with the bias term as common bias for a given input vector:

re ¼ tanh diag að ÞWresre þ bincð Þ ; binc ¼ diag að ÞWininc þ b ð3:9Þ

Hence the reservoir equilibrium will be different for different input vectors.
Moreover, if the input vectors are close in the input space, they will result in close
equilibrium points of the reservoir state—a fact that could be exploited for clus-
tering purposes.

The above considerations motivated the experiment with a simple “toy example”
described below. It could be extended to multi-dimensional spaces but in order to
be able to visualize results clearly our example is three dimensional one. Our
experiment is as follows:

• Several clearly separated data clusters (shown on Fig. 3.3 below) were generated
in three dimensional unit cube space.

• Random ESN reservoir with 10 neurons was generated and each 3D data point
was fed into its input many times while the reservoir achieves corresponding to
this data equilibrium state.

• IP training procedure was applied by presenting all generated 3D data and the
new reservoir equilibriums were determined for each data point from the input
data set.
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• Two dimensional plots of all possible combinations between reservoir neurons
equilibriums scaled within interval [−1 +1] were generated in order to see if
there is some difference before and after IP tuning.

Figure 3.4 presents an example of 2D plots for all possible combinations
between several chosen neurons from our ESN reservoir before and after its IP
tuning. It is clearly seen that before IP training equilibrium points in two dimen-
sional state spaces are not clearly separated into different clusters. However, after IP
training they appeared separable in many of the 2D projections.

The above considerations were transferred further to dynamic input to the ESN
[21]. The reservoir output after presenting given time-varying input in(k) for all the
time steps k ¼ 0� n� 1 is determined by the following recursive calculation:

r nð Þ ¼ f res diag að ÞWinin n� 1ð Þþ diag að ÞWresr n� 1ð Þþ b
� �

r n� 1ð Þ ¼ f res diag að ÞWinin n� 2ð Þþ diag að ÞWresr n� 2ð Þþ b
� �

� � �
r 1ð Þ ¼ f res diag að ÞWinin 0ð Þþ diag að ÞWresr 0ð Þþ b

� �
ð3:10Þ

Obviously the final reservoir state r(n) will depend on the specific characteristics
of the time series in(k), k ¼ 0� n� 1, presented on its input as well as on the
“tuned” working region of the reservoir after IP procedure. Hence this property
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Fig. 3.3 Toy example with five clearly separated clusters of dots in 3D space
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Fig. 3.4 Scaled 2D projections of equilibrium states of several reservoir neurons before (a) and
after (b) IP training
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could be exploited for clustering of time series in(k) = F(k,*), k ¼ 0� n� 1, where
F(k,*) could be some nonlinear function of time and other task-specific variables
(denoted by *).

3.2.3 Clustering Algorithms

We can consider each couple of neurons equilibriums as a two-dimensional pro-
jection of the original multidimensional input space of data taken from different
view point. It is obvious that not all possible combinations of two neurons outputs
give the same clear picture as can be seen from the figures above. Hence, question
arises how to choose a proper 2D projection among the variety of different views?

The initial decision [17] was the following: since the IP training forces reservoir
output to distribute according pre-specified Gaussian distribution, we decided to
observe the obtained equilibrium states distributions. Left part of Fig. 3.5 shows
probability density distributions of equilibrium states of ten chosen neurons of the
IP tuned reservoir from our toy example above. As it can be seen, each neuron
output distribution is combination of several Gaussian distributions. Stars on the
figure mark local maxima on the distribution curves that correspond to the local
Gaussian distribution and are found using software from [8]. Hence we can suppose
that neurons with bigger number of maxima separate data into bigger number of
clusters. So if we choose two dimensional projections formed by neurons with
biggest number of probability distribution maxima, we can obtain clearest sepa-
ration of data. On the left side of Fig. 3.5 is given chosen by this approach 2D
projection that obviously separates clearly our initial 3D data into five clusters.

However during testing of this approach [18–23] it was discovered that finding
of a proper 2D projection is not always possible. The next step was to test whether
two-dimensional density distributions [5, 9] will work better. The chosen in [17] 2D
projection according to maximal number of local maxima in 2D density distribution
is shown on the right side of Fig. 3.6 below. It is compared with a projection of the
same data chosen to have maximal number of clusters on the left side of that figure.

The black dots on these figures represent clusters’ centers determined by sub-
tractive clustering procedure [18]. Different classes are marked by different colors.
It was observed that using 2D density distributions chooses a 2D projection having
equilibrium states along all interval [−1, 1] but grouped into a narrow band. This
led to separation of the points into smaller number of classes. In contrast it appears
that there are other 2D projections that concentrate the equilibriums in a circle at the
middle of this interval having smaller local maxima of the 2D density distribution
of points that however reveal bigger number of clusters.

Hence a proper choice of 2D projection has to be task dependent:

• If we don’t know in advance the possible number of classes in our multidi-
mensional data and our purpose is to discover as much as possible clusters, a
proper strategy will be to cluster the points of all possible 2D projections and to
pick up those with maximum clusters revealed;
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marked by stars and chosen two dimensional projection (b)
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• If we have some idea about the number of classes in our multidimensional data
set, then a proper choice can be related to one or two dimensional density
distributions or to those projections that reveal the proper number of classes.

In any case, for real multidimensional data the choice of proper 2D projection is
not straightforward task because data clusters could not be as easily distinguished as
in our firs toy example above. Hence a procedure for clustering of obtained 2D
projections is still needed. Since the subtractive clustering procedure [33] was
reported as one of the best options in the case of unknown number of clusters [12],
we decided to use it at this second step of our clustering approach.

In summary, the proposed here algorithm for 2D visualization and clustering of
multidimensional data sets has two task-dependent branches. A description of the
algorithm is presented on Fig. 3.7 in Matlab program-like code.

Fig. 3.6 Chosen 2D
projection according to
maximum number of clusters
(a) and maximum number of
local maxima in 2D density
distribution (b) form [18]
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in(1:data dimension,1:data size);
nin=data dimension; nout=1; nr=chosen number; 
esn=generate_esn(nin, nout, nr);
for it=1:number of IP iterations

for i=1:data size
esn=esn_IP_training(esn, in(:,i));

end
end
for i=1:data size

r(0)=0;
 for k=1:chosen number of steps

r(k)=sim_esn(esn, in(:,i),r(k-1));
end
re(i)=r(k); 

end
p=0;
for i=1: nr-1 

for j=i+1: nr
p=p+1;
projection(p)=create_projection( re(i), re(j)); 
visualize projection(p); 

end
end
switch

case 1: maximum number of clusters needed
for i=1:p

clusters(p)=subclust(projection(p));
end
select projection(s) with maximum number of clusters;

case 2: choose projection to cluster from distribution (1D or 2D)
for i=1:p

distribution(p)=distribution(projection(p));
end
select projection(s) having distribution with most maxima;
clusters(p)=subclust(projection(p)); 

case 3: cluster into known number of classes nclass
for i=1:p

clusters(p)=cluster(projection(p), nclass);
end
select projection(s) having proper matching of classes; 

end

Fig. 3.7 Algorithm for multidimensional data clustering and 2D visualization
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3.3 Examples

In this section the main results from clustering and visualization of different mul-
tidimensional data sets are summarized. They demonstrate variety of practical
applications of the proposed above algorithm on wide range of real data. In some of
the examples proper preprocessing of original data was done as a first stage of
features extraction that depends on their specific characteristics. Since the main
focus of the chapter is on ESN in clustering and visualization, the details of this
preprocessing are only mentioned. More information about this data-dependent
stage can be found in cited references.

3.3.1 Clustering of Steel Alloys in Dependence on Their
Composition

The first test of the proposed algorithm [17] was done on a real data set that
contains information about 91 steel alloy compositions. Each data point consists of
concentrations of the three main alloying elements: carbon (C), silicone (Si) and
manganese (Mn) in percents (%). According to knowledge of the experts in the field
the steel alloys can be separated into three groups in dependence on concentrations
of Si and Mn. Tables 3.1 and 3.2 below summarize the data of the two smaller data
groups. The rest of 91 data belong to the third biggest cluster.

The part (a) of Fig. 3.8 presents all 91 data points in the 3D space. The red
squares correspond to the data from Table 3.1, the green circles—to the data from
Table 3.2 and the blue circles—to the third data cluster.

The part (b) of the Fig. 3.8 presents chosen by our procedure accounting for
density distributions (case 2 of the algorithm) of equilibrium states of each neuron
in 2D projections obtained after IP training of ESN. The red (squares), blue (dots)
and green (circles) marks correspond to the data from the three clusters separated in
the (a) part of the figure.

Black stars (a) and squares (b) represent the clusters centers obtained by sub-
tractive fuzzy clustering procedure. Original data are separated into 4 clusters while
projected once—in 3 clusters that correspond better to the logical separation of our
data set, although the red squares cluster center is moved towards the blue dots
cluster due to restricted number of data in the red squares cluster.

Table 3.1 Class one (marked
by 5 red squares):
Mn ≥ 1.6 %

No C, % Si, % Mn, %

1 0.35 0.27 1.6

2 0.45 0.27 1.6

3 0.305 0.27 1.6

4 0.36 0.27 1.75

5 0.4 0.27 1.6
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It should be noted that by proper choice of parameters of subtractive clustering
algorithm the results could be refined even in case of clustering of original 3D data
set. However, since the aim of present investigation was to compare clustering
results before and after 2D projection of the original data set, in both cases the same
parameters of the subtractive clustering procedure were used.

3.3.2 Clustering and Visualization of Multi-spectral Satellite
Images

Multispectral data of eight spectral bands with a spatial resolution of 30 m from
Landsat 7 Enhanced Thematic Mapper Plus (ETM +) instrument [24], presented in
Table 3.3, are used in this example [18, 19].

Two ESNs with different reservoir size—20 and 100 neurons—were adjusted to
these data using IP tuning algorithm. The size of the ESNs input vector is nin = 8
following the number of spectral images. Each image has size of 50 × 50 pixels.
Hence our data set contains 2500 input vectors of size nin each.

Tables 3.4 and 3.5 represent clustering results obtained by case 1 and case 2
branches of the proposed algorithm. In case 2 2D density distributions of equi-
librium states of reservoir neurons were used.

As can be seen, case 1 selects projections with bigger number of clusters in
comparison with selections of case 2 for both reservoir sizes. While the case 1
selects only one projection among all possibilities, case 2 gives us four options in
the case of bigger reservoir size. In the case of bigger reservoir size obtained
clusters number increases, i.e. the preprocessing of multi-dimensional data and
creation of many 2-dimensional projections allows us to reveal more detailed
classification of the multi-dimensional data set.

The obtained in this way 2D visualization of multispectral data was compared
with an orthophoto map of the observed region, GIS classification (CORINE 2000)
from Bulgarian Ministry of Regional Development and Public Works [27] and

Table 3.2 Class two (marked
by 10 green circles): Si ≥ 1.05

No C, % Si, % Mn, %

1 0.355 1.25 0.95

2 0.41 1.4 0.45

3 0.2 1.05 0.95

4 0.315 1.05 0.95

5 0.38 1.2 0.45

6 0.25 1.05 0.95

7 0.31 1.05 0.95

8 0.33 1.2 0.45

9 0.305 1.05 1.15

10 0.34 1.25 0.9
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Fig. 3.8 Three-dimensional presentation of 91 steel compositions (a) and their separation into
three clusters (b)
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Table 3.3 Characteristics of the Satellite Landsat 7 ETM + and corresponding spectral images

Band 1
(Blue)
0.45−0.52 µm

Band 2
(Green)
0.52−0.60 µm

Band 3
(Red)
0.63−0.69 µm

Band 4
(Near IR)
0.76−0.90 µm

Band 5
(Mid-IR)
1.55−1.75 µm

Band 6
(low gain TIR)
10.40−12.50 µm

Band 6
(high gain TIR)
10.40−12.50 µm

Band 7
(Mid-IR)
2.09−2.35 µm

Table 3.4 Clustering results of algorithm with case 1

ESN with 20 neurons, 6 clusters ESN with 100 neurons, 7 clusters

Table 3.5 Clustering results of algorithm with case 2

ESN with 20 neurons, 4 clusters ESN with 100 neurons, 5 clusters
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clustering results obtained by subtractive clustering of the original 8-dimensional
data set. All comparative maps are given in Table 3.6.

Due to different data scales comparison could not be exact. We can say only that
CORINE map separates the observed area into 4 classes—result closer to the one
obtained by our algorithm using case 2 and ESN with 20 neurons. In all other cases
our algorithm reveals bigger number of clusters. Looking at the orthophoto map
with higher spatial resolution of 0.5 × 0.5 m, although it is hard to correlate exactly
each one of the obtained clusters to different types of land covers, we suppose that
this classification is able to distinguish more specific features form the
multi-spectral data.

3.3.3 Clustering of Working Regimes of an Industrial Plant

The apparatus considered here is a mill fan for fuel preparation in the coal fired
power plant Maritsa East 2—a thermal power plant in Bulgaria that is the largest on
the Balkan Peninsula. The mill fans are used to mill, dry and feed the coal to the
burners of the furnace chamber. The part which suffers the most and should be
taken care of is the rotor of the mill fan. Because of the abrasive effect of the coal it
wears out and should be repaired by welding to add more metal to the worn out
blades. The possibility to predict eventual damages or wear out without switching
off the device is significant for providing faultless and reliable work of the
equipment avoiding incidents.

In [7, 20] the data archived with 1 min time step by the installed on the site DCS
covering the observation periods before and after replacement of the rotor were
investigated. The monitored variables are: discharge temperature of the dust-air
mixture, vibrations of the nearest to the mill rotor bearing block, load (current) at
the system output and the corresponding control actions. Looking at variables
tendencies before and after replacement and accounting for expert information
available the following major working regimes were distinguished:

Table 3.6 Comparative maps

Orthophoto map 2010 CORINE 2000 Subtractive clustering of
8D original data, 6 clusters

 311 broad-leaved forests
 313 mixed forests
 321 natural grasslands
 512 water bodies

3 Multi-dimensional Data Clustering … 109



Case 0 (stop or manual control regime): the maximum density distribution of
control action is below 50 %

Case 1 (starting regime): The maximum density distribution of rotor vibrations is
around 2.5 mm, the maximum density distribution of dust-air mixture
temperature—around 170−190 °C whiles the maximum density distribu-
tion of control action—around 60−75 %

Case 2 (stable working regime): The maximum density distribution of vibrations
is around 2.5−3.5 mm, the maximum density distribution of dust-air
mixture temperature—around 170−180 °C whiles the maximum density
distribution of control action—around 75 %

Case 3 (deterioration regime): The maximum density distribution of vibrations is
around 3.5−4.5 mm, the maximum density distribution of dust-air mixture
temperature—around 150−170 °C whiles the maximum density distribu-
tion of control action—around 75−90 %

Here subject of clustering are 3D data containing the three measured variables.
Figure 3.9 presents the processed data and the corresponding to them cluster (case)
numbers obtained by proposed algorithm, case 2 using 1D density distributions of
reservoir equilibrium states. The revealed regimes are logical since at the beginning
we had data before rotor replacement, while after sample number 480 the mill fan

0 100 200 300 400 500 600
0

100

200

300

samle number

T
m

ix
, d

eg
C

0 100 200 300 400 500 600
0

2

4

6

sample number

V
ib

ra
tio

n,
 m

m

0 100 200 300 400 500 600
0

50

100

sample number

C
on

tr
ol

, %

0 100 200 300 400 500 600
0

2

4

sample number

ca
se

 n
um

be
r

Fig. 3.9 Three dimensional input data and corresponding to them cluster (case) numbers obtained
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rotor was replaced and starting regime was initiated. Stopping regimes (from 20 up
to 100 sample number, about 130, 220, 280 and 380 sample number) as well as
deterioration regime shortly before rotor replacement (after 380 sample number) are
also clearly distinguished.

Investigations were done using ESN reservoirs from 10 up to 124 neurons. Some
of the selected 2D projections are shown on Fig. 3.10 below. All of them distin-
guish 4 classes as it was expected by the experts. Hence for this particular data set
increasing of ESN reservoir size does not change the number of revealed clusters
for all chosen 2D projections. However, it was observed that there are some input
vectors that were classified in different clusters by different 2D projections no
matter how big or small was ESN reservoir. Hence the choice of a proper 2D
projection in this particular case should relay to available experts’ assessment.

3.3.4 Clustering of Time Series from Random Dots Motion
Patterns

The present data set is received in a study that investigates the sensitivity to motion
direction of dynamic stimuli [2, 4]. The stimuli presented to tested people are
movies consisting of 25 consecutive frames showing 48 randomly moving dots. An
example of a frame is given on the left side of Fig. 3.11. The fused image of all 25
frames of a movie is given on right side of the same figure. A fixed proportion of
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Fig. 3.10 Selected 2D projections from equilibrium states of the ESN reservoir with 10 (a) and
124 (b) neurons
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dots move in random directions, while the main direction of motion of the rest of
the dots is to the left or to the right from the vertical. The task of the observers was
to indicate the mean direction of dots motion, i.e. left or right.

For every stimulus with 25 consecutive frames we have 48 time series for each
dot. From them we obtain transformed time series consisting of 24 angles of motion
direction at each time step. The task to be solved here is to cluster motion patterns
of these dynamic data series. Hence instead of reservoir equilibrium states here the
reservoir states (as in Eq. (3.10)) achieved after presentation of each input time
series are used as features.

In [21] preprocessing of this data was done following the model of human visual
perception from [3, 10], namely we used the receptive fields of MST neurons as in
[3] to preprocess time series of our motion directions data. In [21] seven receptive
fields distributed randomly in the range of moving angles between −π/2 and +π/2
were used. Finally, at the output of each one of the seven receptive fields we have a
time series consisting of 24 time steps for each one of the experiments, an example
of which is presented in Fig. 3.12. These are the dynamic 7-dimensional time series
data that was dynamic input to our ESN clustering procedure.

Hence our feature extraction ESN has 7 inputs. Experimental data set contained
3599 successive human trails. Reservoirs with different size starting from 10
neurons up to 100 neurons were tuned and tested. The clustering procedure uses
case 1, i.e. it chooses a two dimensional projections with biggest number of
clusters. Since increasing of reservoir size led to discrimination of bigger number of
clusters and because with these data it is known that real number of clusters should
be two or three (the human decision has three classes: left, right and unclear), it
become obvious that procedure needs some adjustment to the task peculiarities.
Then it was decided to investigate the number of two dimensional projections that
cluster the data into two, three, four etc. clusters. In this way an interesting behavior
was discovered: the majority of two dimensional projections have only three
clusters. Figure 3.13 presents the bar chart containing the number of projections
with different number of clusters for 10, 30, 50 and 100 neurons of ESN reservoir.

Fig. 3.11 Random dot motion screen presenting one frame (left) and fused image of a scenario
with 25 consecutive frames (right)
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The possible explanation is that this reflects the fact that three clusters are closer
to human perception. Then a proper idea is to choose among projections with
prevailing number of clusters. That is why the next decision was to use this as a
“voting” mechanism: for each dynamic data item decisions form all two

Fig. 3.12 Receptive fields outputs

Fig. 3.13 Number of projections with respective number of clusters
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dimensional projections with three clusters were collected and the maximal number
of projections that put it into a given cluster was determined; then the data are put to
that cluster.

An interesting observation in this experiment was that approximately 30 % of
data fall into the “undecided” class like the results obtained in the experiments with
human decisions. Hence the proposed here modification of our clustering algorithm
could be also considered to be closer to the way humans percept motion infor-
mation and take the decision about its direction.

3.3.5 Clustering and 2D Visualization of “Sound Pictures”

In this example the multidimensional data set was obtained by the Brüel & Kjær
system for sound analysis shown on Fig. 3.14a. It consists of 18 microphones array
placed randomly in a wheel grid (called antenna) at which center is mounted a

Fig. 3.14 Brüel & Kjær
system for sound analysis
(a) and created by it “sound
picture” (b)
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camera. All microphones are connected to a front-end panel and finally both camera
and front-end are connected to a computer with software for sensor information
processing. The system measures acoustic pressure and visualizes “sound picture”
of the observed by camera area as it is shown on Fig. 3.14b.

Considered here multidimensional data set consists of raw measurement data
from all 18 microphones of the antenna. A piezo beeper WB 3509 (standard Brüel
& Kjær equipment—the red box in the right low corner on the picture on the right
side of Fig. 3.14, with frequency of 2.43 kHz was used as sound source. After
switching on the beeper the system collects acoustic pressure in Pa for 15.9 ms—
period of time predetermined by the system software—from all 18 microphones.
The measurements were taken with time step 1.53 * 10−5 s. The collected data,
shown on Fig. 3.15, are periodic signals with variable amplitude and constant
frequency of the noise source (the beeper).

The present task needs to consider collected data as “sound picture” so that to be
able to map further it with the picture taken from the camera and to determine
position of sound sources. Hence it was decided to divide the antenna area (area of
stimuli collection) into 16 overlapping square regions shown on Fig. 3.16 (each
region is surrounded by a square with different color). The small numbered dots
represent microphones positions and the big dot in the center marks camera posi-
tion. Regions are determined so that each of them contains at least one microphone
(e.g. microphone 5 is the only one in upper right region while the maximal number
of microphones in region is four and is situated at the center of antenna—region
containing microphones 1, 3, 8 and 7).
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Fig. 3.15 Acoustic pressure data collected from 18 microphones for 15.9 ms
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Here preprocessing of raw signals was done in a similar way as it was described
in previous section using the receptive fields of MST neurons. For this purpose the
dynamic range of raw data (that is from −0.4 to 0.4 Pa) was divided into 11
intervals. For each interval a filter with center at the center of interval and variance
equal to one third of interval size was assigned. The obtained in these way 11
features are inputs to the ESN used at the second step of feature extraction
procedure.

Two approaches for the first stage feature extraction were applied: accumulation
of acoustic pressure for all period of measurements (called further 2D) and
accounting for measurements at each time step (called further 3D). Thus it was
possible to prepare a final picture of the “observed” by antenna noise or to observe
time changes in “sound picture”.

At the second step of described above feature extraction algorithm we used ESN
reservoirs with different sizes: 10, 30 and 50 neurons. In all cases the number of
inputs of ESN was determined by the number of features, i.e. 11 according to the
number of receptive fields.

Results obtained in 2D case using ESN reservoir with 50 neurons are shown on
Fig. 3.17. Comparison with sound picture obtained via original producer software
on the right side of Fig. 3.14 reveals that the sound source on the right low corner of
the picture could be detected since it belongs to a cluster that differs from the others.

It was observed that acoustic pressure data is periodic with period of about
0.412 ms or approximately 28 time steps. Hence time changes of “sound picture”
during one period as well as for all the time of measurements with 0.412 ms time
step were investigated in the 3D case.

Figure 3.18a presents the clustering results observing “movement” of the sound
wave coming from the noise source through receptive fields for the first period of
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time using ESN with 50 neurons in the reservoir. It can be seen that the last picture
(beginning of new period) is the same as the first one, i.e. the clustering reveals
periodical characteristics of data.

On Fig. 3.18b time changes of “sound picture” during all time of measurements
obtained by the ESN reservoir with 50 neurons are shown. The “unfolded” 3D
picture reveals changes in the acoustic pressure amplitude with time. Although all
pictures are from the beginning of current period, they gradually change from the
beginning of the measurements to their end. This change can be explained by
inexact correspondence of sampling frequency and beeper frequency.

In spite of roughness of our sensing fields, the position of the beeper can be
exactly estimated in all pictures. In 3D case (accounting for measurements at each
time step) number of obtained clusters was 3 or 4 while in 2D case it was about 6
clusters.

3.4 Summary of Results and Discussion

Table 3.7 presents a summary of all five test data sets and their clustering procedure
parameters. The size of ESN input vector nin corresponds to the size of features
vector that corresponds directly to the size of the raw data set (data sets 1, 2 and 3)
or was extracted at the first stage of raw data preprocessing (data sets 4 and 5).
Hence there are examples varying from 3-dimensional data sets (1 and 3) through
11-dimensional one in the last example.
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Fig. 3.18 “Movement” of the sound wave for the first period of time (a) and obtained “sound
picture” during all time of measurements with time step equal to one period (b)
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The ESN reservoir size is the other important parameter of the proposed clus-
tering procedure. It was varied from 10 up to 124 neurons. Obtained results showed
that for small number of features there is no need to use huge reservoirs while with
increasing of ESN input vector size the bigger is number of neurons the better are
achieved clustering results. This is valid especially for data sets 2 and 5.

It should be noted however that increasing of reservoir size dramatically
increases the possible number of 2D projections that is the number of all possible
combinations between each two neurons equilibrium states, i.e. (nr*(nr − 1))/2.
Although the increased number of obtained 2D projections increases the chance to
obtain several once that separate multidimensional data set as perfect as it is pos-
sible, these also increases the computational time of overall procedure. This is
mainly due to the slowest or “bottleneck” part of the proposed algorithm, i.e. the
subtractive clustering that is an optimization procedure. So increase of ESN
reservoir size increases computational costs significantly. This raises a question to
be solved: to find a good criterion to chose only most suitable neurons to create
smaller number of 2D projections to be clustered.

Another issue that has to be commented is the achieved accuracy of data clus-
tering. Since for all test data sets we had only vague expert information (data sets 1,
3 and 4) or some visual representation (data sets 2 and 5) of a prospective matching
of data points to unknown in advance number of clusters there is no way to
calculate any numerical criteria about goodness of clustering results. By far only
subjective visual or expert assessment of the achieved results is done. Hence the
next step of development of the proposed algorithm will be to test it on data sets
with clearly defined and known in advance number and position of clusters.

3.5 Conclusions

The described here approach for feature extraction, clustering and 2D visualization
of multidimensional data sets showed good performance characteristics with all
testing data sets. Although there was no available information about exact clusters
number, type and position for all of the exploited in present investigation data sets,
the obtained by far results seem logical. Moreover, tests were performed on real
data with different nature demonstrating wide range of possible applications. Visual

Table 3.7 Summary of test data sets and clustering procedure parameters

No Data set Features number nin ESN reservoir size nr
1 Steel alloys composition 3 10

2 Multi-spectral images 8 20, 100

3 Mill fan 3 10, 124

4 Random dots motion 7 10, 30, 50, 100

5 “Sound pictures” 11 10, 30, 50
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comparison with other information sources about exact data classes demonstrated a
lot of similarities, especially in the case of hyper spectral images and sound
pictures.

In should be noted that second stage of clustering of the obtained 2D projections
from the extracted features was done via well developed method that was proven to
be the best in the case of unknown number and position of clusters. In addition this
method allows gradual change of membership to several classes using fuzzy sets—a
property that was not exploited here. Instead membership was crisp and it was
determined by minimal distance to the revealed clusters centers. Further refinement
of 2D visualizations could be achieved via determination of fuzzy membership and
overlapping classes that will yield more realistic pictures.

Future work will include also exploitation of other well known clustering pro-
cedures, especially in case of known number of classes. Testing of the approach on
benchmark data sets with exact information about data clusters will be the next step
to evaluate numerically the quality of the proposed approach.
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Chapter 4
Unsupervised Clustering of Natural
Images in Automatic Image Annotation
Systems

Margarita Favorskaya, Lakhmi C. Jain and Alexander Proskurin

Abstract The chapter is devoted to automatic annotation of natural images joining
the strengths of text-based and content-based image retrieval. The Automatic Image
Annotation (AIA) is based on the semantic concept models, which are built from large
number of patches receiving from a set of images. In this case, image retrieval is
implemented by keywords called as Visual Words (VWs) that is similar to text
document retrieval. The task involves two main stages: a low-level segmentation
based on color, texture, and fractal descriptors (a shape descriptor is less useful due to
great variety of visual objects and their projections in natural images) and a high-level
clustering of received descriptors into the separated clusters corresponding to the VWs
set. The enhanced region descriptor including color, texture (with the high order
moments—skewness and kurtosis), and fractal features (fractal dimension and lacu-
narity) has been proposed. For the VWs generation, the unsupervised clustering is a
suitable approach. The Enhanced Self-Organizing Incremental Neural Network
(ESOINN) was chosen due to its main benefits as a self-organizing structure and
on-line implementation. The preliminary image segmentation permitted to change a
sequential order of descriptors entering in the ESOINN as the associated sets. Such
approach simplified, accelerated, and decreased the stochastic variations of the
ESOINN. Our experiments demonstrate acceptable results of the VWs clustering for a
non-large natural image sets. Precision value of clustering achieved up to 85–90 %.
Our approach show better precision values and execution time as compared with fuzzy
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c-means algorithm and classic ESOINN. Also issues of parallel implementation of
unsupervised segmentation in OpenMP and Intel Cilk Plus environments were
considered for processing of HD-quality images. Execution time has been increased
on 26–32 % using the parallel computations.

Keywords Unsupervised clustering � Visual words � Self-organizing incremental
neural network � Automatic image annotation � Image features � Image
segmentation

4.1 Introduction

Nowadays, the image browsing and retrieval are the embedded WWW tools, which
are available for many users in anytime and anywhere. However, the retrieval
systems require the development of efficient software tools that is caused by the
increasing visual data growth. The image retrieval systems have three frameworks:
text-based (since 1970s), content-based (since 1980s), and automatic annotation
(since 2000s). In Text-Based Image Retrieval (TBIR) systems, the images are
manually annotated by text descriptors [1]. This leads to inaccuracy and duration of
a user work. The Content-Based Image Retrieval (CBIR) is free from such disad-
vantages. The queries into Content-Based Retrieval Systems (CBRS) can be dif-
ferent, for example, a retrieval of features (color, shape, spatial location), abstract
objects, real objects, or listed events [2–4]. Image retrieval in Automatic Image
Annotation (AIA) assumes that the images can be retrieved in the same manner as
text documents. The basic idea of the AIA is to implement the unsupervised
learning based on semantic concept models extracted from large number of image
samples [5–9]. The images can be retrieved by keywords called as Visual Words
(VWs). The AIA systems join the advantages of both TBIR and CBIR systems and
additionally solve the task of automatic image annotation using semantic labels.

This chapter is devoted to the retrieval of abstract objects, which is based on the
VWs extraction from a non-large set of images. The task involves two main stages:
a low-level segmentation based on color, texture, and fractal descriptors (a shape
descriptor is less useful due to great variety of visual objects and their projections in
natural images [10]) and a high-level clustering of received descriptors into the
separated clusters corresponding to the VWs set. Sometimes it is useful to divide
images in two global categories: natural or urban scenes, and according to such
classification tune an unsupervised procedure of extraction of low-level features.
The goal is to develop fast and accurate methods, which are suitable for natural
images annotation in the AIA framework.

For the VWs detection, the unsupervised clustering is a suitable approach. The
Enhanced Self-Organizing Incremental Neural Network (ESOINN) was chosen due
to its main benefits in unsupervised clustering and on-line implementation. This
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network can be trained adaptively and store the previous data with any increasing
volume of input information.

The chapter is organized as follows. A brief literature review is provided by
Sect. 4.2. The main statements, methods, and algorithms of unsupervised seg-
mentation and unsupervised clustering are detailed in Sects. 4.3 and 4.4, respec-
tively. Section 4.5 presents a discussion of experimental results of precision and
computational speed involving experiments with images from the dataset IAPR
TC-12 Benchmark [11]. Conclusion and remarks of future development are drawn
in Sect. 4.6.

4.2 Related Work

The literature review includes two main issues: the analysis of unsupervised image
segmentation for extraction of low-level features (Sect. 4.2.1) and the overview of
unsupervised image clustering (Sect. 4.2.2) in order to receive the high-level
semantic descriptors.

4.2.1 Unsupervised Segmentation of Natural Images

Any image, especially natural, involves a set of regions with different textures and
colors. During the last decade, many heuristic segmentation methods and algo-
rithms have been designed, which can be concerned to three main approaches:

• Region-based approach including grid-based method, when an image is roughly
divided into blocks [12], threshold-based methods of gradient gray-scales image
[13], contour-based methods evolving a curve around an object [14], methods of
morphological watersheds with preliminary image pyramid building in order to
detect the centers of crystallization [15–18], region-based methods including a
region growing approach [19–21].

• Model-based approach involving graph-based methods, among which a nor-
malized graph cut [22], statistical models using Bayesian model, Markov chain,
Expectation Maximization (EM) algorithm, and others [23–25], auto-regressive
models [26, 27], clustering algorithms like k-means, which are used to classify
pixels into different classes [28].

• Structured-based approach using Haralick structural methods for texture seg-
mentation [29], image segmentation by clustering of spatial patterns [30].

A majority of known CBIR and AIA systems use a region-based segmentation
as the close technique for a human vision. Let us notice that for the AIA systems,
the unsupervised segmentation is strongly recommended approach.

The unsupervised color image segmentation method based on the estimation of
Maximum A Posteriori (MAP) on the Markov Random Fields (MRFs) was
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proposed by Hou et al. [31]. This method works under the assumption that there are
n pixels of m (m ≪ n) colors in the image I, and any two colors, fore and back, are
perceptually distinguishable from each other. The authors used the energy functions
approximately in the non-iteration style. A new binary segmentation algorithm
based on the slightly tuned Lanczos eigensolver was designed.

The effective unsupervised color image segmentation algorithm, which uses the
multi-scale edge information and spatial color content, was represented by Celik and
Tjahjadi [32]. The multi-scale edge information is extracted using Dual-Tree
Complex Wavelet Transform (DT-CWT). The segmentation of homogeneous
regions was obtained using a region growing followed by a region merging in the
Lightness and A and B (LAB) color space in the research [33]. The authors proposed
the edge-preserving smoothing filter, which removes a noise and retains a contrast
between regions. The authors show that their approach provides better boundaries of
objects than JSEG and mean-shift algorithms. However, the unsupervised color
image segmentation works non-well in the textured images. Sometimes the color
image segmentation needs in a priory information and has high computational cost.
The use of statistical pattern recognition and Artificial Neural Networks (ANN) with
multi-layer perceptron topology was suggested by Haykin [34] in order to segment
and make a clustering of images into the pre-determined classes.

Also some hybrid methods exist, for example, 2D autoregressive modeling and
the Stochastic Expectation-Maximization (SEM) algorithm. The last one was
developed by Cariou and Chehdi [27]. The proposed texture segmentation method
has three steps. First, 2D causal non-symmetric half-plane autoregressive modeling
of the textured image is realized. Second, the parameters of identifiable mixed dis-
tributions and the corrected number of classes are calculated using the SEM algo-
rithm. The second step is finalized by coarse, block-like image pre-segmentation.
Third, the original image ought to refine the pixel-based segmentation applying the
Maximizer of Posterior Marginals (MPM). Using this hierarchical model in a
Bayesian framework, the authors obtained a reliable segmentation by means of Gibbs
sampling. This approach provided good segmentation/classification results above
90 % of correct classification with maximum value 99.26 %. The disadvantage is the
complicated mathematical calculations.

The well-known method of J-image SEGmentation (JSEG) is concerned to the
unsupervised segmentation based on a color-texture model. In the pioneer research
of Deng and Manjunath [35], the given color-texture patterns and the estimations of
their homogeneity were used. First, the image colors are quantized to several
representative classes in the color space without considering the spatial distributions
of the colors. Then pixel values are replaced by their corresponding color class
labels to form a class-map of the image (J-image). The received class-map can be
represented as a special type of homogeneous color-texture regions. Second, a
spatial segmentation is executed into this class-map without considering the cor-
responding pixel color similarity. This work became the basis of following modi-
fications and improvements.

An improved version, combining the classical JSEG algorithm with a local
fractal estimator, permits to improve the boundary detection [36]. A model of the
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texture features using a mixture of Gaussian distributions, which components can
be degenerate or nearly-degenerate, was developed by Yang et al. [37]. The authors
show the efficiency of their simple agglomerative clustering algorithm derived from
a lossy data compression approach. Using 2D texture filter banks or simple
fixed-size windows, the algorithm effectively segments an image minimizing the
overall coding length of the feature vectors.

Statistical Region Merging (SRM) algorithm based on perceptual growing and
region merging was proposed by Nock and Nielsen [38]. An unsupervised GSEG
algorithm [21] is based on color-edge detection, dynamic region growth, and
multi-resolution region merging procedure. A Partion-based SEGmentation (PSEG)
algorithm uses a hierarchical approach, according to which the spatially connected
regions group together based on the mean vectors and covariance matrices of a
multi-band image [39]. Also the authors introduced the inner and the external
measures based on Gaussian distribution, which estimate the goodness for each
portion in the hierarchy.

The approach for color–texture segmentation based on graph cut techniques
finds optimal color–texture segmentation by regarding it as a minimum cut problem
in a weighted graph [40]. A texture descriptor called as texton was introduced to
efficiently represent texture attributes of the given image, which is derived from the
complex Gabor filtered images estimated in various directions and scales. In the
research [40], the texton feature is defined as a magnitude of textons rather than a
histogram of textons, which makes it highly effective to apply the graph cut
techniques. The problem of color-texture segmentation is formulated in terms of
energy E(·) minimization with graph cuts by Eq. 4.1, where A is the data and
smoothness constraint, Θ denotes the mixture model parameters, λ > 0 specifies a
balance between a data term U(A, Θ) and a prior term V(A).

E A;Hð Þ ¼ k � U A;Hð ÞþV Að Þ ð4:1Þ

The segmentation energy should be minimized with respect to the labeling A and
the model parameter Θ. This method provides better precision and recall results in
comparison with JSEG algorithm. The following essential extension of multilayer
graph cut approach using multivariate mixed Student’s t-distribution and regional
credibility merging one can find in [41].

The Blobworld segmentation is widely used method. It is closed to the JSEG
algorithm. The pixel clustering is executed in a color-texture-position feature space.
First, a common distribution of these features is modeled by a Gaussian mixture.
Second, the EM algorithm estimates the parameters of received model. The
pixel-cluster membership produces a resulting coarse segmentation of the objects.
Vogel et al. proposed the adapting version of Blobworld algorithm, which was called
BlobContours segmentation [42]. The idea of displaying the intermediate segmented
images as the layers lays in the basis of BlobContours segmentation. Each EM iter-
ation is displayed as a layer, and the user can examine, which layer is the best one. The
flood-fill algorithm calculates the average true color for each region instead of using
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the connected component algorithm from the original Blobworld. However, the
blob-approach has a restricted application in the unsupervised segmentation.

Many authors use the measures of similarity to estimate and compare the
experimental results. Some of such measures one can find in [43].

4.2.2 Unsupervised Clustering of Images

The good decision for extraction of high-level semantic features is the use of
semi-supervised or unsupervised machine learning techniques. The goal of super-
vised learning is to determine the output values, and the goal of unsupervised learning
is to re-distribute the input data into classes and describe these classes. Support Vector
Machine (SVM) classification, Bayesian classification, and decision tree technique
are concerned to supervised methods, which form the high-level results from the
low-level features. In this research, the unsupervised methods are considered for
clustering of low-level features into the VWs representation. The traditional k-means
clustering, fuzzy c-means, and clustering based on Self-Organizing Neural Network
(SONN) including their modifications are often applied approaches in the CBRS. Let
us discuss some approaches for such clustering.

The color moments and Block Truncation Coding (BTC) were used in [44] to
extract features as the inputs of k-means clustering algorithm. The basis of color
moments (mean, standard deviation, and skewness) uses assumption that a distribution
of color in an image can be interpreted as a probability distribution. An image is split
into R, G, and B components separately, the average values of each component are
determined. Then the features are calculated as a set of color moments for R, G, and B
values, which are higher and lower the corresponding averages. Such heuristic algo-
rithm can not provide a high accuracy of clustering because color features are computed
in a whole image. The closed approaches one can find in [45, 46].

The application of Radial-Based Function Neural Network (RBFNN) for
semantic clustering was proposed by Rao et al. [47]. The authors applied the
hierarchical clustering algorithm to group the images into classes based only on the
color RGB-content; however, the result of received accuracy is absent in
research [47].

Self-Organizing Fuzzy Neural Network (SOFNN) can be concerned to a special
type of the SONN. The first group of Fuzzy Neural Network (FNN) with the
self-tuning capabilities requires the initial rules prior to train. The second group of
the FNN is able to automatically create the fuzzy rules from the training data set. In
opposite of a traditional clustering, when classes are disjointed, a fuzzy clustering
suggests so called soft clustering scheme. In this case, each pattern is associated with
every class by a membership function, in other words each class is a fuzzy set of all
patterns. A traditional clustering can be obtained from a fuzzy clustering using a
threshold of a membership value. The most popular fuzzy clustering algorithm is a
Fuzzy C-Means (FCM) algorithm. It is better than the k-means algorithm avoiding
local minimums. The design of membership functions is the most important problem
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in a fuzzy clustering because they determine the similarity decomposition and the
centroids of classes. An incremental clustering is based on the assumption that it is
possible to consider instances one at a time and assign them to the existing classes.

In research [48], the SOFNN was proposed as extended RBFNN, which is a
functional equivalent to Takagi-Sugeno-Kang fuzzy systems. First, a
self-organizing clustering approach is used to form the structure and obtain the
initial values of parameters in a network. Second, a hierarchical on-line
self-organizing learning paradigm is employed to adjust the parameters and the
structure of the SOFNN. The algorithm of incremental learning was developed,
which is capable to generate automatically fuzzy rules according to a simple error
criterion based on the differences between calculated and desired output values.

Tung and Quek suggested a Generic Self-Organizing Fuzzy Neural Network
(GenSOFNN), which overcomes the drawbacks of fuzzy neural network approach
connecting with the necessity of prior knowledge such as a number of classes [49].
The proposed GenSOFNN did not require a pre-definition of the fuzzy rules. The
authors show that its training cycle takes place in a single pass of the training data
and demonstrated the on-line applications of the GenSoFNNs.

Three new learning algorithms for Takagi-Sugeno-Kang fuzzy system based on
a training error and a genetic algorithm were proposed by Malek et al. [50]. First
two algorithms involve two stages. In the first stage, the initial structure of the FNN
was created by estimating the optimum points of training data in input-output space
using k-nearest neighbor algorithm and c-means methods, respectively. This stage
keeps adding new neurons based on an error-based algorithm. In the second stage,
the redundant neurons were recognized and removed using a genetic algorithm.
Third algorithm built the FNN by a single stage using a modified version of error
algorithm. These algorithms were evaluated using two examples: by function of
two nonlinear inputs and identification of nonlinear dynamic system.

Fuzzy clustering can be applied with other techniques, for example, invariant
moments as the invariant shape features [51]. One of the connected problems is a
semantic gap removal, which appears between low-level and high-level features
because the images, which are identical in a spatial domain, can be non-identical in
a semantic domain [52].

For our experiments, two ways were chosen: without preliminary segmentation
of natural images and with preliminary segmentation, description of the last one is
located in next Sect. 4.3.

4.3 Preliminary Unsupervised Image Segmentation

Segmentation of natural images is a complicated task due to a great set of regions
with various colors and textures. The basic JSEG algorithm [35] with some mod-
ification was applied in order to obtain good segmentation results. The segmenta-
tion task can be interpreted as an optimization task for search of such division of
image, which possesses the predetermined properties according to some functional.
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The authors of research [35] referred this functional as J-functional, which esti-
mates a quality of segmentation based on a color distribution. However, the direct
optimization of J-functional is a high resource task. The JSEG algorithm uses a
greedy algorithm of optimization, which searches local optimums in each of iter-
ations, calculating J-functional in a neighborhood of each pixel.

Two independent steps including color quantization and spatial segmentation are
used in this method. In order to extract only a few representative colors, the colors
in image are coarsely quantized. For natural images, 10–20 colors are enough for
good segmentation. Each pixel is replaced by corresponding color class label. The
image of labels is called a class-map, which can be interpreted as a special texture.
Each point belongs to a color class in a class-map. In natural images, such classes
usually have the overlapping distributions. Under such assumptions, the authors of
research [35] consider Z as the set of all N data points in a class-map, z = (x, y),
where x, y are spatial coordinates, z 2 Z with the mean m provided by Eq. 4.2, on
the one hand,

m ¼ 1
N

X
z2Z

z ð4:2Þ

and, on the other hand, suppose that Z is classified into classes Zi, i = 1, …, C with
mean mi of the Ni points in class Zi as it is written in Eq. 4.3.

mi ¼ 1
Ni

X
z2Zi

z ð4:3Þ

The total variance ST of class-map points is determined by Eq. 4.4.

ST ¼
X
z2Z

z� mk k2 ð4:4Þ

The total variance of points SW belonging to the same class is defined by Eq. 4.5.

SW ¼
XC
i¼1

Si ¼
XC
i¼1

X
z2Z

z� mik k2 ð4:5Þ

Then J-functional can be calculated by Eq. 4.6.

J ¼ ST � SWð Þ=SW ð4:6Þ

If value of J is large, then the color classes are more separated from each other,
and points inside a class are strongly connected between themselves. The average �J
can be defined by Eq. 4.7, where Jk is J-functional over region k, Mk is a number of
points in region k, N is a total number of points in a class-map.
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�J ¼ 1
N

X
k

MkJk ð4:7Þ

A better segmentation means a lower value of �J. Equation 4.6 is a criterion of
minimization of segmentation. However, the global optimization of �J is impossible
because any image can be segmented by various ways. Instead of this, J-image is
generated, where pixel values correspond to local J-values, which are calculated
over small window centered in the pixels. The local J-values become large near a
region boundary. The J-image can be represented as a 3D map containing valleys
and hills, which are correspond to the region insides and the region boundaries. The
size of local window is a multi-scale parameter. A window with small sizes (9 × 9
pixels) is useful to detect edges, and a window with large sizes is used for boundary
detection.

A spatial segmentation as a second step of the JSEG algorithm is based on a
region-growing method. The pixels of J-image with minimal functional values are
accepted as the seeds. A growing process is realized by jointing the neighbor pixels
to the seeds. As a result, an initial segmentation is received sometimes with small
over-segmented regions. To avoid this artifact, such regions are merged based on
color similarity. The agglomerative procedure is applied: the distance values
between two neighbor regions are calculated according to a color histogram, the
pairs of regions with minimal distance value is merged, then a color histogram is
recalculated and the distance values are update. The procedure is repeated until the
predetermined maximum distance value between regions will not be achieved.

Our improvement of JSEG results deals with decreasing the original image in
four times (the upper level of image pyramid with Gaussian blurring), application of
JSEG algorithm to small-sized image, and following stretching transformation of J-
image to the initial sizes of original image. A convolution of the transformed J-
image with original image provides a final segmentation. The segmentation results
for images 38019, 38225, 38755, 39986, and 38756 are represented in Fig. 4.1.
The test images were taken from DB IAPR TC-12 Benchmark [11]. The size of
original images is 480 × 360 pixels. The size of decreased images was 240 × 180
pixels.

Our approach provides better visual segmentation results without considering the
non-significant for the AIA small regions in original images.

4.4 Feature Extraction Using Parallel Computations

In this research, the JSEG algorithm was chosen as a pre-segmentation stage and
realized in the designed software tool. Consider the main color, texture, and fractal
features extraction (Sects. 4.4.1, 4.4.2 and 4.4.3, respectively) from a pre-segmented
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image in order to create a common image descriptor as a set of region features. The
enhanced region descriptor is built in Sect. 4.4.4. Section 4.4.5 provides a description
of parallel computations of features.

Fig. 4.1 Visual results of JSEG algorithm: a, c, e, g, i original images and JSEG results; b, d, f, h,
j the resized in four times original images and JSEG results
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4.4.1 Color Features Representation

A number of important color features, which are extracted from images or regions,
have been proposed in literature including Color Histogram (CH) [53], Color
Moments (CM) [54], Color Coherence Vector (CCV) [55], Color Correlogram [56],
among others. Notice that MPEG-7 standard restricts a number of color features
including Dominant Color Descriptor (DCD), Color Layout Descriptor (CLD),
Color Structure Descriptor (CSD), and Scalable Color Descriptor (SCD) [57].

The color moments such as mean, standard deviation, and skewness are the
simplest and popular features. They are applied to each component of color spaces
mentioned below:

• Red, Green, Blue (RGB).
• Lightness and A and B are the color-opponent dimensions based on nonlinearly

compressed CIE (International Commission on Illumination; usually abbrevi-
ated CIE for its French name, Commission internationale de l’éclairage) XYZ
coordinates (LAB).

• Lightness, Uniform chromaticity scale, Valence (LUV). CIE LUV and
CIE LAB were adopted simultaneously by the CIE.

• Hue, Saturation, Value (HSV) or Hue, Saturation, Lightness (HSL).
• Hue, Min, Max, Difference (HMMD).

In current research, the color features (mean, standard deviation, and skewness
for each color component) are extracted as the low-level features of each region in
HSV-color space. According to the theory of moments, normalized mean μc, nor-
malized standard deviation σc, and normalized skewness θc (values of these
parameters are normalized relative to a pixel amount into current region) are cal-
culated for each HSV-component by Eqs. 4.8–4.10, where pi

c is a pixel value of
corresponding color component, NP is a number of pixels in a current region. Let us
remember that preliminary image segmentation was executed using the JSEG
algorithm.

lc ¼
1
NP

XNP
i¼1

pci ð4:8Þ

rc ¼ 1
NP

XNP
i¼1

pci � lc
� �2 !1

2

ð4:9Þ

hc ¼ 1
NP

XNP
i¼1

pci � lc
� �3 ð4:10Þ

As a result, nine color features are received and included as FC0, …, FC8

components in feature vector, describing a current region.
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4.4.2 Calculation of Texture Features

The calculation techniques for texture features are very different. Often statistical
texture features are based on moments or local statistical measures such as the six
Tamura texture features [58]. The Tamura features include coarseness, direction-
ality, regularity, contrast, line-likeness, and roughness. First three characteristics are
more significant, and second three ones are the secondary parameters. The MPEG-7
standard has employed regularity, directionality, and coarseness as the texture
browsing descriptor [57]. Unfortunately, the Tamura and the MPEG-7 texture
descriptors are non-invariant to a scale.

Also it is possible to calculate the statistical features using a Gray-Level
Co-occurrence Matrix (GLCM) [59]. The GLCM provides information about the
positions of pixels having similar gray level values. Each element of such matrix
contains a number of all pairs of pixels separated by displacement vector d, which
includes gray levels i and j. Haralick et al. [60] suggested a set of 14 textural
features extracted from a co-occurrence matrix. Homogeneity, contrast, and entropy
are the main parameters, which are calculated from the GLCM. However, the
experiments show that these parameters do not make essential contribution into
improvement of CBIR accuracy but increase a computational cost.

The spectral characteristics based on 2D wavelet transform and a Gabor trans-
form have high cost for the CBIR and the AIA. The advantage of Gabor transform
is an invariance to a scale. Galloway [61] introduced five original features of
run-length statistics, which were built using the analysis of image gray levels. At
present, run-length statistics have a historical meaning.

Let z be a random value of intensity, h(zi) is its histogram, i = 0, 1, 2, …, Q–1,
Q is a number of brightness levels. Statistical features into a current image region
such as normalized average AV, normalized dispersion DS, normalized homogeneity
HM, normalized smoothness SM and improved normalized smoothness ISM, nor-
malized entropy EN and improved normalized entropy IEN, normalized skewness
SK, and normalized kurtosis KR are provided by Eqs. 4.11–4.19, where SR is a
region area, μ3 and μ4 are moments of 3rd and 4th orders, σ3 and σ4 are standard
deviation in 3rd and 4th degrees. All these values are normalized relative to a region
area SR.

AV ¼ 1
SR

XQ�1

i¼0

zih zið Þ ð4:11Þ

DS ¼ 1
SR

XQ�1

i¼0

zi � AVð Þ2h zið Þ ð4:12Þ

HM ¼ 1
SR

XQ�1

i¼0

h2 zið Þ ð4:13Þ
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SM ¼ 1
SR

1� 1

1þDS
.

Q� 1ð Þ2

0
@

1
A ð4:14Þ

ISM ¼ �logSM; if SM[ 0

10; if SM ¼ 0

(
ð4:15Þ

EN ¼ � 1
SR

XQ�1

i¼0

h zið Þ log2h zið Þ ð4:16Þ

IEN ¼ EN=log2Q Q[ 1 ð4:17Þ

SK ¼ 1
SR

l3
r3 ¼

1
SR

�
XQ�1

i¼1

zi � AVffiffiffiffiffiffi
DS

p
� �3

�h zið Þ
 !

ð4:18Þ

KR ¼ 1
SR

l4
r4 � 3 ¼ 1

SR
�
XQ�1

i¼1

zz � AVffiffiffiffiffiffi
DS

p
� �4

�h zið Þ
 !

� 3 ð4:19Þ

If parameter SM = 0, then its value is forcibly maintained into NSM = 10 (small
empirical value, differing from 0). Normalized entropy NEN indicates some
equalization effect in dark and bright areas of image [62, 63].

Thus, seven texture features (AV, DS, HM, ISM, IEN, SK, and KR) are used as
the FT9, …, FT15 components of feature vector, describing a current region.

4.4.3 Fractal Features Extraction

It is well-known, that natural texture surfaces are the spatial isotropic fractals and their
2D intensity function are also fractals. Connected domain A in a topological n-space is
self-similarity, when domain A includes N separated non-overlapping and
self-similarity copies, and each of copies is reduced by a coefficient r along all coor-
dinate axes. Fractal dimension FD of connected domain A is determined by Eq. 4.20.

FD ¼ logN=log 1=rð Þ ð4:20Þ

Usually fractal surfaces demonstrate a statistical self-similarity, when each of
N copies is identical to an original surface by all statistical features. However, to
determine a dimension of fractal texture region using Eq. 4.20 is difficult and
sometimes impossible. In research [64], two ways for definition of fractal dimen-
sion FD were investigated using a cube cover and based on the probability esti-
mations. Let us calculate a measure of domain A on a set Rn. Suppose that domain
A is covered by n-ary cube with sizes Lmax. If domain A is a reduced copy by
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coefficient r, then N = r–FD sub-cubes exist. Therefore, a number of cubes with
sizes L = r · Lmax, which are necessary to cover a whole domain, is determined by
Eq. 4.21.

N Lð Þ ¼ 1
�
rFD ¼ Lmax=L½ �FD ð4:21Þ

A simple procedure to determine fractal dimension FD by Eq. 4.21 involves a
cover of connected domain A by a grid from n cubes with a side length L and
calculation a number of non-empty K cubes. Then fractal dimension FD is deter-
mined from a line slope of {log L; –log N(L)} in Rn space.

Another way to determine fractal dimension FD uses a probability approach. Let
P(m, L) be a probability that m points into a cube with length side L are located near
a random point of connected domain A. Let total number of points into connected
domain A be equal M (in our case, a connected domain A is an image). If a grid
from cubes with a length side L is imposed in an image, then a number of cubes,
including m points, is determined as (M/m) · P(m, L) and will be proportional to a
power dependence L–FD.

However, various fractal structures with a similar fractal dimension FD can have
very different textures. The term “lacunarity” was introduced by Mandelbrot [65] to
describe such fractals. Mandelbrot proposed some procedures to define a lacunarity
FL, the most known of which has a view of Eq. 4.22, where M is a weight of fractal
structure, Mh i is an estimated weight.

FL ¼ M= Mh i � 1ð Þ2
D E

ð4:22Þ

Lacunarity FL demonstrates the difference between a weight of fractal structure
and an estimated weight. This feature is a statistical characteristic of the second order
and changes in a following manner. Lacunarity has low value for a fine-grained
textures and high value for a coarse-grained textures. Weight of fractal structureM is
a function of parameter L (Eq. 4.23), where k is a proportional coefficient [65].

M Lð Þ ¼ kLFD ð4:23Þ

Also lacunarity FL can be estimated based on a probability approach. Probability
P(m, L) includes data for average distortion of weight in fractal structure. Therefore,
lacunarity FL can be calculated by Eq. 4.24.

FL Lð Þ ¼ M2 Lð Þ � M Lð Þj j2
M Lð Þj j2 ¼

PN
m¼1

m2P m; Lð Þ � PN
m¼1

m P m; Lð Þ
����

����
2

PN
m¼1

m P m; Lð Þ
����

����
2 ð4:24Þ

Lacunarity estimating by Eq. 4.24 is well for textures with large area but it is
non-useful for small area image regions. Let us simplify Eq. 4.24 by introduction of
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function C(L) provided by Eq. 4.25, where MD(L) is an average density of weight
into a cube with a length side L, NP(L) is a quotient of division the number cubes
with a length side L, which are necessary for a full cover of fractal structure, on the
number of points into this fractal structure.

C Lð Þ ¼ MD Lð Þ � NP Lð Þ
MD Lð ÞþNP Lð Þ ð4:25Þ

If the smallest texton is less then L, then a weight of fractal structure will
distributed uniformly into each cube. In this case, values MD(L) and NP(L) have
close values, and C(L) → 0. If the smallest texton is large than L, then C(L) → 1.
If L value increases, then C(L) → 1 for all fractal structures. Therefore, function C
(L) will include the data about textons in both cases.

Two fractal features FD and FL are two components FF16 and FF17 of feature
vector describing a current region.

4.4.4 Enhanced Region Descriptor

Using parameters from Sects. 4.4.1–4.4.3, one can construct a region vector
RF = {FC0, …, FC8, FT9, …, FT15, FF16, FF17}, which later will be transformed to
Region Descriptor RDij. Values of RDij are normalized to the intervals of input values
of neural network, where i is a counter of regions in an image j, j is a counter of
images in an image set. As a result, an image descriptor IDj = {RD1j, …, RDij, …}
and a set descriptor SD = {ID1, …, IDj, …} will be constructed. The extended region
descriptor is our contribution in the unsupervised clustering for image annotation
problem. For simplicity, denote a set of Region Descriptor {RDij} as a weight input
vector Wx, because region descriptors enter to the inputs of classical ESOINN
randomly.

A transition from low-level features to high-level semantics is usually tracked by
reducing the “semantic gap”, which includes four categories:

• Object ontology to define high-level concepts.
• Introduction a relevant feedback into retrieval loop for continuous learning of

users’ intention.
• Generation semantic templates to support high-level image retrieval.
• Supervised or unsupervised learning methods to associate low-level features

with query concepts.

Our choice deals with the last one due to high possibilities of self-organizing
approach. Let us remark that a redundancy is eliminated during segmentation stage
in order to avoid an over-segmentation of natural images.
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4.4.5 Parallel Computations of Features

The parallelizing of program code includes the types mentioned below:

• Parallelizing of data means a multiple execution of the same algorithm with
various input data. Data are divided into fragments, and each fragment is pro-
cessed by an allocated computer core.

• Functional parallelizing is a parallel execution of sets of operations by func-
tional feature. Simple example of such functional decomposition is a decom-
position of task into subtasks such as input of initial data, processing, output of
results, visualization of results, etc. Functional parallelizing is achieved using
sequential or sequential-parallel “conveyor” between subtasks. Each subtask
provides a parallelizing of data inside.

• Algorithmic parallelizing finds such fragments in algorithm, which can be exe-
cuted in parallel. Synthesis of parallel algorithms based on algorithmic paral-
lelizing is called an algorithmic decomposition. During algorithmic
decomposition, it would like to divide a task into large and rarely connecting
branches with homogeneous distribution of data processing along the branches.
Main distinction between algorithmic and functional parallelizing is in following.
Functional parallelizing merges only functional close operators from algorithm,
and algorithmic parallelizing does not consider a functional similarity of operators.

For implementation of parallel algorithms, some standards are available, among
which OpenMP standard [66] is used for parallelizing of program code in languages
C, C++, and Fortran. Also the extension of language C++ with parallel possibilities
called as Intel Cilk Plus [67] is developed.

In OpenMP standard, a paralleling is executed explicitly by insert the special
directives and by call the additional functions in a program code. The standard
OpenMP realizes the parallel computations in the multi-thread mode, when the
“main” thread creates a set of sub-threads, and a current task is distributed between
the sub-threads. First, a program is executed in “sequential” area with single “main”
thread (process). Second, several sub-threads are generated in “parallel” area, and
the program code is distributed between them. Third, all sub-threads except the
“main” thread are finalized, and again a “sequential” area is continued. The stan-
dard OpenMP supports the embedding of parallel areas.

The Intel Cilk Plus environment is a dynamic thread scheduler, including a set of
keywords. Keywords inform a compiler about the application of scheme schedul-
ing. A parallel Cilk-program creates a task queue. The “executors” capture the
tasks, and free thread performs a current task. In the Intel Cilk Plus environment,
the semantics of sequential program is supported. However, a program can be
executed in sequential or parallel modes due to available resources. Use of extended
index notation is an essential difference in comparison with OpenMP standard that
provides a paralleling of vector instructions of processor.

The enhanced region descriptor involves color, texture, and fractal features
calculated in a neighborhood of considered pixel. Calculation of color and textural
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features (Eqs. 4.8–4.19) can be implemented in a parallel mode. Fractal features
requires a separate non-parallel computation. The color and texture features are
computed by two steps. First, stochastic data acquisition is accomplished in a
neighborhood of current pixel: the normalized means of color channels are calcu-
lated using Eq. 4.8, and local histogram is built based on texture features. Second,
color and texture features (Eqs. 4.9–4.19) are calculated directly. Two basic cycles
are implemented in parallel mode. There are an external cycle for image with sizes
(w/kw) × (h/kh), where w and h are width and height of image, respectively, kw and
kh are width and height of image segment, respectively, and the internal cycles for
segment with sizes kw × kh.

For parallel computation of texture features, a whole image is divided into
segments, and a processing of segments is distributed between cores of processor.
A way of image partitioning in vertical/horizontal bands or rectangle blocks
determines a structure of parallel procedure. In order to increase a computational
cost, a parallelizing of external cycles in whole image is required. For this purpose,
a processor directive “#pragma omp parallel for” in the case of OpenMP standard
and a keyword “cilk_for” in the case of the Intel Cilk Plus environment can be
applied. The calculations of color and texture features do not connected. Therefore,
the additional parallel areas in random access memory can be determined for color
and texture features separately.

4.5 Clustering of Visual Words by Enhanced SOINN

As a result of features extraction (Sect. 4.3), any image can be represented as a set
of regions with corresponding region vectors RF = {FC0, …, FC8, FT9, …, FT15,
FF16, FF17} as a collection of color, texture, and fractal features. Direct comparison
of feature sets in a metric space is not preferable due to segmentation errors and
noises. Therefore, a clustering methodology is a single way to receive good results.
In literature review (Sect. 4.2), it was shown that the unsupervised clustering is
more suitable for the VWs detection, and among unsupervised clustering methods
the SOINN was chosen.

The clustering procedure groups the regions of all annotated images into subsets
(VWs) in such manner that the regions with similar features are grouped together,
while the regions with different features belong to the different classes. Formally, a
clustering structure S is represented as a set of subsets C = {C1, …, CK}, Eq. 4.26.
Consequently, any element in S belongs to one and only one subset.

S ¼ [K
k¼1

Ci and Ci \Cj ¼ 0 for i 6¼ j ð4:26Þ

4 Unsupervised Clustering of Natural Images … 139



The ESOINN proposed by Furao et al. [68] is applied as the useful unsupervised
clustering technique in many applications: robots navigation [69, 70] microarray
data analysis [71], multi-agent systems [72], among others. The basic concepts of
ESOINN are discussed shortly in Sect. 4.5.1, and algorithm of ESOINN is pre-
sented in Sect. 4.5.2.

4.5.1 Basic Concepts of ESOINN

The ESOINN was developed to overcome the main disadvantages of the two-layer
SOINN as mentioned below:

• The separated training of the first layer and the second layer.
• The second layer is unsuitable for on-line incremental training: the changing of

training results in the first layer causes the re-training of the second layer.
• The necessity of user-determined parameters, if a within-class insertion appears.
• The SOINN cannot separate a set with the high-density overlapping areas.

The ESOINN is adapted using a single-layer network structure. To build an edge
between nodes, the ESOINN adds a condition to judge, and after some training
iterations it separates nodes to the different subclasses deleting edges, which lie in
the overlapping areas. The ESOINN achieves the within-class insertion slightly but
it is more suitable for on-line or even life-long training tasks than two-layer SOINN.

A single layer of ESOINN is continuously adapted according to the input data
structure defining a number and a topology of classes. When an input vector enters,
the ESOINN finds two nearest nodes as the winner and the second winner by the
predetermined metric. Using a threshold criterion of similarity (the maximum
distances between vectors owing to the same cluster), the network judges: an input
vector belongs to the winner or the second winner cluster or not. A distribution of
input data is unknown, and a threshold criterion is updated adaptively for each
separate node. A threshold criterion for node Ti is calculated by Eq. 4.27, where Ni

is a set of neighbor nodes, Wi and Wj are the weight vectors of nodes i and j,
respectively.

Ti ¼ max
j2Ni

Wi �Wj

		 		 ð4:27Þ

If a node i has not the connected neighbor nodes, then a threshold criterion
Eq. 4.27 is transformed in Eq. 4.28, which is defined as a minimum distance
between nodes, where N is a set of all network nodes.

Ti ¼ min
j2Nn if g

Wi �Wj

		 		 ð4:28Þ

An input vector is inserted as the first node of new class, if distance between an
input vector and the winner or the second winner is more than a threshold value
between the winner and the second winner. If an input vector belongs to the cluster
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of the winner or the second winner, then an edge between the winner and the
second winner is created with 0 “age”, and the “age” of all edges linked to the
winner is increased by 1.

Then a density pi of the winner is updated by Eq. 4.29, where di is a mean value
of distances between node j and its neighbor nodes.

pi ¼ 1
.

1þ di
� �2 ð4:29Þ

If a mean value of distances between node j and its neighbor nodes is large, then
a number of nodes and a density pi of node i will have small values, and vice versa.
For each iteration λ, only a density of winner-node is calculated. The accumulated
density hi of winner-node is provided by Eq. 4.30, where n is a total number of
iterations (calculated as n ¼ LT=k, LT is a total number of input vectors), K is a
number of iterations, when a density value for node i exceeds 0.

hi ¼ 1
K
�
Xn
l¼1

Xk
k¼1

pi ð4:30Þ

After re-calculation of density, a counter of winsMi (for a winner-node) is increased
by 1. The change of weight vectors of the winner ΔWi and its neighboring nodes ΔWj

(j 2 Ni) are determined by Eqs. 4.31 and 4.32, where Wx is a weight input vector.

DWi ¼ 1
Mi

� Wxk k � Wik kð Þ ð4:31Þ

DWj ¼ 1
100 �Mi

� Wxk k � Wj

		 		� � ð4:32Þ

Then all edges, the “age” of which is higher a threshold value agemax, are
removed. If number of input vectors does not achieved λ iterations, then a following
input vector is submitted. Otherwise, the overlaps between classes are detected and
removed by including additional subclasses.

One can find the detailed description of algorithms for separation a composite
class into subclasses, a building the edges between nodes, and a classifying nodes to
the different classes in research [69].

4.5.2 Algorithm of ESOINN Functioning

The algorithm of the ESOINN functioning includes the steps mentioned below.

Step 1. Set a minimal number of the predetermined segments into a set of images.
Number of the pre-determined segments is defined using the JSEG algorithm.
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This is our first proposed distinction in comparison with the ESOINN, which
initialization is started always from two random nodes. (Let the ESOINN with
our color-texture-fractal descriptor be called as the dESOINN.)

Step 2. Input a weight input vector Wx. The second proposed distinction connects
with the order of ranked vectors {Wx} at the inputs of the dESOINN.
Vectors {Wx} is sorted according to the results of previous segmentation.
Therefore, the winner and the second winner are defined at the first steps,
and at the following steps the dESOINN is trained using the remaining
samples from current segment. Sometimes an input vector Wx cannot be
associated with the current winner owing to coarse segmentation errors.
Such input vector ought to be rejected from a sample. This approach
reinforces the current winner and makes the stochastic dESOINN more
stable. Then the input vectors {Wx} concerning to another segment are
clustered by the dESOINN. The proposed approach is especially useful for
clustering of non-large set of natural images.

Step 3. Define the nearest node (the winner) a1 and the second nearest node (the second
winner) a2. If a distance between the input vector Wx and nodes a1 or a2
exceeds threshold values Ti calculating by Eqs. 4.27 and 4.28, then the input
vector is considered as a new node and added to a node set. Go to Step 2.

Step 4. Increment the “age” of all edges connecting with a node a1 by 1.
Step 5. Define the edge creation necessary between nodes a1 and a2.
Step 6. Recalculate the accumulated density hi of the winner-node by Eq. 4.30.
Step 7. Increment the counter of wins Mi by 1.
Step 8. Calculate the weight vectors of the winner ΔWi and its neighboring nodes

ΔWj using Eqs. 4.31 and 4.32.
Step 9. Remove the edges, “age” of which has more value than a pre-determined

parameter agemax.
Step 10. If a number of the input vectors Wx is multiple to a parameter λ, then it is

required to update the subclasses for each node and remove the “noisy”
nodes using Eqs. 4.33 and 4.34, where N is a number of nodes in a node
set, c1 and c2 are the empirical coefficients. Equations 4.33 and 4.34 are
used, if a node has two or one neighbors, respectively

hi\c1 �
XNa

j¼1

hj
�
N ð4:33Þ

hi\c2 �
XNa

j¼1

hj
�
N ð4:34Þ

In experiments, the non-large sets of images were used. Therefore, the
additional condition Eq. 4.35 was introduced to remove the single nodes,
where c3 is an empirical coefficient.
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hi\c3 �
XNa

j¼1

hj
�
N ð4:35Þ

Step 11. If a clustering process is finished, then it is needed to determine a number
of classes, the output sample vectors for each class, and stop the algorithm.

Step 12. Go to Step 2, if the ESOINN continues to work.

4.6 Experimental Results

For experiments, 120 images from the dataset IAPR TC-12 Benchmark [11] were
selected as the 10 sets including 12 images in each set. An example set (12 images
and their segmented prototypes by JSEG algorithm with removal small size frag-
ments, Set NN 01) are presented in Fig. 4.2.

The first type of experiments was directed to obtain the precision estimations.
The average values of color-texture-fractal features for segments from a set of
images, representing in Fig. 4.2, are summarized in Table 4.1. As a result, five
clusters (VWs) were determined by the dESOINN as it is show in Fig. 4.3.

As one can see, the clusters fromFig. 4.3 represent three types of objects—“Houses”,
“Sky”, and “Water”. However, the dESOINN divided the cluster “Houses” into three
clusters. This decision reflects the differences in values of color and texture features
(Table 4.1).

Three algorithms were compared: fuzzy c-means, the ESOINN, and the
dESOINN. The last one begins its work by use a predetermined minimum number
of clusters provided by the JSEG algorithm. For initialization, the following
parameters were applied: λ = 50, agemax = 5, c1 = 0.01, c2 = 0.3, and c3 = 1.05.

The average precision of algorithms PRC was calculated by Eq. 4.36, where C is
a total number of clusters, NTPi is a number of true positive examples (true detected
regions) and NFPi is a number of false positive examples (false detected regions) in
cluster i relatively the expert estimations.

PRC ¼ 1
C

XC
i¼1

NTPi

NTPi þNFPi
ð4:36Þ

All calculations had been repeated 100 times, and then a precision was averaged
out. The parameter “Number of clusters” was chosen as the most frequent value
during clustering. The generalized estimations of precision and execution time for
fuzzy c-means, ESOINN, and dESOINN algorithms are summarized in Table 4.2.
For experiments, PC Acer JM50-HR with a single processor core, Intel Core
i5-2430 M 2,4 GHz, RAM Kingston 1333 MHz (PC3-10700) DDR3 8 GB,
VC NVIDIA GeForce GT 540 M, 1 GB, SSD Smartbuy, 128 GB was used.
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The data from Table 4.2 shows that a precision of VWs using the ESOINN and
the dESOINN is better than received by fuzzy c-means algorithm. Also the
determined clusters are close for human perception. A creation of VWs by ESOINN
or dESOINN is slowly in 3–5 times against fuzzy c-means algorithm for small

Fig. 4.2 The original images and their segmented prototypes from the database IAPR TC-12
Benchmark: a image 2954, b image 2956, c image 38056, d image 38060, e image 38063,
f image 38097, g image 38129, h image 38183, i image 38273, j image 38277, k image 39458,
l image 40417
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Fig. 4.3 Five clusters of VWs determined by dESOINN, Set NN 01: a cluster 0, which includes 12
segments 2956_1, 38056_1, 38056_2, 38056_5, 38060_2, 38060_5, 38063_2, 38063_4, 38097_2,
38273_2, 38273_5, 40417_2, b cluster 1, which includes 23 segments 2954_0, 2956_0, 38056_0,
38056_3, 38060_0, 38060_1, 38060_6, 38063_0, 38097_0, 38097_1, 38129_0, 38129_1, 38183_0,
38183_1, 38273_0, 38273_1, 38273_4, 38273_6, 38277_0, 38277_1, 38277_2, 39458_0, 40417_0,
c cluster 2, which includes 8 segments 2954_2, 2956_2, 38097_3, 38129_2, 38183_3, 38273_3,
38277_3, 39458_3, d cluster 3, which includes 6 segments 38063_1, 38097_4, 38097_5, 38129_3,
38183_2, 38183_4, e cluster 4, which includes 11 segments 2954_1, 38056_4, 38060_3, 38060_7,
38060_7, 38063_3, 38063_5, 38277_4, 39458_1, 39458_2, 40417_1
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number of samples. However, the unsupervised clustering with large sets of images
will be promising. The main benefits of ESOINN algorithm are a possibility of the
unsupervised clustering and the on-line implementation. This network can be
trained by novel data adaptively, and it stores the previous data with any increasing
volume of input information.

The additional experiments provided a comparison of precision and execution
time results with large number of annotated images. Seven sets with 50, 100, 150,
200, 250, 300, and 350 images from the dataset IAPR TC-12 Benchmark [11] were
selected and tested by basic ESOINN, DBSCAN algorithm [73], X-Means algo-
rithm [74], and dESOINN. The experiments were implemented using the same PC
Acer JM50-HR (Table 4.3).

For the ESOINN initiation, the same parameters were tuned as in the main
experiment. The calculations had been repeated 100 times, and then the precision
values were averaged. The often received values are chosen as the parameter
“Number of clusters”.

The plots in Fig. 4.4 show the generalized precision and time dependences for
these four algorithms. One can see that the dESOINN algorithm provides better
results for large number of annotated images.

b Fig. 4.3 (continued)
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The second type of experiments was devoted to increase a computational speed
by parallel processing. A version of non-optimized algorithm was realized in
Microsoft Visual C++ 2010 package. Versions of optimized algorithm were
implemented in OpenMP and Intel Cilk Plus environments. The test dataset con-
tained six sets, each set included 10 images. These six sets were formed from
images with different resolutions, i.e. 1920 × 1080 pixels, 2560 × 1600 pixels,
2800 × 2100 pixels, 3840 × 2160 pixels, 3646 × 2735 pixels, and 4096 × 3072
pixels. A test parallel processing was executed in personal computer and servers
with different configurations.

For mentioned above six sets of images, the mean values of processing time
were estimated using various paralleling algorithms. Four samples, including 40
chosen randomly images, were formed. Each randomly chosen image was pro-
cessed 25 times. Such methodology permits to decrease the influence of external
factors such as activity of background task of operating system and available free
hardware resources. Experiments show that a computational speed increases on 26–
32 % using parallelizing algorithms. Hardware characteristics influence on com-
putational speed directly. For example, a processing time using Intel Core i5-3450
(3.1 GHz) was in 2–2.2 times less than a processing time using Intel Core 2 Quad
Q6600 (2.4 GHz).

A processing time of non-optimized algorithm was defined as 1 in order to
calculate a relative speedup factor for optimized algorithms. The speedup factors
were calculated for all six sets of images using 2, 3, and 4 threads. Average values
of speedup factors for parallelizing algorithms are represented in Fig. 4.5.

Also additional tests were executed in order to compare OpenMP and Intel Cilk
Plus environments. The results are drawn in Table 4.4. One can see the advantage
of Intel Cilk Plus environment.

Fig. 4.4 Generalized dependences for ESOINN, DBSCAN, X-Means, and dESOINN algorithms:
a precision, b execution time
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4.7 Conclusion and Future Development

In this chapter, the AIA issues were investigated by the VWs extraction from the
restricted image sets. The enhanced feature set describing an image region was
suggested, which includes color, texture, and fractal features. Three algorithms
were compared: fuzzy c-means, the ESOINN, and color-texture-fractal descriptor
ESOINN (dESOINN) in the precision estimation and the execution time. The
precision of VWs using the ESOINN and the dESOINN is higher then fuzzy c-
means algorithm provides. The experiments demonstrate that the unsupervised
clustering of large sets of images based on the neural network approach is
promising than other algorithms.

Parallelizing algorithms permit to increase essentially an image processing
including images of HD-quality. A computational speed was increased on 26–32 %
using algorithms with parallel implementation. Also experiments show that Intel
Cilk Plus environment provides the speedup values on 9–14 % higher in com-
parison with OpenMP environment due to effective balance of loading.

Fig. 4.5 Mean values of
speedup factors

Table 4.4 Values of speedup factors

Image sizes Number of threads

OpenMP Intel Cilk Plus Differences in values of
speedup factors, %

2 3 4 2 3 4 2 3 4

2 MB 1.75 2.29 2.68 1.93 2.51 2.92 10.27 9.79 9.04

4 MB 1.74 2.30 2.64 1.96 2.58 2.99 12.90 12.11 13.38

6 MB 1.73 2.27 2.65 2.00 2.61 3.01 15.40 14.77 13.34

8 MB 1.74 2.29 2.69 1.94 2.58 2.99 11.05 12.35 11.18

10 MB 1.72 2.28 2.66 1.99 2.61 3.02 15.92 14.58 13.58

12 Mb 1.73 2.27 2.66 1.98 2.62 3.05 14.17 15.35 14.58

Mean value 1.74 2.28 2.67 1.97 2.58 3.00 13.29 13.16 12.52
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Future work will be directed on development of algorithms, annotating not only
natural images but also complicated urban scenes. Also an image categorization is a
useful procedure in the AIA systems. The experiments with other datasets will be
executed in future.
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Chapter 5
An Evolutionary Optimization Control
System for Remote Sensing Image
Processing

Victoria Fox and Mariofanna Milanova

Abstract Remote sensing image analysis has been a topic of ongoing research for
many years and has led to paradigm shifts in the areas of resource management and
global biophysical monitoring. Due to distortions caused by variations in
signal/image capture and environmental changes, there is not a definite model for
image processing tasks in remote sensing and such tasks are traditionally approa-
ched on a case-by-case basis. Intelligent control, however, can streamline some of
the case-by-case scenarios and allow for faster, more accurate image processing to
aid in more accurate remote sensing image analysis. This chapter will provide an
evolutionary control system via two Darwinian particle swarm optimizations—one
a novel application of DPSO—coupled with remote sensing image processing to
help in the analysis of image data.

Keywords Darwinian particle swarm optimization � Remote sensing � Intelligent
control

5.1 Introduction

In July, 1966, Professor Seymour Papert assigned a summer homework project [1]
to a group of graduate students in order to “use our summer workers effectively in
the construction of a significant part of a visual system [for computers]” and
overcome the issues of “pattern recognition”, “figure-ground analysis”, “region
description”, and “object identification.” What his students and later researchers
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discovered is image segmentation, while crucial to higher-level image analysis
tasks, is an ill-posed problem subject to perceptual constraints and the overall goal
of a specific segmentation. To point, machine vision segmentation is impeded by
texture interference, noise, partially occluded objects, blurred edges, and illumi-
nation artifacts—all of which are easily processed and discarded by human per-
ceptual vision [2]. Nearly a half-century later, what artificial-intelligence expert
Papert thought would be resolved in a few months by graduate students remains a
focus and a major sub-discipline of computer science.

In the area of remote sensing—the scanning of an object or area by satellite or
aircraft in order to obtain information—image segmentation algorithms must
overcome or exploit issues caused by multi-spectral and often multi-scale input
data. While there exist remote sensing images with high ground resolutions (e.g.
images captures from airborne sensors), a large majority of remote sensing images
contain a spatial resolution too low to identify landmarks by shape or spatial detail.
Many algorithms and their researchers bypass the spatial domain completely and
focus on spectral signatures gathered by the multispectral sensors of the remote
sensing platform. However, the use of spectral signatures to distinguish between
objects in a remote sensing image is often hindered by the natural variability of a
material, granular spectral quantization, and modification of spectral signatures by
atmospheric conditions [3]. To add to the complexity of the task, spectral signature
data vary from sample to sample, causing researches to compare relative signatures
of material within image data rather than search for absolute signatures. As a result,
numerous algorithms have been created, compared, and discarded as researchers
search for an optimal method.

In 2010, Dey et al. reviewed standard image segmentation techniques that have
been applied to remote sensing [4]. The review divided methodologies into three
classes: image driven approaches, homogeneity measure approaches, and model
driven approaches. Image driven approaches rely upon statistical analysis of the
image data and usually incorporate edge information. Approaches that rely upon
measures of similarity (or dissimilarity) calculate spectral, textural, spatial, shape,
and size measurements and then group objects by some degree of homogeneity.
Homogeneity models sometimes incorporate contextual, temporal, and prior
knowledge into their algorithms. Model driven segmentation methods include
thresholding, Markov random field models, fuzzy set models, neural models,
watershed models, and multi-resolution models.

A more recent survey of methods presented at the 10th International Conference
on Simulated Evolution and Learning [5], considered the recent advances of evo-
lutionary computation in the realm of image segmentation. While there are a wealth
of evolutionary computation techniques for optimization, Liang, Zhang, and Brown
found genetic algorithms, genetic programming, differential evolution, and particle
swarm optimizations are the most common techniques used in evolutionary com-
putation segmentation methods. Of the four listed techniques, genetic algorithms
provided the most simplistic model and particle swarm optimization provided the
most accurate optimizations of segmentation algorithms. All of the methods suf-
fered from a low generalization capacity and a relatively high computational
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complexity. Only two case studies came from the field of remote sensing—one for a
multi-objective genetic clustering and another for fuzzy partitioning guided by a
genetic algorithm. However, both case studies reported optimal results.

In the area of active learning algorithms for remote sensing segmentation, Tuia
et al. [6] surveyed fifty-six active learning algorithms and found that all of the
algorithms suffered from a lack of available training sets for researchers, especially
concerning the large volume of data to process in the field. Recent adaptations of
active learning to the field of remote sensing image segmentation include active
selection of unlabeled pixels for classification, spatially adaptive heuristics, and
active learning algorithms applied to model adaptation across domains. However,
few of the heuristics in the survey use contextual features (e.g. position, texture) and
none of the methods are robust to noise. For more discussion concerning the
methods listed here, it is suggested to the reader to consult [4– 6] and the references
listed therein.

From the above discussion, it is obvious remote sensing image segmentation is
an area of ongoing research and novel combination of techniques. As such, there is
not a definite model for segmentation of remotely sensed images. Intelligent control
in image processing, the field of creating adaptive image processing sequences to
perform tasks in complex, often varying, and knowledge-intensive applications, can
streamline some of the case-by-case scenarios and allow for faster, more accurate
image processing. This chapter will provide an intelligent control system coupled
with modified image processing techniques to help in the processing of remote
sensing image data.

5.2 Background Techniques

5.2.1 Darwinian Particle Swarm Optimization

First used to model social behavior by simulating the movement of individuals in a
bird flock or fish school [7], particle swarm optimization quickly made the leap into
mathematical optimization of nonlinear functions. The method begins with ran-
domly or heuristically initializing a swarm and then allowing each particle in the
swarm to search a given space for a possible solution. Evaluation of the fitness of a
particle as well as the neighboring particles occurs on every iteration. As the
particles evaluate their fitness and store solutions, they move toward the particle in
their neighborhood with the best fitness value. As the swarm continues, it, in theory,
approaches the optimal solution and records the solution for the best performing
particle in its immediate neighborhood. To model the swarm, each particle n moves
in a multidimensional space according to position (xn) and velocity (vn) values.
Both xn and vn are highly dependent on local best (xb), neighborhood best (nnb) and
global best (gb) information:
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vn ¼ Wvn þ p1r1ðgb � xnÞþ p2r2ðxb � xnÞ; xn ¼ xn þ vn ð5:1Þ

where W represents an inertial weight applied to the velocity, the constants p1 and
p2 represent “cognitive” and “social” components, and r1, r2 are random vectors
with each component generally a uniform random number between 0 and 1.

Due to the lack of assumptions in the formulation of the swarm, (i.e. it is a
metaheuristic model), particle swarm optimization does not guarantee an optimal
solution will be found. However, the formulation does not require the gradient of
the cost function, which greatly expands the applications to which it can be applied.
Many optimization methods require the optimization function to be differentiable,
naturally excluding many applied mathematics functions that are irregular, noisy, or
dynamic. As a result, even with its lack of guarantee of an optimal solution, particle
swarm optimization is a noteworthy method in areas that cannot use classic opti-
mization methods.

Darwinian particle swarm optimization [8] is an alteration of the classic particle
swarm optimization in that it adapts to the fitness landscape and removes areas of
stagnation as multiple swarms search for a solution. The assumptions in Darwinian
particle swarm optimization are

• In order to assure future generations, each swarm is given a constant, if small,
chance of spawning a new swarm. In essence, the longer a swarm lives, the
higher the probability it will have offspring.

• The lifetime of a swarm is extended by the swarm finding a more fit solution.
• The lifetime of a swarm is reduced by the swarm failing to find a more fit

solution.

By the use of these assumptions modeled from Darwinian natural selection, the
method is more likely to arrive at a global optimal solution. The trade-off is, of
course, higher computational complexity. Multiple swarms require parallel imple-
mentations of particle swarm optimization and the use of natural selection requires
the introduction of more parameters in the model.

For traditional particle swarm optimizations, the variables to evaluate the
dynamic behavior of a swarm are

vi The velocity of the particle.

xi The position of the particle.

t Time.

r1 A uniform random variable, sampled for each i, t and dimension of the vector xi.

r2 A uniform random variable, sampled for each i, t and dimension of the vector xi.

xi;p The previous position of a particle that resulted in the best fitness (so far).

xi;n The neighborhood position that resulted in the best fitness (so far).

W An inertia weight applied to the velocity
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In Darwinian particle swarm optimization, the method begins by randomly
initializing each dimension of each particle over an appropriate range. The veloc-
ities are also restricted to an appropriate range and are randomly initialized to
encourage exploration of a solution. At each iteration of the algorithm, the decision
to evolve or die-off is assessed for each swarm. The evolution of a swarm is
determined by evaluating the individual fitness of all the particles in the swarm.
Swarms with a new global best fitness are allowed to spawn a new particle.
A swarm that fails to find a better fitness solution loses a particle. If a swarm has
failed to update to a new best fit after a set number of iterations, the entire swarm is
deleted as it has become stagnated (trapped in a local optimum). In practice, as the
worst performing particle is deleted when a swarm fails to find a new global best,
the population of the swarm decreases. When the population falls beneath a set
minimum population level, the swarm is deleted.

The natural selection rules of Darwinian particle swarm optimization allow
swarms with good adaptations to continue and swarms with bad adaptations to
die-off. One parameter that can negatively affect swarm continuation is the velocity
of a particle at initialization. A simple way to control velocity such that a particle is
not “exploded” through the search space is to define a maximum velocity and not
allow any one velocity to exceed it. Another method to control initial velocity is the
introduction of a parameter that simulates friction, causing a particle to experience a
“drag” on its velocity measurement. The friction parameter controls the velocity of
the particles so that they can better search the solution space for the cost function.
The lack of the parameter can result in particles moving large distances in the
solution space in one iteration and missing a better fitness value. The selection of
which method to use—bounding maximum velocity or introduction of a friction
parameter—depends on the fitness landscape of the optimization problem. In
general, bounding maximum velocity performs well on complicated landscapes and
the friction parameter performs well on more regular landscapes [9]. In optimization
problems, Darwinian particle swarm optimization made a significant improvement
in the method circumventing local optima and finding the best global optimum.

The first published use of Darwinian particle swarm optimization for image
processing occurred in 2012 [10] and was applied to segmentation of remote sensing
images. Posing the problem as an optimization of Otsu’s Optimal Global
Thresholding scheme [11]. Otsu’s exhaustive search for n − 1 optimal thresholds for
n-level image segmentations becomes an evaluation of n(L − n + 1)n−1 combina-
tions of thresholds and is computationally expensive for relatively small values of n.
In consideration of the size of remote sensing images and the number of potential
segmentations in low-resolution remote sensing captures, Otsu’s method—
formulated as an exhaustive search—is infeasible. However, formulating the task as
a multidimensional optimization problem allows the use of Darwinian particle
swarm optimization, which greatly lowers the computational expense of the
segmentation.
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5.2.2 Total Variation for Texture-Structure Separation

A challenging portion of image segmentation is decomposing an image into
meaningful features to guide the segmentation process. In traditional region-based
active contour segmentation algorithms, for example, the primary feature is the
intensity level of the region inside the contour versus the intensity level of the
region outside the contour. For the area of remote sensing, separating image
information can take the form of removal of irrelevant texture information for the
overall segmentation. Consider, as an example, the following images (Fig. 5.1):

Assuming the purpose of the segmentation is to segment the bodies of water, the
Fig. 5.1b provides a smoother image surface to apply the active contour and, as a
result, achieve the segmentation with a lower probability of becoming “stuck” in
local optimums as the contour evolves. Admittedly, the image with the texture
removed has areas of new concern, which primarily take the form of artifacts and
distortions caused by the smoothing process. From this simple example, however,
one can infer the level of attention given to devising algorithms that will remove
unwanted texture yet keep structural accuracy of the objects of interest for seg-
mentation tasks depending upon optimization of image energy.

In the structure-texture decomposition problem, an image can be assumed to be
composed of a structural part, which represents the objects of interest, and a textural
part. The textural part is usually classified by its level of fine scale-details and, in
most instances, contains some type of oscillatory nature [12]. A large failing of this
intuitive assumption is the definition of texture depends upon the scale of the image.
In remote sensing, the scale is often of such a nature that all of the image takes the
form of texture (from the above description). A “structure” in a high resolution
scale can be regarded as a “texture” in a low resolution scale. As such, when
working with low resolution images, care must be taken in setting parameters for
the separation of structure and texture.

Fig. 5.1 Example of smoothed texture. a Original. b Image with texture removed
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Total variation regularization methods offer a way to separate the structure and
textures of an image and provide parameters of which can be tuned to a specific
resolution. In image processing, the segmentation task is often formulated as an
inverse problem: given the image I, find another image, u, “close” to I such that
u represents a simplification of I and can be used in the segmentation task.
Generally, u is desired to be an image formed by homogenous regions with sharp
boundaries. The image representing the information removed from I can be denoted
as v where v is usually a noise or texture. The resulting relation between I, u and
v can be expressed as I = u + v. Many models disregard v and seek to optimize u,
computing optimal piece-wise smooth approximations of I (e.g. active contour
methods). If v contains information important to the locating the object of interest,
however, these models generally fail. Total variation segmentation methods, extract
both u and v in a simple total variational minimization frame [13]. Then, v is
represented using two functions (g1, g2). This simplification of texture descriptors
greatly lowers the computational difficulty in segmenting textured images.

The total variation minimization method for image decomposition begins with
mapping a function from R2 to R. Let I: R2 → R be a given image such that I is an
element of L2(R2). Allowing that u represents an approximate image of I without
additive noise (or texture) v, then the relation between u and I can be expressed as a
simple linear model: I(u, x) = u(x, y) + v(x, y). Given that both u and v are
unknown, the problem of reconstructing u from I is given as a minimization
problem in the space of functions of bounded variation BV(R2). This space of
functions works well with I, u, and v owing to its property of allowing for edges or
discontinuities along curves [14]. Using this space, the model for denoising (or
de-texturizing) images while preserving edges is

r inf
u2L2

FðuÞ ¼
Z

ruj j þ k
Z

I � uj j2dxdy; ð5:2Þ

where λ is a tuning parameter and the second term is a fidelity term. The first term in
the formulation is a regularizing term, which keeps important features and edges.
For proofs of existence and uniqueness of the above minimization problem, please
consult [13]. Allowing v = I − u and then formally minimizing F(u) gives the
associated Euler-Lagrange equation:

u ¼ Iþ 1
2k

div
ru
ruj j

� �
; ð5:3Þ

To model v as texture [15], define G as the Banach space consisting of all
generalized functions of v(x, y) which can be written as

vðx; yÞ ¼ @xg1ðx; yÞþ @yg2ðx; yÞ; g1; g2 2 L1ðR2Þ; ð5:4Þ
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bound of all L1 norms of functions

g
!��� ��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g1ðx; yÞ2 þ g2ðx; yÞ2
q

ð5:5Þ

and the infimum is computed oval all decompositions of v. Showing that, if the
v component represents texture, then v is an element of G, Y. Meyer proposed and
justified in [15] the following new image restoration model:

inf
u

EðuÞ ¼f
Z

ruj j þ k vk ku; I ¼ uþ vg ð5:6Þ

With the mathematical underpinnings now stated, we can proceed to the Vese
and Osher [13] formulation of a total variation minimization for modeling texture:

inf
u;g1;g2

Gpðu; g1; g2Þ ¼
Z

ruj j þ k
Z

I � u� @xg1 � @yg2
�� ��2dxdy�

þ l
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22

q� �p

dxdy

� �1
p

)
;

ð5:7Þ

where the tuning parameters, λ and μ, are greater than zero and p → ∞. The first
term insures u is an element of BV(R2), the second term guarantees that I ≈ u + div
(g) and the third term operates as a penalty on the norm in G of v = div(g).
Minimizing the energy in (5.7) with respect to u, g1, and g2 gives the following
Euler-Lagrange equations:

u ¼ I � @xg1 � @yg2 þ 1
2k

div
ru
ruj j

� �
; ð5:8Þ

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q				
				

� �1�p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q� �p�2

g1 ¼ 2k
@

dx
ðu� IÞþ @2

xxg1 þ @2
xyg2

� �
; ð5:9Þ

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q				
				

� �1�p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q� �p�2

g1 ¼ 2k
@

dy
ðu� IÞþ @2

xyg1 þ @2
yyg2

� �
;

ð5:10Þ

Using (5.7)−(5.9), Vese and Osher demonstrate that texture can be effectively
modeled and segmented from “well-behaved” texture images. For further discus-
sion on generalizations of structure-texture models based upon the VeseOsher
method as well as comments on optimizing the parameter models, the reader is
referred to [12] and the references therein.
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Recently, Xu et al. [16] presented a relative total variation method for the
purpose of extracting structure, u, from a highly textured image, I. In contrast to the
previous referenced methods, relative total variation begins without any assumption
of specific regularity or symmetry in the texture pattern which allows a high level of
randomness in detecting texture, v. The method contains a general pixel-wise local
total variation measure, expressed as

DxðpÞ ¼
X

q2RðpÞ gp;q: ð@xSÞq
��� ���; DyðpÞ ¼

X
q2RðpÞ gp;q: ð@ySÞq

��� ���; ð5:11Þ

where q is an element of R(p). the rectangular region centered at pixel p. Dx(p) and
Dy(p) are windowed total variations in the x and y directions for pixel p, which
counts the absolute spatial difference within the window, R(p). The function gp,q
works as a weight defined accordingly to spatial affinity and is proportional to

exp � xp � xq

 �2 þ yp � yq


 �2
2r2

 !
; ð5:12Þ

where σ controls the spatial scale of the window. Additionally, the method contains
a windowed inherent variation, given as

LxðpÞ ¼
X
q2RðpÞ

gp:q:@xSq

������
������; LyðpÞ ¼

X
q2RðpÞ

gp:q:@ySq

������
������; ð5:13Þ

in which L captures the global variations. Mathematically, L(x, y) differs from D(x,
y) in that L(x, y) does not use the modulus in its formulation. As the result, the sum
of ∂S in L(x. y) can change signs depending upon the direction of the gradients. In
general, the resulting L(x. y) in a window containing only texture is smaller than L
(x, y) Lðx; yÞ. in a window containing texture and edges. Finally, to enhance the
contrast between texture and structure, Xu et al. formulated the relation between D
(x, y) Dðx; yÞ and L(x, y) Lðx; yÞ as the objective function

argmin
s

X
p
ðSp � IpÞ2 þ k:

DxðpÞ
LxðpÞþ e

þ DyðpÞ
LyðpÞþ e

� �
; ð5:14Þ

in which the term (Sp − Ip)
2 prevents the input and result from varying without

bound. In the formulation, S is the resulting image structure and I is the input. The
term (Sp − Ip)

2 is calculated for every iteration to force structural similarity between
the output and input. The second term in the above equation is the regulator referred
to as relative total variation. The parameter is a weighting parameter that controls
the smoothness of the result. Empirically, the larger, the blurrier the result. σ
controls the scale of the texture features and is vital in structure-texture separation.
The parameters used in [16] are not optimized. Instead, Xu et al. provide
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suggestions for values to experiment with in order to obtain the desired
structure-texture separation.

5.2.3 Multi-phase Chan-Vese Active Contour Without
Edges

In general, region based active contours yield more reasonable segmentations than
edge-based algorithms when an image has relatively large noise and/or texture
values. However, the complexity and computational cost of region-based methods
can be large, particularly when considering methods based upon partial differential
equations, e.g. active contour models, total variation energy. In order to reduce
computational cost, the level set function ϕ(x, y) was proposed by Malladi, Sethian,
and Vemuri [17] as a formulation to implement active contours. Representing the
contour implicitly via two-dimensional Lipschitz-continuous functions defined on
the image plane. O a particular level, usually the zero level, the level set function is
defined as a contour, such as C = {(x, y): ϕ(x, y) = 0} or all (x, y) in I. By using the
zero level set, the contour can be defined as the border between a positive area and a
negative area. As the level set function increases from the initial stage, the corre-
sponding set of contours moves toward the exterior.

In 2001, Tony Chan and Luminita Vese proposed a model for active contours
that did not use edge information to segment an image. This method, dubbed the
Active Contour without Edges method, has under-gone many alterations, restate-
ments, and simplifications since its initial publication [18]. In general, given a curve
C = δω, with ω in Ω an open subset, and two unknown constants c1 and c2, with
Ω1 = ω, Ω2 = Ω/ω, the energy of the curve can be minimized in a level set for-
mulation with respect to c1, c2 and C = {(x, y)|ϕ(x, y) = 0}.

Fðc1; c2;uÞ ¼Z
X
ðu0ðx; yÞ � c1Þ2HðuÞ@x@yþ

Z
X
ðu0ðx; yÞ � c2Þ2ð1� HðuÞÞ@x@yþ v

Z
X
rHðuÞj j:

ð5:15Þ

H(ϕ) is the Heaviside function and c1, c2 are resolved, thorough minimization of
F(c1, c2, ϕ) as approximations of intensity within (c1) and outside (c2) the level set.

While the above method is groundbreaking in its own right, Chan and Vese
further refined [19] their method to include segmentation of color images,
four-phase segmentations, and theoretically, eight-phase segmentations. In practice,
this refinement, the Multi-Phase Active Contour without Edges, does not exceed
four-phases and two level sets. Four a four-phase contour:
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F4ðc;uÞ ¼
Z
X
ðu0ðx; yÞ � c11Þ2Hðu1ÞHðu2Þ@x@y

þ
Z
X
ðu0ðx; yÞ � c10Þ2Hðu1Þð1� HðuÞÞ@x@y

þ
Z

ðu0 � c01Þ2ð1� Hðu1ÞÞHðu2Þ@x@y

þ
Z

ðu0 � c00Þ2ð1� Hðu1ÞÞð1� Hðu2Þ@x@yþ v
Z
X
rHðu1Þj j þ v

Z
X
DHðu2j jÞ;

ð5:16Þ

where c = {c11, c10, c01, c00} a constant vector in which each cij represents the mean
of the intensities for each phase and ϕ = {ϕ1, ϕ2}. With these notations, the image
function u can be expressed as:

u ¼ c11Hðu1ÞHðu2Þþ c10Hðu1Þð1� Hðu2ÞÞþ c01ð1� Hðu1ÞÞHðu2Þþ c00ð1
� Hðu1ÞÞð1� Hðu2ÞÞ;

ð5:17Þ

5.3 Evolutionary Optimization of Segmentation

5.3.1 Darwinian PSO for Thresholding

With the preliminary discussion of background methods given in Sect. 5.2, we will
now proceed to the control system and method used to segment multispectral
remote sensing images in this chapter. The primary weakness in Otsu’s threshold
method is the amount of post processing a user must apply to the thresholded
image. Depending upon the complexity of the image in question and the region of
interest for the segmentation, a user may have to implement numerous
image-processing methods to “clean” the “segmented” thresholded image of
unwanted classes. Consider the segmentation performed in Fig. 5.2 with five levels
of classification created with a Darwinian particle swarm optimized Otsu thresh-
olding algorithm [10]. From the algorithm, the levels of intensity that will give the
maximum between class variance are 58, 99, 145, 199. For an individual image,
separating the classes manually utilizing the between class variance and selecting
the class of interest is not a difficult task. However multiply the task by a set of
images and it quickly becomes time consuming to post-process the images.
Additionally, one may notice the texture left in the thresholded image in Fig. 5.2.
While the concrete, water, and asphalt all have clear class separations, the sur-
rounding small-scale portions of the image contain a mixture of all five classes.
Once the classes are manually separated using the intensity information from the
method, a researcher will again use a post-processing procedure to remove
the smaller artifacts left over from including the smaller-scale texture portions in the
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larger regions of interest. Consider segmenting the class associated with the highest
intensity band in the classes. Using the information about intensity level from the
segmentation, the class 5 segmentation, without post-processing, is given in
Fig. 5.3. A far more efficient method would be to transfer the thresholded image to
another segmentation method to extract the class of interest. However, the amount
of texture remaining in the thresholded image is problematic for further segmen-
tation methods. At this point, it would be advantageous to move to the

Fig. 5.2 Segmentation via thresholding. a Original remote sensed image. b Thresholded to five
levels

Fig. 5.3 Class 5
segmentation of image (b) in
Fig. 5.2
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structure-texture separation algorithms detailed in Sect. 5.2.2. However, the algo-
rithms detailed in Sect. 5.2.2 are not optimized. Using the architecture of Darwinian
particle swarm optimization and relative total variation, optimization of the
parameters is easily obtained.

5.3.2 Novel Darwinian PSO for Relative Total Variation

As stated in the overview of relative total variation, the parameter involving
smoothness is of little importance in determining the structure of the image. As
such, lambda will be set to a value of one throughout all experiments. σ, however, is
of vital importance. In the formulation, σ appears in the definition of g
(p) (Eq. 5.12). In Eq. (5.13), g(p) is used in both the formulations of D(p) and L
(p) which are then passed to the relative total variation formulation (5.14). To
compute the best σ value for a given image a relative total variation methodology,
one must find the σ that represents the size of the background texture in the image.
Too large or too small a σ will result in an image without any variation, i.e. a blank
image of relatively uniform intensity. Therefore, σ must be bound: σmin < σ < σmax.

In general, for lower resolution images, σ → σmax and for higher resolution images,
σ → σmin. Using Eq. (5.12) as the fitness function, the following Darwinian PSO is
applied to a given remote sensing image (Table 5.1).

Table 5.1 Parameters for
optimization of σ in Eq. 5.12
with the Darwinian PSO

Parameter DPSO

Num of iterations 100

Population 30

ρ1 0.8

ρ2 0.8

W 1.2

Vmax 1.5

Vmin −1.5

Xmax 255

Xmin 0

σmax 20

σmin 1

Max population 50

Min population 10

Initial num of swarms 4

Max swarms 6

Min swarms 2

Stagnancy 10
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where W, ρ1, ρ2 are coefficients that assign weights to the inertial influence (fric-
tion), the global best and the local best when determining the new velocity,
respectively. X represents the (x, y) position within the image. To demonstrate the
effectiveness of the optimized relative total variation, consider Fig. 5.4 in which the
optimal value for the image in Fig. 5.1a was computed with the above parameters
and found to be 4.3017. The cartoon result, u of the original image, I, will be much
easier to segment with traditional segmentation methods. However, applying the
optimized total variation to the original image, before classification, removes areas
of interest. Therefore, for the procedure detailed in Sect. 5.3.4, the Darwinian PSO
total variation algorithm is applied after processing the original image in the
Darwinian PSO threshold method. Since both methods obtain optimal thresholding
or σ automatically, the flow of the control system is entirely automatic.

5.3.3 Multi-phase Active Contour Without Edges
with Optimized Initial Level Mask

Due to the low importance placed upon the initial contour in the original formu-
lation [18, 19], it has become the practice of traditional Active Contours without
Edges (ACWE) to begin the level set evolution with an arbitrarily defined ϕ—
usually in the form of a circle or rectangle. Multiphase ACWE are traditionally
initiated with multiple arbitrarily defined ϕi that completely cover the image plane.
The lack on emphasis placed upon the initial contour is partially caused by the
sampling of intensities across the entire image domain. In original experiments,

Fig. 5.4 The effect of optimal relative total variation. a Original image. b Result from relative
total variation with optimal
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Chan and Vese set v, the parameter that weights the curve length, at 0, evolving
their experimental equation to

Fðc1; c2;uÞ ¼Z
X
ðu0ðx; yÞ � c1Þ2HðuÞ@x@yþ

Z
X
ðu0ðx; yÞ � c2Þ2ð1� HðuÞÞ@x@y

ð5:18Þ

By removing a requirement for where to begin the initial contour, Chan and
Vese distanced their method from the traditional active contour method which
depends upon initial contour information to evolve. However, recent research has
underscored optimization benefits that can be gained from using edge maps to
initiate the contour in an ACWE [20].

Our method for segmentation begins with applying the Darwinian PSO threshold
segmentation routine to an image and then passing the thresholded image through
the Darwinian PSO relative total variation scheme to separate structure and texture.
As an intermediate step, the image has clear delineations between the optimized
thresholded regions in its intensity profile. The Darwinian PSO threshold seg-
mentation routine outputs a three-layer image with the weights of each catego-
rization embedded in each layer. If there are only three threshold levels, then each
layer of the output image represents one class. By using the maximum variance
between class information provided by the optimization, a mask with sharp edges
can be extracted from the layers of the thresholded image.

As an example, consider an image that has been thresholded with the
Darwinian PSO threshold optimization scheme into three classes. The maximum
variance between each class is the global best fitness value for each class and can be
used to choose which layer to use for an initial contour. Figure 5.5 shows the output
of such a segmentation given by the optimized thresholding scheme.

The intensity levels that reflect the maximum variance between classes for each
of the layers in Fig. 5.5 are given in Table 5.2.

As mentioned in Sect. 5.2.3, Chan and Vese gave a theoretical formulation for
an eight-phase ACWE with three level sets. To the author’s knowledge, the
eight-phase ACWE has not been implemented in the traditional Multiphase ACWE
formulation. Therefore, reflecting the common practice of using two level sets—
resulting in four phases—for multiphase ACWE, only two of the class segmenta-
tions can be used as initial masks for the optimized ACWE algorithm. By
inspection, it is noted the general results that produce the best segmentation in the
three level threshold segmentations with the Darwinian PSO are the classes with the
largest variance. For the example in Fig. 5.5, then, Class 2 and Class 3 would be
selected as the masks to feed into the optimized Multiphase ACWE. The selection
of the classes to use as masks becomes a simple matter of initiating an if-then
statement after evaluating the difference in the variances.

Furthermore, since the optimized Multiphase ACWE is operating on a roughly
segmented image, it is advantageous to use the edge map of the initial masks to help
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regulate the energy of the method. Recording the binary edge maps of the initial
masks as m = {m1, m2}, then the contour regulation term of the contour can be
expressed as

v
Z
X
ðHðuÞ � mÞ2dxdy: ð5:19Þ

where ϕ = {ϕ1, ϕ2} and H is the Heaviside function, given by

HeðuÞ ¼ 1
2
ð1þ 2

p
arctanðu

e
ÞÞ: ð5:20Þ

Furthermore, by expressing c = {c11, c10, c01, c00} as the mean of each phase,
we can write the generalized formulation for the optimized Multiphase ACWE with
a mask regularizing term as

Fig. 5.5 Three-level segmentation results of Darwinian PSO thresholding

Table 5.2 Intensity levels
for maximum variance
between classes for Fig. 5.5

Class 1 Class 2 Class 3

110 59 43

183 147 150
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As an example of the effectiveness of this algorithm, Fig. 5.6 demonstrates the
resulting segmentation of the original image in Fig. 5.5 by the optimized
Multiphase ACWE and setting Class 2, Class 3 segmentations as initial masks. As
the results demonstrate, the method can quickly segment the simple image.

5.3.4 Workflow of Proposed System

Due to the evolutionary particle swarm algorithm used in two of the intermediate
steps—one a novel application of Darwinian particle swarm optimization—the
entire system is automated. Figure 5.7 shows workflow of the proposed system.
The optimization algorithms provide computationally low-cost solutions for

Fig. 5.6 Segmentation results of a simple image using the optimized Multiphase ACWE
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traditionally, high-computational cost methods. The information provided by the
best fitness values of intensity thresholding and smoothing window directly influ-
ence the information given to the segmentation process.

5.4 Experimental Results

In this section, we provide experimental results applied to various remote sensing
images. Care was taken to select images that represent a large variety of remote
sensing tasks: urban, rural, oceanic monitoring, vegetation indexing, and
aerial/satellite surveillance. Data used in this study were collected from various sites
and include the following data banks: USGS EarthExplorer [21], University of
Massachusetts Computer Vision Research Group [22], and University of Southern
California School of Engineering [23].

5.4.1 Results

The following tables reflect the original image, roughly segmented image, selected
masks, structure image, and final segmentation. Reported results are restrained to
the classes of images mentioned (Figs. 5.8, 5.9 and 5.10), that is, oceanic moni-
toring (Fig. 5.8), rural (Fig. 5.9), urban (Fig. 5.10), vegetation indexing (Fig. 5.11),
and aerial/satellite images (Figs. 5.12, 5.13 and 5.14). The images represent aerial

Fig. 5.7 Workflow of proposed system
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Fig. 5.8 Coastline segmentation

Fig. 5.9 Rural segmentation. Here, dark fields are the regions of interest
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remote sensing resolution, low-resolution satellite images, and high-resolution
satellite images. The parameters used in the system are as defined in Sect. 5.3. As a
final note, the images were not preprocessed from their obtained state. Haze, blur,
and other artifacts were left intact in the original image.

Fig. 5.10 Urban architecture segmentation

Fig. 5.11 Rural/vegetation segmentation
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By using the information provided by the evolutionary algorithms, i.e. maximum
between class variance and optimum size for the soothing window, the workflow
combines to preprocess images for the segmentation algorithm. The threshold seg-
mentation gives a rough segmentation based upon intensity levels and the smoothing

Fig. 5.12 Surveillance segmentation

Fig. 5.13 Urban/Suburban architecture segmentation
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Fig. 5.14 Segmentation final contours and the original images for the segmentations
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window operator removes texture from the image that could influence the active
contour. The active contour method integrates the optimal mask from the
threshold-optimizing module and the structure-texture separation from the smoothing
module into a multiphase active contour with the edge map of the mask penalizing the
energy to keep the contour in the neighborhood of the region of interest.

5.4.2 Discussion

An immediate notable observation is the lack of sophistication for the heuristic used
in the region analysis portion of the active contour. To provide a method that
focuses on the advantages of evolutionary schemes, a conscious decision was made
by the researchers to ignore task specific heuristics to determine c11, c10, c01, c00.. It
is a recommendation, especially in the field of remote sensing image processing, to
use all of the spectral and radiation information made available from the satellite
sensors to improve and refine the segmentation of remote sensing images. Many of
the images in the test set would have benefitted from the use of known heuristics to
differentiate classes of objects of interest.

Still, the contour images showed a clear segmentation of complicated images.
The active contour method, using intensity values in the phases, was attracted to
objects with intensity levels on the white end of the color spectrum. Fabricated
structures were more easily segmented, partially due to their uniformity in color and
their inherent smooth texture. However, vegetation dense images were still partially
segmented even with the extreme noise in the images. It is the opinion of the
researchers that the use of known heuristics for vegetation would greatly help the
segmentation of such images with this method. It is relatively easy to incorporate
such heuristics into active contour energy formulations and the method benefits
from the wealth of research relating to modifications to Active Contours without
edges. Readers are directed to [21, 22], and the references in them to learn more
about known heuristics that have been shown to aid in classification/segmentation
of remote sensing images. For information on incorporating heuristics into active
contour models, [23] and its references provide a good beginning for understanding
the topic. However, the authors wish to stress the use of more specific heuristic to
influence the active contour energy would not result in a change in the evolutionary
algorithms that drive the system. If a researcher chooses to use heuristics that are
more sophisticated for optimizing the energy of the contour, the system will still
operate with the same workflow.

5.4.3 Conclusion and Future Research

The control system for processing a remote sensing image with the use of two
Darwinian particle swarm optimizations of state-of-art methods and the passing of
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the optimization to a traditionally computationally expensive method executed well.
Without the intelligent optimization method, the task would have been too com-
putationally expensive to compute without switching to parallel processing. As
such, the experiments were conducted on an IvyBridge5 processor machine with 64
bit architecture and 8 gigabits of SDRAM and each experiment was completed in
under twenty seconds. The use of Darwinian particle swarm optimization imple-
mented in this chapter to determine the optimum parameter value for smoothing is a
new application of evolutionary programming. Additionally, the use of penalizing
the contour energy with the edge map of the mask for each level set helped optimize
the minimization of the contour energy. For future experimentation, the researchers
plan to incorporate heuristics other than intensity values into the active contour
formulation as well as extend the method into classification of objects in remote
sensing images. The authors’ novel use of Darwinian particle swarm optimization
to determine the optimal smoothing window for the structure-texture separation will
be explored further for other parameter optimization applications. The fact remains
that the new combination of evolutionary algorithms’ best-fit values provided by
the Darwinian particle swarm optimization for thresholding and the novel use of the
DPSO for determining optimal smoothing window size provided an automatic,
computationally inexpensive segmentation of cluttered, distorted, and poorly
sampled remote sensing images.
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Chapter 6
Tissue Segmentation Methods Using 2D
Histogram Matching in a Sequence of MR
Brain Images

Vladimir Kanchev and Roumen Kountchev

Abstract MR brain image sequences are characterized by a specific structure and
intra- and inter-image correlation but most of the existing histogram segmentation
methods do not consider them. We address this issue by proposing a method for
tissue segmentation using 2D histogram matching (TS-2DHM). Our 2D histogram
is produced from a sum of co-occurrence matrices of each MR image. Two types of
model 2D histograms are constructed: an intra-tissue 2D histogram for separate
tissue regions and an inter-tissue edge 2D histogram. Firstly, we divide a MR image
sequence into a few subsequences using wave hedges distance between 2D his-
tograms of consecutive MR images. Then we save and clear out inter-tissue edge
entries in each test 2D histogram, match the test 2D histogram segments in a
percentile interval and extract the most representative entries for each tissue, which
are used for kNN classification after distance learning. We apply the match-
ing using LUT and two ways of distance metric learning: LMNN and NCA.
Finally, segmentation of the test MR image is performed using back projection with
majority vote between the probability maps of each tissue region, where the
inter-tissue edge entries are added with equal weights to the corresponding main
tissues. The proposed algorithm has been evaluated with IBSR 18 and 20, and
BrainWeb data sets and showed results comparable with state-of-the-art segmen-
tation algorithms, although it does not consider specific shape and ridges of brain
tissues. Its benefits are modest execution time, robustness to outliers and adaptation
to different 2D histogram distributions.
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6.1 Introduction

Magnetic resonance imaging (MRI) possesses excellent soft-tissue contrast and
high spatial resolution, which makes it a widely used method for anatomical
imaging. One of its main tasks is medical image segmentation—to partition an
image into different regions, corresponding to different tissues and organs.
Currently, the segmentation task, in the case of MR images, is far from being solved
because of non-consistent parameters, intra- and inter-subject intensity variability,
low contrast and the presence of different types of noise, caused by time and
equipment limitations. Moreover, the increased amount of MRI data requires the
segmentation algorithms to be more robust to different intensity tissue ranges,
resolution, and number of MR images in a sequence. A review of the current
problems, methods, and future trends in MR brain image segmentation is given in
[3, 11], while the interested reader is referred to [6] for more information about the
necessary mathematics for biomedical imaging.

The image histogram is a well-known feature in medical imaging and it is used
for segmentation, recognition, and image retrieval. One of its main properties is that
there is no unique mapping between a histogram and a given image. Classic his-
togram segmentation approaches rely on the intensity distribution of individual
pixels. They are based on the assumption that the intensity levels of each tissue stay
within a separate interval and each pixel represents a single tissue type. In fact, this
assumption is seldom satisfied: intensity ranges of separate tissues often overlap,
pixels from a single tissue belong to different ranges due to intensity inhomogeneity
(INH) artifact, and a single pixel includes a signal from more than one tissue due to
the partial volume effect (PVE) artifact [44]. Therefore, there exists significant
overlapping between separate histogram segments, which correspond to different
tissue regions in the MR image. The histogram also changes its shape in the
presence of INH and PVE artifacts. Another problem is the non-normal properties
of MRI data, which leads to the use of more complex segmentation models. Hence,
it is problematic to use the histogram to extract accurate intensity thresholds or to fit
distributions based on its form. Another problem is that it does not contain spatial
information from a MR image or a straightforward way to include prior
information.

In order to use spatial correlation, existing between neighboring pixels in MR
images, we construct a 2D histogram as a sum of co-occurrence matrices; thus, after
normalization, the 2D histogram describes the probability distribution of pixel pairs
at a given offset in the MR image. Until now, the co-occurrence matrices were used
mostly for texture classification by extracting texture features [4] and medical
image retrieval [58]: in general, they described structures in images. We use the 2D
histogram as a global feature, do not quantize it which allows at the end segmen-
tation using back projection into a local window due to its direct correspondence
with pixel pairs from the test MR image. The global nature of the 2D histogram
leads to lower computational load, as well.
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Histogram matching [16] (or also called histogram specification) is a method
used to generate a processed image that has a specified histogram. It is a classical
preprocessing technique, used mostly for image enhancement in the case of
degraded images. It aims to reshape the histogram of an image to stress certain
intensity levels, characteristic of certain objects, and to suppress other intensity
levels, characteristic of noise or image background. In our work, we have proposed a
new application of the matching operation—we match a test 2D histogram and use
it to construct a training set of each 2D histogram segment. Then we classify the test
2D histogram using a k-Nearest Neighbor (kNN) classifier after distance metric
learning and finally we perform MR image segmentation using back projection.

Another common problem is integration of prior knowledge into the segmen-
tation algorithm: in our method we integrate it using 2D histogram matching—the
prior knowledge, presented by region MR images, corresponds to automatically
selected MR images from the MR image sequence. For this purpose, we divide the
MR image sequence into subsequences using a similarity distance coefficient
between test 2D histograms of consecutive MR images. We construct model 2D
histograms for each subsequence using their first and end region MR images. Thus,
better accuracy is achieved, since tissue parameters vary smoothly along a MR
image sequence.

So our main contribution consists of developing a tissue segmentation method
using 2D histogram matching, applied to MR subsequences; the segmentation
method consists of the following stages:

• divide a MR image sequence into few subsequences by using a similarity dis-
tance coefficient between 2D histograms.

• match a test 2D histogram in a 1D domain using model region 2D histograms.
• classify the test 2D histogram with a kNN classifier after distance metric

learning.
• segment the test MR image by back projection using the classified 2D

histogram.

In the next section we will provide more information about the existing research,
related to our developed algorithm and a few state-of-the-art approaches in medical
brain segmentation such as Markov random fields (MRF)/hidden Markov models
(HMM), variational and level set methods, mixture model methods, and fuzzy
methods, related to fuzzy c-means (FCM) clustering.

6.2 Related Works

The common histogram methods for medical segmentation, based on the intensity
values of individual pixels, use information, extracted directly from the histogram:
for example, some of the methods perform thresholding [50], while others analyze a
histogram outline or model its peaks [32], relative positions [42], or fit probability
distributions to a histogram [25]. Zagorodnov and Ciptadi [51] consider tissue
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intensity probabilities as a blind source separation problem: unknown distributions
are treated as sources and the histograms of subvolumes as mixtures. Another
current approach is the extraction of a feature vector from the image histogram and
then training another classifier as SOM [34] in order to perform classification and
finally image segmentation.

There are two main groups of methods, which use spatial correlation (spatial
smoothness) within a given region in the MR image: methods, related to MRF and
variational (level set) methods. In the first group, the discrete energy model
embraces contextual information and spatial continuity. The energy function is
optimized by another method like simulated annealing (SA) or iterated conditional
modes (ICM). For example, spatial information is incorporated into a segmentation
model by contextual constraints on neighboring pixels through hidden Markov
random field (HMRF) [57]. The current MRF methods such as [31] set weights to
different classes during maximum a posteriori (MAP) estimation or introduce
specific clonal selection algorithm (CSA) and Markov chain Monte Carlo (MCMC)
to perform HMRF model estimation [55].

In the second group of the variational methods, the MR image is modeled using
piecewise smooth function, while in the level set methods contours or surfaces are
represented as the zero level set of a higher dimensional function; the second group
of methods achieves sub-pixel accuracy, closed contour of segmentation and
automatically extracts complex boundaries. It also allows incorporation of different
prior information as shape prior constraints [29], intensity distribution [8], or
specific information for INH artifact [27], existing in the MR image. Another
method for region segmentation in medical volume images using deformable model
and level set theory is given in [26].

The Bayesian model provides another mathematical approach to introduce prior
information in the segmentation process: it consists of a prior model and a gener-
ative observation model. Another approach introduces an anatomical atlas as prior
information, an average estimate from one or few subjects of similar age; the
anatomical atlas can be also binary or gray-scale and can be used as ground truth, as
well. For example, in [30] an adaptive kernel bandwidth is calculated using a
Bayesian approach; a review of atlas segmentation methods is given in [7], while
the authors in [24] suggest a method for the integration of the atlas in a MRF model.
Although the atlas segmentation methods provide decent segmentation results, they
require a registration of each test MR image with the given atlas and thus a reg-
istration error is introduced; some problems also arise with missing tissues, pres-
ence of noise, and artifacts.

Another suggested histogram is a 2D histogram for the segmentation of
renal-biopsy images [52], where general object-background segmentation is per-
formed using Otsu thresholding of a 2D histogram. The coordinates of the 2D
histogram entries are intensity value of a central pixel and an averaged intensity
value of other pixels in a neighboring window. The method is extended by a
2-phase 2D thresholding algorithm [9] and a curvilinear thresholding method [53].
The authors take advantage of the discriminative position of the background, object,
and the image edges in the 2D histogram. Although they perform back projection
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segmentation, they neither exploit all existing information from the 2D histogram,
nor construct more complex models, nor train them.

As we already mentioned in the introduction, histogram matching [16] is a
method used to generate a processed image that has a specified histogram. It is
implemented usually as a single-valued mapping between source and target his-
tograms using a look-up table (LUT) or dynamic programming [39]. In medical
imaging it is applied to various operations: histogram standardization [35], an issue,
arising due to inter-scan intensity variation, MR image normalization [13], regis-
tration [41, 42], and image enhancement [38, 48]. Here, histogram matching is
usually performed before segmentation: it is not an intrinsic part of the segmen-
tation process.

MR image segmentation also implies pixel classification and depending on the
used prior knowledge, it can be divided into three groups: unsupervised, supervised,
and semi-supervised methods, which are set into inductive and transductive
learning framework. The supervised methods require complete labeled training data
to construct a model and therefore achieve better results but make rigid assumptions
of MRI data, which are often not met. The unsupervised methods group similar
pixels without preliminary information and have higher reproducibility and
adaptability: they also make fewer assumptions to MRI data. The semi-supervised
methods are situated between both groups and use limited labeled training data,
incorporated in different approaches: ensemble framework [2], Bayesian trans-
ductive learning [25], and spectral clustering [56]. The transductive methods are
slightly different from the semi-supervised methods: they do not construct a pre-
dictive function and use all test data during classification; they also employ intrinsic
test data structure but are computationally intensive.

A mixture model is a type of unsupervised learning: it considers data as a set of
observations coming from different probability distributions. It might also be
parametric or non-parametric. The parametric models use a known function of
parametric distribution, for example, Gaussian mixture models (GMM) [12] or
Rician mixture models (RMM) [37] and their parameters are often determined
statistically by maximum-likelihood (ML) or MAP approaches. Local interaction
between pixels is incorporated using a regularization term into the paramet-
ric model [12]. On the other hand, non-parametric models, which are based, for
example, on the intensity distribution of pixels, are more accurate but slower,
compared with the parametric models. Mean-shift [30] and kNN classification [46]
are popular non-parametric methods in medical segmentation.

The fuzzy segmentation methods suggest another approach to solve the problem
of overlapping intensity ranges of tissue regions in MR images. They assume that
each pixel belongs to more than one tissue/class, which is consistent with the PVE
artifact. Currently, this is a very popular approach in medical segmentation. The
recent trend is to introduce local and global spatial information in the fuzzy seg-
mentation models—local pixel neighborhood into GMM [20, 22] or into FCM
algorithm [21], weights of image patches into fuzzy clustering [19]. The drawbacks
are slow speed of convergence, sensitivity to the weights of different features, and
lack of a general way to incorporate prior knowledge.
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Our work aims to develop a tissue segmentation method within a transductive
learning framework using 2D histogram matching. We aim to show that our seg-
mentation results are at least comparable with the most popular current
state-of-the-art methods, presented in this section.

6.3 Overview of the Developed Segmentation Algorithm

In our work, we propose a MR image segmentation method using a 2D his-
togram matching. The method has the following main contributions: (1) introduc-
tion of a 2D histogram for tissue segmentation, (2) algorithm for 2D histogram
matching and classification, (3) algorithm for MR image segmentation using back
projection of the classified 2D histogram.

We construct our 2D histogram using a sum of eight co-occurrence matrices of a
MR image; it incorporates correlation between adjacent pixel pairs, and correlation
with other MR images from the sequence by matching. From probabilistic point of
view, it provides probability occurrence of the pixel pairs in a MR image.

Our algorithm consists of the following steps: (1) we divide the whole sequence
into a few subsequences, as we calculate a similarity coefficient based on wave
hedges distance metric between 2D histograms of consecutive MR images; we
make the subsequence division by keeping the similarity coefficient into a prede-
fined interval. Then (2) we use region MR images, corresponding to a start and end
MR images of the subsequence, to build two 2D histogram models for each sub-
sequence: model intra-tissue 2D histograms for separate tissue regions and
inter-tissue edge 2D histograms. Then (3) we match segments of the test 2D his-
togram, corresponding to the different tissue, in a 1D domain using a LUT with
model intra-tissue 2D histograms. Next, (4) we subtract the initial from the matched
vector of each segment of the test 2D histogram, quantize their difference using
k-means clustering and preserve the largest values, which correspond to the most
common pixel pairs between test and different region MR images. Thus, we
achieve stable discrimination between the 2D histogram segments. After that,
(5) we apply one of two distance metric learning methods: Large Margin Nearest
Neighbor (LMNN) or Neighbourhood Component Analysis (NCA) before the
k-Nearest Neighbor (kNN) classification of the test 2D histogram. Then, (6) we
construct a probability map for each tissue from the classified test 2D histogram
through back projection into a local window, while we also add inter-tissue edge
pixel pairs with equal weights to the main corresponding tissues. Finally, (7) seg-
mentation is performed with a majority vote between the probability maps.

We apply our developed algorithm to IBSR 18, IBSR 20, and BrainWeb data
sets. The results are comparable with benchmark and state-of-the-art MR seg-
mentation methods due to the employed correlation; on the other hand, the specific
shape of brain tissues is not considered and many edge pixel pairs of the ridges are
misclassified. Other problems, such as sensitivity to different artifacts, e.g. PVE and
INH, remain as future tasks for the algorithm improvement.
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The present work shows in the next sections our segmentation method using 2D
histogram matching, which consists of the following stages (Fig. 6.1): MR image
preprocessing and division into MR image subsequences, calculation of model and
test 2D histograms, matching of the test 2D histogram, then distance metric learning
and classification of the test 2D histogram with kNN classifier, and finally segmen-
tation of the test MR image using back projection. In the results section we provide
description of parameters of our algorithm, the test results after its application to
IBSR 18, IBSR 20, and BrainWeb data sets and we also highlight the differences
between them. Finally, the results are discussed and main conclusions are made in the
last two sections, and a few ideas for the algorithm improvement are given, as well.

6.4 Preprocessing and Construction of a Model and Test
2D Histograms

In our paper, we introduce a 2D histogram model to segment three main neu-
roanatomical tissues of a healthy brain inMR images: whitematter (WM), graymatter
(GM), and cerebrospinal fluid (CSF). The other structures such as the scalp, skin, etc.
are of no interest to us.We also use three supplementary edge classes for adjacent pixel
pairs in the current work: gray matter-white matter (GM-WM), cerebrospinal
fluid-gray matter (CSF-GM), and cerebrospinal fluid-white matter (CSF-WM).

Our segmentation model is applied locally to MR image subsequences; for this
purpose each MR image sequence is divided into few MR subsequences and
additional preprocessing operations are applied to each MR image, test and model
2D histograms, as well. Since our segmentation model is included into a trans-
ductive learning framework, we also describe semi-supervised and transductive
learning methods.

Fig. 6.1 Algorithm for MR image segmentation using 2D histogram matching
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6.4.1 Transductive Learning

As we mentioned in the introduction, we are interested in the semi-supervised
methods because of the limited and expensive labeling of training data. According
to the employed statistical inference, the semi-supervised learning methods are
divided into two main groups [59]: inductive and transductive methods.

On the one hand, inductive inference aims at learning mapping from a train to a
test set, since test set instances are not known beforehand and every new test
instance is mapped according to a learned function. On the other hand, with
transductive inference, train and test sets are given from the start and each test set
instance is classified by comparing with all train instances, and this gives better
classification performance at a much higher computational cost. In our case
transductive learning is more appropriate since each test MR image needs a sepa-
rately developed ad hoc model that best fits it due to its structure variability and
possible presence of artifacts using a more complicated single general model for all
MR images from the MR image sequence.

More formally, we have labeled train data L ¼ fxl; ylgLl¼1 and unlabeled test data
U ¼ fxl0 gLþU

l0¼Lþ 1 (usually U � L, where x and y are data and label vectors,
respectively. In the case of inductive inference the main aim is to learn such a
function f1, which predicts labels of the future test data:

f1 : X ! Y ; ð6:1Þ

so f1 is a predictor function on future data, beyond fxl0 gLþU
l0¼Lþ 1.

In the case of transductive inference we do not learn an explicit function f1, but
only calculate labels for test data U:

f1 : X
LþU ! YLþU ; ð6:2Þ

such that f1 is a predictor function on the unlabeled data fxl0 gLþU
l0¼Lþ 1.

6.4.2 MRI Data Preprocessing

The aim of MRI data preprocessing is to transform MR image sequences so that
subsequent operations produce more accurate results and to place the MR image
sequences from different test data sets under equal conditions for validation. It
consists of the following three operations:

• removing unnecessary tissues.
• transforming separate MR images into coronal plane.
• optional non-linear mapping of intensity values of each MR image (gamma

correction).
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We remove redundant tissues from the data sets in a different way: while real
MR brain image sequences from IBSR 18 and 20 data sets are provided with their
pre-processed versions, with suppressed noise, homogenized background and
removed undesired structures, in the case of BrainWeb data sets, additional
undesired structures are particularly labeled as different classes, which facilitates
their removal.

We also transform separate MR images from the original to the coronal plane:
for instance, MR images from the real and simulated MR image sequences from
IBSR 18 and BrainWeb data sets are transformed from the sagittal to the coronal
plane. The main idea is all 2D histograms to be constructed from pixel pairs in the
coronal plane, where tissues have more compact representation.

It is optional to apply gamma correction independently to each MR image from
the real MR image sequences (IBSR 18 and 20) in order to achieve greater com-
pactness of lower intensity levels and slightly worse distinction of higher intensity
levels. Otherwise the CSF segment in a test 2D histogram would have many
scattered entries and larger distance to GM segment.

Gamma correction can be described using the following power-law function:

Iout ¼ c1 � Icin; ð6:3Þ

where Iout and Iin are intensity ranges of output (corrected) and input (uncorrected)

MR images, respectively; c1 ¼ 1
maxðIinÞ

� ��ð1�cÞ
is a normalization coefficient that

aims to preserve the initial intensity range after non-linear mapping, c is the gamma
correction coefficient, when c[ 1, we have gamma compression and c\1—
gamma expansion.

6.4.3 Construction of a 2D Histogram

We use a 2D histogram of a MR image as a basic structure in our segmentation
model. We construct the 2D histogram of a MR image (Fig. 6.2a) as a sum of K
co-occurrence matrices of adjacent pixels (Fig. 6.2b), corresponding to the
K-neighbor connectivity of a pixel. Our 2D histogram (Fig. 6.2c) is informative
since adjacent pixel pairs of uniform regions, edges, and noise are distinctive;
averaging their intensity values will concentrate them too much around the diag-
onal, as shown (Fig. 6.2d) [52], and this would reduce the information it contains.

Let us have an MR image, represented by a 2D intensity function f ðx; yÞ, which
gives a gray level of pixel ðx; yÞ, ranging from 0 to B� 1; x ¼ 1; . . .;Nx,
y ¼ 1; . . .;Ny, B—maximum number of intensity levels in the entire intensity range,
and Nx, Ny—dimensions of the MR image. Let gkðx; yÞ be the function of gray
levels of neighboring pixels of ðx; yÞ (Fig. 6.2b), where k ¼ 0; . . .;K � 1, K defines
pixel connectivity and k—connectivity direction. Let Ck

ij represent the number of
intensity transition between a pixel ðx; yÞ and its neighboring pixels with intensity
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levels f ðx; yÞ ¼ i and gkðxþ v; yþwÞ ¼ j, respectively, where 0�Ck
ij �Nx � Ny � K,

ðv;wÞ 2 f�1; 0; 1g2nfð0; 0Þg, and i; j ¼ 0; . . .;B� 1.
To describe the probability distribution of pixel pairs in a given connectivity

direction k, we introduce the following joint probability mass function pk:

pkði; jÞ ¼
Ck
ij

Nx � Ny � K ; ð6:4Þ

where
PK�1

k¼0

PB�1
i¼0

PB�1
j¼0 pkði; jÞ ¼ 1. We get Pij ¼

PK�1
k¼0 pkði; jÞ and obtain the

final result—a normalized 2D histogram.

6.4.4 Separation into MR Image Subsequences

Since tissues change their properties smoothly along the MR image sequence and
artifacts and noise do not appear in isolation, it is not suitable to apply a single
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Fig. 6.2 Construction of a 2D histogram (preprocessed and non-normalized, projected on a plane,
inverted) of a MR image (IBSR 20): a Input MR image, b Construction of our 2D histogram by
summing up K co-occurrence matrices, c Our 2D histogram, d 2D histogram from [52]
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segmentation model to the whole sequence. In order to use correlation between MR
images, we split the MR image sequence into a few subsequences by measuring the
current similarity coefficient based on wave hedges distance Dc between the nor-
malized 2D histograms E and F of the current and reference MR images—
(Fig. 6.3a) respectively [18]:

(a)

(b)

Fig. 6.3 MR image sequence: a subsequence division using similarity coefficient between
consecutive 2D histograms, b test, model intra-tissue and inter-tissue edge 2D histograms
construction in a given MR image subsequence
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DcðE;FÞ ¼
XB�1

i¼0

XB�1

j¼0

jEij � Fijj
max Eij;Fij

� �; ð6:5Þ

where i; j ¼ 0; . . .;B� 1 are the intensity levels of both 2D histograms, which are not
preprocessed;Fij andEij are the entry elements (pixel pairs) of the intensity value ði; jÞ
of the two 2D histograms, respectively. The main idea is to calculate the similarity
coefficient between them by summing their element-wise difference, normalized to
the greater one from each of the two elements. At the beginning, we take the first MR
image as a reference MR image and the next MR image as a subsequent MR image,
then the coefficient Dc is computed for each next MR image from the MR image
sequence, while a coefficient Dr, corresponding to the reference MR image takes
value one: if the normalized similarity distance value of Dc=Dr goes out of a certain
range (Fig. 6.4), then a new subsequence starts, we assign Dc to Dr and then Dc=Dr

takes value one. A 2D histogram matching is performed by the calculation of
absolute distance and we obtain better results by matching similar 2D histograms.

6.4.5 Types of 2D Histograms and Preprocessing

We construct test, model intra-tissue and inter-tissue edge 2D histogram in the same
manner (Fig. 6.3b)—by summing K co-occurrence matrices of adjacent pixel pairs
of each MR image of the sequence. Hence the tissue-background edge pixel pairs
are situated mainly on the first row and column, while the background pixel pairs
stay mostly at the entry ð1; 1Þ; we apply different types of preprocessing to remove
them, considering their function in the segmentation algorithm.

The test 2D histogram is made using the calculation of a 2D histogram of a test
MR image. It has a larger area and a few clusters with more peaks on the diagonal.
The clusters are comparatively close and there is a considerable overlapping

0.7

1.1

1

0.9

0.8

similarity distance
similarity distance range
reference MR images

0 10 20 30 40 50

# MR image

0.6

Fig. 6.4 Distance similarity metric for 19th MR image sequence (IBSR 20)
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between them. The test 2D histogram is not compactly distributed due to its larger
intensity range; additionally the presence of inter-tissue edge pixel pairs and
sometimes artifacts deteriorates its compactness.

The model intra-tissue 2D histograms (Fig. 6.5a–c) are made by summing 2D
histograms of corresponding model region MR images. Their entries are situated on
the diagonal, forming a cluster with a few peaks within their intensity range, which
slightly overlap; there are outliers, as well.

We introduce a model inter-tissue edge 2D histogram to hold pixel pairs of
inter-tissue edges (Fig. 6.5d), which occur in model MR images for a given sub-
sequence. We construct it in the following way: firstly, we construct a 2D histogram
of a model MR image, by combining all its model region MR images, then we
subtract from it 2D histograms of the separate model region MR images to obtain an
inter-tissue edge 2D histogram, whose entries belong only to CSF-GM, GM-WM,
and CSF-WM edge classes and finally we sum the two inter-tissue edge 2D his-
tograms, corresponding to the two model MR images; the edge pairs are scattered
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Fig. 6.5 Model 2D histograms (IBSR 20) (preprocessed and non-normalized, projected on a
plane, inverted): a, b, c of CSF, GM, and WM tissues, respectively, d of CSF-GM, GM-WM, and
CSF-WM edges

6 Tissue Segmentation Methods Using 2D Histogram Matching … 195



on both sides of the diagonal (Fig. 6.5d) and their position reflects the fact that
some of them contain a PVE artifact.

During preprocessing all kinds of 2D histograms, we firstly set to zero the first
row and column entries. Then the inter-tissue edge 2D histogram avoids any further
preprocessing. In the case of a test 2D histogram we keep for back projection all
inter-tissue edge entries using indices of non-zero entries of the model inter-tissue
edge 2D histogram and after that we set them to zero. Thus, only intra-tissue pixel
pairs remain in the test 2D histogram. This operation preserves the outline and its
initial form and does not change the positions of peaks and valleys.

6.5 Matching and Classification of a 2D Histogram

Using 2D histogram matching we localize and extract the most representative 2D
histogram entries of each segment, corresponding to each tissue region in a test MR
image; thus we make a train set for kNN classification (Fig. 6.6). We apply the
matching to a 1D domain after truncation within a percentile interval in order to
reduce the computational load, typical of transductive methods, and the influence of
outliers, as well.

Fig. 6.6 Construction of train 2D histogram segments using 2D histogram matching
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6.5.1 Construct Train 2D Histogram Segments Using 2D
Histogram Matching

The 2D histogram matching using LUT can be described in two stages: in the first
stage we process a model 2D histogram of each region MR image, while in the
second stage we match each test 2D histogram segment for each model 2D his-
togram for a given MR image subsequence.

1. First we threshold the model 2D histogram to remove outliers. Since a 2D
histogram is not suitable for direct matching due to its sparse nature and large
memory requirements, we extract all non-zero entries by zig-zag reordering
(Fig. 6.7) of a 2D histogram Mr of the rth region MR image, similar to the one
used in JPEG encoding [47], into a model vector mr, as shown for the tth
element:

mrtði;jÞ ¼ Mrij; if Mrij [ 0;
;; if Mrij ¼ 0;

�
ð6:6Þ

where r ¼ 1; . . .;R, tði; jÞ ¼ 1; . . .;Nr, i; j ¼ 0; . . .;B� 1, R is the number of
regions, while Nr—the number of non-zero entries, and B—the maximum
number of intensity levels in the entire intensity range of Mr. We apply the
zig-zag reordering to exploit the existing correlation and symmetry in Mr.

2. Calculate the tth element of a normalized vector m̂r of mr and its cumulative
model vector ĉr:

m̂rt ¼ mrt

nr
; ð6:7Þ

ĉrt ¼ Tðm̂rtÞ ¼
Xt

e¼1

m̂re; ð6:8Þ

where t ¼ 1; . . .;Nr and nr is the sum of all mr elements.

Fig. 6.7 2D histogram match using vector matching with a LUT
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3. Truncate ĉr to ĉ0r (N
0
r\Nr elements) by the lower and upper thresholds grl and

gru (percentile values) of a given percentile interval, calculate their corre-
sponding entry threshold vectors in Fr : hrl and hru. Truncate m̂r to m̂0

r alike.

Next, we threshold each test 2D histogram using hrl and hru and match with
truncation using ĉ0r for each model region, assuming that the number of model
regions and tissue regions in each test MR image in a given subsequence is equal.

1. Threshold a test 2D histogram H (Q elements) by hrl and hru to obtain the rth
segment Hr, where r ¼ 1; . . .;R.

2. Extract by zig-zag reordering (Fig. 6.7) non-zero entries of the Hr into a vector
hr (Qr elements). After that, indices of the extracted non-zero entries are
preserved.

3. Calculate the zth element of a normalized vector ĥr of hr and its cumulative
vector m̂r:

ĥrz ¼ hrz
qr

; ð6:9Þ

m̂rz ¼ GðĥrzÞ ¼
Xz

e¼1

ĥre; ð6:10Þ

where z ¼ 1; . . .;Qr and qr is the sum of all hr elements.
4. Truncate m̂r to m̂0r (Q

0
r\Qr elements) by grl and gru. Truncate ĥr to ĥ0r and the

indices of the non-zero entries alike.
5. Calculate a specified vector ŝ0r:

ŝ0r ¼ G�1ðm̂0rÞ ¼ G�1ðĉ0rÞ ¼ G�1 Tðm̂0
rÞ

� �
: ð6:11Þ

For that purpose we build a LUT by relating the two mappings for cumulative
vectors m̂0r and ĉ0r. For each zth index of m̂0r, we find out the corresponding tth
index of ĉ0r, where z ¼ 1; . . .;Q0

r and t ¼ 1; . . .;N 0
r, so that the best match

between m̂0rz and ĉ0rt regarding L1 min distance exists:

m̂0rz � ĉ0rt
		 		 ¼ min

z0
m̂0rz0 � ĉ0rt
		 		; ð6:12Þ

which creates the following LUTrz ¼ t, a monotonic increasing function for
the rth tissue region in a test MR image.

6. Using LUTr and m̂0
r, we transform ĥ0r to ŝ0r (Fig. 6.7).

7. Calculate the zth element of a difference vector d̂0r (Fig. 6.6):

d̂0rz ¼ ŝ0rz � ĥ0rz: ð6:13Þ
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8. Partition d̂0r into O ðO�N 0
mÞ sets S ¼ fS1; So; . . .; SOg by k-means clustering

(Fig. 6.6) with a L1 distance objective:

arg min
S

XO
o¼1

X
d̂0rz2So

d̂0rz � lo
		 		; ð6:14Þ

where lo is the mean value of cluster So, o ¼ 1; . . .;O, o—a cluster index. We
set all elements of d̂0r, which are not members of the largest SO cluster, to zero.

9. Back transform d̂0r to a matrix Ĥ0
r (Q

0
Or non-zero elements) using the truncated

indices of non-zero entries of the test 2D histogram segment Hr (Fig. 6.6).

6.5.2 2D Histogram Classification After Distance Metric
Learning

To classify the test 2D histogram H (Fig. 6.8a), we first transform a multi-class
problem into a group of binary classification problems using the all-by-all method
[17] and after kNN classification and distance metric learning we obtain a classified
test 2D histogram (Fig. 6.8b). Our test set consists of all entries of all test 2D
histogram segments Hr (Fig. 6.8c–e), while the train set consists of the all calcu-
lated entries of the train 2D histogram segments Ĥ0

r (Fig. 6.8f–h). Feature space is
constructed only from the x and y coordinates of the train and test set entries, to
decrease the computational burden and to avoid the impact of segment size. We
selected two types of distance metric learning methods: NCA (Neighbourhood
Component Analysis) [15] and LMNN (Large Margin Nearest Neighbour) [49] to
improve the kNN classification results. In the first case it learns a global metric,
which is applied equally over the entire feature space, while in the second case it
learns also a global metric that satisfies only the local constraints: both methods
consider statistics of input space and the importance of separate features instead of
relying on fixed distances in feature space.

6.5.2.1 Pairwise (All-Versus-All) Classification

The classification of the test 2D histogram is reduced to a choice among all existing
pairs of R tissue classes: each binary classifier discriminates each pair of classes and
discards the rest of them [17]:

f ðxÞ ¼ arg maxð
X
r0

frr0 ðxÞÞ; ð6:15Þ
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where r; r0 ¼ 1; . . .;Rðr 6¼ r0Þ, frr0 represents a decision function between tissue

classes r and r0; frr0 ¼ �fr0r and the whole operation requires
R�ðR�1Þ

2 binary classifiers.

6.5.2.2 Distance Metric Learning

The main idea of distance metric learning is to adapt a distance metric to a given
data. For example, we show fixed distance Lk, which is a generalization of L1
(Manhattan distance) and L2 (Euclidean distance):

Lk ¼ ð
Xd
j0¼1

jamj0 � anj0 jkÞ
1
k; ð6:16Þ

where am; an are data vectors and am; an 2 R
d , i ¼ 1; . . .; n0 and n0–number of

vectors, d—number of features.
Most distance learning methods are based on the learning of Mahalanobis dis-

tance DQ:

DQðam; anÞ ¼ ðam � anÞT Q�1ðam � anÞ; ð6:17Þ

where Q 2 R
d�d is a covariant, positive definite or positive semi-definite, matrix. If

Q is constrained to be a positive matrix, it allows convex optimization but it has a
computationally prohibitive learning. Hence, most methods prefer to regard it as a
positive semi-definite matrix and thus refusing to use the favorable properties of the
convex optimization. In the case of LMNN distance metric learning, the matrix Q is
denoted usually as A.

In our case, we have a training set fa1; ai0 ; . . .; an0 g with known class labels
ff1; fi0 ; . . .; fn0 g, where ai0j0 2 f0; . . .;B� 1g, test set fu1; uk0 ; . . .; um0 g, where
ui0j0 2 f0; . . .;B� 1g, fi0 2 f1; . . .;Rg, i0 ¼ 1; . . .; n0, k0 ¼ 1; . . .;m0, j0 ¼ 1; . . .; d,
n0 ¼ PR

r¼1 Q
0
Ir, m

0 ¼ Q0 � n0;Q0 is the number of all test elements from the test
matrix H, and d—number of the features of the 2D histogram (d = 2).

6.5.2.3 Large Margin Nearest Neighbor

Here, we have a supervised global metric, which enforces local constraints: it learns
a Mahalanobis distance measure for kNN classification. The main idea is to enforce
k-nearest neighbor train set elements around a given test element to make it belong
to the same class, while the train elements from different classes be separated by
different margin; this is an optimization problem, solved by semi-definite pro-
gramming approach.

Let us describe how LMNN distance metric learning is applied in our case: we
have vectors am, an, and aq from the training set. The set Sa consists of all pairs
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ðam; anÞ, where aq is one of the k-nearest neighbors in the same class (target) as am.
Similarly, the set Ra consists of all triples ðam; an; aqÞ, where am and an are target
members of the same class, while aq is an element with a different label (impostor).
We optimize the distance metric DA over the space of positive semi-definite
matrices A, so we minimize the following pseudo distance:

DAðam; anÞ ¼ ðam � anÞTAðam � anÞ; ð6:18Þ

where A should be a positive semi-definite matrix in order DA to be a well-defined
metric.

Hence, we optimize the distance metric DA in Eq. (6.18) over the space of
positive semi-definite matrices A:

min
A<0

X
ðm;nÞ2Sa

DAðam; anÞþ c
X

ðm;n;qÞ2Ra

1þDAðam; anÞ � DAðam; aqÞ
� �

þ ; ð6:19Þ

where in the second term ½z0� þ ¼ maxðz0; 0Þ denotes the standard hinge loss and the
tradeoff constant c[ 0, defined by cross-validation, weighs the two terms: the
lower value of c shrinks the distance to target neighbors, ignoring the number of
included impostors, and vice versa. We aim to find out the distance metric DA—a
linear transform of train set entries, which minimizes distances to correctly clas-
sified entries (first term) and the number of incorrectly classified entries (second
term).

6.5.2.4 Neighbourhood Component Analysis

This method aims to find out such a linear transform (projection matrix) A of the
feature space of the test 2D histogram segments, after which the kNN classifier
would perform better, scaling up useful directions for discrimination. The NCA
method does not imply any specific class distribution and shape of separating
surfaces.

Here the covariance matrix Q is a symmetric, positive semi-definite real matrix,
which can be decomposed by Cholesky decomposition as Q ¼ ATA (where
A 2 R

d�d) and the Mahalanobis distance between vectors am, an is given as follows:

dAðam; anÞ ¼ ðam � anÞATAðam � anÞ ¼ ðAam � AanÞT � ðAam � AanÞ ¼
¼ Aam � Aanj j22:

ð6:20Þ

In general, a pseudo-metric DA can be represented as a squared Euclidean dis-
tance after applying a linear transformation.

Each train vector am selects stochastically another vector an as its neighbor with
a probability value pmn, based on the softmax of the distance DAðam; anÞ:
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pmn ¼ e½�DAðam;anÞ�P
q6¼m

e½�DAðam;aqÞ� : ð6:21Þ

We calculate probability value pm that the given vector am will be correctly
classified:

pm ¼ 1
N

X
n2Cm

pmn; ð6:22Þ

where Cm ¼ fn=zn ¼ zmg gives a set of vectors of the same class of m and pmm ¼ 0.
Finally, the projection matrix A is calculated by maximizing an expected number

of correctly classified points f2ðAÞ:
f2ðAÞ ¼

X
m

pm ¼
X
m

X
n2Cm

pmn; ð6:23Þ

where pmm ¼ 0.
Briefly, the NCA algorithm consists of the following steps:

1. Initialize a linear projection matrix A with identity matrix.
2. Optimize f(A) using conjugate gradient method in the following steps:

a. Project the training vector am by projection matrix A to yield ATam, where
m ¼ 1; 2; . . .; n0 and n0 ¼ PR

r¼1 Q
0
Or.

b. Calculate the square Euclidean distance between the training vectors am and
an in the transformed space jATxm � ATxnj2 for m; n ¼ 1; 2; . . .; n0ðm 6¼ nÞ
(Eq. 6.20).

c. Compute probability values pmn (Eq. 6.21) and pn (Eq. 6.22).

d. Calculate gradient df2dA of f2ðAÞ (Eq. 6.23) and update the projection matrix

A by a conjugate gradient optimizer. Repeat all four steps of the current
point, predefined number of times, until reaching convergence of f2ðAÞ.

6.5.2.5 K-Nearest Neighbour Classification

From the distance metric learning methods, we obtain a global metric—linear
matrix A (matrix A � Q in the case of LMNN method) to project train and test data
vectors a and u, respectively. We perform the projection for each pair of classes.

So we project the i0th training vector ai0 :

~ai0 ¼ Aai0 ; ð6:24Þ

where i0 ¼ 1; . . .; n0.
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Then we project the k0th test vector uk0 :

~uk0 ¼ Auk0 ; ð6:25Þ

where k0 ¼ 1; . . .;m0 and m0 ¼ Q0 � n0.
The goal is to predict the class label of each k0th test vector euk0 , using training set

vectors ~ai0 . We apply a kNN classifier to estimate the posterior probability
P̂ðxr=~uk0 Þ of belonging of ~uk0 to a given segment—class xr, within a modified
(after distance metric learning) neighbourhood N0ð~uk0 Þ of ~uk0 :

P̂ðxr=~uk0 Þ ¼
Pn0
i0¼1

hð~ai0 2 N0ð~uk0 ÞÞðhðfi0 ¼ xrÞÞ
Pn0
i0¼1

hð~ai0 2 N0ð~uk0 ÞÞ
; ð6:26Þ

where hð:Þ is an indicator function that returns one if the input argument is true and
zero otherwise. The kNN classifier is considered to be a non-parametric and
semi-supervised, since it does not assume specific distribution of input data; it is a
simple and accurate classifier with enough training data, it can also produce
non-linear decision surface. Finally, we get a classified test 2D histogram
(Fig. 6.8b) after combining all binary classifiers results.

6.6 Segmentation Through Back Projection

Segmentation through back projection is implemented as we calculate for each
pixel b00 in a test MR image (Fig. 6.10a) the K adjacent pixel pairs in a local
window (Fig. 6.9), find out their labels from the classified test 2D histogram

Fig. 6.9 Construction of a
sequence of K adjacent pixel
pairs in the local window
around element b00
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(Fig. 6.10c). We show the original test 2D histogram (Fig. 6.10b). We assign equal
weights to the pixel pairs of CSF-GM, GM-WM, and CSF-WM edge classes
(Fig. 6.10d) and add them to the main tissue classes. The algorithm consists of the
following steps:

1. Make a sequence of K adjacent pixel pairs in the local window (Fig. 6.9):
ðb00; b10Þ; ðb00; b1kÞ; . . .; ðb00; b1ðK�1ÞÞ


 �
, where k ¼ 0; . . .;K � 1.
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Fig. 6.10 Segmentation by back projection of an MR image (IBSR 20): a input MR image, b its
(preprocessed and non-normalized, projected on a plane, inverted) 2D histogram, c classified test
2D histogram—CSF, GM, and WM tissues, d classified CSF-GM, GM-WM, and CSF-WM edges,
e, f, g grayscale probability maps (inverted, quantized to 8 levels) of CSF, GM, and WM tissues,
respectively, h, i, j grayscale probability maps (inverted, quantized to 3 levels) of CSF-GM,
CSF-WM, and GM-WM edges, respectively, k segmented CSF, GM, and WM tissues—final
result
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Fig. 6.10 (continued)
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2. Let’s calculate a weight map Vr,k(x,y) for the r-th tissue.

Vr;kðx; yÞ ¼
1 if ðb00; b1kÞ picks classxr;
0:5 if ðb00; b1kÞ picksxrr0 ;
0 otherwise,

8<
: ð6:27Þ

where r; r0 ¼ 1; . . .;Rðr 6¼ r0Þ, ðb00; b1kÞ is an entry in the classified 2D
histogram, (x,y) are coordinates x and y of the pixel b00 in the MR image, xr—
the rth tissue class (segment), and xrr0—inter-tissue edge class between the rth
and the r0th tissue.

3. Calculate a probability map Vrðx; yÞ for the rth tissue:

Vrðx; yÞ ¼
PK�1

k¼0
Vr;kðx; yÞ
K

: ð6:28Þ

Separate back projected grayscale probability maps of the main tissue classes
(before the addition of edges) (Fig. 6.10e, g) and the supposed inter-tissue edge
classes (Fig. 6.10h, j) are shown.

4. Select the final label l1ðx; yÞ after majority vote:

l1ðx; yÞ ¼ arg max
r¼1;...;R

fr : Vrðx; yÞg: ð6:29Þ

5. Perform post-processing on binary masks of the segmented tissues: morpho-
logical opening by area and morphological filling of CSF and WM tissues [16].
After we unite binary masks, we get a segmented test MR image (Fig. 6.10k).

6.7 Experimental Results

Here we present all parameter values and results of our developed segmentation
algorithm with baseline comparison.

6.7.1 Test Data Sets and Parameters of the Developed
Algorithm

Algorithms were applied to three data sets of MR images: IBSR 18 [36], IBSR 20,
and BrainWeb [10]. The first two data sets consist of real scans from human
subjects and the third one—of simulated anatomical models, all of them with
corresponding expert-labeled masks (Table 6.1). As it can be seen from Table 6.1,
IBSR 20 or IBSR v1.0 consists of 20 MR low resolution normal brain images,
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while IBSR 18 or IBSR v.2.0 consists of 18 high resolution 1.5 mm T1-weighted
MR scans, where MRI data sets were also filtered and artifacts suppressed or
removed. MR images from the first two data sets were also spatially normalized into
Talairach orientation, of 8-bit depth, with already removed scalp/skull. The twenty
normal MR brain data sets and their manual segmentations were provided by the
Center for Morphometric Analysis at Massachusetts General Hospital and are
available at http://www.cma.mgh.harvard.edu/ibsr/. The third BrainWeb data sets
consists of 20 MR images of T1-weighted simulated data with the following
specific parameters: SFLASH (spoiled FLASH) sequence with TR = 22 ms, TE =
9.2 ms, flip angle = 30°, and 1 mm isotropic voxel size.

We set several parameters during the different stages of the developed segmen-
tation algorithm as MR image preprocessing and sequence division, 2D histogram
preprocessing, matching and classification, and finally MR image segmentation by
back projection.

The whole sequence was divided into several subsequences by an empirically
selected threshold interval ½0:9; 1:1�T , for a similarity coefficient based on a wave
hedges distance (Eq. (6.5)) between normalized 2D histograms of consecutive MR
images. This led to the division of subsequences of MR images by comparatively
similar 2D histograms; longer in the middle and shorter at both ends. We also
introduced an upper threshold for subsequence length of 10 MR images—seg-
mentation accuracy dropped considerably in the case of longer subsequences. The
chosen range of the similarity coefficient required labeled data for 20–30 % for all
MR images in a sequence. A greater value of the range would make subsequences
longer and vice versa. We performed also transform from the sagittal to the coronal
plane by basic Matlab operations as 3D matrix indexing and image rotation in the
case of IBSR18 and Brainweb data sets.

To make a denser 2D histogram, we summed eight co-occurrence matrices
(K = 8) and tested our algorithm on MR images in a coronal plane of 256 intensity
levels (L = 256) of three tissue classes (R = 3) with the following dimensions:

Table 6.1 Specification of available test data sets

Data sets IBSR 18 IBSR 20 BrainWeb

No. of data 18 20 20

Total no. of images 2304 1250 1938

Slice resolution
(mm2)

from 0.8371 × 0.8371 to
1 × 1

1 × 3.1 1 × 1

Interslice resolution
(mm)

1.5 3.1 1–9

Orig. data size 256 × 128 × 256 256 × 65 × 256 256 × 256 × 181

Bit depth (bits) 16(8) 8 16(8)

No. of male cases 14 10 na

No. of female cases 4 10 na

Patient age (years) 7–71 20–38 na

Image format Analyze Analyze Raw
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(M = N = 256) for IBSR 18 and 20 data sets and (M = 181, N = 256) for
BrainWeb data sets and labeled mask sets (after interpolation). We used 8-bit
version of IBSR 18 data sets and after MRI data preprocessing we had the fol-
lowing length of MR image sequences: 128 (IBSR18), 65 (IBSR 20), and 256
(BrainWeb) MR images. Back projection was implemented with eight pairs of
adjacent pixels (K = 8) in the local window of size 3 × 3 pixels.

The model intra-tissue 2D histograms Mr were normalized after division by two
and all entries smaller than a threshold two were removed before transform to a 1D
vector. In order to obtain wider test segments Hr, we calculated thresholds hrl and
hru without the last thresholding of Mr. We set a minimum number of 2D histogram
entries—20—to perform 2D histogram matching and classification and 20 pixels in
a model region MR image—to build a segmentation model and as a requirement to
perform segmentation of the test MR image, as well.

We applied 2D histogram matching in a 1D domain—the direction of zig-zag
ordering had no impact on the final results. Since we wanted to localize better
segments of a test 2D histogram and to overcome outliers, we matched after
truncation within the following percentile intervals: [5, 95] (IBSR 18 and 20) and
[2.5, 97.5] (BrainWeb). Thus the remaining unclassified areas, at the beginning and
the end of the test 2D histogram, were assigned after the classification mostly to the
CSF and WM segments, respectively. The matching with a truncation was decisive
to achieve accurate results of classification.

We also set default parameter values for the LMNN and NCA distance metric
learning algorithm; and we set for kNN classification 1 neighbor, L2 distance
parameter values. We employed k-means clustering using the following parameters:
L1 distance, 2 clusters for CSF and WM tissues, and for GM tissue we set 2 clusters
(BrainWeb) or 3 clusters (IBSR 18 and 20), uniform selection of entries, 3 times
replication. The number of clusters was decisive to obtain enough entries for
successful 2D histogram classification and to consider train data imbalance in real
MRI data. Probabilistic selection of start points increased robustness to the vari-
ability in MRI data and led to slightly different results at each application of the
algorithm on the same MR image data.

6.7.2 Segmentation Results

The algorithms were implemented on Matlab 2013a and evaluated on the following
hardware configuration: 64 bits, Intel Core i5-440/3.1 GHz with RAM 8 GB
DDR3L at 1600 MHz. Efficient external libraries were also used: reading input
medical images [33], mLMNN2.4 implementation of LMNN algorithm [49], and
NCA implementation [15].

To estimate the segmentation results, we used the following similarity coeffi-
cients with segmented S1 and a corresponding ground truth S2 regions: Jaccard and
Dice coefficients [43], precision and recall measures.
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The Jaccard similarity coefficient (JSC) measures the similarity of the two
corresponding sets as a ratio of the size of their intersection to the size of their
union:

DJSCðS1; S2Þ ¼ S1 \ S2j j
S1 [ S2j j � 100 %; ð6:30Þ

where :j j represents region area (in pixels).
The second metric is the Dice similarity coefficient (DSC), which measures the

similarity of the two corresponding sets as a ratio of the size of their intersection to
their sum:

DDSCðS1; S2Þ ¼ 2 S1 \ S2j j
S1j j þ S2j j � 100 %: ð6:31Þ

Both metrics range from zero for sets with no common elements to one for fully
identical sets; although they give slightly different values, they are interrelated and
can be derived from one another.

The other common approach for estimation of classification as receiver operating
characteristics (ROC) is not appropriate for our case, since areas of the separate
tissue regions differ a lot. Therefore, we will use precision and recall measure
metrics to evaluate the results of our segmentation algorithms to separate MR image
sequences from IBSR 18 data sets.

So the third measure metric precision Pr(S1, S2) gives a ratio of the size of
correctly segmented pixels (true positive) to the size of all segmented pixels from S1:

PrðS1; S2Þ ¼ S1 \ S2j j
S1j j � 100 %: ð6:32Þ

The fourth metric measure recall Rec(S1, S2) provides a ratio of the size of cor-
rectly segmented pixels (true positive) to the size of all ground truth pixels from S2:

RecðS1; S2Þ ¼ S1 \ S2j j
S2j j � 100 %: ð6:33Þ

The segmentation results of our algorithm differ slightly depending on the type
of test data set: whether they are artificially generated MRI data (BrainWeb),
real non-filtered MRI data (IBSR 20), or real filtered MRI data (IBSR 18). Firstly,
our algorithm showed slightly inferior segmentation results on simulated MR
images of BrainWeb data sets compared with the results of software packages
SPM8-Seg, FSL, and Brainsuite [23] and with the results of published segmentation
methods (Table 6.2) (the bold type indicates the best result): APRS [28] and RiCE
[36]. We selected the following software packages because they implemented the
main segmentation approaches to MRI data in the literature, as follows:
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1. SP8-Seg—a Matlab software package which implements improved unified
segmentation [1] and models image intensities as a mixture of Gaussian dis-
tributions and tissue probability maps as prior information for Bayesian
estimation.

2. FSL—a FSL-FAST segmentation tool, based on a HMRF model, optimized
using the EM algorithm [57], which is oriented to MRI brain data. Here the
image histogram is presented as a mixture of Gaussian distributions with mean
and variance values for each tissue class.

3. BrainSuite—a suite of image analysis tools, incorporates bias field corrector and
partial volume classifier (PVC) [40] for tissue segmentation with three or six
tissue classes.

Some authors claim that the BrainWeb data sets do not incorporate correctly
PVE, have some histogram artifacts and they are not suitable for evaluation of
segmentation models, which rely on intensity distribution [5]. For this purpose, we
show 2D histograms from BrainWeb, IBSR 18 and 20 data sets (Fig. 6.11). In the
case of BrainWeb, the 2D histogram (Fig. 6.11a) is predominantly concentrated on
the main diagonal with three high peaks, corresponding to three tissue classes, and
this hinders successful 2D histogram matching. It lacks diversity of 2D histograms
of real MRI data (Fig. 6.11b, c) with presence of artifacts of different strength and
various properties of MRI data distribution.

Some specific characteristics should be considered during work with artificially
generated MR images. For example, we did not apply gamma correction to the
artificially generated MR images. Since the resolution of discrete model data sets
(labeled masks) after preprocessing (362, 362, 434) was higher than the simulated
data sets (181, 256, 256) (also referred to as multiple anatomical model) and we did
not have enough information about the original resampling method, we interpolated
using the nearest neighbor method simulated data sets to two times their original
size in three dimensions, centered them around their corresponding labeled masks
and we removed the redundant elements. Then we reduced the enlarged simulated
data sets and labeled masks to the original size of the simulated data sets.

So segmentation of the real MR images (IBSR 20) represent a more challenging
task: as it can be seen from Table 6.3 and Fig. 6.13, our algorithm performed better
than the benchmark algorithm results, reported on the IBSR site: adaptive MAP
(amap), biased MAP (bmap), MAP, fuzzy c-means (fuzzy), tree-structure k-means

Table 6.2 The mean and
standard deviation of DSC of
benchmark algorithms for
BrainWeb data sets

Segmentation
algorithm

WM (%) GM (%) CSF (%)

SPM8-Seg 92 ± 4 90 ± 3 62 ± 5

FSL 93 ± 2 92 ± 2 74 ± 6

Brainsuite 91 ± 6 80 ± 16 46 ± 16

APRS 96 96 96
RiCE 97 95 96

Our method 91 ± 0.5 90 ± 1 87.5 ± 1.6
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(tskmeans), and maximum likelihood (MLC). Since we also wanted to make a
comparison with state-of-the-art algorithms from the main approaches to MR image
segmentation: fuzzy methods, mixture model methods, and MRF/HMM, we
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Fig. 6.11 Types of 2D histograms of different data sets: a BrainWeb, b IBSR 18, c IBSR 20—
stronger INH artifact

Table 6.3 The mean and
standard deviation values of
JSC of benchmark algorithms
for IBSR 20 data sets

Segmentation
algorithm

WM (%) GM (%) CSF (%)

Manual 83 88 na

aMap 57 ± 18 56 ± 13 7 ± 3

bMap 56 ± 21 56 ± 17 7 ± 3

FCM 57 ± 20 47 ± 12 5 ± 2

MAP 55 ± 21 55 ± 16 7 ± 4

tskmeans 57 ± 20 48 ± 12 5 ± 2

ML 55 ± 21 54 ± 16 6 ± 3

APRS 74 ± 3 83 ± 3 71 ± 6
MLHMM 56 70 na

FLGMM 74 77 na

Our method 70 ± 7 78 ± 7 50 ± 19
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included published results from the following methods (Tables 6.3, 6.4): FLGMM
[20], GMM-CSA [54], MLHMM [14], RiCE, and APRS. It can be seen that our
method showed comparable results. The use of a separate segmentation model for
each subsequence provided us with more accurate results, while the presence of
stronger INH and PVE artifacts changed the distribution of a 2D histogram and
deteriorated segmentation results. Our algorithm failed to segment correctly many
of the ridges of WM in MR images (Fig. 6.12c, f) but the addition of inter-tissue
edges improved segmentation accuracy, in general. It can be seen that our algorithm
showed considerably better results for GM tissues (Figs. 6.13a), while it was
favorably evaluated for WM tissue (Fig. 6.13b) with other benchmark methods for
IBSR 20 data sets. It should also be noted that our method did not segment tissue
regions with area and 2D histogram entries below the already mentioned thresholds.
It can also be seen that certain MR image sequences from IBSR 20 data sets—4, 7,
11, etc.—have lower segmentation results for the benchmark and our developed
methods, since they possess stronger artifacts.

The MR image sequences from IBSR 18 data sets were pre-filtered and PVE and
INH artifacts were reduced or removed, which led to considerably better results
than

IBSR 20 data sets (Table 6.4), since they possess a more stable shape of their 2D
histograms. From (Fig. 6.14a, b) it can be seen that real MRI data sets (IBSR 18)
are characterized either by higher precision and lower recall values of WM tissue or
vice versa; the same is valid for GM tissue—this is caused by over- or under-
segmentation of ridge areas of WM tissue. Another important fact is the lower
precision values for CSF tissues particularly for IBSR 18 (Fig. 6.14a) data sets.

It can be seen from the test results (Tables 6.2, 6.3, 6.4) that the segmentation
result for the CSF tissue is considerably lower, compared with the other GM and
WM tissues. In [45] an interesting investigation about segmentation approaches to
Sulcal cerebrospinal fluid (SCSF) tissue is given. The authors claim that the seg-
mentation results of benchmark algorithms of CSF and WM tissue vary notably
depending on whether SCSF voxels are included into CSF tissue. In the case of
IBSR 18 and 20 data sets SCSF tissue is considered as a part of the GM tissue,
while it is labeled as a CSF tissue in BrainWeb artificially generated data sets. In
our study we regarded SCSF pixels as part of GM or CSF tissues, in accordance
with ground truth labeled masks of the given test data sets. In the final stage of our
algorithm, during back projection segmentation in the case of IBSR 18 and 20 data
sets, we applied morphological binary opening on a CSF tissue mask and thus
removed all small groups of pixels, including some segmented SCSF pixels, since

Table 6.4 The mean and
standard deviation values of
DSC of benchmark
algorithms for IBSR 18 data
sets

Segmentation
algorithm

WM (%) GM (%) CSF (%)

MLHMM 77 86 na

GMM-CSA w/o atlas 87 81 17

RiCE 87 ± 2 94 ± 1 na

Our method 88 ± 1.3 87 ± 1.3 24 ± 9.6
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Fig. 6.12 Segmentation results of a real MR image (IBSR 20), (IBSR 18), an artificially
generated MR image (BrainWeb), as follows: a, d, g input MR image (preprocessed), b, e,
h ground truth segmented CSF, GM, and WM tissues, respectively, c, f, i segmented CSF, GM,
and WM tissues (our algorithm)
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we considered them to be noise; in the case of BrainWeb data sets we did not apply
morphological opening in order to preserve segmented SCSF tissue as CSF tissue.
We think this contributed to the slightly better results of our method with BrainWeb
(Table 6.2) data sets, compared with real MRI data (Tables 6.3, 6.4).

The application of distance metric learning led to slightly better results, com-
pared to the case with straightforward application of kNN classification. Although
the three types of the classification of the test 2D histogram look quite similar at
first glance (Fig. 6.15), they differ in a few aspects: LMNN provides the most
steady borders between different tissue classes (Fig. 6.15a) and it is about five times
faster than the NCA method (Fig. 6.15b), which is prohibitively slow; although
kNN classification without distance metric learning (Fig. 6.15c) is the fastest
classification method (20–30 % faster than LMNN method), it provides the most
inaccurate results—curved borders between separate tissue segments and unreliable
classification of the 2D histograms of some test MR images.
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Fig. 6.13 Comparison with benchmark algorithms (IBSR 20) for the following tissues: a GM,
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6.8 Discussion

Our results suggest that the tissue segmentation method with a 2D histogram model
can be applied successfully to a MR image sequence, giving comparable results
with the traditional histogram, standard benchmark, and state-of-the-art segmen-
tation methods in terms of accuracy. Overall, it overcomes the most common
drawbacks of the conventional histogram of individual pixels of a MR image: it
introduces spatial information in itself, has increased discrimination from over-
lapping segments, corresponding to different tissue regions in a MR image. When a
2D histogram has a consistent distribution, it can be reliably classified and hence
gives better results in the case of filtered real MRI data (IBSR 18); in the case of
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Fig. 6.15 A classified 2D histogram (CSF, GM, and WM tissues) of an MR image (IBSR 20)
after the following distance metric learning methods: a LMNN, b NCA, c direct kNN classification
without distance metric learning
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IBSR 20 data sets, we obtain worse results because of the presence of strong
artifacts and more diverse real MRI data, in general.

The larger area of our 2D histogram brought a few advantages: it allowed
distance metric learning and non-parametric operations as kNN classification,
which led to more consistent classification of the 2D histogram, it also embraced
distinctive spatial positions of pixel pairs of the main tissues and inter-tissue edges.
Another advantage of our method is its robustness to outliers since we performed
the matching within a percentile interval. The presence of outliers in the model and
test 2D histograms was one of the greatest challenges since it hindered localization
of the most representative entries of the 2D histogram segments. Another important
aspect was the addition of detected edge pixel pairs during back projection: it
improved the segmentation of an area across tissue borders, otherwise we had an
over- or under-segmentation of separate tissue regions. We believe that the seg-
mentation accuracy can be increased if a more complex model for distribution of
edge pixel pairs is applied; similarly, if we apply a more sophisticated method for
their introduction during back projection. Moreover, taking into consideration the
shape of the separate tissues will increase segmentation accuracy across tissue
borders. The application of our segmentation model on subsequences results in
better adaptation to the presence of INH and PVE artifacts, which do not appear in
isolation in MR image sequences.

On the other hand some drawbacks remain: a minimum number of 2D histogram
entries—20—is required to perform successfully and reliably classification of 2D
histograms of all MR images from the sequence. Another drawback is the necessity
of a considerable amount of expert-labeled masks to build the segmentation model.

The application of the distance metric learning methods led to significantly better
results, compared to the case with straightforward application to kNN classification,
because it allowed better adaptation to individual distribution of each test 2D
histogram and thus it increased robustness.

We also found out that the application of weights to different directions during
2D histogram construction and back projection did not improve the segmentation
model and the results. The reason for that is a lack of dominant direction of
distributions of pixel pairs of tissues and edges in MR brain images.

The results are comparable with recent brain segmentation algorithms due to the
richer information of intra- and inter-image correlation it uses. We believe that
further refinement of the segmentation model with respect to the used correlation
can lead to better results. Another aspect we can improve in our algorithm is to
select a more accurate similarity distance metric between 2D histograms of the MR
images from the sequence.

We also think that our method can be applied to other types of medical images,
characterized by adjacent pixels with close intensity values and existing strong
correlation between consecutive images but not natural or man-made images due to
their less compact 2D histograms.
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6.9 Conclusion

In the present work, we proposed a method with 2D histogram matching for MR
image segmentation. Our model is non-parametric and adjusted to the local char-
acteristics of MR images. Other segmentation methods with 2D histograms do not
build models to perform segmentation. Considering the limits of use of a traditional
image histogram for image segmentation, we introduced in our 2D histogram model
inter-image correlation and intra-image spatial information of MR images in the
MR image sequence. Prior knowledge was introduced by the matching operation
and its application was possible due to the larger area of the 2D histogram. Another
important merit of our 2D histogram model is that it allows also application of
non-parametric classifiers as kNN and modern machine learning techniques as
distance learning. A further advantage comes from its application to MR subse-
quences: it adapts naturally to the presence of INH and PVE artifacts since they do
not appear in isolation in MR image sequences. It can be seen that our segmentation
results are comparable with more complex state-of-the-art segmentation methods in
terms of accuracy, although there is still room for improvement of our method.

In future work, we plan to extend the segmentation model with multi-scale
information of a 2D histogram, to include co-occurrence matrices with larger offsets
and to consider the shape of the different tissues in MR image using a more
complicated decision rule in the local window during back projection.
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Chapter 7
Multistage Approach for Simple Kidney
Cysts Segmentation in CT Images

Veska Georgieva and Ivo Draganov

Abstract In the chapter is presented a multistage approach for segmentation of
medical objects in Computed Tomography (CT) images. Noise reduction with
consecutive applied median filter and wavelet shrinkage packet decomposition, and
contrast enhancement based on Contrast limited adaptive histogram equalization
(CLAHE) are applied in preprocessing stage. As a next step is used a combination
of 2 basic methods for image segmentation such as split and merge algorithm,
following by color based K-mean clustering. For refining the boundaries of the
detected objects additional texture analysis is introduced based on limited
Haralick’s feature set and morphological filters. Due to the diminished number of
components for the feature vectors the speed of the segmentation stage is higher in
comparison with the full feature set. Some experimental results are presented,
obtained by computer simulation in the MATLAB environment. The experimental
results give detailed information about detected simple renal cysts and their
boundaries in axial plane of CT images which are presented in native, arterial and
venous phases. The proposed approach can be used in real time for precise diag-
nosis or in monitoring the disease progression.
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7.1 Introduction

7.1.1 Medical Aspect of the Problem for Kidney Cyst
Detection

A kidney cyst is a round or oval fluid-filled pouch with a well-defined outline. They
are the most common space-occupying lesions of the kidney [1]. Kidney cysts
typically grow on the surface of a kidney, but some may develop inside kidney.
They can be associated with serious disorders that may impair kidney function. The
diagnosis of many of the “cystic kidneys” requires clinical, genetic, radiological,
and pathological information. A precise diagnosis is important for prognosis and
treatment. Simple cysts are discrete lesions within the kidney that are typically
cortical, extending outside the parenchyma and distorting the renal contour. One
typical example of simple cyst is presented in Fig. 7.1.

Their importance stems from their increased detection in aging populations with
widespread use of abdominal ultrasonography and computed tomography (CT) or
magnetic resonance imaging (MR), with the aim of evaluating renal cyst mor-
phology and volume and estimating the amount of residual renal parenchyma [1].

In our investigations we use CT images. CT has the advantages of widespread
availability, more rapid examination time in comparison with MR imaging, and
lower cost than MR imaging. The diagnostic challenges they present is their dif-
ferentiation from the atypical features of the far less common complex cysts
associated with malignancy. A distinct characteristic of simple cysts is their

Fig. 7.1 An example of simple kidney cyst in CT image
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increased occurrence with aging. The cyst wall is characteristically smooth,
transparent, avascular, yellowish or bluish white in color, and formed by a thin
layer of fibrous tissue lined by a single layer of flattened or cuboidal epithelia [2].

7.1.2 Review of Segmentation Methods

Image segmentation is typically used to locate objects and their boundaries (lines,
curves, etc.) in medical images. Hence, region-growing, or edge detection algo-
rithms are unable to effectively cope with this data. Although a large variety of
segmentation methods have been developed for medical image processing. There
are some publications based only on basic methods of segmentation for detection of
kidney cysts [3, 4]. Some proposed methods start with an initial rough segmentation
of a cyst in only one 2D slice from the full stack of the volume scan. This may be
quickly done by a radiologist. But the quality of the initialization does not greatly
affect the quality of the final segmentation, hence granting good repeatability
properties of the measurement [5]. In [6] is presented a system for processing CT
images and MRI kidney, which is based on the split and merges method for
segmentation step, and application of SVM (Support Vector Machine) for detecting
abnormalities in these images.

7.1.2.1 Texture Based Segmentation

As a major process at the segmentation stage of a particular abnormality texture
analysis is widely used in medical image processing [7–13]. Most of these methods
have grounds which lay way back within the pioneering works of Haralick [14, 15]
and further in expanded form by others [16–18] specifically for medical applica-
tions. Generally there are 8 distinctive measures which are mostly incorporated in
forming the feature vectors for a particular texture discrimination based on the early
studies [14]—energy, entropy, correlation, difference moment, inertia (contrast),
cluster shade, cluster prominence, and Haralick’s correlation. In his later study [15]
the author touches the direct physical relation between the final pictorial repre-
sentation of texture and its natural forming stages. There the optical processing
methods are placed as an important factor for the textural edginess and the spatial
gray tone dependence from which features are formed. It is also shown that a large
set of primitives and some more general texture measures become obsolete when
getting in a set the listed above.

Depending on the organ being investigated with a specific probable disease only
a portion of the measures are used, e.g. the contrast is being analyzed in relation of
its degree of isotropic distribution introducing directional estimation for it along
with Fourier domain energy sampling [17] when the object of interest are the lungs.
Some more recent studies taking an advantage of obtaining higher dimensionality
of the image data retrieved in the form of 3D CT scans actually extend the number
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of features up from the original Haralick’s set [19, 20]. There Tesar et al. introduce
co-occurrence measures for the voxels in a small cubic region which allows them to
define a multidimensional Gaussian mixture model with parameters ready to be
found by the EM algorithm. As an additional refining step for higher accuracy of
the segmentation inference phase is used along with other probabilistic methods
merging. Degree of correspondence among the targeted tissues is reported as high
as a little over 0.8.

Some authors relying only on the two-dimensional data from a single CT slice
place variety of additional parameters for improving the results of the segmentation.
In [11] Castellano et al. describe histogram, absolute gradient and a run-length
matrix to supplement Haralick’s features for more accurate segmentation. All of
them are combined together in order to run an auto-regressive model with the use of
wavelets in discovering obstructive lung diseases and others.

In large variety of cases CT imaging is the preferred mean for segmenting bone
and bone tumors [7]. This is done by thresholding and region growing operations as
basic steps which further are being combined within Markov random fields,
deformable models and fuzzy region growing to carry out the training stage. This
approach proves to be efficient also in reconstruction of bronchial trees while
deformable models alone are thought to be promising for segmentation of the
abdominal area and the heart.

Similar set of features as the above are selected in other approaches where the
training stage is performed with the use of artificial neural networks with additional
processes such as relaxation [16]. As Pal et al. reveal such combination copes with
the noises typical for the images being segmented better in many cases.

7.1.2.2 Incorporating Texture Segmentation in M-CBIR

When considering a complete medical content based image retrieval system
(M-CBIR) an important phase of selecting the features used to match images or
portions from them based on textural analysis is to discriminate them to local and
global. Glatard et al. [12] render an account of these two groups where each of them
has a particular impact over diminishing the effect of present noises and the lower
resolutions of medical images in general. While local features are more appropriate
for training in lots of cases for getting the patterns of single tissue with or without
any abnormalities in it considering the noises after the consecutive segmentation
phase global features may very successfully be used for measurements of sizes
including volume. An extensive study on global features performance is made by
Gueld et al. in [21]. The image corpus consist of nearly 6000 images most of which
are from radiography and arranged in more than 80 categories. The features used
include Tamura’s, Castelli’s and Ngo’s texture descriptors taken from downscaled
image representations. Another novelty is the application of Zhou and Huang image
structure—a physical model of filling with water to a binarized gradient image.
Then k-NN classifier is used where k = {1, 5} and also classifier combinations of
parallel, serial and hierarchical type. When testing the single classifier within 5
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neighbors the accuracy varies between 40 and 80 % when using different distance
measure—Euclidian and Mahalanobis. When taking 10 neighbors the accuracy
increases considerably from 89 to 97 %. Classifier combination raises the accuracy
around 92 % at 5 neighbors and up to 95 % for 10.

Further development of M-CBIR systems introduces metric data structures [22]
by Chuctaya et al. They expand the feature set with 5 more of the Haralick’s
descriptors increasing them up to 13 parameters combining them with Gabor filter
output and gray level histograms. Thus a classification of pixels to border and
interior related for a particular area becomes possible. Using the slim-tree indexing
technique a similarity measure based on distance provides the final decision for
selection the most related images from the database. The number of feature com-
ponents rises up to 435 which assures precision of up to 0.85 at 0.18 recall when the
test set contains over 28,000 images with more than 1000 query images run 70
times over again.

Some other approaches are based only on local texture analysis as the algorithm
for automatic detection of abnormalities in chest radiographs developed by van
Ginneken et al. [9]. There the exact nature of the abnormality is not preliminary
defined but rather is found as discerned area to its neighborhood. Subdivision of the
lungs is done into overlapping regions of various sizes by applying texture analysis
preceded by more rough area division by active shape models. Multiscale filter
banks are used monitoring their response and finding the respective moment.
Difference features are calculated by subtracting feature vectors from corresponding
regions in the left and right lung fields. Then selection is performed by k-NN
classifier followed by weighted multiplier for combining the results of each region.
The final result is abnormality score per image which in the case of database
consisting of nearly 400 images a classification sensitivity of 0.86 is achieved given
specificity of 0.50. A test with a second database having 200 images half of which
contain abnormalities leads to sensitivity 0.97 with specificity 0.90. In [23] is
presented a hybrid technique for the classification of the magnetic resonance images
(MRI). The medical decision making system designed by the wavelet transform, the
principal component analysis, and the supervised learning methods (FP-ANN and
k-NN) give very promising results in classifying the healthy and brain patient.

7.1.2.3 Combining Haralick Features and Morphology

A separate group of methods for medical image segmentation combine Haralick’s
features with morphological parameters [18, 24]. Chaddad et al. [24] try to decrease
the number of feature components while preserving the accuracy of image seg-
mentation. Starting from the original snake approach they use progressive division
reducing the dimensions of the image to achieve smaller execution time. Nine
morphological parameters were added to the Haralick’s set and as a learning
structure a probabilistic neural network. Speed up of 50 % is reported where only
three of the morphological parameters are thought to be most effective—area, xor
convex and contrast. From the second group parameters—orrelation, entropy and
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contrast tend to be most promising for discrimination. In addition to incorporating
the morphological set of features Malpica et al. [18] use splitting of the initial image
into n channels by generating n texture features from around each pixel’s neigh-
borhood. Most discriminative features are applied based on previous studies. Then a
gradient image of all the channels is constructed and minima selection is done from
where a watershed process begins leading to watershed segmentation where
touching flooded regions are merged in iterative fashion. The way of finding the
initial minima is dynamics with its advantages over the interactive approach or the
one based on a priori knowledge of the image content as well as the waterfall
algorithm. The results from testing when using the mean approach show around
90 % correctly classified pixels at (8–18) % of dynamic range (dynamics). When
using the weighted mean and the Hotelling test the results are even higher.

7.1.2.4 Pre- and Post-processing Strategies

In [8] Freixenet et al. put a special attention to the post-processing integration stage
when developing a complete medical images segmentation system. They view this
stage as a closing part of the whole process after applying region-based and
boundary-based algorithms. The goal is to have the region and the edge information
put back as accurate as possible. To achieve these three paths could be followed.
The first one is over-segmentation—the segmentation stage is carried out in such a
way that by fixing a set of parameters preliminary an over-segmented image is
always the result. Then another segmentation algorithm is applied leading to dif-
ferent result in terms of number of segmented areas and this information is used to
get more accurate boundaries for them from the first stage. The second path is to
have boundary refinement—at first again a pre-segmented image is obtained with
roughly found boundaries and then using edge detection techniques help in refining
them. The third path is selection-evaluation—it is similar to the previous one with
the difference that edge detection is implemented over several pre-segmented ver-
sions of the input image and the more accurate result is generated from the most
accurate refinement. Freixenet et al. report that multiresolution analysis and the
“snake” approach could be also embedded to have the boundary refinement stage
accurately done.

A detailed comparison of texture models for automatic liver segmentation [13] is
presented by Pham et al. Beginning with window level CT images and passing
through texture feature extraction and then pixel-level classification a set of liver
probability images is received. After that seed sets detection is preformed followed
by adaptive region growing resulting in liver segmented images. From experimental
testing is found that co-occurrence texture model performs better in comparison to
Gabor filters and it is considered perspective for wide variety of other organs’ tissue
other than the liver.
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In [10] Felippe et al. test a set of texture features for tissue identification from
medical images. In a 4-step approach the authors manage to compare the use of a
set of Haralick features over images containing different types of tissue. In step 1
the co-occurrence matrices of each image is calculated, then in step 2—the values
of selected descriptors are found followed by image signatures generation in step 3
and finally in step 4—comparison of the images through their signatures. Haralick’s
features under investigation here are energy, entropy, variance, homogeneity, 3rd
order moment, and inverse variance. The combined set of features leads to the most
precise segmentation in of almost 90 % of the total tissue surface which needs to be
selected. Then the gradient and homogeneity features used alone give around 72 to
74 % accurately segmented tissue followed by the others with less precision. As for
the precision vs. recall function about different types of tissue when using the
combined feature muscle is the most accurately segmented, then heart, breast, etc.
Liver and spine are at the bottom of the list for precisely segmented tissues.

Another autonomous system for particular liver diagnosis from CT images is
presented in [25] by Chen et al. Here normalized fractional Brownian motion model
feature curves are employed. The stages through which the boundary of the liver is
found particularly called “detect-before-extract” include initial detection and con-
tour modification using a deformable active model. At the stage of classification of
liver tumors spatial gray-level co-occurrence matrices are used with probabilistic
neural networks.

In [26] another extensive comparison through experimentation is made for the
most popular texture features in this case over wider range of images. Here the
co-occurrence feature along with the one from Gabor filter tends to produce almost
identical results.

7.1.3 Proposed Approach

In accordance with the main properties of the examined algorithms above we
propose to use a multistage segmentation approach, based on combination of split
and merge algorithm and color based K-mean clustering, with the goal to obtain
more information and better defined boundaries of the cysts. As first is proposed a
stage of preprocessing in order to reduce the noise and enhance the image. For
discrimination of one object from another in terms of more accurate boundaries a
texture analysis is introduced based on reduced Haralick’s feature set.

The chapter is arranged as follows: In Sect. 7.2 is given the stapes in prepro-
cessing stage; in Sect. 7.3 are presented the steps of multistage segmentation
approach; Sect. 7.4—some experimental results, obtained by computer simulation;
then their interpretation in Sect. 7.5—Discussion and finally in Sect. 7.6—a
Conclusion is made.
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7.2 Preprocessing Stage of CT Images

The quality of CT images varies depending on penetrating X-rays in a different
anatomically structures. Noise in CT arises from the fundamentally statistical nature
of photon production and can appear as thin bright and dark streak artifact in the
reconstructed image preferentially in the direction of greatest attenuation. With
increased noise, low contrast soft tissue boundaries may be obscured [6]. This
quantum noise is dominant and comes from the quantization of energy into pho-
tons. It is Poisson distributed and independent of measurement noise and has the
characteristic of multiplicative noise [27]. The measurement noise is additive
Gaussian noise and usually negligible relative to the quantum noise.

To obtain a better quality of investigated medical object in CT images is pro-
posed to reduce the noise and enhance the contrast.

Our investigations in area of noise reduction in CT images of abdominal
structures show that some organs (for example the liver), may have density vari-
ations within them that have the appearance of random noise. For this reason we
propose to be applied a combination of median filter and wavelet denoising on the
base of wavelet packet shrinkage decomposition and adaptive threshold.

The general algorithm of preprocessing consists of three consecutive basic
stages, used to improve the image quality:

• Noise reduction with median filter for elimination of distortion or blurring by
impulse noise;

• Noise reduction based on wavelet packet decomposition and adaptive threshold;
• Contrast limited adaptive histogram equalization (CLAHE) for contrast

enhancement.

7.2.1 Noise Reduction with Median Filter

Median filter is an example of non-linear filters. In median filter, the ranking of the
neighboring pixels is done according to the intensity or brightness level and value
of the pixel under evaluation is replaced by the median value of surrounding pixel
values. Median filter can therefore effectively denoise medical images. The CT
images distorted or blurred by shot or impulse noise can be denoised using this
filter. Median filters have many advantages over smoothening filters [28]:

• In median filter the output values consist of only those present in the neigh-
borhood (median value) so there is no reduction in contrast across the steps;

• The boundaries are also not shifted when median filter is used;
• The edges are minimum degraded and hence median filter can be repeatedly

applied.
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7.2.2 Noise Reduction Based on Wavelet Packet
Decomposition and Adaptive Threshold

The algorithm for noise reduction based on wavelet packet transform contains the
following basic stages [29]:

(1) Decomposition of the CT image

The wavelet packet methods for noise reduction give a richer presentation of the
image, based on functions with wavelet forms, which consist of 3 parameters:
position, scale and frequency of the fluctuations around a given position. They
propose numerous decompositions of the image, that allows estimate the noise
reduction of different levels of its decomposition. Based on the organization of the
wavelet packet library, the decomposition can be determined from a given
orthogonal wavelets. Commonly used wavelet functions are daubechies, coiflet, and
symmlet. The wavelets are chosen based on their shape and their ability to analyse
the signal in a particular application. Various wavelet shrinkage algorithms denoise
image by reduce wavelet coefficient. An optimal decomposition is used with respect
to a conventional criterion. In case of denoising the 2D joint entropy of the wavelet
co-occurrence matrix is used as the cost function to determine the optimal
threshold. In this case 2D Discrete Wavelet Transform (DWT) is used to compose
the noisy image into wavelet coefficients [30].

We use another adaptive approach. The criterion is a minimum of three different
entropy criteria: the energy of the transformed in wavelet domain image, Shannon
entropy and the logarithm of energy [29, 31].

(2) Determination of the threshold and thresholding of detail coefficients

By determination of the global threshold it is used the strategy of Birge-Massart
[32]. It uses spatial-adapted threshold, which allows to determinate the thresholds in
three directions: horizontal, vertical and diagonally. The threshold can be hard or
soft. The soft-thresholding method is chosen over hard-thresholding, because it
yields more visually pleasant images over hard-thresholding. To become more
precisely determination of the threshold for noise reduction in the image we can
penalize adaptively the sparsity parameter α. Choosing the threshold too high may
lead to visible loss of image structures, but if the threshold is too low the effect of
noise reduction may be insufficient.

(3) Restoration of the image

The restoration of the image is on the base on 2D Inverse Wavelet Packet
Transform. The reconstructions level of the denoised image is dependent on the
level of its best shrinkage decomposition.
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(4) Estimation of filtration.

The procedure for noise reduction can be determined on the base of the calcu-
lated estimation parameters. All adaptive procedures in the proposed algorithm are
made automatically, based on calculated estimation parameters. PSNR and SNR
values are higher for better denoised CT image where the value of NRR is lower.

7.2.3 Contrast Limited Adaptive Histogram Equalization
(CLAHE)

Contrast limited adaptive histogram is a generalization of ordinary histogram
equalization and adaptive histogram equalization. CLAHE does not operate on the
whole image works like ordinary Histogram Equalization (HE), but it works on
small areas in images, named tiles. Each tile’s contrast is enhanced, so that the
histogram of the output area roughly matches the histogram determined by the
‘Distribution’ parameter. This parameter can be selected depending on the type of
the input image. The adjacent tiles are then combined using bilinear interpolation to
eliminate artificially induced boundaries. The contrast, particularly in homogeneous
regions, can be limited to avoid amplifying any unwanted information like noise
which could be existed in images. The algorithm CLAHE limits the slope associ-
ated with the gray level assignment scheme to prevent saturation. This process is
accomplished by allowing only a maximum number of pixels in each of the bins
associated with the local histograms. For limiting the maximum slope is to use a
clip limit β to clip all histograms. This is a contrast factor that prevents
over-saturation of the image specifically in homogeneous areas. These areas are
characterized by a high peak in the histogram of a particular image tile due to many
pixels falling inside the same gray level range.

Finally, cumulative distribution functions (CDF) of the resultant contrast limited
histograms are determined for grayscale mapping. The result mapping at any pixel is
interpolated from the sample mappings at the four surrounding sample grid pixels.
Pixels in the borders of the image outside of the sample pixels need to be processed
specially. The neighboring tiles were combined using bilinear interpolation and the
gray scale values were altered according to the modified histograms [33].

7.3 Segmentation Stage

7.3.1 Segmentation Based on Split and Merge Algorithm

The split and merge algorithm attempts to divide an image into uniform regions.
The basic representational structure is pyramidal, i.e. a square region of size m by
m at one level of a pyramid has 4 sub-regions of size m/2 by m/2 below it in the
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pyramid. Usually the algorithm starts from the initial assumption that the entire
image is a single region, and then computes the homogeneity criterion to see if it is
TRUE. If FALSE, then the square region is split into the four smaller regions. This
process is then repeated on each of the sub-regions until no further splitting is
necessary. The algorithm may be summarized by the following steps [34]:

(1) Split any region Ri into four almost equal regions, where P(Ri) = FALSE.
(2) Merge any adjacent regions Ri and Rj for which P(Ri U Rj) = TRUE.
(3) Stop when no further merging or splitting is possible.

Otherwise repeat steps (1) and (2). P(Ri) is a logical predicate over the set of
pixels in the set of pixels in Ri and ∅ is the empty set.

For gray-level images, this condition can be that the variance of the gray-levels
within a region is smaller than a given threshold value T. When this condition for a
region is not met, this region is further split up. Figure 7.2 illustrates an example for
split algorithm.

There R indicates the entire image. Each node corresponds to a (sub) region,
whereby in this example only region R1 was further divided up. If the image is
divided up only into regions, adjoining regions will be similar in the final division.

These small square regions are then merged if they are similar to give larger
irregular regions. The problem (at least from a programming point of view) is that
any two regions may be merged if adjacent and if the larger region satisfies the
homogeneity criteria, but regions which are adjacent in image space may have
different parents or be at different levels (i.e. different in size) in the pyramidal
structure. The process terminates when no further merges are possible. The pred-
icate of homogeneity for a region R is based on two criteria:

• The average gray level of the region R is lower than a threshold.
• The variance of the gray levels in the region R is greater than a threshold.

This approach tends to be computationally intensive. This stage is applied to
selected ROI of CT images by interactive procedure.

Fig. 7.2 Illustration of split algorithm: a a splited image; b the corresponded quad tree
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7.3.2 Clustering Classification of Segmented CT Image

In order to obtain a precisely detection of simple renal cyst in segmented image is
used a color classification based on k-mean clustering. This method aims to par-
tition n observations into k clusters in which each observation belongs to the cluster
with the nearest mean.

We have selected the L*a*b* color space which is a perceptually uniform
orthogonal Cartesian coordinate system. The differences between two pixels in
L*a* b* color space is the same with the sense of the human eyes visual system and
this color space enables doctors to quantify these visual differences. Color-Based
Segmentation using K-mean clustering segments colors in an automated fashion
using the L*a*b* color space and K-means clustering method. K-means clustering
treats each object as having a location in space. It finds partitions such that objects
within each cluster are as close to each other as possible. K-means requires that the
number of clusters to be partitioned should be specified and also a distance metric to
quantify how close two objects are to each other [35, 36]. Clustering is the process
for grouping data points with similar feature vectors into a single cluster and for
grouping data points with dissimilar feature vectors into different clusters. Let the
feature vectors derived from l clustered data be X = {xi, i = 1,2…., l}. The gen-
eralized algorithm initiates k cluster centroids C = {cj, j = 1,2,….k} by randomly
selecting k feature vectors are grouped into k clusters using a selected distance
measure such as Euclidean distance so that

d ¼ xi � cj
�� ��: ð7:1Þ

The next step is to precompute the cluster centroids based on their group
members and then regroup the feature vector according to the new cluster centroids.
The clustering procedure stops only when all cluster centroids tend to converge.

7.3.3 Segmentation Based on Texture Analysis

Given the input CT image in its grayscale representation g(i,j) with its dimensions
i ¼ 1;N and j ¼ 1;M along the rows and columns respectively first the set of the
following Haralick features [14] could be calculated:

f1 ¼
X4
i¼�4

X4
j¼�4

g2ði; jÞ; ð7:2Þ

where f1 is the energy parameter found for every pixel inside a 9 × 9 neighborhood.
Next the entropy feature denoted by f2 is selected following the expression in the
same neighborhood around each current image pixel:
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f2 ¼ � P4
i¼�4

P4
j¼�4

gði; jÞ log2 gði; jÞ if g(i, j) 6¼ 0

0 if g(i, j) ¼ 0

8<
: ð7:3Þ

Then the correlation parameter f3 is presented as follows:

f3 ¼
X4
i¼�4

X4
j¼�4

ði� lÞðj� lÞgði; jÞ
r2

; ð7:4Þ

where µ is the weighted pixel average and assuming the probable symmetry of the
image along vertical and horizontal directions without any a priori knowledge it is
thought to be:

l ¼
X4
i¼�4

X4
j¼�4

igði; jÞ ¼
X1
i¼�1

X1
j¼�1

jgði; jÞ: ð7:5Þ

In (7.4) σ is the weighted pixel variance and from the same symmetry
assumptions it could be represented as:

r ¼
X4
i¼�4

X4
j¼�4

ði� lÞ2gði; jÞ ¼
X4
i¼�4

X4
j¼�4

ðj� lÞ2gði; jÞ: ð7:6Þ

Defined this way µ and σ are actually the mean and standard deviation of the row
and respectively column sums.

After that the difference moment f4 could be obtained according to:

f4 ¼
X4
i¼�4

X4
j¼�4

1

1þði� jÞ2gði; jÞ: ð7:7Þ

The contrast also presented as inertia in some sources is given by:

f5 ¼
X4
i¼�4

X4
j¼�4

ði� jÞ2gði; jÞ: ð7:8Þ

The cluster shade is then included following the expression:

f6 ¼
X4
i¼�4

X4
j¼�4

ðði� lÞþ ðj� lÞÞ3gði; jÞ: ð7:9Þ
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Cluster prominence is the next parameter chosen in correspondence with:

f7 ¼
X4
i¼�4

X4
j¼�4

ðði� lÞþ ðj� lÞÞ4gði; jÞ: ð7:10Þ

Finally Haralick’s correlation is taken from the processing neighborhood:

f8 ¼

P4
i¼�4

P4
j¼�4

ði:jÞgði; jÞ � l2

r2
: ð7:11Þ

Taking the entropy feature f2 from the input image g(i, j) a new array with the
same dimensions is generated e(i, j). Then normalization is done for it to fit the
dynamic range of the original image:

enði; jÞ ¼ eði; jÞ
maxfeði; jÞg :maxfgði; jÞg: ð7:12Þ

Typically double precision is used for preserving accuracy.
In the next stage a histogram h(en) of the resulting image is calculated and multi

threshold segmentation is performed in order to get rough masks for each candidate
texture area. Since some of the separate areas may take dominant part of the whole
image and there may be no expressed maximum in the histogram so maximum
entropy segmentation is selected for the purpose [37]. For a particular threshold θk
separating two modes from the histogram a maximum in the entropy is desired for
most accurate splitting to mode A and mode B:

hAðhkÞ ¼ � Phk
i¼hk�1

hðeniÞ log2ðeniÞ

hBðhkÞ ¼ � Phkþ 1

i¼hk

hðeniÞ log2ðeniÞ

���������
: ð7:13Þ

The a priori probabilities for both regions then are pA and pB found by:

pA ¼
Xhk
i¼hk�1

hðeniÞ; ð7:14Þ

pB ¼ ð1=nÞ � pA ¼ ð1=nÞ �
Xhk
i¼hk�1

hðeniÞ; ð7:15Þ
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where n is the number of regions. The normalized entropy then is:

H0
AðhkÞ ¼ �

Xhk
i¼hk�1

hðeniÞ
pA

log2
hðeniÞ
pA

� �
; ð7:16Þ

H0
BðhkÞ ¼ �

Xhkþ 1

i¼hk

hðeniÞ
pB

log2
hðeniÞ
pB

� �
¼

¼ �
Xhkþ 1

i¼hk

hðeniÞ
ð1=nÞ � pA

log2
hðeniÞ

ð1=nÞ � pA

� �
:

ð7:17Þ

The total entropy for the group is given by:

HAB ¼ �
Xhkþ 1

i¼hk�1

hðeniÞ log2 hðeniÞ: ð7:18Þ

The target function then for a particular threshold is:

f ðhkÞ ¼ H0
AðhkÞþH0

BðhkÞ ¼

¼ log2 pAð1� pAÞþ HAðhkÞ
pAðhkÞ þ HAB � HAðhkÞ

1� pAðhkÞ :
ð7:19Þ

From the maximum of f the current optimal threshold θkopt is found:

hkopt ¼ argfmaxff ðhÞgg: ð7:20Þ

If no apparent maximum is found an average over the investigated interval is
taken.

Then a new segmented (indexed) image from en(i, j) is generated based on the
found thresholds:

sði; jÞ ¼

0; for enði; jÞ 2 ½0; h1�
. . .

k; for enði; jÞ 2 ½hk; hkþ 1�
. . .

n� 1; for enði; jÞ 2 ½hn�1; hn�

8>>>><
>>>>:

: ð7:21Þ

Now from the indexed image each region can be represented by a binary mask
bk(i, j):

bkði; jÞ ¼ 0; if sði; jÞ 6¼ k
1; otherwise

�
: ð7:22Þ
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For each bk(i, j) a binary representation is taken from en(i, j) using the Otsu
algorithm to have ebk(i, j). Then a series of morphological operations are performed
over each ebk. It starts with an opening according to the equation:

ebk � S1 ¼ ðebkHS1Þ � S1; ð7:23Þ

Fig. 7.3 Proposed approach for texture segmentation
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where the structural element S1 assures removal any object smaller than 50 pixels in
total. Afterwards a morphological closing is performed:

ebk � S1 ¼ ðebk � S2ÞHS2; ð7:24Þ

where now the structural element S2 being a square with dimensions 9x9 coinciding
with the initial size of the neighborhood from which the entropy image had been
generated actually helps to refine any sharp corners inside the texture profile. It also
removes any too small openings in the forms of dots, typically caused by
non-suppressed noise.

Two additional processing steps are then applied for further cleaning of the
image from known types of distortions. The first one is standard deviation filtering
with a neighborhood of 9 × 9 again:

gsði; jÞ ¼ gði; jÞ
2pr2

e�
ði2 þ j2Þ
2r2 : ð7:25Þ

Finally a range filtration is done within a neighborhood of 5x5 in a progressive
fashion over the whole resulting image.

So far a set of binary masks define the rough boundaries of totally n regions
found. Now for each region the remaining 7 Haralick features are calculated sep-
arately—f1, f3–f8. Then comparing the newly formed 7-components feature vectors
among all the regions proper merging in type could be implemented by using the
well-known probabilistic neural network approach [24]. The whole process is
presented in generalized form in Fig. 7.3. The benefit of using preliminary the
entropy feature is the considerable reduction of areas to be compared and eventually
selected as separate texture fields rather than going directly to the general approach
by forming the full-scale feature vectors consisting typically of 13 components.

7.4 Experimental Results

The formulated stages of processing are presented by computer simulation in
MATLAB, version 7.14 environment with using the IMAGE PROCESSING and
WAVELET TOOLBOXES. In analysis are used real 20 grayscale abdominal CT
images in axial plane with size 667×557 pixels in native, arterial and venous phase
of kidney. The original images are obtained in DICOM, but have been archived in
jpeg file format. By pre-processing they are converted in bmp format. In Fig. 7.4 are
presented original images in axial plane for the native, arterial and venous phase of
kidney. The images in these three phases can be processed in parallel.

The 3 × 3 template is used to achieve median filtering. The obtained average
results for NRR are around 0.5 and shows that the noise is two times reduced.

The best results by noise reduction of Poisson noise are obtaining by coiflet
wavelet packet functions, adaptive shrinkage decomposition (best tree) on the base
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of the third level and minimum of the Shannon entropy criteria, by using of hard
penalized threshold. By using of the log energy and energy criteria the effectiveness
of the filtration is smaller. In order to quantify how much noise is suppressed by the
proposed noise reduction approach, the noise reduction rate is computed. The
obtained average results for NRR are around 0.3 and shows that the noise is three
times reduced. The values of PSNR and Effectiveness of filtration (EFF) are
sufficient.

The best results by contrast enhancement using CLAHE are obtained by
bell-shaped form of histogram (Rayleigh distribution) and clip limit 0.04. Higher
clip limit values will clip fewer values and thus they will be spread out more, hence
more contrast.

The obtained averaging results by preprocessing of CT images in native phase
are shown in Table 7.1. It presents the values of the objective quantitative esti-
mation parameters such as PSNR, Signal to noise ratio in the noised image (SNRY),
Signal to noise ratio in the filtered image (SNRF), Effectiveness of filtration (EFF) in
the different stages of the algorithm. The variances are about ±0.005 by the par-
ticular images. The obtained averaging results by preprocessing of CT images in the
other phases are similar and show insignificantly differences in the values.

A visual presentation of original CT image in native phase and its modifications
as a result of pre-processing stags can be seen in Fig. 7.5. The CT images and their
modifications in the arterial and venous phases are presented respectively in
Figs. 7.6 and 7.7.

In Fig. 7.8 are shown the original CT ROI image with size 87 × 88 pixels in
native phase with simple cyst in the left kidney and corresponding results obtained
by split and merge segmentation and clustering of the segmented image.

Fig. 7.4 Original CT presented in: a native phase; b arterial phase; c venous phase

Table 7.1 Simulation results for pre-processing stages of CT images

Stage of processing PSNR (dB) SNRY (dB) SNRF (dB) EFF (dB)

1. Median filter 28.052 20.548 22.329 1.781

2. Noise reduction on WPT 33.814 22.329 24.522 2.193

3. CLAHE 35.035 – – –
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Figure 7.9 presents the processed CT ROI image with size 87 × 88 pixels in
native phase with simple cyst in the left kidney and corresponding results obtained
by split and merge segmentation and clustering of the segmented image.

In Figs. 7.10 and 7.11 are given respectively original CT ROI image with size
87 × 88 pixels in arterial phase with simple cyst in the left kidney and corre-
sponding results obtained by split and merge segmentation and clustering of the
segmented image.

Fig. 7.5 The original CT image in native phase and its modifications as a result of pre-processing:
a original; b after noise reduction stage; c after CLAHE

Fig. 7.6 The original CT image in arterial phase and its modifications as a result of
pre-processing: a original; b after noise reduction stage; c after CLAHE

Fig. 7.7 The original CT image in venous phase and its modifications as a result of
pre-processing: a original; b after noise reduction stage; c after CLAHE
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Fig. 7.8 The original CT ROI image in native phase and corresponding results of split and merge
segmentation and clustering of the segmented image: a original ROI image; b after split and merge
segmentation; c cluster 3 of the segmented ROI image

Fig. 7.9 The processed CT ROI image in native phase and corresponding results of split and
merge segmentation and clustering of the segmented image: a processed ROI image; b after split
and merge segmentation; c cluster 3 of the segmented ROI image

Fig. 7.10 The original CT ROI image in arterial phase and corresponding results of split and
merge segmentation and clustering of the segmented image: a original ROI image; b after split and
merge segmentation; c cluster 3 of the segmented ROI image
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In Figs. 7.12 and 7.13 are shown respectively original CT ROI image with size
97 × 98 pixels in venous phase with simple cyst in the left kidney and corre-
sponding results obtained by split and merge segmentation and clustering of the
segmented image.

The experiments showed differences by the clusters from original and processed
CT ROI images. They are illustrated in Fig. 7.14.

After getting the output images for the three phases of the ROI containing the
single cyst the texture segmentation based on Haralick’s features along with
the series of morphological operators are applied. These steps are done once over
the non-filtered images and then identically over the preprocessed ones for all the
phases. The aim is to have means for visual and quantitate comparison based on
located surface for the cyst itself.

In Fig. 7.15 are given the input image from the arterial phase without being
preprocessed and then the entropy map followed by the local standard deviation
map and the final resulting image after range filtration which returns the most

Fig. 7.11 The processed CT ROI image in arterial phase and corresponding results of split and
merge segmentation and clustering of the segmented image: a processed ROI image; b after split
and merge segmentation; c cluster 3 of the segmented ROI image

Fig. 7.12 The original CT ROI image in venous phase and corresponding results of split and
merge segmentation and clustering of the segmented image: a original ROI image; b after split and
merge segmentation; c cluster 3 of the segmented ROI image
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Fig. 7.13 The processed CT ROI image in venous phase and corresponding results of split and
merge segmentation and clustering of the segmented image: a processed ROI image; b after split
and merge segmentation; c cluster 3 of the segmented ROI image

Fig. 7.14 Illustration of differences between the original and segmented clusters, respectively in:
a native phase; b arterial phase; c venous phase

Fig. 7.15 Main stages of the segmentation algorithm for refining the boundaries of the simple cyst
in the arterial phase without preprocessing: a input image; b entropy map; c local standard
deviation map; d output image after final range filtration
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accurate boundaries of the cyst inside the kidney area. The segmented area is not
shown alone for better representation of the outer boundaries in relation to each
other.

The same segmentation procedure is run over the enhanced image consisting of
the same ROI with the cyst. The results are presented in Fig. 7.16. The order and the
type of the different stages is the same as in Fig. 7.15.

In Fig. 7.17 the segmentation results are given for the native phase containing
the single cyst from the ROI selected in the earlier selection. At first again the
non-filtered image is passed through. The entropy map, the local standard deviation
map and the output image after the final range filtration are shown. Similar to
previous results from the arterial phase the more precisely located boundaries of the
object of interest are underlined at the end.

The same boundaries but in a more smooth fashion and thus closer to their exact
position are fixed by applying the texture segmentation along with the morphology
described when using the filtered ROI in native phase. Visually the results are
presented in Fig. 7.18.

The last test is done over images from the venous phase. Figure 7.19 reveals the
same stages visual representation.

Fig. 7.16 Main stages of the segmentation algorithm for refining the boundaries of the simple cyst
in the arterial phase after preprocessing: a input image; b entropy map; c local standard deviation
map; d output image after final range filtration

Fig. 7.17 Main stages of the segmentation algorithm for refining the boundaries of the simple cyst
in the native phase without preprocessing: a input image; b entropy map; c local standard deviation
map; d output image after final range filtration
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The experiments showed differences by the clusters from original and processed
CT ROI images. They are illustrated in Fig. 7.20.

In Table 7.2 is given the average precision of finding the outer boundary of the
single cyst for the three phases with and without the pre-processing stage.

Fig. 7.18 Main stages of the segmentation algorithm for refining the boundaries of the simple cyst
in the native phase after preprocessing: a input image; b entropy map; c local standard deviation
map; d output image after final range filtration

Fig. 7.19 Main stages of the segmentation algorithm for refining the boundaries of the simple cyst
in the venous phase without preprocessing: a input image; b entropy map; c local standard
deviation map; d output image after final range filtration

Fig. 7.20 Main stages of the segmentation algorithm for refining the boundaries of the simple cyst
in the venous phase after preprocessing: a input image; b entropy map; c local standard deviation
map; d output image after final range filtration
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Figure 7.21 shows some extended results about the accuracy of the contour
detection of single cysts from 3 CT images from the three phases. Results are
similar to those presented in Table 7.2.

We have analysed some statistical parameters about the accuracy of the contour
detection of single cysts in all the three phases in the axial plane.

The calculated standard deviation is respectively 0.03 for the original and 0.02
for the pre-processed images in the arterial phase. The mean value is respectively
92.67 % for the original and 98 % for the pre-processed images. In the native phase
is the standard deviation respectively 0.04 for the original and 0.03 for the
pre-processed images. The calculated mean values are 80 and 85.33 % respectively.
The results are similar for the venous phase: standard deviation is 0.03 in both
original and pre-processed images and the mean values are respectively 75.33 and
78.33 %. We can assume that the best results for accuracy of the contour detection
of single cysts are obtained in the arterial phase of the pre-processed images.

7.5 Discussion

The implemented studying and obtained experimental results has shown that the
processed images can better present contours and characteristic features of the
kidney cysts. This can be very important for diagnosis and monitoring of this

Table 7.2 Single
cyst contour detection
accuracy in %

Phase Original image Pre-processed image

1. Arterial 93 98

2. Native 80 85

3. Venous 75 78

Fig. 7.21 Contour detection
accuracy for single cysts from
3 images with and without
pre-processing
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disease. The images, which are obtained in arterial phase of the axial plane, can
visually better present the contours of the simple cyst and the differences between
structures of the surrounding organs. Contrast enhancement, which is based on
CLAHE can enhance not only the contrast of the image but reduce the noise in the
homogenous areas, too. The proposed effective approach for noise reduction and
contrast increasing based on combination of median filter and WPD can be adaptive
applied for every stage of image preprocessing. The complementary adjustment can
be made in the case of the level of wavelet shrinkage decomposition and the
sparsity parameter α of the penalized threshold. Our investigations show that in the
arterial phase the most accurate results emerge from better contrast in a global scale
in the image and best separated texture in the same time.

Starting with the entropy feature the first map returned has most sharpness for
the arterial phase which explains the better results in the later stages of texture
segmentation and final boundary detection. Most of the original non-noisy details
from inside the textures are cleaner subtracted in comparison to the native and the
venous phases.

We can assume that the enhanced version of the image assures better final
segmentation and object detection in all of the phases of axial plane.
Non-informative details are removed from the homogenous areas inside the cyst
and from the non-affected area of the organ, which additionally proves the effi-
ciency of the preprocessing stage.

7.6 Conclusion

In the chapter is proposed a new and effective multistage approach for simple
kidney cysts segmentation in CT images. This segmentation algorithm is very
useful to extract objective information about the contours and structures of simple
kidney cysts from CT scans. It can be implemented by parallel processing of the
different phase of the selected plane. This approach can be very useful by easy
obtaining of more precise diagnosis or in monitoring the disease progression. The
implemented algorithm provides a basis for further investigations in several
directions:

• Segmentation of example of critical case, when two simple kidney cysts are just
one next to the other. This makes the separation of the two cysts and the
delineation of their boundaries a challenging task.

• Another direction is the application of the method in case of autosomal domi-
nant polycystic kidney disease (ADPKD).

• Analysis of tissue’s structures of different type of kidney cysts is one more
aspect of valuable application.

• It could be used as a method for segmentation and analysis of cysts in other
organs.
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Due to the reduced dimensionality of features used in the segmentation process it
is faster in comparison with previously developed approaches. While preserving
high accuracy of the cysts’ detection different phases from the CT imaging could be
used as a diversified mean for improving the results and as an input to more
specialized analysing tools for more precise diagnosis.
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Chapter 8
Audio Visual Attention Models
in the Mobile Robots Navigation

Snejana Pleshkova and Alexander Bekiarski

Abstract The mobile robots are equipped with sensitive audio visual sensors,
usually microphone arrays and video cameras. They are the main sources of audio
visual information to perform suitable mobile robots navigation tasks, modeling the
human audio visual perception. The results from the audio and visual perception
algorithms are widely used, separate or in conjunction (audio visual perception) in
the mobile robots navigation, for example to control mobile robots motion in
applications like people and objects tracking, surveillance systems, etc. The
effectiveness and precision of the audio visual perception methods in the mobile
robots navigation can be enhanced combining audio visual perception with audio
visual attention. Sufficient relative knowledge exists, describing the phenomena of
human audio and visual attention. Such approaches are usually based on a lot of
physiological, psychological, medical and technical experimental investigations
relating the human audio and visual attention, with the human audio and visual
perception with the leading role of the brain activity. Of course, the results from
these investigations are very important, but not sufficient for the mobile robots
audio visual attention modeling, mainly because of brain missing in mobile robots
audio visual perception systems. Therefore, in this chapter is proposed to use the
existing definitions and models for human audio and visual attention, adapting them
to the models of mobile robots audio and visual attention and combining with the
results from the mobile robots audio and visual perception in the mobile robots
navigation tasks.
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8.1 Introduction

Mobile robots are usually equipped with an appropriate audio visual system [1–4].
In most cases these systems are working as an appropriate and simple model of the
human audio visual perception system [5–8]. The human audio visual perception is
dedicated to model the mobile robot navigation in real indoor or outdoor envi-
ronments in situation to avoid obstacles [9–12], objects [13–16], for people tracking
[17–19], etc., in a variety of actual mobile robots applications like surveillance [20–
23], military, police and rescue operations [24–26], home service, guiding robots
[27–29], medical robots [30, 31], etc.

The effectiveness and precision of using the human audio visual perception in
the mobile robot navigation and motion control can be extended and enhanced by
combining the mobile robot audio visual perception with the associated to the
human perception human audio visual attention [32–35]. To apply the human audio
visual attention in the mobile robot navigation and motion control is necessary to
describe the human audio visual attention in qualitative and quantitative terms
suitable to be applied in the mobile robot audio visual systems and the corre-
sponding algorithms, focusing the mobile robot audio visual attention mainly on
tracking target objects or speaking persons. A lot of research works exist, and also
the proposed methods [36, 37] which describe the phenomena of the human audio
and visual attention, but they are usually based on a lot of physiological, psycho-
logical, medical and technical experimental investigations related to the human
audio and visual attention with human audio and visual perception with the leading
role of the brain activity. The results of these investigations are very important for
the audio visual attention understanding, but they are not sufficient and entirely
applicable for mobile robots audio visual attention modeling, because of brain
missing in mobile robots audio visual perception systems. Therefore, to establish
these circumstances, here is presented a brief description of the basic definitions of
the human audio visual attention with the corresponding definitions of the human
audio visual perception, and the importance of the human brain activity to control
the human audio visual attention. The missing of brain or of something like mental
ability in the mobile robot audio visual systems is the main stimulus for the
researchers [38, 39] to propose a theoretical (mathematical) representation of the
human audio visual attention model, where to avoid and replace the leading role of
the human brain with a probabilistic representation, or to model the brain functions
so that to focus and control attention in the general cases of computer vision.

8.2 Related Work

A lot of models of perception and attention as general probabilistic model are
already proposed [40–44]. Most of them are specified separately to visual or audio
perception and attention, but in [40] and [43] the described probabilistic models of
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the audio and visual perception and attention are regarded as joined parts of the
conceptual cognition foundation. This allows to use some of the probabilistic
models related to audio perception and attention only, applying them after appro-
priate modifications to video perception and attention, or as joined audio and visual
perception and attention probabilistic models. Therefore, the basic probabilistic
vision model [44] can be considered as a start point for the development of the
visual attention model for the mobile robot navigation, and to extend this model for
the audio attention, in order to achieve a joined audio visual probabilistic model
suitable for mobile robot navigation, as presented in this chapter. The existing
probabilistic model [44] is obtained by using the visual geometry (Fig. 8.1),
assuming also the definition of a chosen initial probability density function in the
observation area:

f ðzÞ ¼ 2l0
p

1
ðl20 þ z2hÞ

ð8:1Þ
It is assumed in the probabilistic attention model proposed in [44], that there is
equal visual attention to all locations on the vertical plane z in the first instance of
attention. This eliminates the importance of human brains in the initial step of
attention. Therefore, the initial probability of getting attention at each point on the
plane z is the same and respectively the corresponding probability density function
of attention—uniformly distributed. The uniformly defined probability density
function of the initial probabilistic attention model can be combined with the
Bayesian attention models [42] and [43], suitable for description in each current
step of the navigation (object tracking) for sharpening the mobile robot attention in
a chosen direction, i.e. the current probability density function of attention is not
uniformly distributed and should be calculated in each current step by using
attention for the purposes like mobile robot navigation. The developed probabilistic
attention model proposed in [44] is studied mainly considering the human as an
observer and this model is then shown briefly in terms of the possibilities for

Fig. 8.1 The probabilistic
model [44] obtained using
visual geometry, assuming the
defined initial probability
density function in the
observation area
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applying this model also for architectural purposes and for using the virtual agent
(robot) as an observer.

The above mentioned existing works concerning the area of attention can be
used to motivate and define the main goal of this chapter in the following way:

• to propose an audio visual attention model on the base and on the modification
of the developed in [44] probabilistic attention model;

• to apply the proposed audio visual attention model in the area of the mobile
robot navigation;

• to develop a geometric model of the mobile robot area of observation, suitable to
test the proposed probabilistic audio visual attention model in situations of
indoor mobile robot navigation;

• to develop the appropriate algorithm to define the steps of the initial audio visual
attention of the mobile robot and to carry out with this algorithm the corre-
sponding experiments to demonstrate the main advantages achieved in the
mobile robot indoor navigation, applying the proposed audio visual attention
model in comparison with same mobile robot navigation tasks, but without
information for the audio visual attention, i.e. by using the information from
audio visual perception only.

8.3 The Basic Definitions of the Human Audio Visual
Attention

The basic definitions of the human audio visual attention can be derived from our
most general idea and conceptions for human audio and visual perception, since
vision and audio are the major source of information in our comprehension of the
environment [40]. This can be said also for the computer audio and video per-
ception and especially for the mobile robots audio and visual perception in par-
ticular, but without the existence of brain and the related important functions in the
human perception. Therefore, it is possible to present the following basic definitions
considering the human audio visual attention in general aspects and addressing
them to the computer audio vision attention applicable to mobile robot motion
control and navigation:

• perception refers to the way in which humans interpret the information gathered
and processed by human senses;

• audio visual perception is the process of acquiring knowledge about envi-
ronment and events extracting information from the sounds and/or the light they
emit or reflect;

• early human audio and visual perception is dedicated to build the first initial
and comprehensive audio and visual information of the observed environment;
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• human mind of audio and visual perception defines the dependence of the
audio visual perception from our mind, i.e. it involves not only our ears and eyes
but also the brains and their functions in formation of our knowledge about the
audio visual information about the objects and thinks in the area of observation;

• human audio and visual perception means that perceiving something (sounds,
objects, people, etc.) it is possible to recall their relevant properties;

• human audio and visual attention is associated and closely connected with the
human audio and visual perception and represents the human ability to focus the
perception on the important things, sound of the speaking person, music, noise,
objects or people, etc. (selected by human mind).

It can be noted, that all of the above mentioned basic definitions, which consider
the human audio visual perception and attention, are verbal and are proposed and
accepted from philosophic and psychological point of view. Therefore, they are not
directly applicable in areas like computer vision, robotic, virtual reality, etc., where
it is obligatory to use audio visual perception and attention, but in corresponding
mathematical or algorithmic sense and description.

8.4 General Probabilistic Model of the Mobile Robot
Audio Visual Attention

In the existing general case studies [41–44], for the presentation of the human audio
visual perception and attention as mathematical models, are used probabilistic
processes to obtain and interpret the audio visual information from the environment.
These models are also used in the mathematical definitions of the audio visual
attention, openness or perceptivity, the visual openness measurement for design,
scene description by perception, virtual reality and virtual agents and other char-
acteristics of perceived audio visual information. There are also ideas [45–48] to
apply these models in robotics, virtual reality, etc.

From these models, two cases of audio visual attention are defined in this
chapter:

• prior, preliminary or initial audio visual attention;
• posterior or current audio visual attention.

The definition of the preliminary or initial audio visual mobile robot attention
model refers to the first human audio visual impression of unknown environment
and can be based on probabilistic definition with uniform distribution of the
probability density function. The current audio visual mobile robot attention model,
when mobile robot localized sound sources, speakers, observe and tracking the
objects or people, can be also considered in the same way, using the probabilistic
definition. But in the concrete situation the mobile robot audio visual attention
depends on the goal of the mobile robot moving, the sound sources localization, the
observation and the tracking task, which is similar to the human audio visual
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attention. The only difference is that humans use their brains to define the audio
visual attention. Nevertheless, it is possible to assume that the initial and current
audio visual mobile robot attention model can be modeled by using probabilistic
uniform (for the initial model) and non uniform (for the current model) functions.
This means that the general (the initial and the current) description of the audio
visual mobile robot attention model in unknown environment can be defined by
using the definition of the following probabilistic model:

PðEA;EV ;Ai;ViÞ ¼ PðAi;VijEA;EVÞPðEA;EV Þ; ð8:2Þ

where
EA and EV are respectively the initial or current audio visual estimations (the

results from the audio and video processing for feature extraction,
object detection, scene analysis, etc.) of the audio visual information
(sound signals, images);

Ai and Vi initial or current audio visual information as sound signals and images
captured respectively by the microphone array and the video camera,
mounted on the mobile robot.

The arguments in Eq. 8.2 used for the audio visual estimations EA and EV , can
be defined and explained more precisely, especially in cases of using information
from the audio visual attention in the current steps of the mobile robot navigation
tasks. The arguments (estimations EA and EV ) of the probabilities in Eq. 8.2 are the
descriptions of the real audio visual objects SPA;OBV , for example the coordinates
of the speakers SPA, the visual objects OBV , etc., defined after the execution of the
algorithms for sound source localization, the visual objects detection, etc., which
are the objects of previous investigations of the authors of this chapter, given in [46]
and [49]. An example of applying these arguments from Eq. 8.2 in the current step
of the mobile robot navigation is given as a probabilistic posterior audio visual
attention model:

PðSPA;DA;OBV ; LCV ;Ai;ViÞ ¼
¼ PðSPA;DAÞPðOBV ; LCV ÞPðAi;VijSPA;DA;OBV ; LCVÞ;

ð8:3Þ

where
SPA;OBV are the speakers and the visual objects, respectively determined as

results of the execution of the appropriate and the well known
existing speaker localization and the visual objects detection
algorithms, using the perceived and the processed audio and visual
information captured by the mobile robot audio and the visual
perception system (microphone array and video camera,
respectively);
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DA and LCV the directions of speakers, determined by using the sound localiza-
tion algorithms and the visual objects locations, calculated by the
objects detection algorithms, respectively.

Equations 8.2 and 8.3 can be considered as definitive representation of the
general probabilistic audio visual attention model suitable for the following tasks
described in this chapter:

• applying Eqs. 8.2 and 8.3 with calculated arguments in concrete situations of
the mobile robot navigation by using the probabilistic audio visual attention
model;

• to arrange the various situations of the mobile robot navigation for applying and
testing the proposed probabilistic audio visual attention model is created an
indoor geometric model of the mobile robot area of observation;

• for the initial probabilistic audio visual attention model, it is sufficient to cal-
culate and substitute in Eq. 8.2 the arguments EA and EV (feature extraction,
object detection, scene analysis, etc.) and the arguments Ai, Vi as captured sound
signals and images from the mobile robot microphone array and the video
camera, respectively;

• for each current probabilistic audio visual attention model it is necessary to
calculate the arguments in Eq. 8.3 SPA;OBV as the speakers and visual objects,
and DA, LCV as directions of speakers, and of the visual objects locations;

• all arguments mentioned in Eqs. 8.2 and 8.3 can be the subject of calculation as
results from the numerous executions of the existing tested and well working
audio visual perception algorithms [46, 49] as developed methods and algo-
rithms for audio-visual mobile robot perception, which are not the object here
and therefore, it is not necessary to mention them in this chapter.

The proposed general probabilistic model of the mobile robots audio visual
attention and the related perception can be explained by means of the perceptual
geometry, presenting acoustic and visual environment in the field of the mobile
robot action. The mobile robot environment or the areas of action are usually
defined as indoor and outdoor. Here, on Fig. 8.2 is considered the case of the indoor
mobile robot observation environment (for example a room). The audio visual
sensors (for example the microphone array and the video camera), placed on the
mobile robot platform, have a chosen initial position in the room and observe the
environment in front of the robot in a maximal angle of observation chosen to be
h ¼ �p=4 (Border of space observation on Fig. 8.2).

To achieve and explain the probabilistic characteristics of the mobile robot audio
visual perception and attention is used an imaginary perception line (on Fig. 8.2 as
the more frequently used 2D geometric model of the room) or imaginary plane (in
the case of the 3D geometric model of the room).

Therefore, in the area of observation (h ¼ �p=4), i.e. of the audio visual per-
ception and attention, it is possible to define the following distances from the audio
visual sensors initial position to the imaginary perception line (plane):
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• the distance dst0 from the audio visual sensors initial position to the imaginary
perception line (plane) in the initial direction of observation, defined by the
angle h ¼ 0;

• the distance dsth from the audio visual sensors initial position to the imaginary
perception line (plane) in the arbitrary direction of observation, defined by the
angle h 6¼ 0 in the range of h ¼ �p=4.

Using the defined preliminary or initial probabilistic mobile robot audio visual
attention and perception model (Eq. 8.2) in unknown environment (on Fig. 8.2—
the room), it is possible to suppose, that all the arbitrary directions of observation
(for h 6¼ 0) are assumed to have equal probability of observation. This means that
the probability density function fh, which belongs to the angle h, is uniformly
distributed:

fh ¼ 1
p=2

ð8:4Þ

Fig. 8.2 The explanation of the proposed probabilistic model of the audio visual attention and
related perception by means of the perceptual geometry, presenting the acoustic and the visual
environment in the field of the mobile robot action for the case of indoor environments
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From the probabilistic characteristic of the directions of observation (angle h)
defined by Eq. 8.4, it is reasonable to assume the probabilistic basis of the distance
dsth from the audio visual sensors initial position to the imaginary perception line
(plane) in an arbitrary direction of observation, and the distance xh from the origin
“0” on the imaginary perception plane on Fig. 8.2. Thus, by using these assump-
tions it is possible to calculate the corresponding probability density function of the
distance dsth or of the distance xh. For example the following equation defines the
probability density function of the distance xh:

f ðxhÞ ¼ 2dst0
pðdst20 þ x2hÞ

ð8:5Þ

The precision derivation expressed by the Eq. 8.5 can be found in the existing
probabilistic theory [41] and [42] of the human perception. Here is presented the
way of making the derivation of the Eq. 8.5 by means of the perceptual geometry
for applications in the mobile robot audio visual attention only. It is assumed that
the direction h is a random variable and xh is a function of the direction h:

xh ¼ dst0
cosðhÞ ¼ f ðhÞ ð8:6Þ

Therefore, the derivation of the probability density function of the distance xh can
be calculated through applying the theory of the functions of the random variables
as in Eq. 8.4. The random function f ðhÞ can be described by its real roots
h1; h2; h3; . . .:

xh ¼ f ðh1Þ ¼ f ðh2Þ ¼ f ðh3Þ ¼ � � � ð8:7Þ

Following this way, two roots only could be detected in the range h ¼ �p=4 of the
random function, used to derivate the Eq. 8.5 of the random function f ðhÞ. The
random function f ðxhÞ derived by Eq. 8.5 describes the probability density function
of the initial audio visual attention of the mobile robot as a function of the
observation directions (angle h) and of the distance dsth from the audio visual
sensors initial position to the imaginary perception line (plane) on Fig. 8.2. The
probabilistic presentation through the random function f ðxhÞ of the mobile robot
audio visual attention is deeply related to the possibility to define the probabilistic
characteristics of the mobile robot audio visual perception also. To justify this, the
probabilistic characteristics of the audio visual attention are defined as a density in a
very small range, or angle sector, Dh region (Fig. 8.3).

If the probability density function f ðxhÞ is integrated in the finite interval (xmax

and xmin in Fig. 8.3) of the variable x, the result can be considered as the proba-
bilistic definition of the initial mobile robot audio visual perception PAV :
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PAV ðx; hÞ ¼
Zxmax

xmin

f ðxhÞdx; ð8:8Þ

where
xmax ¼ þ dst0 and xmin ¼ �dts0 if the mobile robot audio visual perception and

attention are considered in the area of observation (h ¼ �p=4).
Therefore, it is possible to summarize the following from Eqs. (8.4–8.8):

• from the existing probabilistic description of the human audio and visual per-
ception and attention are derived the mobile robot audio visual perception and
attention probabilistic descriptions;

• the initial audio visual attention and perception of the mobile robot can be
described as probabilistic functions with corresponding probabilistic
characteristics;

• the initial audio visual attention and perception of the mobile robot are related
together with their probabilistic characteristics;

Fig. 8.3 The definition of mobile robot audio visual attention probabilistic characteristics as a
density in very small interval of angle sector Dh
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• the initial audio visual attention of the mobile robot is defined by the probability
density function from Eq. 8.5 as the random function f ðxhÞ of the directions of
the mobile robot observation (angle h) and also of the distance dsth from the
audio visual sensors initial position to the imaginary perception line (plane) on
Fig. 8.2;

• the initial audio visual perception of the mobile robot can also be defined as the
probabilistic function PAV ðx; hÞ by Eq. 8.8 derived as the integrated function of
the initial audio visual attention of the mobile robot in the finite interval (xmax

and xmin in Fig. 8.3);
• by the proposed probabilistic mobile robot audio visual attention and perception

description is allowed to avoid (absorb) the important participation and the role
of the brain existing in the human audio visual attention and perception.

In the next part of this chapter is proposed to use the mobile robot probabilistic
audio visual attention and perception model, presented above, in the development
and testing the examples of the models of the mobile robots audio and visual
attention combining and comparing them with the results achieved from mobile
robots audio and visual perception only in the mobile robots navigation tasks.

8.5 Audio Visual Attention Model Applied in the Audio
Visual Mobile Robot System

In the general case it is very difficult to model the phenomena of the mobile robots
audio visual attention. This is because in the existing audio visual mobile robot
systems, there is not a knowledge system, similar to the human brain knowledge
system. Therefore, it is possible to try to model and to simulate some special cases
of mobile robots audio visual attention situations only. In this chapter is proposed to
build the concrete model of the audio visual attention of the mobile robots for the
case of indoor mobile robot motion control and navigation. The proposed proba-
bilistic audio visual attention model is applied in the audio visual mobile robot
system placed in the room environment, shown on Fig. 8.4 as a simple horizontal
representation space model of the room environment, describing the area of the
mobile robot movements.

8.5.1 Room Environment Model for Description of Indoor
Initial Audio Visual Attention

The audio visual attention model, shown on Fig. 8.4, is based on the audio visual
mobile robot system for the case of indoor mobile robot motion control and nav-
igation, and can be described by the following characteristics and the corresponding
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Fig. 8.4 The proposed audio visual attention model based on the audio visual mobile robot
system for the case of indoor mobile robot motion control and navigation as a simple horizontal
representation space model of a room environment describing the area of the mobile robot
movements
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coordinates needed for the initial precise description of the audio visual attention
model:

• the room dimensions in the presented on Fig. 8.4 horizontal space model: length
—rl and width—rw;

• the room coordinates X and Y along the room length and width, respectively,
with the origin chosen in the bottom left corner on Fig. 8.4;

• the mobile robot platform start coordinates xr0 and yr0;
• the start room coordinates xc0 and yc0 of the video camera mounted on the

mobile robot platform;
• the start room coordinates xm0 and ym0 of the microphone array mounted on the

mobile robot platform;
• the start room coordinates xl0 and yl0 laser range finder, mounted on the mobile

robot platform;
• all presented in the general case objects in the room like tables, chairs or other

obstacles for the mobile robot motion in the room environment can be described
by the corresponding room coordinates xobji and yobji for i = 1, 2, … n in case
that in the room there are “n” number of objects, and for a simple case it is
possible to accept, that all objects in the room, shown as a model in Fig. 8.4, are
stationary, i.e. their room coordinates are fixed (xobji = const and yobji =
const), when using the horizontal space model, shown on Fig. 8.4, in the
development of the audio visual attention algorithms;

• the speaker room start coordinates xsp and ysp, necessary for the audio visual
attention algorithms to define the start position of the speaking person to focus
the mobile robot audio attention if the speaking person sends the voice com-
mands to the mobile robot motion control in the room.

All coordinates, mentioned above, can be changed, if necessary, in any current
instance of the audio visual attention algorithms execution.

In the same way it is possible to present also the simple vertical space model of a
room, shown on Fig. 8.5, as the area of the mobile robot movements.

The simple vertical part of the space model, shown on Fig. 8.5, defines the
coordinates x and z only for the mobile robot (xr0, zr0), the microphone array (xm0,
zm0) and the laser range finder (xl0, zl0) in the vertical Z–X plane, if it is supposed
that they are located in the mobile robot platform in such way, that their y—
coordinate is equal, i.e. yr0 = ym0 = yl0 = const.

The definition of all other the objects presented on Fig. 8.4, and the speaker, can
be defined and shown in a similar way, but this is more convenient to make this
definition direct in each developed algorithm, because of the concrete and arbitrary
space position in the room and in the general case, shown on Fig. 8.4.

Therefore, using the information from Figs. 8.4 and 8.5, it is possible to sum-
marize in the following way the general definitions of the space positions, applying
the room space coordinate system X, Y, and Z of all existing and presented on
Fig. 8.4 objects in the room, speaker, mobile robot, laser range finder and micro-
phone array, for the chosen situation, suitable of modeling mobile robot attention:
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• room dimensions length, width and high (rl, rw, rh);
• mobile robot platform start coordinates (xr0, yr0, zr0);
• video camera start room coordinates (xc0, yc0, zc0);
• microphone array start room coordinates (xm0, ym0, zm0);
• laser range finder start room coordinates (xl0, yl0, zl0);
• objects in the room coordinates (xobji, yobji, zobji) for i = 1, 2, … n;
• speaker room start coordinates (xsp, ysp, zsp).

8.5.2 Development of the Algorithm for Definition
of the Mobile Robot Initial Audio Visual Attention
Model

The general definitions presented above are applied in the proposed algorithm,
shown on Fig. 8.6, to define the mobile robot initial audio visual attention.

The steps of the proposed algorithm, presented on Fig. 8.6, are arranged as a
necessary sequence of initial and calculation operations in order to achieve a
suitable audio visual mobile robot attention in the beginning of its motion in the
room from the starting position.

Fig. 8.5 The proposed audio visual attention model based on the audio visual mobile robot
system for the case of indoor mobile robot motion control and navigation as a simple vertical
representation space model of a room environment describing the area of the mobile robot
movements
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Fig. 8.6 The steps in the proposed algorithm to define the initial audio visual attention of the
mobile robot
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In the first block, after the algorithm starts, are defined all the necessary initial
values as the coordinates of the mobile robot, the video camera, the microphone
array, the laser range finder, a lot of objects, the speaker etc., and also the room
dimensions, if it is supposed to use a simple space model of the room as
parallelepiped.

Then a current image frame is inputted from the video camera, mounted on the
mobile robot platform. In similar way, in the next two blocks of the algorithm are
inputted the audio signals from the microphone array and the data after the initial
scan of the laser range finder.

In the next three blocks from Fig. 8.6 are presented the algorithms used to
process and analyze the input video, the audio information and the laser data. The
goal of this analysis is to achieve the necessary information as concrete values of
the arguments (EA, EV , Ai, Vi, SPA;OBV , DA and LCV ) in Eqs. 8.2 and 8.3, for the
definition of the initial or the current mobile robot probabilistic audio visual
attention model, and to use this model in each moment of choosing (as initial audio
visual attention model) or changing (as current audio visual attention model) the
direction of the mobile robot audio visual attention in the initial or next current
steps of the mobile robot navigation (for example in the tasks of detecting and
tracking people, speakers or objects).

The concrete values of arguments (EA, EV , Ai, Vi, SPA;OBV , DA and LCV ),
which are real audio visual objects SPA;OBV , for example the coordinates of the
speakers SPA, the direction to the speaker DA, the visual objects OBV , etc., are
calculated after executions of the algorithms for sound source localization, visual
objects detection, etc.

To enhance the precision and to correct (if necessary) the calculated values of
these arguments, additional and precise space information is used, achieved by the
laser range finder for precise measurement of the distances from the mobile robot to
the speaker, the objects or the obstacles in the mobile robot indoor area.

All calculations of the arguments, mentioned in Eqs. 8.2 and 8.3, presented on
Fig. 8.6 as necessary algorithms for analyzing the input video and audio infor-
mation and the laser data, were developed and tested through numerous executions
of the existing, and well working audio visual perception algorithms, for example
presented in [46] and [49] as developed methods and algorithms for audio visual
mobile robot perception, which are not necessary to be described in details in this
chapter.

In the general case it is not possible to resolve the problem of choosing the exact
or unique initial direction and target of the mobile robot visual and also audio
attention. Therefore, it is necessary to define the limitations and set the conditions
for some concrete examples or situations, when the mobile robot starts to execute
the algorithm, moving in the indoor environments and tracking a predefined target
(for example an object or speaking person).

Here, for the situation defined in Figs. 8.4 and 8.5 for an indoor mobile robot
movement, is proposed to apply the following limitations and conditions for the
initial positions of the video camera, the microphone array and the laser range
finder, mounted on mobile robot platform:
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• the room coordinates Y and Z of the video camera, the microphone array and the
laser range finder, mounted on the mobile robot platform, are chosen and
defined to be the same and equal to the room coordinates Y and Z of the mobile
robot initial position, i.e.:

yc0 ¼ ym0 ¼ yl0 ¼ yr0; ð8:9Þ

zc0 ¼ zm0 ¼ zl0 ¼ zr0; ð8:10Þ

• the room coordinate X of the video camera is also defined to be the same or
equal to the coordinate X of the mobile robot, but the coordinate X of the
microphone array and of the laser range finder, mounted on the mobile robot
platform, are chosen to be different from each other and from the room coor-
dinate X of the mobile robot initial position, i.e.:

xc0 ¼ xr0 6¼ xm0 6¼ xl0: ð8:11Þ

The conditions defined by the Eqs. 8.9, 8.10 and 8.11 allow to analyze in the
next steps of the algorithm, shown on Fig. 8.6, the incoming from laser range finder
data, to find their correspondence to the coordinates of the input video image and to
analyze the microphone array audio signals to define the initial direction of the
voice commands (if they exist) sent from a speaker to the mobile robot in their
initial positions. For the analysis of the incoming data from laser range finder, in
order to find their correspondence with the coordinates of the input video image is
necessary to extract the information about the distance, which exists in the
incoming laser range finder data in the format, shown on Table 8.1 as an example
of a part of the data collecting after scan from the laser range finder.

In Table 8.1 are applied the following names defined for the used laser range
finder model URG-04LX-UG01 [50]:

Table 8.1 Laser range finder
data format

Index Length Angle Coordinate X Coordinate Y

379 197 −0.030 196.907 −6.042

380 197 −0.024 196.941 −4.834

381 197 −0.018 196.967 −3.626

382 197 −0.012 196.985 −2.417

83 197 −0.006 196.996 −1.208

384 197 0 197 0

385 195 0.006 194.996 1.196

386 195 0.012 194.985 2.392

387 195 0.018 194.967 3.589

388 193 0.024 192.942 4.736

389 193 0.030 192.909 5.920
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• Index is the number of the current laser scan in direction depending on the
current angle value in radians;

• Length is the calculated distance in centimeters from the laser range finder
current position to an object (obstacle) in each moment of the current laser scan
in direction depending on the current value of the angle in radians;

• Angle is the current value of the angle in radians in the appropriate current
direction of the laser scan (the range of a laser scan is set default −120 to +120
degree, with step 0.3310 degree);

• Coordinate X and Coordinate Y are the current values of the local coordinates,
with origin in the initial laser range finder position, calculated in the current laser
scan direction defined by the current value of the angle in radians.

Analyzing the incoming data, given in Table 8.1, collected after scan by the laser
range finder, is possible to find for the value zero of the angle (Angle = 0 in
Table 8.1) the existence of equality between Length and Coordinate X:

Length Indexð Þ ¼ Coordinate X Indexð Þ for Index Angleð Þ and Angle ¼ 0 ð8:12Þ

Equation 8.12, given in general form, has the following interpretation analyzing
the incoming data in Table 8.1, collected by the laser range finder after an example
scan:

for Angle ¼ 0 ! Index ¼ 384 ! Lengthð384Þ ¼ 197 cm !
! Coordinate Xð384Þ ¼ Lengthð384Þ ¼ 197 cm ! Coordinate Yð384Þ ¼ 0

ð8:13Þ

The result from this analysis is that it is possible to propose to use the information
after the laser range finder scan to determine the distance between the laser range
finder and the objects (as the value of the Length or Coordinate X for Angle = 0),
respectively between the mobile robot and these objects.

Analyzing in similar way the incoming data after the initial scan of the laser
range finder, mounted on the mobile robot platform and using Eqs. 8.12 and 8.13, it
is possible to determine the initial mobile robot audio visual attention in front of the
mobile robot, i.e. in the direction defined by Angle = 0 for the initial local laser
range finder position and orientation. If the conditions defined by Eqs. 8.9 and 8.10
for the initial position of the laser range finder, mounted on mobile robot platform
are satisfied, then the mobile robot direction of the mobile robot audio visual
attention matches with the initial local laser range finder position and orientation
defined for Angle = 0.

The initial definition of mobile robot audio visual attention, derived from the
analysis of the incoming data from the laser range finder scan in the mobile robot
environment, can be connected with the local coordinates of the input video frame
from the mobile robot camera, shown in the second step of algorithm defining the
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initial audio visual attention for the mobile robot initial position (Fig. 8.6). As it is
mentioned with the Eqs. 8.9, 8.10 and 8.11, only the room coordinate X of the
video camera, the microphone array and the laser range finder, mounted on the
mobile robot platform, differ from each other and from the room coordinate X of the
mobile robot initial position. This can be used in the next step of the algorithm
shown in Fig. 8.6, to find the correspondence between the points in the input video
frame and the points for which is already determined the initial mobile robot audio
visual attention in front of the mobile robot in direction (Angle = 0) achieved from
the analysis of incoming data from the laser range finder of the mobile robot
environment. This possibility is explained with Fig. 8.7, where is shown an
example of the room view of the proposed (on Fig. 8.4) audio visual attention
model based on the audio visual mobile robot system for the case of indoor mobile
robot motion control and navigation. From Fig. 8.7 can be seen that the location of
the laser range finder, mounted on the mobile robot platform, can scan the mobile
robot environments in a horizontal plane placed at a distance from the floor of the
room and defined by the value zpl of the coordinate Z, equal to the coordinate Z of
the laser range finder, the video camera and the microphone array:

Fig. 8.7 The view of a room as an example to explain the correspondence between points of
inputted video frame and the incoming data from laser range finder scan of mobile robot
environment for the case of indoor mobile robot motion control and navigation using audio visual
attention
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zpl ¼ zl0 ¼ zc0 ¼ zm0 ð8:14Þ

Therefore, the incoming data from the scan of the laser range finder, according to
Table 8.1, contains information as length (or distance), angle and coordinates X, Y
of the points in the horizontal plane, which crosses the objects, speakers (if they are
in the room) sending commands to the robot and also the walls of the room.

In the same time, these points exist also in the corresponding line of the video
frame captured from the video camera, which also observes the mobile robot
environments. The information for these points, in the inputted flat image as video
frame, is brightness and/or colors, but as is proposed in the algorithm from Fig. 8.6
finding the correspondence of these points to the points and their data captured from
the laser range finder, it is possible to add the existing information in the laser range
finder about the distance and the values of the room coordinates X and Y to the
points in the image video frame belonging to the line crossing the horizontal plane
in which is made laser range finder scan. The reason for this is that the points from
the laser range finder scan have their projections on the line, mentioned above, in
the image frame.

All of these statements can be related with the initial mobile robot audio visual
attention, defining the following conditions for the chosen mobile robot indoor
environment:

• the initial mobile robot audio visual attention is chosen to be directed just in
front of the mobile robot location at the motion start, i.e. the video camera and
the laser range finder observe with priority (with attention) the space, objects or
people (speakers) placed in front of the mobile robot;

• there can be chosen, for each case, an object, place in the wall or active and/or
passive land marks in front of the robot as initial observation, i.e. as initial
mobile robot audio visual attention.

8.5.3 Definition of the Initial Mobile Robot Video Attention
Model with Additional Information from the Laser
Range Finder Scan

These conditions are applied for the room views shown on Figs. 8.4, 8.5 and 8.7,
where it is chosen that the mobile robot video camera and the laser range finder
observe the wall in front of the robot. This place is marked on Fig. 8.7 with the red
circle.

This means that after the initial laser range finder scan, it is possible to determine
the real distance dstlw between the laser range finder and the wall of the room in
front of the robot, using Eqs. 8.12 and 8.13, and extracting the value of the Length
for Angle = 0 from the captured laser range finder data:
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dstlw ¼ LengthðAngleÞ for Angle ¼ 0 ð8:15Þ

For the example given on Fig. 8.7 and using Table 8.1 with the laser range finder
scan data, Eq. 8.15 gives the following value for the distance dstlw between the
laser range finder and the wall of the room (as a example) in front of the robot:

dstlw ¼ LengthðAngleÞ ¼ 197 cm for Angle ¼ 0 ð8:16Þ

The distance dstlw, determined from Eq. 8.15, can be used to find the corre-
sponding point in the initial video frame captured from the mobile robot video
camera. From Fig. 8.7 it is seen, that if the mobile robot video camera observes the
same initial audio visual attention as the laser range finder, then it is possible to find
a line in the image, which corresponds to the imaginary line where the laser range
finder scan crosses the observed wall in front of the robot (see as an example the
horizontal line in the red circle area on in Fig. 8.7) in the horizontal plane where the
laser range finder scan is done. If at the start of the mobile robot motion in the room
the optical system of the mobile robot camera is set and adjusted to observe and
capture the entire wall in front of mobile robot, then the line (row) iminw

row in the
image iminw corresponding to the imaginary line where the laser range finder scan
crosses the observed wall in front of the robot can be determined by the following
equations used in the corresponding step of the algorithm, shown in Fig. 8.6:

iminw
rowð1� xmax

im Þ ¼ iminwðyrowim ; 1� xmax
im Þ; ð8:17Þ

where
xmax
im is the maximal value of the local horizontal image coordinate X, equivalent to

the horizontal image resolution Nx of the used model of the mobile robot
video camera;

yrowim the unknown value of the local vertical image coordinate Y, corresponding to
the imaginary line where the laser range finder scan crosses the observed wall
in front of the robot.

The unknown value yrowim of the local vertical image coordinate Y can be deter-
mined by using its correspondence to the value zpl of the horizontal plane (Fig. 8.7)
or the value zl0 of the room coordinates Z of the laser range finder (Eq. 8.13). In
accordance with the maximal value ymax

im of the local vertical image coordinate Y (or
the vertical image resolution Ny of the concrete model of mobile robot video
camera) and using the value of the room high rh (equivalent to the maximal zmax

room coordinate Z), it is possible to derive the value of the unknown local vertical
image coordinate yrowim , as follow:

yrowim ¼ zpl
rh

ymax
im ¼ zl0

rh
ymax
im ð8:18Þ
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In similar way it is possible to determine also the value xcolim of the local horizontal
image coordinate X in the image line or row iminw

row of the input image iminw cor-
responding to the imaginary point with coordinate xl0, where the laser range finder
scan for Angle = 0 crosses the observed wall in front of the robot, but as it is seen
from Fig. 8.7 with applying the following horizontal coordinate translation:

xl�c ¼ xl0 � xc0 ð8:19Þ

Therefore, using Eq. 8.19 it is possible to find the value xcolim of the local horizontal
image coordinate X in the image line or on row iminw

row:

xcolim ¼ xc0 þ xl�c

rw
xmax
im ¼ xl0

rw
xmax
im ; ð8:20Þ

where
rw is the room width equivalent to the maximal xmax room coordinate X;
xmax
im is the maximal value of the local horizontal image coordinate X, equivalent to

the horizontal image resolution Nx of the concrete model of the mobile robot
video camera.

The Eqs. 8.18 and 8.20 give the location of the initial mobile robot video
attention as the local vertical yrowim and the horizontal xcolim image coordinates together
with the value of the distance dstlw (Eq. 8.15) from the initial laser range finder scan
data measured for Angle = 0, i.e. in front of the mobile robot. The values calculated
from Eqs. 8.15, 8.18 and 8.20 are the final results from the analysis done in the
corresponding step of the algorithm, shown on Fig. 8.6 to analyze the data
incoming from the laser range finder and to find their correspondence to the
coordinates of the input video image bringing to them an additional and very useful
information for the distance dstlw of the defined initial mobile robot video attention
location.

8.5.4 Development of the Initial Mobile Robot Video
Attention Model Localization with Additional
Information from a Speaker to the Mobile Robot
Initial Position

In the same way can be executed the next step of the algorithm, shown on Fig. 8.6,
where it is necessary to define the initial mobile robot audio attention location
analyzing the microphone array audio signals to define the initial direction of the
voice commands (if they exist) sent from a speaker to the mobile robot initial
position. For this purpose, Fig. 8.7 is modified to present in Fig. 8.8 a situation of a
speaking person in the room, sending voice commands to the mobile robot.
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The analysis of the incoming microphone array audio signals in this step is
executed using one famous and proved method [49] tested in real working appli-
cations, using sound source localization for the mobile robot audio visual motion
control. The result, applying this method as a suitable algorithm for finding the
initial mobile robot audio attention, in fact is the calculated direction of arrival
(DOA), represented as the angle hDOA of the sound arrival from the speaker talking
and sending the voice commands to the robot.

If the voice command send from the speaker is important (it depends on the
embedded in the mobile robot motion control algorithm) for the motion of the
mobile robot, then mobile robot platform performs a rotation in the direction
defined by the calculated angle hDOA, i.e. the mobile robot audio attention is
directed to the speaker (for example if the speaker sends a voice command to the
robot “Go to me”). At same time the video camera and laser range finder mounted
on the mobile robot platform, also change their direction on the angle hDOA,
respectively as defined by Eqs. 8.15, 8.18 and 8.20 and the initial mobile robot
video attention location must be redefined. Therefore, the new calculated values for
the distance dstlw, the local vertical yrowim and horizontal xcolim image coordinates,
together with the calculated direction of arrival hDOA from the speaker can be
considered as determinate joined initial audio visual attention.

Fig. 8.8 The modified view of the room shown on Fig. 8.5 for the example of definition the initial
mobile robot audio attention location analyzing the incoming microphone array audio signals to
find the initial direction of the voice commands sent from a speaker to the mobile robot initial
position
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8.6 Definition of the Probabilistic Audio Visual Attention
Mobile Robot Model in the Steps of the Mobile Robot
Navigation Algorithm

The so developed initial probabilistic audio visual attention mobile robot model can
be applied in each step of the mobile robot navigation algorithm together with the
appropriate modification, and taking into account the changes of the mobile robot,
the objects and the speaking person in each step of the mobile robot motion in the
concrete predefined indoor or outdoor environment.

The main purpose of the modifications comprises amendment and update in each
step of the mobile robot motion navigation, and of the probabilistic characteristics
of the audio visual attention. These characteristics are defined, in the initial step of
the preliminary attention with uniform distribution (Eqs. 8.2, 8.4 and Fig. 8.2), but
should be updated in accordance with the defined posterior audio visual attention
(Eq. 8.3), taking into account the current locations of the mobile robot, the objects
and the speaking person in the room environment and the goal of the mobile robot
motion (an object target or the speaking person in the room). These requirements
are illustrated on Fig. 8.9, where is shown the horizontal plane (a combination from

Fig. 8.9 Probabilistic characteristics of the audio visual attention mobile robot model applying
the algorithm of the mobile robot motion navigation, based on horizontal planes for the defined
initial visual and audio attention shown on Figs. 8.7 and 8.8, respectively
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horizontal planes from Fig. 8.7 and from Fig. 8.8) of the initial audio visual mobile
robot attention model additionally modified with the probabilistic features
describing the mobile robot audio visual attention. On Fig. 8.9 is shown the
probability density function fAVIðdsthÞ, defined by using the general Eq. 8.5, and the
initial audio and visual attention model from Figs. 8.7 and 8.8, used to describe the
probability characteristics:

fAVIðdsthÞ ¼ 2� dstAVI
p

� 1
ðdst2AVI þ dst2hÞ

; ð8:21Þ

where
dsth is the distance measured by laser range finder in the current direction (the

angle h on Fig. 8.7) from the initial mobile robot position to an
object/speaker (if they exist in the room), or to the wall of the room in
front of the mobile robot;

dstAVI the initial distance measured by laser range finder in the direction defined
by the angle h ¼ 0 on Fig. 8.9 from the initial mobile robot position to an
object/speaker (if they exist in the room) or to the wall of the room in front
of the mobile robot. The value of the distance dstAVI is equal to the value of
distance, i.e.:

dstAVI ¼ dstlw ð8:22Þ

The Eqs. 8.21 and 8.22 are valid only, if assumed the existence of the following
condition for the equality of the coordinates X of the video camera, the microphone
array and the laser range finder with coordinate X of the mobile robot:

xc0 ¼ xm0 ¼ xl0 ¼ xr0; ð8:23Þ

from which follows the equality of the distances below:

dstLI ¼ dstVI ¼ dstAI ¼ dstAVI ; ð8:24Þ

shown on Fig. 8.9 for the general case of inequality of the distances
dstLI ; dstVI ; dstAI ; dstAVI from Eq. 8.24.

Equation 8.21 gives the clarity of the mobile robot initial audio visual attention
definition by applying the probability density function fAVIðdsthÞ and thus solving
the problem of lack in the mobile robot the system, similar to the human brain.
Therefore, in other more complicated cases, when Eqs. 8.15, 8.23 and 8.24 are not
satisfied, it is necessary to take into account the existence of the following differ-
ences, shown on Fig. 8.9, between coordinates X of the video camera, the micro-
phone array and the laser range finder:
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xl�c ¼ xl0 � xc0 ð8:25Þ

xc�m ¼ xc0 � xm0 ð8:26Þ

Thus, in case of existence of the differences defined by Eqs. 8.25 and 8.26, it is
also necessary to calculate (applying the corresponding geometrical transforma-
tions) the different values of the distances dstLI , dstVI and dstAI , i.e. to take into
account the following condition:

dstLI 6¼ dstVI 6¼ dstAI 6¼ dstAVI ð8:27Þ

The condition defined by Eq. 8.27 shows the need to calculate the different
probability density functions like the function fAVIðdsthÞ, but using in the following
equations (similar to Eq. 8.21), the different values of the distances dstLI , dstVI and
dstAI , respectively:

fLIðdstLhÞ ¼ 2� dstLI
p

� 1
ðdst2LI þ dst2LhÞ

ð8:28Þ

fVIðdstVhÞ ¼ 2� dstVI
p

� 1
ðdst2VI þ dst2VhÞ

ð8:29Þ

fAIðdstAhÞ ¼ 2� dstAI
p

� 1
ðdst2AI þ dst2AhÞ

ð8:30Þ

In Eqs. 8.28, 8.29 and 8.30 are also used different indexes of the distance dsth
measured by the laser range finder for the current direction defined in the general
case as the angle h from Fig. 8.9, but in each of these particular cases, related to the
corresponding laser range finder Lh, and the corresponding angle of the video
camera Vh or of the microphone array Ah. Therefore, the names of these differences
dsth differ from each other only by the corresponding indexes distance: dstLh for the
direction measured from the laser range finder local coordinate X; dstVh for the
direction measured from the video camera local coordinate X; dstAh for the direction
measured from the microphone array local coordinate X.

The initial probability density functions defined by Eq. 8.21 and also the cor-
responding Eqs. 8.28, 8.29 and 8.30 for the particular cases, can be used in the
development of the appropriate algorithms for the continuous mobile robot audio
visual motion control and navigation in concrete situations for indoor environments.
It is evident that Eq. 8.21 is the simplest case (suitable for simulations) of the
determination of the distance dsth measured by the laser range finder with the
assumption for equal coordinates X for the video camera, the microphone array and
the laser range finder, equivalent to the coordinate X of the initial mobile robot
position. Therefore, it is proposed to apply Eq. 8.21 in the next simulations as the
initial probability density function fAVIðdsthÞ and the particularly corresponding
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Eqs. 8.28, 8.29 and 8.30, modifying and updating them in each execution step of
the algorithm in some examples of the mobile robot motion control and navigation
in the room environments.

8.7 Experimental Results from the Simulations
of the Mobile Robot Motion Navigation Algorithm
Applying the Probabilistic Audio Visual Attention
Model

The experiments for testing the properties of the proposed probabilistic audio visual
attention model are carried out following the main block diagram, shown on
Fig. 8.10. It is composed so that to present and explain all the necessary operations
as appropriate blocks implementing the algorithms for testing the performance of
the proposed probabilistic audio and visual attention model, applied in the tasks for
mobile robot motion control and navigation in rooms, i.e. for indoor environments.

The audio information is collected as audio signals captured (for the general
case) by N microphones (M1, M2, … MN, shown on Fig. 8.10) arranged in a
microphone array. In the concrete implementation the microphone array is arranged
as a linear microphone array consisting of six microphones (N = 6). The micro-
phone array is implemented as an appropriate microphone array module type
Steval-MKI126v2 [51] with MEMS (Micro-Electro-Mechanical Systems), type of
microphones MP34DB01 [52]. The video camera is Surveyor SRV-1 Blackfin

Fig. 8.10 Main block
diagram used in the
experiments carried out for
testing the properties of the
proposed probabilistic audio
visual attention model
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Camera [53] and [54] is mounted on the mobile robot platform module type
Surveyor SRV-1 Blackfin Robot [55]. The type of laser range finder used to scan
and measure the data for distances is URG-04LX-UG01 [50].

The audio and visual information collected by the microphone array and the
video camera, together with the data measured by the laser range finder after scan of
the room environments (Fig. 8.10) can be used both by the audio visual perception
blocks (Sound Source Localization and Objects or People Detection) or by the
audio visual attention blocks (Probabilistic Audio Attention Estimation and
Probabilistic Video Attention Estimation), which depend on the start of the concrete
algorithm of the block General Mobile Robot Execution Control (Fig. 8.10). The
main goal of using the results from the audio visual perception or the audio visual
attention blocks (depending from execution of concrete algorithm) is to estimate
and to save the current state or step of the motion control and navigation, applying
in the corresponding block on Fig. 8.10, the embedded algorithms for EKF–SLAM
and path planning [49, 56, 57]. The block diagram, shown on Fig. 8.10, is used in
all experiments, together with appropriate modifications, to test the proposed
probabilistic audio visual attention model in the algorithms for mobile robot motion
control and navigation.

The experiments for testing the proposed probabilistic model of audio visual
attention are based in part of the research, presented in [49] and also on previous
investigations of the authors, presented in publications [58–62]. In these resent
works is applied the audio and video perception only, without using the proba-
bilistic model (proposed here) of the audio visual attention for implementing the
mobile robot motion control and navigation in indoor environments, i.e. rooms with
objects, people, etc. Therefore, this proposal is additionally proved by the experi-
ments of the proposed audio visual attention model with probabilistic characteristics
compared to the earlier developed algorithms based on the audio visual perception
only. The results, shown in the next figures, are more important than multiple
simulations and real experiments performed with the proposed probabilistic model
of the mobile robot audio visual attention to confirm the improvement of the mobile
robot motion control accuracy in the execution of algorithms for tracking objects or
speakers in room environments.

8.7.1 Experimental Results from the Simulations
of the Mobile Robot Motion Navigation Algorithm
Applying Visual Perception Only

On Fig. 8.11 are presented the results from the simulation performed using visual
perception only in the execution of the mobile robot motion control algorithm for
tracking objects in indoor (room) environments. It is assumed, that the room is of
following dimensions: Room Length—rl = 6 m and Room Width—rw = 4 m. On
Fig. 8.11 are shown the mobile robot initial position in the room, and a lot of
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objects simulated as different types (tables, chairs, etc.), and placed arbitrary in the
room environment.

With red line on Fig. 8.11 is defined the desired (ideal) trajectory of the mobile
robot motion from the initial to the target position. The little blue crosses on
Fig. 8.11 indicate the places near each object as the positions (coordinates X and Y)
of each object measured by the laser range finder from the initial mobile robot
position to the position of each object. It can be noted, that the objects positions are
inputted in the simulation as necessary data about the distances and the coordinates
X and Y of the objects obtained by the real measurements in the existing room with
similar dimensions.

It is seen from Fig. 8.11, that there are objects in the room without little blue
crosses placed near these objects. This is because they seem to be invisible for the
laser range finder. With green color is presented on Fig. 8.11 the trajectory really
achieved when an algorithm is executed using visual perception only to avoid the
obstacles (the objects on Fig. 8.11) in each step of the mobile robot motion control
from its initial position to the target. Analyzing the simulation results, on Fig. 8.11
can be noticed significant differences (errors) between the defined or desired (ideal)
trajectory and the trajectory really achieved after the execution of the algorithm for

Fig. 8.11 The results as defined (desired) and real locations of mobile robot trajectory in each step
of the execution of the mobile robot motion control algorithm in simulation performed using visual
perception only
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mobile robot motion control using visual perception only. The simulation results
are used for the preparation of the quantitative errors comparison between the
simulation presented on Fig. 8.11 using visual perception only (without visual
attention) and the results from next simulation when visual attention is used in
combination with the visual perception in the mobile root motion control.

8.7.2 Experimental Results from the Simulations
of the Mobile Robot Motion Navigation Algorithm
Using Visual Attention in Combination with the Visual
Perception

The experimental results achieved from the simulations of the mobile robot motion
navigation algorithm, applying visual attention in combination with the visual
perception in the mobile root motion control, are shown on Fig. 8.12.

Fig. 8.12 The results as defined (desired) and the real locations of the mobile robot trajectory in
each execution step of the mobile robot motion control algorithm in the simulation performed
using visual attention in combination with visual perception
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The visual analysis of the trajectory on Fig. 8.12, shown as a result of the
execution of the algorithm using visual attention in combination with visual per-
ception, achieves more precise motion control to the defined target in comparison
with the same trajectory achieved after the execution of the algorithm using visual
perception only (Fig. 8.11).

8.7.3 Quantitative Comparison of the Simulations Results
Applying Visual Perception Only, and Visual
Attention with Visual Perception

The visual analysis together with the visual comparison, presented above, give the
qualitative estimation only of the existence of errors and differences between the
trajectories of mobile robot motion to a chosen target applying in the presented two
simulations (Figs. 8.11 and 8.12) and executing the algorithm of the mobile robot
motion control and navigation using at first visual perception only (Fig. 8.11), and
then—visual attention in combination with visual perception (Fig. 8.12). This
visual analysis and comparison also show a more precise motion control in
Fig. 8.12 to the defined target in comparison with same trajectory achieved in the
execution of the algorithm using visual perception only (Fig. 8.11), but these results
should be verified and confirmed also based on quantitative comparison. Therefore,
the results from such quantitative comparison of the achieved trajectories in both
simulations of the mobile robots motion control algorithms by using only visual
perception (Fig. 8.11) and applying visual attention in combination with visual
perception (Fig. 8.12), are presented in Table 8.2.

In Table 8.2 is presented briefly the quantitative comparison of a part of the
numerous steps of mobile robots trajectories only, in both simulations as the current
coordinates X and Y in some current steps in the execution of the algorithm for
mobile robot motion control to a preliminary defined target, using in the first case
visual perception only (Fig. 8.11) and in the second case—in combination with the
visual attention (Fig. 8.12).

It can be mentioned, that the essential quantitative comparison of the trajectories
variations and differences, in the cases with visual perception only (Fig. 8.11) and
with visual attention in combination with visual perception (Fig. 8.12), can be
considered only along the coordinates X, because in these two experiments is
chosen a simple situation of the mobile robot motion to a target just in front of the
robot, i.e. the coordinate Y is in direction of the mobile robot motion and is not
important to estimate the error along the coordinates Y of the motion to the defined
target.

As it is seen from Table 8.2, analysing the results, it is possible to confirm, that
the error of the mobile robot motion to the target, when using the combination of
visual attention and perception in the motion control, is smaller (the average error of
the coordinate X is 0.0295), unlike the error of the mobile robot motion to the target,
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when using visual perception only in the motion control (the average error of the
coordinate X is higher −0.1736). It is seen from Table 8.2 that the variances in the
coordinate Y are a little higher (the average error of the coordinate Y is 0.0973) in
the case of using the combination of visual attention and perception in the motion
control, when compared to the case of motion control using visual perception only
(the average error of the coordinate Y is 0.0153), but this is not so important
because the motion is in direction Y (just in front of the mobile robot) and this error
indicates the existence of difference in each discrete step of the algorithm in the two
simulations under comparison.

Additional means to quantitative comparison of trajectories variations and dif-
ferences, in the case of two simulations using visual perception only (Fig. 8.11) and
using visual attention in combination with visual perception (Fig. 8.12) in the
mobile robot motion control, can be considered from the calculated and presented
in Table 8.2 deviations dx and dy of the coordinates X and Y of the final mobile
robot position from the coordinates X and Y of the real target position. It can also be
seen from Table 8.2, that the deviations dx and dy are smaller (dx = 0.1304,
dy = 0.0425) in the case of applying in motion control the combination of visual
attention and perception, than the deviations dx and dy in the case of motion control
using visual perception only (dx = 0.5555, dy = 0.1927). This result indicates, that
in the case of motion control combining the visual attention with the visual per-
ception, the final destination (the target in Fig. 8.12) is achieved more accurately in
comparison with the case of motion control using visual perception only (the target
in Fig. 8.11).

Table 8.2 Quantitative comparison of the achieved trajectories in both mobile robot motion
control algorithms by using visual perception only (Fig. 8.11) or visual perception combinated
with visual attention (Fig. 8.12)

Steps of the mobile robot
motion to the target

Defined trajectory Simulation using
visual perception
only (Fig. 8.9)

Simulation using
visual attention
and perception
(Fig. 8.10)

Coordinates (m)

X Y X Y X Y

1 2.0000 0.4562 2.0139 0.4167 2.0206 0.4650

2 2.0139 0.9539 2.3056 0.8889 2.1993 1.0115

3 2.0000 1.8664 2.2361 1.7639 2.2680 1.7182

4 2.0000 2.5438 1.5972 2.4722 1.8694 2.5774

5 1.9861 3.6221 2.1806 3.7083 2.1718 3.5811

6 2.0139 4.3410 1.6250 4.2222 1.9244 4.2818

7 2.0000 5.1429 1.2222 5.1389 2.1168 4.8776

8 1.9861 5.6129 1.4306 5.8056 1.8557 5.5704

Average error (m) 0.1736 0.0153 0.0295 0.0973

Deviation dx and dy from real target position (m) dx
0.5555

dy
0.1927

dx
0.1304

dy
0.0425
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8.7.4 Experimental Results from Simulations Using Audio
Visual Attention in Combination with Audio Visual
Perception

On Fig. 8.13 are presented the results from the simulation of the mobile robot
motion control algorithm using both audio and visual perception, but without using
the audio and visual attention. The initial conditions of this simulation are similar to
these shown on Fig. 8.11 (using visual perception only).

After the start of the mobile robot motion control algorithm, the mobile robot
begins the motion tracking the target in front of the robot (the green line on
Fig. 8.13) using the algorithm for visual perception only (as in Fig. 8.11). In this
case the simulation differs from the simulation shown on Fig. 8.11, when the
algorithm of audio perception is on, and the robot waits for the perception of a voice
command, maybe from a speaker, in the mobile robot area. In the fourth step
(marked with an arrow) of tracking to the target, the speaker (shown on Fig. 8.13)
sends a voice command (“Go to me”) to the robot. This command is perceived by
the microphone array of the mobile robot and the execution of the audio perception
algorithm for sound localization determines the direction of sound arrival from the

Fig. 8.13 The results from the simulation of the mobile robot motion control algorithm performed
using both audio and visual perception, but without applying the audio and visual attention
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speaker (the black line on Fig. 8.13). This calculated direction is used in the motion
algorithm to change in the fourth step the way of the robot (the magenta line in
Fig. 8.13), not to the target in front of it, but to the speaker. The next steps of the
motion control algorithm use both audio perception (waiting for new voice com-
mands from the speaker) and visual perception (tracking the body of the speaker) to
arrive at the place of the speaker.

In the next simulation shown on Fig. 8.14 are presented the results from the
simulation of the mobile robot motion control algorithm also, but applying addi-
tional audio and visual attention in combination with audio and visual perception
(Fig. 8.13).

The simulation on Fig. 8.14 is carried out with similar initial conditions as these
shown on Fig. 8.13 (using only audio visual perception). In the same way, after the
start of the mobile robot motion control algorithm, the mobile robot begins the
motion tracking the target in front of the robot (the green line on Fig. 8.14), but in
this simulation (unlike the simulation in Fig. 8.13) are used both the algorithms for
visual attention and visual perception (as in Fig. 8.12). As in the simulation pre-
sented on Fig. 8.13, in this simulation the robot waits to perceive a voice command,
maybe from a speaker, in the mobile robot area. In the fourth step (marked with an
arrow) of tracking to the target, the speaker (shown on Fig. 8.14) sends a voice

Fig. 8.14 The results from simulation of mobile robot motion control algorithm applying
additional audio and visual attention in combination with audio and visual perception
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command (“Go to me”) to the robot. This voice command is perceived by the
microphone array of the mobile robot and the execution of the audio perception
algorithm for sound localization determines the direction of sound arrival from the
speaker (the black line on Fig. 8.14). The so calculated direction is used in the
motion algorithm to change in the fourth step the way of the robot (the magenta line
on Fig. 8.14), not to the target in front of it, but to the speaker. In the next steps, the
motion control algorithm uses audio attention and perception (waiting for new
voice commands from the speaker) and also both visual attention and perception
(tracking the body of the speaker) to arrive at the place of the speaker.

The visual analysis is prepared, to compare the trajectories from Figs. 8.13 and
8.12, achieved after the execution of the mobile robot motion control algorithm in
two different ways: first (Fig. 8.13) using audio and visual perception only, without
applying the audio and visual attention; and second (Fig. 8.14) using audio and
visual perception with applying audio and visual attention also. From the visual
comparison is determined that the mobile robot motion trajectory (the magenta line
in Fig. 8.14) stands closer to the direction (the black line on Fig. 8.14) predefined
by the sound localization algorithm, than the same mobile robot motion trajectory
(the magenta line in Fig. 8.13) with greater variation around the direction (the black
line on Fig. 8.14) predefined by the sound localization algorithm. Therefore, from
this visual comparison is confirmed the main advantage, i.e.—the higher accuracy
of the mobile robot motion control, in case of tracking the speaking person using
the audio and visual attention in combination with the audio and visual perception.

8.7.5 Quantitative Comparison of the Results Achieved
in Simulations Applying Audio Visual Perception
Only, and Visual Attention Combined with Visual
Perception

The properties of the above simulations of the mobile robots motion control
algorithm using both the audio visual perception only, and the visual attention in
combination with the visual perception, can be presented not only through the
qualitative visual analysis and comparison of the trajectories on Figs. 8.13 and 8.14.
They can be illustrated also as the results from the quantitative comparison
(Table 8.3) of the mobile robot motion trajectories (the magenta line on Figs. 8.13
and 8.14) with the direction of the trajectory (the black line on Figs. 8.13 and 8.14)
predefined by the sound localization algorithm.

In Table 8.3 is briefly presented the quantitative comparison of a part of the
numerous steps of the mobile robots trajectories only, in case of tracking the
speaking person, in both simulations; in Fig. 8.13 using audio and visual perception
only without applying the audio and visual attention, and in Fig. 8.14—using audio
and visual perception with applying audio and visual attention also. The results of
the quantitative comparison presented in Table 8.3, are given as the values of the
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current coordinates X and Y in the corresponding execution steps of the algorithm
for mobile robot motion control to the speaking person, using in the first case audio
visual perception only (Fig. 8.13) and in the second case—audio visual attention in
combination with audio visual perception (Fig. 8.14).

It is seen, analyzing the calculated average errors (Table 8.3), that the errors in
the trajectory of the mobile robot motion to the speaking person, when using the
combination of audio visual attention and perception in the motion control, are
smaller (the average errors of the coordinates X and Y are 0.0323 and 0.0122,
respectively), than the errors in the mobile robot motion trajectory to the speaking
person, when in the motion control is used audio visual perception only (the
average errors of the coordinates X and Y are 0.1562 and 0.2865, respectively).

For the two simulations, presented in Figs. 8.13 and 8.14, can also be applied the
additional quantitative comparison of trajectories variations and differences, in cases
of using audio visual perception only (Fig. 8.13) and using audio visual attention in
combination with audio visual perception (Fig. 8.14). This is done considering (for
both simulations) the calculated and presented in Table 8.3 deviations dx and dy of
the coordinates X and Y of the mobile robot final position from the real speaker
position. It can also be seen from Table 8.3, that the deviations dx and dy are smaller
(dx = 0.1275, dy = 0.0028) in the case of applying the combination of audio visual
attention and perception in motion control, than the deviations dx and dy in the case

Table 8.3 Quantitative comparison of the mobile robot trajectories (the magenta line in
Figs. 8.13 and 8.14) with the direction or the trajectory predefined by the sound localization
algorithm (the black line on Figs. 8.13 and 8.14)

Steps of the mobile robot
motion control to the
speaker

Direction
determined by the
sound localization
algorithm

Simulation using
audio visual
perception only
(Fig. 8.13)

Simulation using
audio visual
attention and
perception
(Fig. 8.14)

Coordinates (m)

4 X Y X Y X Y

5 1.8547 2.2811 1.5862 2.5081 1.8194 2.2448

6 1.6747 2.5991 1.1448 2.7021 1.7500 2.6882

7 1.5779 2.8618 1.5448 3.2702 1.4167 2.8129

8 1.4810 3.0553 0.8552 3.2979 1.5556 3.1039

9 1.4118 3.1935 1.3655 3.7275 1.2361 3.1316

10 1.2180 3.6359 1.3931 4.2818 1.4306 3.6721

11 1.1488 3.7880 0.8690 3.9076 1.2639 3.9492

12 1.0519 4.0092 0.5517 4.2263 1.0000 3.8661

13 0.8581 4.4654 1.0759 4.6420 1.0000 4.5450

14 0.7197 4.7834 1.0483 4.9746 0.8472 4.7806

Average error (m) 0.1562 0.2865 0.0323 0.0122

Deviations dx and dy from the real speaker
position (m)

dx
0.3286

dy
0.1912

dx
0.1275

dy
0.0028
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of motion control using audio visual perception only (dx = 0.3286, dy = 0.1912).
This result indicates, that in the case of motion control combining the audio visual
attention with the audio visual perception, the final destination (the speaking person
in Fig. 8.14) more accurate than in the case of motion control using audio visual
perception only (the speaking person in Fig. 8.13).

8.8 Conclusion

The simulations results for the mobile robot motion navigation algorithm applying
the proposed probabilistic model of the audio visual mobile robot attention can be
summarized as follows:

• it is confirmed from the qualitative and quantitative comparison (Figs. 8.11 and
8.12, and Table 8.2), that the average error in the real mobile robot trajectory to
the target, when using the combination of visual attention and perception in the
motion control, is lower (the average error of the coordinate X is 0.0295), than
the error of the mobile robot motion to the target, when visual perception only is
used in the motion control (the average error of coordinate X is higher −0.1736);

• this result indicates, that in the case of motion control combining the visual
attention with the visual perception, each step of the mobile robot trajectory to
the target (target in Fig. 8.12) is achieved more accurately than in the case of
motion control using visual perception only (the target in Fig. 8.11);

• also the comparison of the deviations dx and dy of the coordinates X and
Y (Table 8.2), shows that the deviations dx and dy are smaller (dx = 0.1304,
dy = 0.0425) in the case of applying the combination of visual attention and
perception in motion control, than the deviations dx and dy in the case of motion
control using visual perception only (dx = 0.5555, dy = 0.1927);

• this result indicates, that in the case of motion control combining the visual
attention with the visual perception, the final destination (the target in Fig. 8.12)
is achieved more accurately than in the case of motion control using visual
perception only (the target in Fig. 8.11);

• from Figs. 8.13 and 8.14, and Table 8.3 can be confirmed, that the average
errors in the trajectory of the mobile robot motion to the speaking person, when
using the combination of audio visual attention and perception in the motion
control, are smaller (the average errors of the coordinates X and Y are 0.0323
and 0.0122, respectively), than the errors in the trajectory of the mobile robot
motion to the speaking person, when audio visual perception only is used in the
motion control (the average errors of the coordinates X and Y are 0.1562 and
0.2865, respectively);

• this result indicates, that in the case of motion control combining audio visual
attention with audio visual perception, each step of the mobile robot trajectory to
the speaking person (the speaker in Fig. 8.14) is achieved more accurately than
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in the case of motion control using audio visual perception only (the speaker in
Fig. 8.13);

• the comparison of the deviations dx and dy of the coordinates X and
Y (Table 8.3) illustrates, that the deviations dx and dy are smaller (dx = 0.1275,
dy = 0.0028) in the case of applying the combination of audio visual attention
and perception in motion control, than the deviations dx and dy in the case of
motion control using audio visual perception only (dx = 0.3286, dy = 0.1912);

• this result confirms, that in the case of motion control combining audio visual
attention with audio visual perception, the final destination (the speaking person
in Fig. 8.14) is achieved more accurately than in the case of motion control
using audio visual perception only (the speaking person in Fig. 8.13);

• in the presented experimental results are included mainly the quantitative
comparisons only of the results achieved in simulations of the existing and
tested method, algorithm and model, using audio visual perception only pre-
sented in more details in [46] and [49], and the audio visual attention model in
combination with visual perception, proposed in this chapter;

• the comparative test for speed of calculations of the proposed in this chapter
audio visual attention model with the existing methods based on audio visual
perception only, are not included, because the simulations are not prepared in
real time and it is the goal in the future works to convert these simulations in the
same programs means (for example C++ or C#) as the existing in [46] and [49]
or other publication algorithms working in real time. Therefore after this con-
version it is possible to make an appropriate comparison between the speed of
calculations for the proposed and the existing methods;

• the comparison of the precision in the mobile robot navigation using the audio
visual attention model (proposed in this chapter), and the existing methods
based on audio visual perception only, are shown in the experimental results and
it is seen that the precision achieved in the mobile robot navigation using the
proposed audio visual attention is higher than the precision of the mobile robot
navigation applying the existing methods based on audio visual perception only.

Finally could be declared that here is the proposed probabilistic audio visual
attention model applicable in the audio visual mobile robot system for the purpose
of mobile robot motion control and navigation tasks. This model is presented first as
indoor initial audio visual attention model and corresponding algorithm, in com-
bination with additional information, derived as incoming scan data from the laser
range finder and additional information for the initial direction of arrival of the
voice commands sent from a speaker to the mobile robot initial position. The initial
audio visual attention model is then extended as a probabilistic audio visual
attention mobile robot model applying it in each current step of the mobile robot
navigation algorithm. To confirm the efficiency of the proposed probabilistic audio
visual attention in the mobile robot motion control and navigation tasks, are con-
ducted the simulations of the mobile robot motion navigation algorithm applying
the defined probabilistic model of the audio visual mobile robot attention. The
simulations are carried out in two ways: applying the visual attention and
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perception only in the mobile robot motion navigation algorithm for tracking a
visual object, and applying the audio visual attention and perception in the mobile
robot motion navigation algorithm for tracking the speaking person. The results
from all simulations confirm the accuracy not only in each step of the mobile robot
trajectory to the target or to the speaking person, but also the precision in reaching
the final destination (the target or a speaking person).

This gives the reason to continue with future developments and publications to
improve the proposed probabilistic audio visual attention model both in respect of
the implementation of more precise probability functions focusing the mobile robot
audio visual attention to important objects and speaking persons, as well as
applying the audio visual attention model in different and more complex indoor and
outdoor environments of the mobile robot motion activity. The attention will be
directed also to create some mobile robot knowledge (modeling some human brain
functions), accumulating the information of audio and visual objects in each step of
the motion and using this information for focusing more accurately the mobile robot
audio visual attention to the objects, targets or speaking persons.
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Chapter 9
Local Adaptive Image Processing

Rumen Mironov

Abstract Three methods for two-dimensional local adaptive image processing are
presented in this chapter. In the first one, the adaptation is based on the local
information from the four neighborhood pixels of the processed image and the
interpolation type is changed to zero or bilinear. An analysis of local characteristics
of images in small areas is presented from which the optimal selection of thresholds
for dividing into homogeneous and contour blocks is made and the interpolation
type is changed adaptively. In the second one, the adaptive image halftoning is
based on the generalized two-dimensional LMS error-diffusion filter for image
quantization. The thresholds for comparing of input image levels are calculated
from the gray values dividing the normalized histogram of the input halftone image
into equal parts. The third one—the adaptive line prediction is based on
two-dimensional LMS adaptation of coefficients of the linear prediction filter for
image coding. An analysis of properties of 2D LMS filters in different directions
was made. As a result of the performed mathematical description in the presented
methods, three algorithms for local adaptive image processing was developed. The
principal block schemes of the developed algorithms are presented. An evaluation
of the quality of the processed images was made on the base of the calculated
PSNR, SNR, MSE and the subjective observation. The given experimental results
from the simulation in MATLAB environment for each of the developed algo-
rithms, suggest that the effective use of local information contributes to minimize
the processing error. The methods are extremely suitable for different types of
images (for example: fingerprints, contour images, cartoons, medical signals, etc.).
The developed algorithms have low computational complexity and are suitable for
real-time applications.
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9.1 Introduction

Nowadays the medical industry, astronomy, physics, chemistry, forensics, remote
monitoring, industrial and agricultural production, trade and defense are just some
of the many areas that rely on digital images to store, reproduce and to provide
information about the surrounding world. Systems for digital image processing are
becoming more popular due to the easy accessibility to powerful personal com-
puters, increased memory size of the various devices, graphics software, etc.
Because of the need to continuously improve the quality of use in everyday life
video-information, you need to develop new methods and algorithms for image
processing, to meet the new, increased demands from consumers. Best results
would be obtained with the use of locally-adaptive image processing.

Three methods for two-dimensional local adaptive image processing are pre-
sented in this chapter: 2D image interpolation, 2D image halftoning and 2D line
prediction of images.

The basic methods for 2D image interpolation are separated in two groups:
non-adaptive (zero, bilinear or cubic interpolation) [1–5] and adaptive interpolation
[6–17]. A specific characteristic for the non-adaptive methods is that when the
interpolation order increases, the brightness transitions sharpness decreases. On the
other side, in result of the interpolation order decreasing, artefacts (“false” contours)
in the homogeneous areas start to appear. To reduce them more sophisticated
adaptive image interpolation methods were proposed in the recent years [13–17],
etc. These methods are based on edge patterns prediction in the local area (mini-
mum 4 × 4) and on adaptive high-order (bicubic or spline) interpolation with
contour filtration. The main insufficiency of these methods is that the analysis is
very complicated and the image processing requires too much time.

The linear filtering is related to the common methods for image processing and is
separated into the two basic types—non-adaptive and adaptive [18, 19]. In the first
group the filter parameters are obtained by the principles of the optimal (Winner)
filtering, which minimizes the mean square error of signal transform and assumes
the presence of the priory information for image statistical model. The model
inaccuracy and the calculation complexity required for their description might be
avoided by adaptive estimation of image parameters and by iteration minimization
of the mean-square error of the transform.

Depending on the processing method, the adaptation is divided into global and
local. The global adaptation algorithms refer mainly to the basic characteristics of
the images, while the local ones are connected to adaptation in each pixel of the
processed image based on the selected pixel neighborhood.

The coefficients of the filters, used by the other two local adaptive image pro-
cessing methods (for image halftoning and linear prediction), are adapted with the
help of generalized two-dimensional Least Mean Square (LMS) algorithm [20–24].
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This chapter is arranged as follows: Sect. 9.2 introduces the mathematical
description of the new adaptive 2D interpolation; Sect. 9.3 introduces the mathe-
matical description of the new adaptive 2D error-diffusion filter; Sect. 9.4 intro-
duces the mathematical description of the new adaptive 2D line prediction filter;
Sect. 9.5 gives some experimental results and Sect. 9.6 concludes this chapter.

9.2 Method for Local Adaptive Image Interpolation

9.2.1 Mathematical Description of Adaptive 2D
Interpolation

The input halftone image of size M × N with m-brightness levels and the inter-
polated output image of size pM × qN can be presented as follows:

AM�N ¼ aði, jÞ = i ¼ 0; M� 1; j ¼ 0; N� 1
� �

;

A�
pM� qN ¼ a�ðk, l) = k ¼ 0; pM� 1; l ¼ 0; qN� 1

� �
;

ð9:1Þ

where: a(i, j) and a*(k, l) are the current image elements in input and output images
respectively; q and p are the interpolation’s coefficients in horizontal and vertical
direction [7, 8, 9, 25, 26].

The differences between any two adjacent elements of the image in a local
neighborhood of size 2 × 2, as shown on Fig. 9.1, can be described by the
expressions:

D2mþ 1 ¼ a(iþm, j)� a(iþm, jþ 1Þj j; for m ¼ 0; 1;

D2nþ 2 ¼ a(i, jþ n)� a(iþ 1; jþ n)j j; for n ¼ 0; 1:
ð9:2Þ

These image elements are used as supporting statements in image interpolation.
Here are introduced four logic variables f1, f2, f3 and f4, which depend on the

values of the differences of the thresholds for horizontal θm and vertical θn direction
in accordance with the expressions:

f2mþ 1 ¼
1; if : D2mþ 1 � hm
0; if : D2mþ 1\hm

(
; f2nþ 2 ¼

1; if : D2nþ 2 � hn
0; if : D2nþ 2\hn

(
: ð9:3Þ

a(i,j) a(i,j+1) 

a(i+1,j) a(i+1,j+1)

Fig. 9.1 Structure of the
supporting image elements
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Then each element of the interpolated image can be represented as a linear com-
bination of the four supporting elements from the original image:

a� ðk, l) ¼
X1
m¼0

X1
n¼0

wm;n ðr, t)a ðiþm, jþ nÞ; ð9:4Þ

for r ¼ 0; p; t ¼ 0; q. The interpolation coefficients:

wm;nðr, t) ¼ F : ZRm;nðr, t)þ F : BLm;nðr, t), ð9:5Þ

depend on the difference of the logical function F, which specifies the type of
interpolation (zero or bilinear): F ¼ f1f3 [ f2f4. The coefficients of the zero
(ZR) and the bilinear (BL) interpolation are determined by the following relations:

ZRm;nðr, t) ¼ 1
4
1� ð�1Þmsign(2r � p)½ � 1� ð�1Þnsign(2t� q)½ � ð9:6Þ

BLm;nðr, t) ¼ ð�1Þmþ n 1�m� r
p

� �
1� n� t

q

� �
ð9:7Þ

The dependence of the function F upon the variables f1, f2, f3 and f4, defining the
type of luminance transition in a local window with size 2 × 2, is shown in
Table 9.1. In the image for homogeneous areas (F = 0) the bilinear interpolation is
used, and in the non homogeneous areas (F = 1)—the zero interpolation is used.

9.2.2 Analysis of the Characteristics of the Filter
for Two-Dimensional Adaptive Interpolation

The two-dimensional interpolation process can be characterized by the following
generalized block diagram shown in Fig. 9.2:

In the unit for the secondary sampling, the frequencies fsr and fst were increased
p and q times in vertical and horizontal direction. Accordingly, the elements a(i, j)
of the input image are complemented with zeros to obtain the elements b(k, l) using
the following expression:

b(k, l) ¼ a(k/p, l/q) ; for k ¼ 0;�ðM� 1Þp ; l ¼ 0;�ðN� 1Þq ;
0; otherwise:

�
ð9:8Þ

The resulting image is processed by a two-dimensional digital filter with transfer
function H(zk, zl) and the resulting output are the elements a*(k, l) of the inter-
polated image. In this case the expression (9.4) can be presented as follows:
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a� ðk, l) ¼
X1
m¼0

X1
n¼0

wm;n ðr, t) : b k
p

� �
þ pm,

l
q

� �
þ qn

� �
; ð9:9Þ

where with the operation x½ � indicates the greatest integer not exceeding x.
Since the interpolation coefficients are repeated periodically, the analysis can be

performed on one block of the image, as shown in Fig. 9.3. With the red line are
marked the values for the output image elements by the bilinear interpolation and
with the green—the corresponding values by zero interpolation. With black arrows
are marked the four supporting image elements in the input image.

Then the relationship between image elements from the input block and output
block can be represented as follows:

y ðr, t) ¼
X1
m¼0

X1
n¼0

wm;n ðr, t) : x ðpm,qn); ð9:10Þ

where x(pm, qn) are the supporting elements in the current block b(k, l) and y(r, t)
are the interpolated elements from the output block a*(k, l).

Table 9.1 The dependence of function F of the variables f1, f2, f3 and f4

№ f1 f2 f3 f4 F Transitions № f1 f2 f3 f4 F Transitions

0 0 0 0 0 0 8 1 0 0 0 0

1 0 0 0 1 0 9 1 0 0 1 0

2 0 0 1 0 0 A 1 0 1 0 1

3 0 0 1 1 0 B 1 0 1 1 1

4 0 1 0 0 0 C 1 1 0 0 0

5 0 1 0 1 1 D 1 1 0 1 1

6 0 1 1 0 0 E 1 1 1 0 1

7 0 1 1 1 1 F 1 1 1 1 1

a(i,j) b(k,l) a*(k,l)

p ,q H(zk,zl)

Fig. 9.2 Generalized block diagram of the 2D interpolator
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9.2.2.1 Characteristics of the Bilinear Interpolation

From Eqs. (9.7) and (9.10) can be derived the following recurrent relation for
bilinear interpolation of four neighboring image elements:

y r, tð Þ ¼
X1
n¼0

�1ð Þn 1� n� t
q

� �
v r, nqð Þ; ð9:11Þ

where with v r, nqð Þ is indicated the interpolation in vertical direction, which can
similarly be represented as follows:

v(r, nq) ¼ v(r � 1; nq)� 1
p

X1
m¼0

�1ð Þmx mp, nqð Þ: ð9:12Þ

Finally from the expression (9.11) we can derive:

y r, tð Þ ¼ y r, t� 1ð Þ � 1
q

X1
n¼0

�1ð Þn v r, nqð Þ: ð9:13Þ

Particular cases are when: v(0, 0) ¼ x(0, 0), v(0, q) ¼ x(0, q), y(r, 0) ¼ v(r, 0).

k

r

x(0,0) x(0,q) 

x(p,0) x(p,q)t

y(r,t)

l

Legend:

red line

green line

Fig. 9.3 2D interpolation scheme for one block of the image
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After completing the two-dimensional Z transformation of expressions (9.11)
and (9.12), we obtain the final Z image of the expression (9.9) between the input
and output statements in one block of the interpolated picture for bilinear
interpolation:

Y(zr; ztÞ ¼
1
pq

X(zr; ztÞ
ð1� z�p

r Þ
ð1� z�1

r Þ
� �2 ð1� z�q

t Þ
ð1� z�1

t Þ
� �2

: ð9:14Þ

Finally for the transfer function for the two-dimensional bilinear interpolation we
get:

HBLðzr; ztÞ ¼ Y(zr; ztÞ
X(zr; ztÞ

¼ 1
pq

ð1� z�p
r Þ

ð1� z�1
r Þ

� �2 ð1� z�q
t Þ

ð1� z�1
t Þ

� �2
ð9:15Þ

From the expression (9.15) for the amplitude-frequency response of the bilinear
interpolator we obtain:

MBLðxr;xtÞ ¼
sin2 pxr

2

	 

p:sin2 xr

2

� � sin2
qxt

2

	 

q:sin2 xt

2

� � ¼ MBLðxrÞ :MBLðxtÞ; ð9:16Þ

where: xr ¼ 2p fr =fsr and xt ¼ 2p ft =fst are the normalized circular frequencies
respectively in vertical and horizontal direction.

Similarly, for the phase-frequency response we obtain:

UBLðxr;xtÞ ¼ ð1� p)xr þð1� q)xt ¼ UBLðxrÞþUBLðxtÞ: ð9:17Þ

9.2.2.2 Characteristics of the Zero Interpolation

Similarly to the previous expression for bilinear interpolator from Eqs. (9.6) and
(9.10) the transfer characteristic in the Z domain at zero interpolation of four
neighboring supporting image elements can be derived:

HZRðzr; ztÞ ¼ Y(zr; ztÞ
X(zr; ztÞ

¼ 1� z�p
r

1� z�1
r

� �
1� z�q

t

1� z�1
t

� �
: ð9:18Þ

After substitution of zr ¼ exp(jxrÞ and zt ¼ exp(jxtÞ in (9.18) the following rela-
tions are obtained for the amplitude-frequency response:

MZRðxr;xtÞ ¼
sin pxr

2

	 

sin xr

2

� � sin qxt

2

	 

sin xt

2

� � ¼ MZRðxrÞMZRðxtÞ ð9:19Þ
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and phase-frequency response of the zero interpolator:

UZRðxr;xtÞ ¼ p� 1
2

xr þ q� 1
2

xt ¼ UZRðxrÞþUZRðxtÞ: ð9:20Þ

9.2.3 Evaluation of the Error of the Adaptive 2D
Interpolation

In assessing the error of the interpolation we assume that the input image has a
uniform spectrum in the intervals: �p	xr 	 p and �p	xt 	 p. As a main cri-
terion for evaluating the distortion, the definition of mean square error
(MSE) described in [23] can be used:

e2 ¼ 1
p2

Zp
0

Zp

0

1�Mn xr;xtð Þ½ �2@xr@xt; ð9:21Þ

where:

Mnðxr;xtÞ ¼ M(xr;xtÞ
M(0,0)

¼ 1
pq

M(xr;xtÞ; ð9:22Þ

is the normalized amplitude frequency characteristic of the adaptive interpolator
and:

M(xr;xtÞ ¼
MBLðxr;xtÞ; for F ¼ 0;

MZRðxr;xtÞ; for F ¼ 1:

(
ð9:23Þ

are the expressions for the characteristics in bilinear and zero interpolation. Since
amplitude frequency characteristics are separable functions on both directions, the
equality (9.21) is transformed as follows:

e2 ¼ 1� 2
p2

Zp

0

Mn xrð Þ @xr

Zp
0

Mn xtð Þ @xt þ 1
p2

Zp
0

Mn xrð Þ½ �2@xr

Zp
0

Mn xtð Þ½ �2@xt:

ð9:24Þ

The examination of the integrals of Eq. (9.24) can be performed separately for two
cases of interpolation.

302 R. Mironov



• First case. The zero interpolation F = 1.

Mnðxr;xtÞ ¼ MZRðxr;xtÞ
MZRð0; 0Þ ¼ 1

pq
MZRðxr;xtÞ; ð9:25Þ

as the amplitude frequency characteristic in the point (0, 0) is expressed by the
following border transition:

MZRð0; 0Þ ¼ lim
xr!0

MZRðxrÞ : lim
xt!0

MZRðxtÞ ¼ pq: ð9:26Þ

From the expression (9.24) for the separate integrals for zero interpolation, the
following relations can the given:

Zp

0

Mn xrð Þ @xr ¼ 1
p

Zp

0

sin(pxr=2Þ
sin(xr=2Þ @xr ¼ 2

p

Zp=2
0

sin(pxrÞ
sin(xrÞ @xr ¼ 2

p
=ðp),

Zp

0

Mn xtð Þ @xt ¼ 1
q

Zp

0

sin(qxt=2Þ
sin(xt=2Þ @xt ¼ 2

q

Zp=2
0

sin(qxtÞ
sin(xtÞ @xt ¼ 2

q
=ðq),

ð9:27Þ

where =ðp) and =ðq) are integrals of the kind:

=ðu) ¼ =ðu� 2Þþ 2
u� 1

sin[(u� 1Þv]jp=20 ¼ =ðu� 2Þþ 2sin[(u� 1Þp=2�
u� 1

:

ð9:28Þ

After transforming the definite integral=ðuÞ can be calculated from the condition:

=ðu) ¼
p
2; for u ¼ 2kþ 1

2
Pk
s¼1

ð�1Þs�1

2s�1 ; for u ¼ 2k

8<
: : ð9:29Þ

For the second group of integrals we obtain the expressions:

Zp

0

Mn xrð Þ½ �2@xr ¼ 1
p2

Zp

0

sin2ðpxr=2Þ
sin2ðxr=2Þ

@xr ¼ 2
p2

Zp=2
0

sin2ðpxrÞ
sin2ðxrÞ

@xr ¼ 2=2ðp)
p2

Zp

0

Mn xtð Þ½ �2@xt ¼ 1
q2

Zp

0

sin2ðqxt=2Þ
sin2ðxt=2Þ

@xt ¼ 2
q2

Zp=2
0

sin2ðqxtÞ
sin2ðxtÞ

@xt ¼ 2=2ðq)
q2

ð9:30Þ
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where =2ðp) and =2ðq) are integrals of the kind:

=2ðu) ¼ u
2
=ð2uþ 1Þþ=ð2u� 1Þ½ � ¼ up

2
: ð9:31Þ

Finally from the transformations (9.27), (9.28), (9.30) and (9.31) it follows that in
expression (9.24) the error of zero interpolation is as follows:

e2 ¼ 1� 2
p2

4
pq

=ðp)=ðq)þ 1
p2

4
p2q2

=2ðp)=2ðq) ¼ 1� 1
pq

8=ðp)=ðq)
p2

� 1
� �

:

ð9:32Þ
• Second case. Bilinear interpolation at F = 0.

Mnðxr;xtÞ ¼ MBLðxr;xtÞ
MBLð0; 0Þ ¼ 1

pq
MBLðxr;xtÞ; ð9:33Þ

as the amplitude frequency characteristic in the point (0, 0) is expressed with the
following border transition:

MBLð0; 0Þ ¼ lim
xr!0

MBLðxrÞ: lim
xt!0

MBLðxtÞ ¼ pq: ð9:34Þ

From the expression (9.24) for the individual integrals for bilinear interpolation,
the following relations can the described:

Zp
0

Mn xrð Þ @xr ¼ 1
p2

Zp

0

sin2ðpxr=2Þ
sin2ðxr=2Þ

@xr ¼ 2
p2

Zp=2
0

sin2ðpxrÞ
sin2ðxrÞ

@xr ¼ 2=2ðp)
p2

Zp

0

Mn xtð Þ @xt ¼ 1
q2

Zp

0

sin2ðqxt=2Þ
sin2ðxt=2Þ

@xt ¼ 2
q2

Zp=2
0

sin2ðqxtÞ
sin2ðxtÞ

@xt ¼ 2=2ðq)
q2

ð9:35Þ

where =2ðp) and =2ðq) are calculated in accordance to the expression (9.31).
For the second group of integrals we can derive the following expressions:

Zp

0

Mn xrð Þ½ �2@xr ¼ 1
p4

Zp

0

sin4ðpxr=2Þ
sin4ðxr=2Þ

@xr ¼ 2
p4

Zp=2
0

sin4ðpxrÞ
sin4ðxrÞ

@xr ¼ 2=4ðp)
p4

Zp

0

Mn xtð Þ½ �2@xt ¼ 1
q4

Zp

0

sin4ðqxt=2Þ
sin4ðxt=2Þ

@xt ¼ 2
q4

Zp=2
0

sin4ðqxtÞ
sin4ðxtÞ

@xt ¼ 2=4ðq)
q4

ð9:36Þ
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where with =4ðp) and =4ðq) are described integrals of the kind:

=4ðu) ¼
Zp=2
0

sin4ðuv)
sin4ðv) @v ¼ up

6
2u2 þ 1
 �

: ð9:37Þ

Finally from the transformations (9.34), (9.35), (9.36) and (9.37) follows that in
expression (9.24) the error at zero interpolation is as follows:

e2 ¼ 1� 1
pq

2� ð2p2 þ 1Þð2q2 þ 1Þ
9p2q2

� �
: ð9:38Þ

In conclusion, from expressions (9.24), (9.32) and (9.38) is obtained the expression
for MSE at the adaptive interpolator:

e2ðp,q) ¼
1� 1

pq
8=ðp)=ðq)

p2 � 1
h i

; for F ¼ 1;

1� 1
pq 2� ð2p2 þ 1Þð2q2 þ 1Þ

9p2q2

h i
; for F ¼ 0:

8<
: ð9:39Þ

9.2.4 Functional Scheme of the 2D Adaptive Interpolator

As a result of the discussion in paragraph 3 and from Eqs. (9.5), (9.6), (9.7), (9.10)
and (9.13) can be synthesized the functional scheme of two-dimensional adaptive
interpolator, developed for grayscale images, shown on Fig. 9.4.

The used modules in the scheme are as follows:

• MBI—module for bilinear interpolation;
• MZI—module for zero interpolation;
• MCA—module for adaptive control;
• AC—accumulator;
• LUT—lookup table;
• COM—digital comparer;
• z−k—delay block for к elements;
• │ . │—block to determine the module of the current value;
• MUX—multiplexor;
• D1;D2;D3;D4—are the differences, calculated on the base of Eqs. (9.2).

The table LUT-1 was synthesized on the basis of Eq. (9.10) and the table LUT-2
is based on the equality for the logical function F. In the accumulators AC-1, AC-2
and AC-3 for starting values we introduce x(0, 0), x(0, q) and v(r, 0) respectively.
The values of the thresholds θm and θn are calculated based on descriptions, given
in [11], depending on the level of noise in the input image and the type of difference
histograms in vertical and horizontal direction.
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For obtaining a high quality color image a divided processing of the signals for
brightness and color is necessary. The proposed scheme applies only to the lumi-
nance signal processing. For color signals the use of adaptation is not necessary as
only zero interpolation is sufficient.

9.3 Method for Adaptive 2D Error Diffusion Halftoning

9.3.1 Mathematical Description of Adaptive 2D
Error-Diffusion

The input m-level halftone image and the output n-level (2	 n	m/2) image of
dimensions M × N can be represented by the matrices:

C ¼ cðk, lÞ = k ¼ 0; M� 1; l ¼ 0; N� 1
� �

;

D ¼ dðk, l) = k ¼ 0; M� 1; l ¼ 0; N� 1
� �

:
ð9:40Þ
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Fig. 9.4 Functional scheme of the 2D adaptive interpolator
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Transformation of the image elements c(k, l) into d(k, l) is accomplished by the
adaptive error diffusion quantizer (AEDQ) shown on Fig. 9.5.

The quantizer operation is described by the following equation:

dðk, l) ¼ Q[cfðk, l)] =
q0; if cfðk, l) \ T0

qp; if Tp�1 \cfðk, l)\Tp ðp = 1; n� 2Þ
qn�1; if cfðk, l) \ T0

8<
: ð9:41Þ

where qp 	 qpþ 1 	m (p = 0; n� 2) are the values of the function Q[.].
Thresholds for comparison are calculated by the equation:

Tp ¼ ðCp + Cpþ 1Þ=2, where Cp represents the gray values dividing the normalized
histogram of the input halftone image C into n equal parts.

The value of the filtered element cfðk, l) in Eq. (9.41) is:

cf ðk, lÞ ¼ c ðk, l) þ e0ðk, lÞ ð9:42Þ

The summarized error can be expressed as:

e0 ðk, l) ¼
XX
ðr;tÞ 2 W

wk;lðr, t)e(k� r, l� t) ¼ Wt
k;lEk;l ð9:43Þ

where e ðk, l Þ ¼ cfðk, l Þ � d ðk, l Þ is the error of the current filtered element
when its value is substituted by qp; wk;lðr, t Þ are the filter weights defined in the
certain causal two-dimensional window W; Wk;l and Ek;l are the vectors of the
weights and their summarized errors, respectively.

d(k,l)c(k,l)
Image Memory

e  (k,l)
0

c  (k,l)
f

l
μ

k
μ

l,
k

f, f,

e(k,l)

Quantizer
c  (k,l)

fQ [ ]

Histogram
Processing

Unit

pT  , qp

Adaptive Weights Unit

Error Diffusion FilterCoefficients
Memory

Adaptive Error Diffusion Filter

AEDQ

Fig. 9.5 Adaptive 2D error diffusion quantizer
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9.3.2 Determining the Weighting Coefficients of the 2D
Adaptive Halftoning Filter

According to 2D-LMS algorithm [7], the adaptive error diffusion filter (AEDF)
weights can be determined recursively:

Wk;l ¼ fkWk;l�1 � l krk;l�1 þ flWk�1;l � l lrk�1;l ð9:44Þ

where: rk;l�1 and rk�1;l are the gradients of the squared errors by the quantization
in horizontal and vertical directions; fk; fl—coefficients, considering the direction of
the adaptation, where: fk + f l ¼ 1; lk; ll—adaptation steps in the respective
direction.

According to [5], the convergence and the stability of the AEDF adaptation
process are given by the following condition:

fk � lkkij j þ fl � l1kij j\1; ð9:45Þ

where ki are the eigen values of the gray-tone image covariance matrix.
The sequence (9.44) is 2D LMS algorithm of Widrow summary from which the

following two particular cases should hold:

• First case. If fk ¼ 1; lk ¼ l ; f l ¼ ll ¼ 0, then the adaptive calculation of the
weights is performed only in the horizontal direction:

Wk;l ¼ Wk;l�1 þ lkð�rk;l�1Þ ¼ Wk;l�1 � l
@ e2ðk,l� 1Þ
@ Wk;l�1

ð9:46Þ

• Second case. If fl ¼ 1; ll ¼ l ; fk ¼ lk¼ 0 then the adaptive calculation is
performed only in the vertical direction:

Wk;l ¼ Wk�1;l þ llð�rk�1;lÞ ¼ Wk�1;l � l
@ e2ðk� 1; l)
@ Wk�1;l

: ð9:47Þ

The derivatives of the quantization error in the respective directions are determined
by the Eqs. (9.40), (9.41), (9.42), (9.43) and (9.44). The derivative in horizontal
direction is obtained:

@ e2ðk, l� 1Þ
@ Wk;l�1

¼ 2eðk, l� 1ÞEk;l�1 1� Q0
cf ðk, l� 1Þ

h i
; ð9:48Þ
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where the derivative of the quantization values of the filtered elements is:

Q0
cf ðk, l� 1Þ ¼ 0; if: cfðk, l� 1Þ 6¼ Tp

qpþ 1 � qp; if: cfðk, l� 1Þ = Tp:

�
ð9:49Þ

In the same way the derivative in the vertical direction from Eq. (9.47) is obtained
from:

@ e2ðk� 1; l Þ
@Wk�1;l

¼ 2eðk� 1; l Þ Ek�1;l 1� Q0
cf ðk� 1; l Þ

h i
ð9:50Þ

For the AIHF weights the condition must be hold:XX
ðr;tÞ 2 W

wk;l ðr,tÞ ¼ 1 ð9:51Þ

which guarantees that e(k, l) is not increased or decreased by its passing through the
error filter.

Finally, from the Eqs. (9.44) and (9.46)–(9.50) the calculation of the weighs of
the adaptive filter of Wk;l is performed by the equation:

wk;lðr, t) = fkwk;l�1ðr, t) � 2lke(k, l� 1Þe(k� r, l� t� 1Þ 1� Q0
cf ðk, l� 1Þ

h i
þ flwk�1;lðr, t) � 2lle(k� 1; l)e(k� r � 1; l� t) 1� Q0

cf ðk� 1; l)
h i

:

ð9:52Þ

9.3.3 Functional Scheme of 2D Adaptive Halftoning Filter

On the basis of the developed method for 2D adaptive error diffusion image
halftoning the functional scheme of 2D adaptive halftoning filter is synthesized
(Fig. 9.6).

An error diffusion filter with 4 coefficients has been used for the evaluation of
the efficiency of the developed filter. The spatial disposition and the initial values of
weights correspond to those in the Floyd-Steinberg filter [27].

The used units in the scheme on the Fig. 9.6 are as follows:

• LUT—lookup table for calculation of values of filtered image cf ðk; lÞ, according
to the Eq. (9.42);

• COM—digital comparator, in which the current quantized elements are obtained
according to the Eq. (9.49);

• (N − 1)T—delay unit for N − 1 elements of input image.
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With red color are denoted the units for iterative calculation of weights wk;lðr,t)
of the adaptive halftoning filter, according to the Eq. (9.52). With blue color are
denoted the units, for which the values of the coefficients, according to the 2D LMS
algorithm are calculated.

Fig. 9.6 Functional scheme of adaptive 2D error diffusion quantizer
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The filter illustrated on Fig. 9.6 allows operation in four modes:

• first mode—adaptation of the coefficients in horizontal direction for
fk ¼ 1; fl ¼ 0;

• second mode—adaptation of the coefficients in vertical direction for
fk ¼ 0; fl ¼ 1;

• third mode—adaptation in horizontal and in vertical direction;
• fourth mode—non-adaptive for fk ¼ 1; fl ¼ 0; lk ¼ ll ¼ 0.

9.3.4 Analysis of the Characteristics of the 2D Adaptive
Halftoning Filter

The analysis of the developed adaptive 2D error diffusion quantizer can be per-
formed under the following assumptions—fk ¼ 1; fl ¼ 0; lk ¼ ll ¼ 0 and ignoring
the effect of quantization. Then the proposed block scheme in Fig. 9.5 can be
replaced by the equivalent scheme, shown on Fig. 9.7.

Here H1 denotes the filter for calculation of the summarized error of transfor-
mation, INV denotes the unit for inverting the scanning direction, and the sign
± denotes the positive or negative value of the difference between the input and
quantized image element. From the Eqs. (9.41)–(9.43) the filter transfer charac-
teristic with four coefficients: wk;lð0; 1Þ ¼ w1, wk;lð1; 0Þ ¼ w2, wk;lð1; 1Þ ¼ w3 and
wk;lð1;�1Þ ¼ w4 can be obtained as follows:

H1ðzk; zlÞ ¼ E0ðzk; zlÞ
E(zk; zlÞ

¼ W1z�1
l þW2z�1

k þW3z�1
k z�1

l þW4z�1
k zl: ð9:53Þ

The expressions for the amplitude frequency response and phase frequency
response of the filter for calculating of summarized error e0ðk,l) are obtained from
the Eq. (9.53) as follows:

M1ðx k;x lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; u1ðx k;x lÞ ¼ �arctg

b
a
; ð9:54Þ

u (k,l)

H1

u (k,l)c(k,l) d(k,l)

Unit for forward scanning

H1

Unit for inverse scanning

v (k,l)
INV INV

Fig. 9.7 Equivalent block scheme of adaptive 2D error diffusion quantizer
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where the following assumptions are made:

a ¼ W1cos(x lÞþW2cos(x kÞþW3cos(x k þx lÞþW4cos(x k � x lÞ
b ¼ W1sin(x lÞþW2sin(x kÞþW3sin(x k þx lÞþW4sin(x k � x lÞ:

ð9:55Þ

The two-dimensional amplitude/phase frequency response characteristics are cal-
culated in Matlab and shown on Fig. 9.8.

For equivalent error filter, from the scheme in Fig. 9.7, two transfer functions are
obtained:

Hþ zk; zlð Þ ¼ 1
1� H1 zk; zlð Þ ; for sign

‘‘ þ 00
of E zk; zlð Þ

H� zk; zlð Þ ¼ 1
1� H1 zk; zlð Þ ; for sign

‘‘ �00
of E zk; zlð Þ:

ð9:56Þ

Then the amplitude and phase frequency response characteristics can be calculated:

Mþ ðx k;x lÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a)2 þ b2

q ; uþ ðx k;x lÞ ¼ arctg
b

1� a

M�ðx k;x lÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a)2 þ b2

q ; u�ðx k;x lÞ ¼ �arctg
b

1þ a
:

ð9:57Þ

The two-dimensional amplitude/phase frequency response characteristics for the
filter for right scanning from Fig. 9.7 are computed by the Matlab and are shown on
Fig. 9.9.

The values of the normalized round frequencies xk and xl are defined in an
interval �p; þ p½ �, the amplitude frequency characteristics are shown on the left
side of the figure and the phase frequency characteristics are shown on the right
side.

Fig. 9.8 Frequency response characteristics of the filter for calculating of e0(k, l)

312 R. Mironov



From the graphs is visible that the amplitude frequency characteristics are
asymmetrical to zero frequency and phase frequency characteristics have nonlinear
character. This leads to distortion of transitions, appearance of false structures in
homogeneous areas and dependence of the transformed image from the mutual
spatial arrangement of the scanning direction and the available transitions.

Based on this, an additional treatment in the opposite direction, bottom up and
from right to left, designated as a reverse scanning unit of Fig. 9.7 is proposed. On
the basis of equivalent scheme with the additional unit, the following relations for
the common transfer function, amplitude and phase frequency characteristics,
describing the operation of the filter in both directions of scanning, are obtained:

H(zk; zlÞ ¼ H1ð�zk;�zlÞH1ðzk; zlÞ
M(xk;x lÞ ¼ M2

1ðxk;x lÞ; uðxk;x lÞ ¼ 0:
ð9:58Þ

The resulting characteristics correspond to the distribution of the blue noise, which
is recommended in the systems for pseudo-halftone conversion. Furthermore,
amplitude frequency characteristics are better coordinated with spatial-frequency

Fig. 9.9 Frequency response characteristics of H+ and H− filters
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characteristic of human vision and zero phase frequency characteristics provide
accurate reproduction of halftone image transitions.

Therefore, the discussed approach allows high quality playback of synthesized
and natural images containing a large number of texture elements with different
spatial orientation.

9.4 Method for Adaptive 2D Line Prediction of Halftone
Images

9.4.1 Mathematical Description of Adaptive 2D Line
Prediction

The input m-level halftone image and the output n-level (2	 n	m/2) image of
dimensions M × N can be represented by the matrices:

CM�N ¼ cðk, lÞ = k ¼ 0; M� 1; l ¼ 0; N� 1
� �

;

DM�N ¼ dðk, l) = k ¼ 0; M� 1; l ¼ 0; N� 1
� �

:
ð9:59Þ

The predicted value ĉ ðk, l) of the current element from the input image c(k, l) can
be described by the following 2D linear dependence:

ĉ ðk, l) ¼
XX
ðr;tÞ 2 W

wk;lðr, t)c(k� r, l� t) ¼ Wt
k;l Ck;l; ð9:60Þ

where wk;lðr, t Þ are the weighting coefficients of the filter for linear prediction,
defined in given causal window W, for which the following condition must be
fulfilled:

XX
ðr;tÞ 2 W

wk;l ðr, t) ¼ 1; ð9:61Þ

which guarantees that the error e(k, l) of the prediction is not increased or decreased
by its passing through the linear prediction filter. The coefficients wk;lðr, t Þ are real
digits, determining parameters of the linear predictive filter (LPF), the output of
which forms the predicted picture element (PE) ĉ ðk, l).

The choice of the prediction coefficients is performed in such a way as to allow a
minimum value of the prediction error calculated as the difference between the
current PE and the predicted one using the formula:

e(k, l) ¼ c(k, l)� ĉ ðk, l): ð9:62Þ
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The prediction error is quantized unevenly through the use of optimal quantizer that
provides or minimal mean square error of quantization or be reconciled with the
properties of human visual perception. The quantized error value is determined by
dependency:

eqðk, l) ¼ Q[e(k, l)], ð9:63Þ

where Q is an operator for quantization.
The coefficients of the adaptive linear prediction filter can be calculated recur-

sively by introducing a two-dimensional generalization of the LMS Widrow
algorithm, as is shown in paragraph 3.2 in horizontal and vertical directions as
follows:

Wk;l ¼ fkWk;l�1 � l krk;l�1 þ flWk�1;l � l lrk�1;l; ð9:64Þ

where: Wk;l is the vector of weight coefficients of adaptation; rk;l�1 and rk�1;l are
the gradients of the squared errors in horizontal and vertical directions; fk and fl
are the coefficients, considering the direction of the adaptation, where fk + f l ¼ 1;
lk; ll—adaptation steps in the respective direction.

The conceptual block diagram of two-dimensional adaptive codec for encoding
of halftone images using linear prediction, working accordingly to the described
methodology, is shown on Fig. 9.10.

In the linear prediction unit, the value of the current predicted PE ĉ ðk, l),
according to the Eq. (9.60) is calculated. The values of weight coefficients are
calculated recursively according to the Eq. (9.64). In both summators, according to
the Eq. (9.62), are calculated the prediction error e(k, l) and the recovered value of
the current PE c0ðk, l), that is used in the prediction of the next PE. In the quan-
tization unit the output values of quantization error eqðk, l) are obtained, according
to the Eq. (9.63).

With gray arrows are marked the input and output of the decoder, which is
synthesized based on the following expressions:

eq(k,l)

l
μ

k
μ

l, kf, f,

e'(k,l)

Q[ . ]

Unit for Adaptation 
of Weights

Linear Prediction 
Filter

e(k,l)

Q-1[ . ]

c'(k,l)

Coefficients 
Memory

c(k,l)

ĉ(k,l)

ALPF

Fig. 9.10 Block scheme of
codec for 2D adaptive linear
prediction
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e0ðk, l) ¼ Q�1 ½eqðk, l)], ð9:65Þ

where: Q−1 is operator for de-quantization of the prediction error and the value of
the recovered PE is calculated by the expression:

c0ðk, l Þ ¼ e0 ðk, l Þþ ĉ ðk, l Þ: ð9:66Þ
According to Eq. (9.45), the convergence and the stability of the adaptation process
are given by the following condition:

fk � lkkij j þ fl � llkij j\1; ð9:67Þ
where ki are the eigen values of the input gray-tone image covariance matrix.

9.4.2 Synthesis and Analysis of Adaptive 2D LMS Codec
for Linear Prediction

From the theoretical point of view, it is not correct to divide the optimization of the
processes of prediction and quantization, as there is a complicated relationship
between the visibilities of quantization noise from the probability distribution of the
values of the prediction error. Provided that as a criterion for evaluation the mean
square error is used proves that the mean square value of the quantization noise is
approximately proportional to the value of the mean square error of prediction, as
shown by Musman, and has the form:

�e2q ¼
9
2
m2

� �
�e2: ð9:68Þ

In this case, using this assumption it is permissible to carry out optimization of the
parameters in the process of predicting on the one hand, and the quantization—on
the other.

9.4.2.1 Optimization of the Process of Prediction

From 2D LMS Eq. (9.64) can be derived two particular cases described with the
Eqs. (9.46) and (9.47). From the Eq. (9.46) the derivative of the prediction error in
horizontal direction is determined by the relationship:

@ e2ðk, l� 1Þ
@Wk;l�1

¼ �2e(k, l� 1Þ @

@ Wk;l�1
Wt

k;l�1 Ck;l�1

h i
¼ �2e(k, l� 1Þ Ck;l�1;

ð9:69Þ
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where Ck;l�1 ¼ c(k� r, l� t� 1Þ=ðr, t) 2 Wf g is vector of input elements par-
ticipating in the prediction area W in horizontal direction, defined by the Eq. (9.61).

Similarly, for the derivative of the prediction error in vertical direction from
(9.47) is obtained:

@ e2ðk� 1; l)
@ Wk�1;l

¼ �2e(k� 1; l)
@

@ Wk�1;l
Wt

k�1;l Ck�1;l

h i
¼ �2e(k� 1; l) Ck�1;l;

ð9:70Þ

where Ck�1;l ¼ c(k� r � 1; l� t)/(r, t) 2 Wf g is vector of input elements partici-
pating in the prediction area W in vertical direction, defined by the Eq. (9.61).

Finally, from the Eqs. (9.64), (9.69) and (9.70) the calculation of the weighs of
the adaptive prediction filter is performed by the following recursive equation:

wk;lðr, t) = fkwk;l�1ðr, t)þ 2lke(k, l� 1Þc(k� r, l� t� 1Þ
þ flwk�1;lðr, t)þ 2lle(k� 1; l)c(k� r � 1; l� t):

ð9:71Þ

Statistical studies described by Pratt [2], show that the value of each PE can be
predicted with high accuracy by using the linear relationship from Eq. (9.60) for
three coefficients located in the horizontal and vertical directions. In this case, using
the Eq. (9.71) for 2D LMS recursive dependency for the calculation of values of the
coefficients wk;lðr, t) is obtained:

wk;lð0; 1Þ¼ fkwk;l�1ð0; 1Þþ 2lke(k, l� 1Þc(k, l� 2Þ
þ flwk�1;lð0; 1Þþ 2lle(k� 1; l)c(k� 1; l� 1Þ;

wk;lð1; 0Þ¼ fkwk;l�1ð1; 0Þþ 2lke(k, l� 1Þc(k� 1; l� 1Þ
þ flwk�1;lð1; 0Þþ 2lle(k� 1; l)c(k� 2; l),

wk;lð1; 1Þ¼ fkwk;l�1ð1; 1Þþ 2lke(k, l� 1Þc(k� 1; l� 2Þ
þ flwk�1;lð1; 1Þþ 2lle(k� 1; l)c(k� 2; l� 1Þ:

ð9:72Þ

The initial values of the weight coefficients are calculated from the dependencies:

w0;0ð0; 1Þ ¼ R(0, 1)
R(0, 0)

; w0;0ð1; 0Þ ¼ R(1, 0)
R(0, 0)

andw0;0ð1; 1Þ ¼ �R(1, 1)
R(0, 0)

; ð73Þ

where: R(0, 0), R(0, 1), R(1, 0) and R(1, 1) are the coefficients of autocorrelation
function, calculated for the first two rows of the input image.

9.4.2.2 Optimization of the Process of Quantization

The error signal in the two-dimensional prediction has extremely irregular distri-
bution of the probability density of their different values, as shown on Fig. 9.11.
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The highest probabilities have the smallest error values, i.e. those that have zero or
close to zero values. Therefore, for the quantization of the difference signal the
characteristic of quantizer must be unequal, as shown on Fig. 9.12.

A fundamental requirement for the quantization is the number of the levels to be
set at a minimum for the given criterion of allegiance of the restored image, selected
depending on the method of its use. The criteria for an optimal distribution of the
quantization levels qi (i = 0, …, n) are two: optimization by the minimization of
mean square error and optimization in terms of subjective image quality.

The developed method of linear prediction uses the first criterion—optimization
of mean square error by using the Max algorithm.

9.4.2.3 Functional Scheme of Adaptive 2D Codec for Linear
Prediction

Based on the developed method for coding of halftone images by 2D adaptive
linear prediction filter is synthesized functional scheme of codec for 2D adaptive
linear prediction, shown on Fig. 9.13.

The used in the scheme functional units correspond to these, shown on Fig. 9.6.
With red color are denoted the units for iterative calculation of weights wk;lðr, t) of

ei

p(ei)

-ei

-ei
max ei

max

Fig. 9.11 Distribution of
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errors
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the adaptive prediction filter, according to the Eq. (9.72). With blue color are
denoted the units, for which the values of the coefficients, according to the 2D LMS
algorithm are calculated.

The shown in Fig. 9.13 filter allows adaptation of the coefficients in four modes:
in horizontal direction, in vertical direction, in horizontal and in vertical direction,
and non-adaptive operation.

Fig. 9.13 Functional scheme of codec for adaptive 2D linear prediction
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9.5 Experimental Results

9.5.1 Experimental Results from the Work of the Developed
Adaptive 2D Interpolator

For the analysis of the interpolation distortions the mean-square error (MSE),
normalized mean-square error (NMSE in %), signal to noise ratio (SNR in dB) and
peak signal to noise ratio (PSNR in dB) can be used as a criterion. On Fig. 9.14 are
shown 8 test standardized images: “Lenna”, “Baboon”, “Cameraman”, “Peppers”,
“Boat”, “Tscale”, “Tlines” and “Tdglins” with the size 512 × 512 and 256 gray
levels. The visualization is made with scaling factor 40 %.

The analysis of the interpolated images quality is made by simulation with the
MATLAB mathematical package. Experiments were conducted in the following
way: initially, over the input images a process of decimation is performed 2, 3, 4
and 5 times and afterward these images were extended 2, 3, 4 and 5 times; finally,
the output images were compared with the input images. The obtained results for
different kind of interpolations—zero (ZR), bilinear (BL), bicubic (BC) and pro-
posed adaptive interpolation (AD) with interpolation factors 2, 3 are summarized in
Table 9.2 and with interpolation factors 4, 5 are summarized in Table 9.3. The
results from the tables illustrate that the proposed method gives better results than
the others methods. The improvement of the SNR for the different expansion
coefficients varies from 0.3 to 12.7 dB. The average improvement for all mea-
surements is 1.5 dB. Relative to the maximum SNR value for the separate mea-
surements it leads to an improvement of 0.83–13.09 %.

On Fig. 9.15 the results from the different kind of interpolations on the test image
“Boat”with expanding coefficient 5 are shown. The visualization ismadewith scaling

Fig. 9.14 Test images “Lenna”, “Baboon”, “Cameraman”, “Peppers”, “Boat”, “Tscale”, Tlines”
and “Tdglins” with size 512 × 512, 256 gray levels
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factor 20 %. The visual quality of the adaptive interpolation is higher than the other
interpolations, which is clearly visible for the larger expansion coefficients.

9.5.2 Experimental Results from the Work of the Developed
Adaptive 2D Halftoning Filter

An error diffusion filter with 4 coefficients has been used for the evaluation of the
efficiency of the described in Sect. 9.3 adaptive 2D halftoning filter. On its base, an
algorithm for adaptive 2D image halftoning is developed.

It has been tested on a set of five different types of images: “Lenna”, “Baboon”,
“Cameraman”, “Peppers” and “Boat”, shown on Fig. 9.14, with size 512 × 512 and
256 gray levels. The analysis of 2D variation of peak signal to noise ratio (PSNR)
depending on parameters f and l (fk = f, fl¼ 1� f, lk ¼ ll ¼ l:) is made in [23] and
[24]. The examination of the function PSNR (f,l) shows that the most proper mean
values of the adaptation parameters f and l are: fk¼ 0:7; fl ¼ 0:3; l¼ 1:67 � 10�6.
For quantification of the adaptive algorithm, a comparison with the non-adaptive
algorithm was made and the results are shown in Table 9.4.

The visual results after adaptive 2D halftoning of the five test images with size
512 × 512 and 2 levels are shown in Fig. 9.16. For output values are selected the

Fig. 9.15 Results of zero, bilinear, bicubic and adaptive interpolation with expanding coefficient
5 for the test image “Boat”

Table 9.4 Results from halftoning of some test images

Test images MSE NMSE SNR, dB PSNR, dB

“Lenna” Adaptive 5.4053e + 003 0.3106 5.0783 10.8366

Non adaptive 1.2166e + 004 0.6990 1.5550 7.3133

“Babbon” Adaptive 4.0277e + 003 0.2305 6.3737 12.1143

Non adaptive 1.2775e + 004 0.7310 1.3607 7.1013

“Cameraman” Adaptive 5.9302e + 003 0.3342 4.7599 10.4341

Non adaptive 1.0727e + 004 0.6046 2.1857 7.8599

“Pappers” Adaptive 6.8425e + 003 0.3993 3.9870 9.8126

Non adaptive 1.1602e + 004 0.6770 1.6939 7.5196

“Boat” Adaptive 6.4109e + 003 0.3014 5.2081 10.0956

Non adaptive 1.1576e + 004 0.5443 2.6419 7.5294
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values Cpþ 1 ¼ 0:95hn and Cp ¼ 0:05hn, calculated from the histograms of the
input gray images according to the dependencies given in [22].

From the conducted experiments can be concluded that the developed adaptive
2D image halftoning methods give better results than non-adaptive method, wherein
the improvement of PSNR for the different images varies from 2.3 to 5 dB (the
mean improvement for all measurements is 2.5 dB), as seen from Table 9.4. The
visual quality of the adaptive method is higher, at the expense of some increase in
the complexity of the calculations.

9.5.3 Experimental Results from the Work of the Developed
Codec for Adaptive 2D Linear Prediction

The developed algorithms for encoding and decoding, with the use of adaptive two
dimensional prediction, are tested on the images: “Lenna”, “Baboon”, “Cameraman”,
“Peppers” and “Boat”, shown on Fig. 9.14, with size 512 × 512, 256 gray levels and
values of adaptation parameters: fk ¼ 0:7 , fl ¼ 0:3 and l¼ 1:67 � 10�6. Prediction
is performed with three weight coefficients that are located spatially in the vicinity of
the current image element. On Fig. 9.17 reconstructed test images after adaptive
encoding with 2 bits/element and four times shrinking are shown and on Fig. 9.18 the
corresponding error images from the reconstruction.

Fig. 9.16 Results from halftoning of test images “Lenna”, “Baboon”, “Cameraman”, “Peppers”
and “Boat”
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Fig. 9.17 Reconstructed test images after adaptive encoding with 2 bits/element

Fig. 9.18 Error images after adaptive encoding with 2 bits/element
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For quantification of the adaptive algorithm, a comparison with the non-adaptive
classical DPCM algorithm with 2 bits/element was made and the results for the
MSE, NMSE, SNR and PSNR are summarized in Table 9.5.

From the performed experiments can be concluded that the developed adaptive
2D image linear prediction methods gives better results than non-adaptive method,
wherein the improvement of PSNR for the different images varies from 0.27 to
0.93 dB (the mean improvement for all measurements is 0.64 dB), as seen from
Table 9.5. The visual quality of the adaptive method is higher, at the expense of
some increase in the complexity of the calculations. When performing coding with
3 bits /element PSNR increases on average by 6.5 dB, and when performing coding
with 4 bits /element the PSNR is close to 40 dB and the decoded image is virtually
indistinguishable from the original.

9.6 Conclusion

Based on the performed experiments for 2D adaptive interpolation on halftone
images, the following conclusions can be made:

• the use of optimal thresholds for selection of homogenous and contour blocks
leads to the decreasing of mean-square error, normalized mean-square error and
the increasing of signal to noise ratio and peak signal to noise ratio with about
7–10 %;

• by the changing of interpolation type, zero or bilinear, depending on the pres-
ence or lack of contours in the area of considerate fragment, better visual quality
is achieved;

• the visual quality is better then the zero, bilinear and bicubic interpolation,
which is shown for the biggest interpolation coefficients;

• the complexity of the adaptive interpolation is higher than zero and bilinear
interpolations but is lower than other high-level interpolations;

Table 9.5 Results from encoding of the test images

Test images (2 bits/element) MSE NMSE SNR, dB PSNR, dB

“Lenna” Adaptive 326.1565 0.0187 17.2723 23.0305

Non adaptive 403.8962 0.0232 16.3438 22.1021

“Babbon” Adaptive 370.0712 0.0212 16.7413 22.4819

Non adaptive 394.1929 0.0226 16.4671 22.2077

“Cameraman” Adaptive 690.5548 0.0389 14.0986 19.7728

Non adaptive 790.2266 0.0445 13.5131 19.1873

“Pappers” Adaptive 415.4637 0.0242 16.1538 21.9795

Non adaptive 505.0852 0.0295 15.3055 21.1312

“Boat” Adaptive 441.8626 0.0208 16.8244 21.7119

Non adaptive 514.8935 0.0242 16.1601 21.0476
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• using smaller area for analysis and choice of optimal thresholds for image
separation lead to decrease of calculation speed;

• the most effective interpolation for the local characteristic of images can be
achieved by using coefficients p, q = 2, 3, 4.

The results for the quality of interpolated images show that the proposed method
for adaptive interpolation can change the high-level interpolations, which are
slower in systems, using digital image processing and visualization such as digital
photography, videoconference systems, security systems and etc.

The developed generalized adaptive error-diffusion quantizer results in the fol-
lowing particular cases: the wide-spread non-adaptive error diffusion filter of Floyd
and Steinberg (for n = 2, fk ¼ 1; lk ¼ ll = fl¼ 0); adaptive error diffusion using
the weights only in the horizontal (from the same image row—fk = 1, fl¼ 0) or
only in the vertical direction (from the previous image row—fl = 1, fk¼ 0). The
adaptive filter provides minimum reconstruction error, uniform distribution of the
arranged structures in the homogeneous areas and precise reproduction of edges in
the output multilevel images. The coefficients fk; fl; l k; l l must be selected on the
basis of PSNR analysis and keeping Eq. (9.44) as is done in [24]. The developed
AEDQ is appropriate for realization on special VLSI circuit to accelerate calcula-
tion of image transform.

The presented error diffusion filter can be used for transformation of color
palettes or brightness of pixels in multimedia systems, for printing color and
halftone images and transmission by facsimile devices.

The developed adaptive 2D coder provides minimum processing error and lied
to increase of PSNR with about 0.3 dB in comparison with 3 coefficients
non-adaptive prediction coder.

The given experimental results from the simulation in MATLAB environment
for each of the developed algorithms, suggest that the effective use of local infor-
mation contributes to minimize the processing error. The methods are extremely
suitable for different types of images (for example: fingerprints, contour images,
cartoons, medical signals, etc.). The developed algorithms have low computational
complexity and are suitable for real-time applications.
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Chapter 10
Machine Learning Techniques
for Intelligent Access Control

Wael H. Khalifa, Mohamed I. Roushdy and Abdel-Badeeh M. Salem

Abstract Access control is a set of regulations that governs access to certain areas
or information. By access we mean entering a specific area, or logging on a machine.
The access regulated by a set of rules that specifies who is allowed to get access and
what is the restrictions on such access. Across the years several access control
systems have been developed. Due to the rapid advancement in technology over the
past years, older systems are now easily by passed, thus the need to have new
methods of access control. Biometrics is referred to as an authentication technique
that relies on a computer system to electronically validate a measurable biological
characteristic that is physically unique and cannot be duplicated. Biometrics has
been used for ages as access control security system. In this chapter we will present
several biometric techniques their usage, advantages and disadvantages.

Keywords Data protection � Privacy � Biometrics � Machine learning

10.1 Introduction

The term “biometrics” is derived from the Greek words “bios” (life) and “metrics”
(to measure). Automated biometric systems have only become available over the
last few decades, due to significant advances in the field of computer processing.
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Many of these new automated techniques, however, are based on ideas that were
originally conceived hundreds, even thousands of years ago [1].

Human beings since the beginning of civilizations have been using biometrics to
identify one another. People recognize each other’s via their faces. Moreover,
human beings identify each other with behavioral traits such as voice and gait.
Computer biometric systems try to mimic the human mind by identifying indi-
viduals via physical or behavioral traits.

It is generally agreed by the relevant research community and industry that for a
biometric system to be efficient it should meet as many as possible from the
following features [2]:

(a) Changeability: The user must have the possibility to change his access fea-
tures, take for example a finger print biometric, if the user finger print is
compromised (someone stole it) and the system admin detected both the user
and the imposter will be banned from the system with no means of allowing
the user only to access the system.

(b) Shoulder-surfing resistance: The system should be resistant to shoulder
surfing especially with the advances of cameras and recording devices.

(c) Theft protection: The theft protection covers physical theft of the authenti-
cation features or an easy guess for the features.

(d) Protection from user non-compliance: Users tend to bend the rules when
they are in a tough situation, a user can give his password to a friend to get
them something urgent from their office or pc. A biometric system should try
to prevent user non-compliance.

(e) Stable over time: Some biometric features change over time for example
Voice, ECG and EEG Signals. For example as the user gets older their voice
changes slightly same happens with EEG and ECG. The system should handle
these changes overtime.

(f) Easy to Deploy: Users always look for fast and secure way for authentication.
Magnetic Resonance Imaging (MRI) maybe more accurate than fingerprint,
but going through the process of putting the user in an MRI machine every
time they require access is not a feasible way for security.

(g) Liveness Detection: the biometric system should try to interpret that the
captured data is from a live user not a replica or a dead person.

This chapter is organized as follows; in Sect. 10.2 we discuss the machine learning
methodology for intelligent access control. In Sect. 10.3 we present an introduction
about the various user authentication techniques. In Sect. 10.4 we demonstrate
some of the commonly used physiological biometric features. In Sect. 10.5 some of
the commonly used behavioural biometrics are presented. Section 10.6 describes
the fusion of multiple biometrics features to a single multimodal system.
Section 10.7 shows some of the commonly used application for biometrics.
Section 10.8 explores various machine learning techniques used in EEG biometrics
systems. Section 10.9 contains the comparison of the various biometrics techniques
and conclusion.
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10.2 Machine Learning Methodology for Biometrics

Biometrics systems follow four main activities: capturing, enrollment, comparison,
and decision (see Fig. 10.1).

• Capturing: is the use of sensors to capture the biometric features.
• Enrollment: Evolves using the captured biometric data and extracting a unique

set of features for each user and string them in the system.
• Comparison: includes recapturing of the biometric features then running the

same steps of the enrollment and comparing the generated signature to the stored
signatures.

• Decision: Based on the signature comparison, the system decides whether or not
to give the user access.

To put these processes in a computer science (informatics) point of view the steps
are:

• Signal Capturing: signal capturing is using hardware sensors to capture the
biometric features.

• Feature Extraction: is discovering unique information in the capture data. This
information will be used as the user signature.

• Classification: is trying to find similarity between the generated signature at the
enrollment phase and the verification phase.

From an initial look at the process it seems an easy task to develop a new biometric
system but the truth is that every step has a set of challenges that will be covered in
the following sections.

10.2.1 Signal Capturing

Signal capturing usually involves a capturing hardware. When developing a bio-
metric the hardware type used affects the data captured. It is advised to consider the
below items while selecting your hardware:

Fig. 10.1 Biometric processes
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• Quality of data captured: Low quality data will affect the algorithms
developed.

• Frequency of capturing: How fast can it capture multiple data, what is the data
resolution.

• Setup time: The time required for setup by the user to start the capturing
process. For research purposes this time might be large but in practical appli-
cations users can have a 30 min setup process for each access request.

• Ease of Use: How easy to use the hardware, does it requires a technical user to
perform the capture or any user can do a self-capture.

• Cost: While expensive hardware usually provides better quality of data, the
challenge is create a secure robust system with cheaper hardware. If a biometric
system uses a few thousand dollars capturing device to have high quality data. It
will not be practical to install this system on every door at the office building;
users would rather have a few hundred dollars capturing device and more
sophisticated software to handle the low quality data.

10.2.2 Feature Extraction

After the capturing phase, comes the feature extraction, which has the following
challenges:

• Data Cleaning: The challenge in data cleaning is removing noise or useless
information without destroying valuable information in the process.

• Selection of Features: There are many features that can be used depending on
the type of biometrics you are using. Which features to use and why? Some
understanding of the data captured should direct you to which features to
extract.

• Features combinations: There are usually many features that can be extracted
from the data, which feature combination is the best match for this signal. This
will need a bit of try and error. The system need to run with several combi-
nations and see which one would give the best results. Feature reduction
techniques may as well be applied.

10.2.3 Classification

Some considerations that need to be taken care of when building a biometric
classifier:

• Type of Problem: If the system will be using a verification or identification
technique the type of classifier used might differ.
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• Change over Time: How well does the classifier handle noise or slight changes
in the features over time? The classifier should be developed to learn the new
changes as the time passes.

• Training Time: Time required to train the system for a new user.
• Matching Time: Time required to match a user; while a classifier that has a

100 % accuracy can take 20 min to match the user, in real world it needs be
done in seconds at most.

• Accuracy: The most important factor is accuracy and in the security system
accuracy is divided to 2 parts. False acceptance rate where a user is allowed
access and they do not have the privilege, this must be really near zero percent.
As for the other measure it is the false rejection rate, that’s when a privileged
user is denied access. That is a problem as well but it is less serious than the
false acceptance rate.

A biometric recognition system can run in two different modes: Identification or
verification. In the identification case, the system is trained with the signatures of
several persons. For each of the persons, a biometric signature is generated in the
enrollment stage. A signature that is going to be identified is matched against every
known signature, yielding either a score or a distance describing the similarity
between the new signature and the stored ones. In the verification case, a person’s
identity is claimed a priori. The signature that is verified only is compared with the
person’s individual signature. Similar to identification, it is checked whether the
similarity between new signature and stored ones is sufficient to provide access to
the secured system or area.

10.3 User Authentication Techniques

The security field uses three different types of authentication [3]:

• Something you know: A password, PIN, or piece of personal information
• Something you have: A card key, smart card, or token (like a SecureID card)
• Something you are: A biometric.

Table 10.1 shows a comparison between various existing user authentication
techniques [4].

Biometrics is a measurable physical characteristic or personal behavioral trait
used to recognize the identity, or verify the claimed identity of an enrollee.
Biometrics is divided to two types; namely Physiological biometrics and beha-
vioural biometrics. Physiological Biometrics are related to the shape of the body.
Example, fingerprint, face recognition, DNA, hand and palm geometry, iris
recognition. While behavioral biometrics are related to the behavior of a person.
Examples, typing rhythm, gait, voice, Electroencephalography (EEG),
Electrocardiogram (ECG). Some researchers have coined the term behaviometrics
for this class of biometrics. Figure 10.2 illustrates the biometrics taxonomy.
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10.4 Physiological Biometrics Taxonomy

10.4.1 Finger Print

Fingerprint is the oldest biometric method in identity authentication and has been in
use since 1896 especially for criminal identification. The main idea is based on
fingertips that have corrugated skin with line like ridges flowing from one side of
the finger to another. The flow of these ridges is non-continuous and it forms a
pattern. The pattern of flow gives rise to a classification pattern such as arches,
loops and whorls while the discontinuity in the ridge flow give rise to feature points,
called minutiae as in Fig. 10.3 [5].

Table 10.1 Existing user authentication methods and techniques [4]

Method Examples Properties

What you know User ID
Password
PIN

• Shared
• Many passwords forgotten

What you have Cards
Badges
Keys

• Shared
• Can be duplicated
• Lost or stolen

What you know and What you have ATM Card + PIN • Shared
• Can be duplicated
• Lost or stolen

What you are Fingerprint
Face
Voice
Iris
EEG

• Not possible to share
• Hard to Forge
• Cannot be lost or stolen

Fig. 10.2 Biometrics taxonomy
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Fingerprint recognition can achieve good accuracy sufficient for both verification
and identification. Because of low cost and compactness it is popular consumer
product. On the other hand the sensor is not able to capture acceptable quality
fingerprint images for people with very dry or wet skin [5].

10.4.2 Face

Face recognition is the oldest biometric known to man since the start of history.
Human beings identified each other via the faces. With the spread in digital cam-
eras, human face identification usage have grown. There are two main approaches
for face identification namely; Feature-based approach and Holistic approach.

Feature-based approach extracts distinctive facial features such as the eyes,
mouth, nose, etc., as well as other fiducial marks, and then compute the geometric
relationships among those facial points, thus reducing the input facial image to a
vector of geometric features. Standard statistical pattern recognition techniques are
then employed to match faces using these measurements. While Holistic approa-
ches identify faces using descriptions based on the entire image rather than on local
features of the face [6] see Figs. 10.4 and 10.5.

10.4.3 Iris

The iris is a thin, circular structure in the eye. It controls the diameter and size of the
pupils and thus the amount of light reaching the retina. Eye colour is the colour of
the iris [7]. Upon imaging an iris, a 2D Gabor wavelet filters and maps the segments
of the iris into phasors (vectors). These phasors include information on the orien-
tation and spatial frequency. This information is used to map the Iris Codes [7] see
Fig. 10.6.

Fig. 10.3 Finger print
definition [22]
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Fig. 10.4 Face detection feature-based approach [23]

Fig. 10.5 Face detection holistic approach [5]
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10.5 Behavioral Biometrics Taxonomy

10.5.1 Keystroke Dynamics

The idea behind Keystroke Dynamics has been around since World War II. It was
well documented during the war that telegraph operators on many U.S. ships could
recognize the sending operator. Known as the “Fist of the Sender,” the uniqueness
in the keying rhythm (even of Morse-code), could distinguish one operator from
another [8].

Keystroke dynamics is the process of analyzing the way a user types on a
keyboard to identify their typing rhythm. A user’s typing pattern may be unique
because similar neuro-physiological factors that make written signatures unique are
also exhibited here Keystroke dynamics is a behavioral biometric Natural choice for
computer login and network security [9]. The key features used are “flight time” the
amount of time that a user spends “reaching” for a certain key and “dwell time” the
amount of time a user spends pressing one key (See Fig. 10.7).

There are two modes of operation for keystroke dynamics systems; static veri-
fication and continuous verification. In static verification, the keystrokes are ana-
lyzed only at specific times e.g., during login. Static approaches provide more
robust user verification than simple passwords, but static methods cannot detect
substitution of the user after the initial verification. Continuous verification moni-
tors the user’s typing behavior all the time.

Fig. 10.6 Iris encoding [24]
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10.5.2 Voice

Speaker, or voice, recognition uses a user’s voice for recognition purposes. It is a
different from “speech recognition”, which recognizes words as they are articulated,
which is not a biometric. The speaker recognition process relies on features
influenced by both the physical structure of an individual’s vocal tract and the
behavioral characteristics of the individual [10].

There are two forms for speaker recognition, text dependent and text indepen-
dent. In text dependent mode the user is required to say a specific word or phrase
while in text independent the user can say anything. The speaker recognition system
analyzes the frequency content of the speech and compares characteristics such as
the quality, duration, intensity dynamics, and pitch of the signal.

10.5.3 EEG

EEG signals are brain activities (see Fig. 10.8 Sample EEG Signal) recorded from
electrodes positioned on the scalp. The EEG signals can be used in biometrics due
to the advances in its hardware devices; there are some EEG signal capturing
devices that are equal in size to a mobile phone or computer headset, data can be
acquired continuously. After capturing, the data is filtered to remove artefacts. After
the EEG signals have been cleaned, they can be analyzed using a variety of signal
processing approaches. Lastly, a wide range of machine learning algorithms have
been applied to perform the classification process.

Fig. 10.7 Flight and dwell time [25]
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10.6 Multimodal Biometrics

Multimodal biometric systems are those which utilize, or have the capability of
utilizing, more than one physiological or behavioral characteristic for enrollment,
verification, or identification. Multimodal biometric systems combine multiple
sources of biometric features. The integration of features is known as fusion. There
are various levels of fusion namely raw data fusion, feature level fusion and score
level fusion [11] (see Fig. 10.9 Fusion Levels).

Sensor level fusion refers to the consolidation of raw data obtained using multiple
compatible sensors or multiple snapshots of a biometric using a single sensor [12].

In feature level fusion, feature sets are calculated from different biometric feature
sources and combined to a new feature set. The combination process can be
homogeneous or non- homogeneous [13]. Dimensionality reduction scheme like
feature selection/transformation may be applied to obtain a minimal feature set.

In Decision level fusion, different biometric matchers provide scores indicating
the degree of similarity between the input and stored signatures for a specific user.
The combined result is used as the total score of the fusion. The combination can be
done by various means such as weighted decision, and, or,.. etc. From theoretical

Fig. 10.8 Sample EEG signal
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point of view the performance obtained by combining match scores from any
number of matchers is guaranteed (on average) to be no worse than the best of the
individual biometric matcher [14]. The key is to identify the appropriate method
which combines the matching scores reliably and maximize the matching
performance.

System Designers should take into consideration the following points while
designing a multi modal system:

• Cost versus performance
• Throughput
• Verification versus Identification mode
• Choice and number of biometrics
• Level of fusion
• Fusion methodology
• Assigning weights to biometrics
• Multimodal databases

10.7 Applications

Depending on the application type, specific biometrics features will be best suited to
be used. Below are some of the applications of using biometrics [10]:

Fig. 10.9 Fusion levels
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• Access Control
• Criminals Detection
• Monitor human behavior
• Victim Detection
• Marketing (methods of biometrics are used to identify owners of loyal cards)
• Attendance systems at work, schools, etc.
• Voting system (during the functionality of voting system identification/

authentication of people, that take part in voting is demanded)
• Biometric identifiers are used for registration if immigrants and foreign workers.

10.8 Machine Learning Techniques for Biometrics

In this section we will explore several of the machine learning techniques used in
biometrics and specially using EEG signals as a biometric feature.

10.8.1 Fisher’s Discriminant Analysis

Riera et al. [15] have developed a multimodal authentication algorithm based on
EEG and ECG signals. They conducted the test on 40 healthy subjects. Each subject
was required to sit in a comfortable armchair, to relax, be quiet and close their eyes.
Then 3 min takes are recorded to 32 subjects and four “3 min” takes are recorded to
the 8 subjects. The 32 subject set are used as reference subject in the classification
stage and the 8 subjects are the ones that are enrolled into the systems. Then several
“1 min” takes are recorded afterwards to these enrolled subjects, in order to use
them as authentication tests. Two electrodes were used to capture the EEG signals
and 2 for the ECG. The data was divided to 4 s epochs.

The data acquisition module is the software that controls the ENOBIO [16]
sensor in order to capture the raw data. Four channels are recorded: two EEG
channels placed in the forehead, one ECG channel placed in the left wrist and one
electrode placed in the right earlobe for referencing the data. At this point the data
are separate in EEG data and ECG data and sent to two parallel but different
biometric modules for EEG and ECG (Fig. 10.10).

Figure shows Riera et al. system flowchart steps after the raw EEG and ECG
data is collected from the sensors. Each biometric feature is processed separately by
a set of modules each feature has the following steps:

1. Signals are preprocessed
2. Features Extraction
3. Signature created and stored in DB
4. When the user is authenticated the same steps are repeated but the new signature

is compared to the signature in DB.
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In Reira algorithm they worked with four different DFs:

• Linear: Fits a multivariate normal density to each group, with a pooled estimate
of the covariance.

• Diagonal Linear: Same as “linear,” except that the covariance matrices are
assumed to be diagonal.

• Quadratic: Fits a multivariate normal density with covariance estimates stratified
by group.

• Diagonal Quadratic: Same as “quadratic,” except that the covariance matrices
are assumed to be diagonal.

Two types of features were extracted from the 4 s epochs, one channel features
(Auto regression, Fourier Transform) and Synchronicity features. Three features
were selected from the Synchronicity features namely; Mutual information (mea-
sures the dependency degree between two random variables given in bits, when
logarithms of base 2 are used in its computation), Coherence (quantizes the cor-
relation between two time series at different frequencies), Correlation measures
(measure of the similarity of two signals,). The classifier used in the authentication

Fig. 10.10 System flowchart [15]
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process is the classical Fisher’s Discriminant Analysis, Four different discriminant
functions were used (Linear, Diagonal Linear, quadratic, diagonal quadratic). The
five best classifiers from the original 28 classifiers generated for each subject are
selected during the enrollment and authentication of each subject.

The False Acceptance Rate (FAR) is computed taking into account both the
intruder and the impostor cases (21.8 %). The True Acceptance Rate (TAR) only
takes into account the legal cases. (71.9 %).

After combining the 2 signals (EEG and ECG) the TAR is 97.9 % and the FAR
is 0.82 %.

10.8.2 Linear Discriminant Classifier

Palaniappan [17] proposed a multiple mental thought identification modal. The
experiment was conducted on four subjects. The subjects were seated in an
Industrial Acoustics Company sound controlled booth with dim lighting and
noise-less fan (for ventilation). An Electro-Cap elastic electrode cap was used to
record EEG signals from positions C3, C4, P3, P4, O1 and O2 defined by the 10–20
system of electrode placement. Each subject was requested to do up to five mental
tasks. Signals were recorded for 10 s during each task and each task was repeated
10 times. Each recording was segmented into 20 segments, each 0.5 s length. The
five mental tasks performed by the subjects are:

• Baseline task. The subjects were asked to relax and think of nothing in particular.
This task was used as a control and as a baseline measure of the EEG signals.

• Geometric Figure rotation task. The subjects were given 30 s to study a
particular three-dimensional block object, after which the drawing was removed
and the subjects were asked to visualize the object being rotated about an axis.
The EEG signals were recorded during the mental rotation period.

• Math task. The subjects were given nontrivial multiplication problems, such as
79 times 56 and were asked to solve them without vocalizing or making any
other physical movements. The tasks were non-repeating and designed so that
an immediate answer was not apparent. The subjects verified at the end of the
task whether or not he/she arrived at the solution and no subject completed the
task before the end of the 10 s recording session.

• Mental letter composing task. The subjects were asked to mentally compose a
letter to a friend or a relative without vocalizing. Since the task was repeated for
several times the subjects were told to continue with the letter from where they
left off.

• Visual counting task. The subjects were asked to imagine a blackboard and to
visualize numbers being written on the board sequentially, with the previous
number being erased before the next number was written. The subjects were
instructed not to verbalize the numbers but to visualize them. They were also told
to resume counting from the previous task rather than starting over each time.
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The captured data features were extracted using Auto Regression (AR) modeling.
Six AR coefficients were obtained for each channel, giving a total of 36 feature
vector for each EEG segment for a mental thought. When two mental thoughts were
used, the size of the feature vector was 72 and so forth when more mental thoughts
were used.

Linear Discriminant Classifier was used to classify the EEG feature vectors,
LDC is a linear classification method that is computationally attractive as compared
to other classifiers like artificial neural network. Various results were presented
showing the error rate using 1, 2, …, 5 five combination of the mental tasks. Using
1 task an average of error rate is 2.6 %, while using the 5 mental tasks, the error rate
was 0.1 %.

10.8.3 LVQ Neural Net

Cempírek and Šťastný [18], proposed neural network classification technique for
user identification. The algorithm was conducted on a datasets of 8 subjects. The
subject sat is a dim and silent room, eyes kept closed. Then the EEG recordings
were segmented (segment length 180 s, step 22.5 s); the single segments were
centered. Linear magnitude spectra of the single segments were computed by Fast
Fourier transform (Hamming window was used).

Learning Vector Quantisation (LVQ) is a supervised version of vector quanti-
zation, similar to Self organizing Maps (SOM) (see [13, 19] for a comprehensive
overview). It can be applied to pattern recognition, multi-class classification and
data compression tasks, e.g. speech recognition, image processing or customer
classification. As supervised method, LVQ uses known target output classifications
for each input pattern of the form.

LVQ algorithms do not approximate density functions of class samples like
Vector Quantization or Probabilistic Neural Networks do, but directly define class
boundaries based on prototypes, a nearest-neighbor rule and a winner-takes-it-all
paradigm. The main idea is to cover the input space of samples with ‘codebook
vectors’ (CVs), each representing a region labelled with a class. A CV can be seen
as a prototype of a class member, localized in the center of a class or decision
region in the input space. As a result, the space is partitioned by hyper planes
perpendicular to the linking line of two CVs. A class can be represented by an
arbitrarily number of CVs, but one CV represents one class only [19].

The LVQ neural network is a self–organizing neural network, with added second
layer for vectors classification intended to be used with unlabeled training data. The
first network layer detects subclasses. The second layer combines these subclasses
into one single class. Actually, the first layer computes distance between input and
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stored patterns; the winning neuron is the one with minimum distance. Hence LVQ
network is a kind of nearest-neighbor classifier; it does not make clusters, but the
algorithm search through the weights of connections between input layer neurons
and output map neurons. These represent classes [18].

10.8.4 Neural Networks

Sun [20] has developed a user identification system based on Neural Networks. The
system was tested on 9 subjects. The task was to imagine moving his or her left or
right index finger in response to a highly predictable visual cue. EEG signals were
recorded with 59 electrodes mounted according to the international 10-10 system.
Only Signals from 15 electrodes were used in the system. Totally 180 trials were
recorded for each subject. Ninety trials with half labeled left and the other half right
were used for training, and the other 90 trials were for testing. Each trial lasted 6 s
with two important cues. The preparation cue appeared at 3.75 s indicating which
hand movement should be imagined, and the execution cue appeared at 5.0 s indi-
cating it was time to carry out the assigned response. The common spatial patterns
(CSP) is employed to carry out energy feature extraction. As a result, each trial is
modeled by an 8-dimensional vector (4 sources from each kind of mental task is
assumed in this paper). Based on these features, neural network classifiers can be
learned. Neural networks of one hidden layer and one output layer for experiments.
The results showed that imagining left index finger movements is more appropriate
for personal identification. Left index movement gave a classification accuracy of
95.6 % and right index accuracy gave 94.81 %. To summarize the above mentioned
techniques’, Table 10.2 presents a summary of these techniques.

Table 10.2 A summary of selected machine learning techniques

Technique Channels Subjects Task TAR FAR

Fishier
discriminant
analyses

2 40 Rest 79.2 % 21.8 % [15]

Linear
discriminant
analysis

6 4 Rest, math,
letter, count,
rotation

– 0.1 % avg
combination
using 5 features

[17]

LVQ – 8 Rest 80 % [18]

Neural
networks

15 9 Left/right hand
movement

95.6 %
(left)
94.81 %
(right)

[20]

10 Machine Learning Techniques for Intelligent Access Control 347



T
ab

le
10

.3
C
om

pa
ri
so
n
of

va
ri
ou

s
bi
om

et
ri
c
[2
1]

(H
=
H
ig
h,

M
=
M
ed
iu
m
,
L
=
lo
w
)

B
io
m
et
ri
c

U
ni
ve
rs
al
ity

D
is
tin

ct
io
n

Pe
rm

an
en
ce

C
ol
le
ct
ab
ili
ty

Pe
rf
or
m
an
ce

A
cc
ep
ta
bi
lit
y

C
ir
cu
m
ve
nt
io
n

Fa
ce

H
L

M
H

L
H

H

Fi
ng

er
pr
in
t

M
H

H
M

H
M

M

H
an
d
ge
om

et
ry

M
M

M
H

M
M

M

Ir
is

H
H

H
M

H
L

L

K
ey
st
ro
ke

L
L

L
M

L
M

M

Si
gn

at
ur
e

L
L

L
H

L
H

H

V
oi
ce

M
L

L
M

L
H

H

E
E
G

H
H

M
M

M
M

H

348 W.H. Khalifa et al.



10.9 Conclusion

Table 10.3 shows a comparison of various biometric technologies. High, Medium,
and Low are Denoted by H, M, and L, Respectively.

A brief comparison of some of the biometric identifiers based on seven factors is
provided in Table 10.3. Universality (do all people have it?), distinctiveness (can
people be distinguished based on an identifier?), permanence (how permanent is the
identifier?), and collectability (how well can the identifier be captured and quan-
tified?) are properties of biometric identifiers. Performance (speed and accuracy),
acceptability (willingness of people to use), and circumvention (foolproof) are
attributes of biometric systems [21].

Table 10.4 Shows the advantages and disadvantages of each biometric. There is
no right or wrong about selecting which biometric to use to for you specific access
control. The implementer has to consider these factors while selecting the best
biometric or combination of biometrics for their application.

• Cost versus performance
• Throughput
• Verification versus Identification mode
• Choice and number of biometrics
• Level of fusion
• Fusion methodology
• Assigning weights to biometrics
• Multimodal databases

In this chapter we explained the different types of popular biometrics that are
used for access control. We have demonstrated the methodology for developing
machine learning techniques for intelligent access control. Moreover, we showed
the challenges that arise during the development of each step of the methodology.
Moreover we explored various famous biometric techniques that are widely used
and the advantages and disadvantages of each technique. We also presented the
benefits and challenges for developing a multimodal biometric system. We also
demonstrated some of the machine learning techniques used in biometrics. Finally
we present a comparison for the biometric features covered in the chapter as
depicted in Table 10.3.
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Table 10.4 Advantages and disadvantages of biometrics [10]

Biometric Advantages Disadvantages

Finger
print

• Subjects have multiple fingers
• Easy to use
• Some systems require little space
• Has proven effective in many large
scale systems over years of use

• Fingerprints are unique to each finger
of each individual and the ridge
arrangement remains permanent
during one’s lifetime

• Privacy concerns
• Health or societal concerns with
touching a sensor used by countless
individuals

• An individual’s age and occupation
may cause some sensors difficulty in
capturing a complete and accurate

• No aliveness detection
• If a user fingerprint is copied and
discovered by the admin, the user and
the forger both will be denied access
to the system

Face • No contact required
• Commonly available sensors
(cameras)

• Easy for humans to verify results

• Face can be obstructed by hair,
glasses, hats, scarves, etc.

• Sensitive to changes in lighting,
expression, and pose

• Faces change over time
• Liveness detection, system can be
fooled with pictures or 3d models.

Iris • No contact required
• Protected internal organ; less prone to
injury

• Believed to be highly stable over
lifetime

• Difficult to capture for some
individuals

• Easily obscured by eyelashes, eyelids,
lens and reflections from the cornea

• Acquisition of an iris image requires
more training and attentiveness than
most biometrics

• Cannot be verified by a human
• Can be fooled by pictures

Keystroke • Non-intrusive and wide user
acceptance

• Natural authentication mechanism for
computer and network security

• Continuous verification (monitoring)
is possible

• Minimal training
• No additional hardware

• High false reject rate
• Sensitive to changes in keyboard,
user’s physical condition (fatigue or
illness) and other operational
conditions

• Narrow range of applications
• Need to account for problems like
typing errors

Voice • Public acceptance
• No contact required
• Commonly available sensors
(telephones, microphones)

• Difficult to control sensor and channel
variances that significantly impact
capabilities

• Not sufficiently distinctive for
identification over large databases

• Easily by passed by recorders

EEG • Prone to Forgery and Theft
• Prone to Shoulder surfing
• Can be changed
• Protected from user non compliance
• Stable over time
• User must be alive

• High processing power
• Lengthy enrollment process.
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Chapter 11
Experimental Evaluation of Opportunity
to Improve the Resolution of the Acoustic
Maps

Volodymyr Kudriashov

Abstract The work is devoted to the generation of acoustic maps. The experi-
mental work considers the possibility to increase the resolution of the maps. The
work uses two-dimensional microphone array with randomly spaced elements to
generate acoustic maps of sources located in its near-field region. In this region, the
wavefront is not flat and phase of input signals depends on the direction of arrival
and the range as well. The input signals are partially distorted by indoor multipath
propagation and related interference of sources emissions. For acoustic mapping
with the improved resolution, an algorithm in the frequency domain is proposed.
The algorithm is based on the modified method of Capon. Acoustic maps of
point-like noise sources are generated. The maps are compared with the maps
generated using other standard methods including built-in equipment software. The
resolution improvement is up to 2.7 times. The obtained results are valuable in the
estimation of the direction of arrival for Noise Exposure Monitoring.

Keywords Beamforming � Modified method of Capon � Microphone array �
Acoustic noise source localization

11.1 Introduction

The acoustic camera provides a fusion of optical camera image and acoustic map. It
is aimed to locate and characterize sound sources in wide frequency range. The
acoustic maps quality is limited by the system performance. The first acoustic
camera system was described in the early 80-es when Billingsley proposed an
acoustic telescope [1]. Two years later, Billingsley and Kinns developed a full-scale
system for real-time sound source location [2].
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Noise Exposure Monitoring uses acoustic maps [3]. Angular resolution is an
essential feature of such maps [4]. The latter depends on the estimated signal
frequency and aperture dimensions of the antenna of the equipment used for the
mapping [5].

Dougherty [6] and Sarradj [7] enhanced acoustic maps performance by means of
beamforming based on eigenvectors of a cross-spectrum matrix. Existing methods
of spectral analysis, for example, the Capon method [8], allow increasing the res-
olution [9, 10]. The application of this method for estimation of signals direction of
arrival may be found in [11, 12]. Near-field localization made by applying of time
delays into incoming signals may be found in [13]. The current work is focused on
the enhancement of the quality of acoustic maps generated with the particular
two-dimensional random microphone array. The purpose of the work is reached via
applying of the proposed beamforming method in the frequency domain. The
experimental setup and details are given and the obtained results are analyzed.

11.2 Theoretical Part

Let us consider the generation of acoustic maps for one source of acoustic emission.
The emission propagates towards an array of microphones, where it is transformed
to electrical signals (Fig. 11.1). For further digital processing, these signals are
supplied into multi-channel Analog-to-Digital Converter (ADC). Accumulation of
the ADC output signals taking into account weighting factors allows generating an
acoustic map. These weighting factors may compensate both time and phase shifts
of signals affected by their propagation delays (“Phase shift 1”, Fig. 11.1) to
microphones of the array [3].

11.2.1 Signal Model Limitations

The distance between the source of the acoustic signal and the microphone array is

not less than 0:62
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L3Max

�
k

q
, where LMax, m is physical aperture size of the

microphone array; k ¼ vS=f , m is the wavelength of the highest frequency of the
acoustical signal; vS, m/s is the acoustic signal propagation velocity. The acoustic
signal is stationary. The signal frequency bandwidth Df satisfies the following
condition: the difference (LMax) of signal propagation distances to any two micro-
phones does not exceed the signal coherence length. The latest is defined by relation
vS=Df .

The intrinsic time delays of signals in acoustic camera equipment are affected
by: (a) the initial phase mismatch of channels; (b) the temporal instability of the
parameters of channels of the acoustic camera. We consider negligible the influence
of both factors. The influence of multipath signal propagation is also not taken into
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account. The intrinsic noise of acoustic camera equipment is considered as additive
noise which power is much lower than acoustic signal power.

11.2.2 Signal Model

The spectrum of the acoustic signal is limited in frequency range 0� f � fS=2:56,
where fS is sampling frequency of the ADC in Fig. 11.1. The ADC output signals
spectrums are estimated using discrete Fourier transform. Let us denote frequencies
of estimated discrete spectrum by f ið Þ Hz, when 1� i� N. The quantity of these
samples N = fST is defined by the sampling frequency fS and the emitter obser-
vation time T .

The point-like source of the acoustic signal is placed in a field of view of the
acoustic camera—in front of its microphone array. The source position is constant
during the observation time T . At time instance t, within the observation interval
0� t� T , the digitized acoustic signal s tð Þ equals to:

s tð Þ ¼
XN
i¼1

A ið Þ exp j 2 p f ið Þt½ �; ð11:1Þ

where A ið Þ denotes complex amplitude factors for discrete frequency counts f ið Þ;
j ¼ ffiffiffiffiffiffiffi�1

p
is the imaginary unit; N is the quantity of frequencies, noted above.

Let us suppose that a propagation path of the acoustic signal towards a micro-
phone of the array is rectilinear and only one. The slant ranges rSE kð Þ between the
source and microphones of the array are calculated as Euclidean distances in the
three-dimensional Cartesian coordinate system (Fig. 11.2) as follows:

rSE kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x kð Þ � xSE½ �2 þ y kð Þ � ySE½ �2 þ z kð Þ � zSE½ �2

q
;

Fig. 11.1 Signal flow blocks
diagram for an acoustic
imaging
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where k ¼ 1; . . .;K½ �, K ¼ 18 is quantity of the microphones in the array; x kð Þ,
y kð Þ, z kð Þ are these microphones coordinates; xSE , ySE , zSE denote coordinates of the
source.

Let us suppose that the speed of sound along the rSE kð Þ equals to vS m/s for all
frequencies of bandwidth Df . The speed of sound in dry (0 % humidity) air is
equal to: vS � 331:4þ 0:6 TC, where TC °C is the temperature at the time of an
experiment [14]. For temperature TC = 21 °C, the speed of sound equals to: vS �
344 m/s. The time of the acoustic signal to get to microphones of the array is
expressed as: sSE kð Þ ¼ rSE kð Þ=vS, s. The phase delay is calculated correspondingly:

u k; ið Þ ¼ 2 p f ið Þ sSE kð Þ; ð11:2Þ

where u k; ið Þ denotes the phase delay for the kth microphone. The frequencies
values f ið Þ depend on ADC sampling frequency fS and the observation time T .

Acquired signals contain electronic noise from microphones and input modules
of the acoustic camera [15]. The self-noise of individual channels is added to
acquired signals. The noise is expressed as:

u k; tð Þ ¼
XN
i¼1

b k; ið Þ exp j 2 p f ið Þ t½ �; ð11:3Þ

where b k; ið Þ are random amplitude factors for f ið Þ in K channels of the acoustic
camera.

Fig. 11.2 Acoustic imaging geometry
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At time instance t, the ADC output signal is a mixture of the self-noise and
acoustic signal with respect to its delay. The signal is expressed as:

s k; tð Þ ¼ u k; tð Þþ
XN
i¼1

a ið Þ exp j 2 p f ið Þ t½ � exp j u k; ið Þ½ �; ð11:4Þ

where s t; kð Þ is a complex amplitude of the acoustic signal on the output of the
channel k at time instance t; a ið Þ denotes complex amplitude factors of the discrete
spectrum of the signal. Thus, A ið Þ were enclosed as an additive mix of self-noise of
the acoustic camera with delayed signal of the source of emission. Let us denote the
first channel as the reference channel. The phase differences of received signals and
reference channel signal depend on differences of slant ranges: rSE kð Þ � rSE 1ð Þ
(Fig. 11.2).

The phase delays (11.2) can be compensated using corresponding delay units
(phase shifters) on the outputs of K channels. The compensation enables summation
of the channels signals in phase [3]. A microphone array scanning along angular
coordinate can be performed in sequential or/and parallel handling of the delays.
Each pixel of the acoustic map corresponds to a result of the summation.

Digital signal processing enables to generate acoustic maps in discrete nodes of
angular coordinate grids. The grid is placed in the focal plane of the microphone
array (in the azimuth-elevation plane). The range of the grid is a distance between
the acoustic signal source and the microphone array. The angular dimensions of the
grid are limited by the microphone array field of view.

11.2.3 Acoustic Mapping Methods

The focalization of the array is considered in three-dimensional Cartesian coordi-
nate system using time delays sSE kð Þ. The focalization in time domain includes
introducing the time delays to output signals of channels. ADC digitizes those
signals with sampling interval 1=fS, which acts as the time delay increment. For
instance, if the sound source emits monochromatic input signal with frequency f ¼
10 kHz digitized by ADC with sampling frequency fS ¼ 65.536 kHz. One period of
the signal will have 1=fð Þ= 1=fSð Þ � 6:5 ADC counts. The latest corresponds to the
time delay increment of 360�=6:5 � 55�. The big increment value limits available
angular positions of the microphone array beam, affects its sidelobe level and its
pattern performance. The focalization in frequency domain enables to alleviate such
limitation.

A channel output signal obtained during the observation time is denoted as a
column with N samples (11.4). We obtain spectrum realization for this column by
its Fourier transform. We denote by matrix S all the spectrums realizations
obtained; the matrix S consists of N rows and K columns (N � K). For each of N
rows, we calculate the K � K matrix, using the product of a row conjugate
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transposed and the row. We obtain the realization of the cross-spectrum matrix as a
result of the sum of all N matrices K � K. We denote by matrix F Dfð Þ the real-
ization of cross-spectrum matrix obtained for defined bandwidth Df . The acoustic
camera enables operation in wide range of frequencies f ið Þ from 10 to 25.6k Hz.
The acoustic imaging approach requires defining center frequency and bandwidth
around it. The work considers narrowband signals those bandwidth is not more than
10 % of the center frequency.

The time delays sSE kð Þ are calculated for the defined range of the acoustic map
grid. The phase delays uSE kð Þ ¼ 2 p fC sSE kð Þ are calculated for the defined: (a)
acoustic signal center frequency fC; (b) the grid nodes coordinates. The microphone
array spatial (angular) scan delays are regarded as rows XSE fCð Þ with K elements
equal to: exp �j uSE kð Þ½ �. The beam scanning is realized via adjustment of delays
sSE kð Þ of the row XSE fCð Þ with respect to the defined range of the grid and beam
angular position.

The delay-and-sum (DAS) is the mostly used beamforming method based on the
sum of signals with respect to considered delays [15]. The matrix form represen-
tation of the method can be figured out in the frequency domain. Taking into
account all considerations mention above, the output signal power PSE Dfð Þ, in the
particular node of acoustic map, is equal to:

PSE Dfð Þ ¼ XSE fCð ÞF Dfð ÞXH
SE fCð Þ; ð11:5Þ

where superscript letter H denotes conjugate transpose.
The internal noises of microphones, preamplifiers, and the ADC dither are

considered as the non-correlated additive noise of K channels of acoustic camera
equipment. The noise main contribution is concentrated in the main diagonal ele-
ments of the cross-spectrum matrix [15]. The matrix diagonal elements removal
increases the signal-to-noise ratio of generated acoustic maps, suppresses sidelobe
level up to 0.6 dB [15]. We denote cross-spectrum matrix with nulled elements of
main diagonal by F0 Dfð Þ. Thus, the power of the output signal QSE Dfð Þ, in the
particular node of acoustic map, becomes:

QSE Dfð Þ ¼ XSE fCð ÞF0 Dfð ÞXH
SE fCð Þ: ð11:6Þ

A method for high-resolution spectrum analysis was proposed in 1969 by Capon
[8]. Later the Capon method was described for estimation of the direction of arrival
of a signal [11]. The method does not need any prior information about the number
of sources in the field of view [11]. The method does not require prior knowledge
about signal amplitude distribution. The method is limited by requirements to
inversion of matrices and to signal-to-noise ratio more than 10 dB. The method
applicability is extended by: (a) addition unit matrix of size K � K to the matrix
under consideration; (b) modern methods of matrix pseudo-inverse. Signal pro-
cessing can be done in the frequency domain. We use the modified pseudo inverse
cross-spectrum matrix F�1

M Dfð Þ, which calculation includes the unit matrix
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addition. The output signal power RSE Dfð Þ in a particular node of acoustic map is
equal to:

RSE Dfð Þ ¼ 1
XSE fCð ÞF�1

M Dfð ÞXH
SE fCð Þ : ð11:7Þ

11.3 The Experimental Acoustic Camera Equipment

The acoustic camera is suitable for frequency, time and spatial analysis. The
acoustic camera utilizes a fusion of optical image and acoustic map. Brüel&Kjaer
(B&K) Sound and Vibration Measurement A/S manufactured both camera software
and hardware. The camera equipment includes the microphone array with the
optical camera; 6- and 12-channel input modules and the laptop with software for
acoustic signals analysis (Fig. 11.3). The camera microphone array is B&K
type WA-1558-W-021 [16]. It is two-dimensional randomly distributed micro-
phone wheel array with diameter ≈0.33 m.

The quantity of the microphones is K ¼ 18 (Fig. 11.4). The input modules are
B&K type 3053-B-120 and type 3050-B-060. The signals used for acoustic map
generation (11.5–11.7) are recorded using Time Data Recorder option of B&K
Pulse LabShop software. The input modules dynamic range is up to 160 dB; the
modules provide high phase stability and interchannel isolation. The above factors
allow analysis of weak acoustic emissions.

The acoustic camera microphones B&K type 4958 have built-in preamplifiers
and contain transducer electronic data sheets. These datasheets are aimed to transfer

Fig. 11.3 Block diagram of the acoustic camera
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each microphone features to input modules. The microphones dimensions are:
34 mm × 7 mm. Their sensitivity is 11.2 mV/Pa. Their operation temperatures
range is from −10 to +55 °C. Their dynamic range is from 28 to 140 dB.

The quality of acoustic signal amplitude estimation is provided by the acoustic
camera amplitude calibration. The pistonphone calibrator B&K type 4228 corre-
sponds to requirements of IEC 942 (1988) Class 1L or Class 0L (with external
barometer) and ANSI S1.40-1984. The calibrator has the high stability of calibra-
tion signal level and frequency. The calibration signal accuracy is provided in a
wide range of operation temperature, humidity, and pressure. The calibrator is
battery-operated. The frequency of the signal of the pistonphone calibrator is
251.2 Hz. The calibrator adaptor DP-0775 is suitable for sequential calibration of
the acoustic camera channels.

The input module with extended dynamic range is 6-channel. The second input
module is 12-channel. Its resolution is 24 bit. Its interchannel leakage is not worse
than −80 dB according to its datasheet. The input modules dynamic range depends
on sampling frequency and a bandwidth. These modules support transducer elec-
tronic data sheet in order to provide the B&K Response Equalization technique.
The modules are mounted in module frame B&K type 3660-C-000 for 5 modules.
The battery module B&K type 2831 is mounted in the frame as well. The micro-
phones and input modules features are given in Table 11.1.

The acoustic camera input modules ADCs sampling frequency is 65.536 kHz.
The highest frequency of the camera channels is 25.6 kHz. The sampling ratio
equals to 2.56. The input modules output signals are synchronized according to
IEEE 1588 Precision Time Protocol [17].

The acoustic camera software includes: Acoustic Test Consultant type 7761;
Beamforming type 8608; FFT Analysis type 7770; Time Data Recorder

Fig. 11.4 The layout of
microphones in the array
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Type 7708. The software provides generation of acoustic maps in defined fre-
quency range, time and frequency representation of signals, their recording, etc.

The signals can be stored for further post-processing with third-party software
using multi-buffer from Time Data Recorder option of B&K Pulse LabShop soft-
ware. We use observation time equal to 0.25 s for each multi-buffer. The signals are
stored to the hard disk drive with time stamps and the acoustic camera settings. The
post-processing is done with developed scripts using MATLAB computing
environment.

11.4 Experimental Results

The experiments on the estimation of angular coordinates of several point-like
sources of acoustic signals were held in an office room. The room is not optimized
in terms of multipath propagation of acoustic signals inside it. The above approach
enables to compensate the narrowband signals delays including such from
near-field region of the considered two-dimensional microphone array. Two sources
of acoustic signals are placed on the range of 0.78 m which is comparable to the
microphone array dimensions. The picture of the experimental setup is given on the
Fig. 11.5.

The amplitude calibration is performed after the Acoustic Camera switching-on.
The amplitude calibration uses the calibration option of B&K Pulse LabShop
software and the pistonphone calibrator described above.

The source of the acoustic signal is placed on array boresight direction (PC
speaker marked as “Source 1” in Fig. 11.5). The source emits acoustic noise signal.
The sources of acoustic signals are 2 × 2 W stereo speakers; their switching-on
increased the Acoustic Camera output signal (in the frequency range from 10 to
25.6 kHz) from 17 to 20 dB.

The experimental estimation of the two-dimensional microphone array pattern is
done for several center frequencies. The signal bandwidth is 10 % of its center
frequency. The chosen values of center frequencies belong to the frequency range
from 0.1 to 18 kHz. The observation time is not less than 0.25 s. The acoustic
signal source (“Source 1” in Fig. 11.5) position is constant during the observation
time.

Table 11.1 Frequency characteristics for modules of the Acoustic Camera

Module

Name Type Frequency range, kHz Features

Microphones 4958 0.01–20 –

Input modules 3053-B-120 0–25.6 1. Sampling rate: 65.5 k samples/s
2. Number of input channels: 12

3050-B-060 0–51.2 1. Sampling rate: 131 k samples/s
2. Number of input channels: 6
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The experiments are held for the microphone array field of view ±90° in azimuth
and in elevation. The microphone array pattern (AP) parameters under investigation
are: (a) beamwidth of the AP; (b) the AP sidelobes levels (SLL); (c) the AP highest
null level; (d) angular position of highest sidelobe of the AP. The highest null and
the highest SLL are considered as such with the highest values. All further esti-
mations are held using normalized AP.

11.4.1 Microphone Array Patterns Generated
with the Delay-and-Sum Beamforming Method

The experimental estimation of the two-dimensional microphone array pattern is
done using DAS beamforming (11.5). The AP beamwidth is measured as the
normalized AP half-power level (−3 dB level) regarding its peak. We denote the
beamwidth as b� and e� in azimuth and in elevation, correspondingly, where
superscript symbol � denotes that the value is given in degrees.

For center frequencies lower than 500 Hz the estimated AP lowest level in the
field of view do not cross the −3 dB level thus, the AP beamwidth can not be
estimated. For center frequency 500 Hz the b� � 141°; the elevation slice lowest
level is −2.7 dB.

Fig. 11.5 Picture of imaging scenario: two point-like sources of the acoustic signal in front of the
acoustic camera
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Estimated microphone array patterns parameters are given in Table 11.2 for
center frequencies from 1 to 18 kHz. The angular position of the highest sidelobe of
the AP varies from 85° to 13°. The highest null level of the AP varies from −2.8 to
−18 dB. The highest null level estimated on center frequency 3 kHz equals to
−11 dB in azimuth and −12 dB in elevation.

The variation of the listed values along repeated measurements is inconsiderable.
The repeatability depends on the experiment conditions and on parameter stability
of B&K equipment.

11.4.2 Microphone Array Patterns Generated
with the Christensen Beamforming Method

The sidelobes of the array pattern determine the level of penetration of unwanted
acoustic signals from corresponding angular directions. It is known that the removal
of main diagonal of the cross-spectrum matrix can diminish the sidelobes level [3,
15]. The considered above signals recordings were processed with Christensen
beamforming method (11.6). The estimated AP parameters are given in Table 11.3.

For center frequencies lower than 500 Hz the AP beamwidth is about 10° nar-
rower than estimated one by DAS beamforming method. For center frequency
500 Hz the b� � 128° and the e� � 152°. Thus, Christensen beamforming method
enabled to estimate e� for center frequency 500 Hz unlike the DAS beamforming
method.

For center frequency 1 kHz, the Christensen beamforming enabled to narrow the
beamwidth b� in 4.9° and e� in 1.5° comparable to DAS beamforming
(Table 11.2). Christensen paper is focused on sidelobe level suppression, not on the
main lobe narrowing [3, 15].

Let us compare the level of unwanted penetration via sidelobes in AP, estimated
with DAS and Christensen beamforming methods (Tables 11.2, 11.3). The first
sidelobe is considered. For center frequency 1 kHz, the sidelobe is suppressed on
3.1 and 3.7 dB compared to such levels estimated with DAS beamforming.

Table 11.2 The parameters of the microphone array pattern estimated indoor using
delay-and-sum beamforming method

fC, kHz β° ε° Sidelobes levels, dB

No. 1 No. 2 No. 3 No. 4 No. 5

Az. El. Az. El. Az. El. Az. El. Az. El.

1 61.5 59.3 −7.8 −8.2 – – – – – – – –

3 17.8 20.5 −8.4 −11 −11.5 −9.4 – – – – – –

10 7 7 −11.5 −16 −8.5 −16 −5.3 −7.8 −11.4 −8.7 −8.2 −9.8

18 3.4 3.4 −12.2 −15.8 −11.6 −12.1 −6.6 −9.2 −6.6 −8 −9.2 −10
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Such comparison for center frequency 3 kHz shows suppression from 1 to 2 dB
for the second sidelobe in elevation and the first sidelobe in azimuth, correspond-
ingly. The second sidelobe in azimuth is 0.8 dB higher and the first sidelobe in
elevation is 0.5 dB higher. For center frequency 10 kHz, the Christensen beam-
forming enables to suppress first and second sidelobes in azimuth from 0.6 to
2.9 dB but makes such sidelobes in elevation higher from 4.7 to 4.8 dB. For center
frequency 18 kHz, the first and the second sidelobes are higher from 0.2 to 3.7 dB.
The latest may be explained with indoor experimental conditions.

The difference of the AP beamwidth estimated with DAS and Christensen
beamforming methods is given in Table 11.4. The beamwidth values depend on the
wavelength (corresponding to center frequency) and the microphone array lengths L

in corresponding angular directions as: b� � 57:3k
.
Lb and as e� � 57:3k

�
Le. Let

us calculate the values b� and e� for above-shown parameters: speed of sound
vS � 344 m/s; center frequency fC ¼ 10 kHz; the microphone array lengths
Lb � 0:32 m and Le � 0:33 m. The calculated values are equal approximately to
6.1° and 5.9° in azimuth and elevation. The values comparison to those from
Tables 11.2, 11.3 and 11.4 shows that in the indoor experiment, the DAS beam-
forming delivers beamwidth 1° wider than calculated one and Christensen beam-
forming narrows it less than 1°.

11.4.3 Microphone Array Patterns Generated
with the Modified Capon-Based Beamforming
Method

The considered above recordings of signals were processed with modified
Capon-based beamforming method (11.7). For center frequencies from 1, 3, 10 and
18 kHz, the estimated microphone array patterns parameters are given in
Table 11.5.

For the lowest center frequency b� � 59° and e� � 69°. The time-bandwidth
product of the narrowband noise signal with this center frequency is about 4 dB
[18]. The equipment instability in the experiment rejects to obtain such result in
long-time observations. Other methods did not enable to estimate beamwidth on the
center frequency 100 Hz in the defined above field of view.

Table 11.4 Beamwidth difference of the microphone array patterns estimated with delay-and-sum
beamforming method and Christensen beamforming method for center frequency 10 kHz

Parameter DAS Christensen Difference

β° 7 5.5 2.5

ε° 7 5 2
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For the center frequency 500 Hz, the estimated beamwidth equals to b� � 50°
and e� � 59°. The latest values are 2.56 times narrower comparable to such esti-
mated using Christensen method; the AP generated with DAS beamforming method
does not cross the −3 dB level in the ±90° field of view, as it was noted above. The
obtained sidelobes level and highest null level are equal to approximately −7.4 dB.

For center frequency 10 kHz, the peak sidelobe level is approximately −6.8 dB.
Its angular position corresponds to the estimated with DAS and Christensen
beamforming methods. The position in azimuth is approximately 30°.

Let us compare the unwanted penetration level estimated with the modified
Capon-based and DAS beamforming methods. The first and the second sidelobes
are under consideration. For center frequencies 1, 3, and 10 kHz, the Capon
sidelobe level is higher. For center frequency 1 kHz it is higher from 2.5 to 4.4 dB;
for center frequency 3 kHz it is higher from 3.3 to 7.4 dB; for center frequency
10 kHz it is higher from 1.1 to 9.2 dB, the latest can be affected by the existing
multipath propagation of the acoustic signal inside the office room. The difference
in sidelobe levels those obtained using Capon-based and DAS beamforming
methods varies from 5.8 to −0.1 dB, for center frequency 18 kHz. These level
lower values were obtained in the third sidelobe angular position for center fre-
quencies 10 and 18 kHz. The improvement is from 1.5 to 3.4 dB.

Let us compare the unwanted penetration level estimated with the modified
Capon-based and Christensen beamforming methods. The first and the second
sidelobes are again under consideration. For center frequencies from 1 to 10 kHz,
the Capon level is higher. For center frequency 1 kHz it is higher from 5.6 to
8.1 dB; for center frequency 3 kHz it is higher from 5.3 to 6.6 dB; for center
frequency 10 kHz it is higher from 3.8 to 5.3 dB. For center frequency 18 kHz, the
level can be 3.5 dB lower as well as 2.1 dB higher. The 3.5 dB improvement is
obtained in the second sidelobe in azimuth.

The difference of the AP beamwidth estimated with the modified Capon-based
beamforming method to such estimated with DAS and Christensen beamforming
methods is given in Table 11.6. In the table, the ratio between beamwidth values
those estimated with DAS and modified Capon-based beamforming methods is
given in column k1. The k2 column shows the ratio between beamwidth values
estimated with Christensen and modified Capon-based beamforming methods. The
insignificant mainlobe width narrowing for center frequency 3 kHz (k2 in
Table 11.6) is connected to indoor conditions of the experiment.

Table 11.5 The parameters
of the microphone array
pattern estimated indoor using
modified Capon-based
beamforming method

fC, kHz β° ε° Sidelobes levels, dB

From To

1 48.3 49.3 −5.3 −3.8

3 16.2 18.8 −5.1 −4.1

10 2.8 2.8 −7.4 −6.8

18 1.25 1.3 −11.5 −10
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In the experimental study usage of the modified Capon-based beamforming
method (11.7) instead the DAS beamforming method (11.5) enabled to narrow the
mainlobe width from 1.17 to 1.27 times for center frequency 1 kHz; from 1.79 to
2.5 times for center frequency 10 kHz; from 2.46 to 2.72 times for center frequency
18 kHz (Table 11.6). The mainlobe width narrowing obtained by using modified
Capon-based beamforming method instead of the Christensen beamforming method
is from 1.17 to 2.56 times (Table 11.6). The results obtained in the center frequency
range from 100 Hz up to 500 Hz show that acoustic maps generation in the field of
view ±90° is suitable using modified Capon-based beamforming method only. The

Table 11.6 Beamwidth ratio
of such estimated with
delay-and-sum and
Christensen beamforming
methods to values estimated
using modified Capon-based
beamforming method

fC, kHz k1 k2
β° ε° β° ε°

1 1.27 1.2 1.17 1.17

3 1.09 1.09 1.02 1

10 2.5 2.5 1.96 1.79

18 2.72 2.62 2.56 2.46

Fig. 11.6 Acoustic map
generated using the modified
Capon beamforming method:
a acoustic map; b slice of the
map for elevation 1, deg.
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obtained AP beamwidth narrowing increases the microphone array angular reso-
lution that improves the generated acoustic map quality.

11.4.4 Microphone Array Responses for Two Point-like
Emitters

The acoustic maps of two point-like sources (Fig. 11.5) of acoustic noise signals
were generated. The signal bandwidth, the signal source range, and other experi-
ment parameters are similar to previous ones. The signals center frequency is
10 kHz. The sources are separated is azimuth plane approximately on 0.085 m. In
the defined range, their azimuth angular separation is arctan 0:085=0:78ð Þ � 6:2�.
The latest equals approximately to the calculated AP beamwidth and is less than the
beamwidth estimated using DAS beamforming method (Tables 11.2 and 11.3). For
further experiments the acoustic maps field of view is equal to ±35° in both azimuth
and elevation directions; the acoustic map slices field of view is equal to ±90° in

Fig. 11.7 Acoustic map
generated using the heuristic
method—squared modified
Capon-based beamforming
method: a acoustic map;
b slice of the map for
elevation 1, deg.
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both angular directions. The power of the acoustic signal sources is approximately
equal. Acoustic maps normalized are under consideration. These maps threshold is
−3 dB. That means that the map nodes with power less than 3 dB comparable to the
map peak are not shown. The normalized map slices have a dashed line for −3 dB
level. The acoustic maps are generated with DAS (11.5), Christensen (11.6) and
modified Capon-based beamforming methods (11.7).

The acoustic map generated by modified Capon-based beamforming method
(11.7) is shown in Fig. 11.6. The level of the hollow between the two peaks
approximately equals to −3 dB, so they will be resolved as two sources. The peak
sidelobe level is approximately equal to −4 dB. For the center frequency, the
grating lobes position in azimuth is approximately equal to ±30° as was noted
above.

The heuristic, modified methods, like squaring of the method (11.7) enable to
improve the obtained result. The noted peak sidelobe level can be suppressed to
about −8 dB (Fig. 11.7).

Fig. 11.8 Acoustic map
generated using the
Christensen beamforming
method: a acoustic map;
b slice of the map for
elevation 1, deg.
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The acoustic map generated by Christensen beamforming method (11.6) is
shown in Fig. 11.8. The same signal recordings were used to generate this map. The
level of the hollow between peaks in Fig. 11.8 is lower than −3 dB. These peaks
cannot be resolved. The unwanted penetration level is lower than such for modified
Capon-based beamforming method.

The acoustic map generated by DAS beamforming method (11.5) is shown in
Fig. 11.9. The sidelobes level rise to −3 dB level (dashed line). The map shows one
peak only. The map responses at some angular coordinates from 20° to 40° cor-
respond to acoustic signal multipath propagation inside the office room and to
sidelobes level of the microphone array as well.

The level of the unwanted penetration of acoustic signals is about 3 dB higher in
comparison with Christensen beamforming method (Fig. 11.8); the level is about
1 dB higher than such obtained using the modified Capon-based beamforming
method (Fig. 11.6); the level exceeds the level obtained using the heuristic method
(Fig. 11.7) by more than 3 dB.

Fig. 11.9 Acoustic map
generated using the
delay-and-sum beamforming
method: a acoustic map;
b slice of the map for
elevation 1, deg.
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11.4.5 The Acoustic Camera Responses for Two Point-like
Emitters

The acoustic camera was applied to check the results of the generation of the
acoustic images of two point-like sources of acoustic noise signals. The experiment
scenario (Fig. 11.5) was re-assembled, thus, the sources range, cross-range sepa-
ration and angular coordinates are close to described above. The acoustic camera
demo project enables to select the center frequency 10 kHz and the frequency range
from 8.913 to 11.22 kHz. We assume that an acoustic noise source (Fig. 11.5)
spectrum shape is uniform in the frequency range. The bandwidth 2.308 kHz is
wider comparable to used above bandwidth 1 kHz. The “acquisition time” is set to
2 s. The B&K software “calculation setup” was defined as “default delay and sum”.
The software indicates that it includes calculation of cross spectra, principal com-
ponent decomposition, and transducer electronic data sheet application. The gen-
erated acoustic image is given in the Fig. 11.10.

The experiment was repeated in order to record the Acoustic Camera signals for
processing with the modified Capon beamforming method using the above
approach. The frequency range for the modified Capon beamforming method is
widened. The frequency range was from 8.912 to 11.22 kHz. The observation time
0.25 s is 8 times less than used by the demo project. The acoustic map threshold
level is −5 dB (Fig. 11.11). The level of the hollow between the map peaks is

Fig. 11.10 The Acoustic Camera built-in software output: the acoustic map screenshot with
corresponding color bar, center frequency, and frequency range
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better than −3 dB (Fig. 11.11). This depth of hollow enables to resolve these two
peaks. The shift of angular coordinates of these peaks in Fig. 11.11 corresponds to
the sources shift affected by the mentioned above re-assembling of the experiment
scenario.

The experiment with observation time 0.25 s was repeated several times that
showed the resolution improvement repeatability as well as the variation of the
sidelobe level. The sidelobe level of the method (Fig. 11.11) varies from −3 to
−9.7 dB due to: acoustic noise signal level; the Acoustic Camera phase stability;
the equipment placement inside the office room.

Thus, the modified Capon-based beamforming method delivers better resolution
than “default delay and sum” regime of the B&K software. The improvement is
obtained for 8 times less acquisition time. The proposed modified Capon-based
beamforming method enables to improve the microphone array resolution.

11.5 Conclusions

This chapter discussed algorithms for acoustic map generation. An algorithm based
on modified Capon method is proposed. It has been tested using acoustic camera
software and hardware manufactured by B&K. The comparison analysis shows
improved resolution characteristic of the newly proposed method in comparison
with classical ones and built-in ones in B&K equipment. The angular resolution
improvement was obtained for center frequency in the range of 0.1–18 kHz. The
algorithm improves the resolution of acoustic maps generated in Noise Exposure
Monitoring. The ability to resolve closely placed sources has been shown
experimentally.

Fig. 11.11 Acoustic map
generated using the modified
Capon beamforming method
for comparison with the
Acoustic Camera built-in
software
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