
Chapter 9
BoB: A Framework for Organizing
Within-Iteration UX Work in Agile Development

Kati Kuusinen

Abstract Most research on Agile UCD recommends scheduling of UX work one
iteration ahead of development. There is, however, some evidence arguing for an
approach where software developers and UX specialists work in cross-functional
teams conducting design and implementation tasks during the present iteration. This
within-iteration approach can, for instance, improve communication between UX
designers and software developers and thus help the team to better concentrate
on value-adding work. This chapter discusses problems related to the iteration-
ahead approach and introduces a framework called BoB (Best of Both Worlds) that
utilizes the within-iteration approach to integrate UX work in agile development.
Furthermore, we present guidelines related to factors that support the within-
iteration approach and the cross-functional team.

Keywords User experience (UX) • Agile development • User-centered design
(UCD) • UX design work • Agile UX • Human-computer interaction (HCI)

9.1 Introduction

Good user experience (UX) can be a significant competitive advantage in the market
for a software product e.g. [1, 2]. However, good UX should not be a game of
chance, but it requires deliberate work. By the phrase UX work, we refer to activities
that aim at developing software that is usable, fulfills user needs, and provides
desired UX. Furthermore, UX design defines how users interact with, and react
to, software In many cases, designing for user interaction and UX requires special
skills that are beyond the skills that software developers are expected to possess.
Thus, a role of a UX specialist (UXS) is often needed to ensure fluent user flow and
desired UX from use of the software under development. However, current agile
development methodologies provide no guidance on how to include a UX specialist

K. Kuusinen (�)
Tampere University of Technology, Tampere, Finland
e-mail: kati.kuusinen@alumni.aalto.fi

© Springer International Publishing Switzerland 2016
G. Cockton et al. (eds.), Integrating User-Centred Design in Agile Development,
Human–Computer Interaction Series, DOI 10.1007/978-3-319-32165-3_9

205

mailto:kati.kuusinen@alumni.aalto.fi


206 K. Kuusinen

role in a project, nor do they guide organizing collaboration between UX specialists
and software developers.

UX work has traditionally relied on heavy upfront studies and careful design
before starting the implementation. Although the UCD process produces design
solutions in repeated phases of design and evaluation with users, such iterations
are not compatible with agile development iterations. Researchers and practition-
ers have been developing more compatible practices since agile methodologies
started becoming popular. According to recent systematic literature reviews [3,
4], academic research most frequently recommends utilizing the iteration-ahead
approach originated by Miller [5] and Sy [6]. Here, UX work is conducted one
to two iterations ahead of development according to the time requirement of, for
instance, user research or UX design activities. Thus, there are distinct sequential
phases for user studies, design work, and implementation. In addition, most of the
related research recommends conducting an upfront design phase before starting
implementation [3, 4]. Furthermore, most UX work is conducted by UX specialists
[3]. These practices are against the most popular agile principles (e.g, Scrum) in that
they necessitate pre-planning before each development iteration and divide design
and development activities among distinct persons.

In this chapter, we introduce BoB framework as an alternative to the commonly
recommended iteration-ahead approach for integrating UX work in agile develop-
ment. In our framework, UX design and even some lightweight user studies are
conducted together with development activities in the same iteration, i.e. it utilizes
the within-iteration approach. We have named the framework BoB. The name
comes from Best of Both worlds, as it combines such advantages from UCD and
agile development that normally are considered to be mutually exclusive, i.e. it is
expected that one cannot have both at the same time. The naming was influenced by
the television series Star Trek: The Next Generation episode with the same name
[7]. Our approach aims to tackle several challenges connected to the iteration-
ahead approach, for instance, related to communication and timing of the work.
BoB builds on the practices of conducting development work iteratively, and having
a cross-functional team including both software development and UX specialist
competences.

We have developed BoB based on empirical research on agile UX work in
nine software companies based in Finland over the years 2011–2015. Most of the
research has been conducted on organizations and projects developing enterprise
software and work-related tools. The contributing research is presented in [8–16].
Although features of BoB have been used in the studied companies, the framework
as such has not been fully used in none of them.

The rest of this chapter is structured as follows: Section 9.2 introduces the
iteration-ahead approach and describes problems related to it. Section 9.3 discusses
the concept of a cross-functional team. In Sect. 9.4, we introduce factors that we
find supporting the within-iteration approach, and in Sect. 9.5, we present the BoB
framework for organizing UX work when using a cross-functional team and the
within-iteration approach. Section 9.6 discusses the introduced framework. Finally,
Sect. 9.7 presents closing remarks for the chapter.



9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile. . . 207

9.2 Iteration-Ahead Approach

9.2.1 Overview

Sy [6] introduced the “one sprint ahead” approach (Fig. 9.1) in 2007. Since then,
it has become a popular means to integrate UX work in agile development [3].
When following the approach, development starts with iteration 0, during which
upfront planning and studies are conducted. Most research in agile UCD suggests
doing some upfront planning but also keeping it to a minimum since heavy design
upfront is against agile principles [3]. After iteration 0, development is divided to
two separate tracks, one of them concentrating on technical implementation (the
upper track in Fig. 9.1) and the other concentrating on UX work. Developers start by
building features that have less impact on the UX, such as certain backend solutions
in the first actual iteration. At the same time, UX specialists design for features that
will be implemented in iteration 2 and study for features that will be implemented
in iteration 3. Following iterations are conducted similarly; UX specialists design
one and study two iterations ahead of development. They also conduct user tests on
the functionality implemented during the preceding iteration.

The approach was developed at the Autodesk company to adopt agile practices
within UX work after utilizing waterfall development for years. The company had a
functional and proficient UX team with established practices before agile adoption
[6]. Thus, the company culture was presumably already supporting UX work. In
contrast, agile development was new to the company. Sy [6] reported that the
“one sprint ahead” approach was introduced to tackle problems, such as excessive
design inventory, outdated design, and lack of common vision in the project. Design
inventory is produced when UX is designed ahead of development, such as in
waterfall development, and ready-made design has to wait to be implemented. If,

Fig. 9.1 The “one sprint ahead” approach [6]



208 K. Kuusinen

for instance, requirements change during the waiting time, the design may become
outdated and require revision. Indeed, compared to waterfall development, the one
sprint ahead approach surely reduces the size of design inventory since only a small
amount of design is waiting to be developed at a time. Moreover, as the design is
produced just in time, it should be up to date. There are, however, some challenging
issues in the iteration-ahead approach that we will discuss next.

9.2.2 Challenges in the Iteration-Ahead Approach

Utilizing the one iteration-ahead approach has its drawbacks. As it consists of
successive design and development phases, it easily becomes a mini-waterfall where
development proceeds in small phases of studying, designing, implementing, and
testing. The iteration-ahead approach practically divides development work into two
separate tracks yielding that technical implementation is conducted on one track
and user studies, UX design, and user testing are conducted on another track that is
scheduled to serve the implementation pace.

Most of the challenges in using the iteration-ahead approach are related to the
fact that utilizing the model necessitates pre-planning before and testing after each
development iteration. For instance, in 2-week implementation cycles, developers
need to know 2–4 weeks in advance what they will be implementing whereas test
results will be available 2 weeks after the development. Thus, the iteration-ahead
approach makes the feedback loop grow from 2 to 6 or 8 weeks which makes
responding to change slower and more difficult. Although the idea of the iteration-
ahead approach is to get continuous user feedback, the actual developed artefacts,
i.e. the working software, can be tested with users only after three to four iterations
instead of one.

A major issue that agile methodologies were developed for is that in software
engineering, one cannot know in advance what the system under development
should be like and how it should be implemented [17]. Thus, a fundamental principle
of agile methodologies is to welcome late change [18, 19]. When there is a change
in the development order, UX design work cannot adapt to that if UX specialists
need, for instance, 2 weeks to study and another 2 weeks to design. The situation is
illustrated in Fig. 9.2, where in the fourth iteration, priorities on the backlog change
and developers start building functionality C instead of functionality B, which they
were originally planning to implement next. Therefore, there is no UX design for
functionality C available. In such situations, UX designers start to hurry the design
and developers need to improvise [8]. We have observed that although the UX
suffers in this case, it will rarely be improved later [8, 9].

Another drawback in the approach is that UX specialists test the implementation
in the next iteration while developers are already writing new code based on the
current implementation. In practice, this usually means that implementation cannot
be iterated based on the findings—it would be too costly and require rework [8, 9].
This is illustrated in Fig. 9.2 where functionality A fails the usability test conducted



9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile. . . 209

Product backlog

Functionality A
Functionality B
Functionality C

Study A

Design A

Develop A

Test AStudy B

Design B

Develop C

Test C

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Study C

Design C

Redesign A ?

Develop X

Fix A

Iteration 6

Fail?Fail?

Priority
change
Priority
change

Not staying ahead
of development

Not staying ahead
of development

How to
schedule
rework?

How to
schedule
rework?

Fig. 9.2 Waterfall characteristics of the iteration-ahead approach. Changes in backlog priority
order or failing a user study are problematic when utilizing the approach

in Iteration 4. If one fixes Functionality A, it will be redesigned in Iteration 5 and
re-implemented in Iteration 6. To avoid building on erroneous code, developers need
to be working with something that is not influenced by Functionality A. In practice,
this necessitates UX design inventory, or that the developers can focus on something
that does not require UX design work.

Both aforementioned issues make it more difficult to keep the UX design work
iteration ahead of development. Moreover, both scenarios are common in agile
development. For instance, in Scrum, the task list is re-prioritized before each
iteration [20], and user testing would be unnecessary if it did not reveal defects. One
of the biggest challenges in agile UX work is to synchronize the UX specialists’
and developers’ work [21]. In addition, although Sy [6] emphasized continuous
communication between developers and UX specialists, communication problems
in utilizing the approach are common [21, 22]. Communication between disciplines
is generally more challenging than within a discipline [23]. Also, within-team
communication is more efficient than communication with people outside the team
[22]. The third issue we have noticed that makes the communication more difficult is
the temporal difference between the mindsets of developers and UX designers [15].
When a UX designer asks developers to evaluate certain decisions, the designer
is planning to consider a feature the developers will be implementing in the next
iteration; however, the developers cannot really relate to it. They have not been
thinking about that particular feature yet, and thus it is hard for them to make



210 K. Kuusinen

good decisions considering it. Thus, their opinion is likely to change as they start
implementing that particular feature.

Finally, the iteration-ahead approach separates front-end design to an iteration
0, which can be longer than the actual development iterations; however, “they
occur in weeks rather than months” [6]. The idea of iteration 0 is to arrange time
for planning and user data gathering [6]. However, separating design work into
an upfront design phase often means that agile practices are used only after the
upfront design [6, 8]. Thus, iteration 0 is often conducted with non-agile project
management practices and the rest of the project is managed with agile practices.
This leads to double project management and to having an avoidable barrier between
design and development [8].

9.3 Cross-Functional Team Vs. Separate UX
and Development Teams

Ideally, an agile team should include all the expertise necessary to define, design,
build, and test running software that satisfies customer needs [19]. A team with
all the required expertise is cross-functional. However, agile UCD practices rarely
include a UX specialist in the development team [3]. Instead, the UX specialist often
works outside of the team, which easily hinders collaboration [8, 22] and thus does
not make the best use of UX expertise. Attempts to improve the situation have been
made. For example, “dual track Scrum” [24, 25] is an approach similar to the one
sprint ahead approach in that it divides product discovery and implementation into
separate tracks. In dual track Scrum, however, a cross-functional team instead of UX
specialists only is responsible for the second track. The team–typically consisting
of a product owner, UX specialist and a developer–works towards refining and
validating product backlog items for the forthcoming development iterations [26].
Unfortunately, we could identify no research articles on dual track Scrum and thus
cannot build on any formal studies of its advantages and disadvantages.

Ferreira et al. [22] found that organizational values have an impact on how it
is beneficial to integrate UX work with agile development: some organizations
value separate UX and development work, while others value togetherness. Cross-
functional team approaches for integrating UCD with agile development practices
can thus be especially beneficial for organizations valuing togetherness. Ferreira
et al. [22] studied two projects, one of them utilizing a separatist approach in which
a UX specialist directed developers’ work—basically utilizing the iteration-ahead
approach—and the other working in a cross-functional team within the iteration
sharing the power of decision. They [22] observed that communication was more
efficient in the cross-functional team and the team did not need such activities as
interpreting the design as it did in the separatist approach.

Including people from different disciplines makes communication generally
more challenging [23], but separating UX specialists into their own teams, instead



9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile. . . 211

of including them in agile development teams, may easily lead to degraded
communication. In such situations, developers tend not to take ownership of UX
issues and UX specialists become seen as outsiders. When UX specialists and
developers are separated, teams encounter problems with timing and the imple-
mentability of the design [8, 27]. Moreover, in those settings where a separate UX
team delivers the UX design, the development team needs additional coordination
activities to interpret the design, to identify mismatches between the new design
and existing code, and to determine what is already implemented [22]. Several
authors discuss the role of UX specialists compared to development teams. Isomursu
et al. [28] concluded that UX specialists’ responsibilities should be in line with the
expectations of development teams. Hodgetts [29] considered it vitally important
for UX practitioners to see themselves as part of a project team and to conduct their
tasks according to that perception. Lee [30] stated that UX specialists need to be
active participants in order to be embedded in agile teams. Finally, Kuusinen et al.
[8] found that including UX specialists in development teams was the preferred
approach amongst practitioners for integrating UX work with agile development
practices.

Thus, while much related research argues for separation of UX design and
development activities [3], it is not an approach that is suitable in all cases.
Moreover, to our knowledge, there are no earlier frameworks in related research
for organizing agile UX work in cross-functional teams working within-iteration.

9.4 Method

Our research goal was to develop a construct for integrating UX work with agile
practices in the context of enterprise software development. Our research question
was as follows: Which activities support the integration of agile development and
UX work? To support answering the main research question, we studied also
tasks and goals that comprise agile UX work, and the challenges that companies
encounter while integrating UX work with agile development.

We selected a ‘building theories from case studies’ research strategy [31] for
developing the construct (Table 9.1). It is a “research strategy that involves using
one or more cases to create theoretical constructs, propositions, and/or midrange
theory from case-based, empirical evidence” [32].

A case study is “an empirical inquiry that investigates a contemporary phe-
nomenon within its real-life context, especially when the boundaries between
phenomenon and context are not clearly evident.” Previous research guides data
collection and analysis in case studies, and both multiple sources of evidence and
research methods are utilized ([33], p. 13).

We selected the research strategy for the following reasons: Firstly, case studies
are a common research methodology when studying software engineering [34].
We had very limited ability to control or affect the studied phenomenon, and
the phenomenon was not well-known before. Secondly, our aim was at building



212 K. Kuusinen

Table 9.1 Process of building theory from case study research [31]

Step Activity

Getting started Definition of research question
Selecting cases Theoretical, not random sampling
Crafting instruments and protocols Multiple data collection methods, qualitative and

quantitative
Entering the field Overlap data collection and analysis
Analyzing data Within-case analysis, Cross-case pattern search using

divergent techniques
Shaping hypotheses Iterative tabulation of evidence, Replication, Search

evidence for “why” behind relationships
Enfolding literature Comparison with literature
Reaching closure Theoretical saturation when possible

a construct for explaining and supporting the phenomenon. Thus, we consider
Eisenhardt’s [31] strategy appropriate for our research.

9.4.1 Research Process

Our research consisted of four rounds of empirical research and of activities that
aimed to build a construct (BoB) based on the research (Fig. 9.3). First, we
conducted explorative case studies with surveys and interviews in three companies
concentrating on challenges organizations encounter in their agile UX work and
practices they find beneficial for the work [8, 9, 13]. Having developed an initial
understanding here, we next conducted a literature review. Based on the first round
research results and the literature review, we planned a second round of more
structured studies concentrating on the actual contributing tasks and roles present
in UX work in agile projects [10, 12]. We based the study on six development
projects in five companies with repeated surveys and interviews. In the third round
of research, we included the user perspective in our studies by surveying the
perceptions that development teams and users have towards the UX of the software
systems the teams have been developing [16]. The third round of research was
conducted in the same six projects as the second round. Most of the framework
was built after the third round. Finally, we conducted a fourth round of research by
interviewing practitioners to evaluate the built framework.

We started to build the BoB framework after the first round of research. We
presented the first version of the framework draft in [11]. Most of the framework
shaping was conducted after the three first rounds of research in 2014 and 2015.
Thus, shaping BoB was based on the three first rounds of research. During year
2015 we compared the framework to practices described in related research as
following guidance from Eisenhardt [31] (phase: literature contextualization (called
“enfolding literature” in [31])). Finally, in the fourth round of research, we discussed



9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile. . . 213

Shaping BoB

Study 2
Tasks and roles

Study 3
Users’ and team

members’ UX
assessments

Literature
contextualization

BoB

Study 4
Reflection

Study 1
Ways of working
and challenges

Literature review

Fig. 9.3 Research process for building the BoB model

the framework and its viability with UX specialists and a developer from three
companies in an interview study to evaluate BoB’s practical validity. The research
was conducted between years 2011 and 2015. We discuss research methods and
limitations in more detail in the original publications.

9.4.2 Participants

Participants and studied companies are introduced in the original publications; we
give here only an overview of them. Altogether, we conducted 75 interviews and
received 282 survey responses from nine companies (Table 9.2).



214 K. Kuusinen

Table 9.2 Summary of methods and participants per study

Study Method Participant roles Countries N

S I Survey 1 Dev, PO, UXS, Arc,
Manager, SM„ other (e.g.
tester, user support)

Finland 58.0 %, Other
25.87 % (mainly France,
Sweden, Czech Republic and
Malaysia), Unknown 16.1 %

143

Interviews 1 Dev, PO, SM, UXS„ Arc,
Manager, Tester,
Customer

Finland 95.2 %, Sweden
2.4 % and China 2.4 %

50

Survey 2 Dev, PO, UXS, Arc Finland 100 % 8
Interviews 2 Dev, PO, UXS, Arc Finland 100 % 7

S II Pilot interviews Dev, UXS, Arc Finland 50.0 %, China
25.0 %, Belarus 12.5 %, India
12.5 %

8

Pilot survey Dev, PO, UXS, SM,
Tester

Finland 36.8 %, China
26.3 %, Belarus 26.3 %, India
10.5 %

19

Long-term survey Dev, PO, UXS Finland 45.2 %, Russia
25.8 %, China 22.6 %, Latvia
3.2 %, Estonia 3.2 %

31

Retrospect survey Dev, PO, UXS Finland 53.8 %, Russia
30.8 %, China 26.9 %

26

Interviews PO, UXS Finland 100 % 6
S III Team survey Dev, PO, UXS Finland 73.1 %, Russia

19.2 %, Latvia 3.8 %, China
3.8 %

26

User survey User Majority from Finland 29
S IV Interviews Dev, UXS Finland 100 % 4

Legend: Arc Architect, Dev Developer, PO Product Owner, SM Scrum Master, UXS UX specialist

Some participants were interviewed or surveyed more than once. Since we did
not identify the respondents of the first round surveys, and one of the companies
participated in three first rounds of research, we do not know the number of
individual participants. Moreover, we did not ask in which country the user
participants of the third round of research were based. However, the whole user
base of two participating projects was in Finland.

All nine participating companies were developing enterprise software or work-
related tools. Five were IT service companies, three were engineering and technol-
ogy companies, and one was developing its own specialized systems for several
platforms. Three companies focused on developing mobile enterprise applications,
one developed wireless industrial systems, one developed large industrial safety-
critical software-hardware systems, one developed embedded systems for specialist
users, one developed tools for both business and consumer users, and two companies
developed basically whatever software customers order. Two of the companies were
large with around 20,000 employees, two employed 1000–2000 persons, four had
100–500 persons, and one was small with 10–30 employees. Six of the companies



9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile. . . 215

were operating globally while three had sites only in Finland. All but one company
employed UX specialists. All the companies utilized agile practices at least in some
of their organizations.

9.5 BoB Framework for Organizing Within-Iteration Agile
UX Work

In the resulting BoB framework, developers and UX specialist(s) form a cross-
functional team. Work towards certain functionalities is conducted in a cross-
functional team within a single iteration. Work can be chunked in several iterations
when necessary; however, an iteration should always include both analysis and
building activities. In the case of UCD, it means that each iteration should contain
activities for understanding the user’s needs, designing and developing towards
them, and evaluating the appropriateness of the result [35]. Thus, we consider the
approach more compatible with agile development.

9.5.1 Guidelines to Support the Cross-Functional Team

We organize our guidelines to support the cross-functional team and the within-
iteration approach into factors related to people, process, tasks, tools, and the
developed artefact (Table 9.3). We base the taxonomy on the categorization of
[3, 36]. Brhel et al. [3] classify agile UCD integration types into process, people,
practices, and technology. Chow et al. [36] classified critical success factors of agile
software development as organizational, people, process, technical, and project
factors. Instead of UCD practices and supporting technologies, we concentrate on
tasks related to UX work and supporting tools in general, respectively. Finally, we
consider factors related to the artefact developed in a project context. This fifth
group of artefact factors are omitted from Table 9.3, but are only discussed in the
text as we do not want to give actual guidelines on the software under development.
Instead, we discuss the impact on the type and characteristics of the software for the
within-iteration approach.

Furthermore, agile principles require a motivated cooperative team to deliver,
from early on and continuously, software that satisfies the customer [18]. We build
our guidelines both on agile principles and a user-focused mindset.

People Factors First of all, the team must value togetherness as defined in [22];
team members need to be willing to work together. They should have a positive and
curious attitude towards the disciplines of other team members. Cooperation gets
easier if team members understand the work of other team members to some extent.
For instance, Gulliksen et al. [37] suggest that UX specialists should have some
knowledge of software development to improve the communication. Working in a



216 K. Kuusinen

Table 9.3 Supporting guidelines for the within-iteration approach

People Process Tasks Tools

Learn from others:
Broaden your
competence areas.

Work within one
iteration.

Integrate UX work via
tasks not via roles.

Communicate UX
tasks via backlog.

Be willing to
cooperate.

Produce working
design.

Minimize user
studies.

Establish feedback
channels.

Respect people from
other disciplines.

Allow trial and error:
accept design debt.

Treat UX-related
tasks similarly to
other development
tasks.

Utilize technologies
that allow rapid
design and
development.

Involve the whole
team in user
communication.

Hurry to markets to
enable actual user
feedback.

Appreciate
professionalism when
allocating tasks.

Allow maturity
difference in visual
and functional
readiness.

cross-functional team becomes a virtuous circle as team members learn from each
other [10]. Learning eases task allocation as competence areas of team members
become partially overlapping [10].

Like in agile development in general, the team benefits from close collaboration,
the emphasis being on face-to-face communication. At the minimum, either the PO
or developers should be co-located with the UX specialist [10]. Regarding the big
picture of the project and being able to satisfy the user need, the whole team should
be involved in communication with users [12]. This is also in line with the principles
of UCD. Continuous communication with the user and the customer is especially
important in rapid development where all the required information should be at
hand whenever needed.

Task Factors When a UX specialist is working with the development team and
the team expects that she/he will do almost all the UX related work, the UX
specialist will become a bottleneck [8]. When a single person is responsible for
a bunch of work, the work naturally is conducted serially, which will mean waiting
time. Thus, we suggest involving several persons of the team in the UX work. We
have studied which tasks can be performed by developers and the PO and which
tasks require special professionalism in UX [10, 12, 16]. Figure 9.4 presents a
summary of our findings. To conclude, POs have learned to successfully conduct
workshops with users to understand the user need and to gather user feedback to
improve the software [10, 12]. Developers have been able to lead the UI design
work in mobile development where the platform style is prominent and the user
need is well understood [11]. Moreover, developers are able to understand the
instrumental quality of the software under development [16]. Instrumental quality
refers to perceived utilitarian or functional quality such as usefulness in contrast to
hedonic quality that provides pleasure and experiences to the user [38, 39]. Thus,
we suggest integrating UX work with agile development via UX tasks instead of
trying to integrate a distinct UX specialist role as such. Moreover, UX tasks should



9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile. . . 217

Fig. 9.4 General task allocation between roles (Legend: PO product owner, UXS user experience
specialist, DEV developer)

be treated similarly to other development tasks and tasks should be allocated based
on professionalism and interest.

There is one fundamental difference compared to the iteration-ahead approach in
the nature of UX tasks. Where UX specialists in the iteration-ahead approach seem
to often produce rather ready-made UX design that the developers implement as is
[6, 8, 22], the within-iteration approach emphasizes the active role of the developer
in participating in UX work. This collaboration is essential for being able to design
and develop during the same iteration. Without it, the UX specialist would indeed
need time to produce the design ahead of development.

Process Factors An obvious process factor is to work within one iteration at a time;
the whole team should concentrate on the same tasks at hand. Thus, the mindset
should be changed from holistic UX design (big design upfront) to completing only
one or a few functionalities at a time and then changing the design and related code
later as needed. This does not mean that one should have no holistic idea of the
system and that nothing should be thought about beforehand. It simply means that
full designs are not deliberately produced, but instead, building the software can be
started as soon as the team has some idea of it. To enable such a way of working,
the team must allow trial and error and thus to be ready to refactor, iterate, and
even discard the already built design whenever reasonable. Thus, the team should



218 K. Kuusinen

welcome technical debt considering UX design in that design decisions can be made
on incomplete information. Technical debt has been defined as follows: “not quite
right code which we postpone making it right” [40, 41]. Consequently, UX design
debt can be defined as not quite right design which we postpone making it right;
it is design that is likely to require changes and improvement later when more
information is available. Allowing technical debt in UX design enables the team
to work on incremental design chunks instead of having to have a complete holistic
UX design available early.

Furthermore, in addition to delivering working software, the process should allow
the delivery of working design. By working design, we refer to functionality that
is “working enough” to be tested by users. Thus, we encourage building something
that the user can actually test in the first place. In the early phase, it can be something
that the user can, for instance, click through. Later it can be, for example, an added
feature that has only the user interface with no or only simulated backend.

Finally, the quicker the software is on the market, the quicker the team will get
actual user feedback from real use. It is difficult for a user to evaluate if they would
really use some feature, if they need something, or if they would be willing to pay
for a service before it is actually available [42, 43]. In addition, we have learned that
users are more prone to give feedback when the system is already in use compared to
when they just are asked to test something without actually benefitting from its use.
Testing on actual users and developed artefacts can also save time from arranging
user tests and therefore help to avoid wasteful activities.

Tool Factors Several factors related to tools and technologies have an impact on
how effortless it is to work with the cross-functional team. UX-related tasks should
be communicated via the same tool than other development tasks, for instance, via a
backlog management tool [12]. Moreover, UX tasks should be chunked to pieces
with similar size and level of detail compared to other development tasks [12].
Depending on utilized technologies and platforms, UX design can be designed and
communicated as working software, for instance, in HTML and CSS code. If UX
designers use such tools, they are able to produce the design as working software in
the same time or even quicker than by drawing the design [15]. Furthermore, modern
UX design tools allow varying the design fidelity [15]. Thus, the high-fidelity
production design can be produced whenever feasible offering more flexibility to
the timing of the work instead of fixing its delivery to a certain iteration. Finally,
mechanisms and channels for collecting user feedback should be established to
allow rapid feedback gathering.

Factors Related to the Developed Artefact and the Context The cost of building
something needs to be kept in mind. The idea of the approach is to decrease the cost
of unneeded and thus wasteful planning and to increase the revenue from reaching
the market early. However, in some contexts, for example, when hardware is present,
the cost of iteration can be higher than the cost of wasteful planning. Thus, if, for
instance, a new costly piece of hardware needs to be built for each iteration, the one
iteration-ahead approach might be more suitable to increase the likelihood of getting



9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile. . . 219

the overall system right with a smaller number of iterations. The same applies
for highly regulated contexts in which heavy testing is needed before entering the
markets. Thus, the within-iteration approach might be less suitable for situations
where cost of error is high. However, we have no empirical data to support that
planning and designing ahead of development actually would be less prone to error.

9.5.2 Ways of Working in BoB Framework

Most of the related research suggests separating product discovery and development
phases [3]. We agree that there should be a high-level idea or an early vision of the
product before starting to implement it. However, early product definition can be
very small, and the understanding can be fostered throughout the project.

The BoB framework includes a process that consists of analysis and build
tasks that are conducted continuously during the development cycle (Fig. 9.5). The
process is intended for within-iteration UX work conducted in cross-functional
teams. In principle, the same cycle is utilized throughout the project; thus, the
process mitigates the concept of separate upfront design phases. Instead of having a
particular upfront design phase, we suggest including the design and planning work
into several “normal” iterations that can contain both UX design and development
tasks. A UX specialist once described such an approach as follows: “One time we
started a project and we could not reach the user in the beginning. All we knew
was that the user needed to be able to fill in forms. So we implemented a fillable
form.” Thus, implementation can be started with a minimal understanding of the

Initial
backlog

Workshop

Clickable
version

1st … n:th
production

version

Backlog

Early product
definition

Feedback

Vision,
Most critical
user stories

Development

Fig. 9.5 BoB process model for the within-iteration approach. Dashed lines indicate the transfer
from early product definition to development



220 K. Kuusinen

user’s need and possible design. However, the early phase (design upfront or the
fuzzy front end) differs from the rest of the development in that there might be
nothing tangible available yet. The understanding of the project vision is minimal
and communication with the user and customer might be more abstract. We suggest
starting with a few short user workshops in which the product vision and most
critical user stories are evolved. In between those workshops, the team works
towards something tangible for the users to make it easier for all the stakeholders to
understand the early product vision similarly enough. An initial backlog is formed
based on the early vision and most critical user stories that have been created during
the early iterations. The deliverable from this early phase can be, for instance, a
partially functional prototype or a click-through template that realizes the most
important user story (or stories).

After the clickable version has been evaluated with users, the team starts to
work towards the first production version of the system (transfer from Early
product definition cycle to Development cycle in Fig. 9.5). The UX specialist either
implements the user interaction or pairs up with a front-end developer. The user
interaction is built based on continuous communication within the team and together
with users when needed. When a UX-related issue cannot be solved within the team,
developers start to build the next task on the priority list, and the UX specialist
investigates the problem until a solution is found, or until it is decided to postpone
the task. The team hurries a production version to the market to start getting actual
user feedback and then continues increasing the product incrementally. The team
works similarly during forthcoming iterations. Thus, the approach is similar both
in the early product definition phase and during the actual development phase. In
addition to working software, we recommend allowing the delivery of working
prototypes and partially functioning features to gain user feedback. Thus, the system
can contain both fully working features and forthcoming features that are delivered
for some user groups in order to allow getting early user feedback before launching
the feature. This approach is especially beneficial for the majority of situations
where a randomized experiment with control and treatment groups (A/B testing)
is not feasible due to the size of the user population

9.6 Discussion

The BoB framework we introduce in this chapter offers an alternative to the
commonly recommended one iteration-ahead approach. Our aim is to provide a
way to focus on building the user interaction modularly feature by feature instead
of running excessive user studies before the implementation. Whereas in the one
iteration-ahead approach implementation is conducted on studied and tested design
chunks [6], in our framework UX specialists conduct as few user inquiries as
possible and small functionalities are designed and implemented possibly in hours
or days after which the functionality is exposed to actual usage or usage that is close
to actual (for instance, partially functional features or clickable prototypes). The



9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile. . . 221

functionality or some larger part of the system is then iterated based on the user
feedback and new functionalities are designed based on what was learned.

The framework as such has not been in use in none of the studied companies.
Although cross-functional team approach was the most preferred way to organize
UX work among the participants, it was rarely utilized in the companies [8, 9, 13].
Companies preferred separate UX and development teams. However, this started to
change during the research process [11], and some of the companies have utilized
similar practices in their projects [12]. Those practices have included working in
cross-functional teams and having UX specialists and developers working in the
same iteration. In addition, Fig. 9.4 is fully based on what we have witnessed in the
studied companies. We built BoB to support this within-iteration work as there has
not been guidance on how to organize agile UX work in such setting.

Utilizing BoB framework requires that the UX specialist works from inside the
cooperative development team. Furthermore, it benefits from a mindset that allows
trial and error: when the UX design needs to be modified, the user interface will be
iterated and refactored. Compared to the one iteration-ahead approach, we expect
collaboration within the BoB framework to offer better visibility to the common
vision, the big picture, of the project as the team including a UX specialist works
in closer collaboration and makes design decisions together. We expect that the
close collaboration improves the team’s communication and increases developers’
commitment towards UX tasks as they are more involved in UX work. Finally,
we expect to get feedback from actual usage faster than in the one iteration-
ahead approach as getting to the market may require only one design-development
iteration instead of conducting design work first and then implementation work in
the following iteration. While user studies are valuable, it is the actual usage that
really validates the viability of the system.

Although we expect BoB framework to tackle several challenges in agile UX
work, it does not come without its limitations. BoB works best with small, co-
located teams—as agile methods do in general. Scaling up the framework is an
interesting possibility for future research. Based on what we have seen in our
research; such an approach has only been in use in co-located teams. Thus, as
developers are in a central role in the within-iteration UX work, it might be that the
approach only works when a UX specialist is co-located with the rest of the team.
Therefore, it might be needed that in larger projects with several teams, there should
be a UX specialist working in each team, or at least those teams that concentrate on
user interaction should include a UX specialist.

9.7 Summary and Conclusions

In this chapter, we presented BoB framework for integrating UX work into agile
development. The idea of our framework is to organize UX work in such a way that
designing ahead of development during the development iterations would not be



222 K. Kuusinen

necessary. We presented both supporting factors and a process model that enables
the within-iteration approach.

BoB increases possibilities to react to change, and it is to improve communica-
tion and common understanding on a team. In addition, it brings UX matters closer
to developers and welcomes them to participate to the UX work as well. Thus, it
is expected to mitigate the workload of the often overburdened UX specialist. The
fundamental goal of BoB is to minimize the amount of upfront design and study
activities and instead encourage trial and error in designing and developing for UX.

Acknowledgment Our research has been supported by TEKES (Finnish funding agency for
technology and innovation) as part of the Cloud Software and Need for Speed research programs
of DIGILE (Finnish Strategic Centre for Science, Technology and Innovation in the field of ICT
and digital business).

References

1. Cyr D, Head M, Ivanov A (2006) Design aesthetics leading to m-loyalty in mobile commerce.
Inf Manag 43(8):950–963

2. Mahmood MA, Burn JM, Gemoets LA, Jacquez C (2000) Variables affecting information
technology end-user satisfaction: a meta-analysis of the empirical literature. Int J Hum Comput
Stud 52(4):751–771

3. Brhel M, Meth H, Maedche A, Werder C (2015) Exploring principles of user-centered agile
software development: a literature review. Inf Softw Technol 61:163–181

4. da Silva T, Martin A, Maurer F, Silveira M (2011) User-centered design and Agile methods: a
systematic review. In: Proceedings of the Agile methods in software development (Agile 2011)

5. Miller L (2005) Case study of customer input for a successful product. In: Proceedings of the
Agile Conference ’05. IEEE Computer Society, pp 225–234

6. Sy D (2007) Adapting usability investigations for Agile user-centered design. J Usability Stud
2(3):112–132

7. Roddenberry G (writer), Piller M (writer), Bole C (director) (1990) The best of both worlds:
part 1 [Television series episode]. In: Berman R (executive producer), Star Trek: the next
generation, USA

8. Kuusinen K, Mikkonen T, Pakarinen S (2012) Agile user experience development in a large
software organization: good expertise but limited impact. In: Proceedings of the Human-
Centered Software Engineering (HCSE’12). Springer, Berlin/Heidelberg, pp 94–111

9. Kuusinen K, Väänänen-Vainio-Mattila K (2012) How to make agile UX work more efficient:
management and sales perspectives. In: Proceedings of the 7th Nordic Conference on Human-
Computer Interaction: making sense through design (NordiCHI ’12). ACM, pp 139–148

10. Kuusinen K, Mikkonen T (2013) Designing user experience for mobile apps: long-term product
owner perspective. In: Proceedings of the 20th Asia-Pacific Software Engineering Conference
(APSEC’13), IEEE Computer Society Order Number E5158, pp 535–540

11. Kuusinen K, Mikkonen T (2014) On designing UX for mobile enterprise apps. In: Proceedings
of the software engineering and advanced applications, IEEE Computer Society, pp 221–228

12. Kuusinen K (2015) Task allocation between UX specialists and developers in agile software
development projects. In: Proceedings of the Human-Computer Interaction – INTERACT
2015, LNCS 9298. Springer International Publishing, pp 27–44

13. Kuusinen K (2015) Overcoming challenges in agile user experience work: cross-case analysis
of two large software organizations. In: Proceedings of the 41st Euromicro conference series
on Software Engineering and Advanced Applications (SEAA’15). IEEE Computer Society
(2015), doi:10.1109/SEAA.2015.38

http://dx.doi.org/10.1109/SEAA.2015.38


9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile. . . 223

14. Kuusinen K (2015) Continuous user experience development. In: INTERACT 2015 adjunct
proceedings: 15th IFIP TC. 13 International conference on human-computer interaction 2015,
vol 22. University of Bamberg Press, p 233

15. Kuusinen K (2015) Integrating UX work in agile enterprise software development. Doctoral
thesis, Publication 1339, Tampere University of Technology

16. Kuusinen K, Väätäjä H, Mikkonen T, Väänänen K (2016) Towards understanding how agile
teams predict user experience. In: Integrating user-centred design in agile development.
Springer, Cham

17. Cockburn A, Highsmith J (2001) Agile software development: the people factor. IEEE Comput
34(11):131–133

18. Beck K et al (2001) Agile alliance. Principles behind the Agile Manifesto. Available at: http://
agilemanifesto.org/principles.html

19. Highsmith J, Cockburn A (2001) Agile software development: the business of innovation.
Computer 34(9):120–127

20. Schwaber K (2004) Agile project management with Scrum, 1st edn, Microsoft professional.
Microsoft Press, Redmond

21. Salah D, Paige R, Cairns P (2014) A systematic literature review on agile development
processes and user centred design integration. In: Proceedings of the 18th international
conference on Evaluation and Assessment in Software Engineering (EASE’14). ACM, Article
5, 10 p

22. Ferreira J, Sharp H, Robinson H (2010) Values and assumptions shaping agile development
and user experience design in practice. In: Proceedings of the XP 2010, LNBIP 48:178–183

23. Gulliksen J (1999) Bringing the social perspective: user centred design. In: HCI (1) 1999, pp
1327–1331

24. Cagan M (2012) Dual-Track Scrum. Blog post 17 September 2012. Available at: http://www.
svproduct.com/dual-track-scrum/. Accessed 9 Mar 2016

25. Zaman K (2014) Dual track Scrum. Scrum alliance member article 18 December 2014. Avail-
able at: https://www.scrumalliance.org/community/articles/2014/december/dual-track-scrum.
Accessed 9 Mar 2016

26. Patton J (2014). User story mapping: discover the whole story, build the right product. O’Reilly
Media, 324 pp

27. Ferreira J, Sharp H, Robinson H (2011) User experience design and agile development:
managing cooperation through articulation work. Softw Pract Exp 41(9):963–974, (Wiley)

28. Isomursu M, Sirotkin A, Voltti P, Halonen M (2012) User experience design goes agile in
lean transformation—a case study. In: Proceedings of the Agile Conference (AGILE 2012), pp
1–10.

29. Hodgetts P (2005) Experiences integrating sophisticated UX design into agile process. In:
Proceedings of the Agile Conference 2005, IEEE, Denver, CO, pp 235–242

30. Lee JC (2006) Embracing agile development of usable software systems. In: Proceedings of
the Conference on Human Factors in Computing Systems CHI 2006. ACM, pp 1767–1770

31. Eisenhardt KM (1989) Building theories from case study research. Acad Manag Rev
14(4):532–550

32. Eisenhardt KM, Graebner ME (2007) Theory building from cases: opportunities and chal-
lenges. Acad Manag J 50(1):25–32

33. Yin RK (2003) Case study research: design and methods, 3rd edn. Sage, Thousand Oaks, 181p
34. Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in

software engineering. Empir Softw Eng 14:131–164
35. Gulliksen J, Göransson B, Boivie I, Blomkvist S, Persson J, Cajander Å (2003) Key principles

for user-centred systems design. BIT 22(6):397–409
36. Chow T, Cao DB (2008) A survey study of critical success factors in agile software projects. J

Syst Softw 81(6):961–971
37. Gulliksen J, Göransson B, Lif M (2001) A user-centered approach to object-oriented user

interface design. In: van Harmelen (21), chapter 8

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://www.svproduct.com/dual-track-scrum/
http://www.svproduct.com/dual-track-scrum/
https://www.scrumalliance.org/community/articles/2014/december/dual-track-scrum


224 K. Kuusinen

38. Holbrook MB, Hirschman EC (1982) The experiential aspects of consumption: consumer
fantasies, feelings, and fun. J Consum Res 9:132–140

39. Lantos GP (2015) Consumer behavior in action: real-life applications for marketing managers.
Routledge, New York

40. Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: from metaphor to theory and practice.
IEEE Softw 6:18–21

41. Cunningham W (1992) The WyCash portfolio management system. OOPSLA’ 92 Experience
report

42. Anastassova M, Mégard C, Burkhardt JM (2007) Prototype evaluation and user-needs analysis
in the early design of emerging technologies. In: Human-computer interaction, Interaction
design and usability. Springer, Berlin/Heidelberg, pp 383–392

43. Van Kleef E, van Trijp HC, Luning P (2005) Consumer research in the early stages of
new product development: a critical review of methods and techniques. Food Qual Prefer
16(3):181–201


	9 BoB: A Framework for Organizing Within-Iteration UX Work in Agile Development
	9.1 Introduction
	9.2 Iteration-Ahead Approach
	9.2.1 Overview
	9.2.2 Challenges in the Iteration-Ahead Approach

	9.3 Cross-Functional Team Vs. Separate UX and Development Teams
	9.4 Method
	9.4.1 Research Process
	9.4.2 Participants

	9.5 BoB Framework for Organizing Within-Iteration Agile UX Work
	9.5.1 Guidelines to Support the Cross-Functional Team
	9.5.2 Ways of Working in BoB Framework

	9.6 Discussion
	9.7 Summary and Conclusions
	References


