
Chapter 6
Communication Breakdowns in the Integration
of User-Centred Design and Agile Development

Silvia Bordin and Antonella De Angeli

Abstract Despite several calls for a more systematic integration of User-Centred
Design and Agile development methodologies, no satisfactory agreement has been
found yet. We articulate three breakdowns that may occur when integrating these
two software engineering approaches, namely a variable interpretation of user
involvement, a mismatch in the value of documentation, and a misalignment in
iterations. These themes emerged from theoretical grounding as part of action
research in a case study where UCD and Agile were integrated to develop mobile
applications for a user community. We discuss attempted strategies for improving
community involvement alongside the evolution of the project team, composed of
developers, designers, users, and customers. We finally suggest ways to promote
a receptive organisational culture for the integration of UCD and Agile, drawing
inspiration from participatory design and design thinking, retaining the richness of
community voice, and effectively timing the combination of the two methodologies.

Keywords Working practices • Organisational culture • Research into design

6.1 Introduction

In recent years there has been a growing interest in understanding the combination
of the user-centred design (UCD) and Agile development approaches, both in
the human-computer interaction community and in the software engineering one.
This convergence would lead to a more holistic software engineering approach
relative to the application of one of the individual methodologies alone [1]. The
advantage is twofold: on the one hand, Agile methodologies do not explicitly
address usability or user experience (UX) aspects in their understanding of the
development process, although valuing customer satisfaction [2, 3]. Yet, these
aspects cannot be overlooked anymore, since a carefully designed UX can provide
an advantage over competing products [4]. In fact, despite its problematic nature

S. Bordin (�) • A. De Angeli
Department of Information Engineering and Computer Science, University of Trento,
Trento, Italy
e-mail: bordin@disi.unitn.it; antonella.deangeli@disi.unitn.it

© Springer International Publishing Switzerland 2016
G. Cockton et al. (eds.), Integrating User-Centred Design in Agile Development,
Human–Computer Interaction Series, DOI 10.1007/978-3-319-32165-3_6

137

mailto:bordin@disi.unitn.it
mailto:antonella.deangeli@disi.unitn.it

138 S. Bordin and A. De Angeli

and high costs [5], effective user involvement results in high reward and several
expected benefits including improved quality, understanding, and acceptance of the
product [5], and generally overall “positive effects on both system success and user
satisfaction” [6].

On the other hand, UCD does not explicitly address how the implementation
of the design should be performed, despite needing to ensure that no “design
drift” [1] occurs by maintaining a tight connection with the development. Agile
methodologies appear to fill this gap because of their capability to flexibly respond
to change in requirements, priorities and context, benefitting from a constant
involvement of the customer in the process. These features have facilitated their
widespread adoption in companies [7]. Furthermore, the intrinsically iterative nature
of Agile implies continuous testing and incremental improvement of stable versions
of a software product, fostering an overall higher quality of the final outcome, and
aligning in principle with the iterative nature of UCD.

Despite these benefits, no satisfactory way to integrate UCD and Agile has
become established yet, if one exists. We contribute to filling this gap by reflecting
on our own experience as researchers and designers in a project where the
integration of UCD and Agile was used in mobile application development, not
for a single business customer, but for a whole community of users. By intertwining
research into design [8] and a literature review, we identified three communication
breakdowns that are likely to occur because of a mismatch in the formalisation of
key themes in the two approaches, namely the interpretation of user involvement,
the value of documentation, and the synchronisation of iterations. We believe that
the analysis of such communication breakdowns can provide a distinctive analytical
tool to facilitate a shared understanding of the respective assumptions of UCD and
Agile and of the potential conflicts between them, thus supporting new kinds of
collaborative work arrangements.

Consistently with [9], we observed that all breakdowns are manifested at the
work process level, but that their solution requires changes in the organisational
structure. As a result, we propose some reflections on the need to foster the
establishment of a suitable and receptive organisational culture in order for an
effective integration of UCD and Agile to occur; these considerations are inspired
by the participatory design and design thinking approaches. We also reflect on
how to retain the articulation of the needs and positions expressed by a whole
user community and, in a more process-oriented perspective, on which is the most
suitable timing to integrate UCD and Agile, taking into account the peculiarities of
the two methodologies.

6.2 State of the Art

User-centred design is an umbrella term used to denote a set of techniques, methods,
procedures and processes that places the user at the centre of an iterative design
process [10]. As stated by Norman already 30 years ago, when UCD was struggling
to establish itself in a predominantly technology-pushed environment, “the purpose

6 Communication Breakdowns in the Integration of User-Centred Design. . . 139

of the system is to serve the user, not to use a specific technology, not to be an elegant
piece of programming” [11]. Agile also presents a variety of methods advocating a
lightweight approach to software development where rapid and flexible adaptation
to change is the key to maximising customer satisfaction. Such adaptation is
achieved through a process of continuously improving, evolutionary development
carried out by a self-organising, cross-functional team that communicates through
face-to-face and often informal meetings rather than through formal documentation.
Agile methodologies are grounded on the principles and values listed in the Agile
Manifesto [12], which, among other things, highlights the concept of customer
collaboration: the customer is in fact expected to be actively involved in the
development process, although to a variable extent depending on the specific form
of the methodology in practice, and to have the power to steer the direction of the
project by intervening on the requirements according to his/her possibly changing
needs [13].

We highlight that both UCD and Agile can be instantiated in a large variety of
practices: this makes it difficult to present a definitive position on the integration of
the two approaches. However, in the next sections we will discuss three themes
in particular that may have diverging interpretations in the two methodologies,
namely user involvement, documentation, and synchronisation of iterations. These
themes, which emerged from a case study and were then corroborated through a
literature review, are most likely to cause communication breakdowns, i.e. examples
of “disruption that occurs when previously successful work practices fail, or changes
in the work situation (new work-group, new technology, policy, etc.) nullify specific
work practices or routines of the organizational actors and there are no ready-at-
hand recovery strategies” [9]. Communication breakdowns occur in the absence
of a shared meaning among team members and can be counteracted by designing
for translucence (i.e. the combination of visibility, awareness and accountability);
shared meaning is nurtured by grounding (the communication process aimed at the
creation of mutual knowledge, assumptions, and beliefs [14]) and consolidated by
knowledge sharing.

6.2.1 Integration

A growing interest in understanding the combination of UCD and Agile is emerging,
as witnessed for instance in the literature reviews performed by Jurca [4] and Salah
[1], which consider 76 and 71 papers respectively. The papers were selected based
on their focus on methodologies for integrating UCD and usability engineering with
Agile approaches, with an accent on the software engineering community, to which
the authors belong. Results suggest that much literature on the topic consists of
“experience reports”, with “few rigorously conducted studies in Agile-UX” [4] or
systematic guidelines. Moreover, that research is dispersed over a large number of
venues and is likely to not fully reach its intended target community. Both studies
conclude that there is a need for design and development methodologies that can
“draw on the best practices and tools of the two disciplines” [3].

140 S. Bordin and A. De Angeli

Attempts at integrating the practices of UCD and Agile development have
been made over time [e.g. 15], leveraging the similarities of the two methods
while mitigating their differences. An approach called Agile usability is proposed
in [16], enriching the Extreme Programming methodology with several artefacts
drawn from HCI each used in different moments. Similarly, some experts suggest
applying discount usability methods by involving a very small number of users
(one to three), with frequent testing and with constant updates to the team and
the clients [17]. Others propose to lighten UCD approaches in order to keep the
pace of Agile iterations [18]: for example, the presence of an onsite customer is
reported as a common practice in Agile projects to facilitate the communication of
requirements to developers [3]. Ungar and White [19] describe a case study in which
the application of the design studio approach might effectively bridge UCD methods
and Agile ones, such as Scrum: this approach envisages a rapid, iterative process
of ideas generation, discussion, and reconciliation into a unique design concept
to be implemented. Lean UX [20] is a practitioners’ proposal for the integration
of UCD practices into Agile; yet, as argued in [21], the organisation applying this
methodology has to be ready for it, developing an appropriate internal culture, which
is often a non-trivial condition to achieve.

While acknowledging the large and robust common ground [14] that the two
approaches anyway share, in the next paragraphs we will introduce three communi-
cation breakdowns [9] that are likely to affect their integration.

6.2.2 User Involvement

The concept of user-centredness is complex and covers a broad range of per-
spectives, which according to [22] are articulated around four dimensions: user
focus, work-centredness, involvement or participation, and system personalisation.
Different and at time conflicting interpretations of processes, practices, and goals
exist within these macro-areas. The dimension of involvement is particularly
interesting for our work as it describes different approaches related to the user role
in design, ranging from an informative role (users act as providers of information
and as objects of observation) to a consultative role (users comment on predefined
design solutions) to a participative role (users actively take part in the design process
and have decision-making power regarding solutions) [5]. User involvement in the
informative/consultative role stresses a functional empowerment of users in its focus
on designing usable and satisfying systems; this differs from the participatory design
perspective, which aims at a democratic empowerment [23] by allowing people to
shape the tools which will affect their work or personal life.

In UCD, user-centredness is typically described in this continuum between
involvement and participation [22]: user needs and activities are thoroughly
researched and understood by the design team upfront or in direct collaboration
with a small sample of selected users. Agile techniques also encourage the
customer’s collaboration throughout the development process; however, in the
Agile terminology, the notion of customer is often blended with that of a user [24],

6 Communication Breakdowns in the Integration of User-Centred Design. . . 141

with contrasting interpretations of the distinction between these two concepts and of
whom is supposed to take this role. Most Agile methods in fact define the customer
as a representative of the end users who has direct and regular contact with them
[e.g., 2, 25, 26]. However, some authors report that it is infrequent for a real end-
user to act as a customer [15, 27], subsequently questioning the extent to which
the customer can actually represent the real user and his/her needs [3, 28]. Others
[15] recommend that the customer’s engagement should also be supported by a
number of other roles within the team, such as a proxy user, or that the customer
role should be filled by one or more members of the product team [29], since
customers are part of the release planning and iterative development process [28].
The duties of the customer, in their fuzzy definitions, include acting as the voice
of the end user, evaluating performance and helping to prioritise and plan cycles
and releases [30]. This responsibility can turn out to be overwhelming [25] and
some authors argue that there is no guidance on how the customer should be able
to articulate his/her needs in order to communicate the requirements to developers
[28, 31].

Indeed, the very same capability of users to articulate their own working practices
or to design a system can be questioned [28]; furthermore, because of a mutual
learning effect, some authors claim that the more the “representative” customer
becomes part of the development team, the less useful he/she is as a user surrogate
[28, 32]. The same authors also propose a distinction between the user and the
customer: the user interacts with the system being designed directly and uses it
to accomplish his/her job, while the notion of customer is broader: understanding
the users is needed to achieve a good design, understanding the customer is needed
for its acceptance.

In general, given all these considerations, it seems that the integration of user
needs within the feature-oriented Agile development process has not been fully
achieved yet; as concluded in [3], one of the reasons is “a lack of tactics and
practices” within organisations.

6.2.3 Documentation

Independently of the key issue about who is expected to be a team member (develop-
ers, designers, usability experts, users and/or customers) in an integrated UCD/Agile
project, both methodologies place an emphasis on frequent communication among
team members to support project awareness. However, while UCD has produced a
number of design tools to support communication with developers, such as scenarios
or personas, Agile tends to emphasise face-to-face informal communication. In a
UCD process, formal documentation may record design rationales, list user and
interface requirements, and provide the ground truth about the overall design vision,
becoming “crucial for estimation and implementation efforts” [10]. Therefore, the
experts will devote an important amount of time to analysing users and their tasks
and then iteratively collecting feedback; these activities need to be performed and
documented before the implementation phase begins.

142 S. Bordin and A. De Angeli

Conversely, in Agile development the use of documentation is diminished [33],
to the point that one of the principles of the Agile manifesto [12] states that
“the most efficient and effective method of conveying information to and within a
development team is face-to-face conversation”. In [34], three types of collaborative
work to realign designers and developers are identified: all of them are oral and
the use of documentation is not even mentioned. Because of this, rather than
having requirement documents, the Agile approach incorporates the user (or his/her
representative) directly in the development team. There is anyway an on-going
discussion within the Agile community concerning the fact that documentation
should not be discarded altogether, especially given the complexity of modern
systems, and that it just needs to be adapted to more dynamic processes [35]: the
argument is hence about what is to be documented [35], how, and for what purposes
(e.g. supporting organisational memory and communicating with stakeholders [36]).
Nonetheless, often usability goals are documented in a very general way, relying on
an oral common understanding instead [7]: this may however make a quantitative
evaluation of such goals problematic and make the fulfilment of the “big picture of
UX” more difficult [37].

6.2.4 Synchronisation of Iterations

One of the generally accepted principles of UCD defines it as iterative [38]; Agile
development is instead intended as being not only iterative, but also incremental
[30]. A further challenge is about how to synchronise the periods of UCD and
Agile [1, 4], and in particular whether the two methodologies should proceed in
parallel or not. Several proposals envision designers and developers working closely
together in a synchronised manner. For example, in [39] a daily interaction between
them is defined as “essential” for a successful outcome of the project; in [34], their
collaboration is defined as informal, oral and ad-hoc. Schwartz [31] found that the
development pace was better maintained in a project with a usability expert than
without one: in addition, the former situation gave rise to pair designing, in which
the developer and the usability expert worked together and learned from each other,
thus improving HCI practices and knowledge in the whole team and in general
resulting in a better project dynamic.

Other researchers propose to keep UCD and Agile separate instead, while
just synchronising their periods of iteration [15] so that design stays ahead of
development. This is the interpretation of Agile usability given by Nodder and
Nielsen [40], who describe a process where design and development belong to
two parallel tracks and the former feeds the latter with progressively refined user
requirements, prototypes and tests. Similarly, in [29] the author recommends that
the lengths of the iteration of the design and development tracks have to be carefully
balanced so as to allow some advance for the design activities. Another successful
example of dual-track approach is described in [39]: the author reports that, in order
to accommodate the different paces of UCD and Agile, the timing and frequency of
data collection, rather than the methods, changed considerably.

6 Communication Breakdowns in the Integration of User-Centred Design. . . 143

A distinct issue concerns the amount of work, and specifically design, to be
performed before the implementation phase begins [41]. UCD encourages the team
to understand their users as much as possible before writing code [15]: experts will
devote an important amount of time to analyse users and their tasks in order to
create the interface specification document and then to iteratively collect feedback
from users through various usability techniques. Despite being time-consuming
activities, data collection and analysis are nevertheless considered to be necessary
to inform implementation. Conversely, given its feature-oriented nature and the
emphasis put on early software delivery, Agile methods are largely against an
up-front period of investigation at the expense of writing code [15]: they capture
“user stories” [24] instead, that is high-level requirements to be addressed at the
beginning of each iteration, therefore reducing upfront work to a minimum. Still,
several authors advocate a solid understanding of the user [28] also in terms of
time and effectiveness and suggest the relevance of an “Iteration 0” (e.g. [1, 29])
in which upfront design and requirement elicitation are carried out, with some
degree of compromise about the duration of such activities, in order to ensure the
establishment of a holistic design vision that can be shared within the team [37].

Related to this, we underline that Agile approaches are prone to focusing on the
details at the expenses of the overall project vision [1]. In order to mitigate this, the
responsibility for carrying the UX vision forward should be explicitly shouldered
by the management and the organisational context [7, 37].

6.3 The Smart Campus Project

A large set of observations on the potential and challenges of the integration of UCD
and Agile development derives from our experience in the Smart Campus project,
where the two methodologies were applied to mobile application development for a
community of users. Smart Campus started in 2012 in the context of establishing a
living lab in the Province of Trento and lasted 3 years. The University campus was
selected as the playground to experiment with a vision emphasising the role of the
community as builder of services. The project aimed at creating an ecosystem that
could foster students’ active participation in the design and development of services
for their own campus [42]. A service infrastructure was the main technological
outcome of the project [42–44]; on top of that, a set of eight mobile applications
(Fig. 6.1) was developed to help students with a variety of professional (tracking
university achievements; managing email), social (creating and managing groups;
getting information about events in the city), and private tasks (travelling through
the city; keeping a multimedia diary; receiving information about the university
cafeterias) [45].

UCD and Agile were chosen as useful methodologies for a project that needed
a fast delivery of the product while ensuring a focus on user needs [46]: the former
was applied to interface design, the latter was used to build the service architecture.
The project team consisted of approximately 25 members, including interaction
designers and software engineers. Furthermore, several groups of students were

144 S. Bordin and A. De Angeli

Fig. 6.1 The Smart Campus
mobile applications set

involved, reaching over 500 people in total; they played the role of users or
customers at different points of the project. Approaches for community engagement
changed as the socio-technical infrastructure was evolving, as discussed in [42].
Some of these students were directly included in the living lab as interns, in a
participatory development effort, while others played a consultative role comment-
ing on the applications as they were developed. The dialogue between developers,
designers and users was mediated by a set of communication channels including a
forum (based on phpbb, a simple open source bulletin board system, a beta testing
community in Google Play, and social networks (i.e. Twitter, GoogleC, Facebook,
LinkedIn). In an effort to promote the sustainability of the project [47], the code was
released as open source on GitHub, a platform for collaborative development.

6.3.1 Project Methodology

During the first year of the project, design and development proceeded on two
parallel tracks: design focused on conceptual work and community engagement,
while development focused on the service infrastructure. Several design activities
such as focus groups, diaries, online ethnography and workshops were put in
place, engaging 60 bachelor and master students overall; these activities aimed
to investigate the life of the student population and understand the design space

6 Communication Breakdowns in the Integration of User-Centred Design. . . 145

Fig. 6.2 Different examples of low-fidelity prototypes for the Smart Campus applications

of the project. At the same time, we also performed a benchmarking of mobile
apps offered by other universities and studies of online student communities.
This information was used to build personas, scenarios, and later storyboards
and sketches that informed the vision of Smart Campus as a toolbox containing
separated but interrelated services for students’ use (Fig. 6.2).

In parallel, the backend functionalities of the service platform began to be
developed following a rather traditional, incremental, and non-Agile approach. The
apps were then released to a growing community of campus students, starting from
90 students on the Human-Computer Interaction course for bachelor students within
the local Department of Computer Science. This first group of users was also
provided with a smartphone and a paid data plan in order to ease the testing, as
few of them had a suitable device and we aimed to seed a user community [42].

These initial UCD and development techniques required both time and docu-
mentation. However, as the technological infrastructure became more mature and
demands for more frequent app releases became more urgent, the management
realised that a much faster development pace was needed: therefore, almost a
year into the project, the development team quickly transitioned to an Agile
development methodology, namely Scrum. Since the team had little experience with
this approach, the CTO read manuals about how to implement it, involving the
management in this training as well, and then briefly introduced the Agile practices
to the team during a sample sprint planning meeting. Scrum was not applied by

146 S. Bordin and A. De Angeli

the book, but it required accommodating the peculiarities of the existing team: for
instance, the CTO also took the role of the Scrum master, while the rest of the
project management kept prerogatives such as maintaining relationships with the
University and administrating personnel and funds; appointed “champions” of the
apps, i.e. members of the development or management who were responsible for a
specific app and in charge of tracking its progress, became different product owners;
interns were incorporated as on-site user representatives (at least in principle, as we
will see later).

The transition to Agile disrupted the alignment between the design and the
development team: even though they were both following iterative approaches, it
soon became clear that the iterations required by UCD were longer than those
envisaged by the Scrum sprints, which were set to last 1 or 2 weeks. In fact, the
design team was supposed to be ahead of the development team by at least one cycle
[48], in order to be able to transfer prototypes and requirements to the development
team in a timely manner. At the same time, however, designers had to face a large
amount of qualitative feedback continuously coming from the user community,
analyse it, and prioritise extracted requirements. A ticket was created in an internal
system for most relevant user suggestions; designers would prepare design solutions
and then pass them on to the developers for the implementation.

Overall, the project needed to find a suitable collaboration protocol between the
design and the development team that could effectively accommodate the feedback
coming from the community while not impeding the development pace. To this
end, we tried several approaches to maximise team communication, which for our
convenience will be classified based on their methodological structure as formal,
semi-formal, and informal approaches.

The Formal Approach The formal approach was encouraged by the management
and consisted of passing on any design issues and decisions in a written manner:
this conflicted with the prescriptions of the Agile methodology. The first attempt
was to use an internal wiki for collaborators, where a table of issues to be solved
was maintained: this method was good for keeping track of all the problems
encountered, but was not a self-explanatory procedure, as it often required additional
information to be provided through different media as shared documents. The wiki
was eventually abandoned in favour of maintaining a presence on GitHub, in order
to promote open source contributions to the project and encourage the interventions
of the community directly related to the code. This approach proved somewhat
restrictive for designers as GitHub is used mostly to report bugs or issues with
software behaviour, but it is not meant to support the tracking of progress about
the overall UX design or the usage by people without technical expertise.

The Semi-Formal Approach In the semi-formal approach, we include different
kinds of meetings. Notably, none of them directly involved any user representatives
with the exception of the students involved in the Smart Campus development
lab, who were actively contributing to a participatory development approach. HCI
meetings usually gathered the whole design team and the champions of the apps.
Matchmaking meetings were usually held once every 2 weeks and involved all of

6 Communication Breakdowns in the Integration of User-Centred Design. . . 147

the Smart Campus staff (managers, developers, interns and designers): during these
meetings, project landmarks and dates were discussed, problems brought up, and
work divided. Scrum meetings basically replaced matchmaking ones when the team
adopted an Agile approach. They were quick daily meetings, usually held early
in the morning, aimed at checking the status of the project and estimating how a
specific task was progressing. In turns, the members of the group involved in the
Scrum reported about any problems they encountered, tasks performed and plans for
the day. The Scrum Master coordinated the activity by annotating this information
on a progress chart to check the status of the work and the feasibility of set goals.

The Informal Approach The informal approach consisted of face-to-face meet-
ings between a developer and a designer, often resulting in pair designing, i.e. in
the two working together in close collaboration to modify and improve the user
interface during the sprints. In line with the Agile development spirit, these meetings
produced no documentation. Similarly, at times developers engaged in quick chats
over instant messaging systems such as Google Hangouts or Skype. In general,
this approach was applied to solve specific user interface issues, not to address
overarching UX themes such as for instance transitioning to the most recent look
and feel suggested by the Android design principles.

The Mixed Approach Mixed approaches, between semi-formal and informal,
were used in specific situations like the so-called crazy weeks, i.e. accelerated
sprints where the whole team concentrated its efforts in order to reach a mutually
agreed goal. This method was used two or three times in a year, usually to enhance
aesthetics and functionalities when envisioning an immediate release of the apps.
At the beginning, developers, managers and designers met to discuss on “show-
stoppers”, i.e. issues that would seriously compromise the usability of the app
and would not allow its release; each issue could include different tasks, such as
prototyping and development, and was usually assigned both to a designer and a
developer, in a pair designing effort.

Despite this wealth of attempted collaboration strategies, the project team felt
that none of them was actually fully satisfactory in integrating design and devel-
opment activities. As problematic situations emerged in the project, we referred
to literature in order to understand whether the issues were specific to the project
or whether they had also been encountered elsewhere. We therefore combined two
complementary approaches to research into design [8]: a bottom-up one, aimed at
extracting themes from the analysis of project data, and a top-down one, aimed at
consolidating such themes through a substantial literature review.

6.3.2 Data Analysis

The data reported in this work were collected through a number of different
sources, including formal interview studies involving team members and the student
community, and personal observations of the authors, who participated in the project

148 S. Bordin and A. De Angeli

respectively as an interaction designer and the principal investigator. In claiming the
value of the findings derived from personal observations, we refer to the concept
of “autobiographical design” [49]: while its authors define it as “design research
drawing on extensive, genuine usage by those creating or building the system”, we
intend autobiographical data as drawing on the same kind of usage, but this time by
those creating or building practices rather than a system.

A first interview study was performed in summer 2013 after an intense period of
Agile development to investigate the perception of user involvement in the project,
also focusing on issues of team coordination and awareness. It engaged 20 people:
7 staff members (developers and HCI researchers) and 13 students with different
levels of involvement with the project. A second study was carried out in spring
2014, focusing on the project documentation and the practices to create and use it.
Among the 12 interviewees, 7 were developers in the Smart Campus lab, while 5
were students involved in the participatory development activities.

To decrease possible social bias, all interviews were conducted by a researcher
external to the project. Audiotapes were transcribed and iteratively coded by the
authors through thematic analysis [50]; double coding was performed on 25 % of
the transcripts yielding an inter-rater reliability of 93 %. Interview analysis was
conducted after the end of the project, in parallel to the literature review previously
presented. Citations in the next paragraphs will be attributed to interviewees as
follows: Dev for developers; Des for designers; Int for interns; Stud for students
in the community.

6.4 Results

This section is composed of three parts focusing on the communication breakdowns
previously introduced. For each of them we articulate the strategies employed in the
project and discuss their perception according to the team.

6.4.1 User Involvement

The user and the customer were clearly differentiated in Smart Campus; we fully
embrace the vision outlined for instance in [15, 27], according to which these figures
denote different targets of design interventions. The customer of the project was the
local University: in line with the funding scheme of the project, they contributed the
case study and some personnel time. Most of the allocated personnel were appointed
either from high-level administrative managers in charge of Education and IT, who
participated in formal meetings with the project team, or from academic staff, who
supported the research work leveraging on a richer variance of communication
contexts by keeping in close contact with the Smart Campus team. The relationship
with the customer was always complex and led to a partial dismissal of the project

6 Communication Breakdowns in the Integration of User-Centred Design. . . 149

result after the ending of the financial support from the funding body. The fact that
the University is no longer sponsoring the Smart Campus apps as we write is a clear
sign that the communication with the customer failed during the project, reinforcing
Bjørn and Ngwenyama’s considerations [9] about the organisational structure being
the main responsible for the failure or success of working practices. However, the
discussion of this topic is outside the scope of this chapter.

User involvement in the Smart Campus project ranged along the continuum
between involvement and participation [22] and evolved over a period of 3 years,
where we attempted to transform our users (the students in the campus) into a
community of service developers [42]. Students were in fact involved in the project
initially with an informative role, for example through questionnaire and diary
studies, then with a consultative role when they acted as beta testers of the apps
developed by the lab, and finally as participants in the development of their own
apps when integrated as interns in the project team. This process was successful
in that it delivered a set of eight mobile apps, two of which entirely designed and
developed by the student community, which were adopted in everyday life often
with positive evaluations. Despite the convenience of our user target, especially as
both authors fulfil educational duties in the local University campus, the relationship
with the students often led to difficulties and to the need of reconciling the meaning
of user involvement between the designers and the developers. The communication
with the students therefore spanned through the continuum of our interventions,
from a formal approach (when students were required to evaluate the apps as part of
a coursework) to a very informal one, as in frequent corridor conversations or short
text messages.

During the project we highlighted a variable and at times contrasting perception
of user involvement between designers and developers. In particular, the typical
breakdowns occurring in the integration of UCD and Agile were exacerbated by
what the community role actually entailed: this became evident at a management
meeting in April 2013. The discussion regarded the case of a student who was
particularly active in the forum and willing to contribute to the development, but
was perceived as patronising by the developers, who reported discomfort during
interaction; the discussion was then extended to the overall communication between
developers and users, which, especially over the forum, was not always smooth,
sometimes leading to communication breakdowns in a literal sense:

Dev2: “There are different kinds of users: on the one hand some are really careful
or even shy, but on the other hand some are kind of arrogant [: : :] I prefer not to
answer myself, but wait for someone that replies in a better way than I would.”

This opened a reflection on the role of students in the project and the perception
of participation within the Smart Campus community. To further explore this kind
of issues, the first interview study was organised. All members of the Smart Campus
team reported being aware of the project aiming towards participatory development
[42] and having a positive attitude towards the active participation of the users’
community in the project. However, when probed at a deeper level, it became
evident that the concept of involvement was intended more as informative, rather

150 S. Bordin and A. De Angeli

than participative [22]: instead of becoming true partners in the design process,
students were expected to just express their opinions, which had to be taken into
account by the lab. Especially in the case of developers, therefore, users were
perceived as being requirement providers and application testers (i.e. informants),
without any active role during the design and development stages:

Dev2: “External persons can suggest ideas, report bugs and the team has to listen
to them and consider them for the next steps.”

Dev2: “They are free to suggest ideas and even concrete improvements and we do
take the information seriously, because they will use the application and that’s
why their opinion is important.”

A designer indeed explicitly raised a concern about the lab understanding of
participation:

Des4: “Sometimes I think that we don’t listen very much to the students. We need
feedback, we have to make more effort to understand and to listen to their
opinions [: : :]. Sometimes we take decisions without a real participatory design
approach. We take the decisions from the top of the hierarchical organization.
This is only for making it easier and faster. We cannot listen to every little thing
from the students.”

We can see from these quotations that the perception of the community role
retained some UCD/PD elements in designers and some Agile elements in devel-
opers: for instance, developers maintained an understanding of the customer as
the funding agent whose requirements, although changing, were binding; on the
other hand, designers expressed unease at their limited possibility to fully take into
account the needs coming from the community. Yet, the compromise resulting from
the integration of the two methodologies was unclear. In fact, the community was
not understood as a proper customer, as it was not expected to actively participate
in the management of the development process (for instance, it was not part of
the community’s duties to prioritise needs) and it appeared unable to adequately
articulate its requirements for developers. On the other hand, the community lost
part of its prerogatives as a user, since the management ultimately decided how to
steer the direction of the project.

Indeed, students themselves were aware of the importance of their involvement,
but they still confined it to a role of informants and consultants rather than of active
participants who could effectively modify the outcome of the project:

Stud2: “The impact is strong: most of the participants are checking [Smart Campus]
out and using at least one app frequently.”

Stud10: “As a tester, you give me the smartphone and I can give you feedback. I can
do something in exchange”.

This attitude was evident also in the forum, which counted approximately 500
users who wrote about 2000 posts: over 67 % of threads reported problems and
issues with the applications or the smartphone, and only 27 % reported suggestions

6 Communication Breakdowns in the Integration of User-Centred Design. . . 151

for the evolution of the project. This in turn raised different expectations about
what kind of contribution users could provide and what kind of feedback needed
to be returned to them, in a vicious circle: being users’ posts seldom focused
on proposals for improvement, developers increasingly consolidated a perception
of the community as a group of testers, therefore not entirely committing to
acknowledging the actual suggestions for functionality enhancement; as a result,
such kind of contributions seemed to appear less over time.

6.4.2 Documentation

As exemplified by the question asked by Dev1: “What do you mean by document-
ing?”, documentation did not appear to have an intrinsic value as a communication
tool, neither for developers nor for interns; the first ones wrote it when explicitly
required, the second ones mainly because they had to report to supervisors.

Dev3: “I document some piece of code [: : :] only if somebody asks me to because
it is needed by others. Otherwise it’s rare that a developer comments his code.”

Dev4: “I document my development process sometimes, because it depends on the
time that I have : : : If I have time, I spend some time to write a document”

To further investigate this aspect, the second interview study was organised.
Since the development team was collocated and consisted of a limited number of
members, writing documentation became just overhead in practice, as developers
found it arguably quicker and easier to just meet and discuss in person within the
office:

Dev7: “For the discussion between developers with different points of view, it’s
quicker to go to the office with the other developer and discuss it.”

One of the interns however explicitly realised that this tended to create a closed,
connected, fast-paced group:

Int3: “In my opinion, developers should participate in the forum, that is talk to the
users without staying in a closed group. This would be counter-productive, as we
[developers] meet every day.”

The limited actual documentation was typically written and located within the
code in the form of comments; developers shared more extensive online documents
in case they needed to describe a complex process or provide more detailed
information on what they did to a colleague who was meant to take over their work.
Graphical documentation (wireframes and quick hand-drawn sketches) was used
to discuss interface design, to align work between designers and developers and to
supplement the written one in illustrating complex processes; it was usually transient
and kept for personal use.

152 S. Bordin and A. De Angeli

Dev5: “Well, the code is open source, so : : : they read my code and in the middle of
my code there is some comment”

Dev5: “If it’s a UI feature, I try to draw it : : : But I do not share this kind of sketches
with anyone. It’s just for me : : : when I complete the feature, I throw them away.”

The attitude with regards to documentation instead changed in the case of
designers or of interns who did not typically share the same space and time in the
lab anymore due to academic commitments or end of their internship: they tended
to habitually use documentation to organise and manage their progress. Designers
regularly shared reports and reflections through Dropbox and online documents;
interns reported first using everyday objects such as post-its and then moving to
shared online documents as well as their collocation became less frequent.

Int5: “At first we used a lot of post-its that we would stick on the whiteboard
and we work there as a group : : : we wrote all the points to develop, what one
would do, what the other would do : : : when I basically remained the only one
working there, I started to use shared online documents to communicate with
other developers : : : and then that became the main communication method : : :
The same things that we would write on post-its, we would then write on these
shared documents.”

The introduction in the team of several members (typically students) who worked
during different shifts, remotely, or from different locations however reduced
the chances of non-mediated communication while increasing the need for a
shared, accessible knowledge base: yet, how to effectively support such need while
leveraging on existing working practices remained an open point.

In general, the interviews showed how a series of attempts at effectively
supporting documentation yielded contrasting results. In the following paragraphs
we summarise what happened with reference to different articulation platforms used
to facilitate the communication within the project team (developers, designers, and
interns) and between the team and the user community.

Developers’ Wiki This platform mainly hosted technical documentation for inter-
nal use. Developers reported checking it almost exclusively to read information;
active contributions had been generally limited to the first steps of the project, as
the lack of guidelines on how to structure the wiki rapidly led to a very confusing
articulation which finally resulted in the CTO of the project being the only one
“legitimated” to write content in it. Developers stated that they seldom edited minor
points, typically to update sections concerning the tasks they were working on:

Dev1: “I know that on the Smart Campus Developers’ wiki every library has
documentation : : : these are done by G. and R. [CTO]”

GitHub Both interns and developers recognised in principle the relevance of doc-
umentation for involving external developers from the community and promoting
the project, and some acknowledged that it should be placed in GitHub along with

6 Communication Breakdowns in the Integration of User-Centred Design. . . 153

the code; in practice, however, developers did not use GitHub for documentation
beyond the comments attached to code commits.

Dev4: “If I use open software, it’s more important to publish the code and the
documentation because if a developer needs to use my code he can learn where
it is, how it works and so.”

In fact, GitHub was considered to be quite cumbersome to search and likely to
be too “geeky” to be widely used by the users’ community.

Dev3: “I find [GitHub] quite hard to navigate, because there is development, tips,
hints : : : there should be some guidelines”

Forum While the wiki and GitHub were more oriented to facilitating communica-
tion within the Smart Campus team, this bulletin board was aimed to open a dialogue
between the project team and the community of users and was perceived as more
suitable for this purpose.

Int1: “If [the forum] is for documentation purposes within the developers and the
community, it can make sense. If it is just between me and the other people of the
group, I don’t think so.”

One of the students claimed that the forum could indeed be a good tool for
supporting the open source project and discussions related to code:

Stud1: “It would be important [to have a dedicated section for developers]
to help each other and exchange information and opinions about code and
development.”

Yet, while students perceived the forum as a place for discussion, developers
saw it just as a unidirectional informative tool from the users to the lab and did not
perceive it as a suitable support for shared project documentation. Because of this,
and despite the forum being acknowledged as a rich source of information, it was
not seen as a suitable support for documentation, but at most as a supplement.

Dev1: “[The forum] It’s not an instrument designed for that : : : the documentation
should be more structured documents where I can navigate like in a tree and
search : : : It’s something that is missing in the forum, but it’s not designed for
that”

Int4: “If there is the official documentation and you want to go deeper into a topic,
then you can visit that section of the forum : : : ”

Moreover, developers interpreted engaging in conversations on the forum as extra
work that got a relevant priority only if it was related to their current tasks:

Dev2: “[I use the forum] only to receive feedback on the application situation.”
Dev2: “[The forum] It’s a good way to interact with people and understand : : : but

to document the development of the topic, it’s not good.”

154 S. Bordin and A. De Angeli

Interestingly, however, while interns generally acknowledged the relevance of
the forum to interact with the community, they tended to check it less and less often
as their role in the project became more similar to that of a proper developer.

Int3: “The forum is an additional thing, I do not get any notifications, I have to go
check it myself.”

6.4.3 Synchronisation of Iterations

In Smart Campus, where the customer was actually a whole community, and as it
also happens in mobile app development more in general (let us think of the wealth
of apps published on Apple’s App Store or on Google Play), the amount of user
feedback escalated quickly: in our opinion, this has been one of the most disruptive
elements in an effective synchronisation of the periods of UCD and Agile. As a side
note, we report that feedback management and prioritisation is often mentioned
in the software engineering community (e.g. [51, 52]) as a major issue in Agile
projects.

At least in the first stages of Smart Campus, some members of the management
team were appointed to review user feedback and prioritise it before passing it
on to designers; this contributed to complicating the attempt of designers to find
a suitable balance with the development pace. As a result, the development team
sometimes took design decisions on their own, proactively checking the forum
and looking for suggestions to implement or bugs to fix without waiting for the
designers or the management to filter the information for them, but rather relying on
the users’ community contribution; the design team then resorted to many ad-hoc
design interventions performed through a face-to-face interaction with one of the
developers requesting it.

D2: “To read the situation [: : :] of some application that I am developing in part
[: : :] I read the application topic to understand if there are some problems”

Despite developers being generally sensitive to HCI themes, this situation often
caused parts of the apps to be modified in subsequent iterations in order to
better fit the holistic UX design, thus requiring the same piece of interface to be
implemented over and over again, each time differently. Different studies prove
that the synchronisation of UCD and Agile can indeed be complex: for instance, in
[15], the length of iterations in the two approaches and their “different timescales”
are identified as factors contributing to the difficulties in aligning designers and
developers; however, the authors report development being significantly slower at
prototyping than design, while we experienced the opposite situation.

In fact, what was discussed earlier about the perception of community involve-
ment also influenced the struggle for effective feedback management, especially
affecting how feedback was returned to users. Students in fact often asked for
more transparency on the project organisation and for greater feedback about their
suggestions; the developers however claimed that these aspects were ensured in the

6 Communication Breakdowns in the Integration of User-Centred Design. . . 155

forum. Actually, suggestions provided on the forum were either addressed directly
by developers or mediated by designers; in both cases, a ticket was created in an
internal system and was then closed upon solution of the issue. However, users had
no way to access these tickets or to know whether their proposals were being taken
into account unless someone from the lab explicitly notified this again on the forum,
which was infrequent. The situation was expected to improve with the introduction
of GitHub, as the ticketing system became public, yet this approach remained quite
obscure for users, as if the project team did not perceive the need to keep them
informed about the outcome of their suggestions.

6.5 Discussion

The present work has discussed a project adopting both UCD and Agile in the
context of mobile application development for a user community: reflecting on such
experience has allowed identifying three main communication breakdowns that may
hamper the fruitful integration of the two approaches if the user/customer is no
longer uniquely identified, namely a variable interpretation of user involvement, a
mismatch in the value of documentation, and a misalignment in iteration phases.
We acknowledge that the data we presented are to be conceived within the specific
context of our case study: yet, the three themes are also discussed in literature from
different points of view, even though not systematically. Therefore, given the data
collected from the project and the literature review that reinforced them, we propose
some considerations on how to favour the convergence of UCD and Agile in a setting
oriented towards a user community and to leverage on its benefits.

6.5.1 User Involvement

We have seen the difficulties in defining the role of the Smart Campus user
community and how these affected several aspects of the project. Misunderstandings
in user involvement have been echoed also in the literature: for instance, authors
debate on the extent of user/customer involvement both in the UCD [5, 22] and
in the Agile perspectives [15]. In the case of the integration of UCD and Agile
for a user community, we propose to draw inspiration from participatory design
[32] because of its intrinsic familiarity with the involvement of a variety of users,
each representing its own needs and values, and with the resulting complexity.
This was attempted also in Smart Campus by seeding a user community that could
communicate directly with the developers through the forum and the beta testing
experimentation. We believe that the availability of a platform such as the forum,
supporting the dialogue not only between the community and the project team, but
also within the members of the community, has been beneficial for the maturation
of a sense of ownership of the users with respect to the applications and for a livelier
discussion about the needs of the community itself.

156 S. Bordin and A. De Angeli

We have also referred to our instantiation of participatory development [42], i.e.
integrating users in the development team by having interns in the lab. This peculiar
context has in our opinion given some advantages to the development process: by
providing a direct, explicit link between the project team and the community, interns
allowed mutual learning to take place and contributed a domain knowledge that
resulted in a more informed feedback management; on the other hand, however, as
found in [28, 32], such bond with the community became less and less meaningful
as the time spent by students in the lab passed and they transformed into developers.

We acknowledge that the nature of Smart Campus as a funded R&D project put
it in a privileged position that could afford having interns from a largely technically
skilled user community as part of team. Yet, despite Smart Campus being a very
specific case, we argue that, particularly when addressing a user community as it is
often the case in mobile app development, informing the design and development
process with participatory elements is still a valid suggestion and, retaining the
richness and articulation of the voices of the community, is likely to be a sustainable
approach in the long term.

This also provides a possible answer to the concerns appearing in literature about
the customer’s role in Agile: this figure is entitled to steer the direction of the project
by redefining and re-prioritising his/her own requirements even while development
is on-going [12], but at the same time he/she is overwhelmed by responsibility [25],
his/her actual representativeness is questioned [3, 28, 31] and he/she is likely not to
have the competence to exert such decision-making power, to the point that some
authors have suggested that a member of the development team is most suited to play
this role [29] instead. We believe that the context of mobile application development
might open further possibilities if the community is composed of technically skilled
people, as it was partly the case in Smart Campus: in this case, in fact, the decision-
making power of users can be extended to cover choices that concern not only
design, as it happens in participatory design, but also development.

6.5.2 Documentation

In our experience documentation can be kept to a minimum, as encouraged by
the Agile principles [12, 33], and intended only for internal use as long as the
development process is confined within a lab, as it was in our case. Yet, if we
envision a scenario in which users are active participants engaged in participatory
development, documentation becomes a means to ensure greater transparency over
the development process, especially for coordinating the evolution of an open piece
of software; the theme of geographical distribution is by the way also presented
in [53] as one of the main differences between the open source and the Agile
approaches. Furthermore, in [54] authors highlight that shifting to a distributed
team, and thus having to create high-quality documentation and specifications,
“requires different types of competences than simply expertise in programming and

6 Communication Breakdowns in the Integration of User-Centred Design. . . 157

concomitant tacit knowledge”: professional identities and work practices change,
as the “articulation work” required to coordinate becomes a larger share of regular
work.

6.5.3 Synchronisation of Iterations

We have also seen how the amount of user feedback coming from a community can
quickly escalate and how handling it can affect the smoothness of the development
process. Despite information loss in feedback management being unavoidable [52],
we believe that an organisational culture informed by participatory design is likely to
appropriately recognise the value in this continuous feedback and effectively handle
it, integrating the users’ voice while retaining as much as possible of its articulation.
This context may also ensure greater transparency over the development process,
showing in an organic way what the outcome of the feedback and suggestions
provided by the community was and therefore establishing a dialogue with users,
rather than having communication flowing just unidirectionally as it happened in
the Smart Campus forum.

Indeed, how to effectively achieve this remained an open point in Smart Campus,
as the project team was not able to envision a lightweight process for feedback
implementation that did not interfere with the speed of the development pace; as a
result, design lagged behind development, differently from what reported in [15] and
suggested in [29, 40]. Yet, we believe that, as also shown by several suggestions in
literature [e.g. 55], the management of user input can be facilitated if the integration
of UCD and Agile fully occurs only after the conceptual design has been finalised,
i.e. after the so-called “Iteration 0” [41], which can even be regarded as exceeding
the scope of Agile methods [55]. In Smart Campus, for instance, while the user
research was being performed, the backend functionalities of the platform were
being developed as well. Once the conceptual design is ready, UCD can address the
interface design, while Agile can proceed with the implementation of the business
logic. In our opinion, it is likely that the feature-oriented framing of Agile is
somehow too constraining in respect of the creativity and flexibility that characterise
the early stages of UCD. A critical point is however still present in the handover of
the conceptual design from this stage, where UCD and Agile proceed in parallel, to
the subsequent iterations, where the two approaches merge.

6.5.4 Fostering Integration

We finally remark that as the integration between the UCD and Agile methodologies
occurs, a compromise seems to be needed between their respective understandings
of the user and the customer, both in terms of working practices [37] and in terms of

158 S. Bordin and A. De Angeli

organisational vision, especially in the case where the user/customer is no longer
uniquely defined and is rather replaced by a community like in Smart Campus.
In fact, some authors advocate the establishment of a suitable managerial and
organisational context as one of the conditions for the integration of UCD and
Agile to effectively happen [7, 37]. Clearly, an organisational culture that values
participation and recognises the relevance of user input throughout the whole design
and development process is likely to endorse a conceptual design that takes the
users’ voice into account, acknowledging and actively addressing the issues related
to the responsibility towards users’ needs and to the risk of losing track of the
holistic UX design over time [7, 37].

In order to foster such a receptive organisational culture, we propose the
adoption of design thinking [56], a methodology grounded on a “human-centred
design ethos” that pervades all stages of a product lifecycle, from inspiration to
ideation to implementation. This discipline leverages on “the designer’s sensibility
and methods to match people’s needs with what is technologically feasible” and
marketable, acknowledging the “value of a holistic design approach”. In his work,
Brown emphasises that design thinking is not just a prerogative of people in design
schools, but is rather an attitude that can be assimilated also by other professionals.
For what concerns specifically the integration of UCD and Agile, we believe that this
perspective can foster an organisational culture which values and achieves empathy
with users and endorses, both in the project management and its team, a common
awareness of elements such as the relevance of user needs, a holistic UX vision, and
a shared acceptance and ownership of the conceptual design and ultimately of the
product.

6.6 Conclusions

In this paper we have proposed three themes that can be used as an analytical
tool in the management and facilitation of projects involving UCD and Agile.
Such themes, or communication breakdowns, concern potential mismatches in the
formalisation of key concepts in the two approaches, namely the interpretation of
user involvement, the value of documentation, and the synchronisation of iterations;
they emerged from a case study in mobile application development for a user
community and were reinforced with a literature review. We believe that reconciling
them by promoting a receptive organisational culture that draws inspiration from
participatory design and design thinking can be a fruitful way to effectively integrate
UCD and Agile.

Acknowledgements Smart Campus was funded by TrentoRISE. The analytical work presented
in this chapter has been possible thanks to the funding granted by the Italian Ministry of
Education, University and Research (MIUR) through the project “Città Educante”, project code
CTN01_00034_393801. We wish to thank the Smart Campus team and all the students who
contributed to the project.

6 Communication Breakdowns in the Integration of User-Centred Design. . . 159

References

1. Salah D, Paige RF, Cairns P (2014) A systematic literature review for agile development
processes and user centred design integration. In: Proceedings of the 18th international
conference on evaluation and assessment in software engineering. ACM, New York, p 5

2. Kane D (2003) Finding a place for discount usability engineering in agile development:
throwing down the gauntlet. In: Agile development conference, 2003. ADC 2003. Proceedings
of the IEEE, pp 40–46

3. Sohaib O, Khan K (2010) Integrating usability engineering and agile software development:
a literature review. In: Computer design and applications (ICCDA), 2010 International
conference on, vol 2. IEEE, pp V2–V32)

4. Jurca G, Hellmann TD, Maurer F (2014) Integrating Agile and user-centered design: a
systematic mapping and review of evaluation and validation studies of Agile-UX. In: Agile
conference (AGILE), 2014. IEEE. pp 24–32

5. Damodaran L (1996) User involvement in the systems design process-a practical guide for
users. Behav Inform Technol 15(6):363–377

6. Kujala S (2003) User involvement: a review of the benefits and challenges. Behav Inform
Technol 22(1):1–16

7. Cajander Å, Larusdottir M, Gulliksen J (2013) Existing but not explicit-the user perspective
in Scrum projects in practice. In: Human-computer interaction–INTERACT 2013. Springer,
Berlin/Heidelberg, pp 762–779

8. Frayling C (1993) Research in art and design. Royal College of Art, London
9. Bjørn P, Ngwenyama O (2009) Virtual team collaboration: building shared meaning, resolving

breakdowns and creating translucence. Inf Syst J 19(3):227–253
10. Rogers Y, Sharp H, Preece J (2011) Interaction design: beyond human-computer interaction.

Wiley, Chichester
11. Norman DA (1986) Cognitive engineering. In: User centered system design. L. Erlbaum

Associates, Hillsdale, pp 31–61
12. Beck K, et al. Manifesto for Agile software development. http://www.Agilemanifesto.org
13. Verdiesen B (2014) Agile user experience. MSc dissertation, Radboud University Nijmegen,

Nijmegen
14. Clark HH, Brennan SE (1991) Grounding in communication. In: Perspectives on socially

shared cognition, vol 13. American Psychological Association, Washington, DC, pp 127–149
15. Chamberlain S, Sharp H, Maiden N (2006) Towards a framework for integrating Agile

development and user-centred design. In: Extreme programming and Agile processes in
software engineering. Springer, Berlin/Heidelberg, pp 143–153

16. Wolkerstorfer P et al (2008) Probing an Agile usability process. In: Proceedings of CHI 2008.
ACM Press, New York, pp 2151–2157

17. McGinn J, Chang AR (2013) RITECKrug: a combination of usability test methods for Agile
design. J Usability Stud 8(3):61–68

18. Memmel T, Gundelsweiler F, Reiterer H (2007) Agile human-centered software engineering.
In: Proceedings of the 21st British HCI group annual conference on people and computers:
HCI : : : but not as we know it-Volume 1. British Computer Society, Swinton, pp 167–175

19. Ungar JM, White JA (2008) Agile user centered design: enter the design studio – a case study.
In: Proceedings of CHI 2008. ACM Press, New York, pp 2167–2177

20. Gothelf J (2013) Lean UX: applying Lean principles to improve user experience. O’Reilly
Media, Inc., Beijing

21. Liikkanen LA, Kilpiö H, Svan L, Hiltunen M (2014) Lean UX: the next generation of user-
centered agile development? In: Proceedings of the 8th Nordic conference on human-computer
interaction: fun, fast, foundational. ACM, New York, pp 1095–1100

22. Iivari J, Iivari N (2011) Varieties of user-centredness: an analysis of four systems development
methods. Inf Syst J 21(2):125–153

http://www.agilemanifesto.org/

160 S. Bordin and A. De Angeli

23. Bjerknes G, Bratteteig T (1995) User participation and democracy: a discussion of Scandina-
vian research on system development. Scand J Inf Syst 7(1):1

24. Ambler SW. Introduction to user stories. http://www.agilemodeling.com/artifacts/userStory.
htm. Accessed 11 Dec 2015

25. Martin A, Biddle R, Noble J (2004) The XP customer role in practice: three studies. In:
Proceedings of the ADC 2004. IEEE. pp 42–54

26. Schwartz L (2014) Agile-user experience design: does the involvement of usability experts
improve the software quality? Int J Adv Softw 7(3&4):456–468

27. Sharp H, Robinson H (2004) Integrating user-centred design and software engineering: a
role for extreme programming? http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.
4554&rep=rep1&type=pdf

28. Beyer H, Holtzblatt K, Baker L (2004) An Agile customer-centered method: rapid contextual
design. In: Extreme programming and Agile methods-XP/Agile universe 2004. Springer,
Berlin/Heidelberg, pp 50–59

29. Sy D (2007) Adapting usability investigations for Agile user-centered design. J Usability Stud
2(3):112–132

30. Schwaber K, Sutherland J (2011) The Scrum guide. Scrum.org
31. Schwartz L (2013) Agile-user experience design: with or without a usability expert in the team?

In Proceedings of the ICSEA 2013. IARIA, pp 359–363
32. Gregory J (2003) Scandinavian approaches to participatory design. Int J Eng Educ 19(1):

62–74
33. McInerney P, Maurer F (2005) UCD in Agile projects: dream team or odd couple? Interactions

12:19–23
34. Brown JM, Lindgaard G, Biddle R (2011) Collaborative events and shared artefacts: Agile

interaction designers and developers working toward common aims. In: Agile conference
(AGILE), 2011. IEEE, pp 87–96

35. Selic B (2009) Agile documentation, anyone? Softw, IEEE 26(6):11–12
36. Ambler SW. Agile/Lean documentation: strategies for agile software development. http://www.

agilemodeling.com/essays/agileDocumentation.htm. Accessed 6 Nov 2015
37. Lárusdóttir MK, Cajander Å, Gulliksen J (2012) The big picture of UX is missing in Scrum

projects. In: Proceedings of the 2nd international workshop on the interplay between user expe-
rience evaluation and software development, in conjunction with the 7th Nordic conference
on human-computer interaction. http://ceur-ws.org/Vol-922/I-UxSED-2012-Proceedings.pdf#
page=49. Accessed on 11 Dec 2015

38. Gould JD, Lewis C (1985) Designing for usability: key principles and what designers think.
Commun ACM 28(3):300–311

39. Miller L (2005) Case study of customer input for a successful product. In: Proceedings of
Agile. pp 225–234

40. Nodder C, Nielsen J (2010) Agile usability: best practices for user experience on Agile
development projects. Nielsen Norman Group, Fremont

41. Fox D, Sillito J, Maurer F (2008) Agile methods and user-centered design: how these two
methodologies are being successfully integrated in industry. In: Agile, 2008. AGILE’08.
Conference. IEEE, pp 63–72

42. De Angeli A, Bordin S, Menéndez Blanco M (2014) Infrastructuring participatory development
in information technology. In: Proceedings of the 13th participatory design conference:
research papers, vol 1. ACM, pp 11–20

43. De Angeli A, Bordin S, Menéndez Blanco M (2014) Reflections over a socio-technical
infrastructuring effort. In: Proceedings of 2nd Workshop on Cultures of Participation in the
Digital Age, CoPDA’14, Como, Italy, May 27, 2014, CEUR-WS.org, online CEUR-WS.org/
Vol-640/paper1.pdf

44. Menéndez Blanco M, Bordin S, De Angeli A (2014) Sociotechnical infrastructuring for
participation. Workshop on cooperative technologies in democratic processes – Beyond
e-Voting, COOP. http://www.iisi.de/fileadmin/IISI/upload/IRSI/2014Vol11Iss1/IRSI_Vol11_
Iss1_Menendez_Bordin_De_Angeli_Socio-technical_infrastructuring_for_participation.pdf.
Accessed on 11 Dec 2015

http://www.agilemodeling.com/artifacts/userStory.htm
http://www.agilemodeling.com/artifacts/userStory.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4554&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4554&rep=rep1&type=pdf
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://ceur-ws.org/Vol-922/I-UxSED-2012-Proceedings.pdf#page=49
http://ceur-ws.org/Vol-922/I-UxSED-2012-Proceedings.pdf#page=49
CEUR-WS.org/Vol-640/paper1.pdf
CEUR-WS.org/Vol-640/paper1.pdf
http://www.iisi.de/fileadmin/IISI/upload/IRSI/2014Vol11Iss1/IRSI_Vol11_Iss1_Menendez_Bordin_De_Angeli_Socio-technical_infrastructuring_for_participation.pdf
http://www.iisi.de/fileadmin/IISI/upload/IRSI/2014Vol11Iss1/IRSI_Vol11_Iss1_Menendez_Bordin_De_Angeli_Socio-technical_infrastructuring_for_participation.pdf

6 Communication Breakdowns in the Integration of User-Centred Design. . . 161

45. Bordin S, Menéndez Blanco M, De Angeli A (2014) ViaggiaTrento: an application for
collaborative sustainable mobility. EAI Endorsed Trans Ambient Sys 14:4

46. Bordin S, Menéndez Blanco M, De Angeli A (2014) Catch me if you can: reconcil-
ing Agile and UCD. https://ucdandagile.files.wordpress.com/2014/10/nr2-nordichi2014-agile-
ucd-workshop-bordin.pdf, Workshop on the Integration of UCD and Agile Development,
NordiCHI 2014

47. Teli M, Bordin S, Blanco MM, Orabona G, De Angeli A (2015) Public design of digital
commons in urban places: a case study. Int J Hum Comput Stud 81:17–30

48. Sy D, Mille L (2008) Optimizing Agile user-centred design. In: CHI’08 extended abstracts on
Human factors in computing systems. ACM, pp 3897–3900

49. Neustaedter C, Sengers P (2012) Autobiographical design in HCI research: designing and
learning through use-it-yourself. In: Proceedings of the designing interactive systems confer-
ence. ACM, pp 514–523

50. Smith CP (1992) Motivation and personality: handbook of thematic content analysis. Cam-
bridge University Press, Cambridge, MA

51. Gartner S, Schneider K (2012) A method for prioritizing end-user feedback for requirements
engineering. In: Cooperative and Human Aspects of Software Engineering (CHASE), 2012 5th
international workshop on, IEEE. pp 47–49

52. Lee MJ, Ko AJ (2012) Representations of user feedback in an Agile, collocated software team.
In: Cooperative and Human Aspects of Software Engineering (CHASE), 2012 5th international
workshop on, IEEE. pp 76–82

53. Goldman R, Gabriel RP (2005) Innovation happens elsewhere: open source as business
strategy. Morgan Kaufmann, Amsterdam

54. Matthiesen S, Bjørn P, Petersen LM (2014) Figure out how to code with the hands of others:
recognizing cultural blind spots in global software development. In: Proceedings of the CSCW
2014. ACM press, pp 1107–1119

55. Schwartz L (2013) Agile-user experience design: an Agile and user-centered process?. In:
ICSEA 2013, The Eighth International Conference on Software Engineering Advances. IARIA
XPS Press

56. Brown T (2008) Design thinking. Harv Bus Rev 86(6):84

https://ucdandagile.files.wordpress.com/2014/10/nr2-nordichi2014-agile-ucd-workshop-bordin.pdf
https://ucdandagile.files.wordpress.com/2014/10/nr2-nordichi2014-agile-ucd-workshop-bordin.pdf

	6 Communication Breakdowns in the Integration of User-Centred Design and Agile Development
	6.1 Introduction
	6.2 State of the Art
	6.2.1 Integration
	6.2.2 User Involvement
	6.2.3 Documentation
	6.2.4 Synchronisation of Iterations

	6.3 The Smart Campus Project
	6.3.1 Project Methodology
	6.3.2 Data Analysis

	6.4 Results
	6.4.1 User Involvement
	6.4.2 Documentation
	6.4.3 Synchronisation of Iterations

	6.5 Discussion
	6.5.1 User Involvement
	6.5.2 Documentation
	6.5.3 Synchronisation of Iterations
	6.5.4 Fostering Integration

	6.6 Conclusions
	References

